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Abstract

A new approach for channel blind identification based on second order cyclostationary statistics and the group delay
has been proposed. In this, two methods are proposed. In both the methods, the correction is applied to the basic phase
estimate for both the poles and zeros, in the group delay domain. The basic phase estimate is derived from the spectral
correlation density (SCD) of the system output. In the first method, the phase correction is based on magnitude group
delay. In the second method, not only the phase correction but also an improved system magnitude estimate of better
variance and frequency resolution is derived based on modified magnitude group delay. The results indicate a significant
improvement in performance for both the methods. For the first method in the absence of noise, the percentage
normalized mean square error is reduced by about 85% over that of the existing non-parametric method. The second
method in the presence of noise (SNR = 5dB), provides a reduction of 74% over the existing non-parametric method
and 57% over the existing combined parametric and non-parametric methods.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and their actual identification is essential. How-
ever, the autocorrelation-based system identifica-

Communication channels, acoustic paths and tion is limited to minimum phase systems.
vocal tract etc., are of non-minimum phase nature Bispectrum, the higher order statistics, has been
used to extract the complete system phase [1,2].
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order statistics, processing and non-linear optimi-
zation [§].

Signals from the field of communication, rotat-
ing machinery, astronomy and weather exhibit
cyclostationarity. Their spectral characteristics
change periodically with time [3-5] and exhibit
spectral correlation between frequency compo-
nents. Methods based on second order cyclic
statistics viz., spectral correlation density (SCD)
are attractive as they require relatively less data
and only second order statistics. They are also
applicable to all types of distributions and are
insensitive to stationary additive noise. In cyclos-
tationarity-based methods, the channel identifica-
tion is done by fractional sampling of its output
and computing the complex cepstrum of the
output cyclic autocorrelation [6]. The drawback
of this is that it poses problems when the zeros are
very close to unit circle. This drawback has been
overcome in the absence of noise, by a subspace
approach by introducing cyclostationarity at the
transmitter [7]. In the parametric approach, the
poles and zeros of a mixed phase ARMA system
are identified using the SCD of its output and this
requires information about the order of the system
in advance.

In the non-parametric approach (NP) [6,8], at
frequencies (27/p), p being the over-sampling rate,
the phase information either cannot be computed
or it will be in error. To reduce the phase
estimation errors at the poles, a hybrid method
[8] that uses the predetermined pole information
by parametric method (NPP) has been reported.
The parametric methods are in general applicable
when the signal to noise ratio (SNR) is high and
the assumed model matches the process under
consideration.

The group delay (GD) of the Fourier transform
(FT) phase has been used for system blind
identification [9]. For the phase derived from
SCD, the correction for the poles is applied in
the GD domain using the information in the GD
derived from the magnitude, the magnitude GD
(MGD). This GD domain phase correction is
simple and it performs better even at nominal
SNR. However, it requires a good spectral
smoothing for the SCD and this may reduce the
frequency resolution for the phase.

Recently, a modified magnitude group delay
(MGDM) [10] that reduces the variance of
the spectral estimate without compromising on
the frequency resolution has been proposed. The
MGDM reduces the effect of the zeros close to the
unit circle due to input driving or associated noise
or due to signal truncation, without disturbing the
system roots and hence reduces variance without
affecting the frequency resolution.

This paper proposes new two-channel/system
blind identification methods based on cyclostatio-
narity and group delay functions. This is achieved
by applying correction to the phase derived from
the SCD of the output and the correction is applied
for both poles and zeros. For the first method, the
information in MGD is used for correcting the
phase. For the second method, the information in
MGDM is not only used for correcting the phase but
also in deriving an improved system magnitude
estimate. Their performance is significantly im-
proved over the existing methods [8] and the
second method is effective even at low SNR.

In this study, the performance comparison of the
proposed method is limited only to those of SCD-
based methods considered in [8] and not to the
other SCD-based methods.

2. Blind identification based on cyclostationarity

This section briefly reviews the channel identi-
fication based on the cyclostationarity induced by
oversampling the channel output and its limita-
tions.

2.1. Cyclostationarity of the over-sampled channel
output [8]

For the system identification, Fig. 1 shows a
simplified base-band representation of the pulse
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Fig. 1. Base-band representation of PAM data communication
system.
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amplitude modulation (PAM) communication
system. Here, Ahc(f) is the composite channel
impulse response that includes all interconnections
between the symbol generator and output of the
receiving filter. The channel is assumed to be
linear, time-invariant, causal and bounded input-
bounded output stable. The symbol source gen-
erates a zero mean unit variance i.i.d. (independent
identically distributed) sequence {a}, each element
of which comes from a constellation of PAM
symbols. The received continuous time signal is
given by

Yet) = alhhe(t — ITo) + w(1), .1)

Ty is the baud rate (the rate at which signal level
is changed and this depends upon the nature of
the format used to represent the digital data)
and w(?) is the additive noise with noise spectral
level Ny, independent of a;. For a sampling period
of T, h(n) = he(t)|,—,r, and w(n) = w(t)|,,r,, the
discrete-time model is

90 = yDlimyr, = Y alh(n — IP) + w(n),

1
P=T,/Ts. (2.2)

The cyclostationarity is induced at the receiver by
fractional sampling, i.e., P>1 and is achieved by
over sampling the system output with respect to
baud rate. This results in a discrete cyclostationary
process y(n). The correlation function of y(n) is

Ry(n + m,n) = E{y(n + m)y*(n)}, (2.3)

where E{.} is the expectation operation. The cyclic
correlation function of y(n) [3] is

P-1
Rﬁfﬂ)(m) = Z Ry(n+ m,n)e P,
n=0
f =2n/P,l: integer. (2.4)

The spectral correlation density (SCD) function is

S = Y RV, @9

S = Efja,*}H(&”)H*(&“~'P) + PN,o(1),
(2.6)

which is achieved by using Egs. (2.2), (2.3), and
(2.4) in Eq. (2.5) [8]. In the present study, this

equation forms the basis for channel identification
and when /#0, the SCD provides noise rejection.

2.2. Channel identification from its output SCD [8]

The objective is to identify the channel fre-
quency response H(¢'’) from the SCD of the
channel output y(n) for a zero mean i.i.d. input.

2.2.1. Magnitude estimation

The system magnitude can be derived from Eq.
(2.6) for both the cases viz., no noise and with
noise.

For the case, when the output of a system is not
corrupted by the stationary additive noise, the
system magnitude is obtained by putting the value
of / =0 in Eq. (2.6) and is given by
HE) = L S0@)2, o= Ella). @)
For the noisy or low SNR case, the system

magnitude is derived by choosing the value of
/=1 1in Eq. (2.6) and is given by

Sg/l)(ejw) — 0,2H(eju))H*(ej(w—Zn/P))'

If the channel has no zeros on the unit circle then

the system magnitude can be derived from |Sf(eJ“’)|

and is given by [8]

|H(e”)| = exp[DFT(c(n))],
ci(n) — é(n) In(a?)

Ch(}’l) = T 2nn/P , (2.83, b)
and
c1(n) = IDFT[In |S5(&)]. (2.9a)

where DFT is discrete FT, IDFT ‘ghe inverse DFT.
ci1(n) is the real cepstrum of, Sf[eiw]

cp(n) = IDFT[In |H(e)]], (2.9b)

cp(n) is the cepstrum of H[el”]. However, for
2n/P=2k+1 or n=[k+ 1/2]P, k an integer;
there is no solution. Thus as long as P is an odd
integer, the magnitude of |H(e!”)| can be com-
pletely identified from the SCD, even when a
strong stationary noise is present but requires a
relatively large number of data samples. (6> = 1 as
input with unit variance is assumed, otherwise also
HJ[e”] will be available within a scale factor).
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2.2.2. Phase estimation

With 1#0, Eq. (2.6) provides phase identifica-
tion. If /,(¢/) and ®(e’”) are the phase responses
of the SCD Si,ﬂ(ej“’) and H(el”), respectively, then
the output SCD phase and system phase are
related by [8]

¢(1) = ¥ (0)/[1 — exp{(—j2ni7)/ P}], (2.10)

Y)(t) and ¢(r) are their Cepstra with
V(1) V() and ¢(r) o P(e'”), respectively.
However, when

1 — exp{(—j2nit)/P} =0 ort =mP/l,
m : integer, (2.11)

cepstral phase information cannot be extracted from
Eg. (2.10). Therefore, any arbitrary channel
cannot be completely identified from the cyclosta-
tionary statistics alone. Further, this is supported
by the fact that the discrete channels with a
certain number of zeros uniformly placed in a
circle cannot be identified properly [8]. Further,
Eq. (2.6), will not extract any additional phase
information from the SCD by setting /=
+2,43,... . Therefore only the SCD evaluated
at / =1 is used. Thus, the phase obtained from the
incomplete set of cepstral coefficients will be highly
inaccurate and hence needs correction. This blind
identification approach will be referred to as non-
parametric method (NP).

For the case of a system with poles located at
uniform spacing along a circle, it has been shown
that the phase correction for poles [8], improves
the identification significantly compared to that
obtained by the NP method.

The inaccurate phase obtained from the incom-
plete set of cepstral coefficients by the NP method
will be corrected both for poles and zeros and also
an improved system magnitude even in the presence
of an observation noise, will be derived by the
proposed group delay approach.

3. Background

In this section, group delay functions which will
be used in correcting the phase derived from the
SCD and in obtaining an improved spectral

magnitude in identifying the channel will be
considered.

3.1. Group delay function (GD) [11]

For a mixed phase signal x(n) which can also be
the output of a system, the spectral magnitude and
phase of X(e) are not related by same cepstral
coefficients and are given by [11],

o0
In|X ()| = u(n)cos(wn) and

n=0
00

0(e”) = — > v(n) sin(wn),

n=1

(3.1a,b)

u(n) and v(n) are cepstral coefficient sequences of
the minimum phase equivalent systems derived
from the spectral magnitude and phase, respec-
tively. The GD negative derivative of the phase
0(¢’*) called the phase GD (PGD), 7,(¢/) is

oo
rp(ej“’) = —dl(w)/dw = Z nv(n) cos(wn), (3.2a)

n=1

1,(el”) can also be computed directly from X(e')
and Y(¢’”) which are the Fourier transforms x(n)
and from y(n) by the relation

XR(ejw) YR(ejw) + Xl(ejw) Yl(ejw)
X (&)

b}

1,(e) =
(3.2b)

where y(n) = nx(n) and R and I are the real and
imaginary parts. If the phase O(w) is known, x(n) is
the allpass sequence and X (w) = /@,

If v(n) = u(n) = c(n), the phase derived using
Eq. (3.1) from magnitude corresponds to the phase
of a minimum phase equivalent of the signal or
system and the corresponding GD is called the
magnitude GD (MGD), 1,,(e/) is given by

. o0
(@) = > ne(n) cos(wn). (3.3)
n=1
For a minimum phase signal, the magnitude and
phase are related by the same cepstral coefficients
c(n) (Egs. (3.1a,b)) and 1,(¢/”) = t,(e!*). For a
maximum phase signal, u(n) = —v(n) [11], hence,
(&) = —T(e).
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The significant values of MGD for a real pole
are close to the origin and for a second order pole
and are around the resonance frequency [12]. The
MGD for the zeros is same as those of poles but
opposite in sign. The MGD for a real and a
complex pole is positive, but for real and complex
zero is negative. If [1,,(e/)]" and [1,,(e!”)]” are the
positive and negative parts of the MGD, respec-
tively, then the cepstral coefficients for the pole
part, ut(n) and for the zero part, u™(n) are [12]

[T = C + i nu™ () cos(wn), (3.4)
n=1

[t = C + i nu~ (n) cos(wn), (3.5)
n=1

C is the average value that does not contribute to
the shape of the spectrum. Cepstrally smooth
spectra for poles and zeros can be obtained
separately by considering only the first few cepstral
coefficients in u*(n) and u™(n).

3.2. Modified magnitude group delay (MGDM)
[10]

In spectral estimation, the white noise driving a
system/associated with the system output or a
signal or the truncation effect on the signal,
introduces spectral ripple and significantly con-
tributes to the variance of the spectral estimate.
This spectral ripple manifests as zeros close to the
unit circle in the Z-plane. The ripple effect/
variance cannot be reduced by normal smoothing
using a window without any loss of frequency
resolution. The modified group delay [10] removes
these zeros without disturbing the signal /system
poles and hence reduces the variance preserving
the frequency resolution.

The modification basically considers the signal
to be characterized by an all-pole model. With
this, the variance contribution corresponds to the
numerator. Hence the variance effect can be
removed by dividing the transfer function by the
numerator estimate, without significantly disturb-
ing the denominator. In the GD domain, this
operation can be realized only by multiplications
and hence there will not be any singularity

problems due to divisions. This method of
variance reduction preserves the frequency resolu-
tion (of a rectangular window) and is unlike that
of periodogram averaging where the variance
reduction is only at the cost of the frequency
resolution due to the fact that the data windowing
pulls not only the zeros close to the unit circle, but
also the signal poles towards the origin.

If x(n) is generated by an all-pole system, driven
by a white noise input or has sinusoids with white
noise and X (/) = N(¢/)/D(e/”) then D(el”)
corresponds to the system and N(el®) to excitation
or the observation noise. For this, it has been
shown that [10]

Ky Kp
IN(ei))*  |D(ei))*’

where Ky and Kp are constants (say). For the
zeros close to unit circle, the first term in (3.6) will
be of large amplitude due to very small values of
[N(w)|?> and this is not so with the second term as
|D(el”)?> is sufficiently large for the poles well
within the unit circle. Hence, the first term will
mask the second term in (3.6). The effect of these
zeros can be reduced by multiplying 7,,(e”) by
[N(ei®)|>. Hence, the modified MGD (MGDM)
Tmo(®) 18

Tno(€”) = T, (&) N ()2, (3.7)

Tm(ejw) =

(3.6)

INE?)? = |X () /X, () (3.8)

[N(&?)]? is the estimate of |[N(e/)?, |X(e®)? is
smoothed spectrum of the signal obtained by the
truncated cepstral coefficient sequence. The mag-
nitude spectrum derived from the MGDM has to
be scaled with reference to the original spectrum.

4. Channel/system identification based on group
delay

As pointed out in the Section 2.2, the phase
estimated is erroncous and the phase correction
can be made both for the poles and zeros. For
poles, the phase correction applied by parametric
methods [8] may severely get affected when the
additive noise is strong. Presently it has been
proposed to apply in the group delay domain, the
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phase correction and also derive an improved
spectral magnitude estimate, due to its simplicity
and less sensitivity to the additive noise.

4.1. NP method with phase correction by magnitude
group delay (NP-MGD)

For a channel/system (with an i.i.d four-level
PAM input a(n) and with an additive output
Gaussian white noise w(n)), the over-sampled
output y(n) by a factor P, is obtained over-
sampling the input sequence a(n) by inserting
(P — 1) zeros between samples. Depending upon
the scenario, the SCD, S;‘,(a)) can be estimated by
choosing any one of the appropriate method
available in [3]. In the present study, the SCD is
computed by smoothing the cyclic periodogram,
I (w, ) using a spectral window &(w) of length K
(K determines the smoothing).

(K-1)/2

Ss=¢| >

k=—(K—1)/2

(0 — k)|,

where I, (w,0) = 1/N{Y(w —a/2)Y*(w + a/2)},
Y(w) = FT[y(n)].

The magnitude spectrum from the SCD can be
computed for no noise case and for noise case
using Eqgs. (2.7) and (2.9), respectively. Further
from this magnitude |H(w)|, the MGD 1,,(w) can
be computed using Eq. (3.1a) and Eq. (3.3), i.e.,

c1(n) = IDFT[In |[H(w)]],

ca(n), n=0,L/2,

2¢i(n), n=12,...,L/2—-1,
0, n=L/2+1,...,L—1,

c(n) =

Tm(w) = Real[DFT{nc(n)}],

where L is the DFT length. Let [r,(w)]t and
[tm(w)]” represent the positive and negative parts
of 1,,(w), respectively.

The PGD, 1,(w) can be computed from the
phase derived from SCD (using Eq. (2.11)) by
computing the all-pass sequence and using
Eq. (3.2b). If the unwrapped phase is known
7,(w) can be computed using Eqs. (3.1b) and

(3.2a). Let [r,(w)]" and [1,(w)]”, be the positive
and negative parts of 7,,(w), respectively.

The errors in estimating the phase by nonpara-
metric approach (Section 2), affect the location of
both poles and zeros. For a physically realizable
system, all the poles must be of minimum phase
and the poles correspond to the positive portion of
the MGD (Eq. (3.4)). The MGD will contain
complete information about the poles. In the
PGD, the correction for the poles [9] is made as

[tp()]" = [tm(@)]"  if 1,,(w)>0.

However, phase correction for zeros requires the
information about their locations with respect to
unit circle whether they are inside (minimum
phase) or outside (maximum phase). The PGD
provides this information, as the PGD is positive
for a maximum phase zero and negative for a
minimum phase zero. For a minimum phase zero,
the phase correction is achieved by

[tp(@)]” =[tu(w)]” if 7,,(w)<0 and 7,(w)<O0.

For a maximum phase zero, the positive part of
PGD (other than that for poles) is replaced with
the corresponding negative part of MGD with
change in sign. Let I'(w) = [ty(0)]" — [tm(w)]"
then,

[tp(@)]" = ~[tw(@)]”  if tu(®)<0 and I'(w)>0,

For the corrected PGD, 1,(w), ¢k)=
IDFT[tpe()],

0, k=0,L/2,
Mky=/{ 2qi(k)/k, k=1,2,...,L/2—1,

0, k=L/2+1,...,L—1,

where A(k) are the Cepstral coefficients derived
from the corrected PGD. L is the DFT length.
These corrections may result in some discontinuity
in the corrected PGD tp.(w) and can be reduced
by considering only first few Fourier coefficients
M(M <L) of the PGD and the smoothed cor-
rected PGD 7,c(el®) is

M
The(el”) =Y kak) cos(wk). 4.1
n=1
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Then, the system phase is

M
b)) = =" in)sin(wn). (4.2)
n=1

This corrected phase can be used for the channel
identification along with the estimated magnitude.
This method of phase correction is applicable even
in the presence of the associated noise. However,
additional frequency smoothing for SCD is
required to reduce the variance due to noise, and
this may deteriorate the frequency resolution and
hence the performance. Here phase correction is
both for poles and zeros, however, the approach in
[9] is only for poles.

The system spectral magnitude |H (e1”)| ob-
tained is associated with the estimated phase
qﬁ(eJ‘”) to get the frequency response of the system
H(e]w)

AE”) = |AE?)  and
h(n) = IDFT[H(®)].

The number of cepstral coefficients used should
be sufficient to get only the gross feature of the
spectrum as the cepstral coefficients are the
Fourier coefficients of the log spectrum. As their
number increases, the FT of the truncated
cepstrum will be closer to the original spectrum
(i.e., which includes all the cepstral coefficients).
The normalized error energy E,(m) considering
only the first ¢ cepstral coefficients c(k) is

(k) / > ).

Initially E,(m) will decrease sharply as m is
increased but after a certain value of m = M, the
knee point, the decrease is not appreciable. This
implies that M cepstral coefficients provide a good
representation of the spectrum.

E,(m) =
k= m+l

4.2. Channel/system identification based on non-
parametric method and modified group delay (NP-
MGDM)

In the presence of noise, to reduce the variance
of the phase estimate, the procedure described in
Section 4.1 demands high level of spectral smooth-

ing. This severely affects the frequency resolution
of the phase estimate and hence at high noise
levels, the MGDM that reduces the variance
without reducing the frequency resolution, is
expected to be very appropriate.

In the presence of strong noise, the MGD 1,,,;(w)
obtained from the SCD (with limited frequency
smoothing) using Egs. (2.7), (3.1a) and (3.3) will
have a spectral envelope with fluctuations super-
imposed on it. These fluctuations can be signifi-
cantly reduced by estimating the MGDM 1 p,(w)
using Eq. (3.7) without sacrificing frequency
resolution. This MGDM 1p,(w) corresponds to
the denominator. As described in Section 4.1, the
phase correction for the denominator of the
system (poles) can be done in GD domain using
MGDM 1p,(w). However, in removing the fluc-
tuations present in MGD, the part of the MGD
corresponding to the numerator of the system
(zeros), is also removed. Unless the system/signal
zeros are damped (away from the unit circle), they
are also removed by the MGDM, as it cannot
distinguish between wanted (of the system) and
unwanted zeros. So to correct the phase for the
system numerator (zeros), the MGDM 1y,(w) has
been derived by considering the original MGD
with its sign changed, i.e. —1,,;;(w).

From the MGDMs of the denominator 7p,(w)
and of the numerator 7y,(w), the corresponding
system magnitude estimates |H ~(w)| and |H p(w)]
(which are scaled with respect to original magni-
tude derived from Eq. (2.7)) which are having a
reduced variance without any loss in frequency
resolution can be obtained (Egs. (3.3) and (3.1a)).
From the improved magnitude spectra |H @]
and |H D(co)l the new system magnitude |H(co)| =
|HN(a))|/|HD(a))|, and the new MGDs 1ps(w),
Tys(w) and 1,,,(w) = tps(w) — Tys(w) are derived.

The phase correction method is the same, except
that it is done using an improved MGD 1,,,,(w) of
lesser variance but without any loss of frequency
resolution derived as above.

Thus in this method, both improved system phase
and magnitude estimates obtained using MGDM
will be used in identifying the channel/system. The
initial spectral magnitude estimate derived using
Eq. (2.7) has to be used in computing the MGDM,
as its performance is better in the presence of noise.
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For the MGDM, in estimating |N(¢/?)|> using
Eq. (3.8b), as only the smoothed spectral estimate
|X(e®)]> is required, the number of cepstral
coefficients to be used should be much less than
that corresponding to the knee point of normal-
ized error energy. To have a low variance, this
number should be kept small. Based on this, for
the smoothed spectrum the choice of number of
cepstral coefficients is made and this number is not
very critical. It can be in the range of 5-10 without
much difference in performance [10]. The MGDM
is valid even for the case of high signal to noise
ratio, when | X (el”)|? is computed by using a large
number of initial cepstral coefficients.

It was stated that the NP method which is only
based on cyclostationarity or SCD cannot identify
completely any arbitrary channel. Further, as it has
been reported [8] the channel that has zeros located
at uniform spacing along a circle cannot be
identified by a SCD-based method, since the
proposed methods belong to this class, they also
have this limitation But for the case where the poles
are uniformly spaced on a circle it has been shown
in [8] that the application of phase correction for
the pole part has improved the performance. In
view of this, it is expected that the proposed
approach, which applies phase correction both for
poles and zeros, will significantly improve the
performance. It should be noted that the group
delay methods are applicable only for those signals
whose poles and zeros are not on the unit circle.

5. Simulation results

The simulation study has been carried out for
three channels, both with and without noise cases.
For the no noise case, the data length, over-
sampling rate P and the number of trials Q
(considered for averaging) used are 4096, 4 and
50, respectively.

For the case with noise, the corresponding
parameters used are 8192, 3 and 20, respectively.
In both cases, the input i.i.d. sequence used is a
four-level PAM signal with symbols {—3,—1, 1, 3}.
For the noise case, for the NP-MGDM method,
the system spectral magnitude estimate is derived
from the MGDM for the poles and zeros. The

performance indices are:

N Q A
hn) = (1/Q) Y hi(n),
i=1

0 A
o*(n) = (1/0) Y _ [h(n) — hi(m)],
i=1

%NMSE = 100[02(n)/%%, )], h(n) is the

mean, 2,(11) the estimate of A(n), a(n) the RMSE,
and %NMSE the percentage normalized mean
square error.

Channel-I.

1 + 1.50000z!
1 — 1.64453z71 +0.740818z72"

The channel has poles at 0.82227 4 j0.25436 and
a zero at —1.500. The value of M used is 20. For
the SCD, a frequency domain boxcar smoothing is
done over 51 points, for NP and NP-MGD. The
performance of system identification is shown in
Fig. 2. The sample mean of the impulse response
estimate by the NP-MGD has a better match with
the true one than that by the existing NP method.
The RMSE plot indicates that variance of the
NP-MGD is significantly less than that for NP
(Fig. 2). The %NMSE obtained with NP and
NP-MGD, respectively, are 8.90 and 1.26 indicat-
ing an improvement of 85%.

The performance of the proposed methods for the
same example is considered for different signal to
noise ratios, SNR = 20, 10 and 0dB. For the SCD,
a frequency domain boxcar smoothing is done for
NP and NP-MGDM for noise case over 201 points.
For SNR =20dB, the performance results are
shown in Fig. 3 and the %NMSE by NP method
is 14.93 and that by NP-MGDM is 5.27, indicating
an improvement of 65% over that of NP. For the
proposed NP-MGDM method, in computing the
smoothed spectral envelope the first 13 cepstral
coefficients and the value of M = 20 are considered.

For SNR = 10dB (Fig. 4) and 0dB (Fig. 5), the
results show that the performance of NP method,
specifically at SNR = 0dB is very poor both in
terms of sample mean and variance. But the
proposed NP-MGDM method due to phase
correction both for poles and zeros, and improved

H\[z] =
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Fig. 2. System blind identification without noise case for channel-I: (a) by NP method; (b) by NP-MGD method.
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Fig. 3. System blind identification with noise at SNR = 20dB of channel-I: (a) by NP method; (b) by NP-MGDM method.
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Fig. 4. System blind identification with noise at SNR = 10dB of channel-I: (a) by NP method; (b) by NP-MGDM method.

system magnitude estimate, provides a signifi- This channel has poles at —0.4500 + j0.7794 and
cantly better performance over that of NP. zeros at 0.8000 and —1.200. For the NP-MGD, the
Channel-I1 : value of M chosen is 20 and the frequency
. 5 smoothing for the SCD is over 51 points. The

[ = 1= 0457 +0.962 %NMSE with NP and NP-MGD methods are

1 —09z71+081z72" 24.35 and 1.00, respectively, i.e., an improvement
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Fig. 5. System blind identification with noise at SNR = 0dB of channel-I: (a) by NP method; (b) by NP-MGDM method.
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Fig. 6. System blind identification without noise case of channel-II: (a) by NP method; (b) by NP-MGD method.

of 96%. The NP-MGD non-parametric method
outperforms the existing method (Fig. 6).

In the presence of noise at SNR = 12dB, the
frequency smoothing of SCD, for NP and MGDM
is done over 201 points. Further, MGDM is
obtained by computing envelope with first 20
coefficients and the value of M used is 20. The
%NMSE calculated by NP and NP-MGDM are
47.43 and 12.37, respectively (an improvement of
74%) and the results are shown in Fig. 7. The
mean and reduction in variance obtained by the
proposed NP-MGDM method are better com-
pared to existing method.

Channel-111 :

1 +0.6000z~" —0.3937z73
Hlz] =
8 1= 06561z
This channel has four poles at +0.6364 £

J0.6364 and three zeros at —0.5890 +j0.5780 and
0.5781. The frequency smoothing is done over 51

points and M = 20 are used. The %NMSE for NP
and NP-MGD are 14.81 and 1.05, hence an
improvement of 93% over the NP (Fig. 8).

The channel-I1T has poles uniformly placed on a
circle and hence use of only non-parametric
method results in a serious phase distortion
(Fig. 9) as phase information is not available at
these sampling instants. At SNR = 5dB, the
results of NP and NP-MGDM methods are shown
in Fig. 9. The frequency smoothing for SCD, for
MGDM and NP is over 201 points. In estimating
the MGDM, the smoothed spectral envelope is
obtained by considering the first 8-cepstral coeffi-
cients and the value of M used is 20. The results
for the combination of NP and parametric method
(used for correcting the phase for poles) (NPP)[§]
are shown in Fig. 9b.

For NPP also, the frequency smoothing re-
quired for NPP is over 201 points. The %NMSE
for NP, NPP and NP-MGDM are 61.66, 38.77
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Fig. 7. System blind identification with noise at SNR = 12dB of channel-1I: (a) by NP method; (b) by NP-MGDM method.
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Fig. 8. System blind identification without noise case of channel-11I: (a) by NP method; (b) by NP-MGD method.
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vs. SNR for various methods.
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and 16.64, respectively and this implies an
improvement of NP-MGDM about 73% over
NP and 57% over NPP.

It should be noted that because of the missing
information, the performance of NP is poor. But
for the NPP as it applies phase correction to the
pole part, its performance is improved. The
proposed method NP-MGDM as it applies
phase correction both for poles and zeros, its
improvement over that of NPP and NP is very
significant.

For Channel-III, Fig. 9d shows the % NMSE of
different methods with SNR variation. As the
SNR increases from 0dB, the performance of NP
and the NPP, improves as the NMSE decreases
but their performance is significantly poorer than
that of NP-MGDM and particularly at SNR
below 10dB.

6. Conclusions

A new approach for system/channel blind
identification based on second order cyclostation-
ary statistics and the group delay, was proposed.
In this, in both the methods proposed, to the basic
phase estimate, correction for both poles and zeros
is applied. The basic system phase and magnitude
estimates are derived from the spectral correlation
density of the system/channel output by the non-
parametric method. In the first method, the phase
correction is based on magnitude group delay and
in the second, on the modified magnitude group
delay. In addition to the phase correction, an
improved spectral magnitude derived modified
magnitude group delay was used for the second
method. For the first method the % NMSE is 85%
less than the existing nonparametric method. The
second method is effective even at low SNR as the
modified group delay reduces the effect of noise
without requiring a high degree of frequency
domain smoothing. Its %NMSE is 74% less than
the non-parametric method and 57% less than
the combined parametric and non-parametric
methods.
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