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1. Introduction

Steepest descent method is used extensively (see [1-8] for linear ill-posed equations and [11,13] for nonlinear ill-posed
equations) for solving ill-posed operator equations. In this study we consider a modified steepest descent method and a
modified minimal error method for approximately solving the operator equation

F(x) =Y. (11)

where F: D(F) € X — Y is a nonlinear Fréchet differentiable operator between the Hilbert spaces X and Y. Let D(F), (., .) and
I.ll, respectively stand for the domain of F, inner product and norm which can always be identified from the context in
which they appear. Fréchet derivative of F is denoted by F/(.) and its adjoint by F/(.)*. Further we assume that Eq. (1.1) has a
solution %, which is not depending continuously on the right-hand side data y, i.e., (1.1) is ill-posed.

It is assumed further that we have only approximate data y® e Y with

ly —y°l < 6.

Steepest descent method was considered by Scherzer [13], Neubauer and Scherzer [11] for approximately solving (1.1).
In general, steepest-descent method for (1.1) can be written as

Xip1 = Xi + Sy, (1.2)
where s, is the search direction taken as the negative gradient of the minimization functional involved and «, is the descent.
For solving Eq. (1.1) with ¥ in place of y, method (1.2) was studied by Scherzer [13] when s, = —F’(x;)* (F (x;) —y®) and

s> For linear operator F, Gilyazov [10] studied (ec-process) method (1.2) when s, = —F'(x,)* (F(x;) —¥?)

%k = TF g sel2
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and ak:(é;f;%%. Vasin [14] considered a regularized version of the steepest descent method in which
"

2
sp = —F/ (x)* (F(xg) —y®) + a(x, — %) and oy = % Here and below xg is the initial guess. Also, observe
IF" sl el |l

that the TIGRA-method of Ramlau [12] is of the form (1.2) with s, = —[F’(x,)* (F(x) — ¥®) + a (xo — x,)] and a, = B. Note
that, in all these methods, one has to compute Fréchet derivative of F at each iterate x; in each iteration step which is in
general very expensive.

1.1. Preliminaries

Let B(x, ), B(x, 1) stand, respectively for the open and closed balls in X , with center x € X and of radius r > 0.
In [11], Neubauer and Scherzer considered the steepest descent method:

Xep1 = X +oysg (k=0,1,2,...)
Sk = —F ()" (F(%) — ) (13)
s
lF’ (xi)si II?

and the minimal error method:

o

Xep1 = X +oysg (k=0,1,2,...)

S =—F (x)*(F(x) =) (1.4)
IFG) —yI1?
= T s

in the noise free case and obtained the rate
lIxe — Rl = 0(k2) (15)
under the assumptions (A):

(A1) F has a Lipschitz continuous Fréchet derivative F/(.) in a neighborhood of xg.
(Ap) F'(x) = RxkF'(X), x € B(xg, p) where {Ry: x € B(xg, p)} is a family of bounded linear operators Ry : Y — Y with

[Re =1l = Cllx = X||

where C is a positive constant and
(A3)

Xo— R = (FR)F (R)?z
for some z € X.

In the present paper, we consider a modified steepest descent method and a modified minimal error method, in the case
of noise free case, defined by

Xep1 = X +oysSg (k=0,1,2,...)

sk = —F'(x0)*(F(x) — ) (1.6)
o Isl?
“TIF (xo)sell?

and

Xep1 = X +oysSg (k=0,1,2,...)

sk = —F'(x0)*(F(x) — ) (1.7)
CIFG) — 1P
W= T s

respectively. Instead of assumptions (A), we use the following assumptions (C):

(Co) IF(x)|| < m for some m > 0 and for all x e D(F).
(C1) F'(X) = F'(x9)G(X, xg) where G(X,xg) is a bounded linear operator from X — X with

IG(X.x0) —Ill <Cop

where (g is a positive constant and p > ||xg — X||.

(Cy) F'(x) =R(x,y)F'(y) (x,¥ € B(xg, p)) where {R(x, y): x, ¥ € B(xg, p)} is a family of bounded linear operators R(x, y) :
Y — Y with

IRGx.y) =1l <Glix =yl
for some positive constant C; and
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(C3)
Xo —R = (F (x0)*F (x0))?v
for some v e X.

Observe that xy — X in (C3) is depending on the known initial guess xg, where as in (Aj3), xg — X is depending on the
unknown X. Not only this advantage but also in our method one need to compute the Fréchet derivative only at one point
Xo throughout the iteration process.

As already mentioned in the abstract, no convergence rate results are known for steepest descent method and minimal
error method with noisy data. In other words, it remains an open question whether convergence rate results can be proven
for the methods (1.3) and (1.4) with noisy data. We considered methods (1.6) and (1.7) with noisy data and obtained a
convergence rate result. Using the same idea we obtained a convergence rate result for methods (1.3) and (1.4).

The rest of the paper is organized as follows. In Section 2 we present a Convergence analysis of method (1.6) and
(1.7) and in Section 3 we present a Convergence rate result for method (1.6) and (1.7) with noisy data. In particular, we
consider a discrepancy principle in Section 3.1 and in Section 3.2 we present a convergence rate result for steepest descent
method and minimal error method. Finally the paper ends with an academic example in Section 4.

2. Convergence analysis of method (1.6) and (1.7)

The main purpose of this section is to obtain an error estimate for |x, — £|| under the assumptions (C). For this purpose
we make use of the following result in [10] (see [10, Lemma 2]). Let {v;} be a sequence in X, v > 0, be some parameter
such that

A VlI? = [|A Vi1 1 = e A v, Ay

for k=0,1,2,..., where A is a positive self adjoint operator and ¢, > 0. Then
1 k1 1 -
A%l < 20+ DI [l = | Y ellvill o | (2.1)
i=0

We shall apply the above result (i.e., (2.1)) to v, = A3 (x; — %) with A =F'(x9)*F'(x9) and v = % Therefore, in order to
apply (2.1), we need to prove;

1% = &I = X1 — RII* = e (A = R), X, — R) (2.2)
for some &, > 0 and ||A*% (X, —®)|| is bounded. Let C = max{Cy. C;}.
Lemma 2.1. Let (C) conditions hold and let Cp < /5 — 2. Let x;, be as in (1.6) or (1.7). Then, x, € B(xg, p) and

A = ~ 1 P A

[Xis1 — X1 + o [1 = C*p* — 4ACp]I|A2 (i — X) 1> < 1%, — R1? (2.3)
forall k=0,1,2,.... Moreover,

> allA (xR < oo,

k=0

Proof. We shall prove the result using induction. Note that xy € B(xq, p) and suppose x; € B(xq, p). Then using (1.6) or (1.7),
we have

=20 (% — R F' (x0)* (F(x¢) — ) + 2 |IF' (x0)* (F (%) — y)|I?
=20 (X — R, F' (x0)*[F (%) — F(R) — F'(x0) (x — X))
+ oo IF (%) * (F (X)) = Y) 117 — 2{x, — &, F'(X0)*F' (x0) (x¢ — ®))]

1
= —ZOlk<F’(Xo)(Xk—>?),/O (F’(?+9(Xk—>?))—F/(Xo))dQ(xk—2)>

%1 — %112 — llxe — 2112

+ aglonlIF (x0)* (F () — YII? = 2[1A% (x — R)[12]. (2.4)
So by (C,), we have

1
[Ixe1 = R = llx = 211 = —201k<F/(Xo)(Xk —??),/0 [R(X+6 (X = R). x0) — IdOF' (x0) (xi —>?)>

+ o IF (%0)* (F () — W) I1> = 2[1A% (xi — R)||?]

1
206k/0 IR + 6 (xi = R), x0) = II[|F' (Xo) (X — 2)[1dO

I\
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+ alanllF (o) (F (1) = )17 = 2[1A2 (xi = R |I]
< 204Cl|R + 0 (x — &) — X0 | A% (x¢ — )|
+ o IF (x0)* (F (%) = P)II? = 2[1A7 (x = R, (2.5)
Observe that oy||F’ (xo)*(F(x;) —y)II? = |[F(x¢) —y||*> in the case of method (1.7) and in the case of (1.6), we have

/ 2
apllF' (xo)*(F(x) = )|*> = W < ||F (%) —ylI?. So for both methods (1.6) and (1.7), we have

il (x0)* (F(xi) = II* =< IF (i) = yI?

1 2
- H/ F'(R+ 6 (% — 2))d6 (% — )
0

2

1
_ H/O (R + 6 (% — R), X0) — [ + I1dOF’ (x0) (x;, — R)

< (ClIR+ 6 (x = R) = %ol + D?IF (X0) (xc — D) |1
< Cp+1?AT (% = R)|1%, (2.6)
Therefore, by (2.5) and (2.6) we have
X1 = 12 = llxe = &1 < [(Cp +1)? +2Cp — 2]or A2 (% — )|
This completes the proof. O

Let

26 56, 4
_ _973 _ 2 _ 2
p(t) = -2t 5t+5t =

Note that p(0) = f% <0 and p(1) = ? > 0. So p(t) has a zero in (0, 1). Let ry be the smallest zero of p in (0, 1). Next, we
shall prove the boundedness of ||A’% X =)

Lemma 2.2. Let (C) conditions hold and Cp < min{~/5 — 2,7} = 0.0740. Let x; be as in (1.6) or (1.7). Then, A~ (x, — R)|| is
bounded.

Proof. Using (C3), one can prove that x;, —X R(A%) for all k=0,1,2,.... Therefore, we can apply the operator A7 to
X;1 — X and x, — X to obtain

1A% (et =R = 1472 (3, — D) |12
= 20 (A% (% — ). ATF (x0)* (F(x¢) — ) + a2 A2 F (x0)* (F (x;0) — ) |12
= 204 (A (% = R). ATTF (x0)*(F (%) = F(®) = F'(®) (% — R)))
+ oo [A2F (x0)* (F (%) = Y)[12 = 2(A2 (x = 8). A3 F (x0)"F' (R) (% — R))]

1
= —2Ot/<<A; (xx — %), /0 (F'(R+6 (x, — 8)) = F'(2))d6 (x;, — 2?)>

+ alonIF (%) = ylI? = 2(A72 (% — ), F (R) (% — R)) . (2.7)
So by (C3) and (2.7), we have

A2 (X = R) 2 = A2 (% — R) ||
= 2ak<A§ (X — %), f01 (RE+0(x,— %), %) —DAOF (R) (x; — 2)>
+ e IF () = yII? = 2(A2 (% — ), F (R) (% — R))].
- 2ak<A% (X —R), f 1 [R(X + 6 (x, — R), X) — [|dOF (R) (x;, — 2)>
0

+ aglonlIF (%) = yII> = 2(A72 (. — R), F (%) (%, — %))
— 2{A7 (% — R), [F'(R) — F'(%0) ] (x — )]
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1
= —2ak<A-% (X — %), / [R(X + 0 (x, — ®), &) — [JdOF (R) (%, — 2)>
0
+ aglonlIF (%) = ylI> = 2(A72 (x — R), F (%) (%, — %))
— 2(A 1 (% — R), F'(x0)[G (&, %0) — (%, — R))].
The last step follows from (C;). So, we have
A2 (Xpeyq = R)I? = A2 (% — R) ||
_ 1
< 200, ]|A"% (% — ®)|IC /0 011x, — RIdOIIR(R. x0) — I +I[||F' (X0) (xi — D) |

1 2
/0 F'(R+ 60X — R))dO (% — R)

+ O | O

= 2|l% = R + 2CplIx, —)?||2]

_rl
< 200,]|A72 (% — >?)||C/O Ol1x — Rl dONIR(R. x0) — I+ I[I[[F' (X0) (X — X) |

2

1
s / [R® + 0 (X — £). X0) — 1+ 1dOF (x0) (x; — %)
0

= 2|lx = 211> + 2Cp||x —fllz}

< A G~ DS Il — 211 +C)IIF (x0) (e~ D
+ oo (1+Cp)2||A% (x — D)2 = 21x¢ — &[1> + 2Cpllx,c — RI|2].
Therefore by Lemma 2.1, we have
A2 (i1 = R)[12 = IA2 (x — R) |12
< a[|A2 (% = D)IClIxie — R (1 +Cp) | (x0) (% — D) || %nxk — 2|2

1+Cp)? -9 N
+ ak[(p) +20p - 5}||xk -~

1—4Cp — C2p2
< oA (5= DIEA +Co) xe = R (x0) (i — D
- Fll - K2 (28)

The last step follows from the fact that for Cp < ry, we have % +2Cp < % Now using the relation 2ab < a® + b?

with a =/ Lallx, — &Il and b= Y5%C(1 +Cp)l|A~Z (x — R ||/ (Xo) (¢ — R)|| in (2.8), we have
. 1 " 5- - i . .
A7 Gt =R 17 = 1472 (= D)2 = ZC (1 +Cp) an| A2 (i = D) 7 IF' (x0) (e = R 1. (2.9)
Now since Cp < min{~/5 — 2, g} < 0.0740, we have by (2.9)
1A% (e =R = 1472 (e = D) [1? < 1.4418C201 | A% (xic — D) [I2[|A~ (31 — D) [|2.
Set z;, = ||A’% (x, —X)||. Then

22, < (1+1.4418C%; | A} (% — %) )22

By induction
k-1 _ }
zp < [ [(1 +1.4418C%a; || A2 (x; — %) [|1*)25. (2.10)
i=0

The convergence of [](1+ 1.4418C_2a,-||A% (x; —®)||?) follows from the convergence of Y, oc,-||A% (x; —®)||2. By
Lemma 2.1, 3%, a,~||A% (x; — ) |12 < co. Therefore there exist M > 0 such that 3¢/ C_Zoe,»||A% (x; —®)||?> < M, which implies
that
k-1 o
[Ta+ 1.4418C2;||A% (x; — &) [|2) = eXio In(1+1.4418C0 A% (x—D)I1*)
i=0
< pl4418M (2.11)
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. 1 .
From (2.10) and (2.11), we have z? < e!4418Mz2 Since by (C3), zg = ||AZ (Xg — ®)|| = ||v]|. So we have
Zﬁ < 61'44]8)\/’“1}”2. (212)
This completes the proof. O

Remark 2.3. Note that, in (2.8), one can split —2||x, — 8||% into two parts, say —cl||x; — %||? and (c — 2)||x; — X||? such that

(1+Cp)? . i -1 i
T4ty T 2Cp <2 —c. In this way one can choose a larger p. We choose ¢ = ¢ for our convenience.

Theorem 2.4. Let (C) conditions hold and let Cp < min{~/5 — 2,1y} = 0.0740. Let x; be as in (1.6) or (1.7). Then
[l — ]| < Cle'72
where C = +/3eT4418Mc=1/2]|y|.
Proof. Observe that
a = [IF'(xo) 172
So for €, := € = 0.6985||F/ (xo)||~2, we have from Lemma 2.1, the conditions(C) and Cp < 0.0740;
1% = RI1? =[x — &I = (1= 4Cp — C2p?)e | A2 (x — D) |2
> 0.6985(F (xo) [|? 1A (x — ®)1”
= €llA? (o - D))
= €[|F' (xo) (¢ — D12
= €(F'(x0)"F'(x0) (X — R), X, — X)
= €(A(X, — R), X, — X).

An application of (2.1), yields

-1/2
k—1
na—wfvﬂm%@rwwme”{iwAM&—@n”}

i=0
k-1 -172
=V3zPe 2N 2P (213)
i=0

So by (2.12) and (2.13), we have

I = %I < v/3e1 @M1 212 )|

< Ck172. (2.14)

3. Convergence analysis of method (1.6) and (1.7) with noisy data

In this section we consider method (1.6) and (1.7) with noisy data y® instead of y. As already mentioned in the introduc-
tion we assume that

ly -yl <8
Precisely, we define:

X0 X +alsd (k=0,1,2,...)

kel =

s§ = —F (x0)" (F(x}) —y°) (3.1)
55 2

up_ ]

IF"(x0)s} 112
and
X =x+ajsd (k=0,1,2,...)
s = —F (x0)" (F() — ) (32)
s IFG) —y°II?

Al = — X~
k )
[RAR
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instead of x; in (1.6) and (1.7), respectively. We will use the following assumption together with the assumptions (C):
(C4) F satisfies the local property

IF(u) = F() = F'(xo)(u—=v)|| < nlIF(w) ~FW)Il (< %) (33)

for all u, v € B(xg, p).

It was shown in [4-8] (for linear ill-posed problems) that the steepest descent method converges in the case of exact
data, but due to the instability of the steepest method it is impossible to use a-priori parameter choice strategies as stopping
criteria. Therefore, a-priori strategy is used in the literature [13] for stopping (3.1) and (3.2). As already mentioned in the
introduction, a-priori stopping rules are used for steepest descent method in the literature to prove the convergence of
(3.1) and (3.2) to X but no error estimate for ||x;§ —X|| was given (as far as the authors are known). In this section we
propose a discrepancy principle for method (3.1) and (3.2).

3.1. Discrepancy principle

Proposition 3.1. Let (C) conditions hold. Let xi be as in (3.1) or (3.2). Then, a sufficient condition for xi 10 fO be a better
approximation of X is that,

IFx) -y’ || > T8 (34)
where
-2 (11_+2"n) 2. (3.5)

In particular, ifxﬁ e D(F) and (3.4) holds for all 0 < k < k, with T as in (3.5), then

T||F' (o) |I?
1-2mt-2(1+7n)

k.—1
ko (t8)? < Y IF() -y |I? < i
k=0

lIxo — %II?. (36)

Proof. Using (3.1) or (3.2), we have
%0, = RI1? = 1%} — RI1> = =20} (xp — R, F'(x0)" (F(x}) — y°)) +Ol,‘§2||F/(Xo)*(F(Xﬁ) -2
=20 (F(x}) = y° = F'(x0) (X} — R), F(x}) = ¥°)
+ @[} I (x0)" (F () — y)) I = 2IIF (%)) — y° %]
<200 |[F(x)) —FR) +y —y* —F (%)%} = DIIFx}) =y’
+ @[} [IF (x0)* (F(x}) — Y"1 = 2IIF (%)) =y [I%]. (3.7)
So by (C4), we have by (3.7)
%0, = RI? = (1%} — RI1* < 22} (IIF(x}) = FR)|| + &) IF (x3) — |
+ ap[apIF' (xo)* (F(x)) —y))II> = 2/[F(x}) — y° 1]
<200[nlIF(x) =¥ Il + A+ mSIIF (D) —y° |
+ aplaf I (xo)* (F(x3) —y))II> = 2/[F(x}) — y° 1]
=20 - DIF) -y I
+a2(1+m8IF() -yl
+ ap[apIF' (xo)* (F(x)) —y))II> = [IF(x§) — y°[1%].
In both methods, i.e., (3.1) and (3.2), & |[F'(x0)*(F(x}) — y®)||> < |[F(x}) — ¥°||2. Therefore, we have

%1 = 217 =l = R11% < o[ @0 = DIFGR) =y 11> +2(1 + mSIF () = y° I, (3.8)
so, by (3.4), we have
4 = 21— llx§ = 211 < a,é<<2n ~n+2 ”))HF(x;i) -y <0. (3.9)
Now since oc,‘z > ||F/(xo)]| =2, we have by (3.9)
||F'<xo>||2(<1 o 2102 ’7)) IF ) = Y11 < Il = 12 = Ik, . (310)
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Adding the inequality (3.10) for k from O through k., — 1, we obtain

) 1+’ N N
IF (o) 2((1 ~2) —2(t’7)) SIFG) ~ VI < o — 212 — 1%, ~ %I (311)
k=0

This completes the proof. O

Remark 3.2. Thus (3.11) implies that, for y° # y, there must be a unique index k, such that (3.4) holds for all k < k. but is
violated at k = k, (see also [9, p. 282]).

Next Lemma is used to prove our main result in this section.
Lemma 3.3. Let Cp < 272 Then § < (1 - g||x;§ —RIDIF' R)(x —R)|| for all 0 < k < k.
Proof. By the definition of k., we have for k < k,;
8 < [Fe) =yl
< IFG) —F® 1 +lly =yl
fol F/(R+6(¢ — )00 - R

< +46

< +46

/ RE+ 008 — 2.8 1+ dOF R) (8 - R)
0

l -
sfo [COGE — )+ 11d0]F @) (x} — B[ + 6
= (1 ol —>2||)||F/<>€><x;i Rl +5

C . R
< (1 + 2,0) IF'(R) (X — R)|| + 6.
The last step follows from (3.9) (i.e., ||x2 —X|| < |lxo — X|| < p). Thus, we have

1+ s
§ < T IF®Gg -l

< (1 - Czp)nF’(x)(x;i -9

C . . .
< (1 - 2||x;3—x||>||F’<x><xi—x>||.
This completes the proof. O
Let Q= ||F’(x0)||*2<(1 —2n) 4@).

Theorem 3.4. Let (C) conditions hold and let Cp < min{2=2), mig 1}. Let x| be as in (3.1) or (3.2). Then for 0 < k < k.,

0(g5* i S k+1
X, — & = (q] L (3.12)
0(82) if g1 <$
where q := max{1 — @TﬂllF’(i)(X? —®%2:i=0,1,2,...k}.
Proof. Since F is Fréchet differentiable at X,
1
[F(x2) —FQR) —F R)(x} —R)| = H/O (FR+60(x—R) —F(R)do(x —%)|. (3.13)
So by (C2),
1
IF(}) — F(®) — F'(®) (x} - R)|| = H / (RR+0(x —R), %) = F' (R) (x, — R)db H
0
¢ N R
< illxﬁ = RIIF & ) = 2). (3.14)
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Using (3.14), we have,
R oy C . . R
IF' @ (6 = D)l = 5 1% = R F @) (5 = D)
< IF @@ - - IF) —F®) —F @ - )|
< IF(x) = F@®I. (3.15)
Thus, by (3.15) and Lemma 3.3 we have
IF() =y° 1l = IF()) = FR)|| - 8

e s C s e s
> |[F @ &) - EIIXﬁ = RIF' @) (x} =R -8 > 0.

(3.16)
Thus,
IF() = y° 117 = [IF'(R) (x — %))
e\ 2
+ <2> X = RIZIF R) (xp — &) |12
+ 82+ Cllxg — RIF' (®) (x) = R) I8
— Cllx; = RIF' &) (x) = R)[|?
—28||F'(R)(x2 = R)||. (3.17)
So by (3.17) and (3.10), we have
. Q. . .
Iy = 812 < (1 - IF @ —x)||2)||xi — AP
+ Cp - DRIF &) - )|
— Q8 —QCllx; — RINIF' @ (¢ ~ D18
+2Q8|IF R) (% - R)||
Q. R "
< <1 - IF"(R) (x§ — X)|I2> llxp — %11
+ 2Qmpé.
Therefore we have,
1X0,1 = R < qillxg — RII> + L8
where g, =1 — @TQHF’()?)(xi —®)|1? and L = 2Qmp.
~2 ~ A
Note that g = 1 — S2|F'(R)(x} —)||? < 1. Then,
||xﬁ+1 —R|1% < ¢ 1x§ — R|I? + g*LS + ... + qLS + LS
L5
k+1 2
=qTp +l—q' (3.18)

This completes the proof. O

3.2. Convergence rate result for steepest descent method and minimal error method with noisy data

In this section we consider the steepest descent method and minimal error method with noisy data and obtained a
convergence rate result which is not available in the literature. The steepest descent method and minimal error method
with noisy data are defined by

X =x+ajsd (k=0,1,2,...)
st = —F' ()" (F(x) —y°) (3.19)
o lIsp 1>
IF"(x})s3 112
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and

X =2 +als) (k=0,1,2,..)

st = —F' (x) (F(x) —y?) (3.20)
o = IIF(X£)—y“II2’
[Is2]|2

respectively. We have the following convergence rate result.

Theorem 3.5. Let (C) conditions hold and let Cp < min{2=2), m%/a 1}. Let x| be as in (3.19) or (3.20). Then for 0 < k < k.,

o |ow@®) if s<g
X1 — Rl = o (3.21)
0(82) if g1<$

where q := max{1 — C2|[F'(R)(d — %)% :1=0,1,2,...k} with o := ||F’(x;§)||—2<(1 —2n) - 2@).
Proof. Simply follow the proof of Theorem 3.4. O
4. Example

In this section we present an academic example which satisfies the assumptions (C;) and (C,).
Example 4.1. Consider a nonlinear operator equation F: L2[0, 1] — L2[0, 1] defined by
F(u) := (arctan(u))?. (4.22)
The Fréchet derivative of F is

2arctan(u)
/ p—
Fuw= 1+u?

If u(x) vanishes on a set of positive Lebesgue measure, then F'(u) is not boundedly invertible. If u e C[0, 1] vanishes even at
one point xo, then F(u) is not boundedly invertible in L2[0, 1].
Note that

F'(Mw = F' (ug)G(il, ug)w,
and

F'(u)w = R(u, up)F' (ug)w

with G(iI, ug) = 14U arctan(@) g R(u, ug) = 14U arctan()  poshectively. Further, for u £0
» H0 = 102 arctan(ug) »H0) = 132 arctan(ug) p y- ’ 0 '

. 1 . .
16 o) ~ 1) = | o + 2max . o} | - uol
and
1
IR(u, up) =1l < [m + 2 max{||ull, ||u0||}]||u — U

That is, assumptions (C1) and (Cy) are satisfied.
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