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A B S T R A C T

In this paper, the free vibration characteristics and the static behaviour of porous functionally graded magneto-
electro-elastic (FGMEE) plate is investigated using finite element method. The porosities arise due to the ma-
ladies in the fabrication processes and such porosities or micro-voids are accounted using modified power law.
Influence of different porosity distributions on the behaviour of PFGMEE plate are considered in this study. The
through thickness variation of material properties is achieved to obtain a functionally graded MEE plate. The
coupled constitutive equations along with the principle of virtual work are used to develop a FE model for
FGMEE plates. Influence of various porosity distributions on the structural behaviour of the plate is thoroughly
investigated. The effect of porosity volume and material gradient index on the free vibration and static behaviour
is explicitly studied. This study also includes the evaluation of the effect of geometrical parameters such as
thickness ratio, aspect ratio, and boundary condition on the structural characteristics of porous FGMEE plate.

1. Introduction

Magneto-electro-elastic (MEE) materials are the combination of
piezoelectric, Barium Titanate (BaTiO3) and magnetostrictive, Cobalt
Ferrite (CoFe2O4) materials. Such materials exhibit magneto-electric
coupling which is absent in their individual phases (Boomgaard and
Born, 1978). This unique property facilitates MEE materials to be lar-
gely sought in sensors and actuators applications. MEE composites exist
in layered, multiphase, and functionally graded forms (Buchanan,
2004). Multilayered MEE plates are extensively investigated to assess
their free vibration characteristics, buckling, and static behaviour under
various loading conditions (Kiran and Kattimani, 2017, 2018a; Ramirez
et al., 2006; Chen et al., 2014; Lage et al., 2004; Simoes Moita et al.,
2009). Pan and his co-researchers (Pan, 2001; Pan and Heyliger, 2003;
Pan and Han, 2005) proposed various analytical solutions to evaluate
free vibration and static response of MEE plate. The behavioural study
of MEE plate for free vibration and large deflection was established by
Millazo (Milazzo, 2014a, 2014b, 2016; Kattimani and Ray, 2014a) via
various methodologies. Kattimani and Ray, 2014a, 2014b discussed
active constrained layered damping as an effective measure to control
non-linear vibrations in MEE plates and shells. The scaled boundary FE
method was implemented by Liu et al. (2016) to ascertain the higher
order solutions for MEE plate composed of non-uniform material.
Wakmanski and Pan (Waksmanski and Pan, 2016) evaluated free vi-
bration of multilayered MEE plate with non local effect using 3-D

analytical solutions. To reduce or eliminate the interface stresses ex-
isting in laminated composites, functionally graded materials were
developed. The FG material properties vary throughout the thickness.
The presence of functionally graded material in various applications has
been increasing with the innovation in cutting edge manufacturing
techniques (Mortensen and Suresh, 1995; Pompe et al., 2003;
Miyamoto et al., 2013). The various structural characteristics of FGMEE
material have been explicitly studied by many researchers (Ebrahimi
et al., 2009; Ebrahimi and Rastgoo, 2009, 2011; Vinyas and Kattimani,
2017). Kattimani and Ray (2015) researched large-amplitude vibration
responses of FG MEE plates. Recently, Kiran and Kattimani (2018b)
investigated the frequency and static characteristics of skew-FGMEE
plate.

The recent development in FGM includes the graded porosity
structures. The pores in the microstructures of such structural materials
are accounted via local density of the material. The methods to prepare
FGMs are a trending area of research capturing attention of many re-
searchers. The preparation method includes powder metallurgy, vapour
deposition, self propagation, centrifugal casting, and magnetic separa-
tion (Khor and Gu, 2000; Barati, 2018; Watanabe et al., 2001; Song
et al., 2007; Peng et al., 2007). Although many preparation methods are
available, the sintering process is preferred due to its cost effectiveness.
The FGMs prepared using sintering process possesses micro-voids or
porosities due to the different solidification rate of material constituents
(Zhu et al., 2001). A study by Wattanasakulpong et al. (2012) projects
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the importance of considering porosity factor in the design and analysis
of FGMs. Wang et al. (2017) investigated the vibration characteristics of
FG plates with porosities. Recently, Kiran and Kattimani (2018c) in-
vestigated the influence of porosities on the skew FGMEE plate.
Ebrahimi et al. (2017a) analysed the vibration characteristics of MEE
heterogeneous porous material plates resting on elastic foundations.
Aero-hygro-thermal stability analysis of higher-order refined supersonic
FGM panels with even and uneven porosity distributions was studied by
Barati and Shahverdi (2017). Using refined four-variable theory, Barati
et al. (2017) studied the electro-mechanical vibration of smart piezo-
electric FG plates with porosities. Ebrahimi et al. (2017b) studied the
free vibration of smart porous plates subjected to various physical fields
considering neutral surface position.

Though, the recent developments in manufacturing techniques have
improved significantly, the porosity is a common defect often observed
in FGMs. Hence, it is intended to develop a suitable FE model to study
the behaviour of FGMEE plates accounting the inherent porosity in the
material. Studies on static analysis and free vibration characteristics of
BaTiO3eCoFe2O4 plates with porosity distribution are scarce in the
literature. Hence, in this article, the finite element formulation to
evaluate the free vibration and static characteristics of porous FGMEE
plate for different porosity models is considered for evaluation. The
effect of different porosity distribution, porosity volume index, and
gradient index affecting the structural behaviour of porous FGMEE
plate is extensively investigated. Further, the effect of thickness ratio,
aspect ratio, and boundary condition is studied.

2. Problem description and governing equation

A schematic diagram of a porous functionally graded magneto-
electro-elastic (FGMEE) plate with a Cartesian coordinate system at-
tached to the corner of the plate is shown in Fig. 1. The length, the
width and the total thickness of the plate are a, b and h, respectively.
The material properties of the porous FGMEE plate are assumed to vary
across the thickness. The bottom surface of the plate is piezoelectric
(BaTiO3) and the top surface being magnetostrictive (CoFe2O4). The
plate model involved in the present analysis is developed by Hilder-
brand et al. (Hildebrand et al., 1949). The displacement components u,
v and w along x-, y-, and z-direction at any point in the porous FGMEE
plate can be represented by (Hildebrand et al., 1949)

= +
= +
= + +

θ
θ

θ κ

u(x,y,z,t) u (x,y,t) z (x,y,t)
v(x,y,z,t) v (x,y,t) z (x,y,t)
w(x,y,z,t) w (x,y,t) z (x,y,t) z (x,y,t)

x

y

z z

0

0

0
2 (1)

where, u0 and v0 are the translational displacements at any point on the

mid-plane of the plate along x- and y-directions while w0 is the trans-
verse displacement along z-direction at any point in the porous FGMEE
plate. θx denote the generalized rotation of the normal to the middle
plane of the porous FGMEE plate about the y-axis while θy denote the
generalized rotation of the normal to the middle plane of the porous
FGMEE plate about the x - axis. θz and κz are the generalized rotational
displacements for the porous FGMEE plate with respect to the thickness
coordinate. For the ease of computation, rotational and translational
displacements are considered separately as follows:

= =d u v w d κ{ } [ ] { } [θ θ θ ]t r z z
T

0 0 0
T

x y (2)

The shear locking in the thin structures is overcome by employing
the selective integration rule and also facilitates the computation of
elemental stiffness matrices linked with the transverse shear deforma-
tion in detail. This specific need is achieved by considering the state of
strain at any point in the plate, separated by in-plane and transverse
normal strain vector ε{ }b and the transverse shear strain vector ε{ }s given
as

= =ε ε ε ε ν ε ν ν{ } [ ] { } [ ]x y z xy
T

xz yz
T

b s (3)

where, εx , εy and εz represent the normal strains along x-, y- and z-
directions, respectively; νxy represents the in-plane shear strain, νxz and
νyz are the transverse or out of plane shear strains. Making use of the
displacement field given in Eq. (1) and from the linear strain-dis-
placement relations, the strain vectors ε{ }b and ε{ }s defining the state of
inplane, transverse normal and transverse shear strain at any point in
the porous FGMEE plate can be expressed as

= + = +ε ε ε ε ε ε{ } { } [Z ]{ }{ } { } [Z ]{ }b sbt 1 rb ts 2 rs (4)

wherein the transformation matrices [Z1] and [Z2] are expressed as
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The generalized strain vectors appearing in Eq. (4) are given by
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Analogous to the strain vectors given in Eq. (3), the state of stress at
any point in the porous FGMEE plate can be written as follows:

= = τ τσ σ{ } [σ σ σ σ ] { } [ ]b x y xy z
T

s xz yz
T (5)

in which, σx, σy and σz are the normal stresses along x-, y- and z-di-
rections, respectively; σxy is the in-plane shear stress; τxz and τyz are the
transverse shear stresses along xz- and yz-directions, respectively.
Considering the effect of coupled fields, the constitutive equations for
the porous FGMEE plate can be expressed as follows:

= − − =σ z ε e z E q z H z εσ{ } [C ( )]{ } { ( )} { ( )} { } [C ( )]{ }b b b b b s s sz z (6a)
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T
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= + +q z ε z E μ z HB { ( )} { } d ( ) ( )b bz
T

33 z 33 z (6c)

where, z[C ( )]b and z[C ( )]s are the functionally graded material coeffi-

cient matrices given as =
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(7).While, ξ z( )33 and μ z( )33 are the dielectricFig. 1. Functionally graded MEE plate.
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constant and the magnetic permeability constant, respectively; zd ( )33 is
the electromagnetic coefficient. The electric displacement, the electric
field, the magnetic induction and the magnetic field along the z-direc-
tion are represented by Dz, Ez, Bz and Hz, respectively. The electric
coefficient matrix e z{ ( )}b and the magnetic coefficient matrix q z{ ( )}b are
given by

=
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⎨
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The material coefficients accounting different porosity distribution
is given by modified power law distribution as follows:

= + − × − + × ×
= + − × − + × ×
= + − × − + × ×
= + − × − + × ×

= + − × − + × ×
= + − × − + × ×
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fg F B F B F p (9)

where, the subscripts B and F refers to BaTiO3 and CoFe2O4, respec-
tively, m is the porosity index (0 < m < 1) and Vp is the generalized
term to represent the different porosity distribution such as Vu, Vo, Vx,
and Vv as shown in Fig. 2 and are given as follows:

(a) Uniform porosity distribution, Vu

=V 1u (10a)

(b) O-shaped centralized porosity distribution, Vo

= −{ }V 1 2 z
ho (10b)

(c) High density of porosity at the top and bottom while low at the mid
span i.e., Vx

= { }V 2 z
hx (10c)

(d) Higher porosity density at the top and lower at the bottom, Vv

= +{ }V 1 2 z
hv (10d)

while, V is given by
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V z
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wherein, η is the power law gradient.
Employing the principle of virtual work (Kattimani and Ray, 2015),

the governing equations for the porous FGMEE plate is established as

∫ ∫ ∫ ∫
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where, Λ indicates the volume of the plate, Ft is the applied force with
sinusoidal distribution on the top surface area Ael, ρ(z) denotes the mass
density variation through the thickness. Ez and Dz are the electric fields
and the electric displacements, respectively, while Hz and Bz are the
magnetic fields and magnetic induction, respectively. The transverse
electric field (Ez) related to the electric potential and the transverse
magnetic field (Hz) is related to the magnetic potential in accordance
with Maxwell's equation as follows (Kattimani and Ray, 2015):

= −
∂
∂

= −
∂
∂

E
ϕ

H
ψ

z
and

zz z (13)

where, ϕ and ψ are the electric and magnetic potential. It is noteworthy
to mention that the thickness of porous FGMEE plate is very small and
hence, the variation of electric potential and magnetic potential func-
tions can be assumed to be linear across the plate thickness.

3. Finite element formulation

The porous FGMEE plate is discretized using eight noded iso-para-
metric elements. In accordance with Eq. (3), the generalized displace-
ment vectors d{ }ti and d{ }ri associated with the ith node (where, i=1, 2,
3,…, 8) of an element can be expressed as

= =d d κ{ } [u v w ] and{ } [θ θ θ ]ti ri zi
T

0i 0i 0i
T

xi yi zi (14)

At any point within the element, the generalized displacement
vectors d{ }t and d{ }r , the magnetic potential vector ψ{ } and the electric
potential vector ϕ{ } can be expressed in terms of nodal generalized
displacement vectors {d }t

el and d{ }r
el , the nodal magnetic potential vector

ψ{ }el and the nodal electric potential vector ϕ{ }el , respectively, as fol-
lows:

= =
= =

d N d d N d
ϕ ϕ ψ ψ

[ ] [ ]{ }{ } [ ]{ }
{ } [N ]{ } { } [N ]{ }ϕ ψ

t t t
el

r r r
el

el el (15)

in which,

Fig. 2. Porosity distribution (a) Vu (b) Vo (c) Vx (d) Vv.
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where N[ ]t , [N ]r , N[ ]ϕ and N[ ]ψ are the shape function matrices, respec-
tively; It and Ir are the identity matrices, respectively. ni is the shape
function of natural coordinate associated with the ith node. ϕi (where,
i = 1, 2, 3,…, 8) are the electric potential degrees of freedom and ψi are
the magnetic potential degrees of freedom. Using Eqs. 13–16, the
transverse electric field (Ez) and the transverse magnetic field (Hz) are
given by

= − = −E ϕ ψ1
h

[N ]{ }andH 1
h

[N ]{ }z ϕ z ψ
el el

(17)

Now, using Eqs. (4) and (16), the generalized strain vectors at any
point within the element can be expressed in terms of the nodal gen-
eralized strain vectors as follows:

= =
= =

ε d ε d
ε d ε d

{ } [b ]{ }{ } [b ]{ }
{ } [b ]{ }{ } [b ]{ }

b b

rs

t tb t
el

r rb r
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ts ts t
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rs r
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in which, [b ]tb , [b ]rb , [b ]ts and [b ]rs are the nodal strain-displacement
matrices. Substituting Eqs. (4) and (6) and (16)–(18) into Eq. (12) and
simplifying, we obtain the elemental equations of motion for the porous
FGMEE plate as follows:
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el T

t
el

r
el T

r
el el el (22)

The matrices and the vectors appearing in Eqs. 19–22 are the ele-
mental mass matrix [M ]el , the elemental elastic stiffness matrices [k ]tt

el ,
[k ]tr

el and [k ]rr
el , the elemental electro-elastic coupling stiffness matrices

and the elemental magneto-elastic coupling stiffness matrices are [k ]ϕt
el ,

[k ]ϕr
el and [k ]ψt

el , [k ]ψr
el , respectively; {F }t

el is the elemental mechanical load
vector; [k ]ϕϕ

el and [k ]ψψ
el are the elemental electric and elemental magnetic

stiffness matrices, respectively. The elemental matrices and vectors
appearing in Eqs. 19–22 are provided in the Appendix.

The elemental equations of motion in are assembled to obtain the
global equations of motion of the porous FGMEE plate as follows:
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where, [M] is the global mass matrix; [k ]tt
g , [k ]tr

g and [k ]rr
g are the global

elastic stiffness matrices; [k ]ϕt
g and [k ]ϕr

g are the global electro-elastic
coupling stiffness matrices; [k ]ψt

g and [k ]ψr
g are the global magneto-elastic

coupling stiffness matrices; {F }t is the global mechanical load vector;
[k ]ϕϕ

g and [k ]ψψ
g are the global electric and the global magnetic stiffness

matrices, respectively. Solving the global equations of motion (Eq.
(24)–(26) to obtain global generalized displacement vector d{ }t and d{ }r
by condensing the global degrees of freedom for ϕ{ } and ψ{ } in terms of
d{ }r as follows:
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Now, substituting Eq. (27) in Eq. (23) and upon simplification, we
obtain the global equations of motion in terms of the global transla-
tional degrees of freedom as follows:
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where, the global aggrandized matrices are given as follows:
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3.1. Validation studies

The proposed FE model of porous FGMEE plate is verified and
compared with the studies available in the literature by taking m=0
for perfect functionally graded plate. The normalized natural fre-
quencies for the rectangular simply supported FGMEE plate with an
aspect ratio of b/a=2 and a thickness ratio of h/a=0.1, 0.2 are
presented in Table 1. Considering the convergence criteria, the results
are obtained for various element mesh size. It can be clearly seen from
the tabulated results that for a 20×20 mesh size, an excellent agree-
ment is achieved with the solutions available in the literature (Milazzo,
2014a). Therefore, for all the subsequent analysis, a mesh size of
20× 20 is considered.

Table 1
Convergence and validation studies of normalized natural frequencies of FGMEE plate.

h/a Modes

1 2 3 4 5 6 7 8 9

0.2 Present (4× 4) 6.798 7.923 11.283 13.595 13.642 15.202 18.982 18.693 19.326
Present (8× 8) 6.638 7.894 11.213 13.487 13.608 15.183 18.888 18.601 19.295
Present (12× 12) 6.623 7.872 11.208 13.462 13.592 15.172 18.854 18.592 19.283
Present (16× 16) 6.619 7.863 11.203 13.458 13.588 15.167 18.849 18.583 19.278
Present (20× 20) 6.618 7.860 11.198 13.455 13.583 15.161 18.843 18.579 19.273
Milazzo (Milazzo, 2014a) 6.735 8.223 11.882 13.463 15.049 16.951 19.027 20.178 20.415

0.1 Present (4× 4) 9.720 13.598 14.909 23.158 27.195 27.290 28.106 31.411 35.006
Present (8× 8) 9.663 13.421 14.821 22.986 26.943 27.102 27.994 31.387 34.885
Present (12× 12) 9.652 13.417 14.811 22.963 26.932 27.082 27.979 31.372 34.869
Present (16× 16) 9.639 13.413 14.807 22.959 26.928 27.078 27.971 31.367 34.862
Present (20× 20) 9.637 13.408 14.801 22.952 26.921 27.069 27.967 31.361 34.858
Milazzo (Milazzo, 2014a) 9.584 12.852 14.733 22.577 25.701 28.339 28.734 32.391 36.341
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3.2. Free vibration studies

This section includes the evaluation of free vibration characteristics
for FGMEE plates with porosities. Different porosity distributions (Vu,
Vo, Vx, and Vv) and the porosity volume influencing the natural fre-
quencies are explicitly investigated. The PFGMEE plate considered for
the analysis has the following geometrical details: a/h=100; b/a=1;
η=2. It can be observed from Table 2 that, every porosity distribution
has unique influence on the free vibration characteristics of the plate. It
is also evident from Table 2 that Vv distribution holds the largest in-
fluence on the natural frequency of the porous FGMEE plate while Vu
display the lowest influence. The effect of porosity volume
(0.1≤m≤ 0.5) on the natural frequencies of porous FGMEE plate is
presented in Tables 3–6. It can be clearly seen from these tabulated
results that the higher porosity volume reduces the stiffness of the plate
and thereby results in lower natural frequencies.

The influence of gradient index (η) on the free vibration char-
acteristics of FGMEE plate is also assessed. Tables 7–9 presents the
natural frequencies obtained for perfect FGMEE plate and for the plate
with different porosity distributions. It can be seen from these tables
that the increase in gradient index decreases the natural frequency. The
increase in η transforms the pure CoFe2O4 composition into combina-
tion of CoFe2O4 and BaTiO3 phases. This combination reduces the
stiffness of the porous FGMEE plate. Further, at η=0, the plate is
completely CoFe2O4 and possesses the largest natural frequency.

The effect of geometrical parameters such as thickness ratio (a/h)
and aspect ratio (b/a) on the free vibration characteristics of the porous
FGMEE plate are presented in Tables 10 and 11, respectively. It can be
observed from Table 10 that the natural frequencies increases with the
increase in thickness ratio for all the porosity distributions considered.
Further, it can be noticed from Table 11 that the natural frequency of
the porous FGMEE plate decreases for higher aspect ratios. The effect of
different boundary conditions on porous FGMEE plate is tabulated in
Table 12. It can be clearly noticed from this table that the variation in
local flexural rigidity due to change in the constraints at the edges of
the plate influence the free vibration characteristics of the porous
FGMEE plate. It may also be noticed that among the evaluated

boundary conditions, the simply-supported condition (SSSS) shows the
lowest natural frequency while the clamped condition (CCCC) attains
the highest natural frequency.

3.3. Static studies

In this section, the static characteristics of porous FGMEE plate with
different porosity distributions, porosity volume and different gradient
index has been analysed by considering a sinusoidal uniformly dis-
tributed load across the plate area. The geometrical parameters con-
sidered for the study are: η=2, a/h=100, b/a=1 and m=0.1. The
effect of boundary conditions, thickness ratio, and aspect ratio affecting
the primary quantities (displacements and potentials) and the sec-
ondary quantities (Stresses, electric displacement and magnetic induc-
tion) of the porous FGMEE plate is studied. Fig. 3 (a) – (j) present the
effect of different porosity distribution on the various static character-
istics of porous FGMEE plate. It can be seen from Fig. 3(a) that the Vv
porosity distribution has the highest u-displacement while the Vu and
Vx distributions witnessed nearly identical behaviour. The character-
istic behaviour of v-displacement in Fig. 3 (b) is similar to that of u-
displacement. It is important to notice that the u-displacement clearly
display only bending while v-displacement majorly witness stretching.
It can also be seen that the stretching is more dominant for Vu, Vo and
Vx porosity distributions while the increased contribution of bending
along with the stretching is observed for Vv distribution. The char-
acteristics of electric potential and magnetic potential for different
porosity distribution are displayed in Fig. 3 (c) and (d). It can be seen
from Fig. 3 (c) that different porosity distribution has significant in-
fluence on the electric potential. Further, it can also be seen that the
largest electric potential is witnessed for Vu porosity distribution while
the lowest is observed for Vo distribution. The magnetic potential in
Fig. 3(d) display identical characteristics for Vu, Vo and Vx porosity
distributions while the Vv distribution witnessed the largest magnetic
potential. Fig. 3 (e) – (g) display the effect of porosity distribution on
various stress quantities and a meagre influence of porosity distribution
on stresses is observed. The effect of porosity distribution on magnetic
induction is shown in Fig. 3 (i). The Vu, Vo and Vx porosity distributions

Table 2
Effect of different porosity distribution on normalized natural frequencies of porous FGMEE plate.

η Modes

1 2 3 4 5 6 7 8 9

Perfect FG 0.5 4.269 11.075 11.100 22.477 24.014 24.083 41.931 41.983 47.727
2 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182

Vu 0.5 4.055 10.518 10.544 21.345 22.806 22.874 39.825 39.874 45.329
2 3.888 10.114 10.119 20.657 21.974 21.987 38.351 38.360 43.678

Vo 0.5 4.216 10.929 10.954 22.107 23.677 23.746 41.310 41.361 46.975
2 4.057 10.543 10.549 21.452 22.884 22.899 39.913 39.925 45.397

Vx 0.5 4.110 10.670 10.696 21.728 23.155 23.223 40.466 40.516 46.108
2 3.946 10.274 10.279 21.052 22.341 22.355 39.014 39.024 44.495

Vv 0.5 4.068 10.550 10.577 21.399 22.872 22.944 39.941 39.993 45.460
2 3.911 10.170 10.177 20.748 22.088 22.106 38.552 38.564 43.897

Table 3
Effect of porosity factor, m on normalized natural frequencies of porous Vu FGMEE plate.

Porosity factor, m Modes

1 2 3 4 5 6 7 8 9

0 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182
0.1 3.888 10.114 10.119 20.657 21.974 21.987 38.351 38.360 43.678
0.2 3.648 9.493 9.496 19.406 20.630 20.638 36.004 36.008 41.012
0.5 2.782 7.255 7.260 14.943 15.795 15.810 27.564 27.581 31.448
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display identical characteristics, and witness no major difference
among them. However, the Vv porosity distribution possesses least
magnetic induction and display nearly identical magnetic induction at
the top and at the bottom of the plate. Furthermore, the effect of por-
osity distribution on the electric displacement is presented in Fig. 3(j).
It can be noticed from the figure that the Vu and Vx distribution show
an identical characteristics. It is also noticed that the largest electric

displacement is obtained for Vu while the lowest is recorded for Vo.
The comparison of porous and non porous FGMEE plate is studied to

emphasize effect of volume of porosity on the static behaviour of the
plate. The material distribution of the FGMEE plate is considered for the
gradient index η=2. The uniform porosity distribution Vu with the
porosity index m=0.1 is considered for porous FGMEE plate while for
non-porous plate m=0 is considered. Fig. 4 (a) – (j) present the effect

Table 4
Effect of porosity factor, m on normalized natural frequencies of porous Vo FGMEE plate.

Porosity factor, m Modes

1 2 3 4 5 6 7 8 9

0 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182
0.1 4.057 10.543 10.549 21.452 22.884 22.899 39.913 39.925 45.397
0.2 4.000 10.387 10.393 21.062 22.526 22.540 39.258 39.269 44.597
0.5 3.822 9.902 9.905 19.835 21.407 21.417 37.186 37.194 42.091

Table 5
Effect of porosity factor, m on normalized natural frequencies of porous Vx FGMEE plate.

Porosity factor, m Modes

1 2 3 4 5 6 7 8 9

0 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182
0.1 3.946 10.274 10.279 21.052 22.341 22.355 39.014 39.024 44.495
0.2 3.772 9.833 9.837 20.237 21.407 21.418 37.404 37.410 42.739
0.5 3.190 8.361 8.361 17.530 18.299 18.300 31.990 31.997 36.934

Table 6
Effect of porosity factor, m on normalized natural frequencies of porous Vv FGMEE plate.

Porosity factor, m Modes

1 2 3 4 5 6 7 8 9

0 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182
0.1 3.911 10.170 10.177 20.748 22.088 22.106 38.552 38.564 43.897
0.2 3.685 9.584 9.592 19.558 20.816 20.836 36.340 36.352 41.383
0.5 2.698 7.048 7.064 14.684 15.389 15.428 26.953 26.972 30.994

Table 7
Effect of gradient index η on normalized natural frequencies of perfect FGMEE plate.

η Modes

1 2 3 4 5 6 7 8 9

0 4.500 11.630 11.690 23.394 25.152 25.310 43.908 44.024 49.999
0.2 4.373 11.325 11.365 22.893 24.526 24.634 42.828 42.908 48.748
0.5 4.269 11.075 11.100 22.477 24.014 24.083 41.931 41.983 47.727
1 4.181 10.862 10.876 22.118 23.576 23.615 41.159 41.188 46.859
2 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182
5 4.044 10.528 10.530 21.544 22.886 22.891 39.936 39.939 45.497

Table 8
Effect of gradient index η on normalized natural frequencies of porous Vu FGMEE plate.

η Modes

1 2 3 4 5 6 7 8 9

0 4.298 11.102 11.163 22.308 24.001 24.164 41.899 42.016 47.719
0.2 4.164 10.782 10.823 21.784 23.347 23.456 40.771 40.851 46.409
0.5 4.055 10.518 10.544 21.345 22.806 22.874 39.825 39.874 45.329
1 3.960 10.291 10.304 20.962 22.339 22.374 38.999 39.025 44.402
2 3.888 10.114 10.119 20.657 21.974 21.987 38.351 38.360 43.678
5 3.816 9.936 9.939 20.355 21.604 21.614 37.700 37.707 42.956

M.C. Kiran, S.C. Kattimani European Journal of Mechanics / A Solids 71 (2018) 258–277

263



of porosity on various parameters. It can be seen from Fig. 4 (a) and (b)
that the displacements u and v are higher for the porous plates over
non-porous plates. It is evident that the presence of voids/porosities
brings down the stiffness of the plate, and there by yields higher de-
formation. The behaviour of electric potential and magnetic potential is

presented in Fig. 4 (c) and (d), respectively. It can be observed from
these figures that the electric potential is higher for porous plates over
non-porous plates while no major influence of porosity on magnetic
potential is observed. The influence of porosity on the normal and the
shear stresses as shown in Fig. 4 (e) – (h) and a marginally higher

Table 9
Effect of gradient index η on normalized natural frequencies of porous Vo FGMEE plate.

η Modes

1 2 3 4 5 6 7 8 9

0 4.450 11.491 11.551 23.033 24.830 24.990 43.300 43.416 49.282
0.2 4.321 11.182 11.223 22.528 24.198 24.305 42.215 42.294 48.014
0.5 4.216 10.929 10.954 22.107 23.677 23.746 41.310 41.361 46.975
1 4.126 10.712 10.726 21.742 23.231 23.269 40.527 40.556 46.088
2 4.057 10.543 10.549 21.452 22.884 22.899 39.913 39.925 45.397
5 3.987 10.373 10.375 21.161 22.530 22.536 39.292 39.296 44.702

Table 10
Effect of thickness ratio (a/h) on normalized natural frequencies of porous FGMEE plate.

a/h Modes

1 2 3 4 5 6 7 8 9

Perfect FG 10 3.944 9.453 9.459 12.932 12.932 14.552 18.149 18.160 18.295
20 4.053 10.092 10.098 16.271 20.561 20.577 25.864 25.864 27.704
100 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182

Vu 10 3.729 8.941 8.945 12.239 12.239 13.765 17.171 17.179 17.314
20 3.832 9.542 9.546 15.385 19.442 19.453 24.479 24.479 26.204
100 3.888 10.114 10.119 20.657 21.974 21.987 38.351 38.360 43.678

Vo 10 3.888 9.307 9.312 12.590 12.590 14.311 17.811 17.839 17.850
20 3.998 9.950 9.956 16.030 20.259 20.273 25.181 25.181 27.258
100 4.057 10.543 10.549 21.452 22.884 22.899 39.913 39.925 45.397

Vx 10 3.788 9.092 9.097 12.590 12.590 14.014 17.490 17.500 17.811
20 3.890 9.690 9.695 15.636 19.756 19.769 25.181 25.181 26.667
100 3.946 10.274 10.279 21.052 22.341 22.355 39.014 39.024 44.495

Vv 10 3.750 8.987 8.993 12.246 12.246 13.832 17.249 17.261 17.326
20 3.854 9.596 9.603 15.470 19.549 19.566 24.493 24.493 26.334
100 3.911 10.170 10.177 20.748 22.088 22.106 38.552 38.564 43.897

Table 11
Effect of aspect ratio on normalized natural frequencies of porous FGMEE plate.

b/a Modes

1 2 3 4 5 6 7 8 9

Perfect FG 0.5 10.238 17.199 31.625 35.213 45.751 66.279 67.908 79.970 92.612
1 4.113 10.697 10.703 21.833 23.235 23.252 40.553 40.566 46.182
1.5 2.978 6.283 9.429 13.098 15.780 21.299 26.019 30.635 31.833
2 2.580 4.747 8.962 9.103 12.810 19.927 20.518 26.889 27.754
3 2.295 3.467 5.474 8.594 10.341 14.676 19.921 23.921 25.175

Vu 0.5 9.679 16.263 29.911 33.290 43.265 62.745 64.230 75.601 87.566
1 3.888 10.114 10.119 20.657 21.974 21.987 38.351 38.360 43.678
1.5 2.815 5.942 8.914 12.391 14.926 20.135 24.604 29.012 30.106
2 2.439 4.490 8.471 8.610 12.115 18.848 19.394 25.481 26.251
3 2.169 3.279 5.176 8.123 9.779 13.884 18.828 22.625 23.867

Vo 0.5 10.100 16.950 31.127 34.732 45.063 64.945 66.830 78.864 91.074
1 4.057 10.543 10.549 21.452 22.884 22.899 39.913 39.925 45.397
1.5 2.937 6.186 9.296 12.884 15.514 20.990 25.608 29.986 31.321
2 2.545 4.671 8.837 8.959 12.604 19.598 20.228 26.258 27.300
3 2.264 3.415 5.394 8.476 10.185 14.423 19.645 23.537 24.550

Vx 0.5 9.823 16.523 30.429 33.793 43.982 64.126 65.352 76.757 89.168
1 3.946 10.274 10.279 21.052 22.341 22.355 39.014 39.024 44.495
1.5 2.857 6.043 9.053 12.614 15.201 20.458 25.031 29.683 30.638
2 2.476 4.56978 8.6023 8.760 12.328 19.190 19.697 26.131 26.723
3 2.202 3.333 5.260 8.246 9.942 14.147 19.116 23.024 24.510

Vv 0.5 9.735 16.353 30.062 33.483 43.496 62.957 64.550 76.042 88.047
1 3.911 10.170 10.177 20.748 22.088 22.106 38.552 38.564 43.897
1.5 2.831 5.972 8.966 12.449 14.998 20.252 24.736 29.092 30.259
2 2.453 4.512 8.522 8.653 12.177 18.942 19.511 25.522 26.379
3 2.183 3.297 5.205 8.173 9.832 13.947 18.945 22.738 23.888
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stresses were seen for porous plate over perfect plates. Fig. 5(i) and (j)
present the effect of porosity on magnetic induction and electric dis-
placement, respectively. A significant influence of porosity on electric
displacement is seen while the influence of porosity on magnetic in-
duction is negligible.

The effect of aspect ratio on the static behaviour of the FGMEE plate
with Vo porosity distribution is presented in Fig. 6(a) – (j). From these
plots, it can be seen that the higher aspect ratios witness increase in u
displacement and decrease in v displacement. Also, the influence on
electric potential is found to be more dominant in comparison with
magnetic potential. The stress components σxx and τxy experiences
higher stress magnitude for higher aspect ratio while the influence of
aspect ratio on σyy is marginal. In addition, the transverse shear stress
(τxz) decreases with the increase in aspect ratio. Further, higher aspect
ratio results in higher magnetic induction (Bz) and electric displacement
(Dz). Fig. 7(a) – (j) display a considerable influence of a/h ratio on the
static behaviour of porous FGMEE plate. It is interesting to note that the
increase in thickness ratio results in higher primary (u, v, ϕ, and ψ) and
secondary quantities (stresses, Bz, and Dz).

The influence of material gradient index on the static behaviour of
porous FGMEE plate is represented in Figs. 8–12. The displacements
characteristics is observed to be unique for gradient index with every
porosity distributions as shown in Fig. 8(a) – (d) and 9(a) – (d). The
increase in gradient index decreases the displacements (u and v) for
porous FGMEE plate. It is interesting to note that the Vu, Vx, and Vv
FGMEE plates display an increase in the displacements with the

increase in gradient index while for Vo distribution a decrease in dis-
placement is seen. In addition, the electric potential increases with the
increase in gradient index as shown in Fig. 10(a) – (d) while Fig. 11(a) –
(d) show a decrease in the magnetic potential. Further, the effect of
gradient index on the magnetic induction and the electric displacement
is presented in Fig. 12(a) – (d) and Fig. 13(a) – (d). It is seen that the
magnetic induction decreases with the increase in η while the electric
displacement increases with the increase in η. Also, it is noticed that
every porosity distribution considered for evaluation presents a dif-
ferent through thickness variation of magnetic induction and electric
displacement.

The boundary conditions influencing the static characteristics are
presented inFigs. 14–18. It is observed from Fig. 13 (a) – (b) that the
displacement u is higher for the mixed boundary condition with
clamped free (FCFC) edges. The displacement v presented in Fig. 14 (a)
– (b) is higher for the mixed boundary condition CSCS edges and the
displacement is found to be minimal for fully clamped plate. The effect
of boundary condition on the electric potential and the magnetic po-
tential is shown in Fig. 15(a) and (b) and 16 (a) – (b). It can be seen that
the electric and magnetic potential are higher for clamped free (FCFC)
plate. It is interesting to note that, among the two porosity distributions
considered, Vo spared marginally higher electric potential over Vu. The
influence of porosity distribution on magnetic potential is negligible. In
addition, the magnetic induction and the electric displacement is higher
for simply supported plate and they are observed to be minimal for
clamped plate as observed in Fig. 18(a) and (b) and 19 (a) – (b).

4. Conclusions

Current article includes the evaluation of free vibration and static
behaviour of porous FGMEE plate. The porosity is considered to be local
density and approximated via modified power law. Four different
porosity distributions are considered for the first time. The constitutive
equations accounting the coupled fields and the principle of virtual
work is utilised to form the FE model. The free vibration studies reveal
that the porosity in the material significantly affects the natural fre-
quencies of the FGMEE plate. Although, every porosity distribution
produces unique free vibration behaviour, Vv possesses the largest in-
fluence on the natural frequency while Vu witnesses the least influence.
Higher porosity volume reduces the natural frequency of the plate. The
increase in gradient index decreases the natural frequency of porous
FGMEE plate irrespective of distribution type. Higher thickness ratio
increases the natural frequency while higher aspect ratio decreases the
natural frequency. In addition, the static studies reveal certain inter-
esting outcomes. Displacements are largely influenced by the porosity
and the highest displacement is associated with Vv distribution. Vu
distribution attains the largest electric potential and electric displace-
ment while Vv distribution projects the largest magnetic potential and
magnetic induction. Further, the displacements and the electric po-
tential are higher for porous plate over non-porous plate while no major
influence is seen on magnetic potential. Stresses are marginally higher
for porous plates over perfect plates. Although, porosity significantly
influences the electric displacement, no major influence of porosity on
magnetic induction is observed. Geometrical parameters such as aspect
ratio and thickness ratio display a major influence on static structural
characteristics of porous FGMEE plate. The gradient index and the
boundary conditions produce interesting response characteristics for
PFGMEE plate.

Table 12
Effect of boundary condition on normalized natural frequencies of porous
FGMEE plate.

Porosity
distribution

Boundary
condition

Modes

1 2 3 4 5 6

Perfect FG SSSS 4.113 10.697 10.703 21.833 23.235 23.252
FCFC 4.806 5.635 10.066 13.571 14.715 19.764
CFCF 4.803 5.632 10.067 13.560 14.705 19.774
SCSC 6.542 14.280 16.155 26.949 28.626 31.065
CSCS 6.543 14.275 16.163 26.950 28.609 31.086
CCCC 9.748 19.894 19.900 29.673 32.891 33.023

Vu SSSS 3.888 10.114 10.119 20.657 21.974 21.987
FCFC 4.540 5.325 9.519 12.819 13.904 18.688
CFCF 4.537 5.323 9.520 12.811 13.897 18.696
SCSC 6.183 13.501 15.267 25.474 27.071 29.354
CSCS 6.184 13.498 15.273 25.475 27.058 29.370
CCCC 9.215 18.795 18.800 28.030 31.076 31.203

Vo SSSS 4.321 11.182 11.223 22.528 24.198 24.305
FCFC 4.741 5.558 9.912 13.384 14.514 19.462
CFCF 4.737 5.555 9.913 13.374 14.505 19.471
SCSC 6.444 14.043 15.913 26.517 28.157 30.630
CSCS 6.446 14.039 15.921 26.518 28.142 30.650
CCCC 9.579 19.581 19.587 29.236 32.424 32.552

Vx SSSS 3.946 10.274 10.279 21.052 22.341 22.355
FCFC 4.609 5.405 9.679 13.014 14.114 19.003
CFCF 4.606 5.403 9.680 13.006 14.107 19.011
SCSC 6.284 13.747 15.519 25.923 27.558 29.808
CSCS 6.286 13.743 15.525 25.924 27.544 29.826
CCCC 9.391 19.121 19.126 28.487 31.565 31.696

Vv SSSS 3.911 10.170 10.177 20.748 22.088 22.106
FCFC 4.572 5.359 9.570 12.910 13.996 18.791
CFCF 4.568 5.355 9.571 12.899 13.986 18.801
SCSC 6.221 13.576 15.364 25.626 27.212 29.548
CSCS 6.223 13.571 15.373 25.627 27.195 29.571
CCCC 9.269 18.923 18.930 28.229 31.286 31.412
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Fig. 3. Effect of different porosity distribution on (a) u (b) v (c) ϕz (d) ψz (e) σxx (f) σyy (g) σxy (h) τxz (i) Bz (j) Dz.
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Fig. 4. Effect of porosity on (a) u (b) v (c) ϕz (d) ψz (e) σxx (f) σyy (g) σxy (h) τxz (i) Bz (j) Dz @ η=5.
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Fig. 5. Effect of porosity on (a) u (b) v (c) ϕz (d) ψz (e) σxx (f) σyy (g) σxy (h) τxz (i) Bz (j) Dz @ η=2.
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Fig. 6. Effect of aspect ratio (b/a) on (a) u (b) v (c) ϕz (d) ψz (e) σxx (f) σyy (g) σxy (h) τxz (i) Bz (j) Dz for Vo (m=0.1 a= b=100h, η=2).
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Fig. 7. Effect of thickness ratio (a/h) on (a) u (b) v (c) ϕz (d) ψz (e) σxx (f) σyy (g) σxy (h) τxz (i) Bz (j) Dz for Vo (m=0.1 a= b=100h, η=2).
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Fig. 8. Effect of gradient index on u (a) Vu (b) Vo (c) Vx (d) Vv.

Fig. 9. Effect of gradient index on v (a) Vu (b) Vo (c) Vx (d) Vv.
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Fig. 10. Effect of gradient index on electric potential (a) Vu (b) Vo (c) Vx (d) Vv.

Fig. 11. Effect of gradient index on magnetic potential (a) Vu (b) Vo (c) Vx (d) Vv.
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Fig. 12. Effect of gradient index on magnetic induction (a) Vu (b) Vo (c) Vx (d) Vv.

Fig. 13. Effect of gradient index on electric displacement (a) Vu (b) Vo (c) Vx (d) Vv.
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Fig. 14. Effect of boundary condition on u (a) Vu (b) Vo.

Fig. 15. Effect of boundary condition on v (a) Vu (b) Vo.

Fig. 16. Effect of boundary condition on electric potential (a) Vu (b) Vo.
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Appendix

The matrices and the vectors appearing in Eqs. 19–22 are given as follows:
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Fig. 17. Effect of boundary condition on magnetic potential (a) Vu (b) Vo.

Fig. 18. Effect of boundary condition on magnetic induction (a) Vu (b) Vo.

Fig. 19. Effect of boundary condition on electric displacement (a) Vu (b) Vo.
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where, ael and bel corresponds to the length and width of the element under consideration. D[ ]tb , D[ ]ts , D[ ]trb , D[ ]trs , D[ ]rrb , D[ ]rrs , D[ ]tϕ , D[ ]rϕ , D[ ]tψ , D[ ]rψ ,
D[ ]ϕϕ and D[ ]ψψ are the rigidity matrices appearing in Eq. (23) are given as follows:
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