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Abstract The estimation of evaporation has been under

surveillance, which is being carried out by many

researchers toward applications in the fields related to

hydrology and water resources management. Due to com-

plexities associated with its estimation, research has

employed several modes via direct and indirect methods to

estimate. Accurate estimations are still the thrust area of

research in these fields. The pan evaporation estimations

with the help of data modeling techniques have provided

better results in the recent past. The advancement in the

field of data modeling has introduced several techniques

which can best fit the data type and provide accurate esti-

mations. The novel gamma test (GT) was used to decide

the best input–output combination. Parameter optimization

was carried out by grid search. The developed models gave

better estimations of pan evaporation, but exhibited some

limitations with nonlinearity, and sparse and noisy data.

These limitations paved way for data pre-processing tech-

niques such as wavelet transform. This study made an

attempt to explore hybrid modeling using discrete wavelet

transform (DWT) and support vector machines (SVR) for

pan evaporation estimation. Two stations representing

contrasting climatic zones namely ‘Bajpe’ and ‘Bangalore’

located in the state of Karnataka, India, are selected in this

study. The meteorological datasets recorded at these sta-

tions are analyzed using gamma test and grid search to use

the best input–output combinations for the models. The

modeled pan evaporation estimations are very promising

toward ever demanding accuracy expected in the associ-

ated fields.

Keywords Support vector machine � Wavelet

transformation � Grid search � Gamma test � Regression �
Pan evaporation

Introduction

Evaporation is an element of the hydrologic cycle, which

can be generally estimated by the indirect methods such as

mass transfer, energy budget, and water budget methods.

The direct method such as pan evaporation (PE) is widely

used to estimate the evaporation of lakes and reservoirs

(Finch and Calver 2008). The setback associated with the

direct methods is the subsequent application of coefficients

based on the measurements from a small tank to large

bodies of open water and also the accuracy of estimation

from experimental models. Therefore, many researchers

tried estimating the evaporation through the indirect

methods using the climatic variables, but the difficulty

experienced in the indirect methods is the requirement of

data, which is not easily available particularly in devel-

oping countries (Burt et al. 2005).

The evaporation process is strongly nonlinear in nature.

Few researchers emphasize the estimation of accurate

evaporation in the research field using modeling techniques

(Xu and Singh 2001). For efficient use of data for esti-

mation of evaporation, data modeling may be considered as

a suitable option. Several data modeling approaches have

been utilized for estimation of evaporation. The data

modeling techniques such as neural networks, adaptive

network-based fuzzy inference system (ANFIS), and other

techniques experienced some drawbacks such as
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complexity in their implementation, risk of over-fitting,

and degraded performance with sparse data (Kim et al.

2012; Nourani and Sayyah 2012; Jothiprakash and Kote

2011). This allowed the emergence and use of support

vector machine (SVM) in a variety of field applications

(Deswal and Pal 2008).

In the last few years, drawbacks experienced in mod-

eling hydrological features such as evaporation, evapo-

transpiration, and rainfall using artificial intelligence (AI)

were better addressed by SVM (Kumar et al. 2007; Jain

et al. 2008; Tabari et al. 2012; Deswal and Pal 2008, Jain

et al. 2008). It is found to be working well in comparison to

neural network and other similar techniques. There were

few literature studies regarding hybridization of wavelet

transform and other data-driven techniques in evaporation

modeling (Guimarães Santos and Silva 2014).

Inmodeling hydrologic time series, sometimes signals are

highly nonlinear and exhibit seasonal irregularity. Under

such circumstances, SVMalonemay not be able to copewith

nonlinear data, if pre-processing of input and output data is

not performed. In this context, wavelet transform may be

utilized for data pre-processing. The wavelet transform is a

strongmathematical signal processing toolwith the ability of

analyzing nonlinear and nonstationary data. It can produce

both time and frequency information with a higher resolu-

tion. This provides an opportunity for better potential tech-

niques such as SVMs to blend with wavelet transform to

match up with the growing demands.

In this research, it is attempted to investigate the per-

formance of discrete wavelet transform–support vector

regression (DWT–SVR) hybrid techniques models for

modeling daily pan evaporation and to compare this with

the performance of conventional SVR models. The models

were developed on the daily weather attributes of evapo-

ration recorded at two stations representing different cli-

matic zones. This provides a better comparison of

efficiencies of models to provide accurate results even

under varied conditions.

Data collection and preparation

The present work is based on two climatically contrasting

stations to determine the efficiency of developed models in

providing accurate estimation of evaporation. The meteo-

rological stations selected in this study are Bajpe repre-

senting humid climatic condition and Bangalore

representing semi-arid condition as per Thornthwaite’s

classification (Ramachandra et al. 2004), located in Kar-

nataka, India. The daily recorded weather attributes used in

the model building are mean air temperature (T), wind

speed (W), rainfall (P), mean relative humidity (Rh), sun-

shine hours (Sh), and pan evaporation (E).

The Bajpe station is located close to Arabian Sea in

Dakshina Kannada district. The geographic coordinates of

this place are 12�570N and 74�530E. The average rainfall is
about 3600 mm with an altitude of 103 m above mean sea

level. The weather attributes used in the study involve

7-year daily pan evaporation data recorded in the period of

2000–2006. The 5-year (2000–2004) data were used as

training dataset and the remaining data, i.e., (2005–2006),

were used as testing dataset.

Bangalore station is situated 350 Kms away from the

Arabian Sea with the geographic coordinates of approxi-

mately 13�390N and 77�220E. The altitude is about 900 m

above mean sea level with an average annual rainfall of

860 mm. The 7-year (1975–1981) data were used as

training dataset and the remaining data, i.e., (1982–1984),

were used as testing dataset.

Table 1 shows the statistical analysis of daily recorded

data of the Bajpe station (2000–2006) as sample. It also

indicates the influencing attributes of pan evaporation. The

statistical analysis carried out at the study stations indicates

that temperature and sunshine hours showed positive cor-

relation with pan evaporation, while wind speed, rainfall,

and relative humidity showed negative correlation. The

observation also shows that relative humidity for the

variance of rainfall is too high for both the stations. It

indicates that the influence of rainfall on pan evaporation is

not uniform throughout the periods, but during rainfall

period, pan evaporation will be minimum.

Model input selection using gamma test

The selection of proper combinations of inputs is very

essential for finding better input–output patterns. Various

techniques are available to decide the best pair of inputs to

be used in modeling output. One such technique is Genetic

algorithm (GA) to identify possible candidate variables for

inclusion in the model (Espinoza et al. 2005). IA sensitivity

analysis also can be conducted, enabling the ability to

determine which variables to be included in the model.

With advancements in modern computing technology and

development of a novel algorithm from the computing

science community called the gamma test (GT), it has been

possible to make significant progresses in tackling these

problems (Kaheil et al. 2008). It is achieved by the esti-

mation of variance of the noise Var (r) computed from the

raw data using efficient, scalable algorithms. The novel

technique of GT enables us to quickly evaluate and esti-

mate the best mean squared error that can be achieved by a

smooth model on unseen data for a given selection of

inputs, prior to model construction.

This technique can be used to find the best embedding

dimensions and time lags for time series analysis. This

information would help us determine the best input
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combinations to achieve a particular target output (Cortes

and Vapnik 1995). The GT is designed to efficiently solve

overtraining problem, as one of the serious weaknesses

associated with almost all nonlinear modeling techniques,

by providing an estimate of how closely any smooth model

could fit the unseen data. In practice, the Gamma test can

be achieved through winGammaTM software implementa-

tion (Cortes and Vapnik 1995). The gamma test is a tool for

nonlinear modeling and analysis, which can examine the

input/output pattern in a numerical dataset. More impor-

tantly, the gamma test estimates the part of the output

variance which cannot be accounted for by any smooth

model based on the inputs, even though this model is

unknown. This tool is handy, because of its rapid pro-

cessing of data, especially in large databases which con-

sisting of thousands of points of datasets, while a single run

of the GT takes a few moments (Jones 2004). Genetic

algorithm was performed in different dimensions by

varying the number of inputs to the model, which clearly

presented the response of the data model to some different

combinations of input datasets. Input combinations and

gamma test results generated for Bajpe station are dis-

played in Table 2. Similar results were obtained for Ban-

galore station as well.

Importance of parameter optimization

The parameters used for model building influence the

effectiveness of the nonlinear SVR. Among them, the

major parameters are the cost constant C, the radius of the

insensitive tube e, and the kernel parameters (Drucker et al.

1999). These parameters mutually influence each other;

hence, varying the value of one parameter brings changes

in the other linked parameters also.

The parameter C identifies the smoothness/flatness of

the approximation function. The smaller value of C leads to

a poor approximation, thereby resulting in under-fitting of

training data. On the other hand, greater C value overfits

the training data and sets its objective to minimize only the

empirical risk, making way for more complex learning.

The parameter optimization process is very tedious and

requires several times by trial and error (Raghavendra and

Deka 2014). Nevertheless, the model will be of benefit for

being more efficient and reliable. The grid search results

obtained using Bajpe station are displayed in Table 3.

The parameter denotes smoothening the complexity of

the approximation function and controls the width of the e-
insensitive zone used for fitting the training data. Ulti-

mately, the number of support vectors is based on param-

eter e, and both the complexity and the generalization

capability of the approximation function are dependent on

its value. It also governs the precision of the approximation

function. Smaller values of e lead to more number of

support vectors and result in a complex learning machine.

Greater e values result in more flat estimates of the

regression function. Since the present study includes vari-

ous combinations of inputs, for the epsilon (e) values of

0.01, the prime parameters C and c were optimized.

In sequential minimal optimization support vector

regression (SMO-SVR), two methods were employed for

finding optimal parameter values, a grid search and a cross-

validation. Grid search attempts to find the values of each

parameter across the specified search range using geo-

metric steps. Generally, grid search needs abundant data

Table 1 Statistical analysis of the weather data taken on weekly basis. (period 2000–2006)

S. No. Attribute Xmax Xmin Standard

deviation Sd

Coefficient of

variation Cv

Correlation with

pan evaporation

1 Mean temperature (�c) 32.75 12.5 1.66 0.06 0.64

2 Wind speed (m/s) 7 4 0.51 0.12 -0.22

3 Rainfall (mm) 291.4 0 22.77 2.44 -0.55

4 Humidity (%) 100 35 11.32 0.14 -0.67

5 Sunshine hours (No’s) 11.5 0 3.59 0.59 0.40

6 Pan evaporation (mm) 12.2 0 1.78 0.40 1.00

Table 2 Gamma test results for

selection of input combinations
S. No. Input combination Gamma value Standard error (SE) V ratio

1 T 0.116 0.0010 0.467

2 T ? W 0.113 0.0013 0.455

3 T ? W ? P 0.0741 0.0048 0.296

4 T ? W ? P ? Rh 0.0730 0.0038 0.288

5 T ? W ? P ? Rh ? Sh 0.0724 0.0022 0.289
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for computations; therefore it is not economical computa-

tionally, as the model is evaluated at various points within

the grid for each parameter. If cross-validation parameter

selection is employed, then V-fold cross-validation is used

by the search to estimate the optimal parameters using the

error computed from the training data. The derived

parameters were later used as inputs for sequential minimal

optimization (SMO-Reg) kernel SVR functions for further

computations. For this study, a value of e = 0.001 was set

as it fits well with the desired parameters.

Methodology

Support vector regression

Support vector machines are used in classification or

regression methods, which have been derived from statis-

tical learning theory. SVMs are good at producing accurate

and robust classification results on a sound theoretical

basis, even when input data are nonmonotone and nonlin-

early separable (Vapnik 1995).

Table 3 Optimized parameters for combinations of input parameters (Bajpe station)

Input combination Obtained

C parameter

Obtained c
parameter

Number of support

vectors (out of training

instances 1826)

Correlation coefficient with RBF kernel

Training Testing

T 20 2 1627 0.719 0.650

T ? W 5 10 1604 0.728 0.682

T ? W ? P 1 1 1578 0.839 0.803

T ? W ? P ? Rh 2 10 1567 0.841 0.832

T ? W ? P ? Rh ? Sh 3 1 1552 0.832 0.839

Fig. 1 General structure of

support vector machines
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Fig. 2 Wavelet decomposition tree
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SVM is developed on the basis of statistical learning

theory. It is considered to be an approximation imple-

mentation of the method of structural risk minimization

with a good generalization capability. Advanced algorithm

of SVM has been proven to be robust and efficient for

classification (Vapnik 1995), regression (Vapnik 1995;

Kaheil et al. 2008), forecasting, and prediction. The stan-

dard SVM algorithm being used currently was proposed by

Cortes and Vapnik (Cortes and Vapnik 1995). The

advantage of SVM approach is twofold. The algorithm is

simple to understand, and it is so powerful that the pre-

dictive accuracy of this approach overpowers many other

methods, such as neural networks, nearest neighbor, and

Fig. 3 Flowchart of model

development

Table 4 Statistical indices of SMO-SVR models for combined input

combinations

Kernel RMSE (mm) MAE (mm) CC (mm)

Polynomial

Train 1.032 0.759 0.794

Test 0.997 0.770 0.834

RBF

Train 0.941 0.687 0.832

Test 0.990 0.763 0.839

PuK

Train 0.906 0.650 0.845

Test 0.981 0.761 0.838
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also decision tree. The modeling techniques like SVMs

have shown their potential to reproduce the unknown

relationship that exists between a set of input and the

output variables of the system. SVM has gained the pop-

ularity over other modeling techniques because of their

great advantage of minimizing both model complexity and

prediction error simultaneously. The general structure of

support vector machines is displayed in Fig. 1.

SVM differs from other classification methods signifi-

cantly. Its intent is to create an optimal separating

hyperplane between two classes to minimize the gener-

alization error (i.e., error for the unseen test pattern),

thereby maximizing the margin, and thus reducing the

overtraining efforts ANN suffers from overtraining, in

case training was performed too long or where training

examples are rare.

The selection of a proper kernel function plays a vital

role in SVM-based classification or regression problems. A

number of kernels are discussed in the literature (Vapnik

1995), and therefore the one which gives the best gener-

alization for a given dataset has to be analyzed. In this

work, it is attempted to explore and compare the perfor-

mances of three competent kernels such as polynomial,

radial basis function (RBF), and Pearson VII function-

based universal kernel (PuK) which are capable of pro-

ducing desirable results.

Principle of wavelet transformation

As a pre-processing tool, wavelet transforms provide useful

decompositions of original time series, so that data that

have been pre-processed improve the ability of a fore-

casting model by capturing information on various reso-

lution levels (Adamowski and Adamowski 2008). In

addition, it has also been found that pre-processing data

with wavelet transforms can lead to models that better

represent the true features of the underlying system by

eliminating noise (Adamowski and Adamowski 2008).

DWT operates two sets of functions viewed as high-pass

(wavelet function) and low-pass (scaling function) filters.

The original time series are passed through high-pass and

low-pass filters and down-sampled by two (i.e., throwing

away every second data point). Figure 2 shows the wavelet

decomposition tree.

Model development methodology

The present work carried out for evaporation estimation

makes use of advanced soft computing techniques such as

SVR and DWT–SVR. As discussed in the Introduction

section, need for accurate approach to provide reliable

estimations of evaporation is active field in hydrological

modeling. SVM has emerged as one of the robust and

Fig. 4 Daily pan evaporation estimation using SVR–RBF kernel for testing period 2006–2007 of Bajpe station and 1983–1984 of Bangalore

station
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accurate techniques, which when coupled with wavelet

known to be the best pre-processing technique. It would be

interesting to know the model performances between

conventional SVR and hybrid DWT–SVR models. The

detailed methodology adopted in model development and

analysis is shown in Fig. 3.

Evaluation criteria

In the forecasting of evaporation amount, models were set

up for the inputs which consisted of different combinations

of hydrological variables. In the performance evaluation of

SVR and wavelet–SVR models formed using Radial Basis

and polynomial kernel, PUK kernel functions such as

RMSE, MAE, and CC were selected to gauge their accu-

racy and to aid comparison as follows:

Root mean square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðX � YÞ2

N

s

Mean absolute error (MAE)

MAE ¼ 1

N

X

N

i¼1

Y � Xj j

Correlation coefficient (CC)

CC ¼
PN

i¼1 X � X
� �

: Y � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 X � X

� �2
:

q

PN
i¼1 Y � Y

� �2

Results and discussion

Once the input and output combination was finalized,

support vector machine regression technique was employed

initially for model building followed by analysis without

pre-processing of data. As discussed in the previous

chapters, SMO–SVR methodology was employed with

three types of kernels, i.e., polynomial, radial basis func-

tion, and PuK kernels which are competitive enough to

provide judgmental results. The parameter selection was

later conducted using grid search several times by trial and

error to arrive at desired SMO–SVR parameters. This

would enhance the model efficiency in providing the

optimal results. The combination including all the five

parameters with evaporation as the output yielded optimum

performance. The results obtained with all the three types

of kernels highlight that for evaporation to take place, these

listed parameters must act unitedly rather than individually.

In the next stage, the wavelet support vector regression

(DWT–SVR) models are obtained by hybridizing two

techniques, DWT and SVR. The pre-processing of data was

carried out using DWT. The DWT–SVR model was then

developed using coefficients generated from decomposed

original data from DWT and recompiling the data to feed

Fig. 5 Scatter plot between SVR estimated and observed daily pan

evaporation testing data for Bajpe station (2006–2007) and Bangalore

station (1983–1984)

Table 5 Statistical indices of wavelet–SVR models for combined

input combinations

Kernel RMSE (mm) MAE (mm) CC (mm)

Polynomial

Train 0.443 0.356 0.926

Test 0.554 0.427 0.950

RBF

Train 0.448 0.363 0.924

Test 0.525 0.410 0.953

PuK

Train 0.318 0.225 0.962

Test 0.518 0.400 0.921
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in SMO–SVR. In this model, signals are split into a detail

and an approximation. The approximation obtained from

first level is further split into new detail and approximation

and this process is repeated.

Discrete wavelet transformation (DWT) is used with

Daubechies wavelet order 4 (db4), and Haar mother

wavelet functions were employed as pre-processing tools.

The selected mother wavelet ‘db4’ is the simplest wavelet

having only three wavelet filter coefficients with exact

reconstruction possibilities. To obtain the decomposed

wavelet coefficients, various decomposition levels have

been tried (L1–L5), but only Daubechies wavelet mother

function with level 3 showed better results, i.e., enhanced

performance, when fed as an input to SVM on a trial-and-

error basis.

Results with support vector regression (SVR)

Although gamma test could identify the best data pattern of

input–output combinations, reconfirmation was carried out

by testing against support vector regression with the same

pattern of various input combinations as done in the

gamma test. Since this was just for assurance, SMO–SVR

methodology was employed with only one type of kernel,

i.e., radial basis kernel which is competitive enough to

provide judgmental results. The parameters’ selection was

also conducted through grid search several times by trial

and error to determine desired parameters to enhance the

model efficiency to produce better results as discussed in

the previous sections. The combination including all the

five parameters with evaporation as an output yielded the

optimum output. The results of SVR kernel functions are

displayed in Table 4.

The choice of suitable kernel will benefit the process of

data separation, creating an opportunity to separate data in

the feature space, despite being nonseparable in the origi-

nal input space. A final combination of input–output pat-

terns that were later gauged against SMO having two more

competent kernel functions, as listed in Table 4, was

adopted to produce support vector regression models.

Comparison of the kernel functions

The accuracy of kernels relies on the selection of the model

parameters. The best fitting of models depends on the

number of support vectors generated during model build-

ing. As the number of influential parameters combines

together, model superiority increases. It is also seen in the

table that kernel functions played their roles to make the

model superior and robust. For the all the five input com-

bination scenarios, RBF kernel function showed slightly

better performance in comparison to the other two kernel

Fig. 6 Daily pan evaporation estimation using DWT–SVR RBF kernel for testing period 2006–2007 of Bajpe station and 1983–1984 of

Bangalore station
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functions in both training and testing periods. However,

PUK showed near similar results to RBF kernel function.

Similar pattern of results also observed for Bangalore

station confirms that the model accuracy depends on the

combination of influential attributes leading evaporation to

occur. The drawback experienced in the results of Ban-

galore station is the sudden decline in the performance

from training to testing data phase. The reasons attributed

for such a decline may be due to the variations in the

ranges of variables and noisy data.

Figure 4 represents the SVR–RBF kernel for testing

period of 2006–2007 of Bajpe station and 1983–1984 of

Bangalore station, as some samples of the SVR results

pattern. In these plots, RBF-estimated values are on par for

middle and lower range pan evaporation values which

constitute the majority of dataset points. However, RBF

underestimated the observed peak values. Considering the

station-wise results, RBF showed better performance in

testing period of Bangalore station than Bajpe for theT
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Fig. 7 Scatter plot between DWT and SVR estimated and observed

daily pan evaporation testing data for Bajpe station (2006–2007) and

Bangalore station (1983–1984)
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summer season, i.e., from March to June. This indicates the

deviation between the observed and RBF-modeled values

in these plots.

However, for rest of the seasons, RBF estimations are

uniform for both the stations. Polynomial and Puk kernel

results have shown better performance, but ultimately,

RBF overshadowed the performance of these two kernels.

Further, this analysis continues through the scatter plots

of 1-year testing period of Bajpe and Bangalore stations, as

shown in Fig. 5. Referring to the scatter plots in Fig. 5,

polynomial kernel-estimated values scatter away from the

45� line and most of them found to be underestimated. RBF

kernel matches the observed values with better accuracy

than Puk kernel. Most of the RBF kernel-estimated points

are closer to 45� line. The similar trend was found in the

remaining dataset results.

Results with decomposed wavelet transform support

vector regression (DWT–SVR)

As discussed in the previous chapter, parameter optimiza-

tion plays a vital role in deciding model accuracy. As data

points change from observed data points to modeled SVR

data points, there is necessity to fine tune the SVR kernel

parameters to enhance the accuracy of DWT–SVR models.

The fine-tuned parameters computed for the Bajpe dataset

are presented in Table 5.

For wavelet analysis, DWT is used with two different

mother wavelet functions. The selected mother wavelet

‘db4’ is the simplest wavelet having only three wavelet filter

coefficientswith exact reconstruction possibilities. To obtain

the decomposedwavelet coefficients, various decomposition

levels have been triedwith variousmotherwavelet functions.

Among the two mother wavelet functions employed, only

Daubechies wavelet mother function with level 3 showed

optimum results when fed as inputs to SVM.

The model performances of DWT–SVR RBF results for

Bajpe station (2006–2007) and Bangalore station

(1983–1984) are plotted with DWT observed as shown in

Fig. 6.

Comparison among the SVR and DWT–SVR models

As identified in several research works, hybrid models will

definitely make better impact than individual models can

do. A comparison between the SVR models and DWT–

SVR models can be analyzed with the help of displayed

results shown in Tables 4 and 5. The modeled results

reveal that RBF kernel function has shown superior per-

formance for both the stations.

Table 7 Optimal SVR parameters for DWT–SVR models (Bajpe station)

SMO–SVR RBF Mother wavelet functions

DB4 level 1 DB4 level 2 DB4 level 3 DB4 level 4 DB4 level 5 Haar level 3 Haar level 4 Haar level 5

C 7.00 5.50 9.00 14.00 8.75 8.00 10.00 12.00

Gamma 3.75 4.30 5.10 6.45 4.75 3.75 5.25 6.50

Epsilon 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 8 Statistical indices of DWT–SVR RBF models with various mother wavelets (testing period)

Mother wavelets DWT–SVR RBF kernel (Bajpe station) DWT–SVR RBF kernel (Bangalore station)

RMSE (mm) MAE (mm) CC NSE RMSE (mm) MAE (mm) CC NSE

Db4 level 1 0.625 0.381 0.867 0.963 0.524 0.373 0.937 0.993

Db4 level 2 0.579 0.385 0.875 0.978 0.419 0.282 0.948 0.995

Db4 level 3 0.525 0.410 0.953 0.991 0.334 0.223 0.959 0.997

Db4 level 4 0.615 0.422 0.854 0.981 0.340 0.512 0.914 0.993

Db4 level 5 0.621 0.357 0.845 0.984 0.472 0.335 0.906 0.994

Haar 3 0.517 0.404 0.934 0.987 0.446 0.332 0.957 0.997

Haar 4 0.691 0.429 0.830 0.989 0.449 0.335 0.951 0.995

Haar 5 0.712 0.466 0.902 0.974 0.560 0.374 0.917 0.992
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In the testing period datasets, DWT–SVR model results

with RBF kernel are plotted in Fig. 6. The trend remained

the same, RBF could estimate appropriately for the higher

pan evaporation values but it underestimated for the low-

range pan evaporation values. Considering the station-wise

results, RBF showed superior performance for Bajpe sta-

tion, whereas for Bangalore results, the gap between the

observed and estimated values found to be higher for the

low-range values of pan evaporation. Further, in the esti-

mated values for Bajpe station, the gap is higher for the

initial month’s data period, i.e., from January 2006 to May

2006 where there is low-range pan evaporation trend. This

suggests that RBF underestimates the observed values for

low-range values as shown in Table 6

Figure 7 represents the scatter plots of testing datasets,

respectively, for the Bajpe and Bangalore stations. The DB

4–3 mother wavelet functions with three types of SVR

kernel-modeled values are plotted in the figures. The

testing data show more scattered model values of poly-

nomial and PuK kernels with respect to the 45� line. At the
same time, RBF estimates are near accurate and closer to

the trend line. Considering station-wise results, it is com-

mon that RBF estimations show better accuracy as the

values stick closer to the trend line, whereas PuK- and

polynomial kernel-estimated values are scattered

(Table 7). Considering Bangalore results in scatter plot,

PuK kernel values show overestimation of observed values

and polynomial kernel values show underestimation of the

observed values, Tables 8 and 9. This confirms the supe-

riority of RBF kernel over other kernels.

Conclusions

In this research work, it is attempted to model pan evap-

oration by employing hybrid model consisting of SVM and

wavelet decomposition using daily pan evaporation values.

The work includes comparing the performance of hybrid

model with conventional model of single SVM. The study

was carried out on two climatically contrasting zones

which are Bajpe and Bangalore stations. GT test advocates

combining all the listed weather attributes used in this

study for evaporation to take place. Parameter optimization

found usefulness in detecting optimum parameters. Toge-

ther all these enhance the accuracy of SVR and DWT–

SVR models.

Based on the result analysis, the following conclusions

are drawn:

• Based on the evaluation of developed models, SVR

kernel-based models faced some limitations in model-

ing pan evaporation data with trends, seasonal patterns,

discontinuities, and other complex behaviors.
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• In modeling pan evaporation, hybrid models of DWT–

SVR are found superior to conventional SVR models.

• DWT–SVR-estimated pan evaporation values were

more accurate for the humid station, i.e., Bajpe, than

semi-arid station selected in this study, i.e., Bangalore.
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