
624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998

Direct Mapping of RTL Structures
onto LUT-Based FPGA’s

A. R. Naseer, M. Balakrishnan, and Anshul Kumar

Abstract—The problem of mapping synthesized RTL structures onto
look-up table (LUT)-based field programmable gate arrays (FPGA’s) is
addressed in this paper. The key distinctive feature of this work is a
novel approach to perform the mapping by utilizing the iterative nature
of the data path components. The approach exploits the regularity of
data path components by slicing the components and mapping slices of
one or more connected components together. This is in contrast to other
FPGA mapping techniques which start from Boolean networks. Both cost
optimal and delay optimal mappings are supported. The objective in cost
optimal mapping is to cover a given data path network with minimum
number of CLB’s. Similarly in delay optimal mapping, the objective is to
reduce the number of CLB levels in the critical combinational logic paths.
Implementation of these mapping techniques with LUT based FPGA’s as
target technology results in a significant reduction in cost (CLB count)
and critical path delays (CLB levels).

Index Terms—Data path, FPGA, look-up table, RTL structure, tech-
nology mapping.

I. INTRODUCTION

The field programmable gate arrays (FPGA’s) provide a new
approach to application specific integrated circuit (ASIC) implemen-
tation that features both large scale integration and user programma-
bility. Short turnaround times and low manufacturing costs have made
FPGA technology popular for rapid system prototyping and low to
medium-volume production. The increase in complexity of FPGA’s
in recent years has made it possible to consider implementation of
data paths on FPGA’s.

Most of the technology mapping approaches that have been re-
ported for look-up table (LUT)-based FPGA’s, start from a Boolean
network (consisting of basic gates such as AND, OR, etc.). A variety
of optimization objectives have been addressed in these mappers:

• minimizing the number of LUT’s required to map a circuit, e.g.,
Chortle-crf [1] and MIS-PGA [2] for combinational circuits, and
SIS-FPGA [3] for sequential circuits;

• minimizing the number of LUT’s in the critical path, e.g.,
Chortle-d [4] and flowmap [5], or minimizing both configurable
logic blocks (CLB) levels and wirelength, e.g., MIS-PGA_delay
[6] and TechMap-D [7];

• maximizing the routability of the mapping solutions, e.g., Rmap
[8] and RFR [9].

As already mentioned, all these approaches start from a gate level
structure and generate CLB network. In contrast to this, the vendor’s
proprietary tools such as XACT/XBLOX [10] offer the possibility
of starting with a structural design consisting of macro cells. The
tools incorporate module generators which can expand and map these
macro cells to LUT’s.

Manuscript received May 13, 1996. This work was supported by the
Department of Electronics (DOE), Government of India, under the IDEAS
project and AICTE, Ministry of HRD, Government of India, under the QIP
Program. This paper was recommended by Associate Editor A. Saldanha.

A. R. Naseer is with the Department of Computer Engingeering, KREC,
Surathkal, Karnataka, India 574157.

M. Balakrishnan and A. Kumar are with the Department of Computer
Science and Engineering, I.I.T. Delhi, New Delhi, India 110016 (e-mail:
mbala@cse.iitd.ernet.im).

Publisher Item Identifier S 0278-0070(98)05198-7.

In this paper, we present a different approach which directly
realizes an RTL data path in terms of FPGA’s with the objective
of minimizing cost or delay. The approach exploits the regularity of
data path components. It involves dynamically slicing the components
and considering slices of one or more connected components together
for mapping. The main objective of this work is to integrate high-
level synthesis with FPGA technology mapping. Our approach is
fundamentally different from the previous approaches in the sense
that we neither expand the RTL network into a Boolean network nor
use module generators. In this process we retain the flexibility and
generality of the approaches which start from Boolean networks while
producing results that are comparable or superior to the specialized
module generators. We have named this approach as FAST (an
acronym for FPGA targeted RTL Structure synthesis Technique).
FAST forms a backend to a Data path Synthesizer [11] and is
integrated into IDEAS [12].

The rest of the paper is organized in seven sections. Section II
presents the preliminary definitions and terms used in this paper. Cost
and delay models used in the mapping are discussed in Sections III
and IV. Algorithms for both cost optimal and delay optimal mapping
of RTL structures onto FPGA’s are presented in Section V. Examples
illustrating the techniques used are described in Section VI. Results
of technology mapping on XILINX devices for some high level
synthesis benchmarks and conclusions are presented in Sections VII
and VIII, respectively.

II. DEFINITIONS AND TERMINOLOGY

The input network is a data path RTL structure obtained from
a high level synthesizer. This network is represented as a directed
graphG(V; E) where each node represents amodulewhich could
be either a register, a functional unit (such as ALU, Adder) or an
interconnection element (such as MUX) and directed edges represent
connections between the modules.

A cell is an indivisible part of a module that is iterated to form a
module. While mapping a module to CLB’s, it is divided intoslices,
where eachslice is an array of contiguous cells of thatmodule. A
cone is a set of slices of interconnected nodes which lie on paths
converging on a particular node calledapexof the cone. It is often
possible to map such sets of slices forming a cone onto a single
CLB. A realizablecone is one that fits in a CLB. A cone is said to
be simple or compounddepending on whether it contains a single
slice or multiple slices (of different nodes). Note that all slices are
simple form of cones.

Let w(n) andw(s) represent width (i.e., the number of cells) of a
noden and slices, respectively. In our approach, the slice width is
not decideda priori, rather it is dynamically determined during the
mapping process. We refer to this assoft-slicing. Let the maximum
slice width of a noden which is a realizable cone by itself, be denoted
by msw(n):

Let nk represent slice of noden with width k; then

msw(n) = max kjnk is realizable in a CLB: (1)

During the technology mapping process, we need to examine the
data paths originating at primary inputs or register outputs and ending
at primary outputs or register inputs. We call these pathsd paths:

To facilitate examination ofd paths; we split each register noder
of G into two nodesro and ri; where

0278–0070/98$10.00 1998 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998 625

• ro represents a register output node which carries with it all the
outgoing arcs ofr;

• ri represents a register input node which carries with it all the
incoming arcs ofr:

Now every directed path from a source node to a sink node is a
d path:

III. COST MODEL

Let ns(s) denote the corresponding node for a slices:

Minimum number of instances of slices required to coverns(s)
is given by

cnt(s) =
w(ns(s))

w(s)
: (2)

Minimum number of CLB’s required to realize a noden is given by

CLB cnt(n) =
w(n)

msw(n)
= cnt(nk) (3)

wherek is maximum slice width andnk denotes slice ofn of width k:
As our intention is to minimize the number of CLB’s required to

realize the graph, we start with an upper bound on CLB’s required.
This can be easily found by adding the minimum number of CLB’s
required for realizing each of the nodes in the node set V

CLB upper bound =
n2V

CLB cnt(n): (4)

Our algorithm is based on packing slices from multiple nodes into a
single CLB. This is achieved by identifyingcompoundcones. Further,
we consider only those cones which arerealizableandbeneficiali.e.,
those which reduce the number or the levels of CLB’s required.

Let c be a realizable compound cone consisting of slices of nodes
which form a set denoted byV (c): Let CA(c) denote the cost of
realizing the nodes of conec individually, i.e., usingsimplecones. It
can be computed by simply summing the CLBcnt of the individual
nodes that make up the conec

CA(c) =
n2V (c)

CLB cnt(n): (5)

The slices inc can possibly be of different widths and have
different cnt values. Therefore, in general, the number of instances
of conec is given by the minimumcnt of its slices. That is

min cnt(c) = min
s2c

cnt(s): (6)

Let CB(c) denote the cost of realizing the nodes inV (c); with
compoundcone c formed. As each cone is realized by a CLB,
min cnt(c) gives the number of CLB’s realizing cone of typec:
Due to differences in bit width of nodes as well as slice width of
slices inc; the nodes may not be covered completely bycompound
cones. The remaining part of nodes are covered by the maximum
width slices.

The width of that part ofns(s) which is not covered by the
compoundconec is denoted asuncvr w(ns(s)) and is given by

uncvr w(ns(s)) = w(ns(s))�min cnt(c) �w(s): (7)

Now, the cost of realizing that part ofns(s) which is covered
by slices (simple cones) of width msw(ns(s)) is denoted by
cvr slices(ns(s)) and can be given by

cvr slices(ns(s)) =
uncvr w(ns(s))

msw(ns(s))
: (8)

Therefore,CB(c) is given by

CB(c) = min cnt(c) +
s2c

cvr slices(ns(s)): (9)

Now we can quantify the gain due tocompoundcone c as the
difference between these two costs:

cost gain(c) = CA(c)� CB(c): (10)

We define a set of conesC as complete if it covers all the nodes in
the graph. In this formulation, we consider only those cone sets in
which compoundcones do not overlap.

Cost of a cone setC denoted byCB tot is

CB tot(C) =
c2C

CB(c): (11)

IV. DELAY MODEL

To analyze delay of a node in graphG; we consider the network of
cells corresponding to the RTL component represented by the node
n: We define celllevels(n) to be the number of cells in the critical
path in this network. When the RTL components are connected to
form a data path, we need to take into account the direction of signal
propagation within the components. For example, signal propagation
through the cells is from LSB to MSB in case of adders, from MSB
to LSB in case of some comparators and no horizontal chaining of
cells in multiplexers.

To facilitate the computation of delays of thed path containing
different types of nodes, we split the delay of a noden into two
parts: vertical delayvd(n) representing the delay of a single cell and
horizontal delayhd(n) representing the additional delay encountered
due to signal propagation within the node as follows:

vd(n) =Dcell(n) (12)

hd(n) =
jcell levels(n)j

msw(n)
� 1 �Dcell(n) (13)

whereDcell(n) is the cell delay of noden which is an integer multiple
of DCLB,1 the delay of a CLB which is nothing but the delay of the
function generators or LUT’s. It is assumed that the delay from any
input to any output in a CLB is identical and is denoted byDCLB: The
two parts of the node delay combine differently when path delays are
computed.

The minimum delay ofdp; denoted bymin del(dp); is obtained
by adding the horizontal and vertical parts of the minimum delays of
nodes inV (dp) appropriately. All the vertical delays are added un-
conditionally, whereas the horizontal delays are added conditionally,
depending upon the directions of signal propagation in the adjoining
nodes. Fig. 1 shows an example in which the horizontal delays of
only nodes 1, 3, and 4 contribute to the path delay

min del(dp) =
n2V (dp)

(vd(n) + hd(n) � p(n; dp)) + �(dp) (14)

where�(dp) represents the sum of the source delay (either the input
pad delay or register propagation delay) and the sink delay (either
the output pad delay or register setup time).p(n; dp) is a 0-1 flag
which determines whether the horizontal delay of a noden is to be
included in thed path delay computation.

A d path is critical if it has the largestmin del among all the
d paths: The critical path delay of a graphG is given by

critical del(G) = max
dp2DP

min del(dp) (15)

whereDP is the set of alld paths: Let V (C) denote the set of
nodes whose slices are included in acompoundcone C: Due to
differences in widths of slices inC; some of the nodes inV (C)
may not be completely covered by that cone. The uncovered parts of

1This is because in some of the components each basic cell may occupy
more than one CLB.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

626 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998

(a) (b)

Fig. 1. (a) A portion of a 6-bit data path. (b) Its cell level structure.

partially covered nodes are considered to be covered by maximum
width slices, formingsimple cones, as described in context of the
cost model [refer to (7) and (8)].

Let dp=C denote the portion of the pathdp intersected bycom-
poundconeC [i.e., V (dp=c) = V (dp) \ V (c)].

Let us denote by del(dp; CS) the delay of the pathdp after
selection of cone setCS: Then delay of ad path dp before selecting
any compoundcone is given by

del(dp; �) = min del(dp): (16)

Let del gain(C; dp;CS) denote the gain in terms of delay reduction
due to covering of pathdp=C by compoundconeC: This can be
used to update the delay of the path after cone formation as follows:

del(dp;CS + C) = del(dp;CS)� del gain(C; dp;CS) (17)

del gain(C; dp;CS) can be expressed in terms of changes in vertical
and horizontal delays alongdp due to coneC

del gain(C; dp;CS)

=
n2V (dp=C)

�d(n; C;CS; dp)�DCLB (18)

�d(n;C;CS; dp)

= �vd(n;C;CS) + �hd(n;C;CS) � p(n; dp) (19)

where�vd is the change in vertical delay and�hd is the change in
horizontal delay in the pathdp due to covering bycompoundconeC:

The cones are selected on the basis of their potential gain, given by

conegain(C) = max
dp2critical paths

del gain(C; dp; �): (20)

V. FAST MAPPING ALGORITHMS

A. Cost Optimal Mapping Algorithm

The algorithm described in Fig. 2 shows the major steps involved
in cost optimal mapping [13] of RTL structure onto FPGA’s. Step
1 computes the CLB upper bound and Step 2 traverses the network
and generates cones. We traverse the network backward starting from
sink nodes and generaterealizablecones with nonnegative costgain
by considering various soft slicing options and merging them till no
more merger is feasible or source nodes are reached. The feasibility
of these cones are checked as they are generated and onlyrealizable
ones are retained. This is described in detail in Section V-C. Step
3 finds a cover which minimizes the CLB count. In the present
implementation we have used a greedy approach for covering the
nodes with the cones.

B. Delay Optimal Mapping Algorithm

The major steps of the algorithm for optimal delay mapping [14]
of RTL structures onto FPGA’s are described in Fig. 3. In Step 1, for
each node in the graph, we compute themin del i.e., the number of

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998 627

Fig. 2. Algorithm for cost optimal mapping of RTL structures onto FPGA’s.

Fig. 3. Algorithm for delay optimal mapping of RTL structures onto
FPGA’s.

CLB levels required to realize slices in the critical path of the nodes.
Next we determine thed path delays and select set of nodes in the
critical paths. Step 2 generates and identifies realizable and beneficial
cones similar to algorithm FASTCMAP using (20) to compute delay
gain of a cone. In Step 3, a cover is found which minimizes the CLB
levels or delay in the critical path.

C. Realizable Cone Generation

The realizable cone generationalgorithm is shown in Fig. 4. This
algorithm considers each node from the nodes ofG and generates
variable-width slices of width varying from one to maximum slice
width and checks whether each slice of that node can be merged with
a slice of the node at its fanin to form a cone. If the resulting cone
is realizableand beneficial,then starting with this newly generated
cone, it further checks whether it can be merged with slices of the
node at its fanin. This process is repeated until no more slices can
be packed into the cone. For each cone generated, it computes the
reduction in CLB count in case of cost optimal mapping and reduction

Fig. 4. Algorithm for realizable cone generation.

in CLB levels (delay) in case of delay optimal mapping and rejects
those for which no gain occurs.

During cone generation an important check to be performed is
whether a cone is realizable or not. A CLB is characterized by a
fixed number of inputs, outputs, and flipflops. Everyrealizablecone
should have number of inputs, outputs and flipflops less than or equal
to those present in a CLB. But for realizability this check is not
sufficient because a CLB (unlike an LUT) cannot realize any arbitrary
function of all of its inputs. Therefore, the boolean function of a cone
may have to be decomposed into two or three parts (depending on
the internal structure of the CLB) to be mappable onto a CLB.

Among the decomposition techniques employed by FPGA mapping
systems, Roth–Karp [15] is the most versatile but suffers from
high computation complexity. The complexity arises due to the
fact that all possible combinations of variables have to be exhaus-
tively checked for decomposition. We have developed heuristics for
fast decomposition [16], which is based on checking some simple
necessary conditions before checking the sufficiency conditions for
feasible decomposition. Thus during the decomposition process a
large number of candidate solutions are quickly rejected to achieve
a speedup.

Apart from functional decomposition, we also explore splitting of
a multi-output node into multiple nodes, each with a single output.
This sometimes results in packing of a larger slice in a CLB.

D. Cost Optimal Cone Cover

A greedy approach is being followed at present for finding a cone
cover. The procedure actually involves generating several cover sets
of cones and finally retaining the best one. It begins by sorting
the list of cones in the decreasing order of the gain. Initially a
cover set containing the first cone of the conelist is formed and
the CLB upperbound is taken as the optimal cost for covering the
entire network. Next each cone other than the first cone is taken
from the conelist and checked to see whether it overlaps with the
cover sets already generated. If the cone overlaps with all the cover
sets already generated, it creates a new cover set with this cone.
Otherwise, it is added to all the nonoverlapping cover sets and optimal
cost of realizing the network is made equal to the minimum of
CLB upperbound and cost of newly formed complete cover sets.
All cover sets exceeding this optimal cost are rejected.

E. Delay Optimal Cone Cover

Presently a greedy approach is being followed for delay cone cover
as well. We start by choosing a cone from the set ofbeneficialcones
generated in Step 2 (Fig. 3), which reduces the longest path delay

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998

by maximum value while covering uncovered or partially covered
nodes. We update delays on all the paths which contain the nodes
forming this selected cone. Next, we determine the new critical path
in the updated graph. This process of choosing adelay beneficial
cone, updating the path delays and determining the new critical path
is repeated until all the nodes in the graph are completely covered.

VI. I LLUSTRATIVE EXAMPLES

A. Cost Optimal Mapping Example

We illustrate the cost optimal mapping technique using a RTL
structure obtained from IDEAS Data Part Synthesizer [11] which
takes a behavioral description of greatest common divisor (GCD)
high-level synthesis benchmark as input. Fig. 5(a) shows the GCD
RTL structure, and Fig. 5(b) gives the CLB map of this structure for
XILINX XC3000.2 In Fig. 5(b) the dotted rectangles enclosing the
nodes indicate that they can be realized using single CLB’s and the
number in the small square box associated with each node indicates
the width of the slice of that node packed in a CLB.

We traverse the GCD network starting from a register noderega
and generate realizable cones by mergingrega with slices of nodes
at its fanin, i.e.,muxa. Table I shows the realizable cones rooted at
rega, slices of nodes associated with these cones and CLB count.

It is evident from the table that coneC22 is most beneficial as it
requires only eight CLB’s, whereasC11 andC22 consume 16 and 12
CLB’s, respectively, and hence the latter are rejected.

Starting with this newly generated coneC22; we further check
whether it can be merged with the slices of the nodes at its fanin.
Since no further merger is possible, this cone is added to the cone
list. As it can be seen from the figure, a one-bit slice of thealu node
has four inputs and two outputs and it cannot be merged with any
other node and hence it forms a separate cone. Similarly, traversing
the network fromregb toward the primary inputs generates the next
beneficial cone containing two-bit slices ofregb andmuxb. Next the
traversal is continued from primary outputs toward register inputs.
The comparator nodecmphas five inputs and three outputs and cannot
be realized by a CLB, and hence it is decomposed into three subnodes,
one-bit slices of first two nodes occupy a single CLB whereas two-bit
slices of the third node get mapped onto one CLB.

B. Delay Optimal Mapping Example

For illustration purpose, we consider a portion of the critical
path dp1 node set from AR-filter data path example comprising
three nodes, nodeA (16-bit Adder), nodeB (two-input 16-bit wide
MUX), and nodeC (16-bit register) as shown in Fig. 6(a). NodeA
has 16 one-bit slices in its critical path, whereas nodesB andC have
single one-bit slice in their respective critical paths. In the case of
mapping of this part of the structure onto XC3000 type CLB’s, one-
bit slice of nodeA requires a CLB whereas two-bit slices of nodes
B andC each require a CLB, if considered individually. Or in other
words, we can say that celllevels(A) = 16; cell levels(B) = 1 and
cell levels(C) = 1: Therefore,vd(A) = 1; hd(A) = 15; vd(B) =
1; hd(B) = 0; vd(C) = 1 andhd(C) = 0: Now, the delay of the
pathdp1 is given bymin del(dp1) = 3+15 = 18�DCLB: As node
A is a multi-output node which cannot be combined with any other
nodes at its fanout, it is split into sum(A1) and carry generator(A2)
nodes as shown in Fig. 6(b). At nodeA1; after cone generation, we
have three choices of conesAc ; Ac andAc as shown in Fig. 6(c).
For coneAc ; conegain(Ac) = 0 and delgain(Ac ; dp1) = 0; for
coneAc ; conegain(Ac) = 1 and delgain(Ac ; dp1) = 1; whereas

2A CLB in XC3000 has five inputs and two outputs.

(a)

(b)

Fig. 5. RTL structure and CLB map for GCD example.

for coneAc ; conegain(Ac) = 2 and delgain(Ac ; dp1) = 2. From
the values of delay gains for cones at nodeA1; it is clear that cone
Ac is the most beneficial cone as it reduces the critical path delay
from 18 to 16 CLB levels. The number of CLB’s required to cover
these nodes in this case is 32, whereas cost optimal mapping on this

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998 629

Fig. 6. (a) A critical path node set. (b) Cone choices at node A.

TABLE I
PARTIAL CONE LIST

structure would have resulted in a CLB count of 24 CLB’s with path
delay of 17 CLB levels.

VII. RESULTS AND DISCUSSION

The programs for cost optimal(FAST CMAP) and delay op-
timal (FAST DMAP) mappings have been implemented on SUN
workstation. Results for the mapping of several RTL structures
corresponding to high-level synthesis benchmarks [17] onto XC2000,
XC3000, and XC4000 devices using these programs and comparison
with XILINX proprietary tools are reported in Tables II–IV. For

benchmarks containing multipliers, we have assumed thatmultipliers
are external to the design and are realized separately. XC4000
device CLB’s contain internal carry logic apart from the LUT’s and
flip-flops. We have accounted for these features in our CLB model
in order to compare our results with XACT and XBLOX.

A. Cost Optimal Mapping Results

Results from FASTCMAP are shown in Table II which lists the
total number of CLB’s required by FAST, XACT,3 and XBLOX4

for realizing the network after the mapping process. Table II also
indicates the complexity of the datapath as it shows the set of RTL
components in each case. The cost optimal mapping technique results
in a CLB count reduction of upto 16.7% over XACT and upto 11.8%
over XBLOX.

3XACT is a proprietary product of XILINX and interfaces with a schematic
capture tool for mapping onto XILINX devices.

4XBLOX is a product from XILINX and supports MSI level module library.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998

TABLE II
RESULTS OF COST OPTIMAL MAPPING

TABLE III
RESULTS OFDELAY OPTIMAL MAPPING: SIMPLE VERSUSCOMPOUND MAPPING

TABLE IV
RESULTS OFDELAY OPTIMAL MAPPING: FAST VERSUSXBLOX M APPING

B. Delay Optimal Mapping Results

Delay optimal mapping of four RTL structures synthesized with
different operator allocations have been performed and results are
reported in Table III. The allocation used in each example is listed
in the second column of the table. The CLB count and critical path
delays obtained usingsimpleand compoundmappings are given in
the last four columns of the table. It is evident from the table that the
delay optimal mapping technique using compound cones results in a
substantial reduction in CLB count as well as in the CLB levels in
the critical path as compared to mapping with simple cones. These
structures have also been mapped using XBLOX to XC4000 devices
and results are compared in Table IV. Our techniques result in an
average reduction of 12.0% in CLB count and 14.7% in critical path
CLB levels.

VIII. C ONCLUSION

To conclude, we have presented approaches for cost optimal
and delay optimal mapping of RTL structures onto FPGA’s. To
the best of our knowledge, this is the first attempt to map RTL
structures directly onto FPGA’s. The techniques are primarily meant
for realizing data path and effectively utilize iterative structure of
the data path components. The slices of connected components are
generated and are called cones which are mapped onto CLB’s. The
approach is flexible and can handle various families of XILINX
FPGA’s. Results on many examples show its effectiveness in both
cost and delay reduction. Further, the synthesized CLB boundaries
correspond to RTL component boundaries which can be helpful in
handling testability and ease delay simulation.

Our technique handles mapping starting from RTL structures and
does not require expanding it to the gate level. As a result the data
size required to be handled is relatively small. A benefit of this is that
our algorithms can easily generate good quality solutions. The delay
modeling is restricted to CLB levels and does not take into account
either the interconnection delays or the variations in delays between
various CLB input–output pairs.

ACKNOWLEDGMENT

The authors are thankful to T. V. Kumar for his assistance in
comparing their approach with XBLOX.

REFERENCES

[1] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast technology
mapping for look-up table-based FPGAs,” inProc. 28th DAC, June
1991, pp. 227–233.

[2] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangio-
vanni-Vincentelli, “Logic synthesis for programmable gate arrays,” in
Proc. 27th DAC, June 1990, pp. 620–625.

[3] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Sequential
synthesis for table look up programmable gate arrays,” inProc. 30th
DAC, June 1993, pp. 224–229.

[4] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping of lookup
table-based FPGA’s for performance,” inProc. ICCAD’91, Nov. 1991,
pp. 568–571.

[5] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table-based FPGA designs,”
IEEE Trans. Computer-Aided Design, vol. 13, pp. 1–12, Jan. 1994.

[6] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance directed synthesis for table look up programmable gate
arrays,” in Proc. ICCAD’91, Nov. 1991, pp. 572–575.

[7] P. Sawkar and D. Thomas, “Performance directed technology mapping
for look-up table-based FPGA’s,” inProc. 30th DAC,June 1993, pp.
202–212.

[8] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology
mapping for lookup-table-based FPGA’s,” inProc. ICCD, Oct. 1992,
pp. 86–90.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 1998 631

[9] M. Pedram and N. Bhat, “Layout driven technology mapping,” inProc.
28th DAC,June 1991, pp. 99–105.

[10] Xilinx Programmable Gate Array Users’ Guide. Xilinx, Inc., 1993.
[11] M. V. Rao, M. Balakrishnan, and A. Kumar, “DESSERT: Design space

exploration of RT level components,” inProc. IEEE/ACM 6th Int. Conf.
VLSI Design’93, Jan. 1993, pp. 299–303.

[12] A. Kumar, V. Kashyap, S. D. Sherlekar, G. Venkatesh, S. Biswas, A.
Kumar, P. C. P. Bhatt, and S. Kumar, “IDEAS: A tool for VLSI CAD,”
IEEE Design and Test of Computers,vol. 6, pp. 50–57, Oct. 1989.

[13] A. R. Naseer, M. Balakrishnan, and A. Kumar, “An efficient technique
for mapping RTL structures onto FPGA’s,” inProc. 4th Int. Wkshp.
Field Programmable Logic and Applicat., Sept. 1994, pp 99–110.

[14] , “Delay minimal mapping of RTL structures onto-LUT-based
FPGA’s,” in Proc. 5th Int. Wkshp. Field Programmable Logic and
Applicat., Sept. 1995.

[15] P. J. Roth and R. M. Karp, “Minimization over Boolean graphs,”IBM
J. Res. Development,vol. 6, no. 2, pp. 227–238, Apr. 1962.

[16] A. R. Naseer, M. Balakrishnan, and A. Kumar, “FAST: FPGA targeted
RTL structure synthesis technique,” inProc. IEEE/ACM 7th Int. Conf.
on VLSI Design’94, pp. 21–24, Jan. 1994.

[17] E. Detjens,Workshop on High-Level Synthesis, Orcas Island, WA, Jan.
1988.

A Simple, Continuous, Analytical Charge/Capacitance
Model for the Short-Channel MOSFET

Raymond S. Winton and William R. Bandy

Abstract—A charge/capacitance model of a simple form that is contin-
uous across the linear and saturation regimes is developed. The model
is based on a conductance analysis of the MOSFET which incorporates
velocity saturation at a first-principles level [1]. By relating charge layers
within the device to characteristics of the conductance, the charge model
not only is able to characterizeCCC–VVV behavior but to also incorporate
velocity saturation. Since the basic conductance form is a hyperbola, the
model is mathematically simple and robust and yields MOSFET capaci-
tances and charges which are continuous and of infinite differentiability
over the linear and saturation regimes of device operation.

Index Terms—MOS charge/capacitance modeling, MOS device model-
ing.

I. INTRODUCTION

Simulation of MOS very large scale integration (VLSI) circuits
requires that the MOS device have a model for the charge/capacitance
characteristics that makes use of parameters and physical basis
consistent with the conduction model. This is often not an easy
task when the conduction characteristics are not linearly related to
charge, as in the case of the short-channel MOS transistor. In addition,
conditions for robust circuit simulation demand: 1) mathematical
simplicity, 2) accuracy, and 3) physical basis. This paper describes a
new approach and a new MOSFET charge/capacitance model that
meets these conditions, developed from a continuous hyperbolic
conductance model form [1].

Manuscript received June 4, 1996. This paper was recommended by
Associate Editor Z. Yu.

R. S. Winton is with the Department of Electrical Engineering, Mississippi
State University, Mississippi State, MS 39762 USA.

W. R. Bandy is with the Microelectronics Research Laboratory, Columbia,
MD 21044 USA.

Publisher Item Identifier S 0278-0070(98)05196-3.

The nonlinearity of the conductance behavior for the MOSFET
is primarily due to the phenomenon of velocity saturation [2], [3].
Since the effect is dominant only for high fields, it is possible to
make approximations in which the mobility is taken as constant, as
is usually done for the sheet-charge models [4]–[9]. But the models
strain to meet satisfactory mathematical behavior in the short-channel
limits, often manifested by difficulty in linking the regimes above and
below the saturation knee. In an alternative approach [1], a hyperbolic
conduction form for the conductance characteristics has been assumed
which models the complete conduction characteristics as a hyperbola,
eliminating the gap between different regimes. This approach allows
velocity saturation to be included in a fundamental, first-principles
way. The effects may be extended into the charge-control domain by
use of the relationship between channel conductance and the charge
layers. The result is a set of charge and capacitance equations for
the device that span both the linear and the saturation regimes in
single equation form with velocity saturation implicitly included.
The charge/capacitance model is of simple mathematical form, uni-
formly continuous across the linear-to-saturation transition knee, and
analytically well behaved. Therefore, like the conduction model, it
provides a good platform for modeling higher order behavior such
as the indefinite admittance matrix [10]. Furthermore, a hierarchy
of model equation complexity emerges, the lowest-order being of
the same form as the traditional Ward–Meyer models [11]–[13], but
with the effect of velocity saturation implicitly retained. As with the
conductance model, both short- and long-channel behavior is included
in a manner consistent with physical operation, as characterized by
conventional device measurements and parameters.

The key feature of the charge/capacitance model is that, unlike
traditional approaches to MOSFET modeling in which the conduction
characteristics of the device are developed from a charge-control
analysis, it reverses the process and develops the charge-control
behavior from the conduction model. The advantage of this approach
is that it yields a self-consistent method for including velocity
saturation in both conduction and charge models of the MOSFET.

II. THE CHARGE/CAPACITANCE MODEL

At any point within the channel the charge controlled by the gate
field consists of two components [14], [15]: 1) a channel inversion
layerqC and 2) a depletion layerqB : For normal operating conditions,
with the device in a conducting state, the density of these charge
layers each varies monotonically from source to drain, with the
magnitude ofqI decreasing and that ofqB increasing.

When the MOSFET is called in a circuit simulation process, the
integral of charge controlled by each terminal is used to evaluate the
device response. In the conducting state the integrals of the layers
for qC and qB ; respectively, are

QC =W
L

0

qC dy (1a)

QB =W
L

0

qB dy: (1b)

The total charge controlled by the gate,QG; is the sum ofQC
and QB :

A. Inversion Charge

The source and drain terminals independently act under transient
conditions to charge and discharge the conductive charge layerQC :

0278–0070/98$10.00 1998 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2021 at 11:43:38 UTC from IEEE Xplore. Restrictions apply.

