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Abstract: The problem of approximately solving an ill-posed Hammerstein
type operator equation KF (x) = y in a Hilbert space is considered, where K
is a bounded linear operator and F is a non-linear monotone operator.

The method involves the Dynamical System Method (DSM) – both contin-
uous and iterative schemes, studied by Ramm (2005), and known as Tikhonov
regularization. By choosing the regularization parameter according to an adap-
tive scheme considered by Pereverzev and Schock (2005) an order optimal error
estimate has been obtained.
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1. Introduction

In this paper we aim at obtaining an approximate solution for the nonlinear ill-
posed(i.e., the solution does not depend continuously on the data) Hammerstein
type ([4], [5], [6]) operator equation

KF (x) = f (1)

using Dynamical System Method ([15]). Here F : D(F ) ⊂ X → X is nonlinear
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monotone operator defined on a real Hilbert space X and K : X → Y is a
bounded linear operator between the Hilbert spacesX and Y. The inner product
and norm in X and Y are denoted by 〈., .〉 and ‖.‖ respectively. Recall that
[11], [18], F is a monotone operator if 〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ D(F ).

In practice we only have noisy data f δ with

‖f − f δ‖ ≤ δ,

so one has to consider the equation

KF (x) = f δ (2)

instead of (1).
Since (1) is ill-posed one has to consider regularization method to obtain a

stable approximate solution for (1). Observe that the solution x of (2) can be
obtained by first solving

Kz = f δ (3)

for z and then solving the non-linear problem

F (x) = z (4)

(See, [4], [5], [6], [7] and [8]). The advantage of approximately solving (3)
and (4) to obtain an approximate solution for (2) is that, one can use any
regularization method for linear ill-posed equations, for solving (3) and any
method for non-linear ill-posed operator equations with monotone operators
for solving (4).

As in [6] for approximately solving (3), we consider the Tikhonov regularized
solution

zδα = (K∗K + αI)−1K∗(f δ −KF (x0)) + F (x0), α > 0, δ > 0 (5)

where x0 is the known initial approximation to the solution x̂ of (1).
Since F is monotone, for approximately solving (4) with zδα in place of z we

consider the Laverentiev regularization method, i.e., we consider the solution
xδα of the equation

F (x) +
α

c
(x− x0) = zδα, c ≤ α (6)

as an approximate solution of (4) with zδα in place of z. In [15](Section 2.4.6,
page 59), Ramm considered a method called Dynamical System Method (DSM)
for solving

G(x) = 0. (7)
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The method consists of finding (cf. [13], [15]) a nonlinear locally Lipschitz
operator Φ(u, t), such that the Cauchy problem:

u′(t) = Φ(u, t), u(0) = u0 (8)

has the following three properties:

∃u(t)∀t ≥ 0, ∃u(∞), G(u(∞)) = 0,

i.e., (8) is globally uniquely solvable, its unique solution has a limit at infinity
u(∞), and this limit solves (7).

In [8] and [9], the authors considered a combination of modified form of
DSM and Tikhonov regularization for obtaining a stable approximate solution
of (2). The analysis in [8] and [9] was carried out under the assumption that,
the Fréchet derivative F ′(x0) of F at x0 is invertible and is bounded. But in
the present paper we analyze the case where F ′(x0)

−1 doesnot exist but F is a
monotone operator.

We assume throughout that the solution x̂ of (1) satisfies (See [8], [9])

‖x̂− x0‖ = min{‖x− x0‖ : KF (x) = f, x ∈ D(F )},

and that ‖x̂− x0‖ ≤ ρ.

The regularization parameter α is chosen according to the adaptive scheme
of Pereverzev and Schock ([14]). Here α is selected from some finite set α ∈
{0 < α0 < α1 < · · · < αN} and the corresponding regularized solution, say
zδαi
, 0 ≤ i ≤ N are studied on-line.
The paper is organized as follows. In Section 2, we discuss the error bounds

for Tikhonov regularization of (3) under general source conditions by choosing
the regularization parameter by an a priori manner as well as by an adaptive
scheme proposed by Pereverzev and Schock in [14]. In Section 3, continuous and
iterative schemes of DSM are presented and we conclude the paper in Section
4.

2. Preparatory Results

The assumption below on source condition is based on a source function ϕ and
a property of the source function ϕ. We will be using this assumption for error
analysis.
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Assumption 2.1. There exists a continuous, strictly monotonically in-
creasing function ϕ : (0, a] → (0,∞) with a ≥ ‖K∗K‖ satisfying;

• lim
λ→0ϕ(λ) = 0

•
sup

λ ≥ 0

αϕ(λ)

λ+ α
≤ ϕ(α), ∀λ ∈ (0, a]

• there exists v ∈ X such that

F (x̂) = ϕ(K∗K)v.

Theorem 2.2. Let zδα be as in (5) and Assumption 2.1 hold. Then

‖F (x̂)− zδα‖ ≤ ϕ(α) +
δ√
α
. (9)

Proof. See the proof of (4.3) in [6].

2.1. Error Bounds Under Source Conditions

Let α := αδ be the minimum for the estimate ϕ(α)+ δ√
α
in Theorem 2.2. Then

ϕ(αδ) =
δ√
αδ
, i.e., δ =

√
αδϕ(αδ) = ψ(ϕ(αδ)), where ψ(λ) := λ

√

ϕ−1(λ), 0 <

λ ≤ ‖K‖2. So we have
αδ = ϕ−1(ψ−1(δ)), (10)

and the relation (9) leads to ‖F (x̂)− zδα‖ ≤ 2ψ−1(δ).

2.2. An Adaptive Choice of the Parameter

From the above discussion the error estimate in Theorem 2.2 has optimal order
with respect to δ for the choice of αδ = ϕ−1(ψ−1(δ)). But the smoothness
properties of the unknown solution x̂ reflected in the function ϕ are generally
not known, so in practice one cannot use the a priori parameter choice (10).

There exist many parameter choice strategies in the literature, for example
see [2], [3], [7] and [18]. We employ the adaptive selection of the parameter
suggested by Pereverzev and Schock in [14] which does not involve even the
regularization method in an explicit manner.

Let i ∈ {0, 1, 2, · · · , N} and αi = µ2iα0 where µ > 1. Let

l := max{i : ϕ(αi) ≤
δ√
αi

} (11)
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and

k := max{i : ‖zδαi
− zδαj

‖ ≤ 4δ
√
αj
, j = 0, 1, 2, · · · , i}. (12)

Theorem 2.3. (cf. [6], Theorem 4.3) Let l be as in (11), k be as in (12)
and zδαk

be as in (5) with α = αk. Then l ≤ k and

‖F (x̂)− zδαk
‖ ≤ (2 +

4µ

µ− 1
)µψ−1(δ).

3. Dynamical System Method (DSM)

The following Assumption is used throughout the analysis.

Assumption 3.1. (cf. [17], Assumption 3 (A3)) There exists a constant
k0 ≥ 0 such that for every x, u ∈ D(F ) and v ∈ X there exists an element
Φ(x, u, v) ∈ X such that [F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤
k0‖v‖‖x − u‖.

Throughout this section we assume that F ∈ C2 i.e., ∀x ∈ D(F ),

‖F (j)(x)‖ ≤Mj , j = 1, 2. (13)

Let δ0 <
2

M2+2k0

√
α0 and

Rρ :=
δ0√
α0

+Mρ. (14)

Lemma 3.2. Let Rρ be as in (14). Let zδαk
be as in (5), and if xδαk

is the

solution of (6) with α := αk and δ ∈ [0, δ0], then x
δ
αk

∈ BRρ(x0).

Proof. Observe that F (xδαk
) + αk

c
(xδαk

− x0) = zδαk
. Let M :=

∫ 1
0 F

′(x0 +

t(xδαk
− x0))dt. Then

F (xδαk
)− F (x0) +

αk

c
(xδαk

− x0) = zδαk
− F (x0)

(M +
αk

c
I)(xδαk

− x0) = zδαk
− F (x0)

(xδαk
− x0) = (M +

αk

c
I)−1(zδαk

− F (x0)).

Thus

‖xδαk
− x0‖ ≤ ‖zδαk

− F (x0)‖
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≤ ‖(K∗K + αkI)
−1K∗(f δ −KF (x0))‖

≤ ‖(K∗K + αkI)
−1K∗(f δ − f + f −KF (x0))‖

≤ ‖(K∗K + αkI)
−1K∗(f δ − f)‖

+‖(K∗K + αkI)
−1K∗K(F (x̂)− F (x0))‖

≤ δ√
αk

+Mρ < Rρ.

Hence the Lemma.

3.1. Continuous Schemes

In this section we consider the following Cauchy’s problem for solving (4):

x′(t) = −(F ′(x0)+
αk

c
I)−1(F (x(t))−zδαk

+
αk

c
(x(t)−x0)), x(0) = x0 (15)

where c ≤ αk and x0 is an initial approximation. In this section we assume
that

ρ <
1

M
[

2

M2 + 2k0
− δ0√

α0
]. (16)

Note that (16) implies that Rρ <
1
k0
.

The following Theorem gives the local solution for the Cauchy problem (15).

Theorem 3.3. ([13], Theorem 2.1) Let X be a real Banach space, U be
an open subset of X and x0 ∈ U. Let Φ : U × R

+ → X be of class C1 that is
bounded on bounded sets. Then the following hold.

• There exists a maximal interval J containing 0 such that the initial value
problem

x′(t) = Φ(x(t), t), x(0) = x0,

has a unique solution x(t) ∈ U for all t ∈ J.

• If J has the right end point, say τ, and xτ := lim
t→τ

x(t) exists, then xτ is
on the boundary of U.

The Proposition below establishes the existence and uniqueness of the so-
lution of the Cauchy problem (15).

Proposition 3.4. Let F maps bounded sets onto bounded sets. Then
there exists a maximal interval J ⊆ [0,∞) such that (15) has a unique solution
x(t) for all t ∈ J.
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Proof. Proof is analogous to the proof of Proposition 2.7 in [8].

Theorem 3.5. Let δ ∈ [0, δ0], Assumption 3.1 and Lemma 3.2 be satisfied
with ρ as in (16). If (13) and Proposition 3.4 hold, then (15) has a unique
global solution x(t) and x(t) converges to xδαk

. Further

‖x(t)− xδαk
‖ ≤ c3e

−c1t

where c3 =
g(0)

1− c2g(0)
c1

, c1 = 1− k0Rρ > 0, c2 =
M2
2 and g(0) = ‖x(0)− xδαk

‖.

Proof. Let x(t)− xδαk
:= w and ‖w‖ := g(t). Then by Taylor Theorem (cf.

[1], Theorem 1.1.20)

F (x(t)) − F (xδαk
) = F ′(xδαk

)(x(t)− xδαk
) + T (x(t), xδαk

) (17)

where T (x(t), xδαk
) =

∫ 1
0 F

′′(λx(t) + (1 − λ)xδαk
)(x(t) − xδαk

)2(1 − λ)dλ. Since

F (xδαk
)− zδαk

+ αk

c
(xδαk

− x0) = 0, by (17) we have

F (x(t)) − zδαk
+
αk

c
(x(t) − x0) = (F ′(xδαk

) +
αk

c
I)(x(t) − xδαk

) + T (x(t), xδαk
).

Observe that

w′(t) = x′(t) = −(F ′(x0)+
αk

c
I)−1[(F ′(xδαk

) +
αk

c
I)(x(t)−xδαk

)+ T (x(t), xδαk
)]

and hence

gg′ =
1

2

dg2

dt
=

1

2

d

dt
〈w,w〉 = 〈w,w′〉

= 〈w,−(F ′(x0) +
αk

c
I)−1[(F ′(xδαk

) +
αk

c
I)(x(t) − xδαk

) + T (x(t), xδαk
)]〉

= 〈w,−w〉 + 〈w,Λw〉 + 〈w,−(F ′(x0) +
αk

c
I)−1T (x(t), xδαk

)〉

≤ −‖w‖2 + ‖Λ‖‖w‖2 + ‖(F ′(x0) +
αk

c
I)−1T (x(t), xδαk

)‖‖w‖

≤ −g2 + ‖Λ‖g2 + ‖T (x(t), xδαk
)‖g (18)

where Λ = −(F ′(x0) +
αk

c
I)−1(F ′(xδαk

)− F ′(x0)). Note that

‖Λ‖ ≤ sup

‖v‖ ≤ 1
‖(F ′(x0) +

αk

c
I)−1[F ′(x0)− F ′(xδαk

)]v‖

≤ sup

‖v‖ ≤ 1
‖(F ′(x0) +

αk

c
I)−1F ′(x0)Φ(x

δ
αk
, x0, v)‖
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≤ k0Rρ‖v‖, (19)

the last step follows from Assumption 3.1. Again by (13),

‖(F ′(x0) +
αk

c
I)−1T (x(t), xδαk

)‖ ≤ ‖T (x(t), xδαk
)‖

≤
M2‖x(t)− xδαk

‖2
2

≤ M2g
2

2
. (20)

Therefore by (18), (19) and (20) we have

gg′ ≤ −g2 + k0Rρg
2 +

M2

2
g3

and hence
g′ ≤ −c1g + c2g

2 (21)

where c1 := 1− k0Rρ > 0 and c2 :=
M2
2 . So by solving (21) we get,

g(t) ≤ c3e
−c1t.

Remark 3.6. Note that by Lemma 3.2, g(0) = ‖x0 − xδαk
‖ ≤ Rρ and

hence condition (16) implies c2g(0)
c1

< 1.

Assumption 3.7. There exists a continuous, strictly monotonically in-
creasing function ϕ1 : (0, b] → (0,∞) with b ≥ ‖F ′(x0)‖ satisfying;

• lim
λ→0ϕ1(λ) = 0,

•
sup

λ ≥ 0

αϕ1(λ)

λ+ α
≤ ϕ1(α) ∀λ ∈ (0, b]

and

• there exists v ∈ X with ‖v‖ ≤ 1 (cf. [12]) such that

x0 − x̂ = ϕ1(F
′(x0))v.

• for each x ∈ BRρ(x0) there exists a bounded linear operator G(x, x0) (cf.
[16]) such that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖ ≤ k1.
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Assume that k1 <
1−k0Rρ

1−c
and for the sake of simplicity assume that ϕ1(α) ≤

ϕ(α) for α > 0.

Theorem 3.8. (cf. [10], Theorem 3.7) Suppose xδαk
is the solution of (6)

with δ ∈ [0, δ0], and Assumptions 3.1 and 3.7 hold with ρ as in (16). Then

‖x̂− xδαk
‖ ≤

ϕ1(αk) + ‖F (x̂)− zδαk
‖

1− (1− c)k1 − k0Rρ
.

In particular by Theorem 2.3,

‖x̂− xδαk
‖ ≤

ϕ1(αk) + (2 + 4µ
µ−1 )µψ

−1(δ)

1− (1− c)k1 − k0Rρ
.

Proof. The proof is analogous to the proof of Theorem 3.7 in [10].

3.1.1. Error Analysis

The following Theorem is a consequence of Theorem 3.5 and Theorem 3.8.

Theorem 3.9. Suppose (13), and assumptions in Theorem 3.5 and The-
orem 3.8 hold with ρ as in (16), then

‖x̂− x(t)‖ ≤
ϕ1(αk) + (2 + 4µ

µ−1 )µψ
−1(δ)

1− (1− c)k1 − k0Rρ
+ c3e

−c1t,

where c1 and c3 are as in Theorem 3.5.

Theorem 3.10. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assump-
tions of Theorem 3.9 are satisfied. Let

T := min{t : e−c1t <
δ√
αk

},

and x(T ) be the solution of the Cauchy’s problem (15) with zδαk
in place of zδα,

with δ ∈ [0, δ]. Then
‖x̂− x(T )‖ = O(ψ−1(δ)).

3.2. Iterative Schemes

In this section we assume that M2 < 2, δ0 <
2−M2
2k0

√
α0 and

ρ <
1

M
[
2−M2

2k0
− δ0√

α0
]. (22)
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Now we solve (4) with the following discretization scheme

xn+1 = xn −h(F ′(x0)+
αk

c
I)−1[F (xn)− zδαk

+
αk

c
(xn −x0)], h = constant > 0,

(23)
with c ≤ αk. Let us consider the following Cauchy’s problem:

w′
n+1(t) = −(F ′(x0) +

αk

c
I)−1[F (wn+1(t))− zδαk

+
αk

c
(wn+1(t)− x0)], (24)

wn+1(tn) = xn, tn ≤ t ≤ tn+1 where xn is as in (23).
The existence and uniqueness of the solution of the Cauchy problem (24)

can be established as in Proposition 3.4.

Theorem 3.11. If δ ∈ [0, δ0], (13), Assumption 3.1 and Lemma 3.2 hold
with ρ as in (22), then (24) has a unique global solution wn+1(t) and wn+1(t)
converges to xδαk

. Further

‖wn+1(t)− xδαk
‖ ≤ e−c̃1nh

1− c̃0
c̃1

e−c̃1(t−tn) (25)

where c̃0 =
M2
2 and c̃1 = 1− k0Rρ > 0.

Proof. We shall prove (25) by induction. Clearly for n = 0 the result is
true, suppose (25) is true for some n. Let wn+1(t)− xδαk

:= w̃ and ‖w̃‖ := g̃(t).
Then by Taylor Theorem (cf. [1], Theorem 1.1.20)

F (wn+1(t))− zδαk
+
αk

c
(wn+1(t)− x0) = F (wn+1(t))− F (xδαk

)

+
αk

c
(wn+1(t)− xδαk

)

= F ′(xδαk
)(wn+1(t)− xδαk

)

+T (wn+1(t), x
δ
αk
)

+
αk

c
(wn+1(t)− xδαk

) (26)

where T (wn+1(t), x
δ
αk
) =

∫ 1
0 F

′′(λwn+1(t)+(1−λ)xδα)(wn+1(t)−xδαk
)2(1−λ)dλ.

Observe that

w̃′(t) = w′
n+1(t) = −(F ′(x0) +

αk

c
I)−1[(F ′(xδαk

) +
αk

c
I)(wn+1(t)− xδαk

)

+T (wn+1(t), x
δ
αk
)]

and hence

g̃g̃′ =
1

2

dg̃2

dt
=

1

2

d

dt
〈w̃, w̃〉 = 〈w̃, w̃′〉
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= 〈w̃,−(F ′(x0) +
αk

c
I)−1[(F ′(xδα) +

αk

c
I)w̃ + T (wn+1(t), x

δ
αk
)]〉

= 〈w̃,−w̃〉+ 〈w̃,−(F ′(x0) +
αk

c
I)−1T (wn+1(t), x

δ
αk
)〉

+〈w̃,−(F ′(x0) +
αk

c
I)−1(F ′(xδαk

)− F ′(x0))w̃〉 (27)

Note that

〈w̃,−(F ′(x0) +
αk

c
I)−1[F ′(xδαk

)− F ′(x0)]w̃〉 ≤ ‖w̃‖‖(F ′(x0) +
αk

c
I)−1

(F ′(x0)− F ′(xδαk
))w̃‖

≤ ‖w̃‖‖(F ′(x0) +
αk

c
I)−1

F ′(x0)Φ(x
δ
αk
, x0, w̃)‖

≤ k0Rρ‖w̃‖2 (28)

the last step follows from Assumption 3.1. Again by (26) and (13)

〈w̃,−(F ′(x0) +
αk

c
I)−1T (wn+1(t), x

δ
αk
)〉 ≤ ‖w̃‖‖(F ′(x0) +

αk

c
I)−1

T (wn+1(t), x
δ
αk
)‖

≤ ‖w̃‖‖T (wn+1(t), x
δ
αk
)‖

≤ ‖w̃‖
M2‖x(t)− xδαk

‖2
2

≤ ‖w̃‖M2g̃
2

2
. (29)

Therefore by (27), (28) and (29) we have

g̃g̃′ ≤ −g̃2 + k0Rρg̃
2 +

M2

2
g̃3

i.e.,
g̃′ ≤ −c̃1g̃ + c̃0g̃

2,

and hence
g̃(t) ≤ r̃e−c̃1(t−tn)

where r̃ = g̃(tn)

1− c̃0 g̃(tn)
c̃1

. Note that r̃ = g̃(tn)

1− c̃0g̃(tn)
c̃1

≤ e−c̃1nh

1− c̃0
c̃1

, condition (22) implies

c̃0
c̃1
< 1 and hence

g̃(t) ≤ e−c̃1nh

1− c̃0
c̃1

e−c̃1(t−tn).

This completes the proof of the Theorem.
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Theorem 3.12. Let wn+1(t) be the solution of (24) and zδαk
be as in (5)

with δ ∈ [0, δ0] and α = αk. If Lemma 3.2 holds with ρ as in (22), then

‖F (wn+1(t))− zδαk
+
αk

c
(wn+1(t)− x0)‖ ≤ ‖F (x0)− zδαk

‖e−c̃1(nh+t−tn). (30)

Proof. The proof follows as in proof of Theorem 3.11 by taking

g̃(t) = ‖F (wn+1(t))− zδαk
+
αk

c
(wn+1(t)− x0)‖.

Proposition 3.13. Let xn+1 be as in (23) with δ ∈ [0, δ0]. If (13) and
Theorem 3.12 hold, then

‖xn+1 −wn+1(tn+1)‖ ≤ h2(M1 + 1)Rρe
−c̃1nh.

Proof. Observe that

‖xn+1 − wn+1(tn+1)‖ =

∫ tn+1

tn

‖Φ(xn)− Φ(wn+1(t))‖dt

≤
∫ tn+1

tn

‖(F ′(x0) +
αk

c
I)−1[F (xn)− F (wn+1(t))

+
αk

c
(xn − wn+1(t))]‖dt

≤ (M1 + 1)

∫ tn+1

tn

‖xn − wn+1(t)‖dt

≤ (M1 + 1)h

∫ tn+1

tn

‖Φ(wn+1(t))‖dt

≤ (M1 + 1)h

∫ tn+1

tn

‖(F ′(x0) +
αk

c
I)−1[F (wn+1(t))− zδαk

+
αk

c
(wn+1(t)− x0)]‖dt. (31)

Now from (30), (31) and Lemma 3.2 we have,

‖xn+1 −wn+1(tn+1)‖ ≤ h2(M1 + 1)‖F (x0)− zδαk
‖e−c̃1nh

≤ h2(M1 + 1)Rρe
−c̃1nh.

Hence the Proposition.

Thus by triangle inequality, (25) and (31) we have the following
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Theorem 3.14. If the assumptions of Proposition 3.13 and Theorem 3.11
hold. Then xn+1 converges to xδαk

. Further

‖xn+1 − xδαk
‖ ≤ C̃e−c̃1nh

where C̃ = h2(M1 + 1)Rρ +
1

1− c̃0
c̃1

e−c̃1h.

3.2.1. Error Analysis

Theorem 3.15. Let assumptions of Theorem 3.14 hold. Suppose k1 <
1−k0Rρ

1−c
and assumptions of Theorem 3.8 hold with ρ as in (22), then

‖x̂− xn+1‖ ≤
ϕ1(αk) + (2 + 4µ

µ−1 )µψ
−1(δ)

1− (1− c)k1 − k0Rρ
+ C̃e−c̃1nh.

Proof. The proof follows from Theorem 3.14, Theorem 3.8(with ρ as in
(22)) and the triangle inequality:

‖x̂− xn+1‖ ≤ ‖x̂− xδαk
‖+ ‖xδαk

− xn+1‖.

Theorem 3.16. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assump-
tions of Theorem 3.15 are satisfied. Let

N := min{n : e−c̃1nh <
δ√
αδ

}

and xN+1 be as in (23) with zδαk
in place of zδα, with δ ∈ [0, δ]. Then

‖x̂− xN+1‖ = O(ψ−1(δ)).

4. Conclusion

In this paper we presented a method, which is a combination of DSM and
Tikhonov regularization method for approximately solving ill-posed Hammer-
stein type operator equation KF (x) = f, when the available data is f δ with
‖f − f δ‖ and the non-linear operator F is monotone. Infact we considered con-
tinuous and iterative schemes of DSM studied extensively by Ramm (see [15])
and his collaborators. We obtained order optimal error bounds by choosing
the regularization parameter α according to the adaptive method considered
by Pereverzev and Schock(2005). Further in a future work it is envisaged to
investigate the case when F is non-invertible and non-monotone operator.
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