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Abstract: The problem of approximately solving an ill-posed Hammerstein
type operator equation K F(z) = y in a Hilbert space is considered, where K
is a bounded linear operator and F' is a non-linear monotone operator.

The method involves the Dynamical System Method (DSM) — both contin-
uous and iterative schemes, studied by Ramm (2005), and known as Tikhonov
regularization. By choosing the regularization parameter according to an adap-
tive scheme considered by Pereverzev and Schock (2005) an order optimal error
estimate has been obtained.
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1. Introduction

In this paper we aim at obtaining an approximate solution for the nonlinear ill-
posed(i.e., the solution does not depend continuously on the data) Hammerstein
type ([4], [5], [6]) operator equation

KF(z)=f (1)
using Dynamical System Method ([15]). Here F': D(F) C X — X is nonlinear
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monotone operator defined on a real Hilbert space X and K : X — Y is a

bounded linear operator between the Hilbert spaces X and Y. The inner product

and norm in X and Y are denoted by (.,.) and ||.|| respectively. Recall that

[11], [18], F' is a monotone operator if (F(z) — F(y),z —y) >0 Vx,y € D(F).
In practice we only have noisy data f0 with

If = £l <o,

so one has to consider the equation
KF(z) = f° (2)

instead of (1).
Since (1) is ill-posed one has to consider regularization method to obtain a
stable approximate solution for (1). Observe that the solution x of (2) can be

obtained by first solving
Kz=f? (3)

for z and then solving the non-linear problem
F(z)==z (4)

(See, [4], [5], [6], [7] and [8]). The advantage of approximately solving (3)
and (4) to obtain an approximate solution for (2) is that, one can use any
regularization method for linear ill-posed equations, for solving (3) and any
method for non-linear ill-posed operator equations with monotone operators
for solving (4).

As in [6] for approximately solving (3), we consider the Tikhonov regularized
solution

20 = (K*K + ol) ' K*(f° — KF(20)) + F(x0), > 0,0 >0 (5)

where x( is the known initial approximation to the solution & of (1).

Since F' is monotone, for approximately solving (4) with zg in place of z we
consider the Laverentiev regularization method, i.e., we consider the solution
2% of the equation

F(x)—i—%(x—xo):zg, c<a (6)

as an approximate solution of (4) with 29 in place of z. In [15](Section 2.4.6,
page 59), Ramm considered a method called Dynamical System Method (DSM)
for solving

G(z) = 0. (7)
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The method consists of finding (cf. [13], [15]) a nonlinear locally Lipschitz
operator ®(u,t), such that the Cauchy problem:

u'(t) = ®(u,1), u(0) = ug (8)
has the following three properties:
Ju(t)vt >0, FJu(co), G(u(x)) =0,

i.e., (8) is globally uniquely solvable, its unique solution has a limit at infinity
u(00), and this limit solves (7).

In [8] and [9], the authors considered a combination of modified form of
DSM and Tikhonov regularization for obtaining a stable approximate solution
of (2). The analysis in [8] and [9] was carried out under the assumption that,
the Fréchet derivative F'(xzg) of F' at xq is invertible and is bounded. But in
the present paper we analyze the case where F’(z¢)~! doesnot exist but F is a
monotone operator.

We assume throughout that the solution & of (1) satisfies (See [8], [9])

1& = wol| = min{||z — w0l : KF(2) = f,z € D(F)},

and that ||z — zo|| < p.

The regularization parameter « is chosen according to the adaptive scheme
of Pereverzev and Schock ([14]). Here « is selected from some finite set o €
{0 < ap < a1 < -+ < ay} and the corresponding regularized solution, say
zgi, 0 <1 < N are studied on-line.

The paper is organized as follows. In Section 2, we discuss the error bounds
for Tikhonov regularization of (3) under general source conditions by choosing
the regularization parameter by an a priori manner as well as by an adaptive
scheme proposed by Pereverzev and Schock in [14]. In Section 3, continuous and
iterative schemes of DSM are presented and we conclude the paper in Section
4.

2. Preparatory Results

The assumption below on source condition is based on a source function ¢ and
a property of the source function . We will be using this assumption for error
analysis.
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Assumption 2.1. There exists a continuous, strictly monotonically in-
creasing function ¢ : (0,a] — (0,00) with a > [|[K*K || satisfying;

® ;TOSO()‘) =0

[ ]
sup ap(A)
A> 0N+«

< p(a), VYA € (0,d]
e there exists v € X such that
F(z) = o(K*K)wv.
Theorem 2.2. Let 2% be as in (5) and Assumption 2.1 hold. Then

IF(@) - 22 < p(a) + % (9)

Proof. See the proof of (4.3) in [6]. O
2.1. Error Bounds Under Source Conditions

Let o := a5 be the minimum for the estimate ¢(a) + % in Theorem 2.2. Then

plas) = —&=, ie, § = Jasp(as) = Y(p(as)), where (A) = A/~ 1(A),0 <
A < ||K]. So we have

as = (YTH(0)), (10)
and the relation (9) leads to ||[F(&) — 22| < 27 1(5).

«

2.2. An Adaptive Choice of the Parameter

From the above discussion the error estimate in Theorem 2.2 has optimal order
with respect to § for the choice of ay = ¢~ 1(3»~1(d)). But the smoothness
properties of the unknown solution & reflected in the function ¢ are generally
not known, so in practice one cannot use the a priori parameter choice (10).

There exist many parameter choice strategies in the literature, for example
see [2], [3], [7] and [18]. We employ the adaptive selection of the parameter
suggested by Pereverzev and Schock in [14] which does not involve even the
regularization method in an explicit manner.

Let i € {0,1,2,--- , N} and o; = pu* o where p > 1. Let

l:=maz{i: p(a;) <

j;i} (1)
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and

(&%)

46
ko= max{i: |2 -zgﬁ|5;:7::,j::cu1,2f-',i}. (12)
Q;

Theorem 2.3. (cf. [6], Theorem 4.3) Let | be as in (11), k be as in (12)
and zgk be as in (5) with a = .. Then | < k and

4
IP() = 28,01 < @+ )™ (0).

3. Dynamical System Method (DSM)

The following Assumption is used throughout the analysis.

Assumption 3.1. (cf. [17], Assumption 3 (A3)) There exists a constant
ko > 0 such that for every z,u € D(F) and v € X there exists an element
®(z,u,v) € X such that [F'(z) — F'(u)]jv = F'(u)®(x,u,v), ||®(x,u,v)|| <
kollollllz = -

Throughout this section we assume that F' € C? i.e., Vo € D(F),

[FO@I <M, =12 (13)
Let 60 < m\/ao and
do
R, = ——+ Mp. 14
=t Mp (14)

Lemma 3.2. Let R, be as in (14). Let zgk be as in (5), and if:cgk is the
solution of (6) with o := ay, and & € [0,60], then 25, € Bg, (x0).

6Proof. Observe that F(zd, ) + % (2, — o) = 25, . Let M := fol F'(zo +
t(zg, — wo))dt. Then

Fad,) = Flao) + “F(ad, —20) = b, — F(ao)
(M +=£1)(a), —x0) = 25, — Flao)
(e, —w0) = (M+=2D)7'(h, - F(xo)).
Thus
el —@oll <1128, — F(ao)]
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< (KK + o D) K*(f° — KF(x0))]|
< K*K +ap D) 'K (f° = |+ f = KF(x0))|
< (KK + o )T K (f° = £l
(KK + ap ) T K* K (F (&) — F(x0)) |
1)
< E +Mp < R,.
Hence the Lemma. O

3.1. Continuous Schemes
In this section we consider the following Cauchy’s problem for solving (4):
Qo «
2 (t) = —(F'(ao)+— D7 (F(a(t) —2, +—(@(t)=x0)),  2(0) = (15)

where ¢ < a; and zg is an initial approximation. In this section we assume

that
1 2 do

p < M[MQ +2k‘0 B \/Clo]'

(16)

Note that (16) implies that R, < k_lo'
The following Theorem gives the local solution for the Cauchy problem (15).

Theorem 3.3. ([13], Theorem 2.1) Let X be a real Banach space, U be
an open subset of X and zg € U. Let ® : U x Rt — X be of class C' that is
bounded on bounded sets. Then the following hold.

e There exists a maximal interval J containing 0 such that the initial value
problem
2'(t) = ®(2(t),1),  x(0) = =,

has a unique solution z(t) € U for all t € J.

lim

o w(t) exists, then x, is

e If J has the right end point, say T, and x,; =
on the boundary of U.

The Proposition below establishes the existence and uniqueness of the so-
lution of the Cauchy problem (15).

Proposition 3.4. Let F maps bounded sets onto bounded sets. Then
there exists a maximal interval J C [0, 00) such that (15) has a unique solution
x(t) for all t € J.
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Proof. Proof is analogous to the proof of Proposition 2.7 in [8]. O

Theorem 3.5. Let § € [0,0¢], Assumption 3.1 and Lemma 3.2 be satisfied
with p as in (16). If (13) and Proposition 3.4 hold, then (15) has a unique
global solution x(t) and x(t) converges to :cgk. Further

() — ), || < cze

where ¢c3 = l_gc(%, cr=1-kyR,>0,co= % and g(0) = ||=(0) — :cikH

€1

Proof. Let x(t) — 2% :=w and |Jw|| := g(t). Then by Taylor Theorem (cf.

j— xak

[1], Theorem 1.1.20)

F(a(t)) = F(x,) = F'(a9,)(x(t) — 20,) + T(x(t), 23, (17)
where T'(z(t), 20, ) = fol F'(Ax(t) + (1 = N)ad, )(@(t) — 22, )*(1 — A)dA. Since

ay
F(z8 ) — ng + O‘_Ck(xg —x0) =0, by (17) we have

k

Fa(t) = 2h, + = (@(t) = 20) = (F'(ah,) + “D)(a(t) — 5, ) + T(w(t), ).

w'(t) = 2 (t) = —(F'(wo) + —1) " [(F'(25,) + %I)(fv(t) —ad,) +T(x(t),20,)]
and hence

2
95 = 5= ) = (ww)

t
= {w, —(F'(zo) + — 1) [(F'(x7,) + %I)(x(t) —ag,) + T(a(t), 22,)))

tade 9%

= {w,—w) + {w, Aw) + (w, ~(F'(x0) + 1) T(a(t), b, ))

IN

—[lwll* + Al + 1(F (x0) + %D”T(w(t) 2o Mlw]

Eade %

<~ Al + 1T ((t), 20,9 (18)

where A = —(F/(zg) + 2£1)~ (F'(x), ) — F'(x0)). Note that

sup

~ <1
sup

ol <1

[A] I(F" (o) + %I)_I[F’(wo) = F'(ag, vl

« _
|(F (o) + =F 1)~ () ®(af,, 0, v)|
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< koRy|vll, (19)

the last step follows from Assumption 3.1. Again by (13),

ag
I (o) + —=1) T(a(t),2g ) < T ((t) a0,
Mp||z(t) — a3, |I”
- 2
M- 2
< 29 (20)
2
Therefore by (18), (19) and (20) we have
M.
99' < ~¢* + koRog® + =74
and hence
g < —c1g+ g’ (21)
where ¢y :=1—koR, >0 and ¢ := % So by solving (21) we get,
g(t) < cze™ .
U
Remark 3.6. Note that by Lemma 3.2, ¢g(0) = |z¢ — x‘sakH < R, and
hence condition (16) implies 290 g,

C1
Assumption 3.7. There exists a continuous, strictly monotonically in-
creasing function ¢; : (0,b] — (0,00) with b > ||[F'(x¢)]|| satisfying;

® )finowl()‘) =0,

[ ]
sup api(N)
A>0 A+«

< p1(a) VA € (0,0]
and
e there exists v € X with [|v|| <1 (cf. [12]) such that
x0 — 2 = @1 (F'(x0))v.

e for each x € Bg, (o) there exists a bounded linear operator G(z,zg) (cf.
[16]) such that
F'(z) = F'(20)G(x, 20)

with [|G(z, z0)|| < k1.
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Assume that k1 < —lfk_o £ and for the sake of simplicity assume that ¢ (a) <
1—c =
p(a) for a > 0.

Theorem 3.8. (cf. [10], Theorem 3.7) Suppose x% is the solution of (6)
with ¢ € [0, dp], and Assumptions 3.1 and 3.7 hold W1th p as in (16). Then

6 —af | < 901(0%) + | F (@) = 2, |
o (1 — C)kl — koRp

In particular by Theorem 2.3,

(ak)+( ) (6)

H H B (1 — C)kl — koRp

Proof. The proof is analogous to the proof of Theorem 3.7 in [10]. O
3.1.1. Error Analysis

The following Theorem is a consequence of Theorem 3.5 and Theorem 3.8.

Theorem 3.9. Suppose (13), and assumptions in Theorem 3.5 and The-
orem 3.8 hold with p as in (16), then

p1(ak) + (24 245 pd ™ (6)
1—(1—0)]’61 k‘()Rp

—c1t
)

& — ()] <

+ c3e

where ¢1 and c3 are as in Theorem 3.5.

Theorem 3.10. Let ¥(A) := A\\/¢ ),0 < A < ||K||? and the assump-
tions of Theorem 3.9 are satlsﬁed Let

§
T :=min{t: e " < —

Vo

and x(T) be the solution of the Cauchy’s problem (15) with zgk in place of 23,
with 6 € [0,0]. Then

2. Iterative Schemes

In this section we assume that My < 2, dg < 2 M2 v/og and

1,.2-M &
— S 22
<27 2k ) (22)
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Now we solve (4) with the following discretization scheme

Tpi1 = Tp — h(F'(z0) + %I)fl[F(:cn) - zgk + %(:cn —x0)], h = constant > 0,

(23)
with ¢ < ag. Let us consider the following Cauchy’s problem:

w1 () = =(F'(20) + 2217 [Flwn (8) = 28, + > (wasi () = 20)], (24)

W1 (tn) = Ty, t, <t < tp4q where x, is as in (23).
The existence and uniqueness of the solution of the Cauchy problem (24)
can be established as in Proposition 3.4.

Theorem 3.11. Ifd € [0,0¢], (13), Assumption 3.1 and Lemma 3.2 hold
with p as in (22) then (24) has a unique global solution wy,11(t) and wy41(t)
converges to :c . Further

efc]nh o
R (25)

c1
~ _ M» -
where ¢o = =5* and ¢ = 1 — koR, > 0.

Proof. We shall prove (25) by induction. Clearly for n = 0 the result is

true, suppose (25) is true for some n. Let wy,4+1(t) — x‘sak :=w and ||@] := g(t).
Then by Taylor Theorem (cf. [1], Theorem 1.1.20)
a
F(wng1(t) = 20, + — (wn1(t) = 20) = Fluwns(h) = F(a,)

+%(wn+1(t) —0,)

= F'(20, ) (wpia(t) — 22,)
+T(wn+1(t)7 ik)
+%(wn+1(t) —3,) (26)

where T 1(£),28,) = [ P (Nt (£) (1= N2 ) (1 (1) — 28, )2(1— N)dA.
Observe that

@) = w1 () = —(F(wo) + =21 [(F () + D (weri () - 2b,)
S ACHOREN)

and hence



DYNAMICAL SYSTEM METHOD FOR ILL-POSED... 139

= (@~ (F'(x0) + =D (F @) + “ED + T(w (1), 25, )
= (@, @) + (@, ~(F/(x0) + 1) T(wnsn (), 23,))
i, —(F'(a0) + D)7 (F' () — F (o)) (27)
Note that
(i, —(F'(a0) + 20 (@) = Flao)ld) <[] |(F(xo) + =21)
(F(w0) = F'(a,) |

. Af o\
< @l (o) + D)7
F'(20)®(x7, , 20, D)
< koR,||w]* (28)

the last step follows from Assumption 3.1. Again by (26) and (13)
~ Ak o\ — ~ Ak o\ —
(@, =(F"(w0) + 1) T(wn 1 (), 20,)) < [@I(F' (o) + 1)~

T(wp1 (1), 23,

< [@lIT (s (), 20,
Mo||z(t) — 22, |2
2
_ Mag?
< |l : (29)

Therefore by (27), (28) and (29) we have

. . . My
37 < —3* + koR,3* + —-3°

2
ie.,
~ s s = =2
g = —ag+ag,
and hence ~
g(t) < Femalmtn)
where # = —9n)__ Note that 7 = —IUn) < 6_61:}1, condition (22) implies
1—<08ln) 1— 09(tn) -2
~ cq1 c1 c1
2 <1 and hence
e—cﬁnh A (t—tn)
— & (b=t
9(t) < —xe @

This completes the proof of the Theorem. ]
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Theorem 3.12. Let wy,11(t) be the solution of (24) and z{, be as in (5)
with ¢ € [0,9p] and a = «ay. If Lemma 3.2 holds with p as in (22), then

o —c1(n -
1E (wn1(2)) = 20, + f(wnﬂ(t) — o) < |1F(x0) — 20, lle” =) (30)

oy,
Proof. The proof follows as in proof of Theorem 3.11 by taking
- 5 A
9(t) = 1F (wn+1(t)) = 20, + — (wnt1(t) — 20)ll
O

Proposition 3.13. Let x,41 be as in (23) with § € [0,dp]. If (13) and
Theorem 3.12 hold, then

”xn—f—l — wn+1(tn+1)|’ < h2(M1 + 1)Rp€—c~1nh.

Proof. Observe that

tn+1
[#nt1 — wnga(tngr) | = /t 1@ (2n) = @(wny1(1))]|dt

IN

| I @) + S0 @) = Pl (0)

+ = (= was ()]t

IN

tn+1
(M, +1) / 2 — wap (£)]|dt
tn

< (M +Dh / " (wn (8))

IN

bt / Qg 1 1)
(ty+ 0 [ ) + D) i (0) - 2,
tn
o
+ (w1 () — o)l dt. (31)
Now from (30), (31) and Lemma 3.2 we have,

|#ns1 = wosa (bngr)[| < B2 (My 4+ 1)[|F (o) — 23, [le” ™"
< R*(My +1)Rje 1k,

Hence the Proposition. O

Thus by triangle inequality, (25) and (31) we have the following
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Theorem 3.14. If the assumptions of Proposition 3.13 and Theorem 3.11
hold. Then x4 converges to xglk. Further

|41 — 20, || < Ceminh

where C' = h*(M; + 1)R, +

1 —c1h
—5° )

1
3.2.1. Error Analysis

Theorem 3.15. Let assumptions of Theorem 3.14 hold. Suppose k1 <
l_ffocR” and assumptions of Theorem 3.8 hold with p as in (22), then

p1(an) + (2 + 225y (6)
1-— (1 — C)kl — k‘()Rp

Proof. The proof follows from Theorem 3.14, Theorem 3.8(with p as in
(22)) and the triangle inequality:

C’vefc]nh

& = Znpa ]| <

A A 5 é
12 = Zn1|| <& = 2, || + [l2a, =zl

O

Theorem 3.16. Let 1()\) :== A\\/p~1()\),0 < X\ < ||K||? and the assump-
tions of Theorem 3.15 are satisfied. Let

0
N

and xn4+1 be as in (23) with zgk in place of 23, with § € [0,0]. Then

a

12 — zn4all = O(w™H(8)).

N :=min{n : e " <

4. Conclusion

In this paper we presented a method, which is a combination of DSM and
Tikhonov regularization method for approximately solving ill-posed Hammer-
stein type operator equation K F(x) = f, when the available data is f9 with
| f — £°|| and the non-linear operator F' is monotone. Infact we considered con-
tinuous and iterative schemes of DSM studied extensively by Ramm (see [15])
and his collaborators. We obtained order optimal error bounds by choosing
the regularization parameter a according to the adaptive method considered
by Pereverzev and Schock(2005). Further in a future work it is envisaged to
investigate the case when F' is non-invertible and non-monotone operator.
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