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Abstract

G-protein coupled glucagon receptors (GCGRs) play an important role in glucose

homeostasis and pathophysiology of Type-II Diabetes Mellitus (T2DM). The alloste-

ric pocket located at the trans-membrane domain of GCGR consists of hydrophobic

(TM5) and hydrophilic (TM7) units. Hydrophobic interactions with the amino acid res-

idues present at TM5, found to facilitate the favorable orientation of antagonist at

GCGR allosteric pocket. A statistically robust and highly predictive 3D-QSAR model

was developed using 58 β-alanine based GCGR antagonists with significant variation

in structure and potency profile. The correlation coefficient (R2) and cross-validation

coefficient (Q2) of the developed model were found to be 0.9981 and 0.8253,

respectively at the PLS factor of 8. The analysis of the favorable and unfavorable

contribution of different structural features on the glucagon receptor antagonists

was done by 3D-QSAR contour plots. Hydrophobic and hydrogen bonding interac-

tions are found to be main dominating non-bonding interactions in docking studies.

Presence of highest occupied molecular orbital (HOMO) in the polar part and lowest

unoccupied molecular orbital (LUMO) in the hydrophobic part of antagonists leads to

favorable protein-ligand interactions. Molecular mechanics/generalized born surface

area (MM/GBSA) calculations showed that van der Waals and nonpolar solvation

energy terms are crucial components for thermodynamically stable binding of the

inhibitors. The binding free energy of highly potent compound was found to be

−63.475 kcal/mol; whereas the least active compound exhibited binding energy of

−41.097 kcal/mol. Further, five 100 ns molecular dynamics simulation

(MD) simulations were done to confirm the stability of the inhibitor-receptor com-

plex. Outcomes of the present study can serve as the basis for designing improved

GCGR antagonists.

Abbreviations: 3D-QSAR, three dimensional-quantitative structure-activity relationship; ADMET, adsorption, distribution, metabolism, excretion, and toxicity; B3LYP, Becke three parameter

Lee-Yang-Parr functional of 6-31G(d,p) basis set; cAMP, cyclic adenosine monophosphate; DFT, density functional theory; ECD, extra cellular domain; F, variance ratio; GCGR, G-protein coupled

glucagon receptor; GPCR, G-protein coupled receptor; HOMO, highest occupied molecular orbital; LUMO, lowest unoccupied molecular orbital; MD, molecular dynamics; MM/GBSA, molecular

mechanics/generalized born surface area; MolSA, molecular surface area; P, significance level of variance ration; PLS, partial least square regression; PM3, parameterized model number 3; PSA,

polar surface area; Q2, cross-validation coefficient; R2, regression coefficient; RESPA, reversible reference system propagator algorithm; RMSD, root mean square deviation; RMSE, root mean

square error; RMSF, root mean square fluctuations; SASA, solvent accessible surface area; SCF, self-consistent field; SD, Standard deviation; SPC, simple-point charge; SPE, single point energy;
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1 | INTRODUCTION

Type 2 diabetes mellitus (T2DM) is known to be a chronic metabolic

disorder, which is mainly caused due to improper lifestyle and genet-

ics. Rapid growth of T2DM and lack of proper medication for this dis-

ease has become one of the real problems in recent days. The medical

condition is characterized by elevated hepatic glucose level in the

blood due to deregulated signal transduction by G-protein coupled

glucagon receptor (GCGR) in hepatocytes. T2DM is also reported to

increase the risk of diabetic-related complications such as weight loss,

blindness, kidney failure, amputations, and cardiovascular diseases.

Glucagon is a small peptide hormone consists of 29 amino acid

residues,1 secreted by the α-cells of pancreatic islets and known to

activate GCGR. In normal conditions, the attenuation of insulin inhibi-

tory effect and release of glucagon from pancreas, increase the

hepatic glucose level in blood by glycogenolysis during fasting. The

combined activities of both insulin and glucagon have a crucial role in

glucose homeostasis in the human body. Glucagon activated hepatic

glucagon receptors (GCGR) transduces the activation of adenylate

cyclase and initiates cAMP (cyclic adenosine monophosphate) produc-

tion. This process ultimately, ends up with the expression of enzymes

responsible for gluconeogenesis and glycogenolysis.2 Therefore,

blocking the activation of GCGR is believed to be an efficient way to

control the abnormal hepatic glucose production in T2DM patients.

Despite of several medications available, the development of new

improved therapeutics has been hindered due to lack of structural

details of GCGR. Recently, the publications of X-ray crystal structure

of GCGR provided an opportunity to design improved therapeutics by

both structure and ligand based drug design for this receptor class.1,3

GCGR is a 62 kDa protein which belongs to class B family of G-

protein coupled receptor (GPCR) superfamily. They are mainly found

in the liver and kidney cells. However, they are also expressed in

heart, adipose tissue, spleen, and adrenal glands. GCGR consists of an

extracellular domain (ECD) and a trans-membrane domain (TMD) with

a stalk region connecting both the domains. The ECD consists of a

common α-β-β-α fold similar to the ECD of other class B GCGRs.3 The

TMD features the canonical seven trans-membrane helical bundles

(TM1-TM7) of G-proteins.3 Many small molecule antagonists/ inhibi-

tors with varying potency and structural features have been reported

as GCGR antagonists and these inhibitors range from glucagon neu-

tralizing antibodies to small molecular antagonists. Recently a novel

allosteric pocket outside the seven transmembrane domains have

been reported which provides a scope to design improved therapeu-

tics or antagonists against hyperglycemia. According to literature,

some small molecule antagonists accommodate themselves to the

extra-helical allosteric site located at the external surface of TMD.1

The TM6-helix of TMD is found to divide the binding site into two

regions: One is a hydrophobic cleft toward TM5 and the other is a

polar end toward TM7.1,4 A schematic representation of GCGR allo-

steric pocket with a hypothetical antagonist is illustrated in Figure 1.

During allosteric inhibition, the conformational changes at the stalk

region of GCGR found to alter the relative orientation of the ECD,

TMD, and cause the inactivation of this serpentine receptor. Small

F IGURE 1 Secondary-structure
representation of human GCGR (PDB ID:
5XEZ) with a hypothetical ligand showing
the trans-membrane domain (TMD), the
stalk region and the extracellular domain
(ECD). An enlarged view of the extra-
helical ligand-binding site of GCGR with
the major amino acid residues at the
catalytic pocket was shown next to it
[Color figure can be viewed at
wileyonlinelibrary.com]

2 VENUGOPAL ET AL.

http://wileyonlinelibrary.com


molecule glucagon receptor antagonism is found to be useful in dia-

betic therapy. Although several publications have been reported on

highly potent small molecule antagonists with desirable selectivity,5-7

only a few have been entered to the clinical trials. Therefore, there is

a dire need to develop a predictive biological model comprising of

structurally diverse GCGR inhibitors based on GCGR crystal structure

to improve the efficacy and safety of GCGR selective inhibitors.

Virtual screening (VS) is known to be a powerful in-silico approach

to filter a large number of small molecules for new hits with desired

properties, which can be subjected to experimental testing. Among

the VS approaches, 3D-QSAR is a ligand-based method to correlate

chemical structure and biological property by a statistically significant

regression technique. Recently, the evolution of 3D-QSAR method

helped significantly to screen a large number of data sets comprising

of diverse scaffolds using advanced machine learning techniques.8

Additionally, structure-based molecular docking is a well-known tech-

nique to probe the interaction of small molecules at the catalytic

pocket of an enzyme. Therefore, docking is an important tool for char-

acterizing the behavior of drug candidate and elucidating the funda-

mental biological processes.9 The behavior of complex at the

electronic level can also be explained through density functional the-

ory (DFT) calculations.10-13 Along with the information of drug-

receptor interactions, it is important to quantify the binding energy of

such complexes. A range of computational approaches including free

energy perturbation (FEP), thermodynamic integration (TI), linear

interaction energies (LIE), molecular-mechanics generalized born sur-

face area (MM/GBSA), molecular-mechanics Poisson-Boltzmann sur-

face area have been adopted to estimate free energies. Among these

methods, MM-GBSA approach evolved to be a widely used method

to compute free energy of binding of a protein-ligand complex. In

addition to the above-mentioned VS strategy, molecular dynamics

simulation is believed to be a crucial tool for confirming the stability

of a drug candidate inside the binding site of a receptor.

In this present work, a series of experimentally tested pyrazole

ethers and aminopyrazole compounds of ß-alanine were subjected to

3D-QSAR and molecular docking to screen the active antagonists,

which can inhibit GCGR significantly. Further, we carried out DFT cal-

culation to find out the preferred HOMO-LUMO distribution of the

ligand and the binding site of the protein. Free energy calculations were

performed for all the inhibitors and the protein complex to find out the

deciding factor contributing to the stability of the complex. Moreover,

five independent 100 ns MD simulations were carried out to see the

dynamics of the most potent inhibitor at the protein-binding site. We

also performed ADME/Toxicity calculation to confirm safe administra-

tion of top-scored hits into the human body. To the best of our knowl-

edge, such combined in-silico study to investigate the crucial

counterparts of allosteric inhibitors of GCGR is presented here for the

first time. The rest of the paper has been organized as follows. In

Section 2, we discussed the methodology and simulation protocol

implemented. The result obtained from the calculation are discussed

and illustrated in Section 3. Finally, the important achievements and

conclusion drawn from this study are highlighted in Section 4. This

study provides insightful information on the crucial structural features

required to develop potential antagonists of GCGR.

2 | MATERIALS AND METHODS

2.1 | Dataset and preparation of 3-D structures
of ligand

In the present study, a dataset consisting of 58 ß-alanine based gluca-

gon receptor antagonist were selected from recent experimental

reports.14-16 The structural details of the inhibitors considered in this

study are illustrated in Figure 2. All the drug candidates of the dataset

reported to shared same assay procedure. The experimental inhibitory

constant Ki was converted into pKi (negative logarithm of Ki) for the

ease of further analysis. The 3D structures of the glucagon receptor

antagonists were constructed using the builder panel in Maestro graph-

ical user interface (GUI). The partial charges were ascribed and possible

ionization states were generated at pH 7.4 to mimic the experimental

assay condition. Further, the geometry of the resulted structures was

F IGURE 2 A, Skeletal structure of glucagon receptor antagonist:
Region A represented in pink color is the polar region containing R1
ring, Region B represented in red color is the alkyl side chain which is
hydrophobic in nature (H1) and Region C represented in blue color is
the hydrophobic core containing R2, R3 ring, and H2 side
group. B, Detailed structure of six classes of GCGR antagonists [Color
figure can be viewed at wileyonlinelibrary.com]

VENUGOPAL ET AL. 3

http://wileyonlinelibrary.com


optimized by semi-empirical PM317 and then by B3LYP/6-31G(d,p)

level,18,19 respectively, using Gaussian09 package.20 The resulted struc-

tures were then used for computational studies.

2.2 | 3D-QSAR modeling

In the present study, Phase21 module of Schrödinger was employed to

develop 3D-QSAR model of β-alanine based GCGR inhibitors. Atom-

based 3D-QSAR model are reported to be efficient in explaining true

structure activity relationship rather than pharmacophore based 3D-

QSAR model. Atom-based QSAR model considers ligand feature

beyond the pharmacophoric sight thereby enabling to predict possible

steric clashes with the receptor. Prior to 3D-QSAR modeling, all the

ligands were aligned using flexible shape-based alignment tool in

Phase module. The entire dataset was divided into training-set and

test-set constituting of 44 and 14 compounds, respectively (based on

standard 3:1 ratio), using “Automated Random Selection”22 option in

Phase. Care was taken to include the most active and inactive mole-

cules in the training set.21,23 A statistically significant model was gen-

erated by using Partial Least Square regression method with a grid

spacing of 1 Å. The optimal PLS factor was taken as 8 (N/5, where N

is the number of molecules in the training set), as the use of higher

factor leads to over-fitting of data.24 3D contour plots were analyzed

for understanding the effect of spatial arrangement of structural fea-

tures at ligand sites on glucagon receptor antagonism. Further, the

accuracy of the developed 3D-QSAR model in predicting the biologi-

cal activity was validated by an external test set.

2.3 | Molecular docking procedure

The co-crystal structure of full-length GCGR with a negative alloste-

ric modulator (NNC0640; PDB ID: 5XEZ, resolution: 3 Å)3 was

retrieved from RCSB Protein Data Bank. Prior to docking the 3D

structure of 5XEZ were refined with Prime25 and missing atoms

were added. Appropriate ionization was confirmed by adding hydro-

gen bond corresponding to pH of 7.4. Automated software,

Autodock (v4.2.6) was employed to dock pyrazole ether and

aminopyrazole derivatives at the allosteric binding site of the pro-

tein. Autodock GUI26 was used to prepare the protein coordinate

suitable for docking procedure. The protein was prepared by remov-

ing water, membrane lipids and cocrystallized ligands. Gasteiger

charges27 were added. A 3D grid was prepared with a dimension of

30 Å × 46 Å × 30 Å having a spacing of 0.375 Å at the allosteric

pocket located to the TMD of 5XEZ using Auto-grid program.26

Lamarckian Genetic Algorithm28 was used and the runs were set to

100 in order to search all the possible ligand-binding conformations

at the allosteric pocket. Molecular docking was performed with an

initial population of 150 and a number of 2.5 × 106 energy evalua-

tions were carried out. The reliability of docking was confirmed by

measuring RMSD29 between the co-crystal and re-docked ligand.

The best-docked conformations of individual inhibitors at the 5XEZ

allosteric pocket were retained for further analysis.

2.4 | DFT calculation

Single point energy (SPE) calculations using self-consistent field (SCF)

approach30 were performed using Gaussian09 package20 to explain

antagonist bound receptor in electronic level. The structures were

optimized using B3LYP level,31,32 6-31G(d,p) basis set19 and then

energies were determined using SPE calculations. The positions of

HOMO-LUMO orbitals of selected molecules based on their biological

activity were analyzed to study the binding interaction at quantum

level. The HOMO-LUMO energy gap indicates to the chemical reac-

tivity of molecules. The HOMO-LUMO densities over the binding site

residues was analyzed to study the ligand-binding mechanism. The N

and C-terminals of the amino acid residues were capped with N-acetyl

group and N-methyl amide group, respectively, using Protein Prepara-

tion Wizard: Maestro.33 The SPE calculation for the amino acid resi-

dues Leu329, Phe345, Arg346, Lys349, Ser350, Leu352, Thr353,

Leu399, Asn404, and Lys405 were performed using B3LYP level and

6-31G(d,p) basis set. The cube files for visualizing HOMO and LUMO

orbitals were created by using Cubegen utility in Gaussian09

software.

2.5 | MM/GBSA calculation

Computational methods comprising molecular mechanics energy and

implicit solvent methods are known to be a widely used technique in

free energy calculation. Their performance and applicability have

been reported in several protein-substrate systems.34,35 These

methods are reported to be computationally efficient methods to cal-

culate binding free energies.34 The binding free energy of the docked

ligands inside the trans-membrane binding pocket of the complexes

was calculated by employing molecular-mechanics/generalized born

surface area (MM/GBSA) approach,34 incorporating OPLS_2005

force field.36 An implicit membrane was placed surrounding the

TMD of GCGR using default options of prime and local optimization

sampling algorithm. Simulations were carried out using VSGB solva-

tion model37 (dielectric constant, ϵ = 80) with input ligand partial

charges. The absolute free energy of the receptor-antagonist com-

plexes was calculated; next the separate free energies of individual

receptor and ligand were computed using an OPLS_2005 force field

to determine binding affinity of the antagonists according to

MM/GBSA approach. This provides a quantitative comparison of the

binding strength of the glucagon receptor antagonists to the GCGR

allosteric site.

2.6 | Molecular dynamics simulation protocol

Atomistic molecular dynamics simulation was employed to confirm

the stability of highly active antagonist (Compound 20) at the alloste-

ric pocket located at the TMD of GCGR. The MD simulation of com-

plex 20 with GCGR (PDB ID: 5XEZ) was carried out with OPLS_2005

force field36 in explicit solvent SPC (simple point-charge) water

model38 using Desmond software. POPC (1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine) membranes was properly placed by
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defining trans-membrane residues from M137 to W418.3 The entire

system was solvated in a periodic orthorhombic box with 20 Å buffer

region between protein atoms and box sides to fill with water. All the

surface and interior water molecules near the protein and the mem-

brane were automatically removed by the system builder module of

Desmond. The volume of the protein-ligand complex was found to be

1665354 Å3. The system was neutralized by adding counter ions. The

total number of atoms in the solvated system was 151 379 including

8362 number of atoms of complex 5XEZ/Compound 20. The system

was minimized to a gradient threshold of 25 kcal/mol Å−1 using

Steepest Descent algorithm and the iteration steps during minimization

were kept as 2000 until a convergence threshold of 1.0 kcal/mol/Å

was attained. For long-range electrostatic interactions, smooth Particle

Mesh Ewald method39 was used with a tolerance of 1 × e−9 and for

short-range electrostatic interactions a cut-off radius of 9.0 Å was

applied. Reversible reference system propagator algorithm (RESPA)

integrator algorithm40,41 was applied with time steps of 2 fs for bonded,

2 fs for “near” nonbonded and 6 fs for “far” nonbonded interactions. A

5 ns MD run with NVT ensemble was carried out to equilibrate the sys-

tem at 300 K with a time step of 2 fs. Noose-Hoover thermostat42 was

chosen to maintain the system temperature and thermostat relaxation

time was kept at the interval of 200 ps, with a time step of 2 fs. Next,

NPT equilibration was performed for 5 ns with a time step of 2 fs at

300 K and 1 atm using Noose-Hoover thermostat40 (thermostat relaxa-

tion time = 200 ps) and Martyna-Tobias-Klein barostat43 (barostat

relaxation time = 200 ps). During the equilibration phase the heavy

atoms of 5XEZ and Compound 20 were restrained. Lastly, five inde-

pendent 100 ns production MD (removing restrain on solute heavy

atom) were carried out using NPT ensemble (T = 300 K, thermostat

relaxation time = 200 ps; P = 1 atm, barostat relaxation time = 200 ps).

The velocity and trajectory data of the simulation was retrieved at

every 20 ps (number of frames = 5000) and visualization of the 3-D

structures and the trajectories were done by using Maestro GUI.

2.7 | ADME/toxicity prediction

The evaluation of pharmacokinetic properties of top-scored hits

obtained from a VS protocol is believed to be an important step of in-

silico drug discovery process. It is known that the major concern for

failure of drug candidates in clinical trial is poor pharmacokinetics.44

Therefore, inclusion of ideal pharmacokinetic properties in previous

stages of drug discovery is crucial to pass the clinical trial easily. With

this aim, the absorption, distribution, metabolism, excretion, toxicity

(ADMET) properties and different physically significant descriptors of

the top scored inhibitors of GCGR obtained from the present study

were predicted using Qikprop module (Schrödinger Release 2018-4:

QikProp, Schrödinger, LLC, NY, 2018). The reliability of such predic-

tions has already been reported and benchmarked.45 Qikprop program

employs the method of Jorgensen to predict the pharmacokinetics

properties of drug-like molecules.46 The drug-likeness of the top

scored GCGR antagonists was also evaluated using Lipinski's rule of

five.47 Other physiochemical properties such as QPlogBB, QPlogKhsa,

QPPCaco, and QPPMDCK predict the permeability and binding at

blood brain barrier, human serum albumin, Caco-2 cell, and so on.

3 | RESULTS AND DISCUSSION

3.1 | 3D-QSAR analysis

In this study, a 3D-QSAR model was developed using 44 training set

and 14 test set compounds of GCGR antagonists which yields opti-

mum statistics in terms of correlation coefficient (R2, measures inter-

nal consistency) and cross-validation coefficient (Q2, measures

internal predictability). The value of cross-validation coefficient (Q2)

for test set compounds and regression coefficient (R2) for training set

compounds are found to be 0.8253 and 0.9981, respectively. The

model was developed with a PLS factor of 8 in order to avoid the risk

of over-fitting of data and to achieve a significant statistical correla-

tion between experimental activity and predicted activity. PLS regres-

sion statistics of generated 3D-QSAR model shown in Table 1,

exhibited good statistical stability. The greater confidence of the

model is indicated from the high Pearson-r value of 0.9176 and

F value of 2336.6 with smaller P value (2.19 × 10−45). Further, an

acceptably low standard deviation (SD) value of 0.0376 and root mean

square error (RMSE = 0.27) indicates the predictability and reliability

of the generated model. The scatter plots of experimental pKi values

TABLE 1 PLS regression summary of
generated 3D-QSAR model

PLS SD R2 F P Stability RMSE Q2 Pearson-r

1 0.5064 0.5935 61.3 9.68 × 10−10 0.667 0.38 0.6540 0.8149

2 0.2730 0.8847 157.3 5.84 × 10−20 0.296 0.29 0.8009 0.9114

3 0.1613 0.9607 326.0 3.88 × 10−28 0.235 0.30 0.7897 0.8973

4 0.0908 0.9879 793.2 8.93 × 10−37 0.164 0.29 0.7909 0.9002

5 0.0725 0.9925 999.7 3.21 × 10−39 0.154 0.28 0.8076 0.9097

6 0.0609 0.9948 1185.6 1.01 × 10−40 0.144 0.27 0.8216 0.9172

7 0.0497 0.9966 1527.3 1.51 × 10−42 0.150 0.27 0.8249 0.9189

8 0.0376 0.9981 2336.6 2.19 × 10−45 0.152 0.27 0.8253 0.9176

Abbreviations: F, variance ratio; P, significance level of variance ratio; Pearson-r, square of correlation

coefficient for test set; Q2, cross validated correlation coefficient for test set; R2, regression coefficient;

RMSE, root mean square error; SD, SD of regression.
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vs phase predicted values (Figure 3) for training set and test set com-

pounds showed a strong linear correlation and Phase predicted activi-

ties were documented in Table 2. In Figure 2, we showed the skeletal

structure of the inhibitors.

The efficiency of the model was validated by predicting the activ-

ity of 15 external test set compounds.6,7 The predicted activity of

external test set is tabulated in Table S1. The scatter plot of experi-

mental activity vs predicted activity of external test set (Figure S1-A)

showed a good linear correlation with a R2 value of 0.83. It is believed

that a 3D-QSAR model with R2 greater than 0.5 have good predict-

ability and reliability of the generated model.48 The prediction errors

of developed 3D-QSAR model found to be distributed randomly near

the zero line (Figure S1-B) which denotes the absence of systematic

errors due to biased calculation.

3.2 | Contour plot analysis

The effect of spatial arrangements of structural determinants on

GCGR inhibition is analyzed by visualizing 3D-QSAR contour plots.

The nature and position of substitution groups are found to have cru-

cial role in defining the activity of chosen antagonists. It is evident

from the present study that the hydrophobic/nonpolar groups, hydro-

gen bond donor groups and electron-withdrawing group have major

contribution to the final 3D-QSAR model. The positive contributions

are shown in blue cubes and the negative contributions are indicated

by red cubes. For better visualization, the favorable and unfavorable

interactions for each feature are mapped over Compound 20 and

illustrated in Figure 4. The contour plots of the compounds discussed

below are shown in Figure S2.

3.2.1 | Effect of hydrophobic core

The hydrophobic character of β-alanine analogs is found to play an

important role in GCGR inhibition. Figure 4A illustrates the favorable

positions of hydrophobic groups on R2, R3, H1, and H2 regions of the

inhibitors. Among the class I compounds, Compound 12 (pKi = 6.9) and

Compound 11 (pKi = 6.67) are found to have high potency due to the

substitution of hydrophobic CF3 group
49 and ethyl group at 40 position

of R3 ring, respectively. Among class IV compounds, the acyclic hydro-

phobic substituents at H1 site found to increase the biological activity

than their cyclic analogs. For example, Compound 40 (pKi = 6.769) with

tertiary-butyl group is found to be more potent than Compound 37

(pKi = 6.155) having cyclobutyl group. Similarly, Compound 36

(pKi = 6.143) with iso-propyl group is found to be more potent than

Compound 35 (pKi = 5.886) having cyclo-propyl group. The replacement

of heteroatoms with CH and CH2 group at the cyclic linkage of class

VI inhibitors (Compound 58, pKi = 7.854) enhances the hydrophobic

character which contributes to its higher potency.

3.2.2 | Effect of hydrogen bond donor group

The blue cubes indicate the favorable position of hydrogen bond

donor groups (Figure 4B). The presence of amino linkage ( NH)

instead of ether group ( O ) as X at hydrophobic region found to

favor the molecule to be highly active as antagonists. This explains

the higher biological activity of aminopyrazole derivatives (Compound

20, pKi = 8.046; Compound 17, pKi = 7.721; Compound 33,

pKi = 7.921) than the pyrazole ether derivatives (Compound 13,

pKi = 6.367; Compound 31, pKi = 7.194).

F IGURE 3 Scatter plot between the experimental activity (pKi) vs 3D-QSAR predicted activity. A, The training dataset (unfilled red
circles). B, The test dataset (unfilled blue circle). The best fitted equation for the scatter plot of test set compounds is given as y = 0.74x
+ 1.64 (R2 = 0.84) [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Detailed structure, experimental activity (Exp pKi), predicted activity (Pred pKi), and residual activity of glucagon receptor
antagonists

Cpd X H1 R2 R3 H2 Exp pKi Pred pKi

Residual
activity

Class I: Pyrazole ether series of inhibitors

1 O n-propyl pyrazolyl Phenyl 2 Me 4.833 4.846 0.013

2 O n-propyl pyrazolyl Phenyl 3 OMe 5.666 5.662 −0.004

3 O n-propyl pyrazolyl Phenyl 4 OMe 5.703 5.689 −0.014

4a O n-propyl pyrazolyl Phenyl 4 CF3 5.839 5.854 0.015

5 O n-propyl pyrazolyl Phenyl 4 CF3 5.924 5.951 0.027

6a O n-propyl pyrazolyl Phenyl 3 Me 5.955 5.993 0.038

7 O n-propyl pyrazolyl Phenyl 3 Cl 5.963 5.944 −0.019

8 O n-propyl pyrazolyl Phenyl 4 Me 6.014 6.011 −0.003

9a O n-propyl pyrazolyl Phenyl 4 Cl 6.222 6.025 −0.197

10 O n-propyl pyrazolyl Phenyl 3 Et 6.255 6.249 −0.006

11 O n-propyl pyrazolyl 2-pyridyl 4 Et 6.670 6.681 0.011

12 O n-propyl pyrazolyl 3-pyridyl 4 CF3 6.900 6.878 −0.022

Class II: R-substituted pyrazole ethers and aminopyrazoles series

13 O n-propyl (+) pyrazolyl Phenyl 4 CF3 6.367 6.375 0.008

14a O n-propyl (−) pyrazolyl Phenyl 4 CF3 7.041 6.878 −0.163

15 NH n-propyl (−) pyrazolyl Phenyl 4 CF3 7.174 7.148 −0.026

16 NH trifluoro propyl (−) pyrazolyl Phenyl 4 CF3 7.319 7.293 −0.026

17 NH n-propyl (+) pyrazolyl Phenyl 4 CF3 7.721 7.711 −0.010

18 NH cyclopentyl(−) pyrazolyl Phenyl 4 CF3 7.770 7.765 −0.005

19 NH trifluoro propyl (+) pyrazolyl Phenyl 4 CF3 7.921 7.907 −0.014

20a NH cyclopentyl(+) pyrazolyl Phenyl 4 CF3 8.046 7.374 −0.672

Class III: Ether and amino derivatives with different hydrophobic core

21 O n-propyl Pyrimidine Pyrazolyl 4 CF3 5.959 5.948 −0.011

22 O n-propyl Phenyl Pyrazolyl 4 CF3 6.051 5.999 −0.052

23 NH n-propyl Phenyl Imidazolyl 4 CF3 6.169 6.193 0.024

24 NH n-propyl 2-pyridyl Pyrazolyl 4 CF3 6.174 6.150 −0.024

25 O n-propyl 3-pyridyl Pyrazolyl 4 CF3 6.638 6.645 0.007

26a O n-propyl Phenyl Imidazolyl 4 CF3 6.658 6.689 0.031

27 NH n-propyl 3-pyridyl Pyrazolyl 4 CF3 6.670 6.772 0.102

28 O n-propyl 3-MePh Pyrazolyl 4 CF3 6.699 6.707 0.008

29 NH n-propyl Phenyl Pyrazolyl 4 CF3 6.796 6.751 −0.045

30 NH n-propyl 3-pyrimidine Pyrazolyl 4 CF3 7.000 7.027 0.027

31 O n-propyl 3,5-diMePh (-S) Pyrazolyl 4 CF3 7.194 7.192 −0.002

32 O n-propyl 3,5-diMePh (+R) Pyrazolyl 4 CF3 7.854 7.835 −0.019

33 NH n-propyl 3,5-diMePh Pyrazolyl 4 CF3 7.921 7.963 0.042

Class IV: Ethers substituted with different alkyl side chains

34 O Ethyl Phenyl Pyrazolyl 4 CF3 5.854 5.889 0.035

35 O cyclo-Propyl Phenyl Pyrazolyl 4 CF3 5.886 5.858 −0.028

36a O iso- Propyl Phenyl Pyrazolyl 4 CF3 6.143 6.134 −0.009

37a O cyclo-Butyl Phenyl Pyrazolyl 4 CF3 6.155 6.048 −0.107

38 O iso- Butyl Phenyl Pyrazolyl 4 CF3 6.260 6.266 0.006

39 O cyclo-Pentyl Phenyl Pyrazolyl 4 CF3 6.377 6.366 −0.011

40 O tert-Butyl Phenyl Pyrazolyl 4 CF3 6.769 6.754 −0.015

(Continues)
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3.2.3 | Effect of electron withdrawing group

The favorable and unfavorable spatial arrangements of electron with-

drawing groups are displayed in Figure 4C. The red cubes over R3 ring

indicate the unfavorable positions of electron withdrawing groups in

the molecule (Figure 4C). It is known that the presence of electron

withdrawing groups alter the electron density over the ring making it

more polar, thereby reducing the hydrophobicity of the molecule. The

potency of class V compounds is found to be less due to the presence

of CONMe2, CN, F and Cl groups at H2 position of R3 ring.

Compound 41 (pKi = 5.187), Compound 44 (pKi = 5.387), Compound

46 (pKi = 5.769), and Compound 47 (pKi = 5.959) are found to have

electron-withdrawing substituents at H2 position which make them

less potent. Slight increment in the potency was observed by the

replacement of electron withdrawing groups at H2 by cyclic moiety

(Compound 50; pKi = 6.538).

3.3 | Molecular docking

Molecular docking study provides information about the interaction

present between the protein and ligand in the protein-ligand complex.

The stable binding pose of 58 glucagon receptor antagonists along

with their binding energy was predicted using molecular docking sim-

ulations. The molecules were divided into six classes (Figure 2) for the

better analysis of binding interaction of ligand with the protein. The

results were tabulated (Table S2) in the increasing order of pKi value

for each class of ligands. The score obtained from docking results

showed a good correlation with the experimental biological activity.

TABLE 2 (Continued)

Cpd X H1 R2 R3 H2 Exp pKi Pred pKi

Residual
activity

Class V: Ethers with substitution on heterocyclic ring

41 O n-propyl Phenyl Pyrazolyl 3 C(O) NMe2 5.187 5.249 0.062

42 O n-propyl Phenyl Pyrazolyl 3 OMe 5.357 5.366 0.009

43 O n-propyl Phenyl Pyrazolyl H 5.387 5.486 0.099

44a O n-propyl Phenyl Pyrazolyl 3 CN 5.387 5.565 0.178

45 O n-propyl Phenyl Pyrazolyl 3 Me 5.721 5.732 0.011

46a O n-propyl Phenyl Pyrazolyl 3 F 5.769 5.957 0.188

47 O n-propyl Phenyl Pyrazolyl 3 Cl 5.959 5.904 −0.055

48 O n-propyl Phenyl Pyrazolyl 3 CF3, 4 Me 5.959 5.957 −0.002

49 O n-propyl Phenyl Pyrazolyl (CH2)4 6.161 6.146 −0.015

50a O n-propyl Phenyl Pyrazolyl CH CH CH CH 6.538 6.194 −0.344

Class VI: N- and C-linked 5-membered cyclic compounds

51 Phenyl Phenyl 4 CF3 6.121 6.104 −0.017

52 Cyclobutyl 3-pyridyl Pyrazolyl 4 CF3 6.208 6.254 0.046

53 N-methyl pyrrolidine Phenyl Phenyl 4 CF3 6.258 6.298 0.040

54a Cyclobutyl 2,5-diMePhtrans Pyrazolyl 4 CF3 6.496 6.920 0.424

55a Cyclobutyl Phenyl Pyrazolyl 4 CF3 6.521 6.834 0.313

56a Cyclobutyl 2,5-diMePhcis Pyrazolyl 4 CF3 7.066 6.920 −0.146

57 Cyclobutyl Phenyl Phenyl 4 CF3 7.658 7.678 0.020

58 Cyclobutyl 3-pyrimidine Phenyl 4 CF3 7.854 7.885 0.031

Note: +/− indicates the enantiomers of the compounds; +R/−S indicates the absolute configuration of chiral centers of the compounds; Residual activity is

defined as the difference between predicted activity and experimental activity.
aDefines the test set compounds considered for 3D-QSAR analysis.
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The energy terms contributing to the docking energy of the molecules

were given in Table S2. From the study, it was found that ligand inter-

action takes place in the region of amino acid residues from Arg346

to Lys405, which covers the binding site of the protein. The inhibitor

orients in such a way that the polar region is aligned toward TM7 and

the hydrophobic part is aligned toward TM5 as mentioned in the liter-

ature.1 All the complexes were found to have the same binding

pocket, with different stabilization energy. Compound 20 showed the

highest potency with a least docking score of −8.25 kcal/mol and

Compound 1 showed the least potency with a docking score of

−5.33 kcal/mol. Hydrogen bonding and hydrophobic interactions

between the ligand and the protein plays a crucial role in the stabiliza-

tion of protein-ligand complex. The interaction of all the ligands

mainly comprises hydrogen-bonding network with residues Arg346,

Ser350, Leu399, Asn404, and Lys405.

Among class I ligands, Compound 12 was found to be the most

potent inhibitor with lowest docking energy of −7.79 kcal/mol. The

polar region found to stabilize the complex by forming hydrogen bonds

between C O and the residues Arg346, Ser350, Asn404, and Lys405

(Figure5B [i,ii]).The introduction of electronegative CF3 group at para

position of R3 ring resulted in hydrophobic interaction49 with the

amino acid residues which stabilizes the hydrophobic core of ligand.

The least potency of Compound 1 was attributed due to the presence

of large number of steric clashes than the attractive nonbonding inter-

actions. The presence of methyl group at ortho position does not favor

the orientation of hydrophobic core towards TM5 (Figure5A [i,ii]).

Among class II ligands, Compound 20 is found to be highly potent

with lowest docking energy of −8.25 kcal/mol. The introduction of

cyclopentyl group as H1 stabilizes the protein-ligand complex

(Figure5C [i,ii]). Varying the hydrophobic core of class III inhibitors

changes the potency and stability of protein-ligand complexes. Com-

pound 32 with a pKi value of 7.854 showed an additional hydrogen

bonding interaction between NH and the residues Ser350 and

Leu399 (Figure5D [i,ii]).The introduction of different alkyl side chains

to class IV ether series showed less difference in its binding energy.

The docking studies showed that the side chains favors the orienta-

tion of hydrophobic and polar cleft of inhibitors toward the TM5 and

TM7 membranes, respectively. The alkyl chain at H1 position of Com-

pound 40 favors the formation of a stable protein-ligand complex

than their cyclic analogs (Figure5E [i,ii]). The complexity of the substit-

uents on the heterocyclic ring of class V inhibitors has an impact on

the orientation and binding energy of the complexes. The Compound

49 and Compound 50 contains cyclic substituents which support the

orientation of hydrophobic cleft toward TM5 and polar cleft toward

TM7 favoring hydrogen bond formation (Figure5F [i,ii]). The hetero-

atoms at cyclic linkage (H1 region) of class VI inhibitors do not favor

the formation of stable protein-ligand complex. The replacement of

heteroatoms with CH2 and CH groups in H1 region favors the

hydrophobicity of the molecules and forms a protein-ligand complex

with least binding energy (Compound 56, Compound 57, Compound

58). Additionally, Compound 58 showed hydrogen bonding between

NH and Leu399 and π-cation interaction with Lys349 (Figure5G

[i,ii]). Docking studies showed that the proper orientation of hydro-

phobic region of the molecule toward TM5 is essential for the forma-

tion of hydrogen bonds with Arg346, Asn404, and Lys405 amino

acids to stabilize protein-ligand complex.

The docking results were validated by redocking the cocrystallized

ligand NNC-0640 to the binding site of glucagon class B G-protein-

coupled receptor (PDB ID: 5XEZ). The root mean square deviation

(RMSD) value of redocked and X-ray crystal structure of ligand was

calculated. The docking pose and the interactions obtained after red-

ocking showed good agreement with the literature3 with an RMSD

value of 0.82 Å29 (Figure S3).

3.4 | Frontier molecular orbital analysis

DFT calculations were carried out for selected ligands to find out the

electronic properties of the molecules such as HOMO-LUMO

F IGURE 4 3D-QSAR contour plots visualized in the context of
favorable and unfavorable positions A, hydrophobic groups,
B, hydrogen bond donor groups, and C, electron withdrawing groups
[Color figure can be viewed at wileyonlinelibrary.com]
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energies, energy gap and dipole moment. Three ligands (active, mod-

erately active, and inactive) from each class were chosen for energy

calculations. The electronic interactions of the molecules play an

important role in its pharmacological effects. The position of HOMO-

LUMO orbital is responsible for the electron transfer in a chemical

reaction and the energy gap value represents its chemical reactivity.

The electronic properties of active, moderately active and inactive

compounds from each class were shown in Table 3. The value of

HOMO ranges from −5.495 to −6.620 eV, LUMO ranges from

−1.045 to −1.720 eV and the energy gap ranges from 4.076 to

F IGURE 5 Binding pose of lowest-energy conformation of inhibitors bound to glucagon receptor and its 2-D ligand interaction diagrams are
shown. A (i,ii), B (i,ii), C (i,ii), D (i,ii), E (i,ii), F (i,ii), and G (i,ii) corresponds to Compound 1, Compound 12, Compound 20, Compound 32, Compound
40, Compound 50, and Compound 58, respectively
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5.368 eV. The dipole moment of the ligands ranges from 1.7147 to

9.5281 Debye. The low HOMO-LUMO energy gap of 4.076 eV for

the potent ligand (Compound 20) among all the classes indicates the

high chemical reactivity and low kinetic stability. The lowest potent

ligand (Compound 1) among all the classes has a higher energy gap of

5.368 eV, indicates low reactivity and comparatively high stability

among inhibitors.

Figure 6 shows the position of HOMO-LUMO orbitals of selected

ligands in each class based on its potency. It was observed that the

substitution of various groups at the hydrophobic part of the inhibi-

tors alters the topology of HOMO-LUMO orbitals in molecules.

Majority of the ligand showed a well-defined separation in the posi-

tion of HOMO-LUMO orbitals indicating that the energies are local-

ized on different parts of the molecule. Among class I inhibitors,

HOMO covers mainly the polar part while LUMO covers R2, R3 ring

of Compound 12. We found HOMO electron density on the H1, R2,

and R3 region and LUMO density over R1 and polar end for inactive

Compound 1. This can be attributed due to the presence of electro-

negative p-CF3 group at R3 ring of Compound 12, which shifts the

electron density toward the polar region of molecule. The presence of

o-CH3 group at the R3 ring of Compound 1 increases the electron

density over hydrophobic region. A low energy gap of 5.097 eV shows

that Compound 12 is chemically reactive among class I compound.

The HOMO orbitals were located mainly on the polar R1 region and

cyclobutyl ring (H1) of Compound 20 while LUMO orbitals were

located on R2, R3 ring of hydrophobic region. The compound has a

low energy gap value of 4.076 eV. Inactive Compound 13 found to

have HOMO over hydrophobic (R2 and R3) region and LUMO over

polar R1 region. The active inhibitors among class III (Compound 33)

and class IV (Compound 40) compounds found to have LUMO orbital

over polar R1 region and HOMO orbital mainly over hydrophobic R2

and R3 region of the molecule. The HOMO-LUMO energy gap of

highly active Compound 33 and Compound 40 was found to be

4.517 and 4.701 eV, respectively. The active inhibitor among class V

compounds (Compound 50) showed HOMO electron density near

hydrophobic R3 and H2 region and LUMO electron density over R2,

R3, and H2 region. The active inhibitor of class VI compounds (Com-

pound 58) showed HOMO in the region of R1, R2, R3, and H1; while

LUMO electron densities at the R2 and R3 region only. The energy

gap value for Compound 50 in class V and Compound 58 in class VI

were found to be 4.507 and 4.900 eV, respectively indicating high

chemical reactivity among their respective classes. Therefore, from

the above discussion it is clear that presence of HOMO electron den-

sity near the polar part, mainly over the R1 region and the hydropho-

bic H1 region contributes to higher potency of the inhibitor

(Compound 12, Compound 20, and Compound 58). The LUMO elec-

tron density was found near R2 and R3 region for such cases. This can

be further clarified from the HOMO-LUMO analysis of the interacting

amino acid of GCGR allosteric site.

Finally, the HOMO-LUMO electron density over the interacting

amino acid residues at the allosteric pocket was determined to predict

the mechanism of ligand binding (Figure 7). From the literature, it is

known that, HOMO orbitals of ligand interacts with the LUMO

orbitals of amino acid residues at the binding site.50 Similarly, HOMO

orbitals of binding site residues interact with the LUMO orbitals of

ligand during complex formation.51 The LUMO density over hydro-

phobic part of ligands are responsible for its interactions with the

amino acid residues Leu329, Phe345, and Ser350 having HOMO

TABLE 3 Summary of electronic
properties of selected ligands Compound EHOMO (eV) ELUMO (eV) EGap (eV)

Dipole moment
(Debye)

Class I 1 −6.428 −1.060 5.368 3.3852

8 −6.074 −1.045 5.029 3.4788

12 −6.478 −1.381 5.097 3.3376

Class II 13 −6.287 −1.332 4.955 4.9411

17 −5.495 −1.187 4.308 4.6355

20 −5.684 −1.608 4.076 7.1049

Class III 21 −6.592 −1.687 4.905 3.5415

27 −6.215 −1.395 4.820 7.7252

33 −5.776 −1.259 4.517 5.6430

Class IV 34 −6.092 −1.263 4.829 1.7147

36 −6.037 −1.280 4.757 2.8992

40 −6.158 −1.457 4.701 9.5281

Class V 41 −6.423 −1.130 5.293 3.9758

49 −6.594 −1.237 5.357 5.9272

50 −6.166 −1.659 4.507 5.3732

Class VI 54 −6.309 −1.068 5.241 6.3752

55 −6.525 −1.378 5.147 7.5089

58 −6.620 −1.720 4.900 8.6880
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density. The ligands having HOMO density over the polar end of the

molecules are highly potent due to its ability to form stable hydro-

gen bonding interactions with Lys405, Leu399, Ser350, and Arg346

having LUMO density. A well-separated HOMO and LUMO electron

density over the hydrophobic part and polar end, respectively of the

ligands help in stabilizing the formed complex. The HOMO over the

cyclopentyl side chain and the polar part of most potent Compound

20 interacts well with LUMO of amino acid residues Leu399 and

Ser350. This interaction helps to orient the ligand to form a stable

hydrogen bonding with the carbonyl oxygen of Leu399 (C O---

H N). The amino acid residues Arg346, Asn404, Lys405 form

hydrogen bond between the carbonyl oxygen of ligand (N H---

C O) and Leu399 forms hydrogen bond with the amino group of

ligand (C O---H N). This study confirms the importance of pres-

ence of HOMO orbital near the polar part and LUMO near the

hydrophobic region of the inhibitor to form stable protein-ligand

complex.

3.5 | MM/GBSA binding free energy

The quantitative measure of the binding strength of docked inhibitors

to the allosteric pocket of GCGR was carried out by using MM/GBSA

method. The average free energy of binding was calculated using fol-

lowing equation,

ΔGbind =ΔGComplex− ΔGProtein +ΔGLigand

� � ð1Þ

ΔGComplex is the Gibbs free energy of bound protein, whereas

ΔGProtein and ΔGLigand are individual Gibbs free energy of the unbound

protein and ligand molecule. In general, ΔGbind to form a protein-ligand

complex can be written as52

ΔGbind = ΔGbind−MMh i+ ΔGbind−solh i−T ΔSh i ð2Þ

ΔGbind−MM =ΔGbind−ele +ΔGbind−vdw +ΔGbind−cov ð3Þ

F IGURE 6 The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) orbital positions mapped on
selected ligands at B3LYP/6-31G(d,p) level of calculation [Color figure can be viewed at wileyonlinelibrary.com]
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ΔGbind−sol =ΔGbind−GB +ΔGbind−SA ð4Þ

where, ΔGMM is the total molecular mechanics energy of the interac-

tions between protein and ligand. ΔGMM is obtained from internal

energy (bond, angle, dihedral energies), electrostatic (ΔGbind-ele), and

van der Waals energy (ΔGbind-vdw) terms. The solvation free energy

(ΔGbind-sol) mainly comprises of electrostatic solvation energy and

non-polar solvation energy terms. The electrostatic solvation free

energy was calculated using generalized Born (GB) method53 and the

non-polar contribution to solvation free energy (ΔGbind-SA) was com-

puted using solvent accessible surface area (SASA).54 It is believed

that implicit solvent models implicitly include entropy associated with

the solvent during the calculation of solvation free energies. However,

entropic contribution can also be calculated using normal mode analy-

sis.55 The average free energy of binding and the corresponding

energy components of the bound antagonists toward the trans-

membrane allosteric pocket of GCGR were calculated from one of the

most stable simulated trajectories performed in implicit solvent. It is

found that the binding free energy of all the antagonists considered in

present study ranges from −34.675 kcal/mol to −64.18 kcal/mol (-

Table S3). Compound 20 (pKi = 8.046) displayed higher binding

energy of −63.475 kcal/mol toward GCGR whereas Compound 1

(pKi = 4.833) found to have binding energy of −41.097 kcal/mol. The

binding free energy decomposition of individual inhibitors was carried

out according to Equations (2), (3), and (4) and illustrated in Table S3.

The van der Waals energy terms (ΔGbind-vdw) and non-polar solvation

energy (ΔGbind-SA) term for highest potent Compound 20 is found

to be −50.516 and −16.853 kcal/mol, respectively. Similarly, the

ΔGbind-vdw and ΔGbind-SA energy terms found to favor the strong

binding of all active compounds (Table S3). The major contribution of

hydrophobic stabilization energy indicates the importance of benzene

rings and hydrophobic residues located at region C of the inhibitors.

The least potent Compound 1 displayed remarkable decrease in van

der Waals energy component (ΔGbind-vdw = −36.623 kcal/mol) in com-

parison to other highly active inhibitors. Since the antagonists are bur-

ied inside the membrane bilayer the van der Waals and hydrophobic

solvation energy terms are found to be dominating rather than elec-

trostatic solvation energy terms. Similarly, the covalent energy terms

are also disfavoring the binding of inhibitors toward GCGR (Table S3).

The energy terms due to H-bond formation of all the inhibitors ranges

from −0.002 kcal/mol to −1.979 kcal/mol which indicates the small

contribution of electrostatic interactions for stable inhibitor binding at

5XEZ allosteric pocket. Therefore, the van der Waals (ΔGbind-vdw) and

non-polar solvation energy (ΔGbind-SA) terms seems to be key contrib-

uting factor for thermodynamically stable binding of active inhibitors

at the 5XEZ allosteric pocket.

3.6 | Molecular dynamics simulation

Five independent 100 ns atomistic Molecular dynamics simulation

was performed in order to obtain insights into the dynamical behavior

of highest potent Compound 20 at the trans-membrane allosteric

pocket of 5XEZ. The root-mean-square-deviation (RMSD) profiles of

the Cα, backbone, side chain, and heavy atoms of one of the simulated

trajectories are shown in Figure 8A. The RMSD value of the protein

Cα was found to increase up to a value of 6.2 Å with respect to its

starting coordinate (t = 0) for first 10 ns and stabilize around an aver-

age value of 5.748 Å for rest of the MD trajectories. The average

F IGURE 7 Position of (A) HOMO (B) LUMO regions of interacting amino acid residues at the allosteric pocket of GCGR [Color figure can be
viewed at wileyonlinelibrary.com]
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RMSD of backbone, side chains and heavy atoms are found to be

5.745, 6.657, and 6.179 Å, respectively, which indicate significant

change in protein backbone compared to its crystal structure. It is evi-

dent from the RMSD of Compound 20 that the movement of ligand

copes well with the movement of amino acid residues at protein allo-

steric site (Figure 8A). The average RMSD values of Cα, backbone,

side chains, and heavy atoms for five independent MD simulations are

found to be 6.403 Å ± 0.65, 6.393 Å ± 0.64, 7.211 Å ± 0.58, and

6.785 Å ± 0.62, respectively (Figure S4 and Table S4). Further, the

root mean square fluctuation (RMSF) of the backbone at the allosteric

site of 5XEZ is found to be in the range of 2.548 to 4.561 Å (Figure S5)

which indicates lower degree of flexibility in that region. It is clear

from the above discussion that ligand movement was stable during

the simulation. It is evident from Figure S5 that residues stretches

including His44-Arg60, Asp70-Ala77, Lys98-Gly112, Trp415-Arg419,

Arg444-Pro454 have high fluctuations and reside away from the

trans-membrane allosteric site.

The key nonbonded interactions between Compound 20 and

5XEZ during 100 ns MD simulation are illustrated in Figure S6. It is

clear from Figure S6-A,B that nonbonded interactions are mainly pre-

sent in the region of Arg346-Leu352 and Leu399-Glu406, whereas

the region Val363-Lys381 found to be more fluctuating (Figure S5).

Hence, no interactions are found between these regions. It is evident

from Figure S6-A,B that Lys349 and Leu399 have major contact with

the ligand throughout the simulation and are probably responsible for

stabilization of Compound 20 at 5XEZ catalytic pocket. However,

Arg346, Leu352, Leu395, and Leu403 residues were found to have

less interaction with the ligand throughout the MD trajectory.

It is found that hydrophobic and hydrogen bonding interactions

are major contributing factor for stabilizing Compound 20 at the

trans-membrane allosteric pocket of 5XEZ which is in accordance

with our MM/GBSA result. Lys 349 found to exhibit π-cation interac-

tion with the ligand benzene ring and pyrazole ring for 97% of the

MD trajectory (Figure S6-C). Among the four-hydrogen bond

predicted by Autodock, only one is found to be preserved during MD

simulation. The carbonyl oxygen of Leu399 accepts a hydrogen bond

with hydroxyl hydrogen (region A) of the ligand for 18% of the MD

trajectory. The number of hydrogen bonds between Compound 20

and 5XEZ throughout the trajectory is found to be 1 (Figure 8B). The

average number of water mediated hydrogen bond with Compound

20 is found to be 2 (Figure 8C). This further adds to the stability of

the Compound 20. The snapshots of the simulation at each 10 ns

interval are illustrated in Figure 9 to further confirm ligand stability.

Region C of Compound 20 found to move away from its initial posi-

tion around 20 ns of the simulation (Figure 9C) and further stabilized

by π-cation interaction formed by Lys349. The π-cation interaction

between Compound 20 and Lys349 found to be present in each snap-

shot displayed in Figure 9 which confirms its key role in anchoring the

inhibitor at 5XEZ catalytic pocket. A well-defined, water mediated

hydrogen bond network is observed between the hydrophilic part of

Compound 20 and TM7 amino acid residues from 10 ns of the simula-

tion. Those water molecules are probably responsible for stabilizing

the hydrophilic part of Compound 20. A low RMSD value (1.571 Å

± 0.57) of ligand indicates a less conformational change with respect

to the initial conformation. The gyration radius (rGyr, measures the

extendedness of a ligand) found to stabilize after 5 ns of the simula-

tion with an average value of 5.612 Å ± 0.44. The SASA, polar surface

area (PSA), and molecular surface area (MolSA) of ligand for most sta-

ble ligand binding are found to be in the range of 277.069 to

449.461Å2, 140.24 to 180.367Å2, and 439.852 to 462.211Å2,

F IGURE 8 (A) Time-line representation of RMSD profile of Cα,
backbone, and heavy atoms of 5XEZ with respect to its initial
coordinate. The RMSD of compound 20 with respect to protein
backbone and its own starting structure was illustrated in pink and
black color, respectively. Number of hydrogen bonds formed between
(B) protein and ligand (C) ligand and water throughout 100 ns [Color
figure can be viewed at wileyonlinelibrary.com]
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respectively, which supports the stabilization of ligand in binding site

of protein during simulation (Figure S7). The details for all five simula-

tions are given in Table S4.

3.7 | ADMET properties of active compounds

In the drug development process, the drug candidate under consider-

ation need to possess high potency as well as good pharmacokinetic

(PK) profiles (drug-like properties) in order to confirm their effective-

ness and bioavailability. The permissible ranges of crucial pharmacoki-

netic properties and the predicted ADME/tox properties of 14 top-

scored ligands are documented in Table S5. All the calculated proper-

ties were found to be in their permissible range and hence confirming

their drug-like properties.

The bioavailability of top scored molecules was determined

through polar surface area (PSA) analysis which measures the cell

wall permeability or transport through membranes. It is believed that

drug candidates with PSA less than 100 Å2 have good absorption

properties while PSA value above 140 Å2 reported to be responsible

for poor oral availability. It is clear from the result that the glucagon

receptor antagonists possess PSA value in the range of 81.913 to

124.622 Å2, which shows good oral availability. The number of non-

hindered rotatable bonds was found to vary from 4 to 9. The calcu-

lated molecular weights of top-scored hits were found to be in the

range of 474.482 to 528.453, which is acceptable for orally

consumable drugs. The lipophilicity of the selected compounds was

addressed by QPlogPo/w (partition coefficient between octanol and

water) which estimates the hydrophilic and hydrophobic character of

any molecule. The value of QPlogPo/w was found to be in the range

of 3.387 to 7.403 and most of the top-scored compounds are in the

permissible range of −2.0 to 6.5. Compound 32 and Compound 57

exhibited QPlogPo/w value of 7.073 and 7.403, respectively. The high

value of logPo/w indicates higher lipophilic character of those mole-

cules. The aqueous solubility (QPlogS) was found to be in range of

−9.2 to −5.5 for all the top-scored hits. The highest active Com-

pound 20 was found to exhibit the QPlogS value of −6.130, which is

under the permissible zone. The number of hydrogen bond acceptors

(4.5-7.5) and hydrogen bond donors (1, 2) were also found to vary in

their permissible value. The ability of the molecule to pass through

the blood/ brain barrier was defined by QPlogBB and their values

found to be in acceptable range of −1.344 to −0.3. The binding of

molecule to human serum albumin (QPlogKhsa), and the present of

human oral absorption were found to be in threshold limit. It is

believed that orally active compound should not have more than two

violations of Lipinski's rule, which is in accordance with our result

(Table S5). Some of the molecules showed deviations of two parame-

ters of Lipinski's rule of 5 due to its higher hydrophobic character.

From the above discussion, it is evident that top scored compounds

obtained from the present study have good oral bioavailability.

F IGURE 9 Snapshots at (A) 0 ns, (B) 10 ns, (C) 20 ns, (D)30 ns, (E) 40 ns, (F) 50 ns, (G) 60 ns, (H) 70 ns, (I) 80 ns, (J) 90 ns, and (K) 100 ns of
MD trajectory are illustrated. The interacting amino-acid residues are colored in green, oxygen of water molecules are represented in red. The
π-cation interaction and hydrogen bonding interactions are indicated by red and yellow, respectively [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | CONCLUSION

In the present study, 3D-QSAR, molecular docking, DFT calculation,

MM/GBSA, molecular dynamics simulation, and ADME/Toxicity stud-

ies of β-alanine analogs were performed to investigate the effect of

structural determinants responsible for GCGR antagonism. The devel-

oped 3D-QSAR model gave R2 value of 0.9981 and Q2 value of

0.8253, indicating excellent consistency and internal predictability of

the model. Contour plots obtained from 3D-QSAR model revealed the

position of hydrophobic/non-polar substituents contributing to

increase the inhibitory activity. Electron withdrawing groups present

at R2 and R3 rings are found to have unfavorable contribution to the

potency of the inhibitor. Further, molecular docking study predicted

the binding pose of antagonist at the binding site of GCGR. The reli-

ability of the docking study was confirmed by low RMSD value of

0.82 Å between the co-crystal and docked ligand. Further, the docking

study suggested that the polar region of the ligand forms hydrogen-

bonding network with Arg346, Ser350, Leu399, Asn404, and Lys405

amino acid residues. The presence of CF3 group at R3 ring and

cyclopentyl group at H2 position stabilize Compound 20 at hydropho-

bic region of TM5, which helps to make hydrogen bonds between the

polar part of the ligand and TM7 region. The presence of o-methyl

group at R3 ring of Compound 1 found to destabilize the ligand

towards TM5. It is evident from the study that the alignment of

hydrophobic region towards TM5 facilitates the proper orientation

required for GCGR allosteric inhibition. HOMO-LUMO orbital analysis

described the interaction mechanism of ligand with the protein at

quantum level. The presence of HOMO near hydrophobic H1 region

and polar R1 region gives favorable interactions with amino acids

Lys405, Leu399, Ser350, Arg346 having LUMO density. Similarly, the

presence of LUMO near hydrophobic R2 and R3 region of the ligand

gives favorable interactions with amino acids Leu329, Phe345,

Ser350 having HOMO density. MM/GBSA calculation displayed that

van der Waals and non-polar solvation energy terms contribute

mostly for stabilizing the antagonist binding to GCGR. The binding

energy of highly active Compound 20 was found to be

−63.475 kcal/mol. Further, stability of Compound 20 at 5XEZ alloste-

ric pocket was confirmed by 100 ns atomistic molecular dynamics

simulation. MD simulation revealed that π-cation interaction of

Lys349 and hydrogen bonding of Leu399 have crucial role in stabiliz-

ing Compound 20 under motion. Water molecules near the hydro-

philic part of the ligand found to have hydrogen bonding with the

ligand, thereby stabilizing the protein-ligand complex effect. Lastly,

ADME/tox calculation of top-scored compounds obtained from pre-

sent study assured their safe administration in human body. The out-

comes of the present study provide insightful information regarding

the design of novel glucagon receptor antagonists to treat T2DM.
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