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Abstract: In this paper, we deal with nonlinear ill-posed operator equations involving a monotone operator
in the setting of Hilbert scales. Our convergence analysis of the proposed derivative-free method is based on
the simple property of the norm of a self-adjoint operator. Using a general Hölder-type source condition, we
obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by
Pereverzev and Schock (2005) for choosing the regularization parameter. Finally, we applied the proposed
method to the parameter identification problem in an elliptic PDE in the setting of Hilbert scales and compare
the results with the corresponding method in Hilbert space.
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1 Introduction

In this study we consider the problem of approximating a solution x̂ of the nonlinear equation

F(x) = y (1.1)

where F : D(F) ⊂ X→ X is a nonlinear operator andX is a Hilbert space. Recall [3–5, 13, 15, 28, 30–32] that
F is said to be monotone if

⟨F(x) − F(y), x − y⟩ ≥ 0

for all x, y ∈ D(F). Here and below ⟨ ⋅ , ⋅ ⟩ and ‖ ⋅ ‖ stand for the inner-product and corresponding norm,
respectively, in X.

A typical example of (1.1) is the parameter identification problem in an elliptic PDE [15], i.e., to find the
source term q in the elliptic boundary-value problem

−∆u + ξ(u) = q in Ω,
u = 0 on ∂Ω

(1.2)

from measurement of u in Ω. Here ξ : ℝ → ℝ is a Lipschitz continuously differentiable monotonically
increasing function and Ω ⊆ ℝ3 is a smooth domain. The corresponding forward operator in this case is
F : H2(Ω) → H2(Ω) defined by

F(q) = u
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is monotone. This can be seen as follows:

⟨F(q1) − F(q2), q1 − q2⟩ = ∫
Ω

(u1 − u2)(q1 − q2) dx

= ∫
Ω

(u1 − u2)(−∆(u1 − u2) + ξ(u1) − ξ(u2)) dx

= ∫
Ω

(|∆(u1 − u2)|2 + (ξ(u1) − ξ(u2))(u1 − u2)) dx

≥ ‖ 󳶚 (u1 − u2)‖2L2(Ω) ≥ 0.

Note that equation (1.1) is in general ill-posed in the sense that the solution x̂ is not depending continu-
ously on the data y. We assume that the available data yδ ∈ X is such that

‖y − yδ‖ ≤ δ

and equation (1.1) is ill-posed. Therefore one has to use regularizationmethods for approximating x̂. Since F
is monotone, one may use Lavrentiev regularization method [1, 8, 11, 32], in which the solution xδα of the
equation

F(x) + α(x − x0) = yδ (1.3)

is taken as an approximation for x̂ where x0 is some initial guess. Note that a closed form solution for (1.3)
is not easy to find for nonlinear F. Therefore, many authors [1, 2, 8, 11, 32] considered iterative methods to
find an approximation for xδα. In [12], George and Nair considered a derivative-free iterative method defined
for n = 0, 1, 2, . . . by

xδn+1,α = x
δ
n,α − β[F(xδn,α) + α(xδn,α − x0) − yδ], (1.4)

where β is a scaling parameter and α is a regularization parameter for approximating xδα. It is known [15, 28,
31, 32] that the optimal order error estimate for Lavrentiev regularization is

‖xδα − x̂‖ = O(δ
ν

ν+1 ) (1.5)

under the source condition
x0 − x̂ ∈ R(F󸀠(x0)ν), 0 < ν ≤ 1,

or
x0 − x̂ ∈ R(F󸀠(x̂)ν), 0 < ν ≤ 1.

In order to improve the convergence rate in (1.5), many authors considered iterative regularization method
for (1.1) in the setting of Hilbert scales [6, 7, 9, 10, 13, 14, 17, 19–26, 29, 30]. In this paper we consider
Lavrentiev regularization method for (1.1) in the setting of Hilbert scales. We also consider an inverse free,
derivative-free iterative method for approximating x̂ in the setting of a Hilbert scales.

The rest of the paper is organized as follows: Preliminaries are given in Section 2, the method and its
convergence analysis are given in Section 3. Error bounds are given in Section 4, parameter strategies are
given in Section 5. Implementation of the adaptive parameter choice is given in Section 6 and the numerical
experiments are given in Section 7. Finally, the paper ends with a conclusion in Section 8.

2 Preliminaries

First, we recall the definition of Hilbert scale:

Definition 2.1 ([21]). A family {Xs}s∈ℝ of Hilbert spaces is called a Hilbert scale if it satisfies the following
conditions:
∙ For s < t, Xt ⊆ Xs and Xt is a dense subset of Xs.
∙ As Hilbert spaces, the above inclusion is a continuous embedding, i.e., there exists cs,t > 0 such that

‖x‖s ≤ cs,t‖x‖t for all x ∈ Xt . (2.1)
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In this study, we consider a Hilbert scale {Xs}s∈ℝ generated by a strictly positive definite, unbounded, densely
defined, self-adjoint operator L : D(L) ⊂ X→ X. That is, L satisfies

⟨Lx, x⟩ > 0,

D(L) is dense in X and
‖Lx‖ ≥ ‖x‖, x ∈ D(L).

Recall (cf. [9]) that the space Xt is the completion of D := ⋂∞k=0 D(Lk) with respect to the norm ‖x‖t induced
by the inner product

⟨u, v⟩t = ⟨Ltu, v⟩, u, v ∈ D.

Moreover, {Xs}s∈ℝ satisfies Definition 2.1 (cf. [9, 10, 29, 30]).
Next we show that the equation

F(x) + αLs(x − x0) = yδ (2.2)

has a unique solution xδα,s. We need the following definition for our proof.

Definition 2.2 ([2, cf. Definition 1.1.42]). An operator A : X→ X is said to be coercive if there exists a func-
tion c(t) defined for all t ≥ 0 such that c(t) → ∞ as t →∞, and the inequality

⟨A(x), x⟩ ≥ c(‖x‖)‖x‖

holds for all x ∈ D(A).

Next, we prove that the operator T := F + αLs is coercive. This can be seen as follows:

⟨T(x), x⟩ = ⟨F(x) + αLs(x), x⟩
= ⟨F(x) − F(0) + αLs(x), x − 0⟩ + ⟨F(0), x⟩
= ⟨F(x) − F(0), x − 0⟩ + ⟨αLs(x), x⟩ + ⟨F(0), x⟩
≥ α‖x‖2s − ‖F(0)‖‖x‖ (by the monotonicity of F)

≥ α 1
c0,s
‖x‖2 − ‖F(0)‖‖x‖ (by (2.1))

and hence
lim
‖x‖→∞

⟨T(x), x⟩
‖x‖
≥ lim
‖x‖→∞

α 1
c0,s
‖x‖ − ‖F(0)‖ = ∞.

That is, T = F + αLs is coercive. Further,

⟨T(x) − T(y), x − y⟩ = ⟨F(x) − F(y), x − y⟩ + α⟨Ls(x − y), x − y⟩ ≥ α 1
c0,s
‖x − y‖2,

i.e., T is strongly monotone. So by the Minty–Browder Theorem [2, p. 54], for given α > 0, (2.2) has a unique
solution xδα,s for any yδ ∈ X.

Let r0 = ‖x0 − x̂‖s. The following Lemmas is used to prove our main results.

Lemma 2.3. Let xδα,s be the solution of (2.2) and xα,s is the solution of

F(x) + αLs(x − x0) = y. (2.3)

Then
‖xδα,s − xα,s‖s ≤ c0,s

δ
α

and
‖xα,s − x̂‖s ≤ ‖x0 − x̂‖s .

In particular,
‖xδα,s − x0‖s ≤ c0,s

δ
α
+ 2r0. (2.4)
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Proof. Observe that, by (2.2) and (2.3), we have

F(xδα,s) − F(xα,s) + αLs(xδα,s − xα,s) = yδ − y.

Hence,
⟨F(xδα,s) − F(xα,s), xδα,s − xα,s⟩ + α⟨Ls(xδα,s − xα,s), xδα,s − xα,s⟩ = ⟨yδ − y, xδα,s − xα,s⟩,

so, by using (2.1) and the monotonicity of F, we have

α‖xδα,s − xα,s‖2s ≤ δ‖xδα,s − xα,s‖ ≤ δc0,s‖xδα,s − xα,s‖s .

Thus,
‖xδα,s − xα,s‖s ≤ c0,s

δ
α
.

Again, since y = F(x̂), we have
F(xα,s) + αLs(xα,s − x0) = F(x̂),

so that
F(xα,s) − F(x̂) + αLs(xα,s − x0) = 0,

i.e.,
F(xα,s) − F(x̂) + αLs(xα,s − x̂) = αLs(x0 − x̂).

Hence,
⟨F(xα,s) − F(x̂), xα,s − x̂⟩ + α⟨Ls(xα,s − x̂), xα,s − x̂⟩ = α⟨Ls(x0 − x̂), xα,s − x̂⟩.

Again, using the monotonicity of F, we have

α‖xα,s − x̂‖2s ≤ α‖L
s
2 (xα,s − x̂)‖‖L

s
2 (x0 − x̂)‖ ≤ α‖xα,s − x̂‖s‖x0 − x̂‖s .

Thus,
‖xα,s − x̂‖s ≤ ‖x0 − x̂‖s .

Now (2.4) follows from the triangle inequality:

‖xδα,s − x0‖s ≤ ‖xδα,s − xα,s‖s + ‖xα,s − x̂‖s + ‖x̂ − x0‖s .

This completes the proof.

Remark 2.4. Note that by (2.1) and (2.4), we have

‖xδα,s − x0‖ ≤ c0,s‖xδα,s − x0‖s ≤ c0,s(c0,s
δ
α
+ 2r0),

i.e., xδα,s ∈ B(x0, R), where
R = c0,s(c0,s

δ
α
+ 2r0).

3 The Method and the Convergence Analysis

Let ρ = c0,s(c0,s + 1)(c0,s + 2r0). We assume that the following conditions hold:
(i) B̄(x0, ρ) ⊆ D(F),
(ii) F has self-adjoint Fréchet derivative F󸀠(x) for every x ∈ B̄(x0, ρ),
(iii) there exists β0 > 0 such that

‖L−
s
2 F󸀠(x)L−

s
2 ‖ ≤ β0 for all x ∈ B̄(x0, ρ).

(iv) there exist positive constants d1, d2, b such that

d1‖x‖−b ≤ ‖F󸀠(y)x‖ ≤ d2‖x‖−b for all y ∈ B̄(x0, ρ) and x ∈ X.

Let f(t) := min{dt1, d
t
2}, g(t) := max{dt1, d

t
2}, t ∈ ℝ, |t| ≤ 1. Further, let Ms,y := L−

s
2 F󸀠(y)L− s2 for y ∈ B̄(x0, ρ).
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We shall make use of the following proposition, the proof of which is analogous to the proof of [9, Propo-
sition 3.1].

Proposition 3.1 (cf. [9, Proposition 3.1]). For s > 0 and |ν| ≤ 1,

f( ν2)‖x‖−
ν(s+b)

2
≤ ‖M

ν
2
s,yx‖ ≤ g(

ν
2)‖x‖−

ν(s+b)
2

, x ∈ X, y ∈ B̄(x0, ρ).

TheMethod. Let δ ∈ (0, d] and α ∈ [δ, a). We define the sequence {xδn,α,s} iteratively for n = 0, 1, 2, 3, . . . by

xδn+1,α,s = x
δ
n,α,s − β[L−s(F(xδn,α,s) − yδ) + α(xδn,α,s − x0)], (3.1)

where xδ0,α,s = x0 and β := 1
β0+a . We observe that if {xδn,α,s} converges as n →∞, then the limit is xδα,s, the

solution of (2.2).
Next, we prove the main results of this section.

Theorem 3.2. For each δ ∈ (0, d] and α ∈ [δ, a) the sequence {xδn,α,s} is in B̄(x0, ρ) and it converges to xδα,s
as n →∞. Further,

‖xδn,α,s − xδα,s‖ ≤ kqnα,s ,

where qα,s := 1 − βα and k ≥ c0,s(c0,s + 2r0) with β := 1
β0+a .

Proof. Clearly, we have xδ0,α,s = x0 ∈ B̄(x0, ρ). Also, since ρ ≥ c0,sR by (2.4), we have xδα,s ∈ B̄(x0, ρ). By the
Fundamental Theorem of Integration, we have

F(x) − F(u) = [
1

∫
0

F󸀠(u + θ(x − u)) dθ](x − u)

whenever x and u are in a ball contained in D(F). We show iteratively that xδn,α,s ∈ B̄(x0, ρ), the operator

An,θ :=
1

∫
0

F󸀠(xδα,s + θ(xδn,α,s − xδα,s)) dθ

is a well-defined positive self-adjoint operator and

‖xδn+1,α,s − x
δ
α,s‖s ≤ (1 − βα)‖xδn,α,s − xδα,s‖s

for n = 0, 1, 2, . . . , which will complete the proof, since ‖x0 − xδα,s‖ ≤ c0,s‖x0 − xδα,s‖s ≤ c0,sR ≤ ρ.
Formally, by (2.1), we have

xδn+1,α,s − x
δ
α,s = xδn,α,s − xδα,s − β[L−s(F(xδn,α,s) − F(xδα,s)) + α(xδn,α,s − xδα,s)].

Since
F(xδn,α,s) − F(xδα,s) = An,θ(xδn,α,s − xδα,s),

we have
xδn+1,α,s − x

δ
α,s = [I − β(L−sAn,θ + αI)](xδn,α,s − xδα,s). (3.2)

Now, let n = 0. We have already seen that ‖x0 − xδα,s‖ < ρ so that xδα,s ∈ B̄(x0, ρ) and A0,θ is a well-defined
positive self-adjoint operator with ‖L− s2 A0,θL−

s
2 ‖ ≤ β0.

Next assume that for some n ≥ 0, xδn,α,s ∈ B̄(x0, ρ) and An,θ is awell-defined positive self-adjoint operator
with ‖L− s2 An,θL−

s
2 ‖ ≤ β0. Then from (3.2),

L
s
2 (xδn+1,α,s − x

δ
α,s) = [I − β(L−

s
2 An,θL−

s
2 + αI)]L

s
2 (xδn,α,s − xδα,s),

so

‖xδn+1,α − x
δ
α,s‖s ≤ ‖I − β(L−

s
2 An,θL−

s
2 + αI)‖ ‖(xδn,α − xδα,s)‖s .
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Since L− s2 An,θL−
s
2 and hence I − β(L− s2 An,θL−

s
2 + αI) are positive self-adjoint operator, we have (cf. [18])

‖I − β(L−
s
2 An,θL−

s
2 + αI)‖ = sup

‖x‖=1
|⟨[I − β(L−

s
2 An,θL−

s
2 + αI)]x, x⟩|

= sup
‖x‖=1
|(1 − βα) − β⟨L−

s
2 An,θL−

s
2 x, x⟩|

and since ‖L− s2 An,θL−
s
2 ‖ ≤ β0 for all n ∈ ℕ and β = 1

β0+a , we have

0 ≤ β⟨L−
s
2 An,θL−

s
2 x, x⟩ ≤ β‖L−

s
2 An,θL−

s
2 ‖ ≤ ββ0 < 1 − βα

for all α ∈ (0, a). Therefore,
‖I − β(L−

s
2 An,θL−

s
2 + αI)‖ ≤ 1 − βα.

Thus,

‖xδn+1,α,s − x
δ
α,s‖s ≤ (1 − βα)‖xδn,α − xδα,s‖s .

Hence,
‖xδn+1,α,s − x

δ
α,s‖ ≤ c0,s‖xδn+1,α,s − x

δ
α,s‖s ≤ c0,s‖x0 − xδα,s‖s

and

‖xδn+1,α,s − x0‖ ≤ c0,s‖x
δ
n+1,α,s − x0‖s

≤ c0,s[‖xδn+1,α,s − x
δ
α,s‖s + ‖xδα,s − x0‖s]

≤ c0,s(c0,s + 1)‖x0 − xδα,s‖s
≤ c0,s(c0,s + 1)(2r0 + c0,s) ≤ ρ.

Thus, xδn+1,α,s ∈ B̄(x0, ρ). Also, for 0 ≤ θ ≤ 1,

‖[xδα,s + θ(xδn+1,α,s − x
δ
α,s)] − x0‖ = ‖(xδα,s − x0) + θ(xδn+1,α,s − x

δ
α,s)‖

≤ ‖xδα,s − x0‖ + θ‖xδn+1,α,s − x
δ
α,s‖

≤ c0,s[‖xδα,s − x0‖s + θ‖xδn+1,α,s − x
δ
α,s‖s]

≤ c0,s(c0,s + 1)‖xδα,s − x0‖s
≤ c0,s(c0,s + 1)(2r0 + c0,s)
≤ ρ.

Hence, An+1,θ is a well-defined positive self-adjoint operator with ‖L− s2 An+1,θL−
s
2 ‖ ≤ β0. This completes

the proof.

4 Error Bounds Under Source Conditions

In order to obtain estimate for ‖xδα,s − x̂‖, we have to impose some nonlinearity conditions on F and assume
that x0 − x̂ belongs to some source set. We use the following two assumptions to obtain an error estimate
for ‖xδα,s − x̂‖.

Assumption 4.1. There exists a constant k0 ≥ 0 such that for every x ∈ B̄(x0, ρ) and v ∈ X there exists an
element Φ(x, x0, v) ∈ X such that

[F󸀠(x) − F󸀠(x0)]v = F󸀠(x0)Φ(x, x0, v)

and
‖Φ(x, x0, v)‖ ≤ k0‖v‖‖x − x0‖

for all x, v ∈ B̄(x0, ρ).
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Assumption 4.2. There exists some E > 0, t > 0 such that x0 − x̂ ∈ Xt and ‖x0 − x̂‖t ≤ E.

Theorem 4.3. Let xδα,s be the solution of (2.2), let xα,s be the solution of (2.3), and let Assumption 4.1 and
Assumption 4.2 with t ≤ s + b hold. Further, suppose

ρk0 <
f( s

s+b )
g( s

s+b )
.

Then we have the following estimates:
(a) We have

‖xδα,s − xα,s‖ ≤
c−s,0

f( s
s+b ) − g(

s
s+b )ρk0

δ
α

b
s+b

.

(b) We have

‖xα,s − x̂‖ ≤
g( s−ts+b )

f( s
s+b ) − g(

s
s+b )k0ρ

Eα
t

s+b .

(c) In particular, for α = δ
s+b
b+t , we have

‖xδα,s − x̂‖ = O(δ
t

t+b ).

Proof. Let As = ∫
1
0 F󸀠(xα,s + θ(xδα,s − xα,s)) dθ. Then, since

F(xδα,s) − F(xα,s) + αLs(xδα,s − xα,s) = yδ − y,

we have
(As + αLs)(xδα,s − xα,s) = yδ − y.

In particular,
(F󸀠(x0) + αLs)(xδα,s − xα,s) = yδ − y + (F󸀠(x0) − As)(xδα,s − xα,s).

Therefore, we have

xδα,s − xα,s = (F󸀠(x0) + αLs)−1[yδ − y + (F󸀠(x0) − As)(xδα,s − xα,s)]

= (F󸀠(x0) + αLs)−1[yδ − y − F󸀠(x0)
1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ]

and hence

‖xδα,s − xα,s‖ ≤ ‖(F󸀠(x0) + αLs)−1(yδ − y)‖

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(F󸀠(x0) + αLs)−1F󸀠(x0)

1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= Γ1 + Γ2,

where
Γ1 = ‖(F󸀠(x0) + αLs)−1(yδ − y)‖,

Γ2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(F󸀠(x0) + αLs)−1F󸀠(x0)

1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

Note that by Proposition 3.1, we have

Γ1 = ‖(F󸀠(x0) + αLs)−1(yδ − y)‖

= ‖L−
s
2 (L−

s
2 F󸀠(x0)L−

s
2 + αI)−1L−

s
2 (yδ − y)‖

≤
1

f( s
s+b )
‖B

s
s+b
s (Bs + αI)−1L−

s
2 (yδ − y)‖

≤
c−s,0
f( s

s+b )
δ

α
b

s+b
,
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8 | S. George and K. Kanagaraj, Derivative Free Regularization Method

where here and below

Bs = L−
s
2 F󸀠(x0)L−

s
2 .

Again, by Proposition 3.1, we have

Γ2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
L−

s
2 (Bs + αI)−1L−

s
2 F󸀠(x0)

1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

f( s
s+b )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
B

s
s+b
s (Bs + αI)−1BsL

s
2

1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

f( s
s+b )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(Bs + αI)−1BsB

s
s+b
s L

s
2

1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
g( s

s+b )
f( s

s+b )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

∫
0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
g( s

s+b )
f( s

s+b )
k0

1

∫
0

‖x0 − xα,s − θ(xδα,s − xα,s)‖‖xδα,s − xα,s‖ dθ

≤
g( s

s+b )
f( s

s+b )
ρk0‖xδα,s − xα,s‖.

The last step follows from the fact that xα,s , xδα,s ∈ B(x0, ρ) and hence

xα,s + θ(xδα,s − xα,s) ∈ B(x0, ρ).

This proves (a). To prove (b), we notice that since y = F(x̂), we have by (2.3)

F(xα,s) − F(x̂) + αLs(xα,s − x0) = 0. (4.1)

Let

A =
1

∫
0

F󸀠(x̂ + θ(xα,s − x̂)) dθ

Then by (4.1),

(A + αLs)(xα,s − x̂) = αLs(x0 − x̂)

or

(F󸀠(x0) + αLs)(xα,s − x̂) = (F󸀠(x0) − A)(xα,s − x̂) + αLs(x0 − x̂).

Therefore,

xα,s − x̂ = (F󸀠(x0) + αLs)−1[(F󸀠(x0) − A)(xα,s − x̂) + αLs(x0 − x̂)].

Hence, using Assumptions 4.1 and 4.2, we have

xα,s − x̂ = L−
s
2 (Bs + αI)−1L−

s
2 [−F󸀠(x0)

1

∫
0

Φ(x0, x̂ + θ(xα,s − x̂), xα,s − x̂) dθ]

+ αL−
s
2 (Bs + αI)−1L−

s
2 Ls(x0 − x̂)

= L−
s
2 (Bs + αI)−1L−

s
2 [−F󸀠(x0)

1

∫
0

Φ(x0, x̂ + θ(xα,s − x̂), xα,s − x̂) dθ]

+ αL−
s
2 (Bs + αI)−1L

s
s (x0 − x̂).
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So

‖xα,s − x̂‖ ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
L−

s
2 (Bs + αI)−1L−

s
2 [F󸀠(x0)

1

∫
0

Φ(x0, x̂ + θ(xα,s − x̂), xα,s − x̂) dθ]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ α‖L−
s
2 (Bs + αI)−1L

s
2 (x0 − x̂)‖

≤
1

f( s
s+b )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
B

s
s+b
s (Bs + αI)−1BsL

s
2

1

∫
0

Φ(x0, x̂ + θ(xα,s − x̂), xα,s − x̂) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
1

f( s
s+b )

α‖B
s

s+b
s (Bs + αI)−1L

s
2 (x0 − x̂)‖

≤
1

f( s
s+b )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(Bs + αI)−1BsB

s
s+b
s L

s
2

1

∫
0

Φ(x0, x̂ + θ(xα,s − x̂), xα,s − x̂) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
1

f( s
s+b )

α‖B
s

s+b
s (Bs + αI)−1L

s
2 (x0 − x̂)‖

≤
g( s

s+b )
f( s

s+b )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

∫
0

Φ(x0, x̂ + θ(xα,s − x̂), xα,s − x̂) dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+

1
f( s

s+b )
α‖(Bs + αI)−1B

t
s+b
s B

s−t
s+b
s L

s
2 (x0 − x̂)‖

≤
g( s

s+b )

f( s
s+b )

k0‖x0 − x̂ − θ(xα,s − x̂)‖‖xα,s − x̂‖ +
1

f( s
s+b )

α‖(Bs + αI)−1B
t

s+b
s ‖‖B

s−t
s+b
s L

s
2 (x0 − x̂)‖

≤
g( s

s+b )

f( s
s+b )

k0ρ‖xα,s − x̂‖ +
g( s−ts+b )

f( s
s+b )

α
t

s+b ‖x0 − x̂‖t

≤
g( s

s+b )
f( s

s+b )
k0ρ‖xα,s − x̂‖ +

g( s−ts+b )
f( s

s+b )
Eα

t
s+b .

This completes the proof of (b). Now (c) follows from (a) and (b).

5 A Priori Choice of the Parameter

Note that by (a) and (b) of Theorem 4.3, we have

‖xδα,s − x̂‖ ≤ C(
δ

α
b

s+b
+ α

t
s+b ), (5.1)

where

C = max{
c−s,0

f( s
s+b ) − g(

s
s+b )ρk0

,
g( s−ts+b )E

f( s
s+b ) − g(

s
s+b )k0ρ

}. (5.2)

Further observe that the error δ
α

b
s+b
+ α

t
s+b in (5.1) is of optimal order if αδ := α(t, δ) satisfies,

δ
α

b
s+b
= α

t
s+b .

That is, αδ = δ
s+b
t+b . Hence, by (5.1) we have the following theorem.

Theorem 5.1. Let the assumptions in Theorem 3.2 and Theorem 4.3 hold. For δ > 0, let α := αδ = δ
s+b
t+b . Let nδ

be such that
nδ := min{n : qnα,s ≤

δ
α

b
s+b
}.

Then
‖xδnδ ,α,s − x̂‖ = O(δ

t
t+b ).
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5.1 Adaptive Scheme and Stopping Rule

In [27], Pereverzev and Schock introduced the adaptive selection of the parameter strategy. We modified the
adaptivemethod suitably for the situation for choosing the regularization parameter α. For convenience, take
xδi,α,s := x

δ
ni ,αi ,s. Let i ∈ {0, 1, 2, . . . , N} and αi = μ

iα0, where μ > 1 and α0 > δ.
Let

l := max{i : α
t

s+b
i ≤

δ
α

b
s+b
} < N, (5.3)

k := max{i : ‖xδi,α,s − x
δ
j,α,s‖ ≤ 4C̄

δ

α
b

s+b
j

, j = 0, 1, 2, . . . , i − 1}, (5.4)

where C̄ = C + k with C is as in (5.2) and k is as in Theorem 3.2. Now we have the following theorem.

Theorem 5.2. Assume that there exists i ∈ {0, 1, . . . , N} such that

α
t

s+b
i ≤

δ
α

b
s+b

.

Let the assumptions of Theorem 3.2 and Theorem 4.3 be fulfilled, and let l and k be as in (5.3) and (5.4),
respectively. Let

ni = min{n : qnαi ,s ≤
δ

α
b

s+b
i

}.

Then l ≤ k and
‖xδnk ,α,s − x̂‖ ≤ 6C̄μ

b
s+b δ

t
t+b .

Proof. To prove l ≤ k, it is enough to show that, for each i ∈ {1, 2, . . . , N},

α
t

s+b
i ≤

δ
α

b
s+b
󳨐⇒ ‖xδni ,α,s − x

δ
nj ,α,s‖ ≤ 4C̄

δ
α

b
s+b

for all j = 0, 1, 2, . . . , i − 1.

For j < i, we have

‖xδni ,α,s − x
δ
nj ,α,s‖ ≤ ‖x

δ
i,α,s − x̂‖ + ‖x̂ − x

δ
j,α,s‖

≤ C̄(α
t

s+b
i +

δ

α
b

s+b
i

) + C̄(α
t

s+b
j +

δ

α
b

s+b
j

) ≤ 2C̄α
t

s+b
i + 2C̄

δ

α
b

s+b
j

≤ 4C̄ δ

α
b

s+b
j

.

Thus, the relation l ≤ k is proved. Observe that

‖x̂ − xδnk ,α,s‖ ≤ ‖x̂ − x
δ
nl ,α,s‖ + ‖x

δ
nk ,α,s − x

δ
nl ,α,s‖,

where
‖x̂ − xδnl ,α,s‖ ≤ C̄(α

t
s+b
l +

δ

α
b

s+b
l

) ≤ 2C̄ δ

α
b

s+b
l

.

Now since l ≤ k, we have

‖xδnk ,α,s − x
δ
nl ,α,s‖ ≤ 4C̄

δ

α
b

s+b
l

.

Hence,

‖x̂ − xδnk ,α,s‖ ≤ 6C̄
δ

α
b

s+b
l

.

Now, since α
b

s+b
δ = δ

b
t+b ≤ α

b
s+b
l+1 ≤ μ

b
s+b αl

b
s+b , it follows that

δ

α
b

s+b
l

≤ μ
b

s+b
δ

α
b

s+b
δ

= μ
b

s+b δ
t

t+b .

This completes the proof.
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6 Implementation of Adaptive Choice Rule

The balancing algorithm associated with the choice of the parameter specified in Theorem 5.2 involves the
following steps:
∙ Choose α0 > 0 such that δ < α0 and μ > 1.
∙ Choose αi := μiα0, i = 0, 1, 2, . . . , N.

6.1 Algorithm

(1) Set i = 0.
(2) Choose

ni := min{n : qnαi ,s ≤
δ

α
b

s+b
i

}.

(3) Solve xi,α,s := xδni ,αi ,s by using the iteration (3.1).
(4) If

‖xi,α,s − xj,α,s‖ > 4C̄
δ

α
b

s+b
j

, j < i,

then take k = i − 1 and return xk,α,s.
(5) Else set i = i + 1 and go to (2).

7 Numerical Experiments

In this section we present a numerical experiment for the elliptic boundary-value problem (1.2) and compare
the results of method (3.1) with that of method (1.4). Let us define the linear operator

L : H2 ∩ H1
0[0, 1] ⊂ L

2[0, 1] → L2[0, 1]

by Lx = −x󸀠󸀠. Then L is densely defined, self-adjoint and positive definite [16] and the Hilbert scale {X}s gen-
erated by L is given by

Xs = {x ∈ Hs[0, 1] : x(2l)(0) = x(2l)(1) = 0, l = 0, 1, . . . , [ s2 −
1
4]}

for any s ∈ ℝ, where Hs[0, 1] is the usual Sobolev space and

‖x‖s =
1

∫
0

|x(s)(t)| dt

for all s = 0, 1, 2, . . . . We have taken s = b = 2 in our computation. Tables 1 and 2 gives the number of iter-
ations, alpha and the relative error.

Remark 7.1. From the tables and figures, one can see that method (3.1) gives a better approximation than
method (1.4).

Method (3.1) Method (1.4)

Function k nk α(k) ‖ ̂x−xδn,αk ,s‖‖xδn,αk ,s‖ k nk α(k) ‖ ̂x−xδn,αk ‖‖xδn,αk ‖
̂x = min{x, 1 − x}, x ∈ [0, 1] 5 31 0.0829 0.0074 7 24 0.0312 0.3021
̂x = x2 if 0.2 < x < 0.7, ̂x = x else 5 32 0.0954 0.0093 6 27 0.0474 0.4655

Table 1: The number of iterations, alpha and the error for μ = 1.15, δ = 1
153 , β = 0.25.
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Method (3.1) Method (1.4)

Function k nk α(k) ‖ ̂x−xδn,αk ,s‖‖xδn,αk ,s‖ k nk α(k) ‖ ̂x−xδn,αk ‖‖xδn,αk ‖
̂x = min{x, 1 − x}, x ∈ [0, 1] 23 15 0.0080 0.0085 20 16 0.0100 0.0926
̂x = x2 if 0.2 < x < 0.7, ̂x = x else 12 20 0.0245 0.0086 15 18 0.0157 0.1548

Table 2: The number of iterations, alpha and the error for μ = 1.25, δ = 1
590 , β = 0.25.
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(a) Exact and approximate data and solution of method (3.1)
for x̂ = min{x, 1 − x}.
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(b) Exact and approximate data and solution of method (1.4)
for x̂ = min{x, 1 − x}.

Figure 1: Exact solution and approximated solution for μ = 1.15, δ = 1
153 , β = 0.25.
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(a) Exact and approximate data and solution of method (3.1)
for x̂ = x2 if 0.2 < x < 0.7 and x̂ = x else.
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(b) Exact and approximate data and solution of method (1.4)
for x̂ = x2 if 0.2 < x < 0.7 and x̂ = x else.

Figure 2: Exact solution and approximated solution for μ = 1.15, δ = 1
153 , β = 0.25.

8 Conclusion

In this paper we considered a derivative-free iterative method for approximately solving ill-posed equations
involving a monotone operator in the setting of Hilbert scales. We obtained an optimal order error estimate
under a general Hölder-type source condition. Also we considered the adaptive parameter choice strategy
considered by Pereverzev and Schock [27] for choosing the regularization parameter.

Brought to you by | National Institue of Technology, Surathkal
Authenticated | sgeorge@nitk.ac.in author's copy

Download Date | 7/9/18 8:53 AM



S. George and K. Kanagaraj, Derivative Free Regularization Method | 13

0 0.5 1
-0.1

0

0.1

0.2

0.3

0.4

0.5
sources

reconstruction
true

0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
data

reconstruction
true
observation

(a) Exact and approximate data and solution of method (3.1)
for x̂ = min{x, 1 − x}.
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(b) Exact and approximate data and solution of method (1.4)
for x̂ = min{x, 1 − x}.

Figure 3: Exact solution and approximated solution for μ = 1.25, δ = 1
590 , β = 0.25.
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(a) Exact and approximate data and solution of method (3.1)
for x̂ = x2 if 0.2 < x < 0.7and x̂ = x else.
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(b) Exact and approximate data and solution of method (1.4)
for x̂ = x2 if 0.2 < x < 0.7 and x̂ = x else.

Figure 4: Exact solution and approximated solution for μ = 1.25, δ = 1
590 , β = 0.25.
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