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Abstract
Streamflow forecasting can offer valuable information for optimal management of water
resources, flood mitigation, and drought warning. This research aims in evaluating the
effectiveness of CHIRPS satellite rainfall data in comparison with IMD gridded Rainfall Data
and development of various flow forecasting models. Daily rainfall data for three decades
(1983–2012) over the Nethravathi Basin, Karnataka, India is used for analysis. The analysis is
carried out for the monsoon season (June–September), out of which 70% data considered for
training the model and remaining for testing. Different input combinations are developed, and
soft-computing methods like ANFIS, GRNN, PSO-ANN, and ELM are applied for flow
forecasting on a temporal scale. The model performance is evaluated using various statistical
indices like NNSE, RRMSE, and MAE. The results indicate that CHIRPS rainfall showed
better performance in comparison with IMD data. ELM expressed an enhanced effect when
compared to all other methods. The usefulness and effectiveness of CHIRPS data compared to
IMD data has been explored.
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1 Introduction

Streamflow forecasting plays a primary role in planning of water management for agriculture,
hydropower generation, industry, and environmental water. Identification of suitable model for
predicting streamflow is essential for effective utilisation of water. The model which simulates
the river flow based on previously recorded flow amount will be economically preferable for
research as well as practical purposes. Although the precipitation data are available in a
different format, majority of researchers are attracted towards ground-based or station based
data. Recently, very few researchers started exploring the usefulness and effectiveness of
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satellite-based rainfall data. The streamflow prediction models can be classified into two broad
categories, linear models and non-linear models. Linear models include Auto-Regressive
(AR), Moving Average (MA), Auto-Regressive Moving Average (ARMA), Auto-Regressive
Integrated Moving Average (ARIMA), Auto-Regressive Integrated Moving Average with
exogenous output (ARIMAX), Linear Regression (LR) and Multiple Linear Regression
(MLR) which are linear (Abrahart and See 2000; Maier and Dandy 2000; Wu et al. 2009;
Valipour 2015). The streamflow forecasting depends upon factors like precipitation, evapo-
transpiration, temperature, snowpack etc. These variables make streamflow process non-linear.
Linear models perform better when the data rely upon past observations, however, they
execute ineffectively when the data also depends upon other exogenous factors. The limita-
tions of linear models motivate the researchers to further develop efficient models.

The computer era motivated many hydrologists to use the Artificial Intelligence (AI) based
models for time series forecasting. AI has the inherent ability to capture and reproduce both
non-linear components and non-stationary trends of the hydrological time series with increas-
ing degree of sophistication and statistical precision. AI has established its unique signature in
the field of forecasting or prediction of various hydrological phenomena (Yaseen et al. 2015).
Among the AI models, Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference
System (ANFIS), Generalised Regression Neural Network (GRNN), Particle Swarm Optimi-
zation – ANN (PSO-ANN) and Extreme Learning Machine (ELM) models have an important
place in modelling of streamflow data. Many researchers have investigated the potential of AI
techniques in modelling watershed runoff based on rainfall inputs.

The aim of building a model is to maximize its usefulness. Complexity, reliability, and
ambiguity, must be considered for developing the model. ANFIS in modelling may include all
reasons which are discarded in flawless models while it may ignore some reasons which are
considered in physically-based models (Hundecha and Bardossy 2001). Kisi (2005) employed
neural network and neuro-fuzzy approach for estimating suspended sediment concentration.
Cobaner (2011) used ANFIS - Sub Clustering (ANFIS-SC) and ANFIS - Grid Partition
(ANFIS-GP) model for evapotranspiration estimation and found ANFIS-SC model yields sensi-
ble accuracy with less calculations, contrasted with the ANFIS-GP and neural network models.
Sanikhani and Kisi (2012) developed ANFIS-SC and ANFIS-GP for monthly stream-flow
forecasting. Hadi and Tombul (2018) used wavelet transformation as a pre-processing tool in
data-driven models to forecast week-ahead streamflow. Specht (1991) proposed the concept of
GRNN. GRNN approximates the input and output vectors between any arbitrary function, and
directly draw the function estimate from training data (Cigizoglu 2005). Kisi (2008) compared
three different ANN techniques viz. Feed Forward Neural Network (FFNN), GRNN and Radial
basis ANN (RBF) for forecasting one month-ahead streamflow. GRNN showed better perfor-
mance in comparison with other ANN techniques. Diop et al. (2018) used Support Vector
Regression (SVR) and GRNN to predict one day ahead daily river flow at Upper Senegal River
basin, West Africa. The result shows that SVR displays a superior performance to GRNN.

The advent of evolutionary computation techniques like Particle Swarm Optimization (an
algorithm based on social psychology) motivated researchers to hybridize with AI techniques.
Salerno (1997) proposed the concept of PSO-ANN. Nasimi et al. (2011) used PSO-Back
Propagation algorithm to estimate the Permeability of Mansuri Bangestan reservoir, Iraq.
Sudheer et al. (2014) hybridised PSO algorithm with Support Vector Machine for forecasting
long-term streamflow over Swan River and St. Regis River, United States. The study suggests
that SVM could be a better alternative for predicting monthly streamflow as it provides a high
degree of accuracy and reliability.
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Huang et al. (2006) proposed ELM, a new data-driven algorithm for single hidden layer feed-
forward networks to overcome the limitations of FFBP-ANN. The practice of ELM in several
research areas like land displacement prediction (Lian et al. 2012), hydrological flow series prediction
(Atiquzzaman and Kandasamy 2016) and dew point estimation (Deka et al. 2018). Yaseen et al.
(2018) studied the reliability and effectiveness of ELM in forecasting one-step-ahead stream-flow for
three temporal pattern (daily, mean weekly and mean monthly) over Johor River, Malaysia. The
results of the ELM approach showed dominance and precise forecasting over ANN models.

Over recent decades, many gridded precipitation datasets are available for suitable large-scale
hydrological applications. The datasets differ in terms of source (gauge, radar, satellite, analysis,
or reanalysis, or combinations of sources), design objective (temporal homogeneity, instanta-
neous accuracy or both), spatial resolution (from 0.05° to 2.5°), spatial coverage (from continental
to global), temporal resolution (from 0.5 h to monthly), temporal span (from ~1 to 115 years), and
latency (from ~3 h to several years) (Beck et al. 2017). Casse et al. (2015) evaluated the strengths
of various precipitation products to predict the flood events of Niger River in Niamey. Liu et al.
(2017) found that PERSIANN-CDR satellite rainfall data can simulate the streamflow over the
upper Yellow and Yangtze River basins on the Tibetan Plateau. Recently, Maggioni and Massari
(2018) gave a review on most prevalent satellite precipitation products and their errors and
uncertainties, that could play a significant role in hydrological modeling. Climate Hazards
InfraRed Precipitation with Stations (CHIRPS) satellite rainfall (Funk et al. 2015) is a recent
product, whose potential is yet to evaluate in the quasi-global scale (Beck et al. 2017). Evaluation
of CHIRPS satellite rainfall for drought monitoring studies was conducted by Shrestha et al.
(2017); Gao et al. (2018). Few researchers used the Soil Water Assessment Tool (SWAT) and
CHIRPS rainfall to forecast streamflow (Tuo et al. 2016; Le and Pricope 2017).

Many researchers often use ground-based or station based rainfall data for flow forecasting.
Recently, few researchers are motivated to explore the potential of satellite based rainfall
products and their influence on river flow forecasting. From the literature survey, it was
observed that only a limited number of studies conducted in assessing the potential of CHIRPS
rainfall data in streamflow forecasting. Till date, no studies are carried out with the application
of Artificial Intelligence (AI) techniques to forecast streamflow using CHIRPS rainfall data as
inputs. This research tries to explore the potential or applicability of CHIRPS rainfall data for
flow forecasting gauged at Bantwal station of the Nethravathi basin, Karnataka, India using
soft-computing techniques like ANFIS, GRNN, PSO-ANN, and ELM. The performance of
these models is measured using various statistical indices. The gridded rainfall data of Indian
Meteorological Department (IMD) (Pai et al. 2014) is served as inputs and streamflow
forecasting carried out for the former models using ANFIS, GRNN, PSO-ANN and ELM
for comparative performance evaluation. The article is structured as follows: Section 2
provides information on the Study Area. Section 3 discusses the methodology followed up
in the study. The model results are portrayed in Section 4, and a comparison between IMD
rainfall and CHIRPS rainfall is discussed in Section 4.3.

2 Description of Study Area and Data

2.1 Study Area

Nethravathi Basin (shown in Fig. 1) is located in the Western Ghats of Karnataka and drains an
area around 4300km2. The west-flowing River Nethravathi originates at Gangamoola and
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reaches the Arabian Sea in Mangaluru. River Kumaradhara, a major tributary confluences with
River Nethravathi at Uppinangady. The extents of the basin are 12°29′21.17″ to 13°11′9.05″
north latitudes and 74°59′23.95″ to 75°47′27.06″ east longitudes. The Central Water Com-
mission (CWC) has set up a stream gauge station at Bantwal to record discharge in the river,
around 20 km upstream from the river mouth. South West monsoon (June–September) is
predominant than post-monsoon (October –May) in the study area. The watershed receives an
annual rainfall around 3600 mm. Due to laterite soil and heavy rainfall over the region support
luxurious growth of vegetation. The Western Ghats are mountainous region with thick forest,
which are located in the upper part of the basin. The basin has different types of forest varying
stages from evergreen scrub, to fully grown forest (Ganasri and Ramesh 2016). The coolest
part of the year is during June to September (Southwest Monsoon) with the average daily
temperature below 25 °C. Between March to May the mean daily temperature is about 35 °C,
the weather is highly humid throughout the year.

2.2 Data Collection

The rainfall data of 13 grid points within the Nethravathi basin provided by the India
Meteorological Department (IMD), Pune was used in the study. The IMD gridded rainfall
product of spatial resolution of 0.25° × 0.25° was extracted for the years 1983 to 2012 to

Fig. 1 Study Area - (a) The Nethravathi Basin (b) A three-dimensional representation DEM of the river basin
with stream network and Bantwal discharge gauging station
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compute the areal average precipitation over the basin using the Thiessen Polygon method.
Under GIS analysis, the grid points of IMD Rainfall data were overlaid on the basin, and the
daily rainfall data of around 13 grid points falling within the basin were extracted using the
grid extraction tool as text files for the years 1983–2012. The Thiessen Polygons were created
for all the grid points to demarcate the influence area of each grid and the areal average rainfall
over the Nethravathi Basin was computed. The monsoon season over the region starts from
June and ends by September. Only the monsoon season data was sorted for present analysis.

CHIRPS is a satellite based precipitation product which has provides about three decades
of quasi-global rainfall dataset. This gridded rainfall time series data is available from the
year 1981 to near-present at a spatial resolution of 0.05° with integrated station data. The
average rainfall data over the basin was extracted using Google Earth Engine tool and
sorted for monsoon season.

The streamflow data of Nethravathi basin gauged at Bantwal hydrological obser-
vation station (located at 12° 52′ 51″ N Latitude and 75° 02′ 27″ E Longitude) was
used in the present research. The streamflow data of the years 1983 to 2012 was
considered for modelling. The analysis was carried out only for the monsoon season
streamflow records.

The data analysis includes, the maximum, minimum, mean, standard deviation,
coefficient of variance and Skewness of all variables influencing streamflow are
tabulated in Table 1. IMD daily rainfall maximum is found almost half of CHIRPS
rainfall in training data. Similar behaviour is also seen in testing data. Also, the
average IMD rainfall value is slightly less than CHIRPS rainfall value in both
scenarios of training and testing. Very high variability is seen in CHIRPS data in
both training and testing compared to IMD data. The high skewness represents the
majority of data concentration in the CHIRPS rainfall towards the tail part compared
to IMD data during training. However, in the testing dataset skewness is almost
similar in both the rainfall product. In the case of streamflow, the maximum discharge
is seen in testing data and slightly less in training data. The average streamflow in
training data is less when compared with testing data. The standard deviation of
discharge data is nearly the same in both training and testing. The variance is high
in training streamflow data and slightly less in testing data. High skewness represents
that majority of data concentration in streamflow data towards the tail part, and it is
seen in both training and testing dataset.

Table 1 Data Statistics of Input Parameters

Statistics Training Data Testing Data

IMD
Rainfall
(mm)

CHIRPS
Rainfall
(mm)

Streamflow
(m3/s)

IMD
Rainfall
(mm)

CHIRPS
Rainfall
(mm)

Streamflow
(m3/s)

Minimum 0 0 0.264 0 0 0.000
Maximum 160.729 337.236 5506.200 137.718 279.192 5610.000
Mean 19.729 22.185 838.926 16.891 24.020 922.007
Standard Deviation 21.147 41.571 734.739 19.829 32.670 733.970
Coefficient of

Variance
1.072 1.874 0.876 1.174 1.360 0.796

Skewness 1.995 3.032 1.670 2.267 2.232 1.543
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3 Methodology

The selection of input variables was carried out based on Autocorrelation function (ACF) and
Partial autocorrelation function (PACF) of rainfall and streamflow data. The ACF and PACF
indicated that, the streamflow values were autoregressive and having decent autocorrelation up
to four lags. Likewise, the ACF and PACF of rainfall data were also autoregressive and the
rainfall up to one lag held very good autocorrelation.

Following are the model combinations considered in this study:
Model 1–Rt þ St→Stþ1

Model 2–Rt‐1 þ Rt þ St‐1 þ St→Stþ1

Where Rt-1 and Rt are input Rainfall values with a lag of one day and present day rainfall
respectively. St-1 and St are input Streamflow values with a lag of one day and present day
streamflow. St + 1 is one day ahead forecasted streamflow. Figure 2 provides a schematic repre-
sentation of the methodology adopted in this study. The soft-computing methods like ANFIS,
GRNN, PSO-ANN, and ELMwere developed and implemented usingMATLABprogram codes.

3.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a blend of Fuzzy Inference System and Neural Network algorithm. The Neural
Network algorithm is used to tune the parameters of membership function, which has a better
fitting to the training data. Based on “if-then rule” in the inference operation ANFIS is classified
into three classes namely, Mamdani (Mamdani and Assilian 1975), Tsukamoto and Sugeno

Fig. 2 Methodology adopted
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(Takagi and Sugeno 1985). Among these three, Mamdani is the most used Fuzzy Inference
System. However, the Sugeno FIS is more effective, robust and computationally intractable in
the defuzzification process. The concise output of Sugeno, make the ANFIS model more
appropriate for adaptive techniques (Sanikhani and Kisi 2012).

ANFIS has two models namely, ANFIS Grid Partitioning (ANFIS-GP) and ANFIS Sub
Clustering (ANFIS-SC). Out of these two, ANFIS-GP is most commonly used model. The
each input variable in ANFIS-GP model is divided into several membership functions (MF),
and rules are created with each MF with all other MF of same and other variables. Based on
number of variables, the number of rules increase exponentially. The number of rules is equal
to pq, where p and q are number of membership function and number of variables respectively.

3.2 Particle Swarm Optimization-ANN (PSO-ANN)

The supportive and social performance shown by several species to fill their requirements in
the multidimensional search space, inspired the researchers to develop PSO. The model
process starts with the initialization of random particle collection. The position of particles
represent the biases and weights of ANN. The selection of particles is purely random. In the
next stage, the hybrid PSO model is trained with initial biases and weight factors.

Later, the convergence of the trained network is checked, by computing the error between
predicted and actual values. At each iteration, the error is reduced by altering the position of
particle. The fresh error, which is supposed to be smaller than the past step is calculated for
each step. This method continues until one of the stop criteria is fulfilled. More detailed
information about the PSO-ANN algorithm can be seen in (Armaghani et al. 2014; Rukhaiyar
et al. 2018)

3.3 Generalised Regression Neural Network (GRNN)

Specht (1991) proposed probabilistic neural network (PNN), it applies to classification
problem only, but cannot solve the continuous data problem. The need for a learning
algorithm which has the ability to learn dynamic patterns, predict, and to deal with
regression problems was proposed by Specht in 1991 called GRNN. The GRNN
architecture has a total of four layers namely, Input layer, Sample layer, summary
layer and linear layer. More information about the mechanism of GRNN algorithm
can be seen in (Kisi 2008).

3.4 Extreme Learning Machine (ELM)

The iterative alteration of network parameters led to low learning rate and low training speed
of gradient-based algorithms. ELM, an innovative training algorithm was presented by Huang
et al. (2004). The hidden nodes are selected randomly and using the Moore Penrose general-
ized inverse the output weights of single-layer feed forward neural networks are determined
analytically. Using N arbitrary samples and L hidden nodes, (ai, bi) ϵ Rn × Rm (i = 1, 2,…,n)
and activation function g(x) the SLFNN models are presented as:

∑
L

i¼1
γigi a j

� � ¼ ∑
L

i¼1
γigi pi⋅qi⋅að Þ ð1Þ

where j = 1, 2,…, N.

Evaluating the Performance of CHIRPS Satellite Rainfall Data for... 3919



Where pi = [pi1, pi2,…pin]T is input weight matrix which is associated with hidden layer
nodes, qi is the hidden layer node bias, γi = [γi1, γi2,…γim]Tis output weight matrix which is
linked to the hidden layer as nodes.

3.5 Performance Evaluation

The evaluation metrics gauge the model performance and assess the degree of
confidence one can have on model predictions. The following are the statistical
indices adopted:

1. Normalized Nash-Sutcliffe Efficiency (NNSE)

NNSE ¼ 1

2−NSE
ð2Þ

Where

NSE ¼ 1−
∑
N

x¼1
Ox−Pxð Þ2

∑
N

x¼1
Ox−O

� �2

2. Mean Absolute Error (MAE)

MAE ¼ 1

N
∑
N

x¼1
Px−Oxj j ð3Þ

3. Relative Root Mean Square Error (RRMSE)

RRMSE ¼
RMSE
1

N
∑
N

x¼1
Px

Þ
0
@ ð4Þ

Where

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

x¼1
Ox−Pxð Þ2

s
� 100%

Where O is the actual value; P is the computed values; O is the average of Actual value; N is
the number of data points.
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4 Results and Discussion

4.1 IMD Rainfall Data

Table 2 shows the results wherein IMD Rainfall data is served as inputs, and Fig. 3
display the scatter plots for different soft-computing techniques of Model 1. The
model comprises of present-day rainfall and streamflow as inputs, and one-day ahead

Table 2 Model performance with IMD Rainfall as inputs

Model 1: Rt + St→ St + 1 2: Rt-1 + Rt + St-1 + St→ St + 1

ANFIS GRNN PSO -ANN ELM ANFIS GRNN PSO -ANN ELM

NNSE 0.809 0.806 0.801 0.810 0.737 0.802 0.765 0.807
MAE (m3/s) 212.895 222.341 212.385 213.586 226.158 228.551 227.870 216.817
RRMSE 0.485 0.491 0.498 0.485 0.597 0.497 0.554 0.489
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Fig. 3 Scatter plots for Model 1 showing one-day ahead streamflow forecast using IMD Rainfall Data for
different soft-computing techniques in testing phase
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streamflow as output. The table and figure it is seen that the statistical indices like R2,
NNSE and RRMSE is nearly the same and effective for ANFIS and ELM. The scatter
plots infer that model shows robust performance in predicting lower range values for
all techniques.

The scatter plots for different soft-computing techniques of Model 2 are shown in
Fig. 4. In this model, present day and one-day lagged rainfall and streamflow values
are considered as inputs, and one-day ahead streamflow is forecasted. The ELM
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Fig. 4 Scatter plots for Model 2 showing one-day ahead streamflow forecast using IMD Rainfall Data for
different soft-computing techniques in testing phase

Table 3 Model performance using CHIRPS rainfall as inputs

Model 1:Rt+ St→ St + 1 2:Rt-1 + Rt + St-1 + St→ St + 1

ANFIS GRNN PSO-ANN ELM ANFIS GRNN PSO-ANN ELM

NNSE 0.825 0.813 0.813 0.825 0.788 0.803 0.813 0.824
MAE (m3/s) 211.121 214.359 215.809 210.821 215.634 226.394 222.724 211.054
RRMSE 0.46 0.479 0.48 0.46 0.518 0.495 0.48 0.462
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model performs better than ANFIS and PSO-ANN. The NNSE and RRMSE of ELM
and GRNN are nearly same, but ELM stands more effective by exhibiting less MAE.

4.2 CHIRPS Rainfall Data

The model performance using CHIRPS rainfall data as inputs are presented in Table 3,
and the scatter plots for Model 1 is shown in Fig. 5. From the table and figure it is
seen that the statistical indices like R2, NNSE and RRMSE is nearly the same and
effective for ANFIS and ELM. The scatter plots infer that model shows robust
performance in predicting lower range values for all techniques. The GRNN and
PSO-ANN underperform in forecasting streamflow, but both the models have similar
statistical indices.

The scatterplots for Model 2 with CHIRPS rainfall data as inputs is shown in
Fig. 6. The ELM model performs better than ANFIS, GRNN, and PSO-ANN. The
NNSE and RRMSE of ELM and PSO-ANN are nearly the same, but ELM stands
more effective exhibiting higher determination coefficient (R2 = 0.787).
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Fig. 5 Scatter plots for Model 1 showing one-day ahead streamflow forecast using CHIRPS Rainfall Data for
different soft-computing techniques in testing phase
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4.3 Comparison between IMD and CHIRPS Rainfall Model Performance

Taylor diagrams in Fig. 7 shows the relative performance of interpolation methods in forecast-
ing the streamflow for IMD and CHIRPS rainfall models. In IMD Rainfall Model 1 it is seen
that with present-day rainfall and streamflow as input parameters, the correlation coefficient,
standard deviation, and RMSD perform nearly same for ANFIS, GRNN, PSO-ANN and ELM
in forecasting streamflow. Whereas, in CHIRPS rainfall PSO-ANN has a higher variation than
ANFIS, ELM, and GRNN.

IMD Rainfall Model 2 the inputs are rainfall and streamflow in a combination of one-day
lagged and present-day respectively. The testing output shows that ANFIS and PSO-ANN
underperform when compared with Model 1, whereas GRNN and ELM perform nearly the
same. In CHIRPS rainfall model 2, the performance of ELM is superior when compared with
ANFIS, GRNN, and PSO-ANN. The efficiency of ANFIS and PSO-ANN is increased
drastically with the aid of CHIRPS rainfall data. It infers that the performance of
GRNN and ELM models does not get much affected by lagging the input variables in
case of IMD rainfall model. However, there is a slight deviation of values in CHIRPS
rainfall data. The behavior of ELM remains nearly the same in all the combinations,
irrespective of the datasets used.
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Fig. 6 Scatter plots for Model 2 showing one-day ahead streamflow forecast using CHIRPS Rainfall Data for
different soft-computing techniques in testing
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5 Conclusions

The current research aims to evaluate the potential of CHIRPS rainfall data to forecast
one-day ahead streamflow using soft-computing techniques like ANFIS, GRNN, PSO-
ANN, and ELM over tropical wet climate, with Nethravathi Basin, Karnataka, India
as an example. The effectiveness of CHIRPS rainfall models was compared with the
IMD rainfall models for flow forecasting. The main findings of this research can be
summarised as follows: The CHIRPS rainfall data was a useful alternative to the IMD
Rainfall data for forecasting streamflow in the tropical wet environment of the
Nethravathi Basin. There was a decrease in ANFIS model performance due to one-
day lagged rainfall and streamflow values in the input combination of IMD rainfall
data. The ELM algorithm potentially improves the accuracy of prediction in the
modeling process compared to ANFIS, GRNN, and PSO-ANN. The future scope
corresponds to the application of these algorithms to assess the potential of CHIRPS
rainfall data over other climatic regions to forecast stream-flow.

Fig. 7 Taylor Diagrams of Model 1 and Model 2 for both CHIRPS Rainfall data and IMD Rainfall data
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