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EXPANDING THE APPLICABILITY OF GENERALIZED HIGH
CONVERGENCE ORDER METHODS

FOR SOLVING EQUATIONS
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Abstract. The local convergence analysis of iterative methods is important
since it indicates the degree of difficulty for choosing initial points. In the
present study we introduce generalized three step high order methods for solv-
ing nonlinear equations. The local convergence analysis is given using hy-
potheses only on the first derivative, which actually appears in the methods in
contrast to earlier works using hypotheses on higher derivatives. This way we
extend the applicability of these methods. The analysis includes computable
radius of convergence as well as error bounds based on Lipschitz-type condi-
tions, which is not given in earlier studies. Numerical examples conclude this
study.

1. Introduction

The task of solving equations, derived by concrete problems through mathe-
matical modeling, has recently gained a greater importance due to exponential
advancement of computer hardware and software. Let F : D ⊆ B1 −→ B2 be
a Fréchet-differentiable operator, where B1 and B2 are Banach spaces and D is
a nonempty open convex subset of B1. Consider the problem of finding a locally
unique solution x∗ ∈ D of equation

F (x) = 0. (1.1)
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Most solution methods of equation (1.1) are iterative, since a solution x∗ is given
in closed form only in special cases. Motivated by the single step, quadratically
convergent Newton’s method is defined, for each n = 0, 1, 2, . . ., by

xn+1 = xn − F ′(xn)−1F (xn), (1.2)

where x0 is an initial point. Numerous authors have introduced multi-step meth-
ods in order to increase the convergence order. In particular three step methods
have been introduced in the special case when B1 = B2 = Ri (i a natural number)
to solve nonlinear systems [2, 4, 12–16, 19–27]. We introduce in a Banach space
setting generalized three step methods defined, for each n = 0, 1, 2, . . ., by

yn = xn − αF ′(xn)−1F (xn)′

zn = ϕ(xn, yn), (1.3)

xn+1 = ψ(xn, yn, zn),

where x0 is an initial point, α ∈ S, where S = R or S = C, and ϕ : D2 −→
B1, ψ : D3 −→ B1 are iteration operators. Usually ϕ is an iteration operator of
convergence order p ≥ 2. Numerous popular iterative methods are special cases
of method (1.3) [1–27] (see Section 3).

The local convergence analysis usually involves Taylor expansions and condi-
tions on higher order derivatives not appearing in these methods. Moreover, these
approaches do not provide computable radius of convergence and error estimates
on the distances ‖xn−x∗‖. Therefore the initial point is a shot in the dark. These
problems limit the usage of these methods. That is why in the present study us-
ing only conditions on the first derivative, we address the preceding problems in
the more general setting of methods (1.3) and Banach space.

We find computable radii of convergence as well as error bounds on the dis-
tances based on Lipschitz- type conditions. The order of convergence is found
using computable order of convergence (COC) or approximate computational
order of convergence (ACOC) [24] (see Remark 2.2) that do not require usage
of higher order derivatives. This way we expand the applicability of three step
method (1.3) under weak conditions.

The rest of the study is organized as follows: Section 2 contains the local
convergence of method (1.3), where in the concluding Section 3 applications and
numerical examples can be found.

2. Local convergence analysis

The local convergence analysis is based on some parameters and scalar func-
tions. Let w0 : [0,∞) −→ [0,∞) be a continuous and nondecreasing function
satisfying w0(0) = 0 and α ∈ S. Define parameter ρ by

ρ = sup{t ≥ 0 : w0(t) < 1}. (2.1)

Let also w : [0, ρ) −→ [0,∞), v : [0, ρ) −→ [0,∞), g2 : [0, ρ) −→ [0,∞), and
γ : [0, ρ) −→ [0,∞) be nondecreasing continuous functions with w(0) = 0. Define
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functions g1 and h1 on the interval [0, ρ) by

g1(t) =

∫ 1

0
w((1− θ)t)dθ + |1− α|

∫ 1

0
v(θt)dθ

1− w0(t)

and

h1(t) = g1(t)− 1.

Suppose that

|1− α|v(0) < 1. (2.2)

We have, by the definitions of the scalar functions, ρ, and (2.2), that h1(0) =
|1−α|v(0)− 1 < 0 and h1(t) −→ +∞ as t −→ ρ−. By applying the intermediate
value theorem on function h1, we deduce that the equation h1(t) = 0 has solutions
in (0, ρ). Denote by ρ1 the smallest such solution. Let g2 : [0, ρ)2 −→ [0,∞) be a
continuous and nondecreasing function. Define function h2 on the interval [0, ρ)
by

h2(t) = g2(t, t)− 1, g2(t) = g2(t, t).

Suppose that

g2(0, 0) < 1 (2.3)

and h2(t) −→ a positive number or +∞ as

t −→ ρ̄ ≤ ρ−. (2.4)

We get, by (2.3) and (2.4), that the equation h2(t) = 0 has solutions on (0, ρ̄).
Denote by ρ2 the smallest such solution. Let g3 : [0, ρ)3 −→ [0,∞) be a continuous
and nondecreasing function. Define function h3 on the interval [0, ρ) by

h3(t) = g3(t, t, t)− 1, g3(t) = g3(t, t, t).

Suppose that

g3(0, 0, 0) < 1 (2.5)

and that h3(t) converges to a positive number or +∞ as

t −→ ¯̄ρ ≤ ρ−. (2.6)

Denote by ρ3 the smallest solution of the equation h3(t) = 0 in (0, ¯̄ρ). Define the
radius of convergence ρ∗ by

ρ∗ = min{ρi}, i = 1, 2, 3. (2.7)

Then, for each t ∈ [0, ρ∗),

0 ≤ gi(t) < 1, i = 1, 2, 3. (2.8)

Let U(u, ε) = {x ∈ B1 : ‖x − u‖ < ε} for u ∈ B1 and ε > 0. Let also Ū(u, ε)
stand for its closure.

Next, we present the local convergence analysis of method (1.3) using the
preceding notation.
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Theorem 2.1. Let F : D ⊆ B1 −→ B2 be a continuously Fréchet-differentiable
operator. Suppose that there exists x∗ ∈ D such that

F (x∗) = 0 and F ′(x∗)−1 ∈ L(B2,B1); (2.9)

and there exists continuous and nondecreasing function w0 : [0,∞) −→ [0,∞)
with w0(0) = 0 such that

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖) for each x ∈ D. (2.10)

Set D0 = D ∩ U(x∗, ρ∗), where ρ∗ is defined by (2.7). There exist continuous
operators ϕ : D2

0 −→ B1 and ψ : D3
0 −→ B1 and continuous and nondecreasing

functions w : [0, ρ∗) −→ [0,∞), v : [0, ρ∗) −→ [0,∞), g2 : [0, ρ∗)2 −→ [0,∞), and
g3 : [0, ρ∗)3 −→ [0,∞) such that, for each x, y, t ∈ D0,

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖), (2.11)

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖), (2.12)

‖ϕ(x, y)− x∗‖ ≤ g2(‖x− x∗‖, ‖y − x∗‖)‖x− x∗‖, (2.13)

‖ψ(x, y, z)− x∗‖ ≤ g3(‖x− x∗‖, ‖y − x∗‖, ‖z − x∗‖)‖x− x∗‖, (2.14)

and conditions (2.2)–(2.6) and

Ū(x∗, ρ∗) ⊆ D (2.15)

hold. Then, sequence {xn}, generated by method (1.3), for x0 ∈ U(x∗, ρ∗)−{x∗},
is well defined in U(x∗, ρ∗), and it remains in U(x∗, ρ∗) and converges to x∗; so
that, for each n = 0, 1, 2, . . . ,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ∗, (2.16)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖, ‖yn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.17)

and

‖xn+1− x∗‖ ≤ g3(‖xn− x∗‖, ‖yn− x∗‖, ‖zn− x∗‖)‖xn− x∗‖ ≤ ‖xn− x∗‖. (2.18)

Moreover, if, for some r ≥ ρ∗, ∫ 1

0

w0(θr)dθ < 1, (2.19)

then the limit point x∗ is the only solution of the equation F (x) = 0 in D1 =
D ∩ Ū(x∗, r).

Proof. We shall show, using the induction, that the sequence {xk} is well defined,
remains in U(x∗, ρ∗), and converges to x∗; so that estimate (2.16)–(2.18) hold.
By conditions (2.9) and (2.16) and x ∈ U(x∗, ρ∗), we have in turn that

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖) ≤ w0(ρ
∗) < 1. (2.20)

It follows, from (2.20) and the Banach lemma on invertible operators [2, 3, 11],
that F ′(x)−1 ∈ L(B2,B1) and

‖F ′(x)−1F ′(x∗)‖ ≤ 1

1− w0(‖x− x∗‖)
. (2.21)
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In particular, y0 exists by the first substep of method (1.3) and (2.21) for x = x0
(since x0 ∈ U(x∗, ρ∗)). Using the first substep of method (1.3), (2.7), (2.8) (for
i = 2), (2.9), (2.11), (2.12), and (2.21), we obtain in turn that

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + (1− α)F ′(x0)
−1F (x0)

=

∫ 1

0

F ′(x0)
−1F ′(x∗)F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ

+(1− α)F ′(x0)
−1F ′(x∗)F ′(x∗)−1F (x0); (2.22)

so

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖

×‖F ′(x∗)−1
∫ 1

0

[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ‖

+|1− α|‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤
∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖+

∫ 1

0
v(θ‖x0 − x∗‖)dθ

1− w0(‖x0 − x∗‖)
‖x0 − x∗‖

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ∗; (2.23)

that is, (2.16) holds for n = 0 and y0 ∈ U(x∗, ρ∗), where we also use the estimate

‖F ′(x∗)−1F (x0)‖ = ‖F ′(x∗)−1(F (x0)− F (x∗))

= ‖
∫ 1

0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ(x0 − x∗)‖

≤
∫ 1

0

v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖, (2.24)

since ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ ≤ ρ∗ (i.e., x∗ + θ(x0 − x∗) ∈ U(x∗, ρ∗)
for each θ ∈ [0, 1]). By the second substep of method (1.3) for n = 0, (2.7), (2.8)
(for i = 2), (2.13), and (2.23), we get in turn

‖z0 − x∗‖ = ‖ϕ(x0, y0)− x∗‖
≤ g2(‖x0 − x∗‖, ‖y0 − x∗‖)‖x0 − x∗‖
≤ g2(‖x0 − x∗‖, ‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < ρ∗; (2.25)

so (2.17) holds for n = 0 and z0 ∈ U(x∗, ρ∗). Then, by (2.7), (2.8) (for i = 3),
(2.14), (2.23), and (2.25), we have in turn

‖x1 − x∗‖ = ‖ψ(x0, y0, z0)− x∗‖
≤ g3(‖x0 − x∗‖, ‖y0 − x∗‖, ‖z0 − x∗‖)‖x0 − x∗‖
≤ g3(‖x0 − x∗‖, ‖x0 − x∗‖, ‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < ρ∗; (2.26)
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so (2.18) holds for for n = 0 and x1 ∈ U(x∗, ρ∗). If we simply replace x0, y0, z0, x1
by xk, yk, zk, xk+1 in the preceding estimates, we complete the induction for (2.16)–
(2.18). Then, in view of the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < ρ∗, (2.27)

where c = g3(‖x0−x∗‖, ‖x0−x∗‖, ‖x0−x∗‖) ∈ [0, 1), we deduce that limk−→∞ xk =

x∗ and xk+1 ∈ U(x∗, ρ∗). Let y∗ ∈ D1 be such that F (y∗) = 0. Set T =
∫ 1

0
F ′(x∗+

θ(y∗ − x∗))dθ. Then, using (2.10) and (2.19), we get

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0

w0(‖y∗ − x∗‖)dθ ≤
∫ 1

0

w0(θr)dθ < 1; (2.28)

so T−1 ∈ L(B2,B1), and from the identity

0 = F (y∗)− F (x∗) = T (y∗ − x∗). (2.29)

We conclude that x∗ = y∗ completing the uniqueness of the solution part and the
proof of the theorem. �

Remark 2.2.

1. In view of the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + w0(‖x− x∗‖),

we can set

v(t) = 1 + w0(t)

or v(t) = 2.
2. The results, obtained here, can be used for operators F satisfying au-

tonomous differential equations [2, 3, 11] of the form

F ′(x) = G(F (x)),

where G : R −→ R is a continuous operator. Then, since F ′(x∗) =
G(F (p)) = G(0), we can apply the results without actually knowing p.
For example, let F (x) = ex − 1. Then, we can choose: G(x) = x+ 1.

3. The local results, obtained here, can be used for projection methods such
as Arnoldi’s method, the generalized minimum residual method (GM-
RES), the generalized conjugate method(GCR) for combined Newton/finite
projection methods, and in connection to the mesh independence principle
can be used to develop the cheapest and most efficient mesh refinement
strategies in discretization studies [2, 3].

4. If w0(t) = L0t and w(t) = Lt, then, the parameter rA = 2
2L0+L

was shown

by us to be the convergence radius of Newton’s method [2,3]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, . . . (2.30)

under the conditions (2.11)–(2.14). It follows, from the definitions of
radii r, that the convergence radius r of these preceding methods cannot
be larger than the convergence radius rA of the second order Newton’s
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method (2.30). As already noted in [2, 3] rA is at least as large as the
convergence ball given by Rheinboldt [18]

rR =
2

3L
.

In particular, for L0 < L, we have that

rR < rA

and
rR
rA
→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rhein-
boldt’s. The same value for rR was given by Traub [23].

5. It is worth noticing that the studied methods are not changing when
we use the conditions of the preceding theorems instead of the stronger
conditions used in [1,4–27]. Moreover, by the preceding theorems we can
compute the computational order of convergence (COC) [24] defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence without resorting
to the computation of higher order derivatives appearing in the method
or in the sufficient convergence criteria usually appearing in the Taylor
expansions for the proofs of those results.

3. Applications and numerical examples

Application 3.1 Let us specialize method (1.3) by setting B1 = B2 = Ri, α =
1,

ϕ(xk, yk) = yk−τ̄kF ′(xk)−1F (yk) and ψ(xk, yk, zk) = zk−αkF ′(zk)−1F (zk). (3.1)

Then, method (1.3) reduces to method (5.3) in [26] defined by

yk = xk − F ′(xk)−1F (xk),

zk = yk − τ̄kF ′(xk)−1F (yk), (3.2)

xk+1 = zk − αkF ′(zk)−1F (zk).

It was shown in [26, Theorem 1, Theorem 5] that if operator F is sufficiently
many times differentiable and F ′(x) is continuous on D,F ′(x∗)−1 ∈ L(B2,B1),
then, for x0 sufficiently close to x∗, method (1.3) converges with order p ≥ 2 if
and only if τ̄k and αk satisfy certain conditions involving hypotheses on higher
derivatives for F. Further special choices of τ̄k and αk are given in the following
table leading to other pth order methods.

Application 3.2 Let B1 = B2 = Ri, ϕ(xk, yk) = ϕp(xk, yk), and ψ as in (3.1)
and (3.8), where ϕp denotes the iteration function of pth order. Then, again
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Table 1. Comparison table for pth order methods.

methods Order τ̄k αk
1 Cordero et.al. [4] 4 2l − F ′(xk)−1F (yk)
2 Sharma [19] 4 3l − 2F ′(xk)

−1[yk, xk;F ]
3 Grau-Senchez et.al. [9] 4 (2[yk, xk;F ]− F ′(xk)−1)F ′(xk)
4 4 rk = I − 3

4
(sk − I) + 9

8
(sk − I)2

Sharma et.al [21] sk = F ′(xk)
−1F ′(yk)

rk = 1
2
(−I + 9

4
F ′(yk)

−1F ′(xk) + 3
4
F ′(xk)

−1F ′(yk)
5 Gran-Sanchez et. al [9] 5 τk = 1

2
(I + F ′(yk)

−1F ′(xk) F ′(yk)
−1F ′(xk)

Xiao et.al [25]
6 Cardero et.al [12] 5 2(I − F ′(xk)−1F ′(yk))−1 F ′(yk)

−1F ′(xk)
7 Xiao et.al [25] 5 yk = xk − aF ′(xk)−1F ′(xk) −I + 2( 1

2a
F ′(yk) + (1− 1

2a
)F ′(xk))

−1F ′(xk)
τ̄k = ((1− 1

2a
)I + 1

2a
F ′(xk)

−1F ′(yk))
−1

Sharma et.al [20] a = 1
2
, (F ′(yk)

−1F ′(xk)− I)θk 2F ′(yk)
−1F ′(xk)− I

8 Sharma et.al [22] 6 3I − 2F ′(xk)
−1[yk, xk;F ] 3I − 2F ′(xk)

−1[yk, xk;F ]
9 Xiao et.al [25] 6 yk = xk − aF ′(xk)−1F ′(xk) (1− 1

a
)I + 1

a
F ′(yk)

−1F ′(xk)
rk = 1

2
(−I + 9

4
F ′(yk)

−1)F ′(xk) + 3
4
F ′(xk))

−1F ′(yk)
(2[yk, xk;F ]−1 − F ′(xk))−1F ′(xk) (2[yk, xk;F ]− F ′(xk))−1F ′(xk)

10 Grau-Sanchez et.al [9] 6 (2[yk, xk;F ]− F ′(xk)−1)F ′(xk) 2[yk, xk;F ]−1F ′(xk)− I
11 Cordero et.al [4] 6 a = 1

a
, (F ′(xk)− 2F ′(yk))

−1(3F ′(xk)θ
−1
k − 4F ′(xk) (F ′(xk)− 2F ′(yk))

−1F (xk)

according to Theorem 6 in [26], the method (1.3) has order of convergence p+ 2
under certain conditions of αk. As an example, we present the choices given by

αk =
1

2
(5I − 3F ′(xk)

−1F ′(yk)), (3.3)

αk = 3I − 2F ′(xk)
−1F ′(yk), (3.4)

αk = F ′(xk)
−1F ′(yk), (3.5)

αk = ((1− 1

α
)F ′(xk) +

1

α
F ′(yk))

−1F ′(xk), (3.6)

αk = ((1 +
1

α
)F ′(yk)−

1

a
F ′(xk))

−1F ′(yk) (3.7)

(see [2, 3, 26]). Let us consider the special case of method (1.3) given by

yk = xk − F ′(xk)−1F (xk),

xk+1 = yk − F ′(yk)−1F (yk).

Then, we have in turn

‖yk − x∗‖ ≤ ‖F ′(xk)−1
∫ 1

0

[F ′(x∗ + θ(xk − x∗))− F ′(x∗)](xk − x∗)dθ‖

≤
∫ 1

0
w((1− θ)‖xk − x∗‖)dθ‖xk − x∗‖

1− w0(‖xk − x∗‖)
= g1(‖xk − x∗‖)‖xk − x∗‖
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and

‖xk+1 − x∗‖ = ‖F ′(yk)−1
∫ 1

0

[F ′(x∗ + θ(yk − x∗))− F ′(x∗))(yk − x∗)dθ‖

+‖F ′(yk)−1F ′(x∗)‖(‖F ′(x∗)−1(F ′(xk)− F ′(x∗))‖
+‖F ′(x∗)−1(F ′(yk)− F ′(x∗))‖)‖F ′(xk)−1F ′(x∗)‖‖F ′(xk)−1F (yk)‖

≤
∫ 1

0
w(θ‖yk − x∗‖)dθ‖yk − x∗‖

1− w0(‖xk − x∗‖)

+
(w0(‖xk − x∗‖) + w0(‖yk − x∗‖))

∫ 1

0
v(θ‖yk − x∗‖)‖yk − x∗‖)dθ

1− w0(‖yk − x∗‖)
≤ g2(‖xk − x∗‖)‖xk − x∗‖;

so we can choose α = 1, g1(t) =
∫ 1
0 w((1−θ)t)dθ

1−w0(t)
,

g2(t) =

∫ 1

0
w(θg1(t)t)dθg1(t)

1− w0(g1(t)t)
+

(w0(t) + w0(g1(t)t))
∫ 1

0
v(θg1(t)t)g1(t)dθ

(1− w0(g1(t)t))(1− w0(t))
,

and ρ∗ = min{ρ1, ρ2}, where ρ1 and ρ2 are smallest positive solutions of equations
h1(t) = 0 and h2(t) = 0, respectively. Using the above choices, we present the
following examples.

Example 3.1. Let us consider a system of differential equations governing the
motion of an object and given by

F ′1(x) = ex, F ′2(y) = (e− 1)y + 1, F3(z) = 1

with initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F,F3). Let B1 =
B2 = R3, D = Ū(0, 1), p = (0, 0, 0)T . Define function F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is defined by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that, using the (2.11)–(2.14) conditions, we get, for α = 1, w0(t) = (e −
1)t, w(t) = e

1
e−1 t, and v(t) = e

1
e−1 . The radii are

ρ1 = 0.3827, ρ2 = 0.2523 = ρ∗.

Example 3.2. Let B1 = B2 = C[0, 1], the space of continuous functions defined
on [0, 1], be equipped with the max norm. Let D = U(0, 1). Define function F
on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.8)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ for each ξ ∈ D.
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Then, we get that x∗ = 0; so w0(t) = 7.5t, w(t) = 15t, and v(t) = 2. Then the
radii are

ρ1 = 0.0667, ρ∗ = ρ2 = 0.0439.

Example 3.3. Let B1 = B2 = C[0, 1] and D = Ū(0, 1). Consider the equation

x(s) =

∫ 1

0

T (s, t)(
1

2
x(t)

3
2 +

x(t)2

8
)dt, (3.9)

where the kernel T is Green’s function defined on the interval [0, 1]× [0, 1] by

T (s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t,

(3.10)

Define operator F : C[0, 1] −→ [0, 1] by

F (x(s)) =

∫ 1

0

T (s, t)(
1

2
x(t)

3
2 +

x(t)2

8
)dt− x(s). (3.11)

Then, we have

F ′(x)µ(s) = µ(s)−
∫ 1

0

T (s, t)(
3

4
x(t)

1
2 +

x(t)

4
)µ(t)dt. (3.12)

Notice that x∗(s) = 0 is a solution of F (x(s)) = 0. Using (3.10), we obtain

‖
∫ 1

0

T (s, t)dt‖ ≤ 1

8
. (3.13)

Then, by (3.12) and (3.13), we have that

‖F ′(x)− F ′(y)‖ ≤ 1

32
(3‖x− y‖

1
2 + ‖x− y‖). (3.14)

We have w0(t) = w(t) = 1
32

(3t1/2 + t) and v(t) = 1 + w0(t). Then the radii are

ρ1 = 19.4772, ρ2 = 0.3889;

so we choose ρ∗ = 1 since, by (2.15), Ū(x∗, ρ∗) ⊂ D [4–27].
In view of (3.14), earlier results requiring hypotheses on the second Fréchet

derivative or higher cannot be used to solve equation F (x(s)) = 0.
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