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1 Introduction

Let E be a real Banach space with its dual space denoted by E*. The norm of E and
E* are represented by || - ||. We also write (u, j) instead of j(u) for j € E* and
u € E. In this paper we discuss the problem of approximately solving the non linear
ill-posed equation

Fu=f feE, (1.1)

where F : D(F) € E — Eisanm-accretive, Fréchet differentiable and single valued
nonlinear mapping. The Fréchet derivative of F at u is denoted by F’(u). Note that F
is an m-accretive and single valued in E means, F has the following properties [8,22]

1. (F(u) — F(v), J(u —v)) > 0, where J is the dual mapping on E.
2. R(F + AI) = E for each A > 0 where R(F) and I denote the range of F and the
identity mapping on E, respectively.

Therefore, if F is m-accretive, then for any fixed f € E and for all @ > 0 the equation
Fu)+a( —up) = f (1.2)

has a unique solution u,, [1-7,22] where ug is the initial guess of the exact solution u
(which is assumed to exist) for (1.1). But in practice, one has to deal with noisy data
£? instead of f with,

I/ = fll=s—0. (1.3)

So (1.2) must be changed to a practical form given by,
F(u) +a(u —ug) = f°. (1.4)

The above equation has a unique solution u(‘i as F is m-accretive in E. This unique
solution ui is called the Lavrentiev regularized solution [9,10,15,18,20,21] of (1.1).

In earlier studies such as [2,5,6,8,22,23], the order of convergence for ||ug |
is obtained under the assumption

uo— i = F'(l)z, (1.5)
for some z € E. In this study we consider the Holder type source condition
uo—i = F'(ug)’z 0<v<l, (1.6)

where z € E and obtain an error estimate for ||ug — #|| in a Banach space setting.
Since F is nonlinear, most of the solution methods for (1.4) are iterative. In this study
we look at the iterative method considered in Xiao and Yin [16] for approximating
solution # of the equation F(u) = 0, where F : R" — R", is properly modified to
approximate u9 . In [17], Xiao and Yin considered the method defined iteratively for
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k=0,1,2,...by
ve = ug —aF’ ()~ F (uy)
1]/1 1 -
wk=uk——{(—F/(vk)-i-(l——)f”(uk)) +F/(Mk)_l}F(uk),
2 a a
1 / 1 / !
Uk+1 :wk_{;F (vk)+<1—;)F (Mk)} F (wy) .

In [17], Xiao and Yin proved that the method defined above is well defined and
converges cubically to i.

Recall that a sequence uy in E with lim u; = # is said to be cubically convergent
to i, if there exists positive reals C and y such that for all k € N

N —i < Ce 7™, (1.7)

For a detailed discussion of convergence rates, see [11,13].
We modified the above method of Xiao and Yin [17] to solve the ill-posed Eq. (1.1).

Precisely, we consider the iteration defined for eachk =0, 1, 2, ... by
ve = ug — aR}, () Ry (ur) (1.8)
1 1, 1 / ! / -1
Wk = Uk = ERQ (ve) + 11— p R, (ug) + Ry, (ug) Ry (uy) ,
(1.9)
l / 1 / !
Upy] = Wk — ;Ra (ve) + (1 - P R, (ur) Ry (wy) , (1.10)
where,
Ry (u) := F(u) + o(u — ug) — f°, (1.11)
R),()h := F'()h + ah, (1.12)

where o > 0 is the regularization parameter and the scalar parameter a will be defined
later.

In this study we use assumptions only on the first Fréchet derivative of F to obtain
the error estimate for ||uy — it || under the general source condition (1.6) for0 < v < 1.
The advantage of the source condition (1.6) is that it depends on the known .

The rest of the paper is organized as follows. The convergence analysis of the
iterative scheme is given in Sect. 2. Error estimate using Holder-type source condition
is given in Sect. 3. In Sect. 4 we present an algorithm for implementing the adaptive
rule. Section 5 contains a numerical example. The paper ends with a conclusion given
in Sect. 6.
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438 C. D. Sreedeep et al.

2 Iterative method and convergence analysis

In order for us to present the convergence analysis, it is convenient to introduce some
notations. Let,

ex = uy — ui, 2.1
G =vp —ul, (2.2)
e = wy —ul. (2.3)
Letr = |lu — ug|| and ro < 2r + 1. Next, we define some scalar parameters: For
0 < ko < YI=2 fet
) 1 ko,a D
R=—— C"=|1—a|+ako+ako(l+ko)R,
1 — koro
o folCuatil=al 5 1
a 1—Crg
- RC  Rko
C =ko+ (1+4ko) T+T and

A =CCR (1 +k06) + koC2.

The preceding constants depend on kg, ro and a. We shall replace them with constants
depending on k( and a which constitute part of the initial data. Choose r( € (O | )

» 2ko
Then, R < ﬁl := 2. Define

C’i‘o'a = |1 —a| 4+ aky + 2ako(1 + ko),
 kolC + (1 —al]

a

Cy

and

1

Rj=———.
1—-Cirg

Then, we have
ckoa < C]fo’a and C < Cy. Choose rg € (0, min {ﬁ, %}) Then, we have

R§§1§ﬁ1=2.

Moreover, define C1 = ko + (1 + ko) (C1 + ko) and Ay = 2C1C1 (1 +koC1) + koC?.
Then, we have

6561
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and

5 (mm{a,i o __}) (2.4)

0<a<—— (2.5)

Furthermore, we assume that

| 5 1 5 1 5 1 s 1 8
r<rp=-mnyl—-—— ——— — ——, — — —, — — — (2.6)
2 a kg o Ci o C o A «
where § is as in (2.4). Notice that r; depends only on the initial data «, a, ko.
Remark 2.1 Note that by (2.5) and (2.6) we have
1 1 1 1
ro < o 1= min{l, . —} and C% <1, 2.7
ko C1 C; M
We shall assume that
0 in{2r; + 1, 1 ! ! (2.8)
< rp < min{2r ST, — — ¢ - .
0 ! % 2%k’ 2C,

Notice that o depends on «, a and k. Next, we see that the Lipschitz-type constant
ko depends on D(F) which is part of the initial data.

By B(z_u, d), we denote the open ball in E with center w € E and radius d > 0.
The ball B(w, d) denote the closure of B(w, d). The following assumption is used to
prove the results in this paper.

Assumption 2.2 (c.f. [2,10,15,20,21]) There exists a constants 0 < [y, /| < @
such that forevery u1, up € D(F)andv € E there exists an element ® (12, u1,v) € E
such that [F'(u2) — F'(u1)]v = F'(u1)® (2, uy, v), [|®(u2, uy, v)|| < lollv|llluz —

wrll, 5@ o + tv, uz, v)|| < li|lv]| for z € [0, 1] and B(uf,, ro)  D(F).

Let kp = max{ly, 2/1}. Notice that ky = ko(D(F)), i.e., kg depends on the initial
data. Then, knowing the rest of the initial data @ and & we can compute all the preceding
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440 C. D. Sreedeep et al.

introduced parameters. Since F is m-accretive and Fréchet differentiable on E, for
any real number @ > 0 and u € E, F'(u) + oI is invertible (see [22]),

1
ICF () +al)~ 1| < - 2.9)
and
I(F' () + D)™ ' F'w)| < 2. (2.10)
Let,
R (ug) = F(uy) + a(ug — ug) — f° (2.11)

and T' = F'(u®) + al. Then since Ry (ud) = Fu’) + a(® — ug) — f° = 0, we
have by Assumption 2.2,

Ry (uy) = F (uy) — F (ui) + « (uk — ui)

= /01 F' (u} + tex) exdt + avey

= [F (i) + al]ex + /0 1 [F (ul + tex) — F' ()] exds
=T{e+T! /01 [F' (u} + tex) — F' (ud)] exdt)

= T{ex + fol TV (ud) ¢ (ud, + tex, ul), ex) dt). (2.12)

Differentiating (2.12) with respect to e; we obtain,

1
f F—IF/(ug)¢(u;i+tek,u§,ek)dt”(h). (2.13)

R(/x(uk)(h) =T {I + i {
d 0

ek
Let My (er) = fol F_IF/(ug)qﬁ(ug + tey, ug ex)dt and My = ddiMk(ek), then
R, (ux)(h) =T {I + M} (h). (2.14)

Suppose that uy € B(ug, ro). Then, we have

H ddi {¢> (ui + tey, ui, ek)H dt}

1
. d
1M = Hfo Zor {F”F’ (ug) ¢ (ud +zek,ui,ek)dr}

1
< [ |rte )
0
< 2y llex 1< kollex|
< koro < 1. (2.15)
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The last inequality follows from (2.8) and Assumption 2.2. Therefore (I + My) is
invertible and its inverse is given by

(I+M) " =1— M+ M- (2.16)
So by (2.14), we have
R ()" = (I—Mk+M,§m)r—1. (2.17)

Now by replacing ex by é; and uy by vy in (2.13) we get

1
R,(v)(h) =T {1 + dfé {/ PV (ud) ¢ (ud + téy, ug,ék)dt” (h). (2.18)
k 0

We obtain again by (1.8),

é = ex — aRl,(ux) " Ro(uy)

=ek—a{{I—Mk+M,f~~}F‘1F{ek+/
0

1
= —a)ek—a/ Fle/(ui)(/b(ui—l—tek,ui,ek)dt—i-a[l;lk (1 —Mk+1\7l,g~-~>ek
0

1
TV (u) @ (ul, + ter, ul, ex) dt}}

1
+aM; (I — My +M,%)f r-'r (uz)qﬁ(ug +tek,ug,ek)dt.
0

Therefore, we have
! 1 B s B
1l = (1 — a)ex — afo FUF (ul) 6 (ud + tex, i, ) di
+ably (1= M+ M- ) e

1
+aMj (1 — My + M - )/ PVF (ud) ¢ (ud, + ter. ul), ex) dt|

0
| M| 5 1Ml

< |1 —alllex]l + akollex||* + allexl| ———=— + akollex||* ———=—

L= Ml 1— || My |
< |1 — alllex|l + akollex|I* + allexl|*ko R + ak, llex|I*ko R
< llexll {11 = al + ako + ako(1 + ko) R

ki

= [lex[|C{"“. (2.19)

In the last, but one step we use the fact that ||ex|| < ro < 1. Therefore by (2.19) and
(2.7) we get v € B(ug, r0).
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442 C. D. Sreedeep et al.

Let Ny (&) = fol TVF )l + t(éx), ud, é)dt and Ny = %Nk(ék). Then,
R, (vi)(h) = T{I + Ni}(h). (2.20)

We also have,

\
4

déx

1
= [ e
0

< 2h|lékll = kollékll-

1
|9l = H/ AT F (1) 6 + 161 1)
0

{¢ (ui + téx, ui, ér)

d
déy

Let Hy = 1R (v) + (1 — HR] (up).

Then,
1 _ 1 _
Hy =T {5{I+Nk}+ (1 - 5) {I+Mk}}

1 - 1\ -

:F{I+—Nk+<1——> k}
a a

=T {l + P} (2.21)

where P, = 51\_& + (- al)A;Ik. Now,

1 1\ -
I Pell = Il =Nk + <1 - —) M|
a a

léxllko —la—1]|
< + llex llko
ko,a
koC{"" + |a — 1lko
< Jlexl { 1
ko [Cf 4+ 11— al|
<ry =roC; < 1. (2.22)

a

The last inequality follows from (2.7). This implies H is invertible and its inverse is

given by:
o' ={1- P+ P2 T (223)
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From (1.9) we have

i fe :
G = e — 5 | B+ Ro )™} R )

=ek—%“(1—Pk—i—Pk2~-~>+<I—Mk+1\7I,3-~->}F_lf

1
x {ek—i-/ F_IF’(ufi)¢>(u + teg, uy, k)dt}}
0

1
1
=—/ Fle’(ug)qS(ug—i—tek, o )dt—i—sz(I—Pk—i-sz-n)ek
0
1 - _ _
+§Mk(I_Mk+M]%"')€k
1 1
+5Pk<]—Pk+sz“~)/ F_IF/(ui)([)(Mi+l€k,ug,€k)dt
0

1
+l]\;[k (I —Mk —|—]\;[Ig)/ r-'r’ (ug)qb(ug —i—lek,ug,ek)dt.
0

2
Thus
Il </ I (1) N+ e ) Wt + S herli
1 M,
+2||ek||%
% ![ﬁﬂk”/ IT™VF (ud) I (S + tex, ud, ex) lldt
él—nﬂknf T F () 16 (el + tex, ud, ex) llde

<||ek|| {ko+2C1R1+ k0R1+k0 C1R1+ koRl}

= Cillex*. (2.24)

Therefore, by (2.24) and (2.7) we get wy € B(ug, ro)-
Next, using the preceding notation we prove our main result of this section.

Theorem 2.3 Let R, be as in (1.11) and suppose that uy, v and wy € B(ug, r0).
Further let the first derivative of F exists in B(u‘;, ro). Then uy4y € B(u‘;, ro) and
the iteration defined in (1.8)—(1.10) converges cubically to u(‘i. Moreover

8 8 —y3k
10—l = 0 (7).

where y = —In(]leo]]).
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444 C. D. Sreedeep et al.

Proof Since, ug € B(ug, r0), by (2.19), (2.24) and Remark 3.2, we have vg, wy €
B(u‘;, ro). Suppose uy € B(ui, ro). Then by (2.19), (2.24) and Remark 3.2, we have
Vg, W € B(ug, ro). Then from (1.8)—(1.10), we have

eyl = € — {Hi) ™' Ry (wy)
=e‘k—{I—PkJrP,f..-}r*lr{e‘kJr/
0

1
= —/ PUF (1) ¢ (ud + t1éil, ul, &) i) + P (1 — P+ Pk2~~->e_k
0

1
PVF (ud) ¢ (ul, + tlexl, ul, ﬁ’_k)dt}

1
+P (1 — P+ sz...>/ TV (u) @ (ul, + tlék), ul, éx) dt.
0
Thus,

Il Pl _ Il Pl
———— +kollélP ———
L= 1Pl L= 1Pl
< koC?|lex|I* + llex IPC1C1 R + kollex |’ C3C1 Ry
< llexl? {Clélél (1 +koé1) +koC‘12}
= Aillex . (2.25)

- 2 -
lek+1ll < kollexll” + llexl

Therefore by (2.25) and (2.7) we get ug4+1 € B(ug, r0).
Repeated application of (2.25) above leads to

*_1 " For
lek+1ll < Ay ? leoll” = Ay 2 e77, (2.26)

where y = —log|leg]|. m]

3 Error estimates using Holder type source condition

Let ug and u, be the unique solution of (1.4) and (1.2) respectively. The following
results can be found in [22],

)
B
o~ Ul = 5 (3.1
and

lug — itll < llug — all. (3.2

By (2.1), F'(u) is positive type, so for 0 < v < 1, we have (see [12, p. 287]),

sin v

F'(u)'w = /-00 t"(F'(u) + t1) > F'(u)wdt. (3.3)
0
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Lemma 3.1 (c.f. [14]) Let F : E — E be a Fréchet differentiable and monotone
operator. Then foru € E and0 <v < 1,

la(F + o)™ F'w)"| < 4Sin:£”) <1 - v) o’ (3.4)

Proof By (3.3) we have

(F' +al)™ ' F'(u)'w = Si;’j e / TP E @+ al) " F ) + D)2 F wywd:
0

. P
= SIE:U[/ 1" (F'u) + D)™ (F'(u) + 1) F' (wwdt
0

+ / £ (F' () + o)~ (F'(u) + 1) "2 F wywdr]
o

sinmv
= [H| + H>], (3.5)
TV

where Hy = [ t"(F'(w)+aD)""(F'(u)+t1)">F'(u)wdt and H, = fp°° " (F'(u)+
al)"V(F'(u) 4+ tI)">F'(u)wdt. So, by (1.11) and (1.12) we have

| Hy |l = H/pt”(F’(u) +tD)72(F () + o)~ F (wywdt
0

p
< /0 N F ) + DN F ) + D7 VF @) |II(F () + o) w)\de

P tv—l ,O‘)
< 2/ lwilds = 2w (3.6)
0 o vo

and

I H2l =

/OO t(F'(u) +tD™2(F + o) ' F (wwdt
P

(o]
<2 f =2 |wlldt
o

v—1

:2'0

T vl (3.7)
-V

Thus by (3.5), (3.6) and (3.7), we have

sin(v v v—1
IF + o)™ F ) w]) < 2520 [”— 4+ 2 } lwl.
TV va 1—v

Now the result follows by taking minimum of the right side of the above expression
s Vo
(l.e., p = m) m}

@ Springer
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Remark 3.2 Note that for v = 1, we have by (2.10),
loe(F'(u) + o)™ F'(w)|| < 2e. (3.8)
Therefore, by Lemma 3.1 and (3.8), for 0 < v < 1 we can write
la(F' () + )™ F'w)" || = O(a). (3.9
Theorem 3.3 Let Assumption 2.2 and (1.6) hold. If 6kor < 1, then

lug —ill < Ca’,

S ()" I

v R sin T v v v
where C = 42 T—3kor O<v<l <C; :={8 v ((171;)) lzll O<v<l
2 = 4

Proof We have
F(ug) — F(i) + o(ug — up) = 0.
Thus by mean value theorem of integral calculus, we have
(F'(uo) + al)(ug — it) = a(ug — )
— /OI[F’(& +t(ug — 1)) — F'(up)(uy — ti)dt.
Therefore by (1.5), (3.9), Assumption 2.2, (3.2), we have in turn
lug = il < llee (F' (o) +acl) ™" F' ()" vl
1 (F' (o) +ad) ™ /(;I[F’ (@ +1(ug — ) = F (uo)] (uq — ) dt||
< éot”+2/01 o (i +t (uq — @t) , uo, uq — it) dt||
< Ca" + 2ko <|Iﬁ — uoll + %Ilua - ﬁll) llue — il

A . 1 N n
< Ca” +2ko (llu —uoll + Elluo - Mll) llug — ull

< Ca" +3kolli — uollllue — i
< Cra” + 3kor|luq — ill. O

Combining Theorems 2.3 and 3.3, we have the following:
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Theorem 3.4 Let uy be as in (1.8) and let the assumptions in Theorems 2.3 and 3.3
be satisfied. Let

8
ks := min {k L3 < —}. (3.10)
o
Then we have the following;
.
lug —ull < Cy |« +5 , (3.11)
- #r A
where C; = max {Al L Cl} .
Note that the error oV + g in (3.11) is of optimal order if a5 := «(5) satisfies,
(x;‘w = 4. Thatis ag = (Sﬁ. Hence by (3.11) we have the following Theorem.

Theorem 3.5 Let the assumptions in Theorem 3.4 holds. For § > 0, let o := a5 =
1
8T+ . Let kg be as in (3.10). Then

lug — itll = O@ST).

In order to obtain the above order, without knowing v, we use the adaptive selection of
the parameter strategy considered by Pereverzev and Schock [19], modified suitably

for the situation for choosing the parameter . For convenience, take u; := uy,. Let
ie{0,1,2,...,N}and o; = p'ag where u > 1 and g > 4.
Let
oy _0
[:=max{i:qa; < o < N and 3.12)
i

-8
k::max{i:”ui—uj” §4C1—,j=0,1,2,...,i—1} (3.13)
aj

where C1 is as in Theorem 3.4. Now we have the following Theorem.

Theorem 3.6 (cf. [10]) Assume that there existsi € {0, 1, ..., N} such that a;’ < g.

Let assumptions of Theorem 3.4 be fulfilled, and let | and k be as in (3.12) and (3.13)
respectively. Then | < k; and

i — ugll < 6C 8T .
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448 C. D. Sreedeep et al.

Proof To prove [ < k, it is enough to show that, for each i € {1,2,... N}, ozl.” <
S — lu; —u;| <4CL, Vj=0,1,2,...i — 1. For j < i, we have
i J

lwi —wj I < lwi =@l +0id—uj

- ) _ v )
o o
) )
<2C1—+2C;—
(07 Olj
)
<4C|—.
aj
Thus the relation / < k is proved. Observe that

i — e 1= — g I+ 1wk — g |,

where

R . 8 _ 8
li—u) < C <a;’+—) <2C,—.
o o

Now since [ < k, we have

S
| ug —u || <4Cr—.
o

Hence
. _ 4
Il it —ug |<6C—
aj

1
It follows again, since as = 6 ™+ < 41 < pay, that

4 Implementation of adaptive choice rule

Finally the balancing algorithm associated with the choice of the parameter specified
in Theorem 3.6 involves the following steps:

e Choose ag > O such that § < «p and v > 1.
e Choose o;:=p'ag,i =0,1,2,..., N.
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4.1 Algorithm

Seti = 0.

Choose k; := min {k : e_V3k < 0%
Solve u; := uy,; by using the iteration (1.8).

If u; —uj| > 46_’10%_,j < i, then take k = i — 1 and return uy.

Else seti =i + 1 and go to 2.

M

5 Numerical examples

We apply the algorithm by choosing a sequence of finite dimensional subspace (V)
of L2(0, 1) with dim Vy = M + 1. Precisely we choose V) as the linear span of
{vi, v2,v3, ..., vp41} Where v;,i = 1,2,..., M + 1 are linear splines in a uniform
grid of M 4+ 1 points in [0, 1].

Example 5.1 (see [15, Sect.4.3]) Let F : D(F) € L%*(0, 1) — L?(0, 1) defined by

1
F(u) := / k(t, s)u’(s)ds,
0

where

_Jd=0ns, 0<s=<t=<1
k(t’s)_{(l—s)t, 0<r<s ’

Then for all u(¢), v(t) : u(t) > v(t) :
1 1
(F(u) — F(v),u — v) = / U k(t, s)(u® — v3)(s)dsi|
0 0
X (u —v)()dt > 0.

Thus the operator F is monotone. The Fréchet derivative of F' is given by

1
F(ww = 3/ k(t, s)uz(s)w(s)ds. 5.1
0

Note that for u, v > 0,

[v2(s) — u?(s)]w(s)ds
u?(s)

1

[F'(v) — F'(w)w = 3/ k(t, s)u>(s)
0

= F'(u)®(, u, w)
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450 C. D. Sreedeep et al.

2 2
where ® (v, u, w) = [";—'2‘]“’ Observe that

2 _ .2 _
D (v, u, w) = v 2” lw _ [u+t v][z ulw
u u

and

d d [Ztuw + t2w2] w
[—— @ +tw, u,w)| =|———F——
dw dw u

Atuw + 3t2w?
u2
dtu + 3t%w '
u2

=

’IIwII-

u+v
u2

,2\

4tu+312w
-2

So Assumption 2.2 satisfies with ky > max { } . In our compu-

~ -3
tation, we take f(t) = W and f% = f + 8. Then the exact solution
u(t) = sin(mwt).

We use

3[tn? — 1272 + sin® (1)
472

uo(t) = sin(mwt) +

as our initial guess, so that the function uy — # satisfies the source condition
ﬁ2
A / A
ug—u=q¢(F (up —
( @) 4ra

where ¢(A) = A. Thus we expect to obtain the rate of convergence O ((8)%) .
We choose a = 1.5, ¢p = wué and u = 1.01. The results of the computation are

presented in Table 1. The plots of the exact solution and the approximate solution
obtained are given in Fig. 1.
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0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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0 01 02 03 04 05 06 07 08 09 1 "0 01 02 03 04 05 06 07 08 09 1
6 =.004 6 =.002

Fig. 1 Curves of the exact (lower curve) and approximate (upper curve) solutions with M = 1024

6 Conclusion

In this paper we are producing an extended Newton iterative scheme that converges
cubically to the solution which uses assumptions only on first Fréchet derivative of the
operator. We obtained an error estimate under a general Holder type source condition.
Also we considered the adaptive parameter choice strategy considered by Pereverzev
and Schock [19], for choosing the regularization parameter.
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