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Abstract Themesh independenceprinciple states that, ifNewton’smethod is used to solve an
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Introduction

We are interested in the problem of locating a solution x∗ of equation

F(x) = 0. (1)

Here, X, Y denote Banach spaces, D ⊆ X is open, convex and F : D ⊆ X −→ Y is
differentiable in the sense of Fréchet.

Newton’s method is defined for n = 0, 1, 2, . . . , by

xn+1 = xn − F ′(xn)−1F(xn), (2)

converges quadratically to x∗ under certain conditions. However the iterates cannot be found
easily in general. That is why we introduce a family of discretized equations

Ph(y) = 0 (3)

indexed by some positive real number h with Ph : Xh −→ Yh and Xh, Yh being of finite
dimension. Define the discretization on X by bounded linear operators Lh : X → Xh, and
introduce the family of discretized iterations by

yh
0 = Lh(x0), yh

n+1 = yh
n − P ′

h(yh
n )−1Ph(yh

n ) (n ≥ 0). (4)

In the elegant paper [3] they showed the relationship between distances ‖xn+1−xn‖, ‖yn
n+1−

yn
n ‖, ‖xn − x∗‖, ‖yh

n − y∗
h‖ (n ≥ 0) and the connection between the two iterations.

One of the basic assumptions was the Lipschitz continuity of operators F ′, P ′
h(h > 0).

Here instead we use a combination of Lipschitz and center-Lipschitz conditions. This way
the error bounds are improved, the minimum n for which ‖xn − x∗‖ ≤ ε holds can be smaller
and the radius of convergence larger [2,3,7,9,12,13,16–22,25,26,28,30–33]. Other studies
can be found in [1–33].

Mesh Independence Principle

Let U (v, ξ) and Ū (v, ξ) stand respectively for the open and closed balls in X with center
v ∈ X and of radius ξ > 0. Let x0 ∈ D and R > 0. Define

R0 = sup{t ∈ [0, R) : U (x0, t) ⊆ D}
We will need the following semilocal and local convergence theorems.

Theorem 1 Let F : U (x0, R0) ⊆ X → Y be a differentiable operator in the sense of
Fréchet. Assume the existence of parameters n > 0, �0 > 0 such that

F ′(x0)
−1 ∈ L(Y, X), (1)

‖F ′(x0)
−1F(x0)‖ ≤ η (2)

and

‖F ′(x0)
−1[F ′(x) − F ′(x0)]‖ ≤ �0‖x − x0‖. (3)

Moreover, assume the existence of � > 0 such that

‖F ′(x0)
−1[F ′(x) − F ′(y)]‖ ≤ �‖x − y‖ for all x, y ∈ U (x0, R0) ∩ U

(
x0,

1

�0

)
:= U,

(4)
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Lη ≤ 1 (5)

and

t∗ ≤ R0, (6)

where

t∗ = lim
n→∞ tn ≤ t∗∗

t∗∗ =
[
1 + �0η

2(1 − α)(1 − �0η)

]
η ≤ 2bη,

L = 1

4

(√
�0� + 4�0 +

√
��0 + 8�20

)

b = 1

2

[
1 + 1

2(1 − α)

]
(7)

and

α = 2�

� + √
�2 + 8�0�

.

t0 = 0, t1 = η, t2 = t1 + �0(t1 − t0)2

2(1 − �0t1)

tn+2 = tn+1 + �(tn+1 − tn)2

2(1 − �0tn+1)
(n ≥ 1). (8)

Then, limn−→∞ xn = x∗ ∈ Ū (x0, t∗) for some x∗, F(x∗) = 0, so that the following
items hold

‖xn+2 − xn+1‖ ≤ �‖xn+1 − xn‖2
2[1 − �0‖xn+1 − x0‖] ≤ tn+2 − tn+1 (9)

and

‖xn − x∗‖ ≤ t∗ − tn . (10)

Moreover, the solution x∗ is unique in Ū (x0, t∗), and if there exists R > t∗ such that

U (x0, R) ⊆ D (11)

and

�0(t
∗ + R) ≤ 2, (12)

then, the solution x∗ is unique in U (x0, R).

Proof Simply notice that the iterates xn remain in U which is a more precise location than
U (x0, R0) used in [17], since U ⊆ U (x0, R0). Based on this observation the proof is analo-
gous to the one in [17].

For x∗ such that F(x∗) = 0, let

R1 = sup{t ∈ [0, R) : U (x∗, t) ⊆ D}.
�
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Theorem 2 Let F : D ⊆ X → Y differentiable in the sense of Fréchet. Assume: there exist
a simple zero x∗ ∈ D, of equation F(x) = 0 and parameter γ0 > 0 such that

‖F ′(x∗)−1[F ′(x) − F ′(x∗)]‖ ≤ γ0‖x − x∗‖ for all x ∈ U (x∗, R1), (13)

Moreover suppose that there exists γ > 0 such that

‖F ′(x∗)−1[F ′(x) − F ′(y)]‖ ≤ γ ‖x − y| for all x, y ∈ U1 := U (x∗, R1) ∩ U

(
x∗, 1

γ0

)
,

(14)

and

γ1 ≤ R1, (15)

where

γ1 = 2

2γ0 + γ
. (16)

Then, limn−→∞ xn = x∗ ∈ Ū (x0, γ1), x∗ is the only solution in Ū (x∗, γ1) and

‖xn+1 − x∗‖ ≤ γ ‖xn − x∗‖2
2[1 − γ0‖xn − x∗‖] . (17)

Proof Notice that iterates remain in U1. This is a better location for the iterates xn than
U (x∗, R1) used in [4]. Then, the proof follows exactly as the corresponding one in [4]. �

Remark 3 The preceding results improve the corresponding ones in [17] and [4] which in
turn improved the corresponding ones in [2,3]. Indeed, we have:

Semilocal Convergence (Theorem 1)
The Lipschitz condition corresponding to (4) and used in [2,3,17] is given by: there exists
�1 > 0 such that

‖F ′(x∗
0 )

−1[F ′(x) − F ′(y)]‖ ≤ �1‖x − y‖ for each x, y ∈ U (x0, R0). (2.4′)

Then, the conclusions of Theorem 1 were obtained as in [17] using �1 instead of �. Notice
however that

�0 ≤ �

and in particular

� ≤ �1,

hold. If � = �1 our results reduce to the corresponding ones in [17]. But if � < �1, then the
new results have the following advantages over the ones in [17]:

i. Weaker sufficient convergence criteria. Indeed, the old criteria are given by

L1η ≤ 1, (2.5′)

where

L1 = 1

4

(√
�0�1 + 4�0 +

√
�1�0 + 8�2

)
.
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Notice that

L1η ≤ 1 �⇒ Lη ≤ 1

but not necessarily vice versa, unless if �0 = �1.

ii More precise error estimates on the distances ‖xn+1−xn‖, ‖xn −x∗‖. Indeed themajoriz-
ing sequence given in [17] is defined by

u0 = 0, u1 = η, u2 = u1 + �0(u1 − u0)
2

2(1 − �0u1)
,

un+2 − un+1 + �1(un+1 − un)2

2(1 − �0un+1)
for each n = 1, 2, . . . .

Then, a simple inductive argument shows that

tn ≤ un

tn+1 − tn ≤ un+1 − un

and t∗ ≤ u∗ = lim
n→∞ un .

Strict inequality holds in the first two inequalities, if � < �1 and n = 3, 4, .... The last
inequality shows that the information on the location of the solution is more precise,
since t∗ ≤ u∗.

Local Convergence (Theorem 2)
The Lipschitz condition corresponding to (14) and used in [4] is given by: there exists γ̄ > 0
such that

‖F ′(x∗)−1[F ′(x) − F ′(y)]‖ ≤ γ̄ ‖x − y‖ for each x, y ∈ U (x∗, R1). (2.14′)

Then, again in view of (14) and (2.14′), we get that

γ ≤ γ̄

hold. The radius of convergence in [4] is given by

γ̄1 := 2

2γ0 + γ̄
.

Then, we have

γ̄1 ≤ γ1

and, if γ < γ̄ , then

γ̄1 < γ1.

The corresponding error bound in [4] using γ̄ instead of γ is given by

‖xn+1 − x∗‖ ≤ γ̄ ‖xn − x∗‖2
2[1 − γ0‖xn − x∗‖] . (2.17′)

In view of (17) and (2.17′) we deduce that the new error bounds are more precise than the old
ones leading to fewer iterations in order to obtain a certain desired error tolerance. Finally,
notice that no additional computational effort is required because if we find �1, we also find
special cases �0 and �. The same is true for the constants γ̄ , γ0 and γ .
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Definition 4 As in [3,12] let S∗ ⊆ X be such that

x∗ ∈ S∗, xn ∈ S∗, xn − x∗ ∈ S∗, xn+1 − xn ∈ S∗, n ≥ 0. (18)

Consider the family

{Ph, Lh, L̂h}, h > 0, (19)

where

Ph : Dh → Ŷh, (20)

Lh : X → Xh, L̂h : Y → Ŷh (21)

such that

Lh(S∗ ∩ U∗) ⊆ Dh . (22)

The discretization family (19) is Lipschitz-center, Lipschitz uniform if there exist ρ >

0, �0 = �0(h) > 0 so that

U (Lh(x∗), ρ) ⊆ Dh, (23)

‖P ′
h(u) − P ′

h(Lh(x∗))‖ ≤ �0‖u − Lh(x∗)‖, u ∈ U (Lh(x∗), ρ) (24)

and � = �(h) > 0 such that

‖P ′
h(u) − P ′

h(v)‖ ≤ �‖u − v‖, u, v ∈ U

(
Lh(x∗), ρ) ∩ U (Lh(x∗), 1

�0

)
:= Uh . (25)

Moreover (19) is: bounded if there exists a constant q > 0 so that

‖Lh(u)‖ ≤ q‖u‖, u ∈ S∗, (26)

stable: if there exists a σ > 0 such that

‖P ′
h(Lh(u))−1‖ ≤ σ, u ∈ S∗ ∩ U∗, (27)

and consistent of order p :, if there exist c0 > 0, c1 > 0, c2 > 0 so that

‖L̂h(F(x∗)) − Ph(Lh(x∗))‖ ≤ c0h p, (28)

‖L̂h(F(x)) − Ph(Lh(x))‖ ≤ c1h p, x ∈ S∗ ∩ U∗, (29)

and

‖L̂h(F ′(x))(y) − P ′
h(Lh(x))Lh(y)‖ ≤ c2h p, (30)

x ∈ S∗ ∩ U∗, y ∈ S∗. We can show the following result for (3) and (4).

Theorem 5 Let F : D ⊆ X → Y be an operator satisfying hypotheses of Theorem 2 such
that a Lipschitz, center-Lipschitz uniform discretization (19) exists which is bounded, stable
and consistent of order p. Then
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(a) Equation (3) has a solution which is locally unique with

y∗
h = Lh(x∗) + O(h p), (31)

for each h such that

0 < h ≤ h0 = max

{(
ρ

2bc0σ

)1/p

,

(
1

c0σ 2L

)1/p
}

;′ (32)

(b) There exist h1 ∈ (0, h0], r1 ∈ (0, r∗] such that Newton’s method (4) converges to y∗
h ;

and for all k ≥ 0

yh
k = Lh(xk) + O(h p), (33)

Ph(yh
k ) = L̂h(F(xk)) + O(h p) (34)

yh
k − y∗

h = Lh(xk − x∗) + O(h p) (35)

for each h ∈ (0, h1] and x0 ∈ U (x∗, r1).

Proof We showed in Theorem 1 that when

α(h) = Lσ‖P ′
h(Lh(x∗))−1Ph(Lh(x∗))‖ ≤ 1, (36)

r(h) ≤ 2b‖P ′
h(Lh(x∗))−1Ph(Lh(x∗))‖ ≤ ρ, (37)

then Eq. (3) has a solution y∗
h which is unique in U (Lh(x∗), r(h)).Using (36), (27), (28) and

(32) we get in turn

α(h) ≤ Lσ 2‖Ph(Lh(x∗))‖
= Lσ 2‖Ph(Lh(x∗)) − L̂h(F(x∗))‖
≤ Lσ 2c0h p ≤ 1 (38)

and

r(h) ≤ 2bc0h p ≤ ρ (39)

which hold by the choice of h given by (32). Hence (31) follows from

‖y∗
h − Lh(x∗)‖ ≤ r(h) ≤ 2bσc0h p. (40)

By Theorem 2 Newton’s method (4) converges to y∗
h if

‖Lh(x0) − y∗
h‖ <

2

(2�0 + �)‖P ′
h(y∗

h )−1‖ , (41)

and

U (y∗
h , ‖Lh(x0) − y∗

h‖ ⊆ U (Lh(x∗), ρ). (42)

Estimate (42) holds, if

‖y∗
h − Lh(x∗)‖ + ‖Lh(x0) − y∗

h‖ ≤ ρ. (43)
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By (26) and (38) we can have

‖Lh(x0) − y∗
h‖ ≤ ‖Lh(x0) − Lh(x∗)‖ + ‖Lh(x∗) − y∗

h‖
≤ q‖x0 − x∗‖ + 2bσc0h p. (44)

Therefore (42) holds if

q‖x0 − x∗‖ + 4bσc0h p ≤ ρ. (45)

Using the identity and the Banach perturbation Lemma [7,9,17,29]

P ′
h(y∗

h ) = P ′
h(Lh(x∗))[I − P ′

h(Lh(x∗))−1(P ′
h(Lh(x∗)) − P ′

h(y∗
h ))] (46)

we get

‖P ′
h(y∗

h )−1‖ ≤ ‖P ′
h(Lh(x∗))−1‖

1 − �0‖P ′
h(Lh(x∗))−1‖‖Lh(x∗) − y∗

h‖ (47)

≤ σ

1 − 2b�0σ 2c0h p
. (48)

Hence (41) holds if

q‖x0 − x∗‖ + 4bσc0h p <
2(1 − 2b�0c0σ 2h p)

(2�0 + �)σ
. (49)

Choose

h2 = min

{(
ρ

8bc0σ

)1/p

,

(
1

4bc0σ(1 + �0σ)

)1/p
}

; (50)

and

r2 = min

{
ρ

2q
,

1

(2�0 + �)qσ

}
. (51)

Then (41) and (42) hold for each h ∈ (0, h2] and x0 ∈ U (x∗, r2). That is for these choices
of h and x0, Newton’s method (4) converges to y∗

h . Define

h1 = min

{
h2,

[
1

4σ 2(c1 + c2)(2�0 + �)

]1/p
}

(52)

r1 = min

{
r2,

1

4�σq

}
. (53)

With the above choice equation in λ

σ

1 − �0σλ

[
�

2
λ2 + 2�q‖x0 − x∗‖λ + (c1 + c2)h

p
]

= λ (54)

is quadratic and has a positive solution, which satisfies

d ≤ 4σ(c1 + c2)h
p. (55)

We now show using induction on n that for h ∈ (0, h1), x0 ∈ U (x∗, r1), and all n ≥ 0

‖yh
n − Lh(xn)‖ ≤ d (56)

holds.
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For n = 0 (56) holds. Assume (56) holds for n = 0, 1, . . . , k. Using (4) we obtained the
identity

yh
k+1 − Lh(xk+1) = P ′

h(yh
k )−1{[P ′

h(yh
k )(yh

k − Lh(xk))

− Ph(yh
k ) + Ph(Lh(xk))]

+ [(P ′
h(yh

k ) − P ′
h(Lh(xk)))Lh(F ′(xk)

−1F(xk))]
+ [P ′

h(Lh(xk))Lh(F ′(xk)
−1F(xk)) − L̂h(F(xk))]

+ [L̂h(F(xk)) − Ph(Lh(xk))]}. (57)

As in (47) we get

‖P ′
h(yh

k )−1‖ ≤ σ

1 − �0σ‖yh
k − Lh(xk)‖

≤ σ

1 − �0σd
. (58)

We can get in turn
∥∥∥P ′

h(yh
k )(yh

k − Lh(xk)) − Ph(yh
k ) + Ph(Lh(xk))

∥∥∥ ≤ �

2

∥∥∥yh
k − Lh(xk)

∥∥∥2

≤ �

2
d2, (59)

‖(P ′
h(yh

k ) − P ′
h(Lh(xk)))Lh(F ′(xk)

−1F(xk))‖ ≤ �q‖yh
k − Lh(xk)‖‖xk+1 − xk‖

≤ 2�qd‖x0 − x∗‖, (60)

(since ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖)
‖P ′

h(Lh(xk))Lh(F ′(xk)
−1F(xk)) − L̂h(F(xk))‖ ≤ c2h p, (61)

and

‖L̂h(F(xk)) − Ph(Lh(xk))‖ ≤ c1h p. (62)

By (55) and (57)–(62) we get

‖yh
k+1 − Lh(xk+1)‖ ≤ d ≤ 4σ(c1 + c2)h

p, (63)

where d satisfies (54). Moreover by the Lipschitz continuity of P ′
h there exists b such that

‖P ′
h(x)‖ ≤ b, x ∈ Uh . (64)

Therefore we can have

‖Ph(yh
k ) − L̂h(F(xk))‖ ≤ ‖Ph(yh

k ) − Ph(Lh(xk))‖
+‖Ph(Lh(xk)) − L̂h(F(xk))‖

≤ b‖yh
k − Lh(xk)‖ + c1h p

≤ 4σb(c1 + c2)h
p + c1h p = c3h p (65)

where c3 = 4σb(c1 + c2) + c1. Furthermore by (40), (56) and (63) we get

‖yh
k − y∗

h − Lh(xk − x∗)‖ ≤ ‖yh
k − Lh(xk)‖ + ‖y∗

h − Lh(x∗)‖
≤ 4σb(c1 + c2)h

p + 2bσc0h p = ch p, (66)

where c = 2σ(bc0 + 2c1 + 2c2). �

The following result is the second part of the mesh independence principle.
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Theorem 6 Suppose: hypotheses of Theorem 5 hold; there exists μ > 0 such that

lim
h>0

inf ‖Lh(x)‖ ≥ μ‖x‖ for x ∈ S∗ (67)

Let r̄ ∈ (0, r1] and each fixed ε > 0, x0 ∈ U (x∗, r̄). Then, h̄ = h̄(ε, h1] can be obe-
gintheoained such that

|μ| ≤ 1 (68)

for each h ∈ (0, h̄], where μ = min{n ≥ 0, ‖xn − x∗‖ < ε} −min{n ≥ 0, ‖yh
n − y∗

h‖ < ε}.
Proof Let k be the unique integer satisfying

‖xk+1 − x∗‖ < ε ≤ ‖xk − x∗‖, (69)

and h3 > 0 ( depending on x0) such that

‖Lh(xk − x∗)‖ ≥ μ‖xk − x∗‖ for all h ∈ (0, h3). (70)

Define

r̄ = max

{
r1,

β

2σq(� + β�0)

}
, β = min

{
1

q
, μ, 2q

}
, (71)

and

h̄ = min

{
h1, h3,

[
β

2σc(� + β�0)

]1/p

,
(με

2c

)1/p
}

. (72)

By (66) and (72) we can get

‖yh
k+1 − y∗

h‖ ≤ ‖Lh(xk+1 − x∗)‖ + ch p ≤ qε + βε

2
< 2qε. (73)

Moreover from Theorem 2 we get

‖yh
k+1 − y∗

h‖ ≤ �σ‖yh
k+1 − y∗

h‖2
2[1 − �0σ‖yh

k+1 − y∗
h‖]

≤ �σ‖yh
0 − y∗

h‖
2[1 − �0σ‖yh

0 − y∗
h‖]‖yh

k+1 − y∗
h‖

<
�σ(qr̄ + ch̄ p)

1 − �0σ(qr̄ + ch̄ p)

≤ λqε < ε. (74)

By (66) and (70)

ε ≤ ‖xk − x∗‖ ≤ 1

μ
‖Lh(xk − x∗)‖ ≤ 1

μ
(‖yh

k − y∗
h‖ + ch̄ p), (75)

or

‖yh
k − y∗

h‖ ≥ με − ch̄ p ≥ με − με

2
= με

2
. (76)

Furthermore if ‖yh
k−1 − y∗

h‖ < ε, we get

‖yh
k − y∗

h‖ <
1

2
βε ≤ με

2
(77)
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contradicting (76). Hence we get

‖yh
k−1 − y∗

h‖ ≥ ε. (78)

The result now follows from (69), (74) and (78). �

Remark 7 The preceding results reduce to the corresponding ones in [3], when

� = �0 and c0 = c1. (79)

Note though that (79) and

c0 ≤ c1 (80)

hold. In case (74) or (80) hold as strict inequalities then it is clear that our smallest integer
n1 satisfying ‖xn − x∗‖ < ε is smaller than the corresponding integer n2 given in the
references mentioned above. Hence we require less computational steps to achieve the same
error tolerance ε than before. The ratios in relationships (33)–(35) are also finer.

Note that the improvements made through our Theorem 1-6 are achieved under the same
hypotheses as before. The rest of the works on the mesh independence principle listed in the
references can also be improved along the same lines.

Remark 8 If (67) is replaced by the stronger but standard in most discretization studies
condition

lim
h→0

‖Lh(x)‖ = ‖x‖ uniformly for x ∈ S∗, (81)

then Theorem 6 still holds but h̄1 does not depend on x0. Note also that (68) follows from
(81).

Remark 9 As already noted in [2,3,7,9,11–23,25–33] the local results obtained here can
be used to provide a more efficient programming for projection iteration methods such as
Arnoldi’s, the generalized minimum residual iteration method(GMRES), the generalized
conjugate residual iterationmethod (GCR), for combinedNewton/finite-difference projection
iteration methods. Moreover, the results can be useful to solve mesh independence problems
where the trapezoidal method, the box method and allocation iterations for boundary value
problems are involved.
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