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ABSTRACT

To study the effects of stratification and slip velocity on the flow
of fluid of variable viscosity over a permeable bed, we divide the flow
into two zones called zone 1 and zone 2. Zone 1 pertains to the flow
.called the free flow governed by the Navier-S_okes equak.ions in the
region between the impermeable upper plate and the porous bed.. Zone.
2 pertains to the flow in the bed governed by the modified Darcy Law.
Using the slip velocity boundary condition, velocity distributions in
zones 1 and 2 are obtained and are matched at the interface. The boun-
dary layer thickness just beneaih the permeable interface and the friction
factor are also obtained.

1. INTRODUCTION

THE aim of this study is to investigate the flow of a viscous stratified fluid
past a permeable bed with a motivation that stratification may provide a
technique for studying pore size in a porous medium. The physical reason
is that the stratification may retard or accelerate the flow depending on the
magnitude of the stratification factor. The magnitude of retardation or
acceleration is related to the slip parameter a, stratification factor y and
the porosity factor a. Hence one would expect that these factors might
provide a technique for studying pore size in a porous medium, which
is very useful in petroleum industry in studying the factors which influence
oil recovery from petroleum reservoirs. The earlier works by Beavers and
Joseph,' Beavers et al., 2 Rajasekhara et al.4 and Rudraiah et al . 5 are all con-
nected with the flow past a porous medium without stratification. It is well
known that viscosity in oil varies with temperature and hence if the results
are of some use in petroleum industry, one has to take the variation of vis-
cosity of the fluid into consideration. Since the flow behaviour of fluids
in petroleum reservoir rock depends to a large extent on the viscous strati-
fication and porous properties of the rock, techniques of core study that
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yield new or additional information on the characteristics of the rock would
contribute to a better understanding of petroleum reservoir performance.
Therefore this paper concentrates on finding out the effect of viscous strati-
fication on the flow past a porous bed.

When a Newtonian fluid flows between impermeable surfaces the usual
boundary condition is the no-slip condition on the boundary which leads
to a parabolic type of velocity profile in the channel. However, recent
experiments' 2,5 involving laminar flow of oil in flat rectangular ducts having
one porous wall demonstrated the existence of a streamwise slip velocity
at the nominal surface. Using this slip boundary condition we propose
to investigate the laminar flow in a parallel plate channel having one per-
meable bounding wall. Denoting `zone I ' for the free flow above the
bed and `zone 2' for the Darcy flow below the bed, the basic equations.
and relevant boundary conditions in these zones are developed in section 2
In section 3, the velocity distributions in these two zones are separately
obtained and matched at the interface to get a continuous velocity distri-
bution. The mass flow rate and friction factors are also obtained in
section 3. Expressions for the slip parameter a and the boundary layer
thickness 8 are obtained in section 4. Section 5 is devoted to a general dis-
cussion of the results.

2. MATHEMATICAL FORMULATION

The physical model shown in figure 1 consists of two zones. In zone one,
from the impermeable upper rigid plate up to the interface, the flow called
the free -flow, is governed by the usual Navier-Stokes equations. In the
other zone, below the interface, the flow is governed by the Darcy Law.
In the following discussion we shall refer to these zones as `zone I ' and
zone 2' respectively.

The basic equations for zone 1 are

= bpl bx,
	 (2.1)

the prime denoting differentiation with respect to y.
µ = po e M1 	and	 p = po e fly	 (2.2)

bplby = pg	 (2.3)

where µo and po are the coefficients of viscosity and density respectively at
the interface y = 0, and /3> 0 represents the stratification factor.

The basic equations for `zone 2' are
= Q0 ell'	 (2.4)



Flow of fluid of variable viscosity
	

147

STATIONARY IMPERMEABLE PLATE

	20NE 1
	 h

rt.	
INTERFACE

0 x

	1 ZONE 2
	

PERMEABLE BED

Figure 1. Physical model.

where
Qo = — K(^P/bx)/µo•
	 (2.5)

These equations have to be solved using the following boundary
conditions:

U=0 at y=h	 (2.6)

U'=a(UB — Qo)/VK at y=0	 (2.7)

where a is the slip parameter, K is the permeability coefficient (has the
dimension of length square), U E is the slip velocity at the nominal " surface
y = 0 and Qo is given by (2.5). This slip-boundary condition, which is
analogous to the slip-condition in the kinetic theory of gases, was first
postulated by Beavers and Joseph' and for which a rigorous theoretical
justification was given later by Saffman. 7 The effect of this velocity slip
is to cause a skewing of the main flow velocity profile in the channel. We
find that when K --0, the slip boundary condition (2.7) reduces to the
no-slip boundary condition U = 0.

3. VELOCITY DISTRIBUTION

In this section, we determine the velocity distribution in `zone 1 ',
using the boundary conditions (2.6) and (2.7). For this eq. (2.1) is made
dimensionless using the quantities

(v, i, , )e= (U/Um, P/PoUm 2, y/h, x/h)	 (3.1)



148	 M. N. CHANNABASAPPA AND G. RANGANNA

and obtain

v" — yv' — — Pey' 7 	(3.2)

and the corresponding boundary conditions are

v = 0 at q 	 1	 (3.3)

v ' = as [vB — (P/Q 2)] at ^1 = 0	 (3.4)

the prime denoting differentiation with respect to -q, where

[y, R, a, D, P] = [/h, UD/vo, h/1/k, 2h, — R (fir/^^)/2].

Here y is the non-dimensional stratification factor, R is the Reynolds number
and Urn is the maximum velocity of the flow.

Solution of (3.2), which satisfies the conditions (3.3) and (3.4), is

v =(-P-^ Y vB —a I(e1 —e-')+ P (eti— ?)e i'') (3.5)

where vB is the dimensionless slip velocity at the nominal surface. Eq

(3.5) can be written in the form

	e " — e'	 P	 — e7 	(1 — ) a 1+'1)ti
v_— v4

 

	

 1—e'r	
Y[yel"?

(1—	
+

ell)	 (—eti)	 (3.6)

vB being given by, vB = AP/y, where

A — (v - aY) (1 —&') + yae 'Y
Q[y—as(1—eY)

This enables us (i) to visualise directly the effect of permeability of
the bed on the velocity distribution, and (ii) to recognise that the slip velo-
city vB is proportional to the pressure gradient.

The average dimensionless velocity is given by

v = P (al + a2)/Y 3

	
(3.7)

where

al = 2 (&' — 1) — 2ye 1 + y 2 e7

and

a Iv2

(1
	 ) Y°a— ey 	2 ' — 2

a2 =-	 1' (gy — 1 — ^,ey)
.a	 Y—av(1 — e')	 J
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To find the quantitative effect of. slip velocity and stratification factor,
it is required to calculate the mass flow rate in the channel. If M denotes
the dimensionless mass flow rate per unit channel width, then

M =Se	 vdd7 = (P/ y 2)2) (1 — ay/o) (1 + 1 /y — e"/y)
0

+ (Ply) (e7/y — 1 /y — 2) -F (vBaa/y) ( 1 + 1/y — e7/y)•	 (3.8)

Similarly, if M* denotes the dimensionless mass flow rate when the
porous bed is replaced by an impermeable rigid plate, then

M* _ — P (1 -I- 1 yee, + 2).	 (3.9)

The mass flow rate through a porous walled channel and an imper-
meable walled channel may now be compared for the condition of equal
pressure gradients and channel heights. From eqs (3.8) and (3.9), we
get

M = 1	 2	 Y S o t e'Y — 8 o

M*	 2 -^ 2S oey + y L	 80

( 1 + 5 o) (ay — acr e eY — a) 1	 (3.10)+	 a8o _ a 2 J

where

8 o = y/(l — e'y).

We note that in the limit y > 0, equation (3. 10) reduces to

Lt=1+ a(1+aa) 	(3.11)

which is the same as the result obtained by Beavers and Joseph.'

The fractional increase in mass flow rote through the channel with a
permeable lower wall over what it would be if the wall were impermeable

is

0 = (M -- M*)/M*. 	 (3.12)

The above theory is applicable only for laminar flow. Therefore, it
is of interest to find the critical Reynolds number at which transition from
laminar to turbulent flow occurs. To identify the break-down of the
laminar flow regime for a fixed slip velocity ratio characterised by a fixed
value of oa, we shall use the friction factor Cf defined by

C1 = — (bpl fix) Dl [( 1 /2) po U 2 ]	 (3.13)
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where D is the _ equivalent diameter and is equal to 2k for a parallel plate
channel. Eq. (3.13), using eq. (3.7), becomes

CjR = 8y3/(al + at)	 (3.14)

Whore
R = UTD/vo .

This C1R product is independent of Reynolds number for a channel of fixed
height, fixed stratification factor and for a given boundary wall.

Similarly, the friction factor for a solid walled channel is

(CfR)* = 8y/[(e7/(1 — e7)) — ((1 — ey)IY 2)].	 (3.15)

Thus,

(C'f R)/(CtR) * = [(e'Y/( 1 — el)) -- (( 1 —, ey)IY 2)I Y 2/(ai + a2). (3.16)

4. EXPRESSIONS FOR BOUNDARY LAYER THICKNESS AND THE SLIP PARAMETER

Beavers and Joseph' have postulated the slip boundary condition (2.7)
on the assumption that there exists a thin boundary layer just beneath the
interface. It is of interest to find the expression for this boundary layer
thickness, say S. For this we have to use the boundary layer type of equation$

U" — 19U' — (1/K) U = eRv (bp/ x)/ &0. 	 (4.1)

A solution of this equation satisfying the boundary conditions

U= UB at y = 0	 (4.2)

U = Qo e-Ra = — K (^Pl zx) a-^ Slµo at y = — 8	 (4.3)

is
U = (UB — Q o) eP'y1 2 (cosh A y + coth A3. sinh Ay) + Qo ePy (4.4)

where

A=( 1 /2)/p 2 +(4/K)

We know that at the edge of the boundary layer, the shear has to be zero.
In other words

U'=0 aty=—S.	 (4.5)

Then from eq. (4.4), using (4.5), we get

A (UB — Qo) + 9 Q0 a-P8/2 Binh AS = 0.	 (4.6)

This equation for 3 is transcendental and it is difficult to obtain an analytical
solution. However, we feel that since the boundary layer thickness and
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stratification factors are very small, we can neglect cubes and higher
powers of S and obtain

_	3
h y 1 1 + V 1 + Y [y — aQ (1 — ey)j	

(4.7)

which gives an expression for the boundary layer thickness, where

a3 =a 2 (1 —e'r)+ya 2 ey —y 2 .

The slip parameter a has to be determined experimentally. However,
in certain cases6,8,9 where the resistance of porous material would be
regarded as a very sparse distribution of points at each of which the fluid
exerts a force (/K) U where eq. (4. 1) is true we can calculate the slip para-
meter a. For this we solve (4. 1) using the boundary condition (4.2) and

U –r 0 as y.– — oo and the resulting equation is

U= (U8— Q.)e(Ri2ra)y+Q0efl?' 	 (4.8)
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so that

(U')V=o = [(9/2) + A) (Us) — Qol + Q0 P.	 (4.9)

It may be noted that (4.9) is compatible with (2.7). Comparison of eq.
(4.9) with eq. (2.7) for this model gives

aa4a3 ± ys

a =	 ( 	oy 3 (1 — ey) 1	 (4.10)
	va3 1 1 +	 J

a3

where

1_	 2a2a +  

We note that the expression for a tends to 1 as y --> 0 which is the same as
the one given by Taylor. 8

5. DISCUSSION

To study the effect of slip velocity and viscous stratification factor
on the flow over a permeable surface we divide the flow of fluid into two
zones: zone 1 and zone 2. Zone I refers to the pressure flow, governed
by the Navier-Stokes equations in the region between the impermeable
upper plate and the porous bed. Zone 2 refers to the flow in the bed gover-
ned by the Darcy Law. Using the slip boundary condition the velocity
distribution in zones 1 and 2 are obtained and are matched at the interface.
To find the quantitative effect of slip velocity and stratification factor, the
fractional increase, 0, given by eq. (3.12) is numerically evaluated for
different values of a, a and y and are shown in figures 2, 3 and 4.

From figure 2, it is clear that the fractional increase 0 decreases with
increasing a and increases with decreasing a. In other words the effect of
slip at the bed is to increase the mass flow rate while the increase in per-
meability has the opposite effect.

Figures 3 and 4 pinpoint the variation of the fractional increase in
mass flow rate with respect to the stratification factor y. We find, as
before, that 0 increases with decreasing a and a where the growth remains
linear up to about y = 1.5. This means that the viscosity stratification
is favourable to the mass flow rate.

The slip parameter a as calculated from eq. (4. 10) for different values
of y is shown in figure 5, which shows that the slip parameter increases
with increasing y and decreases with increasing Q.
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Figure 3. Fractional increase in mass flow rate (0) as a function of stratification fractor (y).

	(a) at = 0.01, o = 5; (b) a = 0.01, a = 10: (c) (I 	 0.01, a = 15.
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Figure 5. Slip parameters for different values of y.

The verification of these conclusions by experiments will be reported
in subsequent communications.
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