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Planning and design of coastal protection works like floating pipe breakwater require information about
the performance characteristics of the structure in reducing the wave energy. Several researchers have
carried out analytical and numerical studies on floating breakwaters in the past but failed to give a simple
mathematical model to predict the wave transmission through floating breakwaters by considering all
the boundary conditions. Computational intelligence techniques, such as, Artificial Neural Networks
(ANN), fuzzy logic, genetic programming and Support Vector Machine (SVM) are successfully used to
solve complex problems. In the present paper, a hybrid Genetic Algorithm Tuned Support Vector Machine
Regression (GA-SVMR) model is developed to predict wave transmission of horizontally interlaced mul-
tilayer moored floating pipe breakwater (HIMMFPB). Furthermore, optimal SVM and kernel parameters of
GA-SVMR models are determined by genetic algorithm. The GA-SVMR model is trained on the data set
obtained from experimental wave transmission of HIMMFPB using regular wave flume at Marine Struc-
ture Laboratory, National Institute of Technology, Karnataka, Surathkal, Mangalore, India. The results are
compared with ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) models in terms of correlation
coefficient, root mean square error and scatter index. Performance of GA-SVMR is found to be reliably
superior. b-spline kernel function performs better than other kernel functions for the given set of data.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Floating breakwaters are well accepted in recent years because
of their basic advantages, such as, flexibility, easy mobilization,
installation, and retrieval. The system can be fabricated in land,
towed to the site, and installed along any desired alignment with
ease. In addition, they have several desirable characteristics, such
as, comparatively small capital cost, adoption to varying harbour
shapes and sizes, short construction time and freedom from silting
and scouring. Floating breakwaters could also be utilized to meet
location changes, extent of protection required or seasonal
demand. They can be used as a temporary protection for offshore
activities in hostile environment during construction, drilling
works, salvage operation, etc. Hence, it is necessary to study a
detailed investigation of proposed floating breakwater.

Several researchers in the past have carried out experimental
and numerical investigations on different types of floating
breakwaters, such as, Horizontal, sloping, A-type, Y-type, Cage,
Pontoon, Tires, Pipes [1-11]. However, there is a lack of a simple
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mathematical model to predict breakwater performance character-
istics, such as the transmission coefficient, which is defined as the
ratio of the transmitted wave height past the breakwater to the
incident wave height on the breakwater. It is also found that most
of the numerical methods have been attempted on simple
box-type rectangular floating breakwaters or spar buoy floating
breakwaters. These studies are carried out considering a floating
breakwater in basic form with some assumptions common in
hydrodynamics, which shows less improvement. Till now, there
has not been available a simple mathematical model to predict a
wave transmission through floating breakwaters by considering
all the boundary conditions. Also, for floating pipe breakwaters
the energy dissipation process depends on various other factors
like pipe interference effect, the spacing between the pipes and
number of layers. As the effect of all these factors on transmission
and forces in the moorings is not clearly understood, it will be
extremely difficult to quantify them mathematically. Still it is a
complex problem.

Computational intelligence techniques, such as, Artificial Neural
Networks (ANN), Fuzzy logic (FL), Genetic Programming (GP), Sup-
port Vector Machines (SVMs) or combinations of these techniques
are successfully used to solve complex problems associated with
coastal/ocean engineering. Among these techniques, ANN is widely
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used in coastal/ocean engineering to predict ocean wave parame-
ters like wave height, wave period, impact wave force [12-15].
The most significant features of neural networks are the extreme
flexibility due to learning ability and the capability of non-linear
function approximations. This has made ANN very popular in re-
cent years, and further this technique has provided promising re-
sults in prediction of tidal levels [16], damages to coastal
structures [17], depth of eroded caves in a seawall [18], seabed lig-
uefaction [19], storm surges [20], etc. According to Shahidi and
Mahjoobi [21] ANNs are not as, transparent as, semi-empirical
regression based models. In addition, neural network approach
needs to find network parameters, such as, number of hidden lay-
ers and neurons by trial and error, which is time consuming. To
overcome the problems inherent in ANN training procedures Jeng
et al. [19] adopted the concept of genetic algorithm based training
of ANN models, which provided accurate results for determining
maximum liquefaction depth in a real world application. It is also
noticed that apart from improving the performance of ANN, com-
putational effort and time needed for training and testing the mod-
el is significantly reduced compared to traditional methods [17].

When the performance of ANN alone is poor in mapping
input-output relation, many researchers developed hybrid models
by combining ANN with fuzzy system, ANN with numerical wave
modeling [22-24], adaptive neuro-fuzzy inference system by Syla-
ios et al. [23] for wind wave modeling, model trees by Shahidi and
Mahjoobi [21] for prediction of significant wave height, etc., for
example. ANN is a low level computational structure that performs
well when dealing with raw data. The pure feed-forward back
propagation learning process could easily be trapped into the local
minima.

Recently fuzzy inference systems have become popular in solv-
ing complex engineering problems and are widely used in coastal/
ocean engineering. However, fuzzy systems lack the ability to learn
and cannot adjust themselves. Inspired by the idea of basing the
fuzzy logic inference procedure on a feed forward network struc-
ture, Jang [25] proposed a fuzzy neural network model - the
Adaptive Neuro-Fuzzy Inference System (ANFIS), which is a five-
layer feed-forward neural network, which includes fuzzification
layer, rule layer, normalization layer, defuzzification layer and a
single summation neuron. It is a hybrid neuro-fuzzy technique that
brings learning capabilities of neural networks to fuzzy inference
system. An ANFIS uses a hybrid learning algorithm that combines
the least-squares method and gradient descent principle [25,26].
This hybrid model attracted many researchers to solve complex
problems associated with coastal/ocean engineering [22,27-29].
Ozger and Sen [30] have adopted dynamic fuzzy approach to iden-
tify the effect of wind speed on wave characteristics variations in
ocean wave generating system. Bakhtyar et al. [31] have concluded
that the ANFIS model is more flexible than the FIS model, with
more options for incorporating the fuzzy nature of the real world
system. Sylaios et al. [23] have used Takagi-Sugeno [32] rule based
fuzzy inference system for forecasting wave parameters based on
the wind speed, direction and the lagged wave characteristics.
They used subtractive clustering method to identify the initial
and final antecedent fuzzy membership functions. Yagci et al.
[33] have used fuzzy logic method in breakwater damage ratio
estimation. Erdik [34] has applied fuzzy logic approach in design
of conventional rubble mound structures. Apart from above com-
putational intelligence techniques, many authors have used vari-
ous new approaches to solve complex coastal engineering
problems like genetic programming by Gaur and Deo [35] for real
time wave forecasting, Guven et al. [36] for prediction of circular
pile scour.

SVMs are the recently developed learning techniques that have
gained enormous popularity in the field of classification, patternrec-
ognition and regression. SVM works on structural risk minimization

principle that has greater generalization ability and is superior to the
empirical risk minimization principle as adopted in conventional
neural network models. Han et al. [37] applied SVM for flood fore-
casting, Radhika and Shashi [38] for prediction of atmospheric tem-
perature, Msiza et al. [39] used ANN and SVR for water demand
prediction, Rajasekaran et al. [40] developed a Support Vector
Machine Regression (SVMR) model for forecasting storm surges.
They compared these results with numerical methods and ANN,
which indicated that storm surges and surge deviations are effi-
ciently predicted using SVMR. According to Mahjoobi and Mosabbeb
[41], SVM creates a more reliable model with better generalization
error, in comparison to ANN, they also reveal that SVMs do not
over-fit, while ANNs may face such problem and need to deal with it.

Soft computing tools are used for other applications as dis-
cussed above. However, it is observed that there are hardly any
applications of SVMs on wave transmission of floating breakwater.
This fact leads us to use SVM models in this work. In the present
paper, the performance of GA-SVMR models for predicting wave
transmission coefficient of HIMMFPB is investigated. GAs are used
to optimize the SVMR and kernel parameters. Results of GA-SVMR
models are compared with that of ANN and ANFIS models.

The paper is organized as follows: Section 1 starts with litera-
ture associated with floating breakwaters and applications of soft
computing techniques in coastal engineering. Section 2 details
wave transmission of floating breakwater and experimental
HIMMFPB. Fundamentals of SVMR, GAs for parameter selection
and proposed GA-SVMR are detailed in Section 3. Results and
discussion are described in Section 4. Conclusions is presented in
Section 5.

2. Wave transmission of floating breakwater

The design of floating breakwater is based on the principle that
the wave energy is concentrated at the surface in deep water and
the same energy is concentrated at below the surface in shallow
water, which is to be dissipated. Therefore different types of float-
ing breakwaters like Box, Pontoon, Mat, Tethered float and Pipe are
becoming popular. The basic concept by which floating breakwater
reduces wave energy include reflection, dissipation, interference
and conversion of the energy into non-oscillatory motion. The
prime factor in the construction of floating breakwater is to make
the width of the breakwater in the direction of wave propagation
greater than one-half the wavelength and preferably as wide as
incident wavelength. Otherwise, the breakwater rides over the
top of the wave without attenuating it. Pontoon and Box types of
floating breakwaters belong to the category in which the wave
attenuation is achieved by reflecting the wave energy. Mat and
Tethered belong to the other category, in which wave energy dissi-
pation is mainly due to drag from the resultant float in motion.
Pipe breakwaters mainly dissipate the wave energy, and also partly
reflect and transmit the waves. For effective reflection, the break-
water should remain relatively motionless and penetrate to a
depth sufficient to prohibit appreciable wave energy from passing
underneath.

2.1. Experimental HIMMFPB model setup and data used

The development of floating breakwaters by various investiga-
tions has been influenced by certain important features; large
masses, large moment of inertia, and the combinations of two. Most
of the literature indicates that the parameter “relative width” influ-
ences greatly the wave attenuation characteristics of the breakwa-
ter. The details of the HIMMFPB are shown in Fig. 1 [42-45]. The
breakwater comprises of the rigid Poly Vinyl Chloride (PVC) pipes.
These pipes are placed parallel to each other with certain spacing
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Fig. 1. HIMMFPB model setup.

Table 1
Range of wave-specific and structure-specific parameters used in HIMMFPB.

Wave-specific parameters Experimental range

30, 60, 90, 120, 150, 180
12,14, 1.6, 138,20, 2.2
400, 450, 500

Incident wave height, H; (mm)
Wave period, T (s)
Depth of water, d (mm)

Structure-specific parameters Experimental range

Diameter of pipes, D (mm) 32

Ratio of spacing to diameter of pipes, S/D 2,3,4and 5
Relative breakwater width, W/L 0.4-2.65
Number of layers, n 5

between them in each layer and the adjacent layers are oriented at
right angles to each other, so as to form an interlacing. Longitudinal
pipes are placed along the direction of propagation of waves and
transverse pipes are placed and tied perpendicular to longitudinal
pipes. The length of the longitudinal pipes defines the width of
the breakwater. It is felt that with proper number of layers, spacing
of pipes and relative breakwater width, it is possible to achieve a
considerable and effective attenuation of waves. Fig. 1 shows a pic-
torial representation of the HIMMFPB model in plan and section.

The wave-specific parameters and structure-specific parameters
considered in the experiments are shown in Table 1. The experimen-
tal study carried out by Kamat [45] shows hydrodynamic character-
istics of horizontally interlaced three and five layer floating
breakwater systems, in which wave transmission is less for five layer
systems. These experimental data are divided into two sets, one for
training and other for testing the GA-SVMR models (Table 2). The
input parameters that influence the wave transmission (K;) of float-
ing breakwater, such as, spacing of pipes relative to pipe diameter
(S/D), breakwater width relative to wave length (W/L), incident wave
relative to water depth (H;/d), incident wave relative to wave length
(H;/L) are used to train GA-SVMR models as shown in Table 2.

Experimental data on W/L, H;/d, S/D, H;/L and K; are shown in
Fig. 2. From this experimental data, first 2131 data points are used
to train GA-SVMR models and the remaining 813 data points are
used for testing the models.

Table 2
Data used for training and testing the GA-SVMR models with input parameters.

3. Hybrid Genetic Algorithm Tuned Support Vector Machine
Regression (GA-SVMR)

3.1. Fundamentals of Support Vector Machine Regression (SVMR)

Vapnik [46] proposed the Support Vector Machines (SVMs),
which is based on statistical learning theory. The basic idea of sup-
port vector machines is to map the original data x into a feature
space with high dimensionality through a non-linear mapping
function and construct an optimal hyper-plane in new space.
Hence, given a set of data S = {(x;, d;)}},, where x; is the input data
set, d; is the desired result, and N corresponds to the size of the data
set. Then, according to Smola and Scholkopf [47], the SVM regres-
sion function is expressed as

y =fx) =wi¢i(x) + b M

where ¢;(x) is the non-linear function in feature of input x, and both
w; and b are coefficients, which are estimated by minimizing the
regularized risk function as expressed below:

o 1.9, -1y
Minimize : R(C) =§||WH +CN ;Ls(di-,yi) @)
where
' _ |d,‘*yi‘*8: ‘di*yi| = &,
Loy = {47 e 3)

The first term in Eq. (2) is called regularized term, measures the
flatness of the function. The second term is the empirical error
measured by the ¢ - insensitive loss function, which is defined as
Eq. (3). Cand ¢ are user determined parameters, d; is the actual value
at period i, y; is the forecasted value at period i, and C is a weighing
parameter considered to specify the trade-off between the empirical
risk and model flatness. Eq. (3) defines a range where the loss will be
zero if the forecasted value is within the ¢ - tube (Eq. (3) and Fig. 3).
However, if the value is out of the ¢ - tube then the loss is the absolute

Model Input parameters

Number of data points for training

Number of data points for testing

GA-SVMR
GA-SVMR
GA-SVMR
GA-SVMR
GA-SVMR
GA-SVMR

linear)
polynomial)
rbf)

erbf)

spline)
b-spline)

(8/D), (WIL), (Hi/d), (Hi/L)

2131

813
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In Eq. (6), o; and o are called Lagrangian multipliers that satisfy
equalities, o; x of = 0. After calculating o; and o, an optimal desired
weights vector of the regression hyper-plane is represented as

N
=Y (o K(xi, x) (7)
i=1

Therefore, the regression function is expressed as,

N

fx, o0, 0) Z

i=1

—of)K(x;, %) + b (8)

Here, K(x;,x;) is called the kernel function. The value of the kernel
equals the inner product of two vectors x; and x; in the feature space
@(x;) and @(x;), i.e., K(xi,x;) = @(x;) x @(x;). The role of the kernel
function simplifies the learning process by changing the representa-
tion of the data in the input space to a linear representation in a
higher-dimensional space called a feature space. A suitable choice
of kernel allows the data to become separable in the feature space
despite being non-separable in the original input space. This allows
us to obtain non-linear algorithm from algorithms previously re-
stricted in handling linearly separable data sets. The function that
satisfies Mercer’s condition by Vapnik [48] can be used as the kernel
function.

In the present paper, we have experimented with the six ker-
nels as shown in Table 3. The linear kernel function is used for lin-
ear SVM model, whereas the polynomial, radial basis function (rbf),
exponential radial basis function (erbf), spline and b-spline kernels
are used for non-linear SVM models. According to Karatzoglou and
Meyer [49], Gaussian radial basis function kernel is the general
purpose kernel used when there is no prior knowledge about the
data. The linear kernel is useful, when dealing with large sparse
data vectors, as usually the case in text categorization. The polyno-
mial kernel is popular in image processing, whereas, the spline ker-
nels typically perform well in regression. Selection of two kernel
parameters (d,y) and support vector machine parameters (C,¢) of
a SVM model is significant in accuracy of the forecasting, where,
the parameter d represents the degree of polynomial and b-spline
kernel functions, whereas, y is the width of rbf and erbf kernel
functions. The generalization performance of GA-SVMR depends
on a good setting of C, ¢ and kernel parameters d and 7. Parameter
C determines the trade-off between the model complexity

Table 3
Kernel Functions.

Start

v

| Generate Initial Population |

v

Evaluate Objective Function |

YES

Are Optimization
Criteria Met?

Best Individuals

| Selection |

v

| Recombination |

v

Mutation |

Fig. 4. GAs procedure.

(flatness) and the degree to which deviations larger than ¢ tube
[50,51]. If C is too large (infinity), then the objective is to minimize
the empirical risk only, without regard to the model complexity
[52]. In the present study, quadratic loss function is used. The main
idea of using this loss function is to ignore the errors, which are sit-
uated within the certain distance of the true value. Parameter ¢
controls the width of the ¢ - insensitive zone, which is used to fit
the training data. The number of support vectors (nsv) used to con-
struct regression function depends on ¢, the big ¢, the fewer support
vectors are selected and results in data compression [53].To opti-
mize these parameters for better generalization of SVM model,
SVM model is hybridized with GAs. Section 3.2 details the genetic
algorithm in parameter selection, whereas Section 3.3 details inter-
face of genetic algorithm with support vector machine regression
to obtain the best GA-SVMR model.

3.2. Genetic algorithm for selecting parameters in the SVMR model

Genetic algorithms are search methods based on principles of
natural selection and genetics [54]. The algorithm is based on the
principle of the survival of the fittest, which tries to retain genetic
information from generation to generation. In this paper, GAs is
used to search for better combination of C, ¢ and kernel parameters
(d and y) to maximize the generalization performance of SVMR
model. The procedure of genetic algorithms in parameter selection
is shown in Fig. 4, whereas Fig. 5 shows the proposed GA-SVMR
model. The codes are written in MATLAB 7 Release 14. The steps
involved in GA for selecting SVMs and kernel parameters are as
follows:

Kernels Functions User defined kernel parameter
Linear K(xi, Xj) = a1xx; + az For simplicity set a; =1, a, =0
Polynomial K(xi, %) = (%, x;) + 1)¢ d
rbf K(x;, %) = exp (77“&2;;,“2) ’
erbf K(x;,j) = exp (, Hxxz;;‘/ H) Y
Spline KX, X) = 1+ (x:,%) + % (%, %) min(x;, x;) — smin(x;, x,)° -
b-Spline K(xi, ;) = Bag1(xi - X;) d
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Fig. 5. Flow chart of GA-SVMR.

Step 1. (Initialization): In the present paper initial population of
chromosomes is generated randomly. Population size is set to
50. The chromosomes are real coded string, consist of SVMs

Table 4
Optimal parameters for GA-SVMR models with different kernels.

parameters C, ¢ and kernel parameters (d and 7). Kernel nsv ¢ ¢ v d
Step 2. (Evaluating fitness): In this step fitness of each chromo- Linear 2131 100 0.001 - -
some is evaluated. In the present paper, a negative normalized Polynomial 2131 96 0.001 - 6
mean square error is used as the fitness function, which is ;I;If)f ;B} ]52 g'gg} ?’3 _
defined as: Spline 2131 40,000 0.05 - -
b-Spline 2131 15 0.05 - 2
N
Fitness Function = —ol'ZN > (di—yy)? 9)
i1
where o is the scaling factor chosen uniformly at random over an
Wwhere interval [—d,1 +d]. In the present study d is chosen as 0.25.
1 ., (iii) [Mutation]: After cross over operation is performed the
0’ = N Z(di —d;) string is subjected to mutation operation, this is to prevent
i=1 falling all solutions of the population into local optimum of
N is the total number of data in the test set, d; is the mean of the solved problem. The variable in the string to be mutated is
actual value, d; is the actual value, and y; is the predicted value. selected randomly, where incremental operator is used.
Step 3. (New population): In this step new population is created The rate of crossover and mutation is determined by proba-
by repeating following steps until the new population is bilities. In the present paper, the probabilities of crossover
complete. and mutation are set to 0.8 and 0.05 respectively.
(i) [Selection]: In the present study, two parent chromo- (iv) [Accepting]: Accept and place new offspring in the new
somes from a population are selected according to fit- population.
ness function (Eq. (9)). The roulette wheel selection Step 4. (Replace): Here new generated population is used for a
principle [54] is used to select chromosomes for further run of the algorithm.
reproduction. Step 5. (Stop condition): If the end condition is satisfied, stop,
(ii) [Crossover]: Here with crossover probability crossover of and return the best solution in current population. Otherwise,
the parents is done to form new offspring’s (children). In Step 6. (Loop): Go to step 2.

cross over, chromosomes are paired randomly. The inter-
mediate crossover principle is used and offspring’s are 3.3. The proposed GA-SVMR model
produced according to the following rule.
In the present study, MATLAB support vector machine toolbox
Offspring = parent1 + a(parent2 — parent1) (10)  [50] is interfaced with genetic algorithm to optimize the SVMs
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Table 5

GA-SVMR models with statistical measures.
Model CC train CC test Train data Test data

RMSE SI RMSE SI

GA-SVMR (linear) 0.8964 0.8924 0.07072 0.12375 0.07245 0.12925
GA-SVMR (polynomial) 0.9568 0.9513 0.04638 0.08116 0.04946 0.08824
HGASVMR (rbf) 0.9563 0.9478 0.04662 0.08157 0.05119 0.09133
HGASVMR (erbf) 0.9640 0.9416 0.04253 0.07443 0.05412 0.09655
HGASVMR (spline) 0.9834 0.9735 0.02896 0.05068 0.03671 0.06549
GA-SVMR (b-spline) 0.9897 0.9741 0.02286 0.03900 0.03629 0.06474

and kernel parameters simultaneously for better generalization of
the proposed GA-SVMR model. Six GA-SVMR models were devel-
oped by using six kernel functions (Table 3). In order to study,
the performance of each kernel in predicting wave transmission
of HIMMFPB, GA-SVMR is trained by applying these kernel func-
tions. For training, experimental data set is used (Fig. 2) and is
divided into two groups one for training and other for testing
(Table 2). Fig. 5 illustrates the proposed GA-SVMR model. In the
first stage training input, training target, kernel function, and range
of kernel and SVM parameters are fed to the system. GA generates
the initial population that would be used to find optimum factors
of kernel functions and SVMs. In the second stage, the system per-
forms typical SVM process using assigned value of the factors in

CC Train = 0.8964
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Fig. 6. Comparison of predicted and measured K, for GA-SVMR (linear) model.

the chromosomes, and calculates the performance of each chromo-
some. The performance of each chromosome is calculated using fit-
ness function for GAs given in Eq. (9).

In the present study, the main goal is to find the best parame-
ters that produce the most accurate prediction. If the calculated fit-
ness value satisfies the terminal condition in GAs, then the optimal
parameters are selected, otherwise, the new generation of the pop-
ulation is produced by applying genetic operators, such as, selec-
tion, crossover, and mutation. After the production of new
generation, the training process with calculation of the fitness va-
lue is performed again. From this point, stage two and stage three
are iterated again and again until the stopping conditions are sat-
isfied. Once the stopping condition is satisfied, the genetic search

CC Train = 0.9568
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Fig. 7. Comparison of predicted and measured K, for GA-SVMR (polynomial) model.
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finishes and the chromosomes that shows the best performance in
the last population is selected as the final result. These optimize
SVMs and kernel parameters are shown in Table 4. In the forth
and final stage optimized parameters obtained by GA are tested
with the test data. The final decision about the optimum models
is not based on the training data, but on the testing data, as illus-
trated in Fig. 5. Once the testing is over, the six models with linear,
polynomial, rbf, erbf, spline and b-spline kernels are compared
based on statistical measures to get the best model.

4. Results and discussion

To study the effectiveness of the approach, statistical compari-
son of measured and predicted values of K;, correlation coefficient
(CQ) is used, which is defined as
Kom) (Kpi — Kop)

X \/Zivzl (Kipi = Kop)?

Zl I(Km'” —
¢ S Ko — Ko

(11)

where K;n; and K;,; represents the measured and predicted wave
transmission coefficient, respectively, K., and K, are the mean
value of measured and predicted observations, N is the number of
observations. Higher the CC value better is the agreement between
the measured and predicted values of K. Apart from this, other
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Fig. 8. Comparison of predicted and measured K; for GA-SVMR (rbf) model.

statistical measures computed are root-mean-square error (RMSE),
and scatter index (SI). These are defined as

N
RMSE = Z (Komi — Kipi)? (12)
-1

2 \

RMSE

Sl =—
Kim

(13)

Statistical measures computed using train and test data for GA-
SVMR are shown in Table 5. Train and test data are used to compare
the models results. The trained and test results (CCs) of six models
are shown in Table 5 and Figs. 6-11.

In comparison to all models, linear kernel function shows poor
generalization performance (CC Train=0.8964 and CC
Test = 0.8924) in prediction of K; for HIMMFPB with SI, 0.12375
and 0.12925 for train and test data respectively. Number of sup-
port vectors used in GA-SVMR with linear kernel function is
2131, which is 100%. Similarly, GA-SVMR with non-linear kernel
functions also used 100% of support vectors, which indicates that
every training input is utilized as support vector. This clearly
proves that, there is no noise in the training data set, but there is
non-linearity and complexity associated in mapping input and out-
put parameters of HIMMFPB. Increasing the C will disturb the solu-
tion, but it can be helpful for other kernels like spline kernel, where
C is 40,000 as shown in Table 4. In case of b-spline kernel C is 15,
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Fig. 9. Comparison of predicted and measured K, for GA-SVMR (erbf) model.
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whereas for erbf it is 6. For polynomial and linear kernel it is 96
and 100 respectively. A b-spline kernel function has better gener-
alization performance with RMSE 0.02286 and 0.03629 for train
and test data respectively. Whereas, similar trend is shown by
spline kernel function with slightly higher RMSE 0.02896 and
0.03671 for train and test data respectively.

Correlation coefficient of GA-SVMR(b-spline) model (CC
Train = 0.9897 and CC Test = 0.9741) is slightly better than GA-
SVMR(spline) model, but considerably better than GA-SVMR(linear)
model, whereas the performance of GA-SVMR(polynomial) model is
better than GA-SVMR(rbf) and GA-SVMR(erbf) models with SI
0.08824 for test data, whereas, for rbf and erbf kernels it is
0.09133 and 0.09655 respectively. In comparison to GA-SVMR mod-
el with b-spline and spline kernel functions, SI and RMSE is very high
for GA-SVMR models with linear and erbf kernel function for test
data (Table 5). It is noticed that the performance of these models de-
pends on the better selection of SVM and kernel parameters. In case
of polynomial kernel, the degree of the function d, when low; the
function estimation is very bad, however, for higher d, performance
is good. The optimal value of d in case of polynomial kernel function
obtained by GAs is 6 and for b-spline kernel function it is 2. The opti-
mal width (y) obtained by GAs in case of rbf and erbf kernel functions
are 0.3 and 1 respectively. Kernel and SVM parameters obtained by
GA (Table 4) is tested by using test data sets (Table 2), which show
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Fig. 10. Comparison of predicted and measured K; for GA-SVMR (spline) model.
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Table 6
ANN and ANFIS models with statistical measures.
Model CCtrain CCtest Train data Test data
RMSE SI RMSE SI
ANN [55] 0.9537 09488 0.05176 0.09058 0.05395 0.09625
ANFIS [56] 0.9723 0.9635 0.03727 0.06522 0.04307 0.07683

better generalization performance with highest CC Test = 0.9741
for GA-SVMR (b-spline) model.

The same data set has been used for estimating K; using ANN
[55] and ANFIS [56]. CCs, SI and RMSE of K, are shown in Table 6.
From Table 5 and 6, it is observed that the GA-SVMR (b-spline)
model yields higher CCs as compared to that of ANN and ANFIS
models, whereas RMSE and SI values are higher in ANN and ANFIS
models as compared to GA-SVMR (b-spline) model. However the
GA-SVMR model with linear kernel function has shown poor gen-
eralization, whereas, ANFIS model perform better than GA-SVMR
models with polynomial, rbf and erbf kernel functions.

In SVM regression, the solution is unique for specific loss func-
tion, kernel type, and SVM and kernel parameters. If we run the
same program, the results will be exactly the same. The model is
much more complex and cannot be used in other implementations,
whereas the results will not be same in case of ANN and ANFIS
models.
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5. Conclusions

An application of hybrid genetic algorithm tuned support vector
machine regression for prediction of wave transmission for
HIMMEFPB is presented in this paper. Our proposed model opti-
mizes SVMs and kernel parameters simultaneously. The perfor-
mance of GA-SVMR models is compared with ANN and ANFIS
models. The results obtained shows that GA-SVMR with b-spline
kernel functions performs better than ANN and ANFIS models.

The forecasting performance of GA-SVMR appears to be highly
influenced by the choice of its kernel function, and the good setting
of kernel and SVM parameters. The b-spline kernel function per-
formed superior than other kernel.

It is also observed that parameter selection in the case of
GA-SVMR has a significant effect on the performance of the model.

GA-SVMR can replace the ANN and ANFIS based models for
wave transmission prediction of HIMMFPB.

GA-SVMR can be utilized to provide a fast and reliable solution
in prediction of the wave transmission for HIMMFPB, thereby mak-
ing GA-SVMR as an alternate approach to map the wave structure
interactions of HIMMFPB.
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