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Electroencephalogram (EEG) has established itself as an important means of identifying

and analyzing epileptic seizure activity in humans. In most cases, identification of the

epileptic EEG signal is done manually by skilled professionals, who are small in num-

ber. In this paper, we try to automate the detection process. We use wavelet transform

for feature extraction and obtain statistical parameters from the decomposed wavelet co-

efficients. A feed-forward backpropagating artificial neural network (ANN) is used for the

classification. We use genetic algorithm for choosing the training set and also implement
Electroencephalogram (EEG)

Artificial neural network (ANN)

Genetic algorithm

Resilient backpropagation

a post-classification stage using harmonic weights to increase the accuracy. Average speci-

ficity of 99.19%, sensitivity of 91.29% and selectivity of 91.14% are obtained.

© 2008 Elsevier Ireland Ltd. All rights reserved.

two broad categories—seizure detection and seizure predic-
Discrete wavelet transform (DWT)

1. Introduction

EEG involves recording and analysis of electrical signals gener-
ated by the brain. It is an important clinical tool for diagnosing
and monitoring of neurological disorders related to epilepsy.
Epilepsy is characterized by sudden recurrent and transient
disturbances of mental functions and/or movement of the
body that results from excessive discharging of groups of
brain cells. Epileptic EEG from the scalp is characterized by
high-amplitude and synchronized periodic waveforms [1].
In between seizures, spikes and sharp waves are typically

observed. The detection and classification of these activities
by visual screening of the recorded EEG is a complex and time-
consuming operation and requires highly skilled doctors, who
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are in great demand. This translates to longer diagnosis time,
increase in medical expenditure and consequent delay in nec-
essary treatment. In many cases, epilepsy can be controlled
purely by medication. In some other cases, surgical removal
of the epileptic part of the brain may be carried out. Newer
methods where parts of the brain are electrically stimulated
to avoid the onset of seizure are being developed. Automatic
detection of seizures forms an integral part of such methods.
Therefore there exists a strong need to automate this process.

Most of the work in automatic EEG processing falls into
T Building, First Floor, Room No. 239, Indian Institute of Science,
3600683.

tion. In 2005, Acir et al. [1] used artificial neural networks for
the automatic detection of epileptiform events in EEG signals
and compared backpropagation multi-layer perceptron, radial

erved.
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asis function network trained by a hybrid method and a sup-
ort vector method as candidate classifier tools. For training,
h 18 min of data from 19 patients were used; while in test-

ng, 3 h 48 min of data from 10 patients were involved. He
lso correlated the classification outputs from 19 channels.
ostetler et al. [2] compared a commercial spike detecting
omputer program’s performance to six electroencephalogra-
hers using six 19-channel EEG recordings of 20 min duration
ach. One hundred and eighty minutes of 16-channel EEG from
1 patients was used to train an expert system written in
descriptive artificial intelligence language by Dingle et al.

3]. The expert system was tested with the same data used
or training. Adjouadi et al. [4] employed Walsh transform to
etect epileptic spikes in 21 EEG records of 20–30 min duration.
rocessing parameters in his algorithm were set using 10 other
EG records. Tzallas et al. [5] used artificial neural networks
or detection of epileptic spikes after feature extraction. His
ata-set comprised of 10–15 min records of 25 patients—half
f which were used for training. Breakspear and Williams [6]
howed that different techniques of resampling the data in
he wavelet domain have great potential for testing non-linear
ypothesis in complex non-linear and biophysical systems

ike isolated spike in background EEG data. A fractal dimen-
ion algorithm was used in EEG analysis by Petrosian [7]. An
ssociation rule approach has been used for the classification
f EEG signals [8], and the auto-SLEX method has been used
or preseizure detection of epilepsy in EEG [9]. Iasemidis [10]
resented an overview of the application of signal processing
ethodologies based on the theory of non-linear dynamics

nd chaos theory to the problem of seizure prediction. Other
orks of Iasemedis et al. [11–13] provide insight into mod-

rn techniques applied to EEG for seizure detection. Kalitzin
t al. [14] have used relative phase clustering index (rPCI)
o predict epileptic seizure onsets. Litt and co-workers [15]
ave presented a scheme for quantifying seizure precursors
nd coupling these measures to brain stimulation for abort-
ng seizures. Sensitivity as high as 90.47% [16] has also been
chieved by him in predicting seizures. Reeves and Taylor [17]
ave used genetic algorithm to choose training sets for neural
etworks employing radial basis function, to obtain good gen-
ralization performance. His networks were trained to solve
he XOR problem. We use a similar approach in this paper, but
ith a backpropagating neural network.

This paper is based on the observation that the EEG
pectrum contains some characteristic waveforms that fall
rimarily within four frequency bands: delta (ı) (< 4 Hz), theta
�) (4–8 Hz), alpha (˛) (8–13 Hz) and beta (ˇ) (13–30 Hz). Many

ethods such as the Fourier transform (FT) and short-time
ourier transform (STFT) have already been proposed and
ested [18,19] for analyzing the signal but they suffer from
ertain shortcomings.

The FT is incapable of efficiently handling non-stationary
ignals (EEG in our case). It provides no time resolution [20] and
onsequently, it is a laborious process to represent transient
pikes—which are very common in EEG signals. Furthermore,
here is the problem of large noise sensitivity, which demands

urther computation to resolve.

STFT uses a fixed time–frequency resolution. Increasing
he resolution in time decreases the resolution in frequency,
nd vice versa. That is, once a time window has been fixed,
i o m e d i c i n e 9 1 ( 2 0 0 8 ) 100–109 101

a constant frequency resolution is obtained for the entire
time–frequency plane. Since the EEG signal is not determin-
istic, the problem lies in choosing a computationally efficient
time window since the starting and ending time of spectral
components are not known beforehand. Testing for a particu-
lar window involves translating the window along the whole
time scale, which involves a lot of calculation [21]. Conse-
quently we use wavelet transform for feature extraction.

2. Theory of techniques

2.1. Wavelet transform

The discrete wavelet transform (DWT) [22] is a versatile sig-
nal processing tool that finds many engineering and scientific
applications. It has also proven useful in EEG signal analy-
sis [23,24]. DWT is a representation of a signal x(t) using an
orthonormal basis consisting of a countably infinite set of
wavelets. DWT employs two functions, �(t), the scaling func-
tion and  (t), the wavelet function, which are associated with
low- and high-pass filters, respectively. Both of these functions
are shifted and scaled as shown below:

∀k, n, k ∧ n∈Z : �k,n(t) = 2−k/2�(2−kt − n) (1)

∀k, n, k ∧ n∈Z :  k,n(t) = 2−k/2 (2−kt − n) (2)

The wavelet representation of a signal x(t) in terms of the
scaling and wavelet functions is given by

x(t) =
∞∑

n=−∞
ck0,n�k0,n(t) +

∞∑
k=k0

( ∞∑
n=−∞

(dk,n k,n(t))

)
(3)

where ck0,n is called the approximation co-efficient and dk,n is
called the detailed co-efficient.The frequency upto which the
approximation co-efficients are used for representation of the
signal is determined by k0.

The decomposition of the signal into the different fre-
quency bands as accomplished by the process detailed above,
is simply high- and low-pass filtering of the time domain
signal yielding detailed and approximation co-efficients
respectively. The low pass filter’s output is further subjected
to the same process of high- and low-pass filtering. This is
repeated until the number of levels of decomposition desired
is reached. The outputs from both the filters are down-
sampled at each stage. For this reason, it is to be ensured
that the sampling frequency of the signal is at least two times
that of the maximum frequency to be analyzed. Selection of
suitable wavelet and the number of levels of decomposition
is very important in the analysis of signals using DWT. The
wavelet can be chosen depending on how smooth the signal is
and also on the basis of the amount of computation involved.
The number of levels of decomposition is chosen based on the

dominant frequency components of the signal. The levels are
chosen such that those parts of the signal that correlate well
with the frequencies required for classification of the signal
are retained in the wavelet co-efficients.
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the seizure are termed pre-ictal data. An average of 7.73 min
of epileptic data is available per patient—with a single seizure
duration varying from 4 s to 28 min. Figs. 1 and 2 show the
ictal and pre-ictal recordings from a patient. The “interictal”
102 c o m p u t e r m e t h o d s a n d p r o g r a m

2.2. Artificial neural network (ANN)

The basic units of an ANN are neurons—which are mathe-
matical functions that manipulate input data using weights
and biases to produce an output. These neurons can be
organized in groups which may then be cascaded, thus form-
ing multi-layered networks. A feed-forward backpropagating
neural network involves supervised learning, in which the
computed outputs from each neuron move forward to other
layers until finally an output is formed. The backpropagation
technique then adjusts the weights and biases repeatedly so
that the computed output is close to the expected output—as
determined by the mean-squared error (MSE) value. The man-
ner in which the randomly initialized weights and biases
change is determined by training algorithms, such as the
Levenberg–Marquardt (LM), resilient backpropagation (RP) and
the quasi-Newton algorithms. These algorithms vary in their
convergence speed, memory requirement and total time
to train. Although the Levenberg–Marquardt algorithm con-
verges fast [25], it is memory-intensive, and hence we choose
the resilient backpropagation algorithm for training. The
training process stops when either the performance goal is
met or the maximum number of epochs is reached.

2.3. Genetic algorithm

The genetic algorithm [26] is a search technique used in
computing to find exact or approximate solutions to opti-
mization and search problems. They are a particular class of
evolutionary algorithms that use techniques inspired by evo-
lutionary biology such as inheritance, mutation, selection, and
crossover. These are commonly implemented as computer
simulations where a population of abstract representations
(called chromosomes) of candidate solutions to an optimiza-
tion problem, evolve towards better solutions. Traditionally,
solutions are represented in binary as strings of 0 s and 1 s,
but other encodings are also possible. The evolution usually
starts from a population of randomly generated individuals
and gives rise to new generations. In each generation, the fit-
ness of every individual in the population is evaluated based
on the solution provided by it. Subsequently, multiple individ-
uals are stochastically selected from the current population
(based on their fitness), and modified (recombined and pos-
sibly randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm.
The algorithm terminates when either a maximum number
of generations has been produced, a satisfactory fitness level
has been reached for the population or when no improvement
is seen in the solution to the problem after a certain number
of generations. We use a binary representation of the chromo-
some to indicate whether or not a particular EEG recording is
used in the training set. The fitness of the chromosome is then
updated based on the value of the seizure detection sensitiv-
ity. The algorithm terminates if there is no improvement in
the sensitivity value after 200 successive generations.
3. Design considerations

Any attempt at automating epileptic EEG detection should in
general satisfy the following requirements:
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 100–109

• The system should be able to train/learn from the small
amount of epileptic data that is usually available. Clinical
EEG recordings usually have long hours of non-epileptic
data with relatively short durations of epileptic activity.

• While the time taken to train the system is not of much con-
cern, it must be made as short as possible. This is because
the system would have to be trained only once.

• If used for real-time detection, the time taken by the system
to process EEG data and produce an output should be small.

• The system should have good accuracy. This can be in the
form of specificity, sensitivity, selectivity or other perfor-
mance ratios.

• It is an added advantage if the same system is capable of
detecting different types of epilepsies in multiple patients.

• Finally, the whole system should be low on resource
demand and simple enough for easy and large-scale imple-
mentation.

4. System description

4.1. Data set

Our EEG database has been obtained from the website of the
Albert-Ludwigs-Universtãt, Freiburg, Germany [27] and con-
tains invasive EEG recordings of 21 patients suffering from
medically intractable focal epilepsy. The data was recorded
during an invasive pre-surgical epilepsy monitoring at the
Epilepsy Center of the University Hospital of Freiburg, Ger-
many. In 11 patients, the epileptic focus was located in
neocortical brain structures, in eight patients in the hip-
pocampus, and in two patients in both. In order to obtain a
high signal-to-noise ratio, data with artifacts were removed.
To record directly from focal areas, intracranial grid, strip, and
depth electrodes were utilized. The EEG data was acquired
using a Neurofile NT digital video EEG system with 128 chan-
nels, 256 Hz sampling rate, and a 16 bit analogue-to-digital
converter. For each of the patients, we use an “ictal” dataset
containing recordings with epileptic seizures, atleast 50 min of
recording before seizure onset and atleast 50 min of recording
after the seizure stops. These recordings made before and after
Fig. 1 – Ictal EEG: 147 s of ictal EEG from six channels.
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Table 1 – Decomposed wavelet co-efficients and
corresponding frequency bands

Decomposed signal Frequency range (Hz)

D1 64–128
D2 32–64
D3 16–32
ig. 2 – Pre-ictal EEG: 57.54 min of pre-ictal EEG from six
hannels.

ataset (Fig. 3) contains approximately 24 h of EEG recordings
ithout seizure activity. At least 24 h of continuous interictal

ecordings were available for 13 patients. For the remaining
atients, interictal invasive EEG data consisting of less than
4 h were joined together, to end up with at least 24 h per
atient. Thus, one recording corresponds to 1 h of data from
ne channel. The six contacts of all implanted grid, strip and
epth electrodes were selected by visual inspection of the raw
ata by a certified epileptologist. Three contacts were cho-
en from the seizure onset zone, i.e. from areas involved early
n ictal activity. The remaining three-electrode contacts were
elected such that they were not involved or involved last dur-
ng the seizure spread. The seizure periods were determined
ased on identification of typical seizure patterns preceding
linically manifest seizures in intracranial recordings by visual
nspection of experienced epileptologists.

.2. Processing

.2.1. Filtering
n order to restrict the EEG signal within the desired frequency
and (encompassing the ı, �, ˛ and ˇ waves), to remove line

oise due to electric supply, and to remove stray spikes due
o noise, we undertake filtering of the signal. We use a fourth
rder butterworth bandpass filter with lower and upper cut-
ff frequencies of 0.35 and 30.5 Hz, respectively. After filtering

ig. 3 – Interictal EEG: 1 h of interictal EEG from six
hannels.
D4 8–16
D5 4–8
A5 0–4

once, the signal is reversed and filtered again to nullify phase
shifts.

4.2.2. Normalization
We first partially normalize the EEG signal x by using a scaling
factor s defined by

s = (|x̄| + �x) (4)

where �x is the standard deviation of the EEG signal and |x̄|
is the mean of the absolute value. Assuming that the EEG
signal amplitude has a normal distribution [28], the scaling
process results in a partial normalization. Statistically, (�x + x̄)
is greater than 68% of the signal. But since we use (�x + |x̄|),
the percentage of signal lying in [−1,+1] would be consider-
ably higher. To make the normalization more robust, we use a
non-linear hyperbolic tangent sigmoidal function defined as

g(x) = 2
1 + e−2x

− 1 (5)

The advantage of this two-step process is that the first step
ensures that the algorithm works across different data sets
where amplitudes may be scaled by different values. Conse-
quently, our statistical parameters are not adversely affected.
The second step completely fits the signal into [−1,+1] with
the added advantage that it enhances the amplitudes of those
parts of the signal which may have been drastically reduced
because of sharp spikes – normal or abnormal – in the EEG.
Although the hyperbolic tangent sigmoidal function is essen-
tially non-linear, we observed an average increase of around
20% in specificty, sensitivity and selectivity after adding this
to our processing algorithm.

4.2.3. Windowing and wavelet decomposition
Each EEG signal is divided into a 4 s window with a 3 s overlap
between consecutive windows. This means that for processing
1 s of EEG data, we also use the previous 3 s as part of the win-
dow. These durations were arrived at after extensive testing
with various window and overlap lengths.

As mentioned before, EEG signals show characteristic
waveforms in ı, �, ˛ and ˇ ranges. Since our data is sampled
at 256 Hz, we choose a level 5 wavelet decomposition so that
each frequency range is almost completely represented by an
individual co-efficient. Table 1 shows the frequency bands that
the detailed (D1–D5) and approximation (A5) co-efficients rep-

resent.

From Table 1 it can be seen that A5 corresponds to the ı
range, D5 to the � range and so on. The co-efficients repre-
sent the amplitude of the combined signals in their frequency
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Fig. 4 – Pre-processing stages and feature extraction.

bands. Once the wavelet decomposition is done, we compute
the following simple statistical parameters for each time win-
dow in all the decomposed co-efficients:

(1) mean: corresponds to the constant or DC signals at various
frequency ranges;

(2) absolute mean: for tracking both DC signals and alternat-
ing or ac signals;

(3) root mean squared (RMS) value: to measure power of the
signal in the window;

(4) standard deviation: to represent the level of fluctuation of
the signal.

Since we have six decomposed co-efficients and four
parameters, each time window is represented by a vector with
24 elements. Fig. 4 gives a brief overview of the above steps.

4.3. Neural network training
Normally, EEG data are classified as ‘epileptic’ or ‘normal’. In
our case, as mentioned in Section 4.1, epileptologists have
classified the data into three categories—ictal, pre-ictal and
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 100–109

interictal. We exploit this grouping to achieve our primary
objective of detecting purely epileptic signals. Thus, our ANN
classifies EEG data into three classes. Consequently our train-
ing set consists of three categories. Since our processing
scheme uses a 4 s window, we include 3 s of EEG data before
and 1 s after epileptic seizures and use this resulting signal
as training set for the ictal class. We train and test the ANN
classifier for each patient individually, i.e. a network trained
using data from one patient is not used for testing data from
another patient.

The choice of the data used for training is a very important
one. Sensitivity as low as 3% was observed with an inappropri-
ate training set. Although we do not define what constitutes an
appropriate training set, we experimentally resolve this issue
using a genetic algorithm. We restrict the number of training
signals to six each for interictal, pre-ictal and ictal activities.
This translates to 6 h of normal data, a few minutes of ictal
data (depending on the duration of the signals chosen) and
roughly 6 h of pre-ictal data. Six signals were chosen in each
case to reduce the training time taken by the neural network
and to allow the possible inclusion of all the six channels of
data from a particular hour of recording. The neural network
training set is chosen by the genetic algorithm, which tries
to maximize the sensitivity. For every iteration of the genetic
algorithm, it is allowed to choose six signals per category from
a set containing 80% of the available data per patient. The
remaining 20% is ‘hidden’ from the genetic algorithm and from
the neural network. During the execution of the genetic algo-
rithm, neural network testing uses data from the reserved set
alone, i.e. the 20% ‘hidden’ data is not tested. This is done so
that the sensitivity can be maximized by the genetic algorithm
within a limited set of possible training vectors. This also
prevents over-fitting of the neural network. Thus, upon termi-
nation of the genetic algorithm, the neural network training
set has six signals per category which are optimal for the set
containing 80% of the available data. It may be noted at this
stage that although an optimal training set has been found,
this does not necessarily imply numerically high values of sen-
sitivity. The genetic algorithm only maximizes the sensitivity
while the exact numerical values are due to the efficiency of
our main processing algorithm (including post-classification).
The above steps are depicted in Fig. 5.

The ANN used is a two-layered feed-forward backpropagat-
ing network with 10 neurons in level 1 and 3 neurons in level 2
(Fig. 6). Both levels use a hyperbolic tangent sigmoidal squash-
ing function. Resilient backpropagation algorithm is used for
training. We set the maximum number of epochs as 1000 and
the performance goal (MSE) as 10−5. Initial tests with the above
architecture and parameters were both faster and more accu-
rate when compared to other architectures having lower MSE
values and using different number of neurons in level 1. Three
neurons are used in level 2 following our requirement of hav-
ing three categories for classification. Each neuron fires when
it encounters signals corresponding to one of the three cate-
gories.
4.4. Neural network testing

Testing is carried out on the optimally trained neural net-
work using all the data available per patient. By testing with
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Fig. 5 – Brief flowchart of the overall algorithm.

he ‘hidden’ data, an estimate of our algorithm’s performance
s obtained when it is presented with totally new data. At
he same time, testing with the 80% of data reserved for the
enetic algorithm is meaningful because in effect, the training
et for the neural network comprises of only the six optimal
ectors from each category. Hence testing the algorithm over
ll the data available does not present an inaccurate account
f the algorithm’s performance. Each channel from a subject

s individually fed to the classifier after processing and the
esults obtained are fed to the post-classification stage for
ntegration of outputs from multiple channels. The outputs
rom the classifier are numerical values p1, p2 and p3 cor-
esponding to the three categories of the signal - interictal,
re-ictal and ictal, respectively. We choose p1 = +1, p2 = −1
nd p3 = −5. These are chosen based on the post-classifier
lgorithm which needs p1 and p2 to be of opposite signs, prefer-
bly with the same magnitude, and p3 to be of the same sign
s p2 but with higher magnitude.

.5. Post-classification
or 1 h of EEG recording, the classifier uses six channels of data
nd outputs six classification result vectors. We present below
he framework of our algorithm to correlate the six output

Fig. 6 – Basic structure of neural network used.
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vectors. Specific numerical values used by us are indicated,
but these may be varied.

(1) Define weight-vector-alpha = (˛1, ˛2, . . . , ˛n) where the
constant n is the desired number of previous outputs that
are used for processing a particular output at position
(n+ 1) (we call this current-output). ˛i s form an increas-
ing harmonic series starting at a convenient value, which
depends on the number of mis-classified signals from
the ANN classifier that the post-classifier algorithm is
allowed to correct before accepting the ANN classifier’s
output as the true classification result. We set n = 10,
˛1 = 1/20, ˛2 = 1/19, . . . , ˛10 = 1/11.

(2) Define weight-vector-beta = (ˇ1, ˇ2, . . . , ˇn, ˇn+1) where
ˇi are weights following a similar pattern as ˛i, but
with lesser magnitude. Note that ˇn+1 corresponding to
current-output is also included in the weight vector. We
set ˇi = ˛2

i
. Thus, ˇ1 = 1/400, ˇ2 = 361, . . . , ˇ11 = 1/100.

(3) Find the sum of the ANN classifier output for each chan-
nel and call this net-output. A lower weight � = 0.5 is used
for the output from channels that are not involved or
involved last in seizure activity. Thus outputs from three
channels in our case are weighted using �. The other
three channels are directly added.

(4) Using net-output, extract the array (v1, v2, . . . , vn, vn+1)
where current-output is vn+1, and find its weighted
sum. Use the corresponding weight from the associated
weight-vector for each vi. If a weight-vector is not yet
associated with a particular vi, use weight-vector-alpha
and the corresponding ˛i as weight. Always use ˇn+1 as
the weight for vn+1.

(5) Multiply the weighted sum from the above step with vn+1.
(6a) If the sign of the result is positive, apply thresholds to

current-output to obtain the final classification. Using our
values of p1, p2 and p3, a value of current-output greater
than zero is labeled interictal and more than kp3 but less
than zero is labeled pre-ictal. We use k = 2 + �, thereby
requiring atleast two focal electrode channels and one
other channel to have detected epileptic activity. Val-
ues of current-output lower than kp3 represent epileptic
activity and are labeled ictal. Finally, we associate weight-
vector-alpha with current-output.

6b) A negative sign to the result indicates that current-output
is a misclassification by the ANN. If current-output is
greater than zero, it is labeled pre-ictal, otherwise it
is labeled interictal. Also, weight-vector-beta is associ-
ated with current-output. Thus, although a particular
ANN classifier output may be wrong, we still consider
it for post-classification processing, but with a lower
weight.

(7) Advance the position of current-output to the next ele-
ment in net-output. While this retains the associated
weight vector for each element of net-output, the cor-
responding weight for that element will be determined
by the element’s position in the array (v1, v2, . . . , vn,
v ) which would be extracted in the next iteration.
n+1

This process is continued until the end of net-output is
encountered in the extracted array (v1, v2, . . . , vn+1), indi-
cating that all outputs corresponding to 1 h of six channel
EEG recordings have been processed.
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post
Fig. 7 – Flowchart of

Fig. 7 depicts the post-classification algorithm detailed
above. This algorithm uses current-output and n outputs
before this, to decide if current-output is a mis-classification
by the ANN classifier. A harmonic series is used for the
weights ˛i so that the n previous outputs are weighted
in such a way that older outputs are given lesser prior-
ity; but at the same time, small groups of newer outputs

that are possibly wrong do not adversely affect the post-
classifier’s output. It may be noted that weights which are
part of a geometric series do not have the second property
mentioned.

Fig. 8 – Flowchart of modified
-classification stage.

4.5.1. Further increasing sensitivity
The above algorithm uses a simple threshold kp3 to distinguish
between ictal and pre-ictal signals in step 6(a). Due to this, in
some cases, parts of an epileptic EEG signal may be wrongly
labeled as pre-ictal. To overcome this, we modify our post-
classification algorithm using the following:
• Define future-weight=(˛n, ˛n−1, . . . , ˛n−m+1), where m(≤ n) is
the number of classifier outputs occurring after current-
output in the net-output vector, that are used for processing.
˛i are as defined in weight-vector-alpha. We usem = 10(= n).

post-classification stage.



i n b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 100–109 107

•

m
a
6
r
t
t
i
r
d

fi
o
t
p
b
c
c
p

4

T
I
8
r
p
t
w
o
t
p
c
d
l
b
a
i
o
w
t

5

A
1
t
E

Table 2 – Results of testing the algorithm using data
from 21 patients

Patient no. Specificity (%) Sensitivity (%) Selectivity (%)

1 98.91 89.67 90.12
2 99.67 91.65 93.10
3 99.46 92.34 93.86
4 98.97 92.31 91.54
5 99.12 93.16 91.84
6 98.52 89.68 90.33
7 99.06 91.28 89.56
8 99.18 93.80 88.67
9 98.87 88.38 91.17
10 99.82 90.91 92.95
11 98.61 91.60 93.12
12 99.13 90.74 91.38
13 99.63 92.82 90.70
14 99.45 87.73 89.63
15 99.28 93.21 87.58
16 99.56 92.14 90.27
17 99.79 90.88 92.34
18 98.56 89.34 91.61
19 99.63 91.72 89.81
c o m p u t e r m e t h o d s a n d p r o g r a m s

Compute �, the weighted sum of m outputs (vn+2,
vn+3, . . . , vm+n+1) using the corresponding weights from
future-weight vector (i.e. compute vn+2˛n + vn+3˛n−1 + · · · +
vm+n+1˛n−m+1). Along with the kp3 threshold of step 6(a), �
is compared to a threshold � (p3{1/11 + 1/12 + · · · + 1/15} in
our case) and only if it is found to be higher, the output is
labeled as ictal. Failing this, even if current-output is greater
than kp3, it is labeled pre-ictal. The value of � needs to be
set considering the minimum duration of epileptic seizures,
which is 6 s in our case.

Fig. 8 depicts the final post-classification algorithm after
odifications. The post-classification algorithm without the

bove modification increased the sensitivity of detection by
% while retaining the algorithm’s capability of processing
eal-time signals. The above modification is seen to increase
he sensitivity by a further 2%. It is to be noted though, that
he modification renders the algorithm incapable of process-
ng real-time signals. Thus, the algorithm, would then be
estricted to detecting epileptic activity in pre-recorded EEG
ata.

We use the algorithm detailed above along with the modi-
cation in the post-classification algorithm to train and test
ur system. Since our main objective is to detect epilep-
ic seizures, we do not distinguish between interictal and
re-ictal labels for performance measurement, i.e. we group
oth these classes into a ‘non-epileptic’ category. Nonetheless,
lassification into three categories greatly helps our post-
lassification algorithm, and is seen to give a better overall
erformance.

.6. Implementation of algorithms

he algorithm was run on a desktop computer with 3.0 Ghz
ntel micro-processor, 1 GB of 533 Mhz DDR2 memory and
0 GB SATA Hard Disk. This computer was used for the neu-
al network training. In all, we use roughly 24 h of EEG data
er channel per patient for testing. Processing these signals
o generate the 24-element representative vector from the
indowed wavelet co-efficients involves a lot of computation

wing mainly to the long duration of recordings. But since
he computation can be carried out in parallel upon multi-
le signals, we use a high-performance computational cluster
onsisting of 15 nodes, all with the same specifications as the
esktop computer, which we use as the master for control-

ing the cluster nodes. The master and nodes are connected
y gigabit ethernet Network Interface Cards. The master and
ll the nodes run on RedHat Enterprise Linux v4. Software
mplementations are carried out in MATLAB R2007a, installed
n all systems. Wavelet decomposition and the neural net-
ork classifier were both implemented using the in-built

oolboxes.

. Results
verage time to process one EEG signal of 1 h duration was
6.92 s; 4.7 ms to process 1 s of EEG signal. It may be noted that
he algorithm produces an output for every second of input
EG data.
20 99.47 91.49 90.65
21 98.32 92.18 93.70
Average 99.19 91.29 91.14

We present our results in terms of the following accuracy
measuring ratios : sensitivity, specificity and selectivity. Math-
ematically,

specificity = TN
TN + FP

× 100% (6)

sensitivity = TP
TP + FN

× 100% (7)

selectivity = TP
TP + FP

× 100% (8)

where TP-true positive, FN-false negative, TN-true negative
and FP-false positive.

TP is the number of epileptic signals detected correctly by
the algorithm, i.e. same result as obtained by a trained doc-
tor in detecting seizure. TN is the number of normal signals
detected correctly. FP is the number of normal signals labeled
epileptic by the algorithm and FN is the number of epileptic
signals labeled normal by the algorithm.

As we train and test our algorithm for each patient individ-
ually, we present the classification results of all the 21 patients
whose EEG data were analysed in Table 2. We also indicate the
average specificity, sensitivity and selectivity obtained.

Table 3 presents an overall comparison of our method with
a few other detection methods. The results are presented in
terms of specificity, selectivity and sensitivity, wherever avail-
able. It can be seen that our algorithm performs better than
previous attempts at automation.
6. Strengths and weaknesses of the
proposed algorithm

The major strengths of our algorithm are
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Table 3 – Comparison with other automatic seizure
detection attempts

Author Sensitivity Selectivity Specificity

Acir et al. [1] 89 86 –
Hostetler et al. [2] 59 89 –
Dingle et al. [3] 53 100 –
Adjouadi et al. [4] 82 92 –

Tzallas et al. [5] 80–85 77–90 90–97
Exarchos et al. [8] 84 82 91
Our method 91.29 91.14 99.19

• Having used wavelets for feature extraction, we compute
simple statistical parameters from the wavelet co-efficients
and use these parameters to represent the EEG signals. This
is not computationally intensive, even for real-time signals.

• A genetic algorithm has been used for choosing the training
set, as opposed to the common method of randomly select-
ing data for training. We observe a consequent increase in
our accuracy ratios due to this.

• The post-classification algorithm correlates the ANN clas-
sifier output over multiple channels (six in our case) and
yields a single classification label. It is seen to have the
following advantages:
• It provides a simple yet efficient means of relating multi-

ple outputs for the same duration of the EEG signal. Data
from electrodes placed outside the epileptic focus usu-
ally show low epileptic activity after ANN classification.
This has been taken into consideration by assigning an
appropriate weight.

• It eliminates improper classification outputs over short
periods which may occur due to low-power noisy distur-
bances. Thus it avoids short durations of pre-ictal activity
being detected in interictal regions of the signal and vice
versa.

• In many cases, epileptic activity lasts only for a short time.
To be able to detect this, while still retaining the previ-
ously mentioned advantage, we use a high magnitude
for p3. At the same time, the value of p3 is low enough
for the algorithm to not allow labeling of signals as ictal
unless some duration of pre-ictal signal has already been
encountered.

• In other techniques such as moving average filter or
simple low pass filter, the resulting values need to be fur-
ther quantized which demands additional thresholding
rules. Also, short durations of mis-classified outputs may
adversely affect the neighboring classification results
depending on the filter order and the output value of
the algorithm for each class. These problems have been
eliminated to a certain extent in our algorithm.

• The reasonably high specificity, sensitivity and selectivity
values obtained show that our processing algorithm for
feature extraction and our post-classification stage both
perform well.

There are also certain weaknesses in our algorithm which

need to be overcome.

• Although a definite increase in the accuracy ratios is
observed, the genetic algorithm used for choosing the train-
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 100–109

ing set takes a long time to terminate. This increases the
time for optimally training the system by many hours. Note
that we have not made any attempts to optimize the genetic
algorithm. More work in this direction may reduce the train-
ing time.

• Currently, after our system has been trained using data from
one patient, an average decrease of around 10% in specificity
and 18% in sensitivity is observed when tests are carried
out using data from other patients, having different epilep-
tic foci. This indicates that upto a certain level, all types of
epileptic seizures show up similarly in the EEG recordings.
This possibility needs to be further explored.

• A further increase in sensitivity and selectivity is a must for
clinical deployment of such a system.

7. Conclusions and discussion

Detection of epileptic activity in EEG recordings is mostly done
by a small number of skilled professionals today. Automat-
ing this process presents many advantages and among them
are faster diagnosis, non-stop monitoring, and reduction in
overall cost of medical treatment. Automatic intervention of
systems by electrical stimulation of the brain to prevent onset
of seizures would also benefit from such work. We propose
a wavelet-based feature extraction technique which conse-
quently uses simple statistical parameters to detect epileptic
EEG signals using a backpropagating artificial neural network
classifier. We also employ a post-classification stage to corre-
late the outputs from different channels and also to increase
the overall accuracy (specificity, sensitivity and selectivity).
Average detection sensitivity of 91.29%, specificity of 99.19%,
and selectivity of 91.14% are obtained. Considering the speed
of our algorithm (4.7 ms for wavelet decomposition and sta-
tistical computation and a classification time of 0.012 ms with
ANN for one 4 s window with 3 s overlap), implementing this
for real-time epileptic EEG detection also seems feasible, pro-
vided the modification in the post-classification algorithm
is not included. As mentioned before, the post-classification
algorithm’s modification uses outputs occurring in the future
to increase sensitivity.

8. Future work

Automation of epileptic EEG signal detection is a daunting
task and although much work has been done in this field,
the search for an algorithm that performs well across multi-
ple patients with different types of epileptic seizures is still
on. Although we have used only a few basic techniques in
this paper, our accuracy seems higher than those of other
similar attempts. Apart from addressing the weaknesses that
we have mentioned, our algorithm’s performance can prob-
ably be improved by using better techniques of choosing
training sets for the neural network, using more statisti-

cal parameters for each time window, employing a different
type of neural network (supervised or unsupervised), and
by varying the parameters used in the post-classification
stage.
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