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Abstract

A new approach has been proposed for improving the performance of the Wigner–Ville distribution. This approach is
based on signal decomposition and modi$ed magnitude group delay function. Signal decomposition achieved by perfect
reconstruction $lter bank reduces signi$cantly the existence of crossterms. The Gibbs ripple e3ect is due to truncation of
the Wigner–Ville distribution kernel. The modi$ed magnitude group delay function overcomes this e3ect without applying
any window. Compared to those of Pseudo Wigner–Ville distribution and its versions, the proposed method has signi$cantly
improved performance in both time and frequency resolution as there is no time and frequency smoothing. Further, this
method obeys better the desirable properties of time–frequency representation and has a better noise immunity.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The short-time Fourier transformwas introduced for
processing nonstationary signals. But this necessitates
a tradeo3 between time localization and frequency
resolution. The Wigner–Ville distribution (WVD) [5]
alleviates this tradeo3. The WVD at any instant is
the Fourier transform (FT) of the instantaneous au-
tocorrelation (IACR) sequence of in0nite lag length.
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Theoretically the WVD has an in$nite resolution
in time due to the absence of averaging over a $-
nite time interval. Also for in$nite lag length, it
has in$nite frequency resolution. Practically, it is
the Pseudo WVD (PWVD) that is computed which
considers IACR only for a $nite number of lags.
In the PWVD the IACR is weighted by a common
window function to overcome the abrupt truncation
e3ect namely the ripples along the frequency axis,
commonly known as Gibbs e3ect. For a given lag
length, the windowing deteriorates the frequency res-
olution. The IACR is also referred to as WVD kernel.
The frequency resolution is referred to the main-
lobe width of the FT of a window for a given length
and the rectangular window has the best frequency
resolution.
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The WVD being quadratic in nature introduces
crossterms, for a multi-component signal. The
crossterms make the interpretation of the WVD diF-
cult. As the crossterms oscillate along the time axis,
they can be reduced by time smoothing. But this
method of crossterm suppression is only at the cost
of time resolution.
In the last two decades, the research has been

aimed at e3ective suppression of crossterms and im-
provement of the frequency resolution, preserving
the desired properties of time–frequency energy dis-
tribution [5]. The Choi–William’s distribution also
known as exponential distribution (ED) [3] has a
kernel �(�; �) = e−� 2�2=�; �¿ 0. It retains the good
properties of a TFR and provides a tradeo3 between
crossterm suppression and the frequency resolution
through the parameter �. Larger the value of �, the ED
is closer to WVD. That is, for large �, ED has larger
crossterms and good frequency resolution and vice
versa. On the other hand, the cone-shaped kernel [20]
only provides good time and frequency concentration
and crossterms suppression. It does not attach much
importance to the properties for the TFR. The reduced
interference kernel [7] is an improved and generalized
version of Choi–Williams distribution. In this direc-
tion, an application speci$c signal-dependent optimal
kernel design [1], useful for di3erent class of signals,
is a major step. Based on orthogonal like Gabor ex-
pansion [14], a decomposition of the WVD achieves
a balance between crossterms and useful properties.
A denoising approach [4] based on shift-invariant
wavelet packet decomposition has been proposed for
adaptive suppression of crossterms.
To achieve a better frequency resolution for the

WVD, the modi$ed magnitude group delay (MMGD)
for complex signals [11] has been used to remove
the truncation e3ect or the ripple along the frequency
axis, without using any window function [10]. For the
instantaneous power spectrum, the MMGD for real
signals [19] has been applied to overcome its unde-
sired severe ringing e3ect, without compromising on
frequency resolution [8]. The MMGD [19,11] basi-
cally removes the zeros close to the unit circle, with-
out disturbing the poles of the signal. The spectral
ripples and the associated white noise (with the sig-
nal) manifest as zeros close to the unit circle. Conse-
quently, a reduction in the e3ect of only these zeros,
results in a reduced ripple e3ect/variance of a spectral

estimate, without any compromise on frequency reso-
lution. However for the WVD, the residual crossterms
left after time smoothing get enhanced due to the ap-
plication of the MMGD and this requires a second
time-smoothing [10].
Recently, a WVD based on signal decomposition

approach, realized by a perfect reconstruction $lter
bank (PRFB), has been proposed [16]. The PRFB
decomposes the multi-component signal into its com-
ponents. The summation of their WVDs, results in a
WVD whose crossterm and noise, are signi$cantly re-
duced [16]. It is to be noted that in this approach also,
the lag window used to overcome the truncation ef-
fect of the IACR, decides the frequency resolution and
reduces it from that of a rectangular window.
In this paper, a new improved WVD (IWVD) has

been proposed. The IWVD combines the signal de-
composition by PRFB [16] for reducing the crossterms
and the MMGD [10] for reducing the ripple e3ect due
to truncation of the IACR [9]. The crossterm and the
Gibb’s ripple are reduced, without using any time and
frequency smoothing. Therefore, the proposed WVD
has a signi$cantly superior performance over that of
the PWVD, in terms of time and frequency resolution
and in obeying the properties of a TFR. Further, its
noise immunity is improved as the SD and the MMGD
themselves individually o3er an additional noise
immunity.

2. The Wigner–Ville distribution [5]

For a signal x(t), the WVD is de$ned as

Wx(t; !) =
∫ ∞

−∞
x(t + �=2)x∗(t − �=2)e−j!� d�; (1)

where r(�) = [x(t + �=2)x∗(t − �=2)] is the instanta-
neous autocorrelation function and ∗ indicates con-
jugate operation. For computational purposes, it is
necessary to weigh the signal by a window before
evaluating the WVD and this window slides along the
time axis with time instant t, where the WVD has to
be evaluated. For a window function, h(t), h(t) = 0
for |t|¿T=2, the WVD of the windowed signal is

PWx(t; !) =
1
2�

∫ ∞

−∞
Wx(t; �)Wh(t; !− �) d�; (2)
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where Wh(t; !) is the WVD of the window function.
This WVD of the windowed signal is called Pseudo
Wigner–Ville Distribution (PWVD), PWx(t; !). The
e3ect of the window is to smear the WVD along the
frequency axis. For a real symmetrical window,

PWx(t; !) =
∫ ∞

−∞
[x(t + �=2)x∗(t − �=2)]

× h2(�=2)e−j!� d�: (3)

E3ectively, the PWVD is the FT of the windowed
function, [x(t+ �=2)x∗(t− �=2)]h2(�=2). The window
h2(�=2), generally not necessarily be factorizable and
symmetric. The window eats away the correlation
function at higher lags which results in a poor spectral
resolution.
The quadratic operation on the signal, causes the

WVD to be a bilinear transformation. For a composite
signal with two components

x(t) = x1(t) + x2(t)

and for example, for x1(t) = ej(!1t+�1) and x2(t) =
ej(!2t+�2),

Wx(t; !) = 2� [�(!− !1) + �(!− !2)

+ 2�
(
!− !1 + !2

2

)
cos{(!1 − !2)t

+(�1 − �2)}
]
:

The third term is the crossterm due to interfer-
ence between the two components. The crossterm
appears mid-way between two components of the
signal. Its amplitude is proportional to product of the
two components’ amplitudes and it oscillates in time
at a frequency equal to the frequency separation be-
tween them. The presence of the crossterm poses a
major problem in the interpretation of the WVD of a
multi-component signal. But as the crossterm oscil-
lates in time, smoothing the WVD in time, attenuates
the crossterm and enables a meaningful representa-
tion of the signal components, but only at the cost of
time resolution.
The smoothing process, in time for crossterms and

in frequency for the lag window, can be considered
as a two-dimensional convolution of the WVD with a

function �(t; !) [20,6] given by

SWx(t; !) =
1
2�

∫ ∞

−∞

∫ ∞

−∞
Wx(t; !)

×�(t − �; !− �) d� d�; (4)

where �(t; !) = FT[�(�; �)], is a smoothing kernel.
The kernel determines the properties of the distribution
[6]. For WVD, �(�; �)=1. Using di3erent smoothing
kernels, a class of distribution known asCohen’s class
[20,6] can be realized. Any smoothing will a3ect the
properties of a time–frequency distribution (TFD) and
the choice of this kernel depends upon the application.
The properties of marginality in frequency, group de-
lay and frequency support are not satis$ed for common
non-rectangular windows. This is due to smearing of
the signal spectrum with that of the window. The time
smoothing used in suppressing the crossterms does
not permit the corresponding properties of a TFD in
time. The objectives of the smoothing function �(�; �)
are to provide crossterm suppression, good time and
frequency resolution and to have as many properties
of a TFD as possible. As there is a tradeo3 among
these realizable objectives, the choice of this smooth-
ing function has been a topic of research.
For the computation of an alias free Wigner dis-

tribution (WD) using FT, an analytic signal is re-
quired or the signal needs to be sampled at twice the
Nyquist sampling rate. The aliasing e3ect occurs due
to the very de$nition of WD. Its discrete version given
below involves half-sample intervals k=2.

PWx(n; !) =
∑
k

x(n+ k=2)x∗(n− k=2)h2(k=2)e−j!k

= 2
∑
p

x(n+ p)x∗(n− p)h2(p)e−2j!p:

For a signal sampled at Nyquist rate, the FT of the
product x(n+ p)x∗(n− p) introduces aliasing as the
sampling rate is reduced by a factor of 2 (i.e., 2p
instead of p) and any particular frequency occurs at
twice its value. Use of an analytic signal

xa(n) = x(n) + jx̂(n) where x̂(n) is the

Hilbert transform of x(n)
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overcomes the aliasing problem as the spectrum of
xa(n) has nonzero values only for positive frequencies.
In practice, the WD which uses an analytic signal as
its input, is known as WVD. The use of an analytic
signal necessitates further processing to be performed
in complex domain.

3. Signal decomposition by perfect reconstruction
"lter bank [16]

The impulse response of the sub$lters of a uniform
$lter bank are obtained by complex modulation of a
lowpass $lter and is given by

hi(n) = h(n)ej!in; (5)

where

h(n) =
1
M

sin(n�=M)
n�=M

and !i = 2�(i − 1)=M;

i = 1; : : : ; M ;

h(n) is the impulse response of a prototype lowpass
$lter and M is the number of sub$lters. Thus, the
transfer function of the sub$lters is

Hi(!) = H (!− !i); i = 1; : : : ; M:

The output from the ith sub$lter is

zi(n) = x(n)⊗ hi(n);

⊗: convolution.
For a perfect reconstruction, h(n) should satisfy

[16],

h(0) = 1=M;

h(mM) = 0; ∀m 	= 0; (6)

which, in the frequency domain, corresponds to

M∑
i=1

|H (!− !i)|= 1; 06!6 2�: (7)

The complex signal zi(n) becomes analytic, pro-
vided the Fourier transform of zi(n), Zi(!) = 0 for
!¡ 0. This will occur for all sub$lters if H (!) = 0
for |!|¿�=M . To achieve this, the real input x(n) to
the $lter bank is band limited to the frequency interval

{�=M; � − �=M} [16]. Thus, the spectrum of x(n) is
covered by the sub$lters indexed i= 2; : : : ; M=2, each
having same bandwidth and form a uniform PRFB.

4. Modi"ed magnitude group delay for a complex
signal (MMGD) [19,11]

In this section, the GD for a complex signal and
its modi$cation [19] which reduces the variance
without a3ecting the frequency resolution [11], will
be reviewed.

4.1. GD for a complex signal [15]

If x(n) is a minimum phase complex signal with its
FT, X (!),

ln[X (!)] =
∞∑
n=0

[c(n)]e−j!n

=
∞∑
n=0

[cR(n) + jcI(n)]e−j!n

=
∞∑
n=0

[cR(n) cos!n+ cI(n) sin!n]

+ j
∞∑
n=0

[− cR(n) sin!n+ cI(n) cos!n]:

Also,

ln[X (!)] = ln[|X (!)|ej�(!)] = ln |X (!)|+ j�(!):

Therefore,

ln |X (!)|=
∞∑
n=0

[cR(n) cos!n+ cI(n) sin!n]; (8)

�(!) =
∞∑
n=0

[− cR(n) sin!n+ cI(n) cos!n]; (9)

�(!) is the unwrapped phase and c(n)=cR(n)+jcI(n)
are cepstral coeFcients. R and I refer to the real and
imaginary parts. For a minimum phase signal, the log-
magnitude spectrum and the phase are related by a
single set of cepstral coeFcients. The GD �m(!) is
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given by

�m(!) =
−@�(!)

@!
=

∞∑
n=0

ncR(n) cos!n+

ncI(n) sin!n=(1=2)FT[nc(n)−nc ∗ (−n)]:
(10)

If nc(n) is conjugate symmetric, �m(!) is the FT of
nc(n) [15]. Since c(n) sequence is derived from the
magnitude, �m(!) is called as the magnitude GD for
a complex signal (MGD).

4.2. Modi0cation of the MGD [19,11]

In spectral estimation, the goal of achieving lower
variance and high resolution is to capture a consistent
spectral envelope and discard the $ne structure, with-
out a3ecting the former. One or a combination of the
following three factors can result in $ne structure/large
variance of the signal spectrum estimate. They are (i)
signal truncation e3ect, (ii) associated white noise,
(iii) input white noise that drives a system in gener-
ating the signal. These factors introduce zeros close
to the unit circle, which manifest as spikes in the GD
and their e3ect cannot be removed by normal smooth-
ing using a window function without any loss of fre-
quency resolution. The periodogram spectral estimate,
even at high noise levels, has a good frequency reso-
lution, low bias and good ability to detect the signal,
but its variance is large. For a given length of data,
averaging the periodogram or windowed periodogram
or smoothed GD, results in a reduced variance. But
this will be at the expense of frequency resolution.
The modi$cation suggested in [19] removes the ze-
ros close to the unit circle. Hence, the spikes in GD
are removed e3ectively without disturbing the signal
or system poles. The frequency resolution is therefore
not sacri$ced.
The modi$cation basically considers the signal to

be characterized by, a transfer function having only
the denominator polynomial, generally known as an
all-pole model. In such a case, the input driving noise
to the transfer function or the associated noise with the
signal or the truncation e3ect (zeros) on the signal cor-
responds to the numerator. The undesired e3ect of the
numerator, viz., large variance is removed by dividing
the transfer function by the numerator estimate with-
out signi$cantly disturbing the denominator. The GD

domain provides a platform to do this operation, with-
out any singularity problems, as it involves only mul-
tiplication and no division. The conventional variance
reduction approach of averaging of the periodogram
involves data segmentation and or windowing. This
not only reduces the variance/e3ect of the numerator,
but also the frequency resolution of the spectral peaks
as it pulls signal poles towards the origin in addition
to the zeros which are close to the unit circle.
Let x(n) be a complex signal generated by an

all-pole system driven by a white noise or it has
sinusoids with white noise. Let its spectrum be repre-
sented by X (!) = N (!)=D(!), D(!) corresponds to
the system or sinusoids and N (!) to the excitation or
the associated noise.
For this case, the MGD is

�m(!) = �mN (!)− �mD(!); (11a)

�mN (!) and �mD(!) are the MGDs for N (!) and
D(!), respectively. Also, �m(!) is given by

�m(!) =
XmR(!)YmR(!) + XmI(!)YmI(!)

|X (!)|2 ; (11b)

where

Xm(!) = FT[xm(n)]; Ym(!) = FT[ym(n)] and

ym(n) = nxm(n);

xm(n) is the minimum phase equivalent of x(n) and
provides information only about the spectral magni-
tude. This is what is required for WVD at each instant
of time and not the mixed phase information if any.
Using Eqs. (8) and (9), xm(n) can be derived from the
spectral magnitude |X (!)|.
Also [19],

�m(!) =
&N (!)
|N (!)|2 − &D(!)

|D(!)|2 : (12)

From Eqs. (11a) and (12), &N (!) and &D(!) are
the numerator of Eq. (11b) for �mN (!) and �mD(!),
respectively.
The �mN (!) will have large amplitude spikes due to

very small values of |N (!)|2 near the zeros which are
close to unit circle and this is not so with the �mD(!),
as the roots of D(!) are well within the unit circle.
Hence, in �m(!), the e3ect of excitation or the associ-
ated noise or the signal truncation, masks the system
or the signal component, which is assumed to be an
all-pole one. By multiplying �m(!) by |N (!)|2, the
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e3ect of these zeros can be reduced. Also, as the enve-
lope of |N (!)|2 is nearly Cat, the signi$cant features
of �mD(!) continue to exist, with the |N (!)|2 Cuctu-
ations superimposed on it. Hence, the modi$ed MGD
(MMGD) �mo(!), is

�mo(!) = �m(!)|N (!)|2: (13)

The estimate of |N (!)|2,
|Ñ (!)|2 = |X (!)|2=| OX (!)|2;
| OX (!)|2 is the smoothed power spectrum obtained by
the truncated cepstral sequence.

5. Improved Wigner–Ville distribution (IWVD)

In this proposed method [9,12], to avoid/reduce
the occurrence of crossterms of the WVD, the
multi-component signal is decomposed into its com-
ponents using a uniform PRFB discussed in Section
3 with all $lters having the same bandwidth. The in-
dividual IACRs of these components are added to get
the complete IACR of the original signal [16]. Owing
to the quadratic nature of IACR, the crossterms occur.
The interaction of individual components is reduced
as they are separated during the IACR computation.
To remove the Gibbs ripple of the WVD without us-
ing any window function, the complete IACR that is
signi$cantly free from crossterms, will be subjected
to MMGD.
The IACR of the original signal r(n; k) at nth instant

and for lag k is

r(n; k) =
M=2∑
i=2

ri(n; k); (14)

ri(n; k) is the IACR of the ith component of the signal.
In the PRFB, if the signal is con$ned to the fre-

quency interval {�=M; �−�=M}, the $lter bank gener-
ates directly the required analytic signal for the WVD
and hence avoids the computation of the Hilbert trans-
form of the signal. Since the $lterbank is a perfect
reconstruction one, the signal decomposition prior to
computation of the WVD kernel does not introduce
any errors in the performance of the WVD.
To remove the Gibbs ripple of the WVD, the IACR

r(n; k) that is signi$cantly free from crossterms, will

be subjected to MMGD for a complex signal, since
the IACR of a WVD is complex.
In the MMGD described in Section 3, the numerator

estimate is

Ñ (!) =
X (!)
OX (!)

=
[
1 +

'(!)
OX (!)

]
: (15a)

Here, '(!) represents the Cuctuating part of X (!).
For a signal having a Bat spectral envelope character-
istic, in the GD �m(!), the contribution is only due to
'(!). A �mo(!), free from Cuctuations, is given by
[10,8]

�m'(!) = �m(!)|'(!)|2: (15b)

Presently for the WVD, it is required to remove the
ripple on the Coor. This is equivalent to ripples on a
Cat spectral envelope characteristic. The MGD �m(!)
has to be derived from the Fourier transform (FT) of
the crossterm free IACR using Eqs. (8) and (10). The
FT of IACR represents the instantaneous power den-
sity spectrum (PSD) and at each frequency bin, it is
supposed to be a positive quantity. This may not be so
as the PSD gets convolved with the bipolar valued sinc
function, the FT of the inevitably present rectangular
window. Since computation of �m(!) involves loga-
rithmic operation, it is necessary to ensure that FT of
IACR is positive. This is achieved by raising the Coor
level suFciently by scaling up the IACR at the zeroth
lag [18, pp. 59–60]. The equivalent magnitude spec-
trum is obtained from positivity ensured PSD. Further,
the linearly weighted cepstral coeFcient sequence is
made conjugate symmetric [10].
For the proposed improved WVD (IWVD), at each

time instant, a spectrum that is signi$cantly free from
the crossterm and Gibbs ripple e3ect is obtained. This
also has a better frequency and time resolution. The
spectrum is obtained from �mo(!) using Eq. (15b)
by retracing the MGD computation procedure in the
reverse order. Here, the cepstral coeFcient sequence
derived from �mo(!) has to be made conjugate sym-
metric. For each TFR slice obtained by the MMGD,
subtraction of the mean value and addition of the
scaled mean value, restore the original Coor level.
The proposed IWVD preserves the frequency reso-

lution of a rectangular window as there is no smooth-
ing along the frequency axis due to absence of any
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window function in removing the Gibb’s ripple. As the
crossterms are not signi$cantly allowed to exist by sig-
nal decomposition, there is no time smoothing. Hence,
the IWVD can be expected to provide a better time
resolution than that of a time smoothed WVD. The
desired properties of a TFR namely, the marginals,
instantaneous parameters and support properties are
expected to be obeyed relatively better by the IWVD
than by the PWVD.
In the IWVD as there is no time smoothing, its time

resolution is better than that of WVD that uses only
MMGD for the ripple reduction. Further, in IWVD
as the crossterms are not signi0cantly allowed to ex-
ist, there is no enhancement of residual crossterms by
MMGD. Therefore, IWVD does not require a sec-
ond smoothing in time. Also, its frequency resolution
is better than that of the WVD that uses only signal
decomposition.
The signal decomposition not only reduces inter-

action between signal components but also for the
noisy components, it signi$cantly avoids crossterms
due to noise and hence has a better noise immunity.
As MMGD not only removes the zeros due to ripple
e3ect but also those due to noise, it provides additional
noise immunity. Hence, the IWVD based on signal
decomposition and MMGD, provides improved noise
immunity.
Thus, the novelty of the algorithm is that it is able

to reduce the Gibbs ripple without using any win-
dow function and reducing the crossterms signi$cantly
without time smoothing as they are not signi$cantly
allowed to exist by signal decomposition. As no win-
dow is used it preserves the frequency resolution of
a rectangular window and absence of time smooth-
ing improves time resolution. These further enable the
proposed method to obey the desired properties of
TFR to a better extent.

5.1. Algorithm for IWVD

Step 1: Decompose the signal into its components
using the perfect reconstruction $lter bank.
For this:

(i) Design a $lter bank with M sub$lters with im-
pulse responses given by Eq. (5). The length of
h(n) is chosen to get a desired transition width
and h(n) is weighted by a Kaiser window with a

suitable smoothing parameter to obtain a desired
stopband attenuation.

(ii) For a real input signal x(n) with its spectrum in
the region (�=M; �−�=M), (� corresponds to half
the sampling frequency) obtain its components
which are analytic by computing the outputs for
$lters indexed from i = 2; : : : ; M=2.

Step 2: Compute the IACR r(n; k).
For this:

(i) Compute IACR for the ith signal component,
ri(n; k), for each value of lag k (k =0; 1; : : : ; K),

ri(n; k) = {xi(n− k)x∗i (n+ k)}
for − T6 n6T:

(ii) Compute Or(n; k), the IACR of the original signal
at nth instant and for lag k by

Or(n; k) =
M=2∑
i=2

ri(n; k):

(iii) r(n; k), the IACR for the complete range of
k (−K; : : : ;−1; 0; 1; : : : ; K), rearranged for the
discrete Fourier transform (DFT) array (of
length N ) is given by

r(n; k)

=




Or(n; k); k = 0; 1; : : : ; K;

0; k = K + 1; : : : ;

Q − K − 1;

Or∗(n; Q − k); k = Q − k; : : : ; Q − 1:

Step 3: At a particular instant n= n1, compute the
MGD �m(l) (Eqs. (8) and (10)), l is the discrete fre-
quency bin index.
For this:

(i) Compute the de0nitely positive power spectral
density IP(n1; l) by

IP(n1; l) = Re[DFT{rp(n1; k)}];

rp(n1; k) =

{
Ur(n1; 0); k = 0; U 
 1;

r(n1; k); k 	= 0:



2530 S.V. Narasimhan, M.B. Nayak / Signal Processing 83 (2003) 2523–2538

(The factor U enhances the value of the autocor-
relation at zeroth lag and in turn lifts the Coor
level. Hence, the positivity of the PSD is ensured
by the proper choice of the factor U .)

(ii) Compute the cepstrum {c(k)}:
IM(n1; l) = 0:5 ln[IP(n1; l)];

{c(k)}= IDFT[IM(n1; l)];

where IDFT is the inverse DFT.
(iii) Compute the MGD �m(l): For this generate the

sequence {g(k)}
g(0) = (0; 0);

gR(k) = kcR(k); gI(k) = kcI(k);

k = 1; : : : ; Q=2;

gI(k) = 0; k = Q=2;

g(k) = gR(k) + gI(k); k = 1; : : : ; Q=2;

g(Q − k) = g∗(k); K = 1; : : : ; Q=2;

then

�m(l) = Re[DFT{g(k)}]:

Step 4: Compute the modi$ed GD, GDM �m'(l)
(Eqs. (15a) and (15b)).
For this:

(i) Compute the estimate '(l):
(a) Estimatethesmoothedlogspectrum OIM(n1; l):

f(k) =




c(k); k = 0; 1; : : : ; P;

c(k); k = Q − P; : : : ; Q − 1;

0; k = P + 1; : : : ; Q − P + 1;

P is the cepstrum truncation length,

OIM(n1; l) = Re[DFT[f(k)]]:

(b) Estimate, '(l) using:

N̂e(l) = IM(n1; l)− OIM(n1; l);

N̂ (l) = exp[N̂e(l)];

and

'(l) = (N̂ (l)− 1) exp{ OIM(n1; l)}:
(ii) Compute �m'(l) by �m'(l) = �m(l)|'(l)|2.

Step 5: Compute the improved TFR slice at time
n1. For this:

(i) Compute the sequence s(k) from �m'(l) (using
Eq. (3c)): For this

s1(k) = IDFT[�m'(l)], and {s(k)} is given by

s(0) = (0; 0);

sR(k) = s1R(k)=k; sI(k) = s1I(k)=k;

k = 1; : : : ; Q=2;

sI(k) = 0; k = Q=2;

s(k) = sR(k) + sI(k); k = 1; : : : ; Q=2;

s(Q − k) = s∗(k); K = 1; : : : ; Q=2:

(ii) Compute estimate S(l): S(l) = Re[DFT{s(k)}].
(iii) Obtain the normalized estimate SN (l) by scaling

S(l) with respect to IM(n1; l):

A1 =
1
Q

Q−1∑
l=0

S(l); Sm(l) = Sm(l)− A1;

A2 =
1
Q

Q−1∑
l=0

IM(n1; l);

IMm(n1; l) = IM(n1; l)− A2;

G =max[Sm(l)]=max[IMm(n1; l)];

SN (l) =
Sm(l)
G

+ A2:

(iv) The improved WVD slice estimate IWVD(n1; l)
is obtained from SN (l):

S1(l) = exp[2SN (l)]; B=
1
M

M−1∑
l=0

S1(l);

IWVD(n1; l) = S1(l)− B+
B
U

:

Step 6: Repeat steps 3–5 for each sample instant
n, in the time interval considered and obtain the
IWVD(n; l).

Steps 1–6 form the algorithm for IWVD.
A direct implementation of the new algorithm cer-

tainly requires more computations than the PWVD.
But for an eFcient implementation, some of the fast
approaches available in the literature can be directly
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made use o3 or the algorithm can be reformulated
for this purpose. As mentioned already, this algorithm
does not involve Hilbert transformation (HIT) in gen-
erating the analytic signal, weighing of the IACR by
a window function and time smoothing of the IACR
for each lag. However, since ri(n; k) has to be com-
puted for i=2; : : : ; M=2, the number of computations is
(M=2−1) times that of a single IACR used in PWVD.
The computations involved in each ri(n; k) can be re-
duced by a factor M by resorting to decimation and
interpolation provided the computational load of these
operations is less than that of direct computation of
ri(n; k). Further, the PRFB can be implemented eF-
ciently using a polyphase FFT approach [18].
The Hartley transform is known for its computa-

tional and memory eFciency as it saves both by about
50% [17]. This is due to the fact that unlike FT, it
involves only real and no complex arithmetic opera-
tions and eFcient fast algorithms have been developed
for Hartley transform (FHT) [2]. This has been ad-
vantageously used both for computing the WVD [13]
and cepstrum [17]. The Hartley transform of x(n) is

HART[x(n)] =
M∑
−M

x(n)[cos!n+ sin!n]:

A complex conjugate symmetric signal x(n) can be
expressed as x(n) = xe(n) + jxo(n), xe(n) and xo(n)
are even and odd part of x(n). Then,

X (!) =
M∑
−M

x(n)e−j!n

=
M∑
−M

(xe(n) + jxo(n))e−j!n

=
M∑
−M

xe(n) cos!n+ xo(n) sin!n

=
M∑
−M

(xe(n) + jxo(n))(cos!n+ sin!n);

X (!) = HART[xe(n) + jxo(n)]:

Since the Hartley transform involves only real oper-
ations it will bring down the computational load and
the memory requirement by 50%. As IACR and the
cepstrum involved for the WVD are conjugate sym-
metric, the FHT is directly applicable.

TheWVD requires 3 FHTs (two for the HIT and one
to take the FT of the IACR) compared to 3 complex
FFTs. To compute the proposed IWVD TFR slice, to-
tally 6 FHTs (3 for the step 3 and 1 for step 4 and 2 for
step 5) are required. There is no windowing and time
smoothing. These points will be helpful in developing
an eFcient algorithm for the proposed IWVD.

6. Simulation results

The performance of the proposed IWVD is illus-
trated both for FSK and chirp signals. The perfor-
mance of this method is compared with three existing
methods namely:

(1) WVD with lag window and time smoothing
(PWVD),

(2) WVDwith signal decomposition and lag window
(FBWVD) and

(3) WVD with MMGD and time smoothing
(GDWVD).

In all the examples, the number of lags considered is
31. Further, discrete Fourier transform of length 128,
is used, in all the cases.
For signal decomposition, a PRFB with six sub$l-

ters is used. Prototype low pass $lter is designed by
window method. All the other $lters of the uniform
PRFB are got by complex modulation of the prototype
$lter. Kaiser window with a smoothing factor of 8 is
employed to reduce stop band and pass band ripple
in the frequency response. Impulse response length of
each $lter is 128. Marginally overlapping 0lters (also
known as nonoverlapping 0lters) are used (Fig. 1a).
In the methods where $lterbank is not employed,

the analytic signal is derived using the Hilbert trans-
form of the original real signal. The Hilbert transform
has been realized in time domain by convolving the
signal with the impulse response of the Hilbert trans-
former. However, in the methods where $lterbank is
employed, to compute the IACR of $lter outputs, the
analytic signals are derived by considering $lters in-
dexed from 2 to M=2. For six sub$lters, the analytic
signals are obtained from second and third $lters.
TFR slices, by GDWVD and PWVDs for an

FSK signal for the same instant of time, are shown
in Fig. 1b, c and d. GDWVD and PWVDs use
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Fig. 1. (a) Frequency response of $lters. (b–d) Comparison of the resolution and ripple reduction by PWVDs using RW and HW and
GDWVD. WVD slice by (b): —— PWVD by RW, – · – · – PWVD by HW, - - - - GDWVD; (c): —— PWVD by RW, – · – · – PWVD
by HW, - - - - MMGD; (d): —— PWVD by RW, - - - - GDWD by |N̂ (!)|2.

rectangular window (RW) and Hamming window
(HW). This clearly brings out the e3ect of the
MMGD in reducing the Gibbs ripple. The GDWVD
not only reduces the ripple signi$cantly, but also
preserves the frequency resolution provided by that

of the RW (Fig. 1b). The PWVD that uses RW
has a better frequency resolution than the one that
uses HW, but su3ers from Gibbs ripple. On the
other hand, the PWVD that uses HW reduces the
Gibbs ripple at the cost of frequency resolution.
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This is because the e3ective lag length of the IACR
is reduced due to the application of HW. Fig. 1c
shows that the MMGD provides an additional fre-
quency resolution over that of the RW. This is
due to the very nature of GD. Fig. 1d shows that
to suppress the Gibbs ripple while preserving the
frequency resolution of an RW, �m(!) has to be
multiplied by |'(!)|2 and not by |N̂ (!)2|. This is
due to the fact that the Cuctuations in the latter
are di3erent from those required to be cancelled
in �m(!).
For FSK signal, the TFR and their corresponding

contour plots are shown in Fig. 2a–d and Fig. 2e–f,
respectively. In PWVD, a 5-point boxcar smooth-
ing is applied to IACR for each lag, along the
time axis and this reduces the crossterms (Fig. 2a
and e). By decomposing the signal into its com-
ponents with the PRFB, and then summing the in-
dividual IACRs, the FBWVD gives a TFR almost
free from crossterms. This can be clearly seen by
comparing Fig. 2b and f with Fig. 2a and e. It
is to be noticed that even the residual crossterm
magnitude of the PWVD is comparatively appre-
ciable. The FBWVD preserves the time resolu-
tion of WVD, as no time smoothing is applied.
However, since in PWVD and FBWVD, IACRs
are weighted by an HW to reduce the Gibbs rip-
ple, the frequency resolution is poorer than that of
WVD.
In GDWVD and IWVD, MMGD is applied to

IACRs of PWVD and FBWVD, respectively. To
avoid the negative spectral values in the PSD, the
IACRs of PWVD and FBWVD at zeroth lag have
been lifted by a factor of 100. As seen from the
$gures (Fig. 2c and g) and (Fig. 2d and h), appli-
cation of MMGD not only preserves the frequency
resolution of WVD but also removes Gibbs’ rip-
ples. This is also evident from Fig. 1b. However,
in GDWVD the residual crossterms left after time
smoothing also gets enhanced (Fig. 2c and g). This
enhanced crossterm e3ect can be signi$cantly re-
duced by a second smoothing in time [10] (not shown
in $gure). With the IWVD, the second smooth-
ing is not required as the crossterms are almost
not allowed to exist due to signal decomposition
prior to computing the IACR. With PWVD, even
its residual crossterms have appreciable magnitude.
Therefore, the IWVD crossterm suppression is quite

signi$cant compared to that of the PWVD. Hence
in IWVD, preserving the time and frequency res-
olutions of the WVD, the crossterms are almost
not allowed to exist and the Gibbs ripple is signi$-
cantly reduced (Fig. 2d and h). In both the cases, the
|'(!)|2 estimate is obtained by considering the ini-
tial 6-cepstral coeFcients in computing the smoothed
PSD.
These results indicate that the proposed IWVD is

very e3ective in removing the crossterms and Gibbs
ripple while preserving the time and frequency reso-
lutions of the WVD, compared to that of the PWVD
or GDWVD or FBWVD.
For the crossing linear chirp signal, the TFRs

and their respective contour plots are shown in Fig.
3a–d and in Fig. 3e–f, respectively. Results simi-
lar to those in FSK signal are observed for PWVD
(Fig. 3a and e) and FBWVD (Fig. 3b and f). To
reduce crossterms, a 5-point boxcar smoothing along
time axis is applied to IACR. Further, for both
PWVD and FBWVD, to ensure positivity of the
PSD, the IACR at the zeroth lag is increased by
a factor of 400. For the estimation of |'(!)|2, the
$rst 8-cepstral coeFcients are used in computing
the smoothed PSD. In GDWVD (Fig. 3c and g)
ridge type of e3ect occurs at the region of cross-
ing of the two chirps. This can be reduced by a
second smoothing, along the time axis [10] (not
shown $gure). As in the case of FSK signal, the
IWVD (Fig. 3d and h) reduces the crossterms and
Gibbs ripple preserving both frequency and time
resolutions.
For the above signals in the presence of noise

having a signal-to-noise ratio (SNR) of 3 dB,
the performance of PWVD, FBWVD, GDWVD
and IWVD, are shown in Figs. 4 and 5, re-
spectively. For FSK and chirp signals, cepstral
sequences having the initial 6 and initial 16
coeFcients, respectively, are used in the esti-
mation of |'(!)|2. The IWVD is very e3ective
in removing the spurious spectral peaks due to
noise while preserving the frequency resolution,
compared to other methods, considered. This is
to be expected. The WVDs independently ob-
tained by using the modi$ed group delay and
by signal decomposition, by themselves, have an
additional immunity to noise compared to the
PWVD.
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Fig. 2. TFR of FSK signal by (a) PWVD, (b) FBWVD, (c) GDWVD and (d) IWVD. (e)–(h) Contour plots of (a), (b), (c) and (d),
respectively.

Thus, for FSK and crossing linear chirp sig-
nals, the above results indicate that there is a
signi$cant improvement in the performance of the

proposed IWVD, in terms of crossterms suppres-
sion, Gibbs ripple reduction and noise immunity
over those of PWVD, FBWVD and GDWVD.
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Fig. 3. TFR of chirp signal by (a) PWVD, (b) FBWVD, (c) GDWVD and (d) IWVD. (e)–(h) Contour plots of (a), (b), (c) and (d),
respectively.

The crossterms suppression and Gibbs ripple re-
duction are achieved without much compromise
on frequency and time resolution. Further, as
there is no frequency and time smoothing, the

IWVD is expected to obey better, the desired
properties of a TFR compared to the WVDs,
which use either time or frequency smoothing or
both.
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Fig. 4. TFR of FSK signal with white noise by (a) PWVD, (b) FBWVD, (c) GDWVD and (d) IWVD. (e)–(h) Contour plots of (a),
(b), (c) and (d), respectively.

7. Conclusions

In this paper, a new improved WVD was proposed
that combines the signal decomposition by PRFB for

reducing the existence of crossterms, and the MMGD
for reducing the Gibbs ripple e3ect due to truncation
of the IACR. The crossterms and the Gibbs ripple
are signi$cantly reduced, without using any time



S.V. Narasimhan, M.B. Nayak / Signal Processing 83 (2003) 2523–2538 2537

Fig. 5. TFR of chirp signal with white noise by (a) PWVD, (b) FBWVD, (c) GDWVD and (d) IWVD. (e)–(h) Contour plots of (a),
(b), (c) and (d), respectively.

smoothing and common window function for the
IACR, respectively. Therefore, the performance of
the proposed WVD is signi$cantly superior to those
of the PWVD and its considered versions, in (i) time
and frequency resolution, (ii) noise immunity and
(iii) obeying properties of a TFR.

From the implementation point of view, the com-
putational complexity of di3erent algorithms, is of
importance. This complexity reduction can be the
subject of future study. This investigation aimed at
the exploitation of signal decomposition and modi$ed
group delay for the reduction of crossterm and Gibbs
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ripple without compromise on time and frequency
resolutions. The proposed object has been realized
and demonstrated.
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