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Abstract In this paper, we deal with nonlinear ill-posed problems involving m-accretive

mappings in Banach spaces. We consider a derivative and inverse free method for the imple-

mentation of Lavrentiev regularization method. Using general Hélder type source condition

we obtain an optimal order error estimate. Also we consider the adaptive parameter choice

strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
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1 Introduction

Let E be a real Banach space with its dual space £*. The norm of F and E* are denoted
by || . || and we write (x, j) instead of j(z) for j € E* and x € E. In this paper we consider the

problem of approximately solving the non linear ill-posed equation
Fu)=f, feE. (1.1)

Here F' : E — E is an m-accretive (see [1, 2, 4]), Fréchet differentiable and single valued
non-linear mapping. The Fréchet derivative of F' at x is denoted by F’(x).

Note that F' is an m-accretive and single valued in E means, F' has the following properties
(see [6, 9, 12]):
1) (F(x) — F(y),J(z —y)) > 0, where J is the dual mapping on F;
2) R(F + M) = E for each A > 0 where R(F) and I denote the range of F' and the identity
mapping on F respectively.

In other words, if F' is m-accretive, then the equation

Flu)+alu—w)=1fs, | fs—flI<d—0 (1.2)

has a unique solution u% for a > 0 and f° € E (see [6, 9, 16]). Here and below u is the initial

guess of the exact solution @ (which is assumed to exist) of (1.1).
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A typical example of (1.1) is the parameter identification problem in an elliptic PDE [11];
i.e., to find the source term ¢ in the elliptic boundary value problem

—Au+¢(u) = q in Q,
u =10 on 0N

from measurement of u in 2. Here £ : R — R is a Lipschitz continuously differentiable
monotonically increasing function and  C R3 is a smooth domain. The corresponding forward
operator in this case is F': H?(Q) — H?(Q) defined by

F(q) = u,

which is monotone. This can be seen as follows:

(F(q1) - Fla2), a1 — @) = /Q (u1 — u2)(g1 — g2)de

= /Q(Ul —u2)(—A(ur —u2) + &(ur) — &(uz))dx
- /Q (A — ) + (€(un) — E(u2)) (ur — us))de

> |7 (w1 = u2) |72y > 0.

In the earlier studies such as [3, 6, 9, 13, 18], the optimal order convergence rate for ||ud —1||
is obtained under the Holder type assumption

ug — 4 = F'(i)v. (1.3)

To our knowledge, for ill posed operator equation (1.1) in the setting of Banach space, no error

estimate is known for || u$ — @ || under the general Holder type condition
uo — 4 = F'(4)"v, 0<v<I1. (1.4)

Our goal is to bridge this gap. We also provide a derivative and inverse free iterative method
s

for obtaining an approximation for wu?,

although for the purpose of analysis of our method
we assume that F possesses uniformly bounded Fréchet derivatives. Precisely, we consider the

Hoélder type source condition
uo — 4 = F'(ug)’v, 0<rv<1 (1.5)

and obtain the optimal order error estimate for |[ul, — 4| in the Banach space setting. Note
that (1.3) is depending on the unknown solution @ but (1.5) is depending on the known wug.
This is one of the advantages of our approach. Using our idea one can obtain the optimal order
error estimate for ||u? — || under the assumption (1.4) (see Corollary 2.5).

The rest of the paper is organized as follows. In Section 2, we consider Holder type source
condition for obtaining error estimate for ||u$ — /. In Section 3 we consider an iterative method
and its convergence analysis. A priori choice of the Parameter and adaptive choice of the
parameter are considered in Section 4. The implementation of the adaptive method and the

algorithm are given in Section 5. Finally, the paper ends with a conclusion in Section 6.
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2 Error Estimates Using Holder Type Source Condition

We briefly introduce some results from [6, 18] to make the study self-contained. Let u% be

the unique solution of (1.2) and u, is the unique solution of

F(u) + au —up) = f. (2.1)
Then 5
5
_ < Z .
o, — uall < (22)
and
ua — @l < |t — uol|. (2.3)

The following lemma from [18] is used for proving our results in this paper.

Lemma 2.1 (see [18]) Let F : E — E be accretive and Fréchet differentiable on E. Then

for any real number o > 0 and = € E, F'(x) + ol is invertible,
1
I (@) +al) ™M < =~ (2.4)

and
I(F' () + al) " F'(2)|| < 2. (2.5)

Note that by (2.4) we have,
la(F'(x) + al) 71| < 1.

So for 0 < v < 1, we have (see [12, page 287]),

sin v

F'(z)"w = /000 tV(F'(z) + tI) "2 F'(z)wdt. (2.6)

%
One of the crucial result for proving error estimate is the following lemma, proof of which
is analogous to the proof of Lemma 14.1 in [12], but for us to make this paper as self-contained
as possible we give the proof.
Lemma 2.2 Let F: E — E be a Fréchet differentiable and monotone operator. Then
forre Fand 0 <v <1,

) gy < g SY) (v T
< aa— . .
la(F" 4+ ol)™ F'(z)"|| < 4 —3 (1—1/) ! (2.7)
Proof By (2.6) we have
(F' + al) " F' (2)'w = 2T / t(F' + o) (F'(z) + tI) "2 F' (z)wdt
vz 0
; p
_ A [ / t(F' + o) (F'(2) + t1) 2 F' (z)wdt
% 0

+ / h t(F' + o) Y (F'(z) + tI)QF’(:z:)wdt}

sin v

= [H1 + Hol, (2.8)

where Hy = [[t"(F' + o) (F'(z) + tI) 72 F'(z)wdt and Hy = [~ t"(F' + )" (F'(z) +
t1)~2F'(z)wdt. So, by (2.4) and (2.5) we have

| H1ll =

/Op tVF' () (F'(z) + tI) "2 (F' + aI)_lwdtH



306 ACTA MATHEMATICA SCIENTIA Vol.38 Ser.B

P tllfl
< 2/ w][dt
0 «

pl/
=2— 2.9
2w (29)

and

||| = H /poo 1 F! (2)(F'(x) + 1) 2(F' + af)-lwdtH

o0
<2 / £ 2w dt
P
P’

1

=2 . 2.10
] (2.10)

1—
Thus by (2.8), (2.9) and (2.10), we have

: v v—1
1P+ al) " F () u]| < 25207 [”— " ”—] ol
1%

TV 1-—

Now the result follows by taking minimum of the right side of the above expression (i.e.,
P=15): 2

Assumption 2.3 (see [3, 14, 15]) There exists a constant ky > 0 such that for every
u € B(ug,r) and v € E there exists an element ®(u,ug,v) € X such that [F'(u) — F'(ug)Jv =
F'(u0)®(u, uo, v), [[®(u, uo, v)|| < kollvll[lu — uoll

Theorem 2.4 Let Assumption 2.3 and (1.5) hold. If 3kor < 1, then
sz () ol

4771/2 1—v

— 3kor

[ta = atf| <

where v is as in (1.5).

Proof We have
F(ua) — F(4) + a(uq — ug) = 0.

Thus by mean value theorem of integral calculus, we have
(F'(uo) + al)(uq — ) = alug — i) — / 4t — ) — Fu0)] (ot — ),
Therefore by (1.5), Lemma 2.1, Lemma 2.2, Xssumption 2.3, (2.3), we have in turn
l[ua —all < [la(F" (uo) + al) ™ F'(ug) ||

1
+ (F’(u0)+a1)*1/ [F’({H-t(ua—ﬂ))—F’(uo)](uQ—ﬁ)dtH
0
< s1n7;1/( ) l|v]je” +2/ |® (4 + t(ug — G), ug, U — @)dt||
TV
< a2 olla® + kol — woll + 5 e — i) e — ]
smm/ v v R
< 420 (2 ol + 2k — uol + 5o — il o — a]
< Sf;”(l”y) lella” + Skolld = uol|ua —
< a2 () olla? + Bhorlfua —
v 1—v

This completes the proof of the theorem. O
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Corollary 2.5 Let Assumption 2.3 and (1.4) hold. If kor < 1, then

sintv (v _\v

()" |Iv]
—all <4 T2 \1—v v

o — i < 42 2

where v is as in (1.4).

Proof Since
F(ua) — F(4) + a(uq —up) =0,

we have
(F'(2) + al)(ug — 4) = a(ug — ) — /I[F’(ﬁ + t(ug — @) — F' ()] (ug — @)dt.
0
Therefore by (1.4), Lemma 2.1, Lemma 2.2, Assumption 2.3, (2.3), we have in turn
lua —all < fla(F' (@) + o) F' (@) |

1
+ (F’(ﬁ)—l—al)’l/ [F’(ﬁ—i—t(ua—a))—F’(a)](ua—a)dtH
0
s1n7T ( u) (|v]|e” +2/ llo(t + t(u — 4), G, uq — @)dt||
s1n7w . N
(LN olla? + 2o — e —
sinfv /v )
<4222 () olla” + korllus — .
The rest of the proof is analogous to the proof of Theorem 2.4. O

3 Iterative Method and Convergence Analysis

In this section, we assume that X is a real Banach algebra and F' : X — X is twice Fréchet
differentiable accretive operator. In order for us to introduce the method, it is convenient to

introduce some notations. For o > 0, let
Ry (u) := F(u) + a(u — ug) — f° (3.1)
and
R! (\)h := F'(-)h + ah. (3.2)
We consider the sequence defined iteratively by

y 2(Ra (5,

5
= — 3.3
un+1,0t e Ra(ug,a + Ra(ug,a)) - Ra(ug,a - Ra(ug,a)) ’ ( )

where ug)a = wp is an initial guess. As in earlier papers such as [5-10, 16] etc., we choose the

parameter @ = «; from some finite set
DN:{OQ:O<OZ()<041<"'<O[N},

using the adaptive method considered by Perverzev and Schock [14]. For convenience we use

the notation
b

0 o—ud foreach n=0,1,2,--, (3.4)

en = U

where 1, is the solution of R (z) = 0.
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Let s
. |1 F'(uo) = £l Cs
Cs = mm{@‘i‘ﬁl/ao)(ﬁl +04N),2 , 0 < 5 Qg (3.5)
and
N . . 1 1/Cs )
| < — (=) .
|t — gl <7 W1‘ch7“<m1n{3k0,2( 5 ao)} (3.6)

Further, we assume that
[F"()]| < 61 and [|[F"(-)|| < B

We begin proving a series of lemmas to prove our main result (Theorem 3.5).

Lemma 3.1 Let e, be as in (2.4). Then

1)

lleoll < 2r+ —.

Qg

Proof Note that, by (2.2) and (2.3) we have
N J .
lug, —all < o T lluo —al. 3.7)
The result now follows from (3.7) and the following triangle inequality

) 5 s "
lug = woll < Jug —all +[l& — uol|-

O
Let us first define the operators M (u), M;(u) and Ms(u):
1
M(u) = / R (u® + t(u —ul))(1 — t)dt for each u € D(F), (3.8)
0
1
Mi(u) = / R (u® + t(u + Ro(u) — u))(1 — t)dt, for each u € D(F) (3.9)
0
and .
Ms(u) = / R (ul 4 t(u — Ro(u) — ul))(1 — t)dt, for each u € D(F). (3.10)
0
Let s s s
M - M. n)? + (Ra(ul o))
o [V (0,0) = Mo (e0)? + (R0 o
2R, (u) Ra(u), o)
and 5 5 5
M + M HROL n,o
Ty = [ 1(“’71,&) Q(Un,oc)]e (U R ) (312)
Ry, (ug) Ra(uf, o)
O

Lemma 3.2 Let R/, be as in (3.2), T'; and I'; be as above. Then
Ra(ui,a + Ra(ug,a)) - Ra(ui,a - Ra(ug,a)) = 2Rla(ug¢)R04(ufz,a)[1 +I'h + 1—‘2]

Proof Using the Taylor expansion of the operator R,(u) around the solution ud of
R, (u) =0, we get

Ra(up, o) = Ri, (ug) (up o — ug) + M(up o) (w5, o — ). (3.13)

n,o n,o n,o «
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Similarly the Taylor expansion of R (uf, o+ Ra(u,)) and Rq(ud, o, — Ra(u?,)) around the solution
ud, of Ry (u) =0 we get
Ra(up, o+ Ra(u;, o))
= Ry (ug) (up, o = g, + Ra(up, o)) + Mi(up, o) (up o — g + Ra(uj, 4))?
= Ry (up)[(up, 0 — tp) + Rauj, )]
+Mi(up, o)[(u), 0 — Q) + (Ra(uf o)) +2(u) 0 = Q) Ra(up, o))
= Ry (ug)en + Ra(up o)) + Mi(u;, o)(en)” + (Ra(up 0))* + 2enRa(up o)) (3.14)

and
Ra(up, 0 = Ra(u;, )
= Ry (ug)(up, o — g, = Ra(up, o)) + Ma(up, o) (up o — ug — Ra(up, o))
= Rp, (ug)[(u5, 0 — ud) — Ra(uj )]

Mo (uf, o) [(uf, 0 = ud)® + (Ra(up o)) = 2(u), o — ud) Ra(uf, )]
= Ry, (u))en — Ra(u), )] + Ma(u), ,)[(en)” + (Ra(ug 0))* = 2enRa(up )] (3.15)
From (3.14) and (3.15), we have
Ra(up, o+ Ra(u;, o)) = Ra(up, o = Ra(u;, )
= 2R, (u)) Ra(up o) + [Mi(up o) = Ma(up o)]((€n)? + (Ra(u 0))?)
F2[Mi(uf, o) + Mo(up, o)]enRa(up, o)
= 2R}, (ud)Ra (ud 4)[1 + T +T3). (3.16)
0

Lemma 3.3 Let Ry, R, I'1 and I's be as in (3.1), (3.2), (3.11) and (3.12) respectively.

Then

(i)

B2+«
2

1Ra(up, o)l < (Br + @)llenl| + lenll?;

(i)
I(Ra(up, o)) (T1 +T2)ll = O(llenl ).
Proof Note that (i) follows from (3.13) and the inequalities

_l’_
IR, < B+ and [310)] < 202, (317)
To prove (ii), we observe that
_ 1
1o (i )| = (10 (ug) ™ R, (ug) (Ro(up )| < — (1R (4g) Ra (1 o) (3.18)

and hence

I(Ra(up,a)*(T1 + T2 < HéRa(Ufl,Q)([Ml(UfL,a) — Ma(up o)][(en)? + (Ra(u;, o))°]

M 0 0) + Mol Jlea o, ) |
= O([leall®). (3.19)
The last step follows from (i), (3.17) and the inequality || M;(u)|| < &%, fori=1,2. O
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Lemma 3.4 Let R, and R/, be as in (2.2) and (2.3) respectively. Suppose [|uf, ., — uol| <

W(ﬁf’%mforeachnzl,ZumThen
1 1

<
[ RE, (ud) Ra(ug o)l — a(lF (wo) = f2Il = (81 + a)l[ug, o — uoll)
Proof Observe that
Ra(ufz,oc) = F(ufl,a) - f6 + a(ufl,a - U’O)
= F(ug) — f* + F(ul o) — F(uo) + a(ul, , — o)

for each n=1,2,---.

1
= F(up) — f° + [/ F'(up + t(ufwz — ug)dt + aI] (Ui,a — up).
0

So
1
IRa = 1 (o) = 1= | | [ 7w+ 00 = o)t + a7 0 = w0
0
> [[F(uo) = f2I = (B1 + @) lup, o — uoll (3.20)
for each n =1,2,--- . The result now follows from (3.18) and (3.20). O

We state our main theorem of this section below.

Theorem 3.5 Let R, be as in (3.1) and u® be the solution of R, (u) = 0. Further the
first and second Fréchet derivative of F exists at all w € D(F'). Then the iteration defined in
(3.3) converges quadratically to u%. Moreover

5 5 2(B1 + @)
Hun-i-l,a - uaH = Ia Rz 2
a(([F(uo) = oIl = (B1 + @)2[leol])

Proof © =Tj +T'5. Then by (3.3), (3.16) and (3.18), we have

lleall® + Ollenll®).

— (Ra(u(rsl,a))2
€n+l1 = €En R(’l(ug)Ra(ui)Q)(l —+ @)
(Ra(uf, )2 )
= €n — ’ I — N
T ) Rl OO
(Ra(uf), 2))°
=e, — R (42 Rl uga)(l—(a)
(Ra(ufz,a))z hieh der t . o
Rg(ug)Ra U%,a) X higher order terms 1n
— 1 /8 5 . 5 N\2iT
= R @) Ray e (e Ra (U a)en = Ralun,o) (1 = ©)
—(Roé(ufmé))2 x higher order terms in ©)]. (3.21)
Therefore, we have
! ! (ud s 5 \)\2
Hen+1” - Rfy(ug)Ra(U%Q) ’['Ra(ua)””Ra(unﬂ”|€n| + ||(Ra(un7a)) H

+||(Ra(uflya))2||||®|\ + higher order terms in | ©]|].

s
If f|ud o — uol| < [1FCu0) =77 " then using Lemmas 3.1-3.4 one can prove that

B1ta
2(61 +a)?
lentall < o([|F(uo) — foIl = (Br + a)||uf, , — uoll)

llenll® + Ollenll?)- (3.22)
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5
Now it remains to show that [ud , — uol| < W This can be shown as follows. Since

2ot D) | e | < 2PrpantBron) o] <1, by (3.5) and (3.6),

49 o = woll < [lug o — ud |l + [lud — woll
2(B1/a+ 1) (B +a)
|1 F(uo) — £
|1F(uo) — f°|
B1+a

IN

lleol|* + O(lleol|*) + llug, — wuoll

< 2fleo] < Cp <

(by ignoring higher order terms in ||eg]|). Again by (3.22) and (3.6), we have,

l[uf o — woll < J|ud o — udll + [lud — uoll
2(51 + )? 2 3 5
< llex]l* + Ollex|]”) + [lug — wuol|
a(||F(uo) — foIl = (61 + a)lJug o, — uoll)
F(uo) — f°|
< 2[lug — uo|l = 2[leol| < Cp 3 o

By ignoring higher order terms in ||eg|| and observing that by (3.6)

2(61 4 a)?
a([[F(uo) = f2Il = (Br + ) [|ug o, — woll)

lleoll <1,

é
which shows [|u, , — uo| < W for n = 2. By simply replacing u$ , by “i+1,a in the

—_ s . .
preceding estimates we arrive at ||u2+1)a —ugl| < % Thus by induction ||ug, , — uo|| <

W(ﬁ"l“%fé” for n > 0. From the above relation it follows that
2(81 +a)? 2 3
41,0 = uoll < lenl]” + O(len]”)- (3.23)
i a(|[F(uo) = foIl = (B + )2[leol)
This completes the proof of the theorem. O

Remark 3.6 Note that, repeated applications of (3.23) lead to the following estimate

) 2(61 + o)’
lentall < (a(|F(uo) — 3 =25 +a)||eo||))

Since |leo|| < 1, we ignore the terms of order ||eg|2" 3 and take

ontl_q
n+1 n
lleol* + O(flen* *2).

lens1]l < Cae™"™, (3.24)

ontl_q

where Cy = ( 2(B1+an)? )

_ont1
oo (TFGas) P —2(F Ta)lea) , v = —log(]leo|). Note that Cne=72 =

[Coe=7?"]e=72", and for large n, Cue=7?" < C for any C' > 0. Therefore for large n, from
(3.24), (2.2) and Theorem 2.4, we have

L5 SRy
5 R —~2 TV (1-v) v
— < Ce™” —+4
HunJrl,a uH = € + a + 1 . 3]{:0T
Let
n 0 n
ns = min {n e < 2 & CleT? < C} (3.25)
o

for some constant C. In view of the above remark, we have the following theorem.
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Theorem 3.7 Let u), ., , be as in (2.1) and let the assumptions in Theorem 2.4 and
Theorem 3.5 be satisfied, where ns be as in (3.25). Then we have the following

)
IIUZ5+1,Q—UIISC(a +E)’ (3.26)

here & — P
whnere —max{ —+ ’W}

4 A Priori Choice of the Parameter

Note that the error o + g in (3.26) is of optimal order if a; := (&) satisfies, a5t = 4.

That is s = 677 . Hence by (3.26) we have the following theorem.
Theorem 4.1 Let the assumptions in Theorem 3.7 hold. For § > 0, let a := a5 = 5.
Let ns be as in (3.25). Then

lups o — ll = O(5T57).

ns,x
4.1 Adaptive Scheme and Stopping Rule

We use the adaptive selection of the parameter strategy considered by Pereverzev and

Schock [14], modified suitably for the situation for choosing the parameter «. For convenience,

take uf :=wud . . Leti€{0,1,2,--- N} and a; = p’org where p > 1 and ag > 6.
Let
., 0
[ ;= max z:aigg <N, (4.1)
. 5 5 =0 . .
ki=maxqi:|luj —ujl| <4C—,5=0,1,2,---,i—1¢, (4.2)
Qj

where C is as in Theorem 3.7. Now we have the following theorem.

Theorem 4.2 Assume that there exists ¢ € {0,1,---, N} such that o/ < ai Let the
assumptions of Theorem 3.7 be fulfilled, and [ and & be as in (4.1) and (4.2) respectively. Then
[ <kand

i — up|| < 6CuT+.

Proof To prove [ < k, it is enough to show that, for each i € {1,2,--- , N}, a¥ < g =
Huf—u?” < 46’%, Vj=0,1,2,---,i— 1. For j < i, we have
. J

) ) 5 ~ ~ S
huf—uf < fud =+ a—d |

SC_'(af—i—i)—i—C'(a;-i-g)

(673 j
=0 =0
<20—+20—
(673 Qa;
<4C—
Qj

Thus the relation [ < k is proved. Observe that
~ F) ~ ) ) §
[ @—up <[] a—up ||+ [| up —u |,

where

_ 5 _
b —ul||< vy )<
| @ wH_CGn+m)_2C

gJe
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Now since | < k, we have
=0
5 5
— <4C—.
[ up —up || < -

Hence

_ 0
i —ul < 6C—.
| = uf 1< 60

Now, since ag = ST < apy1 < pay, it follows that
0 o v

— < = :‘u51+,/.
(&%) Qs

This completes the proof. O

5 Implementation of Adaptive Choice Rule

Finally the balancing algorithm associated with the choice of the parameter specified in
Theorem 4.2 involves the following steps.

e Choose ap > 0 such that § < ag and p > 1.

e Choose o; := plag,i=0,1,2,---, N.

5.1 Algorithm

Set i = 0.
Choose n; := min {n ce 1?2 < g & Cpe 2" < C’} )
Solve u; :=uf_, by using the iteration (3.3).

If lu; — uy]| > 4C2-, j <, then take k = i — 1 and return wuy.
Else set ¢ =44 1 and go to 2.

AN O

6 Conclusion

In this paper we considered a derivative free iterative method for approximately solving ill-
posed equation involving m-accretive mappings in a real reflexive Banach space. We obtained
optimal order error estimate under a general Holder type source condition. Also we considered
the adaptive parameter choice strategy considered by Pereverzev and Schock [14], for choosing

the regularization parameter.
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