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Abstract: An error estimate for the minimal error method for nonlinear ill-posed problems under general
a Hölder-type source condition is not known. We consider a modified minimal error method for nonlinear
ill-posed problems. Using a Hölder-type source condition, we obtain an optimal order error estimate. We also
consider the modified minimal error method with noisy data and provide an error estimate.
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1 Introduction
In this paper, we deal with the nonlinear ill-posed operator equation

F(x) = y, (1.1)

where F : D(F) ⊆ X → Y is a nonlinear Fréchet differentiable operator. Here D(F) denotes the domain of
F and X, Y are Hilbert spaces with inner product ⟨ ⋅ , ⋅ ⟩ and norm ‖ ⋅ ‖, respectively, which can be always
identified from the context in which they appear. It is assumed that the operator equation (1.1) has a solu-
tion x̂ for the exact data y. The operator equation (1.1) is ill-posed in the sense that the solution x̂ does not
depend continuously on the right-hand side data y. Furthermore, it is assumed thatwehave only approximate
data yδ ∈ Y with

‖y − yδ‖ ≤ δ.

To approximate the solution x̂, iterative methods and iterative regularization methods are studied in [1, 2, 4,
5, 8–10, 12–16, 19]. Let B(x, ρ) and B(x, ρ) stand, respectively, for the open ball and the closed ball in X,
with center x ∈ X and of radius ρ > 0. In [14], Neubauer and Scherzer considered the minimal error method
defined for k = 1, 2, . . . by

xk+1 = xk + αksk ,

where x0 is the initial guess, sk = −F�(xk)∗(F(xk) − y) is the search direction taken as the negative gradient of
the minimization function involved and

αk =
‖F(xk) − y‖2

‖sk‖2

is the descent. Convergence analysis in [14] was based on the following assumption.
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Assumption A. We assume the following:
(A1) F has a Lipschitz continuous Fréchet derivative F�( ⋅ ) in a neighborhood of x0.
(A2) We have F�(x) = RxF�(x̂), x ∈ B(x0, ρ), where {Rx : x ∈ B(x0, ρ)} is a family of bounded linear operators

Rx : Y → Y with
‖Rx − I‖ ≤ C‖x − x̂‖,

where C is a positive constant.
(A3) We have x0 − x̂ = (F�(x̂)∗F�(x̂)) 12 v for some v ∈ X.

Recently, the authors in [8] studied a modified minimal error method in which, we have taken

sk = −F�(x0)∗(F(xk) − y) and αk =
‖F(xk) − y‖2

‖sk‖2

and the convergence analysis in [8] was based on the following assumptions:

Assumption B. We assume the following:
(B0) ‖F�(x)‖ ≤ m for some m > 0 and for all x ∈ D(F).
(B1) We have F�(x̂) = F�(x0)G(x̂, x0), where G(x̂, x0) is a bounded linear operator from X → X with

‖G(x̂, x0) − I‖ ≤ C0ρ,

where C0 is a positive constant and ρ ≥ ‖x0 − x̂‖.
(B2) We have F�(x) = R(x, y)F�(y), x, y ∈ B(x0, ρ), where {R(x, y) : x, y ∈ B(x0, ρ)} is a family of bounded lin-

ear operators R(x, y) : Y → Y with

‖R(x, y) − I‖ ≤ C1‖x − y‖

for some positive constant C1.
(B3) We have x0 − x̂ = (F�(x0)∗F�(x0))

1
2 v for some v ∈ X.

Remark 1.1. It is known that [11], condition (B2) is more restrictive than (A2). So, we give an examples from
[10, 14] satisfying (B2) (also see [10] for more examples satisfying (B2)).

Example 1.2. Consider the problem of estimating c in

− ∆u + cu = f in Ω, u = g in Ω, (1.2)

where Ω is a bounded domain inℝ2 orℝ3 with smooth boundary or with Ω being a parallelepiped, f ∈ L2(Ω)
and g ∈ H 3

2 (∂Ω). The nonlinear mapping F : D(F) ⊆ L2(Ω) → L2(Ω) is defined as the parameter to solution
mapping

F(c) = u(c),
where u(c) is the solution of (1.2). Then F is well defined on (see [10, 17])

D(F) := {c ∈ L2 : ‖c − c̄‖ ≤ γ for some γ > 0 and c̄ ≥ 0 a.e.}.

Then the Fréchet derivative of F and its adjoint are given by (see [10, 14, 17])

F�(c)h = −A(c)−1(hu(c)), F�(c)∗w = −u(c)A(c)−1w

with A(c) : H2 ∩ H1
0 → L2 defined by

A(c)u = −∆u + cu.
If u(c) ≥ κ, κ > 0, for all c ∈ B(c0, ρ), (ρ ≤ γ), then

F�(d) = R(d, c)F�(c), c, d ∈ B(c0, ρ)

with
R(d, c)∗w = A(c)[u(d)u(c)

A(d)−1w]

and
‖R(d, c) − I‖ ≤ C1‖d − c‖, c, d ∈ B(c0, ρ),

where C1 is a positive constant independent of c and d. That is F satisfies condition (B2).
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The second author and his collaborators studied iterative methods [6, 7, 20, 21] for solving the ill-posed
operator equation (1.1) and obtained the error estimate for ‖xδk − x̂‖ (x

δ
k is the iterative solution of the method

under consideration) under the assumption

x0 − x̂ = (F�(x0)∗F�(x0))νv, v ∈ X. (1.3)

For frozen-type regularization methods for ill-posed problems, assumption (1.3) is used (see [6, 11] (also see
Seminova [18])), instead of the classical Hölder-type source condition,

x0 − x̂ = (F�(x̂)∗F�(x̂))νv. (1.4)

As far as the authors know, for the minimal error method no error estimate is known under the general
Hölder-type source condition (1.3) or (1.4) for ν ̸= 1

2 . In order to obtain an error estimate under the general
source condition (1.3). Themain goal of this study is to obtain an error estimate for amodified formofminimal
error method defined by

xk+1 = xk + αksk (k = 0, 1, 2, . . . ), sk = −F�(x0)∗(F(xk) − y), αk =
‖F(xk) − y‖2

‖Aq(F(xk) − y)‖2
, (1.5)

where A = F�(x0)∗F�(x0) and 0 < q < 1
2 under the Hölder-type source condition (1.3). Note that for q = 1

4 ,
we have

αk =
‖F(xk) − y‖2

⟨F�(x0)(F(xk) − y), F(xk) − y⟩
as a special case.We obtain the error estimate ‖xk − x̂‖ = O(k−ν) for 0 < ν < 1

2 − q under assumption (1.3) (see
Theorem 2.3). We also considered the method (1.5) with noisy data yδ and obtained error estimate.

Remark 1.3. Wemake the following remarks.
(a) For q = 1

2 , method (1.5) reduced to the modified minimal error method considered in [8], but the proof
in the present paper cannot be applied for the method considered in [8].

(b) Note that for q close to zero, ν is close to 1
2 , i.e., we obtain the error estimate O(k−ν) for 0 < ν < 1

2 (see
Theorem 2.3).

The rest of the paper is organized as follows. Convergence analysis of method (1.5) is given in Section 2 and
the convergence rate result of method (1.5) with noisy data is given in Section 3.

2 Convergence Analysis of Method (1.5)
To obtain an error estimate for ‖xk − x̂‖ under assumption (1.3), we need the result of [9, Lemma 2]. Let {vk}
be a sequence in X, and let ν > 0 be some parameter such that

‖Aνvk‖2 − ‖Aνvk+1‖2 ≥ εk⟨Aν+1vk , Aνvk⟩

for k = 0, 1, 2, . . . , where A is a positive self-adjoint operator and εk > 0. Then

‖Aνvk‖ ≤ [2(ν + 1)]ν‖vk‖
1
ν+1 [

k−1
∑
i=0
εi‖vi‖−

1
ν+1 ]
−ν

. (2.1)

To apply (2.1) with vk = A−ν(xk − x̂), one has to prove that

‖xk − x̂‖2 − ‖xk+1 − x̂‖2 ≥ εk⟨A(xk − x̂), xk − x̂⟩

for some εk > 0 and ‖A−ν(xk − x̂)‖ is bounded.
Let

B = ‖A
1
2−q‖ < √2 and D =

√1 + 4B2 − (B2 + 1)
B2

.
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Lemma 2.1. Let assumption (B2) and (1.3) hold with 0 < ν < 1
2 − q and let 0 < C1ρ < D. Let xk be as in (1.5).

Then xk ∈ B(x0, 2ρ) and
‖xk+1 − x̂‖2 + αkΓ‖A

1
2 (xk − x̂)‖2 ≤ ‖xk − x̂‖2

with
Γ = 2 − (B2C21ρ

2 + 2(B2 + 1)C1ρ + B2) (2.2)

for all k = 0, 1, 2, . . . . Moreover,
∞

∑
k=0

αk‖A
1
2 (xk − x̂)‖2 < ∞.

Proof. We shall prove the result using induction. Note that x0 ∈ B(x0, 2ρ) and suppose that xk ∈ B(x0, 2ρ).
Then using (1.5), we have

‖xk+1 − x̂‖2 − ‖xk − x̂‖2 = −2αk⟨xk − x̂, F�(x0)∗(F(xk) − y)⟩ + α2k‖F
�(x0)∗(F(xk) − y)‖2

= −2αk⟨xk − x̂, F�(x0)∗[F(xk) − F(x̂) − F�(x0)(xk − x̂)]⟩
+ αk[αk‖F�(x0)∗(F(xk) − y)‖2 − 2⟨xk − x̂, F�(x0)∗F�(x0)(xk − x̂)⟩]

= −2αk⟨F�(x0)(xk − x̂),
1

∫
0

(F�(x̂ + t(xk − x̂)) − F�(x0)) dt (xk − x̂)⟩

+ αk[αk‖F�(x0)∗(F(xk) − y)‖2 − 2‖A
1
2 (xk − x̂)‖2].

So by (B2), we have

‖xk+1 − x̂‖2 − ‖xk − x̂‖2 = −2αk⟨F�(x0)(xk − x̂),
1

∫
0

[R(x̂ + t(xk − x̂), x0) − I] dt F�(x0)(xk − x̂)⟩

+ αk[αk‖F�(x0)∗(F(xk) − y)‖2 − 2‖A
1
2 (xk − x̂)‖2]

≤ 2αk
1

∫
0

‖R(x̂ + t(xk − x̂), x0) − I‖‖F�(x0)(xk − x̂)‖2 dt

+ αk[αk‖F�(x0)∗(F(xk) − y)‖2 − 2‖A
1
2 (xk − x̂)‖2]

≤ 2αkC1‖x̂ + t(xk − x̂) − x0‖‖A
1
2 (xk − x̂)‖2

+ αk[αk‖F�(x0)∗(F(xk) − y)‖2 − 2‖A
1
2 (xk − x̂)‖2]. (2.3)

Note that, by the definition of αk, we have

αk‖F�(x0)∗(F(xk) − y)‖2 = αk‖A
1
2−qAq(F(xk) − y)‖2

≤ ‖A
1
2−q‖2‖F(xk) − y‖2

= B2
"""""""""

1

∫
0

F�(x̂ + t(xk − x̂)) dt (xk − x̂)
"""""""""

2

= B2
"""""""""

1

∫
0

[R(x̂ + t(xk − x̂), x0) − I + I] dt F�(x0)(xk − x̂)
"""""""""

2

≤ B2(C1‖x̂ + t(xk − x̂) − x0‖ + 1)2‖F�(x0)(xk − x̂)‖2

≤ B2(C1ρ + 1)2‖A
1
2 (xk − x̂)‖2. (2.4)

Therefore, by (2.3) and (2.4) we have

‖xk+1 − x̂‖2 − ‖xk − x̂‖2 ≤ −Γαk‖A
1
2 (xk − x̂)‖2.

This completes the proof.
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Next, we will prove the boundedness of ‖A−ν(xk − x̂)‖. Let B1 = ‖A 1
2−ν−q‖, 0 < ν < 1

2 − q with 0 < q < 1
2 .

Lemma 2.2. Let assumption (B2) and (1.3) hold with 0 < ν < 1
2 − q and 0 < C1ρ < D. Let xk be as in (1.5). Then

‖A−ν(xk − x̂)‖ is bounded.

Proof. By using (1.3), one can prove that xk − x̂ ∈ R(Aν) for all k = 0, 1, 2, . . . . So, we can apply A−ν to
xk+1 − x̂ and xk − x̂. Then we have

‖A−ν(xk+1 − x̂)‖2 − ‖A−ν(xk − x̂)‖2 = 2⟨A−ν(xk − x̂), A−ν(xk+1 − xk)⟩ + ‖A−ν(xk+1 − xk)‖2

= −2αk⟨A−ν(xk − x̂), A−νF�(x0)∗(F(xk) − y)⟩ + α2k‖A
−νF�(x0)∗(F(xk) − y)‖2

≤ 2αk‖A−ν(xk − x̂)‖‖A−νF�(x0)∗(F(xk) − y)‖
+ α2k‖A

−νF�(x0)∗(F(xk) − y)‖2.

This implies ‖A−ν(xk+1 − x̂)‖2 ≤ (‖A−ν(xk − x̂)‖ + αk‖A−νF�(x0)∗(F(xk) − y)‖)2, i.e.,

‖A−ν(xk+1 − x̂)‖ ≤ ‖A−ν(xk − x̂)‖ + αk‖A−νF�(x0)∗(F(xk) − y)‖. (2.5)

By the definition of αk, we have

αk‖A−νF�(x0)∗(F(xk) − y)‖2 = αk‖A
1
2−ν−qAq(F(xk) − y)‖2

≤ ‖A
1
2−ν−q‖2‖F(xk) − y‖2

= ‖A
1
2−ν−q‖2

"""""""""

1

∫
0

F�(x̂ + t(xk − x̂)) dt (xk − x̂)
"""""""""

2
. (2.6)

Using assumption (B2) in (2.6), we get

αk‖A−νF�(x0)∗(F(xk) − y)‖2 = ‖A
1
2−ν−q‖2

"""""""""

1

∫
0

[R(x̂ + t(xk − x̂), x0) − I + I] dt F�(x0)(xk − x̂)
"""""""""

2

≤ ‖A
1
2−ν−q‖2(C1‖x̂ + t(xk − x̂) − x0‖ + 1)2‖F�(x0)(xk − x̂)‖2

≤ B21(C1ρ + 1)2‖A
1
2 (xk − x̂)‖2,

so
√αk‖A−νF�(x0)∗(F(xk) − y)‖ ≤ B1(C1ρ + 1)‖A

1
2 (xk − x̂)‖. (2.7)

Therefore by (2.7) and (2.5), we have

‖A−ν(xk+1 − x̂)‖ ≤ ‖A−ν(xk − x̂)‖ + √αkB1(C1ρ + 1)‖A
1
2 (xk − x̂)‖. (2.8)

Let zk = ‖A−ν(xk − x̂)‖. Then by (2.8),

zk+1 ≤ zk + B1(C1ρ + 1)√αk‖A
1
2 (xk − x̂)‖,

i.e.,

zk ≤ z0 + B1(C1ρ + 1)
k−1
∑
i=0

√αi‖A
1
2 (xi − x̂)‖.

By Lemma 2.1, we have
zk ≤ z0 + B1(C1ρ + 1)M,

where M is such that
∞

∑
k=0

αk‖A
1
2 (xk − x̂)‖2 ≤ M2.

Now since z0 = ‖A−ν(x0 − x̂)‖ = ‖A−νAνv‖ = ‖v‖, we obtain

zk ≤ ‖v‖ + B1(C1ρ + 1)M. (2.9)

This completes the proof.
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Theorem 2.3. Let assumption (B2) and (1.3) for 0 < ν < 1
2 − q hold and let 0 < C1ρ < D. Let xk be as in (1.5).

Then
‖xk − x̂‖ ≤ C̃k−ν ,

where C̃ = [2(ν + 1)]νε−ν(‖v‖ + B1(C1ρ + 1)M).

Proof. Note that
αk ≥ ‖Aq‖−2,

since (B2) and (1.3) for 0 < ν < 1
2 − q hold and C1ρ < D. Set εk := ε = Γ‖Aq‖−2, where Γ is as in (2.2). Now

Lemma 2.2 implies

‖xk − x̂‖2 − ‖xk+1 − x̂‖2 ≥ Γαk‖A
1
2 (xk − x̂)‖2

≥ Γ‖Aq‖−2‖A
1
2 (xk − x̂)‖2

= ε‖A
1
2 (xk − x̂)‖2

= ε⟨F�(x0)∗F�(x0)(xk − x̂), xk − x̂⟩
= ε⟨A(xk − x̂), xk − x̂⟩.

Therefore by (2.1), we have

‖xk − x̂‖ ≤ [2(ν + 1)]ν‖A−ν(xk − x̂)‖
1
ν+1 [

k−1
∑
i=0
εi‖A−ν(xi − x̂)‖

−1
ν+1 ]
−ν

≤ [2(ν + 1)]νz
1
ν+1
k ε−ν[

k−1
∑
i=0
z−

1
ν+1

i ]
−ν

. (2.10)

So by (2.9) and (2.10), we have

‖xk − x̂‖ ≤ [2(ν + 1)]νε−ν(‖v‖ + B1(C1ρ + 1)M)k−ν ≤ C̃k−ν ,

as desired.

Remark 2.4. The above result shows that we have obtained the error estimate ‖xk − x̂‖ = O(k−ν) for 0 < ν < 1
2

under the general source condition (1.3) as q → 0.

3 Convergence Rate Result of Method (1.5) with Noisy Data
In this section we study the modified form of minimal error method (1.5) for noisy data yδ instead of exact
data y. We assume that ‖y − yδ‖ ≤ δ as stated in the introduction. The minimal error method (1.5) with noisy
data takes the form

xδk+1 = xδk + α
δ
ks
δ
k (k = 0, 1, 2, . . . ), sδk = −F�(x0)∗(F(xδk) − y

δ), αδk =
‖F(xδk) − y

δ‖2

‖Aq(F(xδk) − yδ)‖2
. (3.1)

As in [8], we assume:
(B4) F satisfies the local property

‖F(u) − F(v) − F�(x0)(u − v)‖ ≤ η‖F(u) − F(v)‖

for all u, v ∈ B(x0, ρ) with max{1−B23 , 1 − B2
2 − ‖Aq‖2

2m2 , 0} < η < 1 − B2
2 .

Throughout this section we assume that B(x0, 2ρ) ⊂ D(F).
Due to the instability of (1.5) for the noisy data, it is not possible to use an a priori regularization strategy

as a stopping rule. So we need an a posteriori strategy as a stopping rule (i.e., discrepancy principle). In [14],
Neubauer and Scherzer noticed that no convergence rate result has been proven for theminimal errormethod
with noisy data. But the authors in [8] proved the convergence rate by proposing a modified discrepancy
principle. Using the idea from [8], we can prove a convergence rate result for method (3.1).
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3.1 Discrepancy Principle

Proposition 3.1. Let assumption (B4) holds and let xδk be as in (3.1). Then xδk ∈ B(x0, 2ρ) ⊂ D(F) for all
k = 0, 1, 2, . . . , and if

‖F(xδk) − y
δ‖ ≥ τδ, (3.2)

where

τ > 2 (1 + η)
2 − 2η − B2

> 2, (3.3)

then, for all 0 ≤ k < k∗ with τ as in (3.3), we have

k∗(τδ)2 ≤
k∗−1
∑
k=0

‖F(xδk) − y
δ‖2 ≤

τ‖F�(x0)‖2

(2 − 2η − B2)τ − 2(1 + η)
‖x0 − x̂‖2.

Proof. Note that x0 ∈ B(x0, 2ρ). Suppose that xδk ∈ B(x0, 2ρ). Using (3.1), we have

‖xδk+1 − x̂‖
2 − ‖xδk − x̂‖

2 = −2αδk⟨x
δ
k − x̂, F

�(x0)∗(F(xδk) − y
δ)⟩ + αδk

2
‖F�(x0)∗(F(xδk) − y

δ)‖2

= 2αδk⟨F(x
δ
k) − y

δ − F�(x0)(xδk − x̂), F(x
δ
k) − y

δ⟩

+ αδk[α
δ
k‖F

�(x0)∗(F(xδk) − y
δ)‖2 − 2‖F(xδk) − y

δ‖2]

≤ 2αδk‖F(x
δ
k) − F(x̂) + y − y

δ − F�(x0)(xδk − x̂)‖‖F(x
δ
k) − y

δ‖

+ αδk[α
δ
k‖F

�(x0)∗(F(xδk) − y
δ)‖2 − 2‖F(xδk) − y

δ‖2]. (3.4)

So by (B4) and (3.4), we have

‖xδk+1 − x̂‖
2 − ‖xδk − x̂‖

2 ≤ 2αδk(η‖F(x
δ
k) − F(x̂)‖ + δ)‖F(x

δ
k) − y

δ‖

+ αδk[α
δ
k‖F

�(x0)∗(F(xδk) − y
δ)‖2 − 2‖F(xδk) − y

δ‖2]

≤ 2αδk[η‖F(x
δ
k) − y

δ‖ + (1 + η)δ]‖F(xδk) − y
δ‖

+ αδk[α
δ
k‖F

�(x0)∗(F(xδk) − y
δ)‖2 − 2‖F(xδk) − y

δ‖2]

= αδk(2η − 2)‖F(xδk) − y
δ‖2 + αδk2(1 + η)δ‖F(xδk) − y

δ‖ + (αδk)
2‖F�(x0)∗(F(xδk) − y

δ)‖2.

Note that

αδk‖F
�(x0)∗(F(xδk) − y

δ)‖2 = αδk‖A
1
2 (F(xδk) − y

δ)‖2 ≤ αδk‖A
1
2−q‖2‖Aq(F(xδk) − y

δ)‖2 ≤ B2‖F(xδk) − y
δ‖2.

Therefore we have

‖xδk+1 − x̂‖
2 − ‖xδk − x̂‖

2 ≤ αδk[(2η + B2 − 2)‖F(xδk) − y
δ‖2 + 2(1 + η)δ‖F(xδk) − y

δ‖],

so by (3.2),

‖xδk+1 − x̂‖
2 − ‖xδk − x̂‖

2 ≤ αδk((2η + B2 − 2) + 2 (1 + η)
τ )‖F(xδk) − y

δ‖2 < 0. (3.5)

This implies ‖xδk+1 − x̂‖ < ‖xδk − x̂‖ < ‖x0 − x̂‖ < ρ. Thusweobtain ‖xδk+1 − x0‖ ≤ ‖xδk+1 − x̂‖ + ‖x0 − x̂‖ < 2ρ, i.e.,
xδk+1 ∈ B(x0, 2ρ) ⊂ D(F) for all k = 0, 1, 2, . . . . Now since αδk ≥ ‖Aq‖−2, we have by (3.5)

‖Aq‖−2((2 − 2η − B2) − 2 (1 + η)
τ )‖F(xδk) − y

δ‖2 ≤ ‖xδk − x̂‖
2 − ‖xδk+1 − x̂‖

2. (3.6)

Adding inequality (3.6) for k from 0 through k∗ − 1, we obtain

‖Aq‖−2((2 − 2η − B2) − 2 (1 + η)
τ )

k∗−1
∑
k=0

‖F(xδk) − y
δ‖2 ≤ ‖x0 − x̂‖2 − ‖xδk∗ − x̂‖

2. (3.7)

This completes the proof.
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Remark 3.2. Note that (3.7) implies that, for yδ ̸= y, there must be a unique index k∗ such that (3.2) holds
for all k < k∗ but is violated at k = k∗ (see also [3, p. 282]).

Let Ω := ‖Aq‖−2((2 − 2η − B2) − 2 (1+η)
τ ) and

q = 1 − Ω( m
τ − 1)

2
.

Now, we shall prove that q < 1 for τ > 2. Note that, to prove q < 1, it is enough to prove that

Ω( m
τ − 1 )

2 = ‖Aq‖−2((2 − 2η − B2) − 2 (1 + η)
τ )(

m
τ − 1)

2
< 1

for τ > 2. That is to prove that

p(τ) := τ3 − 2τ2 + (1 − ‖Aq‖−2(2 − 2η − B2)m2)τ + 2(1 + η)m2‖Aq‖−2 > 0

for τ > 2. This follows from the condition η > 1 − B2
2 − ‖Aq‖2

2m2 .

Theorem 3.3. Let assumptions (B2) and (B4) hold and let ρ < min{ (τ−1)
2δ

m , 2
m√Ω

}. Let xδk+1 be as in (3.1). Then
for 0 ≤ k < k∗,

‖xδk+1 − x̂‖ =
{
{
{

O(q k+1
2 ) if δ < qk+1,

O(δ 1
2 ) if qk+1 ≤ δ,

where q := 1 − Ωm2

(τ−1)2 .

Proof. By the definition of k∗, we have for k ≤ k∗,

τδ < ‖F(xδk) − y
δ‖ ≤ ‖F(xδk) − F(x̂)‖ + ‖y − yδ‖. (3.8)

So,
‖F(xδk) − F(x̂)‖ > (τ − 1)δ. (3.9)

Again by (3.8), we have

τδ < ‖F(xδk) − y
δ‖ <

"""""""""

1

∫
0

F�(x̂ + θ(xδk − x̂)) dθ (x
δ
k − x̂)

"""""""""
+ δ ≤ m‖xδk − x̂‖ + δ,

i.e.,

δ <
m‖xδk − x̂‖
τ − 1 . (3.10)

Thus, by (3.9) and (3.10),

‖F(xδk) − y
δ‖ ≥ ‖F(xδk) − F(x̂)‖ − δ ≥ (τ − 1)δ −

m‖xδk − x̂‖
τ − 1 ≥ (τ − 1)δ − mρ

τ − 1 > 0. (3.11)

It follows from (3.11) that

‖F(xδk) − y
δ‖2 ≥ (τ − 1)2δ2 + (

m‖xδk − x̂‖
τ − 1 )

2
− 2δm‖xδk − x̂‖. (3.12)

So by (3.12) and (3.6), we have

‖xδk+1 − x̂‖
2 ≤ (1 − Ω( m

τ − 1)
2
)‖xδk − x̂‖

2 − Ω(τ − 1)2δ2 + 2Ωδm‖xδk − x̂‖

≤ (1 − Ω( m
τ − 1)

2
)‖xδk − x̂‖

2 − Ω(τ − 1)2δ2 + 2Ωδmρ

≤ (1 − Ω( m
τ − 1)

2
)‖xδk − x̂‖

2 + 2Ωδmρ.
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Therefore,
‖xδk+1 − x̂‖

2 ≤ q‖xδk − x̂‖
2 + Lδ,

where q = 1 − Ω( m
τ−1 )

2 and L = 2Ωmρ. Then

‖xδk+1 − x̂‖
2 ≤ qk+1‖xδ0 − x̂‖

2 + qkLδ + ⋅ ⋅ ⋅ + qLδ + Lδ ≤ qk+1ρ2 + Lδ
1 − q

.

This completes the proof.
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