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a b s t r a c t

An experimental investigation of the third-order nonlinear optical properties of new poly{2-{5-[3,4-

ditetradecyloxy-5-(1,3,4-oxadiazol-2-yl)thiophen-2-yl]-1,3,4-oxadiazol-2-yl}pyridine} (P) in tetrahydrofur-

an (THF) solution and in solid poly(methylmethacrylate) (PMMA) matrix, by Z-scan technique is

reported. The Z-scan traces reveal that the composite films exhibit large negative nonlinear refractive

index of the order 10�10 esu. The excited-state absorption cross-section was found to be larger than the

ground-state absorption indicating that the operating nonlinear process is reverse saturable absorption

(RSA). The new polymer P exhibits good optical power limiting properties in the nanosecond regime in

solution and as well in solid PMMA matrix.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the search for novel nonlinear optical materials
with large nonlinear optical properties has increased because of
their applications in integrated optics such as optical modulation,
optical information, optical data storage, optical power limiting,
fluorescence excitation microscopy and imaging [1,2]. In this
regard, organic materials are potential candidates because they
can be tailored chemically to fit wide range of photonics and opto-
electronics applications [2]. Among the organics, conjugated
polymers are emerging as most widely studied materials for
nonlinear optics. The presence of the delocalized p-electron
system in them leads to large values of third-order nonlinear
optical parameters and fast response times [3,4]. Polythiophenes
are very versatile class of conjugated polymers, which is gaining
significant scientific interest because of the possibility of making
systematic structural modification at molecular level.
ll rights reserved.
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Recently, Cassano et al. [5] have showed that by a proper
choice of the side chains in a series of dialkoxy substituted poly(p-
phenylenevinylene), it is possible to enhance the third-order
nonlinear optical coefficients. They also reported a new strategy of
tuning the linear and nonlinear optical coefficients in polymers
based on the effect of the simultaneous presence of electron-
acceptor and electron-donor substituted aromatic rings in the
conjugated polymer backbone [6]. In this approach, we have
designed a new molecule with electron donor and acceptor
groups, arranged alternatively along the polymer backbone. From
the photonics and opto-electronics applications point of view, the
basic requirement for a good nonlinear optical material is that it
should exhibit high optical quality with large and stable optical
nonlinearity in the solid state. It has been observed that the
difficulty in the processing of organic conjugated polymers such
as polythiophenes, poly(p-phenylenevinylene) has made intricacy
in fabricating the solid-state optical devices and assembling them
into a system [7–9]. In this context, one can dope the superior
nonlinear optical materials into suitable host forming composites
with good optical transparency [7–11]. In the present work, the
newly synthesized polymer P was blended with poly(methyl-
methacrylate) (PMMA) as matrix to prepare the composite film.

In this paper, we report experimental studies on third-order
nonlinear optical properties of new polymer P in tetrahydrofuran

www.elsevier.com/locate/optlastec
dx.doi.org/10.1016/j.optlastec.2009.06.018
mailto:poorneshp@gmail.com
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(THF) solution and in PMMA matrix, using Z-scan technique at
532 nm. Further, we present the strong optical power limiting of
nanosecond laser pulses of the composite films, based on reverse
saturable absorption (RSA).
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Fig. 2. UV–visible absorption Spectrum of polymer composite and pure PMMA

films.
2. Experiments

To prepare the composite films, PMMA was selected as the host
material because PMMA is hard, rigid and has a glass transition
temperature of 125 1C. It also exhibits good linear optical
transmittance, optical stability, thermal stability and moreover
better compatibility with organics [12,13]. PMMA and polymer P
were dissolved in THF separately and stirred well to form uniform
solution later both the solution were mixed together and stirred
for 8–10 h using a magnetic stirrer. The mixed solution was
poured into a petridish and kept for drying at room temperature
for overnight. Then the sample was kept in an oven at �70 1C for
24 h. The composite film of thickness �0.36 mm was obtained
which was used for Z-scan and optical power limiting measure-
ments. We also prepared the composite films with different
weight % of polymer P in PMMA for the concentration dependence
studies. The synthesis and characterization of the polymer used in
this study has been reported elsewhere [14]. Fig. 1 shows the
structure of PMMA and structure of the polymer investigated. The
linear absorption a spectrum of the polymer is shown in the Fig. 2,
was obtained at room temperature by using the UV–visible fiber
optic spectrometer (Model SD2000, Ocean Optics Inc.).

The single beam Z-scan technique [15–17] was used to evaluate
the third-order nonlinear optical susceptibility of the polymer in
both solution and solid medium. This technique enables simulta-
neous measurement of nonlinear refraction (NLR) and nonlinear
absorption (NLA). Basically, in this technique the nonlinear
sample is scanned through the focal plane of a tightly focused
Gaussian beam and the changes in the far-field intensity pattern
with and without aperture is monitored. Experiments were
performed using a Q-switched, frequency doubled Nd:YAG laser
(Spectra—Physics USA, Model-GCR170) producing 7 ns laser
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Fig. 1. (a) Structure of PMMA. (b) Structure of the polymer P with R ¼ C14H29.
pulses (FWHM) at 532 nm and at a pulse repetition rate of
10 Hz. The output of the laser beam had a nearly Gaussian
intensity profile. The Gaussian laser beam was focused by using a
lens of 25 cm focal length. The resulting beam waist radius at the
focused spot, calculated using the formula o0 ¼ 1.22lf/d, where f

is focal length of the lens and d the diameter of the aperture, was
found to be 18.9mm. The corresponding Rayleigh length, calcu-
lated using the formula ZR ¼ po0

2/l, was found to be 2.11 mm. For
solution Z-scan measurements, cuvette of 1 mm thickness was
used. Thus, the sample thickness is less than the Rayleigh length
for both the systems i.e. solution and solid medium; hence the
thin sample approximation is valid [15]. The Z-scan experiments
were performed at an input intensity of 1.195 GW/cm2. For the
optical power limiting study, the samples were kept at the focus of
the laser beam. By varying the input laser energy, the change in
the output laser energy was noted using Laser Probe Rj-7620
Energy ratio meter with two pyroelectric detectors.
3. Results and discussion

In this section, we present the results of nonlinear optical
measurements obtained for polymer in solution and in PMMA
matrix. In presence of high-intensity laser irradiation, the non-
linear absorption and refraction are expressed by the equations

aðIÞ ¼ aþ bI ð1Þ

nðIÞ ¼ nþ n2I ð2Þ

where a is the linear absorption coefficient, n the linear refractive
index, b the nonlinear absorption coefficient and n2 the nonlinear
refractive index, and I the intensity of the laser beam.

3.1. Nonlinear absorption

The magnitude of nonlinear absorption coefficient b, of polymer
in solution n and in PMMA matrix was estimated by performing the
open aperture Z-scan (i.e. without keeping aperture in front of the
detector) which is related to the imaginary part of third-order
optical susceptibility w(3). Fig. 3 shows the open aperture Z-scan
trace of the polythiophene in solution and in solid PMMA matrix
(0.25 wt%), which is found to be symmetric with respect to the
focus indicating intensity-dependent absorption. This may include
nonlinear optical processes like two-photon absorption (TPA),
excited-state absorption (ESA), free carrier absorption and reverse
saturable absorption. Nonlinear absorption under nanosecond
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Fig. 3. Open aperture Z-scan traces of polymer P: (a) in solution and (b) in PMMA

matrix (i) pure PMMA and (ii) polymer P composite film (0.25 wt%). Solid line

depicts theoretical fit.
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Fig. 4. Energy level diagram showing both two-photon absorption (TPA) and

excited-state absorption (ESA) (five-level model).
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excitation can be explained using the five level energy diagram
[8,18–20] as shown in Fig. 4. This includes ground state S0, the first
singlet state S1, the next higher excited singlet state S2, lower triplet
state T1 and next higher triplet stateT2. Each of these states contains
number of vibrational levels. When two photons, of the same or
different energy are simultaneously absorbed from the ground
state to a higher excited state (S1’S0), it is denoted as two-photon
absorption. When excited-state absorption occurs molecules are
excited from an already excited state to a higher excited state (e.g.
S2’S1 and/or (T2’T1)). For this to happen, the population of the
excited states (S1 and/or T1) needs to be high so that the probability
of photon absorption from that state is high. In nanosecond time
scale singlet transition does not deplete the population of S1 level
appreciably, since atoms excited to S2 decay to S1 itself within
picoseconds. From S1, electrons are transferred to T1 via intersystem
crossing (ISC), from where transitions to T2 occurs. If more
absorption occurs from the excited state than from the ground
state it is usually called reversed saturable absorption. The triplet
excited-state absorption may result in RSA if the absorption cross-
section of triplet excited state is greater than that of singlet excited
state. With excitation of laser pulses on the nanosecond scale,
which is true in our case, triplet–triplet transitions are expected
make significant contribution to nonlinear absorption. Under open
aperture Z-scan condition, normalized transmission is given by [21]

TðzÞ ¼ 1�
q0

2
ffiffiffi
2
p for jq0jo1 ð3Þ

where q0 is a free factor defined as

q0 ¼
bIoð1� exp�aLÞ

ð1þ Z2=Z2
o Þa

where L is the length of the sample, Io the intensity of the laser
beam at the focus and Zo the Rayleigh range of the lens. A fit to the
Eq. (1) to the open aperture data yielded a value of of nonlinear
absorption coefficient beff for the polythiophene. The excited-state
absorption cross-section (sex) was measured from the normalized
open aperture Z-scan data [21–24]. It was assumed that the
molecular energy levels could be reduced to a three level to
calculate sex. Molecules are optically exited from the ground state
to the singlet excited state, and from this state, they relax either to
ground state or to the triplet state, when exited-state absorption
can occur from the triplet to the higher triplet exited state.

The change in the intensity of the laser beam as it propagates
through the sample is given by

dI

dZ
¼ �aI � sexcNðtÞ; ð4Þ

dN

dt
¼

aI

‘o
; ð5Þ

where I is the intensity, Z the sample position, N the density of
charges in the excited state, o the angular frequency of the laser
and a linear absorption. By combining Eqs. (3) and (4) yield

dI

dZ
¼ �aI �

sexcaI

‘o

Z t

�1

Iðt0Þdt0; ð6Þ

Solving the above equation for the fluence and integrating over
spatial extent of the beam, gives the normalized energy
transmission for open aperture and is given by [23]

T ¼ ln 1þ
q0

1þ x2

� �
=

q0

1þ x2

� �
; ð7Þ

where x ¼ z/zo, z is the distance of the sample from the focus, zo

the Rayleigh length given by the formula Zo ¼ 2pwo
2/l (k is the

wavelength and wo the beam waist at the focus) and q0 is given by
the equation [21–24]

q0 ¼
sexcaFoðr ¼ 0ÞLeff

2‘o ; ð8Þ

where a is the the linear absorption coefficient, Leff ¼

[1�exp(�aL)]/a, o the angular frequency of the laser and Fo the
on-axis fluence at the focus which is related to the incident
energy Etotal.
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Table 1
Third-order nonlinear optical coefficients of polymer P in THF solutions at concentration of 5�10�4 mol/L.

Sample n2 (�10�10 esu) beff (cm/GW) sg (�10�19 cm2) sexc (�10�18 cm2) Re w3 (�10�12 esu) Im w3 (�10�12 esu)

In solution �1.723 28.10 10.72 8.93 �1.821 0.423

Table 2
Third-order nonlinear optical coefficients of polymer (P) composite films and second-order hyperpolarizability of the polymer.

Sample Dopant

concentration

(wt%)

n2

(�10�10 esu)
beff

(cm/GW)

sg

(�10�17 cm2)

sexc

(�10�16 cm2)

Re w3

(�10�12 esu)

Im w3

(�10�12 esu)

gh

(�10�28 esu)

In PMMA 0.25 �1.678 34.55 7.738 2.297 �1.992 0.619 4.835

0.50 �1.913 43.39 4.330 2.666 �2.271 0.778

0.75 �2.024 47.80 2.970 2.754 �2.458 0.884

1.00 �2.177 50.25 2.236 2.835 �2.655 0.930
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Fig. 5. Nonlinear absorption coefficient (beff) vs. on-axis input intensity Io of

polymer P. (a) In solution. (b) In PMMA.
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The values of effective excited-state absorption cross-section
sexc, of the polymer were obtained by fitting the open aperture
data using the Eq. (6). The ground-state absorption cross-section,
sg, was calculated using the relation

sg ¼
a

NaC
; ð9Þ

where Na is the Avogadro’s number and C the concentration in
mol/L.

The measured values of ground-state and effective excited-
state absorption cross-sections of the polymer in solution and in
PMMA matrix are given in Tables 1 and 2, respectively. The larger
values of sexc, as compared to sg, indicates that the operating
nonlinear process is reverse saturable absorption [21–24]. Further,
if the nonlinear mechanism belongs to the simple two-photon
absorption, beff should be a constant independent of on-axis input
intensity Io [25,26]. But the plot in Fig. 5(a) and (b) shows the
value of beff decreases on raising the on-axis input intensity Io for
both the systems, which is the consequence of sequential two-
photon absorption [27,28]. With increasing intensity, the total
absorption of the polythiophene approaches asymptotically the
absorbance of the triplet state. Therefore, the beff will be reduced
at least up to intensities where no other intensity dependence
processes are involved which can further cause reduction of
transmission of polymer. Similar trends were observed by Couris
et al. [27] and Bindhu et al. [28] for C60 and C70 in toluene
solutions, where they have attribute to sequential two-photon
absorption via excited-state absorption(reverse saturable
absorption). For instance, Chen et al. [29] have also observed
similar decrease in the effective intensity-dependent nonlinear
absorption coefficient beff on increasing input intensities in case of
tBu4PcTiO/polymer composites, where they ascribe it to the
possibility of high-order triple-state transitions of the excited-
state population. This indicates the presence of higher-order
effects to the observed nonlinearity [30]. However, Hein et al. [31]
have also reported decrease of beff with increasing Io for the
thiophene oligomers, where they attributed to saturation of
instantaneous two-photon absorption. The obtained values of
excited-state and ground-state absorption cross-section of the
polymer is comparable with the values obtained by Henari et al.
[24] for organometallic phthalocyanine.

3.2. Nonlinear refraction

To determine the sign and magnitude of nonlinear refraction,
closed aperture Z-scan (i.e. by placing an aperture in front of the
detector) was performed. A material with nonlinear refractive
index depends on the sample position Z, and cause focusing
or defocusing of light beam, hence there is change in the
intensity of the beam in the far-field zone as the sample is traced
along Z. The consequence of this results in a ‘‘peak-valley
(negative n2)’’ or ‘‘valley-peak (positive n2)’’ type of Z-scan curve.
Fig. 6 shows the closed aperture Z-scan trace of the polythiophene
in solution and in solid PMMA matrix (0.25 wt%). It exhibits
peak-valley characteristic for both the systems, indicating self-
defocusing effect (negative nonlinear refraction, i.e. n2o0).
The nonlinear refractive index g (m2/w) is given by the
formula [15]

g ¼ Dfol
2pLeff Io

ðm2=WÞ; ð10Þ
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Fig. 6. Closed aperture Z-scan traces of polymer P: (a) In solution and (b) In PMMA

matrix (i) Pure PMMA and (ii) polymer composite film (0.25 wt%). Solid line

depicts theoretical fit.
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Fig. 7. Pure nonlinear refraction Z-scan traces of polymer P: (a) in solution and (b)

in PMMA matrix (i) pure PMMA and (ii) polymer composite film (0.25 wt%). Solid

line depicts theoretical fit.
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where Dfo is the is the on-axis phase change given by the
equation

Dfo ¼
DTp�v

0:406ð1� SÞ0:25
for jDfojrp; ð11Þ

where DTp�v is the peak to valley transmittance difference and S

the linear aperture transmittance, which is equal to 0.5 in our
experiments.

The nonlinear refractive index n2 (in esu) is related to g (m2/W) by

n2ðesuÞ ¼ ððcno=40pÞgðm2=WÞ; ð12Þ

Usually, the closed aperture Z-scan data also includes the
contribution from nonlinear absorption. In order to extract the
pure nonlinear refraction part, following Sheik-Bahae et al. [15], we
have computed the value of the closed aperture data by the open
aperture data. Fig. 7 shows the resulting curve corresponding to
pure nonlinear refraction. It is observed that the peak-valley of
closed aperture Z-scan satisfies the condition of DZ�1.7DZo, thus
confirming the third-order nonlinearity is due to electronic process
[15]. The sign and magnitude of n2 is determined from the relative
position of the peak and valley with z [15]. The normalized
transmittance for pure nonlinear refraction is given by [15]

TðzÞ ¼ 1þ
4xDfo

½ðx2 þ 9Þðx2 þ 1Þ�
; ð13Þ

The nonlinear refractive index n2, and nonlinear absorption
coefficient b, are related to the real and imaginary part of
third-order nonlinear optical susceptibility w(3) through the
equations

Rewð3Þ ¼ 2n2
0ce0n2ðesuÞ; ð14Þ

Imwð3Þ ¼ n2
oceolbeff=2p; ð15Þ

Damage of the films was checked by using an optical
microscope soon after performing the Z-scan measurements. We
found there was no damage of the films at the region where Z-
scan data was obtained at the input intensity used. While
performing the Z-scan from �Z to +Z, it was again repeated by
translating the sample from +Z to�Z and calculated the values, we
did not found significant differences. To determine any contribu-
tions from the solid PMMA matrix to the observed nonlinearity,
we conducted Z-scan experiment on pure PMMA film (i.e. with
0 wt% dopant concentration) and found negligible contribution
both for nonlinear refraction and nonlinear absorption at the
input energy used. Therefore, any contribution from pure PMMA
film to the observed nonlinearity is negligible at the input
intensity used. It is evident that the total nonlinearity has
significant contributions from both real and imaginary parts of
third-order nonlinear optical susceptibility w(3). We expect the
large nonlinearity in polymer arises due to the contributions from
the population in the excited states and as well as due to the
electronic response to the applied optical field.

Generally, in p-conjugated polymers, the charge cloud formed
by conjugated p-electrons has the capability of being strongly
deformed under the effect of an external optical field. The
electrons move in large molecular orbitals, formed by the linear
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superposition of the carbon pz atomic orbitals, leading to high w(3),
that increases with the conjugation length [5]. Further, nonlinear
susceptibility depends on presence of hyperpolarizability in the
molecules. The molecular hyperpolarizability can be enhanced by
increasing dipole moment within the conjugated polymer chain.
According to the literature [5], enhanced hyperpolarizability can
be achieved by introduction of alternating electron donor and
acceptor groups along the polymer backbone. Based on this
observation, a new polymer carrying electron donor 3,4-ditetra-
decyloxy thiophene ring and electron acceptor oxadiazolyl-
pyridine moiety has been synthesized. In the new molecule,
existence of a strong delocalization of p-electrons along the
polymer chain is the prime reason for its third-order nonlinearity.
Further, the involvement of push-pull mechanism due to the
presence of donor and acceptor type of arrangements leads to
increase in molecular hyperpolarizability along the polymer
backbone. Also, the presence of unsubstituted pyridine moiety is
responsible for reduction in the steric repulsion between the
bulky alkyl groups. This causes the enhanced planarity of the
polymer chain and hence the greater delocalization. The values of
nonlinear absorption coefficient beff, nonlinear refractive index n2,
and the real and the imaginary parts of third-order nonlinear
optical susceptibility w(3), of the polymer in solution and in PMMA
matrix are given in n Tables 1 and 2, respectively.

The second-order hyperpolarizability gh of a molecule is
related to the third-order susceptibility w(3) as below [32]

gh ¼ wð3Þ=L4N ð16Þ

In the above equation, N is the density of molecules in the unit
of molecules per cm3. The term L is the local field factor, which in
the Lorentz approximation is given by L ¼ (n2+2)/3. The calculated
value of molecular second hyperpolarizability gh, for the polymer
is given in the Table 2, which is well comparable with the value
reported for silicon naphthalocyanine, SiNc (gh ¼ 1.7�10�31 esu),
a widely known optical limiting material [22] and also the most
interesting optical limiting organic material trans-4-[2-(pyrrl)vi-
nyl]-1-methylpyridium iodide[PVPI]—a stilbazolium like dye
(gh ¼ 1.6�10�31 esu) [33,34].
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4. Optical power limiting studies

The necessity of protecting human eye and optically sensitive
devices from intense optical beams calls for the development of
potential optical power limiters. An ideal optical limiter is perfectly
transparent at light intensities below a threshold level, above
which the transmitted intensity remains clamped at a constant
value [35]. The nonlinear optical mechanisms that cause optical
limiting have different origins such as two-photon absorption, free
carrier absorption, reverse saturable absorption, excited-state
absorption and nonlinear scattering. The molecules exhibiting
RSA generally have extremely fast response time, since it involves
electronic transitions [18]. The best known reverse saturable
absorbers are fullerene (C60), porphyrin complexes, indocyanine
green and phthalocyanines [11,18,20–23,36]. Due to the large value
of excited-state absorption cross-section compared to the ground-
state absorption cross-section of polymer, we expect major
nonlinear optical process causing the limiting behavior is reverse
saturable absorption. Optical power limiting experiments were
performed by placing the sample at the focus of the laser beam
and by measuring the transmitted energy for different input laser
energies. Fig. 8(a) shows the optical power limiting response of the
polymer in THF solutions. The polymer exhibits optical limiting
threshold of �120, �95 and �80mJ with the output energy
clamped at �50, �32 and �20mJ, respectively, at concentrations of
1.25�10�4 mol/L, 2.5�10�4 mol/L and 5�10�4 mol/L. Fig. 8(b)
shows the optical power limiting response of the polymer in solid
PMMA matrix at various concentrations. The clamping levels of the
polymer composite film P were found to be, �13, �10, �8 and
�6mJ with a limiting threshold of �42, �36, �25 and �20mJ,
respectively, at concentrations of 0.25%, 0.5%, 0.75% and 1.0%. We
found that the film was damaged when the input energy was
increased beyond 400mJ/Pulse. So we repeated the optical limiting
experiment again by increasing the input energy up to 350mJ/Pulse
and also we noted the energy while decreasing the input energy,
the reverse path was found to be same as the initial which
confirmed that the film was not damaged. We observed that the
clamping levels of the polymer decreased on increasing the
concentration. This is because at the higher concentration there
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exists more molecules per unit volume; hence it absorbs the harsh
laser pulses more efficiently. Polymer investigated here exhibits
good optical power limiting of nanosecond laser pulses both in
solution and as well as in solid PMMA matrix. Therefore, the
polymer investigated here seems to be a promising material for
making optical power limiting devices.

Concentration dependence of nonlinear absorption coefficient,
beff, was also studied. Fig. 9 shows the plot of nonlinear absorption
beff vs. dopant concentration. The measured value of nonlinear
absorption coefficient beff increases with the concentration of
polymer in PMMA indicating that the contribution to nonlinear
absorptions arises due to the presence of the polymer. The beff

shows a saturating behavior to the guest concentration further
indicating that the nonlinearity includes not only third-order but
higher-order nonlinearity.
5. Conclusions

In summary, the third-order nonlinear optical properties of new
poly{2-{5-[3,4-ditetradecyloxy-5-(1,3,4-oxadiazol-2-yl)thiophen-2-yl]-
1,3,4-oxadiazol-2-yl}pyridine} (P) in THF solution and in PMMA
matrix was estimated using the nanosecond Z-scan technique. The
polymer possesses large negative nonlinear refractive index
as high as 10�10 esu. The large third-order nonlinear optical
property of the polymer arises due to the strong delocalization of
p-electrons along the polymer chain and it is due to the
contributions from the population in the excited states. Optical
power limiting measurements indicated that the polymer exhibits
good optical limiting of 7 ns laser pulses at 532 nm wavelength in
both solution and as well as in solid-state form. The operating
nonlinear optical process leading to optical power limiting
was due to reverse saturable absorption. Hence, the polymer
investigated here is a possible candidate for the development of
photonic and optoelectronic devices.
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