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1. Introduction

Inverse problems arise in many practical applications, such as inverse scattering problem and tomographic, parameter
identification in partial differential equations (see [ 1-3]). They can be modeled as an operator equation

F(x)=y, (1.1)
where F : D(F) C X — Y is a nonlinear Fréchet differentiable operator between the Hilbert spaces X and Y. Throughout
this study, D(F), (-, -) and || - ||, respectively, stand for the domain of F, innerproduct and norm which can always be

identified from the context in which they appear. Fréchet derivative of F is denoted by F'(-) and its adjoint by F'(-)*.
Further we assume that Eq. (1.1) has a solution X, which is not depending continuously on the right-hand side data y. The
problems in which the solution X is not depending continuously on the right hand data are called ill-posed problems. It is a
common practice to use iterative methods or iterative regularization methods for approximating x. For example, Landweber
method [4,5], Levenberg-Marquardt method [6], Gauss—Newton [7,8], Conjugate Gradient [9], Newton-like methods [10,11],
TIGRA (Tikhonov-gradient method) [12].

It is assumed further that we have only approximate data y* € Y with

ly =yl < 8.

The steepest descent method was considered by Scherzer [13], Neubauer and Scherzer [ 14] for approximately solving (1.1).
In general, the steepest descent method for (1.1) with y® in place of y can be written as

Xk+1 = X + O0tkSk, (1.2)
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where sy is the search direction taken as the negative gradient of the minimization functional involved and « is the descent.
For solving Eq. (1.1) with ¥ in place of y, method (1.2) was studied by Scherzer [13] when s, = —F/(x)*(F(x¢) — ¥°)
and o = Ik and Neubauer and Scherzer [14] studied (the minimal error method) method (1.2) when s, =

IF’ (xie ) siell
—F'(x ) (F(x¢) — ¥°) and oy = %)lgsy:”” For linear operator F, Gilyazov [15] studied («-process) method (1.2) when
sk = —F'(x )" (F(x,) —y®)and o = % Vasin [16] considered a regularized version of the steepest descent method
2
in which sy = —F'(x)*(F(xx) —y? )+ a(xx — Xo) and o = sk Here and below xg is the initial guess. Also, observe

IF" (g )sie 12 +eelsiell? ©
that the TIGRA-method of Ramlau [12] is of the form (1.2) Wl{tl'll Sk = ’—[F’(xk)*(F(xk) — ¥+ ap(x9 — x¢)] and oy = By. Note
that, in all these methods, one has to compute the Fréchet derivative of F at each iterate x; and «y in each iteration step
which is in general very expensive.

In the present study, we consider a modified form of (1.2), namely the frozen regularized steepest method defined for
eachk=0,1,2,...by

Xkr1 = X — BIF (x0) (F(xk) — ¥°) + at(xk — Xo)1. (1.3)

where Xq is the initial point, 8 > 0 is a fixed parameter and « > 0 is the regularization parameter. Further, note that in
method (1.3), we have frozen the Fréchet derivative at x, throughout the iteration. That is why, we call method (1.3) the
frozen regularized steepest method. This is one of the advantage of the proposed method. Observe that (1.3) is of the form
(1.2) with s, = —[F'(xo)*(F(x¢) — ¥*) 4+ a(xx — Xo)] and oy = B foreach k = 1,2, .... Since oy = p one need not have
to compute «y in each step as in the earlier studies such as [13,14,16]. In other words, the computational work is reduced
considerably in the proposed method (1.3).

Note that method (1.3) coincide with the method considered in[17] when 8 = 1, but our convergence analysis is different
from that of [17] and is based on the property of the norm of a self adjoint operator in the Hilbert space (see Section 2).
Moreover the condition on the radius of the convergence ball in [17] is too restrictive than the condition in this study. The
numerical experiments (see comparison Table 1) also show that the method considered in this paper provides better error
estimate than that of the method considered in [ 17]. We also consider the finite dimensional realization of the method (1.3)
in Section 3. The error analysis and the algorithm for implementing the method (1.3) are given in Section 4. Finally the
numerical results are given in Section 5.

2. Convergence analysis of method (1.3)

Denote by B,(x), B;(x) the open and closed ball in X, respectively, with center x € X and of radius r > 0. Throughout this
paper we assume that the operator F satisfies the following assumptions.

Assumption 2.1.
(a) There exists a constant ky > 0 such that for everyx € D(F)and v € X, there exists an element ®@(x, xq, v) € X satisfying
[F'(x) — F'(X0)]v = F'(x0)®(x, X0, v), [|®(x, X0, V)l < kollv]ll|x — Xoll.
(b)
IF'(xo0)ll <M.
Notice that in the literature the stronger than (a) condition (a)’
[F'(x) = F'(2)]v = F'(2)5(x,z, v), [&(x,z, v)| < K[vlllx —z|l
is used for some £(x, z, v) € X. However,
ko <K
holds in general and % can be arbitrarily large [18]. It is also worth noticing that (a)’ implies (a) but not necessarily vice
versa and element & is less accurate and more difficult to find than & (see the numerical example in [17]).
Assumption 2.2. There exists a continuous, strictly monotonically increasing function ¢ : (0,a] — (0, co) witha >
IF'(x0)||? satisfying;
°

lim g(x) = 0

r—0
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e there exists v € X with ||v|| < 1 such that
Xo — X = @(F'(x0)"F'(x0))v.

It is known that for « > 0,

F'(X0)*(F(X) = ¥°) + a(x — x0) = 0 (2.1)

has a unique solution x% in B,(xo) provided 0 < r < % [17, Theorem 2.] (see also [ 19, Section 3]). Also it is known (cf. [17,
Theorem 4]) that if Assumptions 2.1 and 2.2 are satisfied, then

5w 1 8
1Xe = %Il = 37— kot (ﬁ + ga(a)) . (2.2)

Let 89 > 0, ag > 0 be some constants with 85 < agand ||xg —X|| <r.Lets € (0, 8] and & € [82, ap]. Further, let 8, Qo.p
be parameters such that

1
P,
ﬁ_Mz—i-ao

(2.3)

and
3ﬂM2k0
r.

wpg=1—a
do.p B+ 5

Remark 2.3.

. Then, we have

1. Suppose 0 <1 < 3M2k
3,6M21<0r
2
38M?%ky 2a
<1—af+ =1
p 2 3M2k,
2a
3M2kg .
2. Notice that, if « —> 0, thenr — 0 and in this case x, = X. Further, in practice, we choose « from a set
{0 < g <aq,...,ay < 1} (see Section 4.2) and hence r > 0.

Qu.p = 1—(Xﬂ+

ie,qup < 1forall0 <r <

Hereafter, we assume that 0 < r < min{ﬁ, 35‘2’(,( }.
0

Theorem 2.4. Let x, beasin(1.3)andlet 0 <1 < min{Zk0 }. Then for each § € (0, 8], € [82, ag], the sequence {x,}

3M2k
is in By, (Xg) and converges to x‘; as n — oo. Further,

Ixn1 = %011 < @ity %o — %011, (2.5)

where qq g is as in (2.4).

Proof. Clearly, xo € By (xo). Let A, := f01 F'(x% + t(x, — x%))dt. Since X’ € B;(xo), Ao is well defined. Assume that for some
n > 0, X, € By (Xo) and Ay, is well defined. Then, since xJ satisfies Eq. (2.1), we have

Xnp1 — X) = X —x:i — BIF (x0)*(F(xa) — F(x 5))+a(xn —x)
— X5 — BIF (x0)*An + all(x, — X2)
= Xy — X, — BIF (x0)"(An — F'(x0))](xn — £
— BIF'(%0)*F'(Xo) + ol 1(xy — X))
= [I — B(F'(%0)*F'(x0) + oD (% — X2
—BIF (x0)*(An — F'(xo))](xn — X2)). (2:6)
Using Assumptions 2.1, we have

Xni1 — X, = [[ — B(F'(x0)*

F'(xo) + al)](xa — X2)
1
— B (%) F (x0) / o0 + t(x,
0

s s
— X)), Xo, Xp — X, )dt.
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Now since I — B(F'(xo)*F'(xo) + «l) is a positive self-adjoint operator,

11— B(F'(x0)*F'(x0) + al)|
= sup [{(I — B(F'(xo)"F'(xo) + a))x, x)|

Ix|I=1
= IHSth (1= Ba)(x, x) — B(F'(x0)"F'(Xo)x, X)|
x||=1
<1-—ap. (2.7)
The last step follows from relation
F(x0)F'(x0)x, X)| < BIIF (x0)||> < BM? < M=1-——%  <1-_Ba.
BIIF (o) F ()%, 0| < BIF (o) < pM? < 4 — i 1 pe
Hence, by Assumption 2.1, we have
a1 = X1 < (1= aB)xa — x|
1
+,3M2kof (1- t)llxi — Xoll + tll%n — Xol)dt[|x, — X} |
0
3k0 5
1-af+p lIXn — Xg
< Quplxn —XI. (2.8)

Since g, p < 1(see Remark 2.3), we have
5 s
Xns1 — X Il < llXo — X[l <7
and
8 8
Xn+1 — Xoll < IXn1 — X Il + l1X0 — X, || < 2r

i.e., Xp11 € Bor(X0). Also, for0 <t <1,

1%, + t(ns1 = %3) = Xoll = (1 = ), — X0) + t(Xns1 — X))l < 21
Hence, xg + t(xnﬂ - x ) € By(X0) and A1 is well defined. Thus, by induction x,, is Well defined and remains in B, (xo) for
eachn=0,1,2,. By letting n — oo in (1.3), we obtain the convergence of x,, to xa The estimate (2.5) now follows from
(2.8). O
Remark 2.5.

1. If Assumption 2.1 is fulfilled only for all x € B.(xo) N Q # @, where Q is an convex closed a priori set, for whichx € Q,
then we can modify method (1.3) by the following way

X(rSH»l,ot = PQ(T(X:SI,a ))

to obtain the same estimate in the following Theorem 2.4; here Py is the metric projection onto the set Q and T is the
step operator in (1.3).
2. Instead of Assumption 2.1, if we use the following Lipschitz condition:

[IF'(x1) = F'(x2)ll < Lollx1 — x| (2.9)
then from (2.6) and (2.7), one can prove that (2.5) holds with g, g = 1 — af + BMLor instead of q, g, provided
0<r< 2.

MLo

3. Also by using (2.9) instead of Assumption 2.1, one can prove (2.1) has a unique solution if 0 < r < *L/—f and
1 1)
Ik, = &Il < —+ (— +go(a)>.
1- 2 \Ve

3. Finite dimensional realization of method (1.3)

For implementing method (1.3) one needs numerical calculations in finite dimensional spaces. One of the approaches
in this regard is through discretization (see [1, page 63]). Here the regularization is achieved by a finite dimensional
approximation alone. Regularization of ill-posed problems by projection methods can be found in the literature, for e.g
in [20-23]. This section is concerned with the finite dimensional realization of the method (1.3). Precisely, our aim in this
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section is to obtain an approximation for X2, in the finite dimensional space R(P;,) of X. Here {P}n-0 is a family of orthogonal
projections of X onto R(Py,), the range of P,. For the results that follow, we impose the following conditions. Let
en = ||[F'(xo)(I — Pn)l|
and
by = [|(I — Pu)X|.

We assume that lim,__,ge;, = 0 and limy,_,ob;, = 0. The above assumption is satisfied if P, — I point-wise and if F'(-) is
compact operator. Further, we assume that there exist &g > 0, by > 0 and §; > 0 such that ¢, < ¢y and b, < by.
We have taken the discretized version of (1.3) as

Xiet1a = Xeo — BPALF (o) (F(Xgo) = ¥°) + a(xps — %5 (3.1)
where xg.a =: PyXg. Let
(80 + €0)* < do.
Next we prove that, fora > 0
PyF'(Xo)*(FPa(X) — ¥°) + aPy(x — X9) = 0 (32)

has a unique solution xg"s in B:(xo) N R(Py).

Theorem 3.1. Let X be a solution of (1.1), Assumption 2.1 satisfied and let F : D(F) € X — Y be Fréchet differentiable in a ball
B:(xo) NR(Py) C D(F)with0 <1 < ﬁ Then (3.2) possesses a unique solution Xg,a in B:(xg) N R(Py).

Proof. For x € B.(x9) N R(Py), let

1
My = f F'R + t(x — R))dt.
0

If P,F'(Xo)*MpPy + ol is invertible, then
(PF'(Xo)*MyPy + ) — PhX) = aPy(Xo — X) + PiF'(x0)*(y° — ¥)
+ PuF'(x0)"Miy(I — Pn)X (3.3)
has a unique solution xf};‘s € R(Py). Observe that
F(Pux) = y* = F(Pyx) = F(®) +y — y* = M(Pox — X) +y — 5’
and hence
PyF'(x0)*(FPu(x) — ¥°) 4 atPh(x — Xo)
= PuF'(x0) (My(Pax — %) +y — ) + aPy(x — Xo)
= (PuF'(x0)"MyPy + al)Py(x — &) — aPy(xo — X)
— PyF'(x0)*My(I — Pi)R — PuF'(x0)*(y" — y).

Therefore by (3.3) PuF’(x0)*(FPu(x) — ¥°) + aPu(x — Xo) = 0 has a unique solution x"°. Clearly, x> € B,(xo) N R(Py). So, it
remains to show that P,F’'(xo)*Mp,P, + ol is invertible for x € B.(xo) N R(Py). Note that by Assumption 2.1, we have

I(PhF"(Xo)*F'(x0)Py + atI) ™' PuF (X0 )" (My — F'(Xo))Pu
sup [|(PhF'(x0)"F'(Xo)Ph + aI) ' PhF'(x0)*(Mn — F'(x0))Pyv||

flvll<1

1

< sup |[(PaF'(Xo)"F'(X0)Pn + Pn)~'PrF'(xo)* / (F'(X + t(x — %)) — F'(x))dtPyv
o<1 0

1
< sup [[(PuF/(x0)"F (x0)Ph + )™ "PuF'(x0)"F (x0) /

flvli=1

DX+ t(x — X), Xo, Ppv)dt H
0

1
< sup [[(PhF'(x0)*F'(X0)Pn + o)™ 'PyF'(xo)*F'(Xo)[Ph + I — Ph]/ D(X+ t(x — &), X0, Ppv)dt
0

flvli=1

1
€h 5 s
k0+’€0:|/ ||X+t(X—X)—X0||df
[ Ve 1o

IA
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[ko +ko— ] / [(1 = O)lI% — Xoll + tllx — Xol[1dt
Eh r+r
<k |1+ — < 2kor < 1.
- ( N ) 2 ’
Therefore, I 4+ (PyF’(xo)*F'(xg)Py 4 al)™'PpF (X0 )* (M}, — F'(xo))Py, is invertible. Now from the relation
PyF'(x0)* MpPy + al
= (PyF'(X0)"F'(x0)Py + al)
(1 + (PhF'(X0)*F'(X0)Pn + cel) ™" PhF'(x0)*(My — F'(X0))Pr]
it follows that PpF'(xo)*MyPy, + ol is invertible. O

Theorem 3.2. Let xhé beasin(3.1)andlet 0 <r < mln{BMzk , 2ko} Then for each § € (0, 8], a € ((8 + €)%, dol, en < €0
the sequence {xn, }is in By (xo) N R(Py) and converges to xh ¥ asn — oo. Further,

X301 o — X221 < gt 11Pxo — X2, (34)

where g, p is as in (2.4).

Proof. Since x? satisfies Eq. (3.2), we have

XS = X = XS X BIPF (o) (F(XLS) — F(X®)) + Py, — Xi2)]
=><£1:i—x — BIPHF (x0)* Al + Py (X, — Xi?)

= X1 — X0 BIPLF (x0)" (Al — (Xo))](X — Xy
— BIPhF'(Xo)*F'(x0)Ph + atPh](xo, — Xi )

(I — B(PhF'(x0)*F'(x0)Pn + a:)](xﬁ;i — x9)
- ﬂ[PhF'(Xo)*(AZ — F'(xo)l(xivs, — xi°),

where Al = fo F/(x% 4 ¢(x1% — xM3))dt. Using Assumption 2.1 we have

" e — X =[1—ﬁ(PhF(xo)* (Xo)Pn + al))(xiyd, — x0?)

o

X

1
— BIPF (x0)F (o)) / GO 11X — A1), x0, (6 — K0t
0

Now since I — B(PyF'(xo)*F'(xo)Pn + «l) is a positive self-adjoint operator, as in (2.7)
I — B(PLF'(Xo)*F'(x0)Pp + D)l < 1 — Ba.
Hence,

hs
Xy [

(1—ap)llxis — X0

— Xy

IA

n+1
1

+ BM?ko f (T =0)lxy> = xoll + tllxys, — xollde) lIxys, — x5l
0

3koM? r)

IA

h,8
1Xno — X"l

(1—a;3+,3

IA

( af +p——

The rest of the proof is analogous to the proof of Theorem 2.4. O

3k0M r
h.s h.8
Xy — %° -

Remark 3.3. Instead of Assumption 2.1, if we use (2.9) then Theorem 3.1 holds with 0 < r < ‘L/—f and Theorem 3.2 holds
with @y g == 1 — af + BMLor instead of g, g, provided 0 < r < 7

4. Error bounds under source conditions
Note that by (2.1), we have

PyF'(x0)*(F (x ) —y° +ozP,.,(x —Xp) = 0. (4.1)
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So, by (3.2) and (4.1), we obtain
PhF'(x0)*(F(X™%) — F(x2)) + aPy(x™* —x3) = 0.
That is,
(PhF'(x0)*F'(x0)Ph + ol ((xi> — Pux}) = PyF'(Xo)*(F'(x0) — T)(x* — %))
+ PuF'(x0)*F'(Xo (I — Ph)X;,
where T = fo (x + t(x™% — X2 ))de. So,
X% — Pxl |
= || (PuF'(X0)*F'(X0)Ph -+ otPh) ™ [PuF'(x0)*(F'(X0) — T)(X® — )
+ PoF'(x0)"F'(Xo (I — P )X} ] |

(PiF'(X0)*F'(X0)Pp + aPy) " [PhF,(XO)*

/[Fx + t(x1% — x2)) — F'(x0)]dt(x® — ]H+||x [

(PuF'(x0)*F'(x0)Py + atPy) ™" [PhF/(XO)*F/(XO)[Ph +1—Py]
&
dt + 2 ||

1
x| 4 t(xi® — x2)), x0, X° — )
/o Ja
1
€h s h.s he 8
<ko (1+>f [(1T—=B)lIx, — xoll + tllxy® — Xoll1dtIx;° — x|l
\/& 0 o o o

Eh
+ —=(IIx%, — xoll + lIXol)

Ja
Eh
< 2kor|IXM° — X3 | 4+ —=(r + ||x
< Zkor||x, ol J&( lxoll)
h.s s s €h
< 2kor[llxg° — Puxg | + 11 — Pa)xg 111 + 7&(r + llxo 1),
hence
1 &n
h.s 5 5
X0 — Ppx’ || < ————— | 2kor||(I — Pp)x —(r X . 4.2
X h"‘”—1—2k0r[ or lI( h)a||+ﬁ( + 1l oll)] (4.2)
Further, we observe that

IPhxo — x5°[| < [IPa(x0 — X[;°)I| < T (43)

Combining the estimates in (2.2), (4.2), (4.3) and Theorem 3.2 we obtain the following:

Theorem 4.1. Let the assumptions in Theorem 3.2 hold and let x" 8 be asin (3.2). Then

X — &I < @ 47 + 1%2,(“ [bh + %(ux()n + r)}
+ %mz (% + <p(a)> . (4.4)
Further if ng := min{n : quﬂ < 5:;2,1 }and by < ‘SJ% then
Ixh , — & <C (‘Sj;" + w(a)> (45)

where C =1 + #kor[l + max{r + [|xoll, 2}].

A

Proof. By triangle inequality, we have [|x[-% — X|| < [0 — xb2|| + ||x%5 — x% || + |Ix} — X|. Therefore, from (4.2), (4.3),
Theorem 3.2 and (2.2), we obtain that

Ix08 = R < g2 pr + XY — Pl || + (101 — PaII| + I1xE, — &I
1 En
< q" gr 4+ ———— | 2kor||(I — PX2 || + —=(llxoll + T
<qh, l—2k0r|: orll = Puxgll + == (ol + 1)
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; 1 5
0= PO+ (ﬁ " go(a)>

Eh
<q —— [ 10 = Pp)X?
< @+ gy (10— PO+ ol +r)}
4t 4 (o)
1—kor \ Vo v
_ o o
< q ————— | It = Py)(X}, — =
S Qup” T+ 1 2kor _||( )X, — X+ Xl + ﬁ(llxoll +T)}
" 1 ) + o)
— | — a
1—kor \ Vo ¢
_ A ) o
S Qo+ 1= 2kor _||Xi = X[l + (T = Pp)x]| + ﬁ(llxoﬂ + r)]
n 1 ) + o)
- | —F— o
1—kor \ Vo ¢
€n
<q" — | b+ —
— qasﬂr + 1— 2’(01’ i h+ \/&(”XOH + T)_
+ 1+ ! ! 5 + ¢(a)
= o
1—2kor J 1 —kor \ Vo ¢
4 o -
< q" —|b L
— qasﬂr + 1— 2k0r i h+ ﬁ("x()'l + r)_

1 )
Tz 2k0r2 (ﬁ + Gﬂ(a)) '

This proves (4.4), and (4.5) follows from (4.4). O

4.1. A priori choice of the parameter

Note that the estimate 6;2” + (o) in Theorem 4.1 is of optimal order for the choice o := «; , which satisfies 5:;;“ = ¢(a).

Let (1) := Ay/9~1(1),0 < A < a. Then s, = @~ [~ (8 + 5)] satisfies Sjgh = ¢(at).
In view of the above observation, Theorem 4.1 leads to the following:

Theorem 4.2. Let (1) = A/¢~ (1), 0 < A < a and assumptions in Theorem 4.1 hold. For § > 0, let as = @' [~ 1(8 + &4)]
and let ng be as in Theorem 4.1. Then

I8, =Rl = O(¥ (8 + en)).

ng,os

4.2. Balancing principle

Note that the best function ¢ measuring the rate of convergence in Theorem 4.1 is usually unknown. Therefore, in practical
applications different parameters o« = «; are often selected from some finite set

D={aj:0<ayg<oa;<---<ay<l},
and corresponding elements xﬁ:ﬁﬁ, i=1,2,...,N arestudied on line. Let
n":min{n'q" < 8+8h}
;i g p < NG
and let x} := x>, . Then from Theorem 4.1, we have
I, — R §c<8+‘9h —i—ga(a,—)) i=1,2,...,N.
i

We choose the regularization parameter « from the set Dy defined by

Dy = {oj = p¥ag < 1,i=1,2,...,N},
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where a9 = (8 + &,) (see [24,25]) and > 1. Using the ideas in [24], we consider all possible functions ¢ satisfying
Assumption 2.1 and ¢(¢;) < ‘Hﬁ Any of such functions is called admissible for x and it can be used as a measure for the

convergence ofxgi — X (see [26]).
The main result of this section is the following theorem, proof of which is analogous to the proof of Theorem 4.4 in [10].

Theorem 4.3. Assume that there existsi € {0, 1, ..., N} such that ¢(§) < ‘Hﬁ Let assumptions of Theorem 4.1 be satisfied
and let

. S+¢
= max{l:(p(ozi)s fh} <N,

[oF]

5
k=max{i:Vi=1.2, . .0 —x | <ac2 Tl
Qj o
NG

where C is as in Theorem 4.1. Then | < k and

Xk, — &Il < 6Cuyr (8 + &)

Remark 4.4. The balancing algorithm associated with the choice of the parameter specified in Theorem 4.1 involves the
following steps:

e Choose ag = (8+eh)2 and o > 1.
e Choose ¢; := u?ay,i=0,1,2,...,N

Seti=0.

. Choose n; := min {n qhp < < S

Joi
Solve x; := x by using the iteration (3.1).
X = x50 > 4C;d j < i, then take k = i — 1 and return xy.

. Else,seti =i+ 1and go to 2.

U W N =

5. Numerical examples

Let Vi € V, € V3 C --- be a sequence of finite-dimensional subspaces of X with ( J, . Vm = X and P, (h = %)
is the orthogonal projector of X onto R(Py) := V;, C D(F). Precisely, we choose the orthonormal system of box function
oi(t, 1) = Y(t)W(t),i = (k—1m+1, k = 1,2,3,....m, | = 1,2,3,...,mq, i = 1,2,...,m(= mf)‘ where
i (t), ¥(t) are Ly-orthonormalized characteristic functions of the intervals [k — 1, k], [l — 1, ] [26], respectively, as a basis
of Vi, in 2 = [0, m¢] x [0, mq].

We consider the following integral equation (inverse gravimetry problem (see [27] and references in it)) for the
implementation of the method (3.1).

Let F : HY(£2) C [%(§2) — L[%(£2) defined by

1
U= — ax'dy’ = f(x,y), 5.1
=[] T =) G0
where £2 = [0, m;] x [0, m;]. The Fréchet derivative of the operator F at the point uy(x, y) is expressed by the formula
uo(x Y)hx',y) Iy
dx'dy’. 52
W= [ G b+ Y 52

Applying to the integral equations (5.1) the two-dimensional analogy of rectangle’s formula with uniform grid for every
variable, we obtain the following system of nonlinear equations:

mp my
AXA X
ZUZ] [(6e — %)% + (O — ) T,y Ay =Ttk
(k=1,2,...,my,l=1,2,...,my). The discrete variant of the derivative F'(ug) has the form
oh AxAyuo( L y(X, v7)
Fh}kl—zz ,12 121, INEER (5.3)
o =2 + 01— yi)? + ug(x, vl

where ug(x, y) = H is constant.
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Table 1
Comparison table for relative and residual error for method (1.3) and method in [17].
8 Relative error and residual error Relative error and residual error
for the method (1.3) for the method in [17]
Qg A4 Ay ay Aq Ay
0.01 8.3521e—5 1.8576e—4 3.8057e—5 5.0625e—4 8.1214e—4 7.9872e—4
0.001 8.3521e—7 1.8577e—4 3.8123e—5 5.0625e—6 8.1214e—4 7.9871e—4
0.0002 7.3324e—8 1.8578e—4 3.8129e—5 2.0250e—7 8.1214e—4 7.9871e—4
0.0001 8.3521e—9 1.8579e—4 3.8130e—5 5.0625e—8 8.1214e—4 7.9871e—4
’ W
Y/ 77e Ny
45 /';""'
4
3.5
3
2.5l
40
30 40
20 30
20
10 10
0 o
Fig. 1. Exact solution.
5 ‘ 5.002
4.9998 5
4.998
4.9996
4.996
4.9994
4.994
4.9992 : 4.992
40 ‘ 40
30 40 30 40
20 30 20 30
20 20
10 10 10 10
0 o 0 o
(a) Approximate solution for § = 0.01. (b) Approximate solution for § = 0.0001.

Fig. 2. Approximate solution.

We take the exact solution as

(—[(x/10-3.5)%(y/10-2.5)%]) __ (—[(x/10—5.5)2(y/10—4.5)2])

u(x,y) =5 — 2exp 3exp

and f® = F{@l) + 8. Let Ax= Ay =1, my =35, H=5.
Note that on the set

Q = {1.0 < u(x,y) < 10.0}

IIF'(u) — F'(uo)ll < Lollu — uoll (see [27,28]).
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The results of numerical experiments are presented in Table 1. Here ii, is the numerical solution obtained by our method;
the relative error of solution and residual are

[l — il , = | Fa(tn) — full
liall Ifall
respectively, for a noisy right-hand side.
Comparison Table 1 shows that the relative and residual error for method (1.3) is smaller than that of the method in [17]
for a given data error.

Fig. 1, gives the exact solution, Fig. 2(a) gives the approximate solution for § = 0.01 and Fig. 2(b) gives the approximate
solution for § = 0.0001.

A=

6. Conclusion

In this study, we considered a discretized frozen steepest descent method for numerical approximation of a Tikhonov type
regularizer. The balancing principle considered by Pereverzev and Schock in [24] was used for choosing the regularization
parameter. We provide a numerical example to verify the theoretical results.
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