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Abstract. We present the semi-local convergence analysis of a two-step
Kurchatov-type method to solve equations involving Banach space val-
ued operators. The analysis is based on our ideas of recurrent functions
and restricted convergence region. The study is completed using numer-
ical examples.
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1. Introduction

Many mathematical equations are in the following form (or get reduced to):

F (x) = 0, (1.1)

where F : D ⊆ B1 −→ B2 is a Fréchet-differentiable operator, B1 and B2

are Banach spaces, and D is a nonempty open convex subset of B1. Various
iterative schemes are used to approximate the solution x∗ of (1.1) [1–23].
Many of these methods are firmly based on various calculus and functional
analysis concepts, and they can be effectively implemented by taking the
advantage of the speed and power of modern computer technologies.

The study of convergence of iterative algorithms is usually centered
into two categories: semi-local and local convergence analysis. The semi-local
convergence is based on the information around an initial point, to obtain
conditions ensuring the convergence of these algorithms, while the local con-
vergence is based on the information around a solution to find the estimates
of the computed radii of the convergence balls.

In this study, we present the semi-local convergence of the two-step
Kurchatov-type methods defined for each x0, y0 ∈ D by the following:

xn+1 = xn − A−1
n F (xn)

yn+1 = xn+1 − A−1
n F (xn+1), (1.2)
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where x0 is an initial point, An = [2yn − xn, xn;F ] and [., .;F ] : D × D −→
L(B1,B2) is finite difference of order one.

We find computable radii of convergence as well as error bounds on
the distances based on Lipschitz-type conditions. The order of convergence
is found using computable order of convergence (COC) or approximate com-
putational order of convergence (ACOC) [3,23] (see Remark 2.3) that do not
require usage of higher order derivatives.

The rest of the study is organized as follows: Sect. 2 contains the semi-
local convergence of method (1.2), where, in the concluding Sect. 3, applica-
tions and numerical examples can be found.

2. Semi-local Convergence

We present the semi-local convergence of method (1.2) in this section. First,
we need an auxiliary result on majorizing sequences for method (1.2).

Lemma 2.1. Let L0 > 0, L > 0, s0 ≥ 0 and t1 ≥ 0 be given parameters.
Denote by α the only solution of equation:

p(t) = 0, in (0, 1), (2.1)

where p(t) = 2L0t
3 + 3Lt − 3L. Suppose that

0 <
L(t1 + 2s0)
1 − 2L0s1

≤ α ≤ 1 − 2L0t1, (2.2)

where s1 = t1 + L(t1 + 2s0)t1. Then, scalar sequence {tn} defined by

t0 = 0, sn+1 = tn+1 +
L(tn+1 − tn + 2(sn − tn))(tn+1 − tn)

1 − 2L0sn

tn+2 = tn+1 +
L(tn+1 − tn + 2(sn − tn))(tn+1 − tn)

1 − 2L0sn+1
(2.3)

is well-defined nondecreasing, bounded from above by

t∗∗ =
t1

1 − α
(2.4)

and converges to its unique least upper bound t∗ which satisfies

tn ≤ t∗ ≤ t∗∗. (2.5)

Moreover, the following estimates hold

0 < sn − tn ≤ α(tn − tn−1) ≤ αn(t1 − t0) (2.6)

and
0 < tn+1 − tn ≤ α(tn − tn−1) ≤ αn(t1 − t0). (2.7)

Proof. Notice that p(0) = −3L < 0 and p(1) = 2L > 0. It follows from
the intermediate value theorem that p(t) has at least one solution in (0, 1).
Denote the only solution by α (since p′ is increasing, p crosses the x−axis
only once). If t1 = 0, we have from (2.3) that tn = sn = 0 for each n = 1, 2, . . .
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and (2.6) and (2.7) are true for each n = 1, 2, . . .. In what follows we suppose
that t1 > 0. It follows from (2.3) that (2.6) and (2.7) are true, if

0 <
L(tn+1 − tn + 2(sn − tn))

1 − 2L0sn
≤ α, (2.8)

0 <
L(tn+1 − tn + 2(sn − tn))

1 − 2L0sn+1
≤ α (2.9)

and
tk ≤ sk. (2.10)

Estimates (2.8)–(2.10) are true for k = 0 by s ≥ 0 and the left-hand side
inequality in (2.2). Suppose that they are true for all the values of k =
0, 1, 2, . . . , n. We have by the induction hypotheses and (2.3) that

sk ≤ tk + αk(t1 − t0)

≤ tk−1 + αk−1(t1 − t0) + αk(t1 − t0)
...
≤ t1 + α(t1 − t0) + · · · + αk(t1 − t0)

=
1 − αk+1

1 − α
(t1 − t0) < t∗∗, (2.11)

tn+1 ≤ tk + αk(t1 − t0) ≤ · · · ≤ 1 − αk+1

1 − α
(t1 − t0) < t∗∗ (2.12)

and
1

1 − 2L0sk
≤ 1

1 − 2L0sk+1
. (2.13)

Hence, instead of showing (2.8) and (2.9), we must show only (2.9). Evidently,
(2.9) is true, if

0 <
3Lαk(t1 − t0)

1 − 2L0

[
1−αk+2

1−α (t1 − t0)
] ≤ α (2.14)

or

3Lαk(t1 − t0) + 2L0α

[
1 − αk+2

1 − α
(t1 − t0)

]
− α ≤ 0. (2.15)

Estimate (2.15) motivates us to define recurrent functions fk on [0, 1) by

fk(t) = 3Ltk−1(t1 − t0) + 2L0
1 − tk+2

1 − t
(t1 − t0) − 1. (2.16)

We need a relationship between two consecutive functions fk :

fk+1(t) = fk(t) + p(t)tk−1(t1 − t0). (2.17)

In particular, we have that

fk+1(α) = fk(α). (2.18)

Define function f∞ on (0, 1) by

f∞(t) = lim
k−→∞

fk(t). (2.19)
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Then, by (2.19) and (2.16), we get that

f∞(t) =
2L0t1
1 − t

− 1. (2.20)

In particular, we get by (2.2) that

f∞(α) ≤ 0. (2.21)

We also have that
f∞(α) = lim

k−→∞
fk(α). (2.22)

Then, (2.15) is true by (2.22) and (2.21). The induction is completed. It
follows that sequence {tn} is increasing and bounded above by t∗∗, and as
such, it converges to t∗ satisfying (2.5). �

Denote by U(w, ξ), Ū(w, ξ), the open and closed balls in B1, respectively,
with center w ∈ B1 and of radius ξ > 0.

Next, we present the local convergence analysis of method (1.2) using
{tn} as a majorizing sequence.

Theorem 2.2. Let F : D ⊆ B1 −→ B2 be a Fréchet-differentiable operator.
Suppose that there exists a divided difference [., .;F ] of order one for operator
F on D × D. Moreover, suppose that these exist x0, y0, 2y0 − x0 ∈ D,L0 >
0, L > 0, s0 ≥ 0, t1 ≥ 0, such that, for each x, y ∈ D:

A−1
0 ∈ L(B2,B1) (2.23)

‖A−1
0 F (x0)‖ ≤ t1, (2.24)
‖x0 − y0‖ ≤ s0, (2.25)

‖A−1
0 ([x, y;F ] − A0)‖ ≤ L0(‖x − 2y0 + x0‖ + ‖y − x0‖). (2.26)

Let D0 = D ∩ U(x0,
1

2L0
).

‖A−1
0 ([x, y;F ] − [z, y;F ])‖ ≤ L‖x − z‖ for each x, y, z ∈ D0, (2.27)

Ū(x0, 3t∗) ⊆ D, (2.28)

and hypotheses of Lemma 2.1 hold, where t∗ is given in Lemma 2.1. Then,
the sequence {xn} generated by method (1.2) is well defined, remains in
Ū(x0, 3t∗), and converges to a solution x∗ ∈ Ū(x0, 3t∗) of equation F (x) = 0.
Moreover, the following estimates hold for each n = 0, 1, 2, . . .:

‖xn − x∗‖ ≤ t∗ − tn. (2.29)

Furthermore, if, for R ≥ t∗:

L0(3t∗ + R + 2s0) < 1, (2.30)

then the point x∗ is the only solution of equation F (x) = 0 in D1 = D ∩
Ū(x0, R).

Proof. We shall show using induction on k that

‖xk+1 − xk‖ ≤ tk+1 − tk (2.31)

and
‖xk+1 − yk+1‖ ≤ sk+1 − tk+1. (2.32)
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Using (2.26), we have

‖A−1
0 (A0 − A1)‖ ≤ L0(‖2y1 − x1 − 2y0 + x0‖ + ‖x1 − x0‖)

≤ L0(‖y1 − x1‖ + ‖y1 − y0‖ + ‖y0 − x0‖ + ‖x1 − x0‖)
≤ L0(s1 − t1 + s1 − s0 + s0 + t1 − t0)
≤ 2L0s1. (2.33)

It follows from the Banach lemma on invertible operators [1,13] that A−1
1

exists and

‖A−1
1 A0‖ ≤ 1

1 − 2L0s1
. (2.34)

Then, by (1.2), (2.4), and (2.34), we get that

‖x2 − x1‖ ≤ ‖A−1
1 A0‖‖A−1

0 F (x1)‖ ≤ L(t1 + 2s0)(t1 − t0)
1 − 2L0s1

= t2 − t1, (2.35)

and

‖x2 − x1‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ t2 − t1 + t1 − t0 = t2 ≤ t∗,

so x2 ∈ Ū(x0, 3t∗) and (2.31) holds for k = 1.

We also have from (1.2), (2.4), (2.26), and the estimate

F (x2)=F (x2)−F (x1)−A1(x2−x1)=([x2, x1;F ]− [2y1−x1, x1;F ])(x2−x1)
(2.36)

that

‖A−1
0 F (x2)‖≤L(‖x2−x1‖+2‖y1−x1‖)‖x2−x1‖≤L(t2−t1+2(s1−t1)(t2−t1),

(2.37)
so

‖y2 − x2‖ ≤ ‖A−1
1 A0‖‖A−1

0 F (x2)‖ ≤ L(t2 − t1 + 2(s1 − t1))(t2 − t1)

1 − 2L0s1
= s2 − t2

‖y2 − x0‖ ≤ ‖y2 − x2‖ + ‖x2 − x0‖ ≤ s2 − t2 + t2 − t0 = s2 ≤ t∗ (2.38)

and

‖2y2 − x1 − x0‖ ≤ ‖2(y2 − x0) − (x1 − x0)‖ ≤ 2‖y2 − x0‖ + ‖x1 − x0‖ ≤ 3t∗,

which show (2.32) and 2y2−x1, y2 ∈ Ū(x0, 3t∗). By simply replacing y0, x1, y1,
x2, y2 by yk, xk+1, yk+1, xk+2, yk+2, we complete the induction for (2.31).
Hence, {xk} converges to some x∗ ∈ Ū(x0, 3t∗). In view of the estimate
(2.32) and (2.33), we have

‖A−1
0 F (xk+1)‖ ≤ L(tk+1 − tk + 2(sk − tk))(tk+1 − tk), (2.39)

and by letting k −→ ∞ in (2.39), we obtain F (x∗) = 0. Estimate (2.29)
follows from the standard majorizing techniques [1–3,13].

To complete the proof, we show the uniqueness of the solution in
Ū(x0, R). Let y∗ ∈ Ū(x0, R) be such that F (y∗) = 0. By (2.26), we have
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in turn that

‖A−1
0 ([x∗, y∗;F ] − A0)‖ ≤ L0(‖x∗ − 2y0 + x0‖ + ‖y∗ − y0‖)

≤ L0(‖x∗ − x0‖ + ‖y∗ − x0‖ + 2‖x0 − y0‖)
≤ L0(3t∗ + R + 2s0)
= L0(3t∗ + R + 2s0) < 1. (2.40)

It follows that [x∗, y∗;F ]−1 exists. Then, from the identity

[x∗, y∗;F ](x∗ − y∗) = F (x∗) − F (y∗) = 0,

we obtain that x∗ = y∗. �

Remark 2.3. • The limit point t∗ can be replaced by t∗∗ given in closed
form by (2.4) in Lemma 2.1.

• Condition (2.27) can be replaced by the stronger but popular hypothesis
for the study of secant-type methods:

‖A−1
n ([x, y;F ] − [z, w;F ])‖ ≤ M(‖x − z‖ + ‖y − w‖). (2.41)

From (2.36) and (2.41), we have

L0 ≤ M

hold in general and M
L0

can be arbitrarily large [1–3].
• It follows from the proof of Lemma 2.1 that some other convergence

criteria can be introduced. Define quadratic polynomial p1 on (0, 1) by
p1(t) = 2L0t

2 + 3Lt − 3L and parameter α0 by α0 = 6L
3L+

√
9L2+24L0L

.

In view of (2.17), we have that

fk+1(α) ≤ fk(α) ≤ · · · ≤ f1(α),

since p(t) ≤ p1(t) for each t ∈ [0, 1]. Therefore, the proof of Lemma 2.1
goes through, if f(α) ≤ 0. Then, the convergence criteria are:

0 <
L(t1 + 2s0)
1 − 2L0s1

≤ α0 (2.42)

and

3L + 2L0(1 + α0 + α2
0))t1 ≤ 1

instead of (2.2).
• It is worth noticing that a similar value of ᾱ = 2L

L+
√

L2+8L0L
also appears

in our studies of Newton’s method under Lipschitz and center Lipschitz
conditions [1–3].

So far, we presented results based on divided difference of order one.
Next, we present the corresponding results based on divided difference of
order two.

Lemma 2.4. Let L0 > 0, L1 > 0, s0 ≥ 0, t1 ≥ 0, and K ≥ 0 be given parame-
ters. Denote by β the smallest solution in (0, 1) of the following equation:

p̄(t) = 2L0t
3 + Kt1t

2 +
(

L1

2
− Kt1

)
t − L1

2
= 0.
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Suppose that

0 <
L1
2 t1 + Ks20
1 − 2L0s1

≤ β and f̄1(β) ≤ 0, (2.43)

where

s1 = t1 +
(

L1

2
t1 + Ks20

)
t1, (2.44)

and f̄1 is defined below. Then, scalar sequence {tn} defined by

t0 = 0, sn+1 = tn+1 +
(L1

2 (tn+1 − tn) + K(sn − tn)2)(tn+1 − tn)
1 − 2L0sn

tn+2 = tn+1 +
(L1

2 (tn+1 − tn) + K(sn − tn)2)(tn+1 − tn)
1 − 2L0sn+1

(2.45)

is well defined, bounded from above by

t∗∗ =
t1

1 − β
(2.46)

and converges to its unique least upper bound t∗ which satisfies

t1 ≤ t∗ ≤ t∗∗. (2.47)

Moreover, the following estimates hold:

0 < sn − tn ≤ β(tn − tn−1) ≤ βn(t1 − t0) (2.48)

0 < tn+ − tn ≤ β(tn − tn−1) ≤ βn(t1 − t0). (2.49)

Proof. The proof follows along the lines of Lemma 2.1. We must have this
time β (2.43)–(2.49):

0 <
L1
2 (tn+1 − tn) + K(sn − tn)2

1 − 2L0sn
≤ β,

0 <
L1
2 (tn+1 − tn) + K(sn − tn)2

1 − 2L0sn+1
≤ β,

0 <
L1
2 βkt1 + K(βkt1)2

1 − 2L0
1−βk+2

1−β t1
≤ β,

L1

2
βkt1 + Kβk+1(t1 − t0)2 + 2L0β

1 − βk+2

1 − β
t1 − β ≤ 0,

f̄k(t) =
L1

2
βk−1t1 + Kβkt21 + 2L0

1 − βk+2

1 − β
t1 − 1,

f̄k+1(t) = fk(t) + p(t)βk−1t1.

Another set of convergence criteria (as in Remark 2.3) is given by

0 <
L1
2 t1 + Ks20
1 − 2L0s1

< β0 ≤ 1 − 2L0t1, (2.50)

where β0 is given by

β0 =
L1

L1
2 − Kt1 +

√
(L1

2 − Kt1)2 + 2L(Kt1 + 2L0)
(2.51)
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and for

p̄1(t) = (Kt1 + 2L0)t2 + (
L1

2
− Kt1)t − L1

2
, p̄1(β0) = 0

replacing the corresponding items in Lemma 2.1. �
Theorem 2.5. Let F : D ⊆ B1 −→ B2 be a Fréchet-differentiable operator.
Suppose that there exists a divided difference [., ., ;F ], [., ., .;F ] of order one
and two, respectively, for operator F on D × D and D × D × D, respectively.
Moreover, suppose that these exist x0, y0 ∈ D,L0 > 0, L1 > 0, s0 ≥ 0, t1 ≥ 0
and K ≥ 0, such that for each x, y, 2y0 − x0 ∈ D:

A−1
0 ∈ L(B2,B1)

‖A−1
0 F (x0)‖ ≤ t1,

‖x0 − y0‖ ≤ s0,

‖A−1
0 ([x, y;F ] − A0)‖ ≤ L0(‖x − 2y0 + x0‖ + ‖y − x0‖), (2.52)

‖A−1
0 (F ′(x) − F ′(y))‖ ≤ L1‖x − y‖ for each x, y ∈ D0

‖A−1
0 ([u, x, y;F ] − [z, x, y;F ])‖ ≤ K‖u − z‖, for each x, y, z, u ∈ D0

Ū(x0, 3t∗) ⊆ D, (2.53)

and hypotheses of Lemma 2.4 hold, where t∗, {tn} are given in Lemma 2.4.
Then, the conclusions of Theorem 2.2 hold for method (1.2).

Proof. Simply use the proof of Theorem 2.2 and the approximation

F (xk+1) = F (xk+1) − F (xk) − [2yk − xk, xk;F ](xk+1 − xk)
= F (xk+1) − F (xk) − F ′(xk)(xk+1 − xk)

+(F ′(xk) − [2yk − xk, xk;F ])(xk+1 − xk)

=
{∫ 1

0

[F ′(xk + θ(xk+1 − xk)) − F ′(xk)]dθ

+[xk, xk;F ] − [xk, xk−1;F ] + [xk, xk−1;F ]
−[2yk − xk, xk;F ]} (xk+1 − xk)

=
{∫ 1

0

[F ′(xk + θ(xk+1 − xk), yk;F ])(yk − xk)
}

(xk+1 − xk)

(2.54)

instead of (2.36). Indeed this way, we obtain [using (2.52) and (2.53) instead
of (2.27)] that

‖A−1
0 F (xk+1)‖ ≤ ‖

∫ 1

0

A−1
0 [F ′(xk + θ(xk+1 − xk)) − F ′(xk)](xk+1 − xk)dθ‖

+‖A−1
0 ([yk, xk, yk;F ] (2.55)

−[2yk − xk, xk, yk;F ])(yk − xk)(xk+1 − xk)‖
≤ L1

2
‖xk+1 − xk‖2 + K‖yk − xk‖2‖xk+1 − xk‖

≤ L1

2
(tn+1 − tk)2 + K(sk − tk)2(tk+1 − tk), (2.56)

instead of (2.37). �
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3. Numerical Examples

We shall use the divided difference given by [x, y;F ] = 1
2 (F ′(x) + F ′(y)) in

both examples.

Example 3.1. Let D = Ū(x0, 1 − γ), x0 = 1, y0 = x0 + 10−3, γ ∈ [0, 1). Define
function F on D by

F (x) = x3 − γ.

We have that

[x, y;F ] − [z, y;F ] =
3
2
(x + z)(x − z)

and

[2y0 − x0, x0;F ] =
3
2

(
2(y0 − x0)2 + x2

0

)
,

so by (2.27) and (2.28), we get that, for γ = 0.95:

L0 =
2(2 − γ)

(2y0 − x0)2 + x2
0

= 1.0479

and

L =
3(1 − γ) + 2

(2y0 − x0)2 + x2
0

= 1.0729,

so that (2.1) and (2.2) are satisfied, so the results apply.

Example 3.2. Let B1 = B2 = R
3, Ω0 = Ω = (−1, 1)3 and define F =

(F1, F2, F3)T on Ω by

F (x) = F (x1, x2, x3) = (ex1 − 1, x2
2 + x2, x3)T . (3.1)

For the points u = (u1, u2, u3)T , v = (v1, v2, v3)T ∈ Ω, we get

[u, v;F ] =

⎛
⎝

eu1−ev1

u1−v1
0 0

0 u2 + v2 + 1 0
0 0 1

⎞
⎠ .

Let y0 = (0.1, 0.1, 0.1)T , x0 = (0.11, 0.11, 0.11)T be two initial points for the
Kurchatov method (1.2). Here, we use xn instead of xn to distinct iterative
points with its component for some integer n ≥ −1. Then, we have

2x0 − y0 = (0.12, 0.12, 0.12), t0 = s0 = 0.01,

A0 ≈
⎛
⎝

1.116296675 0 0
0 1.22 0
0 0 1

⎞
⎠ ,

A−1
0 ≈

⎛
⎝

0.895819205 0 0
0 0.819672131 0
0 0 1

⎞
⎠ ,

t1 = t0 + ‖A−1
0 F (x0)‖ = 0.12, x1 ≈ (0.005835871, 0.009918033, 0).
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Note that, for any x = (x1, x2, x3)T , y = (y1, y2, y3)T , z = (z1, z2, z3)T ,
v = (v1, v2, v3)T ∈ Ω, we have

[x, y;F ] − [z, v;F ]=

⎛
⎝

ex1−ey1

x1−y1
− ez1−ev1

z1−v1
0 0

0 x2 + y2 − z2 − v2 0
0 0 0

⎞
⎠ .

(3.2)
In view of

| ex1−ey1

x1−y1
− ez1−ev1

z1−v1
| = | ∫ 1

0
(ey1+t(x1−y1) − ev1+t(z1−v1))dt|

= | ∫ 1

0

∫ 1

0
ev1+t(z1−v1)+θ(y1+t(x1−y1)−v1−t(z1−v1))(

y1 + t(x1 − y1) − v1 − t(z1 − v1)
)
dθdt|

≤ ∫ 1

0

∫ 1

0
e|t(x1 − z1) + (1 − t)(y1 − v1)|dθdt

≤ e
2 (|x1 − z1| + |y1 − v1|),

we have

‖A−1
0 ([x, y;F ] − [z, v;F ])‖
≤ max( e×0.895819205

2 (|x1 − z1| + |y1 − v1|), 0.819672131
×(|x2 − z2| + |y2 − v2|))

≤ max( e×0.895819205
2 (‖x − z‖ + ‖y − v‖), 0.819672131(‖x − z‖ + ‖y − v‖))

= e×0.895819205
2 (‖x − z‖ + ‖y − v‖).

(3.3)
In particular, set z = 2x0 − y0 and v = y0 in (3.3), we have

‖A−1
0 ([x, y;F ] − A0)‖ ≤ e×0.895819205

2 (‖x − (2x0 − y0)‖ + ‖y − y0‖). (3.4)

That is, we can choose constants L0 = L1 = K ≈ e×0.895819205
2 ≈ 1.217544533

in Theorem 2.2.
Using method (1.2), we get that t2 ≈ 0.148267584, t3 ≈ 0.161640408,

t4 ≈ 0.163517484, t5 ≈ 0.163626179 and t6 ≈ 0.163627029. That is to say, we
have t� ≈ 0.163627029. Then, we have r0 = max(2(t1 − t0), t� − t0) = 0.22.

Next. we verify that all conditions of Lemma 2.1 hold. In fact, by the
definition of polynomial p, we get that α ≈ 0.769178231264085243. We also
have

0 <
L(t1 + 2s0)
1 − 2L0s1

= 0.04921445723287308504 ≈
≤ α ≤ 1 − 2L0t1 = 0.97564910934000004,

i.e., (2.2) satisfies and

0<
L(t1+2s0)
1−2L0s1

=0.04921445723287308504≈α0 = 0.72982924563305107135

i.e., (2.42) satisfies.
By now, we see that all conditions of Theorem 2.2 are satisfied, so

Theorem 2.2 applies.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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