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Abstract
The aim of this paper is to introduce general majorizing sequences for iterative procedures
which may contain a non-differentiable operator in order to solve nonlinear equations involv-
ing Banach valued operators. A general semi-local convergence analysis is presented based
on majorizing sequences. The convergence criteria, if specialized can be used to study the
convergence of numerous procedures such as Picard’s, Newton’s, Newton-type, Stirling’s,
Secant, Secant-type, Steffensen’s, Aitken’s, Kurchatov’s and other procedures. The conver-
gence criteria are flexible enough, so if specialized are weaker than the criteria given by
the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Fur-
thermore, these advantages are obtained using Lipschitz constants that are least as tight as
the ones already used in the literature. Consequently, no additional hypotheses are needed,
since the new constants are special cases of the old constants. These ideas can be used to
study, the local convergence, multi-step multi-point procedures along the same lines. Some
applications are also provided in this study.

Keywords Majorizing sequence · Banach space · Semi-local convergence · Iterative
procedures

Mathematics subject classification 47H99 · 65H10 · 65J15

1 Introduction

Kantorovich proved in 1939 the semi-local convergence of Newton’s method using first the
contraction mapping principle of Banach and then using recurrence relations. Later he gave a
proof based on the concept of amajorant function [9]. The novelty of theNewton-Kantorovich
theorem, or related results is that the theorem is a convergence result for Newton’s method
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and a theorem of existence of solution of equations in a Banach space setting. The theorem
also provides information about where the solution is located, without finding the solution
which is sometimes more important than the actual knowledge of the solution. A plethora of
results has been published after the Newton–Kantorovich theorem was established concern-
ing convergence and error bounds of Newton-type or secant-type methods under numerous
assumptions.We refer the reader to [1–14] and the references therein for relevant publications.

Most of these results are based on finding a scalar majorizing sequence for the iterative
procedure. The novelty of our paper lies in the fact that we introduce a generalizedmajorizing
sequence that can be used in the case of Picard’smethod;Newton’smethod; Stirling’smethod;
Steffensen’s method; Secant method; Kurchatov’s method; Aitken’s method and many other
methods [1–14]. This way, we unify the semi-local results for these methods. It turns out
that when specialized the convergence criteria can be weaker than the existing ones for the
preceding methods.

Many problems in computational sciences can be brought in the form

F(x) = 0, (1.1)

where F : D ⊂ X −→ Y is continuous, X , Y are Banach spaces and D is convex. We
are looking for a continuous and nondecreasing function ψ : [0,+∞) −→ [0,+∞) and a
nonnegative, nondecreasing scalar sequence {vn} such that for each n = 0, 1, 2, . . .

‖xn+1 − xn‖ ≤ ψ(vn) = vn+1 − vn, (1.2)

where {xn} is an iterative process related to F, so that

lim
n−→∞ xn = x∗

and F(x∗) = 0.
If there exists v∗ such that

lim
n−→∞ vn = v∗ < ∞,

then the limit point x∗ also exists. Additional hypotheses are needed so that F(x∗) = 0.
The determination of function ψ and sequence {vn} is a complex task in general. In the
present study, we introduce ψ and {vn} general enough so they can be used to study all
aforementioned methods.

The rest of the paper is structured as follows: Sect. 2 contains the semi-local convergence,
whereas in the concluding Sect. 3, we present applications and the special cases.

2 Majorizing sequences

We present sufficient convergence criteria for general majorizing sequences.

Lemma 2.1 [10,11] Let {un} be any sequence in X . Then, a sequence {vn} ⊂ [0,∞) for
which

‖un+1 − un‖ ≤ vn+1 − vn for each n = 0, 1, 2, . . . (2.1)

holds in a majorizing sequence for {un}. Suppose that
lim

n−→∞ vn = v∗ < ∞
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exists. Then,

u∗ = lim
n−→∞ un

exists and

‖u∗ − un‖ ≤ v∗ − vn for each n = 0, 1, 2, . . . .

Note that any majorizing sequence is necessarily monotonically increasing.
Scalar iteration {sn} defined for each n = 1, 2, . . . by s0 = 0,

sn+1 = sn −
1
2a0(sn − sn−1)

2 + (rsn−1 + s)(sn − sn−1)

sdn + p
, (2.2)

where s1 > 0 is given and for some a0 > 0, r ≥ 0, s ≥ 0, d > 0 and p < 0 is a majorizing
sequence for many iterative processes (see Sect. 3). Therefore, finding sufficient convergence
criteria for {sn} is very important. Next, we present two competing ideas for generating such
criteria. Firstly, let us define sequence {tn} for each n = 0, 1, 2, . . . by

t0 = 0, tn+1 = tn − g(tn)

h(tn)
, (2.3)

where

g(t) = 1

2
at2 − bt + c, (2.4)

h(t) = dt + p, (2.5)

b > 0, c > 0

a = max{d + r , a0} (2.6)

and

t1 = − c

p
. (2.7)

We can present the following convergence result for sequence {tn}.
Theorem 2.2 Suppose that

ac ≤ b2

2
(2.8)

and

a > 0, b ≤ −p. (2.9)

Then, the following items hold:

(1) Sequence {tn} generated by (2.3) is well defined nondecreasing and converges to the
smallest root of quadratic function g given by

t∗ = b − √
b2 − 4ac

a
> 0. (2.10)
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(2) {tn} is a majorizing sequence for {sn} such that

0 ≤ sn ≤ tn, (2.11)

0 ≤ sn+1 − sn ≤ tn+1 − tn (2.12)

and

s∗ = lim
n−→∞ sn ≤ t∗. (2.13)

Proof (1) It follows from (2.8) that function g has two positive roots t∗ and t∗∗ with t∗ ≤ t∗∗

and t∗∗ = b+√
b2−4ac
a . We shall show using induction that

tk ≤ tk+1 ≤ t∗ for each k = 0, 1, 2, . . . . (2.14)

We must show

t1 ≤ t∗ (2.15)

or equivalently by (2.7) and (2.10) that

− c

p
≤ b − √

b2 − 4ac

a

or

ac + bp ≤
√
b2 − 4ac. (2.16)

Case ac + bp ≤ 0. Then (2.15) hold by (2.16).
Case ac + bp > 0. We can show instead of (2.16) that

a2c2 + b2 p2 + 2abcp ≤ b2 − 2ac. (2.17)

By (2.8) and −bp < ac,

a2c2 + b2 p2 + 2abcp < a2c2 + a2c2 − 2ac(ac) = 0.

Then, to show (2.17) it suffices 0 ≤ b2 − 2ac, which is true by (2.8). Hence, (2.15) is true.
We can write by (2.7), (2.8) and (2.9) in turn that

g(t1) = 1

2
at21 − bt1 + c

= c

2p2
(ac + 2pb + 2p2)

≥ c

2p2
(ac + 2p

√
2ac + 2p2)

= c

2p2
[(√2ac + p)2 + p2 − 2ac]

≥ c

2p2
[(√2ac + p)2 + b2 − 2ac] > 0,

so g(t1) > 0 = g(t∗), and g(t) is decreasing in [0, b
a ], leading to t1 < t∗. That is (2.14)

is true for k = 0. Suppose that tk−1 ≤ tk < t∗. Then, since g(t) is decreasing and g′(t) is
increasing in [0, b

a ], we get g(tk) > 0 and g′(tk) ≤ 0, respectively. Moreover by (2.6) and
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(2.10), h(tk) ≤ g′(tk) which implies −h(tk) ≥ 0, so tk+1 > tk . Furthermore, the function
t − g(t)

g′(t) is increasing in [0, b
a ]. Then, by − g(tk )

h(tk )
≤ − g(tk )

g′(tk ) , we get

tk+1 ≤ t∗ − g(t∗)
g′(t∗)

= t∗, (2.18)

which completes the induction for (2.14). Sequence {tk} is increasing, bounded from above
by t∗ and as such it converges to its unique least upper bound t∗0 . By letting k −→ ∞ in (2.3)
we deduce that t∗0 = t∗.
(2) Choose s1 = t1.Then, items (2.11)–(2.13) follow by a simple inductive argument, Lemma
2.1, (2.2) and (2.3). ��

We need an auxiliary resul connecting sequence {xn} to sequence {tn}.
Lemma 2.3 Under the hypotheses of Theorem 2.2, further suppose that

‖x1 − x0‖ ≤ t1 − t0 (2.19)

b + p + s ≤ 0 (2.20)

and for each n = 2, 3, . . .

‖xn − xn−1‖ ≤ −
1
2a(tn − tn−1)

2 + (r tn−1 + s)(tn − tn−1)

dtn + p
≤ 0 (2.21)

hold for some sequence {xn} ⊂ X . Then, sequence {tn} is majorizing for sequence {xn} and
there exists x∗ ∈ X such that

lim
n−→∞ xn = x∗.

Proof It suffices to show the quantity in the above bracket is bounded above by g(tn). We
have by the definition of sequence {tn}, (2.4), (2.5), (2.6), (2.7), (2.19)–(2.21) in turn that
1

2
a(tn − tn−1)

2 + (r tn−1 + s)(tn − tn−1)

= g(tn) − [g(tn) − g(tn−1) − 1

2
a(tn − tn−1)

2 − (r tn−1 + s)(tn − tn−1) − h(tn−1)(tn − tn−1)]
= g(tn) + (tn − tn−1)[(d + r − a)tn + (b + p + s)] ≤ g(tn), (2.22)

since tn−1 ≤ tn, d + r ≤ a and b + p + s < 0. ��
It is convenient for the convergence of sequence {sn} to introduce some scalar functions

and parameters:

ϕ0(t) = dt2 + 1

2
a0t + r − 1

2
a0 (2.23)

ϕ(t) = −pt2 + (ds1 + p − s)t + rs1, (2.24)

ϕ1(t) = d2t2 + 2((p − s)d + 2pr)t + (p − s)2, (2.25)

q0 = −
1
2a0s1 + s

ds1 + p
, (2.26)

Case 1: 2r0 < a0.
Then, ϕ0 has a unique positive root denoted by q. Suppose

(p − s)d + 2pr < 0, q0 ≥ 0, (2.27)

�1 ≥ 0 (2.28)
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and

s1 ≤ s̄, (2.29)

where �1 is the discriminant of ϕ1 and s̄ is the smallest root of ϕ1. Then, � ≥ 0, where � is
the discriminant ofϕ. It follows that functionϕ has two roots q1 and q2 such that 0 ≤ q1 ≤ q2.
Set q̄ = max{q0, q1}. Moreover, suppose that

q̄ ≤ q ≤ q2. (2.30)

Denote the hypotheses of Case 1 by (H0).

Case 2: a0 ≤ 2r .
Then, for ϕ0 has no positive roots. Suppose (2.28), (2.29), (2.30) and

q̄ ≤ q2 (2.31)

hold. Then, there exists q such that

q̄ ≤ q ≤ q2. (2.32)

Denote the hypotheses of Case 2 by (H ). Then, we can show the convergence of sequence
{sn} under hypotheses (H0) or (H ).

Theorem 2.4 Suppose that hypotheses (H0) or (H ) hold. Then, sequence {sn} generated by
(2.2) is well defined, nondecreasing, bounded above by

s∗∗ = s1
1 − q

(2.33)

and converges to its unique least upper bound s∗ which satisfies

s1 ≤ s∗ ≤ s∗∗. (2.34)

Proof We shall show using induction on k that

0 ≤ −
1
2a0(sk − sk−1) + rsk−1 + s

dsk + p
≤ q. (2.35)

Estimate (2.35) is true for k = 1 by (2.30) (or (2.32)). Then, we get by (2.2) and (2.35)
0 < s2 − s1 ≤ q(s1 − s0) and

s2 ≤ 1 − q2

1 − q
(s1 − s0) < s∗∗. (2.36)

Suppose that

0 < sk+1 − sk ≤ q(sk − sk−1) ≤ qk(s1 − s0) (2.37)

and

sk+1 ≤ 1 − qk+1

1 − q
(s1 − s0) < s∗∗. (2.38)

We shall show that (2.35) holds with k replaced by k + 1. Evidently (2.35) holds in this case,
if

1

2
a0(sk+1 − sk) + rsk + s + (dsk+1 + p)q ≤ 0
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or using (2.37) and (2.38), if

1

2
a0q

ks1 + r(1 + q + · · · + qk−1)s1 + s + dq(1 + q + · · · + qk)s1 + pq ≤ 0. (2.39)

Estimate (2.39) motivates us to define recurrent functions fk defined on [0, 1) by

fk(t) = 1

2
a0s1t

k + rs1(1 + t + · · · + tk−1) + ds1(1 + t + · · · + tk)t + pt + s. (2.40)

We need an estimate between two consecutive fucntions fk :

fk+1(t) = 1

2
a0s1t

k+1 + rs1(1 + t + · · · + tk)

+ ds1(1 + t + · · · + tk+1)t + pt + s − fk(t) + fk(t)

= fk(t) + ϕ0(t)s1t
k . (2.41)

We can show instead of (2.39) that

fk(q) ≤ 0. (2.42)

First by, under the hypotheses (H0), we get

fk+1(q) = fk(q), (2.43)

since ϕ0(q) = 0. Define function f∞ on [0, 1) by

f∞(q) = lim
k−→∞ fk(q) = rs1

1 − q
+ ds1q

1 − q
+ pq + s. (2.44)

Then, instead of (2.42), we can show

f∞(q) ≤ 0, (2.45)

(since (2.43) holds). But (2.45) is equivalent to

ϕ(q) ≤ 0, (2.46)

which is true by (2.31). Secondly, under the hypotheses (H ), we get

fk(q) ≤ fk+1(q) ≤ f∞(q), (2.47)

so again, we must show (2.45) or (2.46), which are true by (2.31) and (2.32). Hence, in either
case, sequence {sn} is nondecreasing, bounded from above by s∗∗ and as such it converges
to s∗ which satisfies (2.34). ��
Lemma 2.5 Under the hypotheses of Theorem 2.4, further suppose that

‖x1 − x0‖ ≤ s1 − s0 (2.48)

and

‖xn+1 − xn‖ ≤ −[ 12a0(sn+1 − sn)2 + (rsn + s)(sn+1 − sn)]
dsn+1 + p

(2.49)

hold for some sequence {xn} ⊂ X . Then, sequence {sn} is majorizing for sequence {xn} and
there exists x∗ ∈ X such that

x∗ = lim
n−→∞ xn .
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Proof Simply notice that in view of (2.2), (2.48) and (2.49)

‖xn − xn−1‖ ≤ sn − sn−1. (2.50)

The result now follows from Lemma 2.1 and (2.50). ��
Next, we compare sequences {tn} and {sn}.

Proposition 2.6 Suppose that hypotheses of Theorem 2.2, Lemma 2.3, Theorem 2.4 and
Lemma 2.5 hold. Then, the following assertions hold:

sn ≤ tn (2.51)

and

‖xn+1 − xn‖ ≤ sn+1 − sn ≤ tn+1 − tn . (2.52)

Proof Use a simple inductive argument and the definition of sequences {tn} and {sn}. ��
Remark 2.7 We have shown so far that {sn} is a tight sequence than {tn}. However, we cannot
directly compare the convergence criteria.Next we shall compare the convergence criteria in
some popular cases.

3 Applications and special cases

Application 3.1 Let us consider the Newton-like method

xn+1 = xn − A(xn)
−1F(xn), (3.1)

where A(x)−1 ∈ L(Y , X) the space of bounded linear operators from Y into X . Method
(3.1) has been studied under the hypotheses (C) [13]:

Let F : D ⊆ X −→ Y be Fréchet differentiable and let A(x) ∈ L(X , Y ) be an approxi-
mation to F ′(x).

(c1) There exist an open convex subset D0 of D, x0 ∈ D0, a bounded inverse A(x0)−1

of A(x0) and constants η, K > 0, M, L, μ, � ≥ 0 such that for each x, y ∈ D0, the
following conditions hold:

‖A(x0)
−1F(x0)‖ ≤ η,

‖A(x0)
−1(F ′(x) − F ′(y))‖ ≤ K‖x − y‖,

‖A(x0)
−1(F ′(x) − A(x))‖ ≤ M‖x − x0‖ + μ,

‖A(x0)
−1(A(x) − A(x0))‖ ≤ L‖x − x0‖ + �,

b̄ := η + �,

h̄ = ση ≤ 1

2
(1 − b̄)2, σ = max{K , M + L}

and

Ū = Ū (x0, t
∗) ⊆ D0,

where

t∗ = 1 − b̄ −
√

(1 − b̄)2 − 2h̄

σ
.

123

Author's personal copy



On the complexity of choosing majorizing sequences…

Then, the following items hold:

(i) Sequence {xn} converges to a solution x∗ ∈ Ū of equation F(x) = 0.
(ii) The equation F(x) = 0 has a unique solution in Ũ , where

Ũ =
{
Ū (x0, t∗) ∩ D0, if h̄ = 1

2 (1 − b̄)2

U (x0, t∗∗) ∩ D0, if h̄ < 1
2 (1 − b̄)2

and

t∗∗ = 1 − b̄ +
√

(1 − b̄)2 − 2h̄

σ
.

(iii)

‖xn+1 − xn‖ ≤ 1

1 − Ltn − �
(
σ

2
(tn − tn−1)

2 + (Mtn−1 + μ)(tn − tn−1))

≤ g1(tn)

h1(tn)
,

where g1(t) = σ
2 t

2 − (1 − b̄)t + η and h1(t) = 1 − Lt − �.

Next, we shall show that these hypotheses are special cases of the results in Theorem 2.2
and Lemma 2.3. Indeed, let d = L, r = M, a = σ, p = � − 1, c = η, b = 1 − b̄,
g1 = g, h1 = −h, s = μ and notice that b + p + s = 1− b̄ + � − 1+ μ = μ + � − b̄ = 0.
Then, we also get

ac ≤ b2

2
⇔ h̄ ≤ 1

2
(1 − b̄)2. (3.2)

Hence, the new results reduce to the old ones for these special choices of the new parameters.

Application 3.2 Let us consider Newton’s method [1–14]

xn+1 = xn − F ′(xn)−1F(xn), (3.3)

i.e., set A(x) = F ′(x), M = μ = � = 0 and d = L. Then, again we get

ac = Kη ≤ 1

2
⇔ h̄ ≤ 1

2
, (3.4)

since b̄ = 0 and σ = a = K .

Application 3.3 Let us use Newton’s method, sequence {sn} and Theorem 2.4 for a0 =
K , d = L, r = s = 0, p = −1, c = η = s1. We get using (2.23)–(2.29) that

q0 = Kη

2(1 − Lη)
, q = 2K

K + √
K 2 + 8K L

,

q1 = 0, q2 = 1 − Lη, q̄ = q0, s̄ = 1
L , 2r ≤ K , (p − s)d + 2pr < 0,�1 = 0 and t∗ is

replaced by s∗ in Application 3.1. Then, (2.30) is satisfied provided that

Kη

2(1 − Lη)
≤ 2K

K + √
K 2 + 8K L

≤ 1 − Lη, (3.5)

which is true, if

1

8
(K + 4L +

√
K 2 + 8K L)η ≤ 1

2
. (3.6)
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Notice however that

L ≤ K (3.7)

holds in general and K
L can be arbitrarily large [5]. Moreover, we have

Kη ≤ 1

2
�⇒ 1

8
(K + 4L +

√
K 2 + 8K L)η ≤ 1

2
, (3.8)

but not necessarily vice versa, unless if K = L. Hence, if L < K (3.6) is a weaker conver-
gence criterion for Newton’s method than Kη ≤ 1

2 .

Application 3.4 Let F(x) = F1(x) + F2(x) for each x ∈ D, where F1 is differentiable and
F2 is continuous. Let us also consider the iteration defined for each n = 0, 1, 2, . . . [2]

xn+1 = xn − A(xn−1, xn)
−1F(xn), (3.9)

where A(x, y)−1 ∈ L(Y , X) for each x, y ∈ D. Method like (3.9) have been studied
extensively for different choice of A in connection to the solution of nonlinear equations
containing a non differentiable term. Let us set A(x, y) = F ′(y) + [x, y; F2]. Suppose
that A(x−1, x0)−1 ∈ L(Y , X) and for each u, x, y ∈ D there exist nonnegative constants
η0, η, K , K1, L0, L1, L2 such that

‖x−1 − x0‖ ≤ η0, ‖x1 − x0‖ ≤ η,

‖A(x−1, x0)
−1(F ′

1(x) − F ′
1(x0))‖ ≤ L0‖x − x0‖,

‖A(x−1, x0)
−1(F ′

1(x) − F ′
1(y))‖ ≤ K‖x − y‖

‖A(x−1, x0)
−1([x, y; F1] − [u, y; F1])‖ ≤ K1‖x − u‖

‖A(x−1, x0)
−1([x, y; F2] − [x−1, x0; F2])‖ ≤ L1‖x − x−1‖ + L2‖y − x0‖

and

U (x0, ρ) ⊆ D,

where ρ is to be determined. Then, we can choose:a0 = K + 2K1, r = 0, s = K1η,

d = L0 + L1 + L2, p = L1(η + η0) − 1 and ρ = s∗ (or t∗) depending on which sequence
we use. Indeed, we have

‖A(x−1, x0)
−1(A(xk−1, xk) − A(x−1, x0))‖

≤ ‖A(x−1, x0)
−1(F ′(xk) − F ′(x0))‖

+‖A(x−1, x0)
−1([xk−1, xk; F2] − [x−1, x0; F2])‖

≤ L0‖xk − x0‖ + L1‖xk−1 − x−1‖ + L2‖xk − x0‖
≤ L0‖xk − x0‖ + L1‖(xk−1 − xk) + (xk − x0) + (x0 − x−1)‖

+L2‖xk − x0‖
≤ (L0 + L1 + L2)‖xk − x0‖

+L1‖xk − xk−1‖ + L1‖x0 − x−1‖
≤ (L0 + L1 + L2)‖xk − x0‖ + L1η + L1η0

123

Author's personal copy



On the complexity of choosing majorizing sequences…

and

‖A(x−1, x0)
−1(F1(xk) + F2(xk))‖

≤ ‖A(x−1, x0)
−1(F1(xk) − F1(xk−1) − F ′

1(xk)(xk − xk−1))‖
+‖A(x−1, x0)

−1([xk, xk−1; F2] − [xk−2, xk−1; F2])(xk − xk−1)‖
≤

(
K

2
‖xk − xk−1‖ + K1‖xk − xk−2‖

)
‖xk − xk−1‖

≤
((

K

2
+ K1

)
‖xk − xk−1‖ + K1‖xk−1 − xk−2‖

)
‖xk − xk−1‖

so

‖xk+1 − xk‖ = ‖A(x−1, x0)
−1(F1(xk) + F2(xk))‖

≤ ‖A(x−1, x0)
−1A(x−1, x0)‖‖A(x−1, x0)

−1(F1(xk) + F2(xk))‖
≤ sk+1 − sk .

Then, the convergence ofmethod (3.9) is guaranteed under the hypotheses of Theorem 2.4.
In a future paper, we will extend these results even further using our ideas of the restricted
convergence domain and the technique used in [4] for Newton’s method. Examples where,
the new Lipschitz constants are smaller than the old ones can be found in [1–4,6].
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