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Abstract-This paper deals with optimum shape design of the rotating disks by nonlinear programming method. The 
shape of the cross section is defined by 5th degree polynomial which is completely determined by the boundary 
conditions and four design variables. The stress analysis of the disk is carried out by finite element method using 
isoparametric elements. The optimization technique used is with improved movelimit method of sequential linear 
programming. Progress of optimization is investigated with three different objective functions. After preliminary 
studies a weighted objective function is selected for detailed investigation. Optimum shapes are obtained for 
different speeds and for different fit pressures from hub. The results are presented in non-dimensionalised form. 

INTRODUCTION 

High speed rotating disks are very commonly used as 
flywheels, gears, rotors in turbines and compressors. In 
the design of these rotating disks, the magnitude and 
distribution of the stresses constitute a major constrain- 
ing factor. This problem has attracted the attention of 
many investigators[l-71. For rotating disks uniform 
cross section is very uneconomical. Stodola[l] gave a 
comprehensive analysis of the problem and suggested a 
hyperobolic curve for the profile of the cross section of 
the disk. Donath[2] developed an approximate method 
which replaces the actual disk by a series of rings with 
uniform thickness. Grammel[3,4] gave the further 
development of this method. 

Mathematical programming approach to optimum 
design of rotating disks may be found in Refs. [5-71. de 
Silve[5,6] has optimized the cross section of rotating 
disk using constraints on frequency and stresses. Some- 
times the disks with inner diameter of the hub smaller 
than the diameter of shaft are taken, heated and then 
fitted on to shaft. After cooling the shaft and the disks 
are fitted tightly and it gives rise to pressure between 
them. Ali Seireg and SuranaD] have considered this fit 
pressure in developing optimal designs. However in 
these investigations, the methods of stress analysis are 
not very accurate particularly in the region of stress 
concentration. The disk is approximated by a number of 
rings, the optimum thicknesses of which are determined 
by mathematical programming. The optimum profile is 
obtained by smoothening the stepped shape obtained. In 
the present investigation the curved cross section is 
defined by two symmetric polynomial curves which 
depend upon thicknesses at four predefined points. The 
semi thicknesses at these four predefined points are 
considered as design variables. A suitable subroutine is 
developed to generate automatically a quadratic iso- 
parametric tinite elements mesh for prescribed design 
variab!es. The stress analysis is carried out with these 
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finite elements which are ideally suited for continuum 
involving curved boundaries. The optimization is carried 
out using a powerful automated optimum structural 
design program developed by the authors [8,9]. The pro- 
gress of optimization is studied with three different 
objective functions. Parametric studies of optimum 
design have been carried out for different speed and fit 
pressures. 

GFBmRlC DWXIFTION OF CROSS SECTION 
OF ROTATING DISKS 

Figure 1 shows a typical rotating disk with hub and 
rim. The following notations are used in the text: r, = 
Inner radius of hub; rz = Outer radius of hub; r3 = Inner 
radius of rim; r4 = Outer radius of rim; t, = Semi-width of 
hub; and t2 = Semi width of rim. 

Engineering design considerations specify the width of 
hub (2tJ and the dimensions of rim. The outer radius of 
hub r2 can be a variable, but however this is considered 
as a fixed parameter in this paper. The disk can have 
varying thickness between hub and rim. The present 
investigation is concerned with the design of optimum 
shape of this portion of rotating disk. The disk cross 
section is symmetric about the section A-A. The curved 
profile is expressed in the form of a polynomial in the 
variables x and y. The axes Ox and Oy with respect to 
which the coordinates x and y are measured are shown 
in Fig. 1. Thus 

y=ao+a~x+02X2+~~X3+~~‘+a~XS (1) 

in which a,,, . . . . . . . . . . a5 are arbitrary constants. The 
end conditions at x = 0 and x = 1 (where I = r3 - r2) give 

ao=O (2) 

and 

t, - f2 = a tI t a21’ t 0~1’ t a4i4 t a$. (3) 

Four more conditions are required to determine all the 
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AXIS OF ROTATION ____. 

Fig. 1. A typical rotating disk. 

arbitrary constants. The semi-thicknesses at four 
specified points on the disk are selected as design vari- 
ables. In Fig. 1, variables X,, X,, X, and X, are shown 
as the semithicknesses of disk at distances I,, 12, IS, and 
14. Thus 

tj -Xi = Ulll t &Pi t aJ3i t fl.$i t asPi 

i= 1,2,3,4. (4) 

From eqns (2)-(4) all arbitary constants are determined 
which define the shape of the curve completely. The 
shapes so obtained for various combinations of design 
variables are found to be reasonably good. 
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Fig. 2. Finite element idealization. 

finite element method is capable of considering the vari- 
ation of stresses through thickness. The tangential stres- 
ses are higher at the level of middle plane than at the 
fibres. Figure 3 shows stress distribution along section 
A-A in the central portion for a typical rotating disk. It 
may be observed that the tangential stress ue is more 
prominent and is quite high near the hub. The higher 
value of radial stress a, occurs near rim. 

MMHEMATICAL FORMULATION 

A general constrained optimization problem may be 
stated as 

Min 2 = F(X) (5) 

FINITE ELFMENT ANALYSIS A 
The stress analysis of rotating disk is carried out by 

finite element analysis using linearly elastic approach 
with quadratic isoparametric elements. The loading con- 
sidered are the inertia force due to rotation and fit 
pressure between hub and the shaft. The loads on the rim 
are not considered. Hence it is an axi-symmetric problem 
and also it is sufficient to consider only half the cross 
section on account of the symmetry of loading and the 
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geometry about axis A-A (Fig. 1). Figure 2, shows an 
automated mesh generated for finite element analysis. 
Thirty-six elements have been used to describe the con- 
tinuum symmetry. A finer mesh is used near the hub 
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since the stress concentration in this region is high. The 
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symmetry boundary conditions are imposed on the nodal 
points along the line of symmetry A-A. The 2 x 2 Gaus- 0. 
sian integration is employed for the evaluation of the 
integrals involved in finite element method. The finite 
element analysis is tested by analysing rotating disks of 
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constant thicknesses and stodola shape and by com- 
parison of results with solutions available in 
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literature[4,7]. The results are very satisfactory. The Fig. 3. Stress distribution in a typical rotating disk (initial shape). 
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Subject to G,(X) s 0 j= 1,2 ( . . . . . . m (6) 

where X is a design vector of n variables, F(X) is 
objective function and Gjs are constraints. 

In the present investigation, as explained earlier, the 
semi-thickness at four pre-defined points are taken as the 
design variables. The four pre-defined points are at dis- 
tances 0.1251, 0.3751, 0.6251 and 0.8751 from the origin 0. 

In the design of rotating disk the best objective func- 
tion is not well defined. De Silve[5,6] has taken mini- 
mization of weight as objective function. Ah Seirag and 
Surana[7] have carried out investigation with six objec- 
tive functions and finally selected minimization of 
difference between maximum and minimum tangential 
stress as objective function for detailed study. In this 
investigation the following three objective functions are 
considered: (1) Minimization of difference between max- 
imum and minimum tangential stress. (2) Stress levelling. 
(3) A weighted objective function having equal weight-age 
for volume minimization and stress leveling. 

For numerical calculation of the above objective 
functions stresses at 16 sampling points (Fig. 4) are 
considered. The stresses at these sampling points are 
obtained by linearly extrapolating stresses at Gauss 
points in the elements. The calculation of various objec- 
tive functions used in this investigation is explained 
below: 

(1) Minimization of diflemnce between maximum and 
minimum tangential stresses 

The tangential stresses at 16 sampling points are 
scanned through to find maximum and minimum tangen- 
tial stresses. Then the objective function is 

F(X) = gemax - uhnin- 

The constraints are imposed that at any point 

u, 2 uemax 

(7) 

(8) 
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Fig. 4. Stress sampling points. 

(2) Stress levelling 
In this the objective is to get uniform stress along 

Section A-A. This objective is mathematically expressed 
as 

F(X) = 
f 

(a - uJ2 ds (9) 

where u is the maximum principal stress and a, is the 
average stress at initial shape. To non-dimensionalise this 
value and also to keep it within reasonable range it is 
modified as 

$(u- u,)*ds 
F(X) = #(uO - u,# ds UO) 

where aa correspond to stresses at initial shape. The 
integration is carried out numerically using stresses at 16 
sampling points. For finding the maximum principal 
stresses all the three principal stresses at the points 
considered are scanned through. It is observed that 
except for two to three points near rim for shapes close 
to optimum, ue stresses are maximum principal stresses. 

(3) Weighted objective function, 
In this objective function, equal weightage is given to 

volume minimization and stress levelling. Thus 

I 
(11) 

where V is the volume of rotating disk. 
VO is the volume of the disk at initial shape flu,,- 

a.)* ds is stress levelling term for the initial shape. 
The side constraints imposed are the lower limits on 

thicknesses at various selected points. In the present 
investigation, the minimum thickness is kept as 1% of the 
outer radius. 

BRIEF DESCRIPITON OF AUTOMATED STRlJcTLTRAL 

DESIGN PROGRAM SLPF 

The authors have developed a general purpose struc- 
tural synthesis program SLPF[8,9] for the shape opti- 
mization of continua. In this stress analysis is carried out 
by finite element analysis and optimization by improved 
move limit method of sequential linear programming[ lo]. 
The optimization is started with an initially supplied 
design variables. A user supplied subroutine generates a 
suitable mesh for the specified design variables. The 
stress analysis and the calculation of sensitivities of 
stresses to design variables are carried out in analyzer. 
With these values user supplied subroutines assemble the 
objective function, constraints and their sensitivities to 
design variables. Using these values the optimizer 
linearizes objective function and constraints and solves 
linear programming problem in the zone limited by the 
move limits on design variables. The optimization pro- 
ceeds in the iterative manner from the new design point 
obtained by solving linear programming problem. The 
improvements in this method to overcome some of the 
difficulties encountered and to make the algorithm faster, 
as suggested in the earlier work[lO], are incarporated. 
Except the mesh generation subroutines ah other user 
supplied subroutines are very small. The program is 
made suitable for medium sized computers like ICL 
1909. The program has been used for various shape 
optimization problems in the design of mechanical 
components[9]. 



400 S. S. BHAVIKATTI C. V. RAMAKRISHNAN 

CHOICEOFNON-DIMENSIONAL VARIABLES 

In the present problem the objective function is the 
function of several parameter as shown below: 

F(X) = @(t-l, t-2, r3, r4, tl, h, XI, X2, X3, X4, N, p) 
(12) 

where r,, r2, r3, r4, t,, t2, XI, X2, X3, and X.,, are as defi- 
ned earlier, N is rotating speed and p is the fit pressure. 

Using outer radius of rim r4 and unit weight of the 
material of disk ‘p’, for non-dimensionalising, the objec- 
tive function can be expressed as 

F(X) = d0Jr4, rJr4, rJr4, tJr.,, h/r.,, Xdr.+ 
Xzlr4, X3/r4, XJr4, N, pl(r4p) (131 

The non-dimensionalised stress is expressed as u/(r4p). 
In the present study the first five terms in eqn (13) 

have been assumed to be fixed. The next four terms are 
the design variables and last two terms are considered 
for parametric studies. 

PROGRES!3OFOPTIMlZATION 

For all the three objective functions considered, the 
optimization proceeds very smoothly. The optimum is 
reached in 45-75 min in ICL 1909. The optimum shapes, 
obtained with the three different objective functions for 
the same problem, are different. Figure 5 shows these 
shapes for a problem with rJr., = 0.4, r21r4 = 0.46, r,lr, = 
0.94, tJr = 0.16, t2/r4 = 0.05, N = 10000 rpm, and p = 0. 
In the same figure, the variation of maximum principal 
stress along section A-A is shown. From these results 
the following observations can be made: 

1. In the case of minimizing the difference between 
maximum and minimum tangential stress, the stress dis- 
tribution obtained is good. At two points maximum stress 
is reached. The value of absolute maximum stress 
reached is the smallest among the optima obtained using 
different objective functions. But the shape obtained is 
not very satisfactory. There is ackward bulging near the 
hub. 

2. The stress levelling can be achieved by decreasing 
the stresses at highly stressed region and by increasing 
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Fig. 5. Optimum shapes and corresponding stresses distribution for 
the three different objective functions. 
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Fig. 6. Variation of objective function with speed. 

stresses at low stressed region. From Fig. 5, it is clear 
that effort is mainly concentrated in increasing the stres- 
ses in the region of low stresses instead of reducing 
stresses in the highly stressed region. The reduction in 
volume is less. 

3. The results obtained with weighted objective func- 
tions are very satisfactory. At optimum, the value of 
absolute maximum stress is very close to that in case of 
1. Stress distribution is also satisfactory. Reduction in 
volume is large in comparison to the results with other 
two objective functions mentioned earlier. The weigh- 
tage given to volume minimization in the objective func- 
tion has helped in controlling the shape. 

RESJLTSANDP ARAMETRICSTUDIES 

The parameters considered for detailed investigations 
are (1) the rotating speed and (21 fit pressure p. The four 
values of rotating speed considered are 5OOOrpm, 7500 
10000 and 125OOrpm. The different fit pressures con- 
sidered are p/(prJ = 0,500 and 1080. In all these cases the 
other parameters are kept constant as shown below: 

rl/r4 = 0.4 r21r4 = 0.46 r31r4 = 0.94 
tJr4 = 0.16 tZ/r4 = 0.05 

When fit pressure is zero, no effect of speed is found 
on optimum shape. In all these cases, optimum design 
variables are (0.1210 0.0530 0.0190 0.0141). Figure 6 
shows the variation of objective function with speed for 
p&g)= 500 and 1000. In Figs. 7 and 8, variation of 
optimum design variables with respect to speed is shown. 
It may be observed that as speed, effect of fit pressure is 
negligible and as in zero fit pressure case, a constant 
shape is reached. Comparison of design variables for 
different fit pressure indicate that as fit pressure in- 
creases thickening of the disk near the hub is required. 

CONCLUSIONS 

Optimum design of rotating disks are obtained by an 
accurate method which does not need any smoothening 
of the shape after optimization. An objective function 
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Fig. 7. Variation of optimum design variables with speed when 
pl(pr.4) = 500. 

with equal weightage for material volume and levelled 
stress distribution has been found to be very satis- 
factory. If fit pressure is not acting the speed has no 
effect on optimum shape. If fit pressure is acting lesser 
thickness is required with higher speed near hub. It 
needs thickening at points away from the hub. For a 
given speed, with higher fit pressure more thickening is 
necessary near the hub. 
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