PanAmerican Mathematical Journal
Volume 27(2017), Number 2, 84 - 89

Proximal Methods with Invexity
and Fractional Calculus

George A. Anastassiou
University of Memphis
Department of Mathematical Sciences
Memphis, TN 38152, USA
ganastss@memphis.edu

Toannis K. Argyros
Cameron University
Department of Mathematical Sciences
Lawton, OK 73505, USA

iargyros@cameron.edu

Santhosh George
NIT Karnataka
Dept. of Math. and Computational Sciences
Surathkal 575 025, India
sgeorge@nitk.ac.in

Communicated by the Editors

(Received February 21, 2017; Revised Version Accepted April 8, 2017

Abstract

We present some proximal methods with invexity results involving frac-
tional calculus.
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1 Introduction

We are concerned with the solution of the optimization problem defined by
min F'(z*) (1)
st, x*e€ D

where F' : D C R™ — R is a convex mapping and D is an open and convex

set. We shall study the convergence of the proximal point method for solving
problem (1.1) defined by

argmin

* Y 2 *
o e p F@)+5d%(@a,27)} (1.2)

Tn+1 =

84
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where xg € X is an initial point, v > 0 and d is the distance on D.

The rest of the paper is organized as follows. In Section 2 we present the
convergence of method (1.2) and in Section 3 we present the application of the
method using fractional derivatives.

2 Convergence of method (1.2)

We need an auxiliary result about convex functions.

LEMMA 2.1 Let Dy C D be an open convex set, F : D — R and z* € D.
Suppose that F + %d2(.,x*) : D — R is convex on Dy. Then, mapping F is
locally Lipschitz on Dy.

Proof By hypothesis F' 4+ Zd?(.,z*) is convex, so there exist Ly,7; > 0 such
that for each u,v € U(z*,r1)

|F(u) + %d2(u, a*) — (F(v) + %dQ(v, )| < Lyd(u, v). (2.1)

It is well known that the mapping d2('2’m*) is strongly convex. That is there exist

Lo, r9 > 0 such that for each u,v € U(z*,r2)

|%d2(u,x*) — %d2(v,x*)| < Lod(u,v). (2.2)

Let
r=min{ry,re} and Lo = Ly + vyLs. (2.3)

Then, using (2.1)—(2.3), we get in turn that

[F(u) = F)| < |F(u)+ 3d(u,2") = (F(0) + 2d(v,2")
g d(uw,a*) = Jd (v, 2"
< Lid(u,v) + Layd(u,v) = Lod(u, v). (2.4)
O

Next, we present the main convergence result for method (1.2).

THEOREM 2.2 Under the hypotheses of Lemma 2.1, further suppose:

—00 < szfDF(x*), (2.5)
S, = {z" € D: F(a*) < F(y)} C D. x*iszF(x*) <F(y),  (26)

the minimizer set of F' is non-empty, i.e.

T={a": F(z*) = szfDF(x*)} £, 2.7)
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[F (") — 2" < Ls, (2.8)

L:=1;+ 2")/L2 < 1. (29)

Then, the sequence {x} generated for zg € S* := S, NU(z*,r*) is well defined,
remains in S* and converges to a point x** € T, where

r*i= . (2.10)
Proof. Define the operator
_ g *
G(z) = F(x)—|—§|\x—x II (2.11)

We shall show that operator G is a contraction on U(z*,r*). Clearly sequence
{zn} is well defined and since zy € S, we get that {z,} C S, for each n =
0,1,2,.... In view of Lemma 2.1 and the definitions (2.8)—(2.11) we have in
turn for u,v € U(z*, 1)

G ~GE)| < [P~ FO)|+lyd ") — 320, 2°)
< (Lo + vL2)d(u,v) = Ld(u,v) (2.12)
and
G —o*| < [G) - GG+ 1G(E") -
< Ld(u,z*)+ |F(z*) — |
< Ld(u,z*)+ L3 < r”*. (2.13)

The result now follows from (2.9), (2.12), (2.13) and the contraction mapping
principle[l, 3, 4, 5, 6].
O

3 Fractional derivatives with invexity

1. Let 0 < a < 1, we consider the left Caputo fractional partial derivatives
of f of order «:

8af(x) _ 1 o ot 7a8f(xlax25"'atia"'axn)) .
ox¥  T(1—a) / (s =) Ox; I

) a;

wherex:(xl,...,:cn)6X,i:1,2,...nandw € Loo(as, b;),i =

1,2,...n. Here I' stands for gamma function. Note tﬁét
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0% f(x) 1 /x _
- i —ty) " “dt;
’ Do T1—a) \ U, (z: — %)
8f(xla L2y e vy Lj—1y s Lidly- -y 'rn))
H 1. dtiHOO,aiybi
o (m =) | Of (@1, e, @i, Tig, - ) b
r'2-a) Ox; 00, ,b;
< 00, (3.2)
forall © =1,2,...,n. Therefore, B(;J‘Tgx) exist forall: =1,2,...n.

Now we consider the left fractional Gradient of F' of order a,0 < v < 1:

o _ (Of(z7) af(z")
V;rf(x)—( e ' oum )

2. Let 0 < o < 1, we consider the right Caputo fractional partial derivatives
of f of order « :

0~ f(x) -1 /bi _aOf(x1, T2y oty )
_ tz_ i o ) ) ) V1 ) dt“ )
ox¢ N'l-aw) /, ( zi) Ox; (3:3)
where z = (z1,...,7,) € X,i = 1,2,...nandaf((m+M € Loo(a;, b;),i =
1,2,...n. Note that
0 f(x) 1 /bi _
’ Das Ti—a |/, @t
H 8f($1, L2y ..y .Igl, s Lggly e vy xn))dti|‘m7ai7bi
X
o (bi_xi)lia 8f(xlax25"'a'rifla'a'ri+1;"'a'rn))dt_
r2-a) Ox; ’ 00,ai,b;
< 00, (3.4)
forall © =1,2,...,n. Therefore, % exist forall: =1,2,...n.

Now we consider the right fractional Gradient of F' of order o,0 < v < 1:

0f(a") 5f(x*)> |

—
Oz§ Oz

Vi) = (

3. Define for k € N : V[ f = VI...VEf k— times composition of left
fractional gradient, i.e.,

V;af _ (8kaf(x*) 8kaf($*) ) |

— ..,
0§ Oz
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ko p a @
where 2 3 ﬁz) = aamg "'BBT? f, k—times composition of left partial frac-

tional derivative, i = 1,2,...n. We assume that %Ijqf exist for all ¢ =
1,2,...n '

. Define for £k € N : @,:af = V. ...V, f k— times composition of right

fractional gradient, i.e.,

B gka * gka *
V5 - ( ) || Py,
Oz§ Oz
o* f(x) 5>
where —-5— = 9o - Bm"‘ f, k—times composition of right partial frac-

tional derivative, i = 1,2,...n. We assume that a;f exist for all ¢ =
1,2,...n '

. Let a > 1, we consider the left Caputo fractional partial derivatives of f

of order a ([a] =m € N, [.] ceiling of the number [2]):
9 f('r)i 1 /1($i_ti)mfafla f(xlaan"'atia"'a'rn))d

oz¢  T(m—a) /g, oz

i = 1,2,...n. We set %}fw equal to the ordinary partial derivative

9 5 g (z) We assume that

am
—i(xla"'a'a"'axn) € Loo(a”ubl)
oz}
i.e.,
am
H fxl,...,.,...,xn) < 00
oo,(ai,bi)
for all7 =1,2,...,n. Note that
O f(x), _ (wi—a)™™* O™f
| a | — F( a_|_ 1)” ( S A 'axn)HOO,(aiybi) < 00,

for all : = 1,2,...n. Therefore, % exist for all = 1,2,...n. Now we

consider the left fractional gradient of foforder a,aa > 1:

V**f( ) = (3af( ),”',30‘f(33*)>'

0z Oz

. Let a > 1, we consider the right Caputo fractional partial derivatives of

f of order « ([a] = m):

0°f(@) _ (0™ M a1 O @@t T))
ox¢ F(m—a)/m (z: = %) a
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i1 =1,2,...n. We set
tial). We assume that

g:;{ = (‘Umg%f (where L is the ordinary par-

i

omf

8:6?1 (xl, gy .,.In) c LOO(CLi, bl)

forall e =1,2,...,n. Note that

0° f(x)

| (bl — xi)mfa
Oz

F(m—a—l—l)”&:cgn(

| < "a""')xn)HOOy(aivbi)<OO’

for all : = 1,2,...n. Therefore, % exist for all t = 1,2,...n. Now we

consider the right fractional gradielft of f of order v, > 1:

o f) 5“f(x*)> |

— .
0§ Oz

Vo s = (
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