Therapeutic potential of benfotiamine and its molecular targets

V. RAJ¹, S. OJHA², F.C. HOWARTH¹, P.D. BELUR³, S.B. SUBRAMANYA¹

¹Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

²Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

³Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, India

Abstract. – OBJECTIVE: The water-soluble vitamin, thiamine forms an important part of the diet because of its role in the energy metabolism. The protective effects of thiamine against diabetic vascular complications have been well documented. However, slower absorption and reduced bioavailability is a major limiting factor for its clinical use. To overcome this issue, lipid-soluble derivatives of thiamine (allithiamines) was developed. Among the many synthetic lipophilic derivatives of thiamine, benfotiamine (BFT) is regarded as the first choice based on its safety and clinical efficacy data. BFT facilitates the action of thiamine diphosphate, a cofactor for the enzyme transketolase. The activation of transketolase enzyme accelerates the precursors of advanced glycation end products (AGEs) towards the pentose phosphate pathway thereby reducing the production of AGEs. The reduction in AGEs subsequently decreases metabolic stress which benefits vascular complications seen in diabetes. The effects of BFT on the AGE-dependent pathway is well established. However, several studies have shown that BFT also modulates pathways other than AGE such as arachidonic acid (AA), nuclear transcription Factor κB (NF-κβ), protein kinase B, mitogen-activated protein kinases (MAPK) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathways. In the present review, we have comprehensively reviewed all the molecular targets modulated by BFT to provide mechanistic perspective to highlight its pleiotropic effects.

Key Words:

Benfotiamine, Allithiamine, Thiamin and advanced glycation end products.

Introduction

Nutritional deficiency is one of the most common global problems, especially in the develop-

ing world. Vitamins play a vital role in maintaining the nutritional status of the body. Thiamine, also known as vitamin B1, is an important dietary nutrient due to its role in the energy metabolism¹. Reduced dietary intake of thiamine results in defective energy metabolism and raised levels of cellular oxidative stress. Thiamine also plays an important role in neuronal health; its deficiency is associated with severe neurological side effects. Because of its role in the central nervous system (CNS), thiamine is also known as aneurin. In general, the conditions associated with thiamine deficiency are known as Beriberi which was first reported in the areas where white or polished rice constituted a major portion of the diet. Thiamine was first isolated as a vitamin from rice husks. Beriberi was considered the first disorder for which the term "deficiency disease" was used. The symptoms of this disease are mainly related to the autonomic nervous system and cardiovascular system, which include sinus tachycardia, vasovagal syncope, mitral valve prolapse, dysautonomia, and hypotension.

Thiamine cannot be synthesized in humans, only bacteria, fungi and plants can synthesize it. Plant eating animals obtain thiamine from the food source; therefore, this essential nutrient is also fortified in many human food products including cereals. Clinically, thiamine deficiency leads to various abnormalities that include neurological and circulatory disorders^{2,3}. Many conditions are associated with deficiency of thiamine including chronic alcoholism^{4,5}, celiac and renal diseases as well as diabetes mellitus (DM)⁶⁻⁹. Numerous studies¹⁰⁻¹² have shown that low levels of intracellular thiamine triggers apoptotic machinery to induce cell death pathways. In humans, general thiamine deficiency is manifested as malaise, weight loss, irritability, and confusion. Clinically, when thiamine is prescribed for certain medical conditions, high levels of thiamine are required to ensure appropriate bioavailability in the tissues. In clinical settings, oral thiamine supplement has been used for the treatment of diabetic neuropathy for decades. The overt thiamine deficiency is not so common in recent times. However, the prevalence of subclinical thiamine deficiency is on the rise^{13,14}. It has been shown that, in an elderly group of subjects with subclinical thiamine deficiency, the quality of their life significantly improved in general after thiamine replete in these subjects¹⁴.

Thiamine is absorbed from both small and large intestines by utilizing thiamine transporters-1 and -2 (THTR-1 and THTR-2). These transporters belong to the family of solute carriers (SLCs) encoded by SLC19A2 and SLC19A3 genes. Both these transporters facilitate absorption of thiamine in micromolar to nanomolar range from the intestinal lumen and follow saturation kinetics principles. These transporters are also expressed in other tissues such as pancreas, kidney, and brain¹⁵ which facilitates free thiamine transport into the tissues¹⁶⁻¹⁸. The thiamine transporters limit the rate of absorption, to overcome this problem lipid-soluble thiamine derivatives (allithiamines) have been developed with an advanced pharmacokinetic profile. Benfotiamine (BFT) is a lipid-soluble derivative of thiamine which shows enhanced bioavailability after oral administration when compared to an equivalent dose of water-soluble thiamine. The role of BFT in inhibiting the production of advanced glycation end products (AGEs) is well established. This reduces glucose-induced metabolic stress and confers beneficial effects against diabetic vascular complications. However, several studies have also shown that BFT can modulate non-AGE dependent pathways that include nuclear transcription Factor κB (NF- κB), vascular endothelial growth factor receptor 2 (VEGFR-2), glycogen synthase kinase- 3β (GSK- 3β) as well as pathways which play roles in cell survival, repair and cell death¹⁹⁻²¹

Due to its enhanced bioavailability and improved efficacy, the clinical use of BFT to treat overt thiamine deficiency or subclinical thiamine deficiency is likely to be more effective compared to water-soluble thiamine. Therefore, it is imperative to understand the various physiological pathways and the molecular targets that are modulated by BFT. In the present review, we have comprehensively reviewed all the molecular targets of BFT using up to date literature search to provide a mechanistic perspective to highlight its pleiotropic effects.

Clinical Advantages of Benfotiamine Compared to Thiamine

Chemically, BFT is known as S-[(Z)-2-[(4amino-2-methylpyrimidin-5-yl) methylformylamino] -5-phosphonooxypent-2-en-3-yl] benzenecarbothioate. An open thiazole ring in the chemical structure distinguishes BFT from thiamine (Figure 1). After ingestion, BFT is dephosphorylated by the ecto-alkaline phosphatases present on the intestine brush border membrane to S-benzoylthiamine, which is highly lipophilic and readily diffuses through biological membranes. In the blood, a major portion of S-benzoylthiamine is trapped by the erythrocytes and converted to active thiamine. Pharmacokinetic studies²²⁻²⁴ have demonstrated that a single dose of oral BFT results in five times higher concentration of thiamine in the plasma compared to an equivalent dose of water-soluble thiamine.

Figure 1. Chemical structure of thiamine and benfotiamine (BFT).

Figure 2. Therapeutic targets of benfotiamine.

Enhanced Transketolase Activity and Modulation of Advanced Glycation End Products Formation Pathways

Hyperglycemia and oxidative stress are associated with the generation of signaling proteins termed Advanced Glycation End products (AG-Es). AGEs are synthesized from amadori products by the conversion of reversible Schiff-base adducts. These amadori products, via various rearrangement processes, results in the formation of irreversibly bound AGEs. Earlier reports have shown the role of glucose-6-phosphate, glyceraldehydes-3-phosphate, glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3DG) in the synthesis of these proteins⁽³⁴. AGEs play an important role in the progression and pathophysiology of diabetes, atherosclerosis, chronic renal failure and also enhance ageing and neurodegeneration. AGEs exert deleterious effects on cells and tissues via many mechanisms including (a) intracellular glycation of proteins causing defective cellular functions; (b) changes in various gene expression and activation of signal transduction pathways responsible for cells degeneration; (c) vascular complications via the accumulation of AGEs in the extracellular matrix.

Formation of Advanced Glycation End Products

AGEs are synthesized in vivo by a non-enzymatic reaction between reducing sugars, amino acids, lipids and nucleic acids following two major pathways^{34,35}. In the Maillard pathway, ketone or aldehyde groups of glucose molecules react with the amino groups of proteins. In diabetes or oxidative stress-induced hyperglycemic conditions, reversible Schiff base adducts are formed from glucose, which are converted to covalently bound stable amadori products. Following the diverse rearrangement reactions, which include dehydration and condensation, these amadori products form irreversible AGEs³⁵. Furthermore, reduction of glucose into sorbitol is facilitated by the enzyme aldose reductase. Sorbitol dehydrogenase catalyzes the conversion of sorbitol to fructose undergoes further metabolic modifications to generate fructose-3-phosphate and 3-deoxyglucosone that ultimately result in the formation of AGEs (Polyol pathway). Increased glucose levels inside the cell during hyperglycemic states disturb glucose metabolism which results due to the accumulation of super reactive glucose-metabolic intermediaries such as triosephosphate inside the cell. The excess of triosephosphate perturb the surrounding proteins, lipids and DNA, and results in the formation of oxoaldehydes that causes AGE damage in the cell^{36,37}.

Mechanism of Advanced Glycation End Products Inhibition by Benfotiamine

Previous studies^{25,38} have reported that agents which inhibit AGE formation can modulate a variety of physiological and pathological manifestations of diabetes. *In vitro* and *in vivo* experiments have shown that the active form of thiamine-thiamine pyrophosphate (TPP) inhibits

Molecular target/ signaling pathway	Actions observed	Clinical significance	References
Transketolase	Activation	Diabetic microvascular complications	(25-27)
Arachidonic acid pathway	COX and LOX inhibition	Inflammatory conditions	(28,21,29)
NF-κB signaling pathway	Inhibits activation	Inflammatory conditions	(28,21,29)
PKB/Akt	Activation	Prevents hyperglycemia induced apoptosis	(19,30,31)
MAPK signaling pathway	Inhibits activation of MAPK, ERK1/2	Inflammatory conditions and Paraptosis (JNK1/2 activation)	(32,28)
VEGF Signaling pathway	Activation of VEGFR 2	Diabetic microvascular complications	(19,30,31)
GSK-3	Decreases activity	Alzheimer's disease	(19,33)

Table I. Molecular targets and signaling pathways involved in the protective effect of benfotiamine.

the synthesis of AGEs from amadori products (Figure 3). Various preclinical and clinical studies have also elucidated the beneficial effects of free, unphosphorylated thiamine administration. BFT, being more lipophilic, can diffuse through plasma membranes easily and evade the thiamine rate-limiting transport system, therefore have higher bioavailability to achieve desired therapeutic effect³⁹. BFT stimulates transketolase activation forces excess triosephosphates into pentose phosphate metabolic pathway, resulting in suppression of AGE synthesis and associated sugar-induced metabolic stress^{25,27,40}. The transketolase activation plays a vital role in oxidative and non-oxidative pentose phosphate pathways that suppress vascular complications in diabetes⁴¹. Enhanced transketolase activity also mediates the conversion of glyceraldehyde-3-phosphate and fructose-6-phosphate into xylulose-5-phosphate and erythrose-4-phosphate, respectively. Thus, BFT has been reported to limit three major molecular pathways which result in hyperglycemic damage. First, the hexosamine pathway averts the increase of UDP-N-acetylglucosamine (UDP-GlcNAc) and reduces the accumulation of glucose metabolites that can lead to AGE formation. Second, BFT decreases aldose reductase activity, which in turn normalizes the polyol pathway, sorbitol concentrations, and intracellular glucose. Thus, BFT prevents the damage induced by glucose metabolites on the endothelial cells. Third, BFT also blocks the diacylglycerol (DAG)-protein kinase C (PKC) pathway^{42,26,43,39}.

BFT has been acknowledged as a key molecule, when compared with water-soluble thiamine in preventing AGEs formation during diabetic-associated complications such as neuropathy, retinopathy, and nephropathy. Based on safety and efficacy data profile, BFT is as an important nutritional supplement for the prevention and progression of diabetic neuropathy^{44,45}. The enhanced transketolase activity induced by BFT is found to be beneficial in experimental diabetic neuropathy, where high levels of hexose and triose phosphates are diverted into the pentose phosphate pathway, resulting in decreased tissue AGEs^{46,47}. In a clinical study, high dose of BFT shown to be significantly reduce neuro-

Figure 3. Role of benfotiamine to inhibit the formation of Advanced Glycation End products (AGEs). AGE Products – Pentosidine glyoxal-derived lysine dimmer (GOLD), methylglyoxalderived lysine dimmer (MOLD), 3-deoxyglucosone-derived lysine dimmer (DOLD), methylglyoxal hydroimidazolone (MGH), 3-deoxyglucosone hydroimidazolone (3DG-H), and monolysyl adducts such as N-carboxymethyl-lysine (CML), N-carboxyethyllysine (CEL) and pyrraline.

pathic pain⁴⁸. High dose of BFT also results in increased transketolase expression in renal glomeruli that further activates the conversion of triosephosphate into ribose-5-phosphate. The scientific rationale of BFT supplementation in diabetic nephropathy patients is attributed to its ability to reduce the occurrence of albuminuria/ proteinuria, increased oxidative stress and, in renal tissues, AGEs accumulation49-51. BFT treatment increases the transketolase expression in the retina of streptozotocin (STZ)-diabetic rats and inhibition of AGEs formation in retinal pericytes was reported to suppress the progression of diabetic retinopathy²⁶. All these studies suggest that BFT enhanced transketolase activity prevents diabetic microvascular complications.

Arachidonic Acid-dependent Pathway

Arachidonic acid (AA) is a fatty acid released from membrane phospholipids where it is cleaved by the enzyme phospholipase A2. In the AA metabolic pathway, cyclooxygenases (COX) catalyze the conversion of AA into prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2). PGH2 is the precursor of other prostaglandins and thromboxanes. In another pathway, 5-lipoxygenases (LOX) mediate the conversion of AA into biologically active leukotrienes (LTs). Prostaglandins and and leukotrienes are pro-inflammatory mediators. Various studies have convincingly demonstrated that the anti-inflammatory effect of BFT is achieved by the inhibition of prostaglandins and leukotrienes synthesis²⁸. BFT has a significant role in AA metabolism and its anti-inflammatory action^{21,28,29,52}.

Cyclooxygenases and 5-Lipoxygenase Inhibition

COX-1 and COX-2 are two isoforms of cycloxygenases. A third variant COX-3 has been recently reported⁵³. COX-1 is a constitutive physiological enzyme and COX-2 is induced by cytokines, growth-related factors, and other stimuli. Eicosanoids produced by COX-1 participate in housekeeping functions such as mucus secretion that is involved in the protection of the gastric mucosa, hemostasis and maintenance of renal function, whereas those produced by COX-2 lead to inflammatory and pathological changes. The non-steroidal anti-inflammatory drugs (NSAIDs) were reported to inhibit COX synthesis. Most of the NSAIDs are non-selective and can inhibit both cyclooxygenases (COX-1 and COX-2). A few of the most recent derivatives like celecoxib.

rofecoxib are very selective for COX-2. The lipoxygenases (LOXs) are members of the non-heme iron-containing enzyme family and catalyze the deoxygenation of polyunsaturated fatty acids in membranes. There are five subclasses of LOXs-5(S)-LOX, 12(S)-LOX, 12(R)-LOX, 15(S)-LOX-1, and 15(S)-LOX-2. Many natural flavonoids with anti-inflammatory properties act through 5-LOX inhibition. For example, Curcumin is a widely studied natural bioactive compound, and human recombinant 5-LOX appears to be one of its prime molecular targets. Reports suggest that the dual inhibition of LOX/COX might be a unique pharmacological strategy in the development of anti-inflammatory drugs. It is reported that BFT down-regulated the expression of COX-2 and LOX-5 enzymes (Figure 4)²⁸. BFT found to decrease the biosynthesis of pro-inflammatory PGs and LTB4. In addition, BFT also attenuated prostaglandin I2 (PGI2)-induced vasculopathy in bacterial infections because of its ability to decrease PGI2 expression thereby, inhibiting 6-keto PGF1 formation. These mounting evidence suggest that BFT can be a potent anti-inflammatory agent due to its dual inhibitory action on COX-2 and LOX-5 over individual specific LOX and COX inhibitors.

Nuclear Transcription Factor-*kB* (NF-kB) Signaling Pathway

The protein complex of NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) is considered an important pro-inflammatory signaling pathway for cytokine release and cell survival. NF-kB is becoming increasingly recognized due to its central role in mediating immune reactions against various infections. It moderates cellular responses to various stimuli like stress, cytokines, free radicals, UV rays, oxidized low-density lipoproteins (LDL) and from bacterial and viral antigens. NF-kB signaling has been implicated in the progression of cancer, inflammatory and autoimmune responses, septic shock, viral infection and improper immune enhancement. The agents which have potential to overwhelm the activated state of NF-kB could be important for the management of inflammatory conditions and many other pathological states, because failure in proper synchronization of inflammatory conditions is linked to a wide variety of diseases⁵². The anti-inflammatory role of BFT has been demonstrated through its ability to inhibit the binding of the nuclear transcription factor NF-κB⁴⁰. Inhibition of NF-κB pathway by BFT has been shown both in experimental

Figure 4. Dual inhibition of COX and LOX enzymes by benfotiamine.

model of diabetes and also in lipopolysaccharides (LPS)-induced inflammation in murine macrophages²¹⁾. BFT also found to prevent endotoxin-induced uveitis in rats by inhibiting NF-KB signaling pathway²⁹. These reports suggested that the serine/threonine kinase PKC phosphorylates and activates NF- κ B in the cytosol, this activation was inhibited by BFT. Inhibition of nuclear translocation of NF- κ B by preventing the phosphorylation helps in subsequent degradation of $I\kappa B$ (Figure 5), which in turn decreases inflammatory cell migration and protects ocular tissues during uveitis. In addition, other studies also have shown that the BFT suppresses PKC and NF- κ B activation clearly demonstrating its anti-inflammatory properties^{28,32}.

Protein Kinase B Signaling Pathway

Protein kinase B (PKB) or in full (Akt) is a serine/threonine-specific protein kinase and plays a critical role in glucose metabolism, apoptosis, cell proliferation and migration. In mammals, Akt exists in three isoforms. Akt1 is a key signaling protein that mediates cell survival by enhancing protein synthesis thereby attenuating apoptosis. Reports have shown that overt activity of Akt2 and Akt3 isoforms are implicated in human cancers⁵⁴. According to studies published during the past two decades, it is evident that Akt/PKB has a pivotal role in the signal transduction cascade that is activated in response to growth factors or insulin⁵⁵.

Thiamine is a cofactor of transketolase enzyme and plays a critical role in directing glucose metabolites towards the pentose phosphate pathway. Thiamine deficiency exacerbates the consequences of chronic hyperglycemia further, due to reduced transketolase activity. As a thiamine derivative, BFT has been shown to act by blocking three major pathways of hyperglycemia-induced damage. It was reported that BFT induces activation of Akt, mediates post-ischaemic healing and attenuates apoptosis in diabetic mice¹⁹. The reduced phosphorylation of Akt residues Ser-473 in hyperglycemic states is well documented. BFT is found to attenuate serine phosphorylation of Akt and enhance its nuclear localization, events that are critical for cell survival and also prevented angiogenesis^{30,31}. BFT prevents the downregulation of PKB/Akt during diabetic complications and enhances cell survival. Thus, BFT protected human endothelial cells from hyperglycemic damage via the enhancement of nuclear translocation of phosphorylated-PKB/Akt.

Figure 5.Inhibition of NF-kB activation by benfotiamine.

Mitogen-activated Protein Kinases Signaling Pathway

Mitogen-activated protein kinases (MAPK) are eukaryotic serine-threonine kinases that mediate vital intracellular programs like proliferation, differentiation, survival, and apoptosis. There are three major families of MAP kinases which include the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38/MAPKs. ERK1/2 mediates cell growth, JNK mediates apoptosis and cytokine production and the p38 family also contributes to apoptosis, inflammation and cell cycle regulation⁵⁶. The regulation of cellular processes and anti-inflammatory actions of BFT are partly mediated through MAPK signaling mechanisms. BFT plays a protective role against inflammatory responses induced by LPS activated microglia. BFT acts by down regulating pro-inflammatory mediators and cytokines via multiple signaling mechanisms. The amplified phosphorylation of ERK^{1/2} and JNK are significantly attenuated by BFT. This, in addition to the inhibition of Akt, plays a major role in reducing tumor necrosis factor- α (TNF- α) and interleukin-6 (IL-6) release in LPS stimulated BV-2 microglia^{32,28}. BFT is

also found to inhibit LPS-induced activation of p-38 MAPK²¹ and play a significant role in attenuating apoptosis (caspase-dependent) and paraptosis (caspase independent). Furthermore, BFT induces paraptosis in leukemia cells⁵⁷ through the activation of JNK^{1/2}.

Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Signaling Pathway

Vascular endothelial growth factor (VEGF) belongs to the homodimeric glycoprotein family and plays a critical role in vasculogenesis, lymphangiogenesis, and angiogenesis. The VEGFs bind to three different types of VEGF-receptor tyrosine kinases; VEGFRs 1, 2 and 3 that dimerize and activate upon ligand-binding. The active receptors initiate signal transduction pathways that direct cellular functions. VEGFR-2 is expressed in vascular and lymphatic endothelial cells and plays an important role in physiologic and pathogenic angiogenesis⁵⁸. The relationship between glucose-6-phosphate dehydrogenase (G6PD)and VEGF mediated cell proliferation has been demonstrated earlier in the in vivo and in vitro studies. The diminished G6PD expression and activity are correlated with impaired response to VEGF-induced cell proliferation and migration by influencing tyrosine phosphorylation of VEGFR2. In vitro studies have demonstrated that knockdown of G6PD decreases angiogenesis, which was restored by forced G6PD expression⁵⁰. In myocardial ischemia, increased G6PD activity was reported to induce VEGFR2 activation; a compensatory mechanism to counteract oxidative stress and aid cardiomyocyte survival. This response is blunted in DM due to the inhibition of the enzymes transketolase and G6PD. The restoration of G6PD levels was recognized as a specific pharmacological intervention to restore contractile dysfunction and prevent cardiomyocyte damage in DM¹⁹. BFT enhanced cardiomyocyte survival through increased transketolase and G6PD activities in diabetic hearts. The raised activity of G6PD leads to the phosphorylation and activation of VEGFR2. Hence, BFT appears to have a cardioprotective role in potentiating angiogenesis and inhibiting apoptosis in diabetic complications; a response mediated by VEGFR2^{19,30}.

Glycogen Synthase Kinase-3 (GSK-3)

Glycogen synthase kinase 3 (GSK-3) is a serine-threonine protein kinase that has been extensively studied because of its role in chronic inflammatory, immune, metabolic and neurodegenerative diseases. Among the many isoforms of GSK-3 such as GSK-3a, GSK-3b, and GSK-3 β 2, the isoenzyme GSK-3 β is primarily localized in neurons present in the hippocampus⁵⁹. GSK-3 phosphorylates microtubule associated proteins and tau proteins present in the neurons. Hyperphosphorylation of tau proteins by GSK-3^β results in detachment of microtubules from the neurons that are involved in the pathogenesis of Alzheimer's disease (AD). These hyperphosphorylated tau proteins accumulate and weaken the synaptic junctions between neurons resulting in the progression of neuronal death⁶⁰⁻⁶³. It was recently demonstrated that GSK-3a also contributes to the pathogenesis of AD by enhancing Amyloid β formation by interfering with amyloid precursor protein (APP) cleavage⁶⁴. GSK-3β activity can be modulated by phosphorylation of Ser9 and Tyr216 residues which inhibit and activate GSK- 3β , respectively. Whereas, the GSK- 3α activity can be modulated by phosphorylation of Ser21 and Tyr279 residues, which inhibit and activate GSK-3α, respectively⁶⁵.

The role of BFT in counteracting glucose toxicity has been extensively studied⁴⁶⁻⁵¹. Akt phosphorylation is one of the important steps

involved in counteracting glucose toxicity by BFT⁵⁵. The raised glucose levels in diabetes inhibit Akt^{Ser473} phosphorylation and BFT blocks this action and induce nuclear localization of active Akt that is an important upstream kinase of GSK-3^β. This revelation suggests that BFT may also regulate GSK-3 activity through Akt. GSK-3 activity is implicated in β-amyloid deposition in the brain and leads to AD. BFT dose-dependently increased GSK-3β^{Ser9} and GSK- $3\alpha^{Ser21}$ phosphorylation in the brain of APP/ PS1 double-transgenic mice. BFT also increased the Akt phosphorylation and the phosphorylation of serine residues, reduced the enzymatic activity of GSK-3a and GSK-3ß diminished the β -amyloid deposition in the brain and improved the symptoms associated with the pathogenesis of AD^{66,67}. In a recent clinical study⁶⁸, BFT has been reported to inhibit the progression of the cognitive function impairment in AD patients, which was correlated with improved brain glucose metabolism.

Role of Benfotiamine in Regulating Programmed Cell Death

Apoptosis

Apoptosis is a set of biochemical events that occur in multicellular organisms and leads to characteristic morphological changes and programmed cell death. Unlike necrosis which is traumatic cell death, apoptosis is extremely synchronized in a controlled progressive manner which confers advantage during the lifecycle of every organism. Apoptosis can be initiated through intrinsic or extrinsic pathways. Stimulation of death receptors triggers the extrinsic pathway whereas DNA damage, UV radiation, oxidative stress and other factors trigger the intrinsic pathway³³. The mitochondria are central to the intrinsic pathway⁶⁹. The integrity of the outer mitochondrial membrane (OMM) is regulated by pro- and anti-apoptotic Bcl-2 proteins. Bax/Bcl-2 ratio is a major factor that regulates apoptosis because the variations in this ratio are critical in determining whether apoptosis can be initiated or not. Thiamine and BFT are effective in correcting the altered ratio to prevent apoptosis in vitro^{19,70}. The anti-oxidant properties of BFT are responsible for its protective role against DNA damage in cisplatin-induced nephrotoxicity in rats⁷¹. BFT is found to inhibit excess nitric oxide (NO) production, lipid per-

Figure 6. Role of benfotiamine in different conditions and its molecular targets.

oxidation, protein oxidation and DNA damage induced by cisplatin. BFT also modulated the expression of enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), that are involved in antioxidant defense and showed free radical scavenging properties that are associated with downregulation of inducible nitric oxide synthase (iNOS)³². Furthermore, BFT is shown to be protective against diabetes-associated oxidative DNA, histone damage and suppression of p300 upregulation⁷². All these factors contribute to the anti-apoptotic action of BFT.

Apoptosis is initiated through intrinsic or extrinsic pathways, the process of apoptosis is regulated mainly by caspases which belong to the family of cysteine proteases. Among the many isoforms, the role of caspase-3 is pivotal in mediating apoptosis⁶⁹. BFT is shown to inhibit caspase-3 activation in ischemic muscles and prevented apoptosis. The anti-apoptotic effect was achieved through post-translational modifications of caspase-3 and enhanced expression of the anti-apoptotic proteins such as survivin and Bcl-2^{19,73}. BFT also protects against LPS-induced macrophagic cell death. The inflammatory signals induced by LPS involved activation of caspase-3, which in turn leads to poly ADP ribose polymerase (PARP) cleavage and the release of cytochrome-c, and other apoptotic intermediaries. All these processes are inhibited by BFT^{74,21}. These observations clearly demonstrate that BFT plays a significant role in controlling cell death by regulating apoptosis^{20,75}.

BFT also plays a central role in attenuating genomic damage and raised transketolase activity and associated decrease in AGE production⁷⁶. This is correlated with the accelerated pentose phosphate pathway by transketolase that eventually results in reduced production of nicotinamide adenine dinucleotide phosphate (NADPH) and activation of the antioxidant defense mechanisms. The anti-apoptotic action of BFT is mediated by improved antioxidant defense that further reduces the genomic damage in patients.

Paraptosis

According to a recent study, BFT is able to produce G1 phase cell cycle arrest by down-regulating cyclin-dependent kinase 3 (CDK3)⁵⁷. Paraptosis is a type of programmed cell death that is caspase activation independent and morphologically different from apoptosis and necrosis. Paraptosis may be associated with an imbalance in internal potassium ion homeostasis. However, the exact mechanisms are yet to be elucidated. A study in leukemia cells revealed that the antitumor activity of BFT is mediated by induction of paraptosis and not mediated by apoptosis, necrosis or autophagy. Big potassium channel (BK) inhibitor and cycloheximide prevented the vacuoles induced by BFT. Even though activation of both the MAPK/ERK and JNK pathways are observed in paraptosis, JNK1/2 activation is the only critical factor in BFT induced paraptosis⁵⁷. BFT-induced paraptosis requires further investigation in order to clarify the exact mechanisms involved in the process.

Conclusions

High-calorie malnutrition is on the rise in the developed countries; subclinical thiamine deficiency is undoubtedly widespread as opposed to overt thiamine deficiency. Thiamine deficiency is commonly associated with neurological symptoms and is a major contributing factor for many vascular complications of diabetes. In clinical settings, thiamine supplements used diabetic and non-diabetic conditions have proven to be beneficial. Since, water-soluble thiamine absorption is mediated through cell membrane transporters, which limits its rate of absorption and bioavailability. However, this limitation was overcome by introducing lipid-soluble thiamine derivative, BFT, which is increasingly used in clinical settings with improved bioavailability. As a result, the therapeutic dose of BFT is much lower compared to water-soluble thiamine. A few clinical studies using BFT have shown to be beneficial in offering protection against diabetes-related complications including neuropathy, nephropathy, cardiomyopathy, and retinopathy via the activation of transketolase enzyme. Recent studies have shown, BFT is capable of modulating various signaling pathways that are involved in different disease and physiological processes. In this review, we have made an attempt to summarize all the molecular targets of BFT based on the most recent up to date scientific literature to shed some light on its multifaceted actions and therapeutic potential.

Author Contributions

SBS and SO conceptualized and edited the review. SBS and VR searched the literature, drafted, edited, and prepared the figures and final version of the manuscript. CH helped in editing the manuscript and reviewing of the literature. PB drew the chemical structure and also helped in editing the manuscript.

Acknowledgement and Financial Support

SBS is supported by United Arab Emirates University start up grant # 31M178.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- 1) BERDANIER ND. Advanced Nutrition-Micronutrients. New York: CRC, 1998.
- TANPHAICHITR V. Modern Nutrition in Health and disease, edited by shils ME, Olsen JA, and Shike M, New York: Lea and Febiger, 1994; pp. 359-375.
- VICTOR M ARACG. The Wernicke-Korsakoff Syndrome and Related Neurological Disorders Due to Alcoholism and malnutrition, Philadelphia, PA: Davis, 1989.
- FENNELLY J, FRANK O, BAKER H, LEEVY CM. Peripheral neuropathy of the alcoholic: I, Aetiological role of aneurin and other B-complex vitamins. Br Med J 1964; 2: 1290-1292.
- TALLAKSEN CM, BOHMER T, BELL H. Blood and serum thiamin and thiamin phosphate esters concentrations in patients with alcohol dependence syndrome before and after thiamin treatment. Alcohol Clin Exp Res 1992; 16: 320-325.
- PIETRZAK I, BACZYK K, MLYNARCZYK M, KACZMAREK M. [Content of thiamin in plasma and erythrocytes in patients with end stage renal disease]. Przegl Lek 1996; 53: 423-426.
- RASKIN NH, FISHMAN RA. Neurologic disorders in renal failure (second of two parts). N Engl J Med 1976; 294: 204-210.
- SAITO N, KIMURA M, KUCHIBA A, ITOKAWA Y. Blood thiamine levels in outpatients with diabetes mellitus. J Nutr Sci Vitaminol (Tokyo) 1987; 33: 421-430.
- THOMSON AD. The absorption of radioactive sulphur-labelled thiamine hydrochloride in control subjects and in patients with intestinal malabsorption. Clin Sci 1966; 31: 167-179.
- MATSUSHIMA K, MACMANUS JP, HAKIM AM. Apoptosis is restricted to the thalamus in thiamine-deficient rats. Neuroreport 1997; 8: 867-870.
- OISHI K, BARCHI M, AU AC, GELB BD, DIAZ GA. Male infertility due to germ cell apoptosis in mice lacking the thiamin carrier, Tht1. A new insight into the critical role of thiamin in spermatogenesis. Dev Biol 2004; 266: 299-309.

- 12) STAGG AR, FLEMING JC, BAKER MA, SAKAMOTO M, CO-HEN N, NEUFELD EJ. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts. J Clin Invest 1999; 103: 723-729.
- ANDERSON SH, VICKERY CA, NICOL AD. Adult thiamine requirements and the continuing need to fortify processed cereals. Lancet 1986; 2: 85-89.
- 14) WILKINSON TJ, HANGER HC, ELMSLIE J, GEORGE PM, SAINSBURY R. The response to treatment of subclinical thiamine deficiency in the elderly. Am J Clin Nutr 1997; 66: 925-928.
- 15) ORTIGOZA-ESCOBAR JD, MOLERO-LUIS M, ARIAS A, OYAR-ZABAL A, DARIN N, SERRANO M, GARCIA-CAZORLA A, TON-DO M, HERNANDEZ M, GARCIA-VILLORIA J, CASADO M, GORT L, MAYR JA, RODRIGUEZ-POMBO P, RIBES A, AR-TUCH R, PEREZ-DUENAS B. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain 2016; 139: 31-38.
- SAID HM. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 2011; 437: 357-372.
- 17) SUBRAMANIAN VS, SUBRAMANYA SB, SAID HM. Relative contribution of THTR-1 and THTR-2 in thiamin uptake by pancreatic acinar cells: studies utilizing Slc19a2 and Slc19a3 knockout mouse models. Am J Physiol Gastrointest Liver Physiol 2012; 302: G572-578.
- 18) SUBRAMANYA SB, SUBRAMANIAN VS, SEKAR VT, SAID HM. Thiamin uptake by pancreatic acinar cells: effect of chronic alcohol feeding/exposure. Am J Physiol Gastrointest Liver Physiol 2011; 301: G896-904.
- 19) GADAU S, EMANUELI C, VAN LINTHOUT S, GRAIANI G, TODARO M, MELONI M, CAMPESI I, INVERNICI G, SPILL-MANN F, WARD K, MADEDDU P. Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia 2006; 49: 405-420.
- SCHMID U, STOPPER H, HEIDLAND A, SCHUPP N. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev 2008; 24: 371-377.
- 21) YADAV UC, KALARIYA NM, SRIVASTAVA SK, RAMANA KV. Protective role of benfotiamine, a fat-soluble vitamin B1 analogue, in lipopolysaccharide-induced cytotoxic signals in murine macrophages. Free Radic Biol Med 2010; 48: 1423-1434.
- 22) GLEITER GH, SCHREEB KH, FREUDENTHALER S. Comparative bioavailability of two vitamin B1 preparations: benfotiamine and thiamin mononitrate. In: Gries FA, Federlin K, editors. Benfotiamine in the Therapy of Polyneuropathy. New York: Georg Thieme Verlag. 1998; 29-33.
- HILBIG R, RAHMANN H. Comparative autoradiographic investigations on the tissue distribution of benfotiamine versus thiamine in mice. Arzneimittelforschung 1998; 48: 461-468.
- 24) LOEW D. Development and pharmacokinetics of benfotiamine. In: Gries FA, Federlin K, editors.

Benfotiamine in the Therapy of Polyneuropathy. New York: Georg Thieme Verlag, 1998; pp. 19-27.

- 25) GOH SY, COOPER ME. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 2008; 93: 1143-1152.
- 26) HAMMES HP, DU X, EDELSTEIN D, TAGUCHI T, MATSUMU-RA T, JU Q, LIN J, BIERHAUS A, NAWROTH P, HANNAK D, NEUMAIER M, BERGFELD R, GIARDINO I, BROWNLEE M. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003; 9: 294-299.
- HUIJBERTS MS, SCHAPER NC, SCHALKWIJK CG. Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 2008; 24 Suppl 1: S19-24.
- 28) SHOEB M, RAMANA KV. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic Biol Med 2012; 52: 182-190.
- 29) YADAV UC, SUBRAMANYAM S, RAMANA KV. Prevention of endotoxin-induced uveitis in rats by benfotiamine, a lipophilic analogue of vitamin B1. Invest Ophthalmol Vis Sci 2009; 50: 2276-2282.
- 30) KATARE R, CAPORALI A, EMANUELI C, MADEDDU P. Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/ Akt signaling pathway and modulation of neurohormonal response. J Mol Cell Cardiol 2010; 49: 625-638.
- 31) KATARE RG, CAPORALI A, OIKAWA A, MELONI M, EMAN-UELI C, MADEDDU P. Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ Heart Fail 2010; 3: 294-305.
- 32) Bozic I, Savic D, Stevanovic I, Pekovic S, Nedeljkovic N, Lavrnja I. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells. Front Cell Neurosci 2015; 9: 351.
- 33) PAN X, GONG N, ZHAO J, YU Z, GU F, CHEN J, SUN X, ZHAO L, YU M, XU Z, DONG W, QIN Y, FEI G, ZHONG C, XU TL. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 2010; 133: 1342-1351.
- 34) NENNA A, NAPPI F, AVTAAR SINGH SS, SUTHERLAND FW, DI DOMENICO F, CHELLO M, SPADACCIO C. Pharmacologic approaches against advanced glycation end products (AGEs) in diabetic cardiovascular disease. Res Cardiovasc Med 2015; 4: e26949.
- YAMAGISHI S, NAKAMURA K, IMAIZUMI T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 2005; 1: 93-106.
- BROWNLEE M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820.
- THORNALLEY PJ. The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Rev 2005; 1: 287-298.

- 38) BOOTH AA, KHALIFAH RG, HUDSON BG. Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine. Biochem Biophys Res Commun 1996; 220: 113-119.
- 39) VOLVERT ML, SEYEN S, PIETTE M, EVRARD B, GANGOLF M, PLUMIER JC, BETTENDORFF L. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol 2008; 8: 10.
- HATFIELD J. Advanced glycation end-products (AG-Es) in hyperglycemic patients. J Young Invest 2005; 13: 1.
- 41) ALKHALAF A, KLEEFSTRA N, GROENIER KH, BILO HJ, GANS RO, HEERINGA P, SCHEIJEN JL, SCHALKWIJK CG, NAVIS GJ, BAKKER SJ. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy. PLoS One 2012; 7: e40427.
- 42) BENFOTIAMINE (MONOGRAPH). Alternative Medicine Review 2006; 11: 238-242.
- 43) HAMMES HP, MARTIN S, FEDERLIN K, GEISEN K, BROWN-LEE M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U S A 1991; 88: 11555-11558.
- 44) SANCHEZ-RAMIREZ GM, CARAM-SALAS NL, ROCHA-GON-ZALEZ HI, VIDAL-CANTU GC, MEDINA-SANTILLAN R, REYES-GARCIA G, GRANADOS-SOTO V. Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur J Pharmacol 2006; 530: 48-53.
- 45) STRACKE H, HAMMES HP, WERKMANN D, MAVRAKIS K, BITSCH I, NETZEL M, GEYER J, KOPCKE W, SAUERLAND C, BRETZEL RG, FEDERLIN KF. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes 2001; 109: 330-336.
- 46) CAMERON NE, GIBSON TM, NANGLE MR, COTTER MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 2005; 1043: 784-792.
- HAUPT E, LEDERMANN H, KOPCKE W. Benfotiamine in the treatment of diabetic polyneuropathy--a threeweek randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther 2005; 43: 71-77.
- 48) WINKLER G, PAL B, NAGYBEGANYI E, ORY I, POROCHNAVEC M, KEMPLER P. Effectiveness of different benfotiamine dosage regimens in the treatment of painful diabetic neuropathy. Arzneimittelforschung 1999; 49: 220-224.
- 49) BABAEI-JADIDI R, KARACHALIAS N, AHMED N, BATTAH S, THORNALLEY PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003; 52: 2110-2120.
- 50) KARACHALIAS N, BABAEI-JADIDI R, RABBANI N, THORNALLEY PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 2010; 53: 1506-1516.

- 51) THORNALLEY PJ, BABAEI-JADIDI R, AL ALI H, RABBANI N, ANTONYSUNIL A, LARKIN J, AHMED A, RAYMAN G, BODMER CW. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 2007; 50: 2164-2170.
- 52) YOON JH, BAEK SJ. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 2005; 46: 585-596.
- BAPNA M, CHAUHAN LS. The ambidextrous cyclooxygenase: an enduring target. Inflamm Allergy Drug Targets 2015; 13: 387-392.
- 54) ZHANG X, TANG N, HADDEN TJ, RISHI AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011; 1813: 1978-1986.
- 55) SONG G, OUYANG G, BAO S. The activation of Akt/ PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9: 59-71.
- 56) MORRISON DK. MAP kinase pathways. Cold Spring Harb Perspect Biol 2012; 4.
- 57) SUGIMORI N, ESPINOZA JL, TRUNG LQ, TAKAMI A, KONDO Y, AN DT, SASAKI M, WAKAYAMA T, NAKAO S. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells. PLoS One 2015; 10: e0120709.
- 58) CROSS MJ, DIXELIUS J, MATSUMOTO T, CLAESSON-WELSH L. VEGF-receptor signal transduction. Trends Biochem Sci 2003; 28: 488-494.
- 59) MCCUBREY JA, STEELMAN LS, BERTRAND FE, DAVIS NM, SOKOLOSKY M, ABRAMS SL, MONTALTO G, D'ASSORO AB, LIBRA M, NICOLETTI F, MAESTRO R, BASECKE J, RAKUS D, GIZAK A, DEMIDENKO ZN, COCCO L, MARTELLI AM, CER-VELLO M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 2014; 5: 2881-2911.
- 60) COLE AR, KNEBEL A, MORRICE NA, ROBERTSON LA, IR-VING AJ, CONNOLLY CN, SUTHERLAND C. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 2004; 279: 50176-50180.
- 61) JIANG H, GUO W, LIANG X, RAO Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 2005; 120: 123-135.
- 62) YOSHIMURA T, KAWANO Y, ARIMURA N, KAWABATA S, KI-KUCHI A, KAIBUCHI K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005; 120: 137-149.
- 63) ZUMBRUNN J, KINOSHITA K, HYMAN AA, NATHKE IS. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 2001; 11: 44-49.
- 64) COHEN P, GOEDERT M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 2004; 3: 479-487.
- 65) FANG X, YU SX, LU Y, BAST RC JR, WOODGETT JR, MILLS GB. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 2000; 97: 11960-11965.

3272

- 66) LEOPOLD JA, WALKER J, SCRIBNER AW, VOETSCH B, ZHANG YY, LOSCALZO AJ, STANTON RC, LOSCALZO J. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 2003; 278: 32100-32106.
- 67) MARKOVA N, BAZHENOVA N, ANTHONY DC, VIGNISSE J, SVISTUNOV A, LESCH KP, BETTENDORFF L, STREKALOVA T. Thiamine and benfotiamine improve cognition and ameliorate GSK-3beta-associated stress-induced behaviours in mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75: 148-156.
- 68) PAN X, CHEN Z, FEI G, PAN S, BAO W, REN S, GUAN Y, ZHONG C. Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer's disease. Neurosci Bull 2016; 32: 591-596.
- SCHLEICH K, LAVRIK IN. Mathematical modeling of apoptosis. Cell Commun Signal 2013; 11: 44.
- 70) JEONG SY, SEOL DW. The role of mitochondria in apoptosis. BMB Rep 2008; 41: 11-22.
- 71) BELTRAMO E, NIZHERADZE K, BERRONE E, TARALLO S, POR-TA M. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes. Diabetes Metab Res Rev 2009; 25: 647-656.

- 72) HARISA GI. Benfotiamine enhances antioxidant defenses and protects against cisplatin-induced DNA damage in nephrotoxic rats. J Biochem Mol Toxicol 2013; 27: 398-405.
- 73) CHAKRABARTI R, CHEN M, LIU W, CHEN S. Preventive effects of benfotiamine in chronic diabetic complications. J Diabetes Investig 2011; 2: 123-131.
- 74) OHASHI H, TAKAGI H, OH H, SUZUMA K, SUZUMA I, MIY-AMOTO N, UEMURA A, WATANABE D, MURAKAMI T, SUGA-YA T, FUKAMIZU A, HONDA Y. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 2004; 94: 785-793.
- 75) CHO HJ, KWON GT, PARK JH. trans-10,cis-12 conjugated linoleic acid induces depolarization of mitochondrial membranes in HT-29 human colon cancer cells: a possible mechanism for induction of apoptosis. J Med Food 2009; 12: 952-958.
- 76) SCHUPP N, DETTE EM, SCHMID U, BAHNER U, WINKLER M, HEIDLAND A, STOPPER H. Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients. Naunyn Schmiedebergs Arch Pharmacol 2008; 378: 283-291.