
Towards an ontology-based approach for specifying

and securing Web services

Z. Maamara, N.C. Narendrab,*, S. Sattanathanc

aZayed University, Dubai, U.A.E.
bIBM Software Labs India, Bangalore, India

cNational Institute of Technology Karnataka, Surathkal, India

Received 7 December 2004; revised 13 April 2005; accepted 11 May 2005

Available online 23 June 2005

Abstract

With the increasing popularity of Web services and increasing complexity of satisfying needs of users, there has been a renewed interest in

Web services composition. Composition addresses the case of a user request that cannot be satisfied by any available Web service, whereas a

composite service obtained by integrating Web services might be used. Because Web services originate from different providers, their

composition faces the obstacle of the context heterogeneity of Web services. An unawareness or poor consideration of this heterogeneity

during Web services composition and execution result in a lack of the quality and relevancy of information that permits tracking the

composition, monitoring the execution, and handling exceptions. This paper presents an ontology-based approach for context reconciliation.

The approach also focuses on the security breaches that threaten the integrity of the context of Web services, and proposes appropriate means

to achieve this integrity.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Web services; Composition; Context; Ontology; Security
1. Introduction

A Web service is an accessible application that other

applications and humans can discover and trigger to satisfy

multiple needs (e.g. weather forecasts) [2]. One of the

strengths of Web services (also called services in this paper)

is their capacity to be composed into high-level business

processes known as composite services. Composition

primarily addresses the situation of a user request that

cannot be satisfied by any available service, whereas a

composite service obtained by integrating available services

might be used [3].

Current standards for Web services (e.g. WSDL, SOAP

and UDDI [20]) revolve around XML to achieve platform-

independence features. Therefore, Web services compo-

sition is only achieved at the level of message interactions.
0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.05.004

* Corresponding author.

E-mail addresses: zakaria.maamar@zu.ac.ae (Z. Maamar), narendra@

in.ibm.com (N.C. Narendra), ss_nitk@yahoo.co.in (S. Sattanathan).
This is by far not sufficient, as composition needs also to be

conducted at the level of message semantics [1]. The

semantic composition guarantees that the information

exchanged between Web services is clearly understood.

The need for a common semantics is intensified when Web

services, which originate from different providers, have to

take part in the same composition. If the semantic

heterogeneity is not dealt with properly, it constitutes a

serious obstacle to Web services composition [17]. To

tackle this obstacle the Web services of a composite service

have to initially agree on the information they will exchange

before further interactions. Our response to the semantic

heterogeneity uses ontologies [12] and consists of making

Web services dynamically bind to the ontology that is

suitable for the situation in which they operate. By situation,

we mean the application domain of a composition such as

vacation planning and conference organization. Ontology is

a specification of the concepts of an application domain and

the semantic proximity existing between these concepts.

Besides the information disparity challenge, further

challenges could hinder Web services composition such as

which businesses have the capacity to provision Web

services, when and where the provisioning of Web services
Information and Software Technology 48 (2006) 441–455
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455442
occurs, and how Web services from independent providers

coordinate their activities so that conflicts can be avoided.

To face some of these challenges, we recommended

considering the context of the composition and execution

of Web services [15]. Context is the information that

characterizes the interactions between humans, appli-

cations, and the surrounding environment [5,10]. From a

Web services perspective, we defined context as a set of

common meta-data about the current execution status of a

Web service and its capability of collaborating with peers,

possibly enacted by distinct providers. For example a Web

service assesses its execution status before it agrees on

participating in a composition.

Composition ofWeb services is a very active area of R&D

[16]. However very little has been accomplished to date

regarding the integration of ontologies and context into Web

services composition approaches. Multiple obstacles still

hinder this integration such as Web services act as passive

components that cannot be embedded with context-awareness

mechanisms, existing approaches for Web services compo-

sition (e.g. BPEL, WSFL) typically facilitate choreography

only, while neglecting context of users, services, and

computing resources, lack of appropriate techniques for

formalizing contexts of Web services using ontologies, and

last but not least scarcity of techniques for protecting

contextual information exchanged between Web services,

frombeing intercepted andaltered. In this paper,wepresentour

work on using ontologies for specifying and securing contexts

ofWeb services. Ourwork,which differs from contextualizing

ontologies [24], takes advantage of the research findings of the

Semantic Web community and its specification language

Ontology Web Language-based Web Service Ontology

(OWL-S [11], formerly DAML-S). Our objective is to develop

a language similar to OWL-S for managing contexts of Web

services. We refer to this language as OWL-C standing for

Ontology Web Language-based Context Ontology. The

elements that are highlighted in this paper and constitute the

foundations of OWL-C are the following:

† Web services of type instance are obtained out of Web

services (details onWeb services instantiation are given in

[15]).

† Web services are subject to multiple constraints such as

maximum number of Web service instances to make

available for concurrent use, and strategy for selecting the

ontology.

† Prior to agreeing on participating in a composite service, a

Web service assesses its ongoing participations through

awareness mechanisms. To perform this assessment, the

three types of services (i.e. composite service,Web service,

and Web service instance) are each associated with a

context of type C-context, W-context, and I-context,

respectively.

The rest of this paper is organized as follows. Section 2

presents our context reconciliation approach using ontology.
The foundations of OWL-C and a running example on using

OWL-C are also presented in this section. Section 3

introduces our strategy for securing contexts during inter-

actions of Web services. Section 4 overviews the status of the

proof-of-concept prototype of specifying and securing Web

services using ontologies. Section 5 presents related work.

Finally, we draw our conclusions in Section 6. It should be

noted at this stage that the mechanisms for discovering the

component Web services of a composite service, while

important, are beyond this paper’s scope. UDDI-based

mechanisms can for instance be used.
2. Ontology-based context reconciliation

Ignoring the problem of context heterogeneity of Web

services has side-effects on the normal progress of their

composition. These side-effects are multiple such as adopting

the wrong strategy for selecting a component Web service

(e.g. favoring execution-cost criterion over reliability criterion

instead of the opposite), delaying the triggering of some

urgent componentWeb services, or poorly assessing the exact

execution status of a Web service (e.g. service in blocked

status while being thought in running status). In the following,

we present the foundations on which OWL-C is built upon.

Also discussed in this section, the principles that regulate the

operation of Web services during context detection, assess-

ment, and reconciliation.

2.1. Overview

Fig. 1 conceptualizes the approach of dealing with the

context heterogeneity ofWeb services. The approach revolves

around Web service instances binding to appropriate

ontologies. By binding, we mean the compliance of a Web

service instance with a specific ontology for data-management

needs when it interacts with peers. The creation of Web

service instances is subject to accepting the invitations of

participation that originate from composite services to Web

services (a Web service can always reject an invitation of

participation in a composite service; see [15] for more details).

Upon invitation acceptance, the composite service informs the

multiple component Web services about the ontology that

their respective Web service instances need to adopt. The

ontology is related to the application domain in which the

composition of Web services occurs (e.g. travel domain). We

assume that ontologies are available in a repository that

administrators maintain (Fig. 1). In the rest of this paper, we

also assume that the specification of the component Web

services is based on service chart diagrams [14]. A service

chart diagram extends a state chart diagram with emphasis on

the context surrounding the execution of a Web service rather

than only the states that a Web service takes. Our selection of

service chart diagrams is motivated by the value-added of

state chart diagrams to Web services composition as reported

in [26].

Fig. 1. Context and ontology use in Web services composition.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 443
A service chart diagram represents a Web service from

five perspectives [14]: state, flow, performance, business,

and information. We focus on the information perspective

since it clearly states the ontology that a Web services has

to use. The information perspective represents the pre- and

post-execution data that are exchanged between the Web

services according to a specific chronology. For example,

flight-reservation Web service needs ‘date of departure’,

‘date of return’, and ‘destination city’ as pre-data. After

processing, this service submits the data with a confirmation

of the reservation as post-data to hotel-booking Web

service. Both services are aware of the meaning and

structure of these data.

Since a composite service is made up of several

component services, its underlying process model is

specified as a state chart diagram where states correspond

to the service chart diagrams of the Web services, and

transitions connect these diagrams through events, con-

ditions, and variable assignment operations. Fig. 2 rep-

resents a composite service as a state chart diagram. The

composite service is about vacation logistics. Each

component Web service has a service chart diagram:

sightseeing (SI), weather (WE), shopping (SH), and

transportation (TR). These diagrams are connected through

transitions; some of them have constraints to satisfy (e.g.

[confirmed(hot weather)]).
Fig. 2. Specification of a composite s
2.2. Operation of Web services

According to the Web services instantiation principle [15],

a Web service can be part of multiple composite services

through the multiple service instances it deploys. A Web

service is instantiated each time it receives from a composite

service a request of participation in a composition. Before the

instantiation takes place, several aspects related to the Web

service are checked. First, the number of Web service

instances currently running vs. the maximum number of Web

service instances that can be simultaneously run (i.e. instances

of the same Web service). Second, the execution status of

each Web service instance that is deployed and part of a

composite service. Third, the execution progress of the

preceding Web service instances per Web service instance to

be deployed. This progress is required in case of data or

control dependency between the different service instances.

We recall that Web service instances originate from different

Web services, which accentuates the semantic heterogeneity

challenges. Finally, the time that the composite service would

like having a Web service instance made available for

invocation vs. the time it would be possible for the Web

service to have a Web service instance made available for

invocation. It happens that a composite service has deadlines

to meet, thus, it has to ensure that the Web service instances

are deployed on time.
ervice as a state chart diagram.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455444
To monitor the deployment of the specification of a

composite service from a temporal perspective (i.e. what

occurred, what is occurring, and what might occur), the

composite service needs a structure on which a specific

processing is performed. This structure is called C-context

(context of composite service). The same argument in favor of

contexts of Web services (W-context) is adopted. Web

services take part in different composite services and require

structures to support their tracking per composite service.

Web services rely on their respective W-contexts before they

make any decision of participation in a new composite

service. The decision-making process of a Web service needs

to be fed with details that directly originate from its Web

service instances. The Web service instances rely on their

respective I-contexts to collect and submit details to the

W-contexts of their Web services (Fig. 1).

Because of the heterogeneity of the Internet, it is unlikely

that a certain context provider would deliver all types of

contextual information [21,27]. Therefore, contexts will have

a content of different granularities and structures as well. To

manage this heterogeneity, contexts of Web services are

subject to two operations referred to as consolidation and

reconciliation. In Fig. 1, numbers between brackets represent

the chronology of these two operations.

† Consolidation at the level of Web services: each time a

Web service accepts an invitation of participation in a

composite service (Fig. 1-(1)), a Web service instance and

I-context are created (Fig. 1-(2)). The transfer of details

from the I-contexts of the same Web service instances to

the W-Context of their associated Web service is featured

by a consolidation of these details before this W-context is

updated (Fig. 1-(3,4)). Consolidation means the combi-

nation of details that stem from a lower level to a higher

level. Once the consolidation is completed, a Web service

can determine for each of its Web service instances the

following: execution status, the actions it has performed,

and expected completion execution-time so that the Web

service can commit additional Web service instances for

the benefit of other composite services.

† Reconciliation at the level of composite services1: since

the component Web services of a composite service have

multiple providers, the definition of their respective

W-contexts (and obviously the definition of the

I-contexts of their service instances) varies in terms of

structure and content (e.g. different numbers of arguments,

different names of arguments). The transfer of details from

the I-contexts of the Web service instances to the

C-context of a composite service is featured by a

reconciliation of these details before the C-context is

updated (Fig. 1-(3,5)). For example it occurs that the

I-context of a Web service instance of a composite service

has location of execution argument, whereas the I-context
1 That is how context heterogeneity of Web services is addressed.
of another Web service instance of this composite service

has site of execution argument. During reconciliation,

execution site and execution location are considered the

same. To ensure that the composite service recognizes the

differences between the arguments of contexts, it refers to

ontology of context. Execution location or execution site

mean here the computing resource on which the

performance of a Web service instance occurs.

In Fig. 1, ontologies during Web services composition

participate in two operations. The consolidation operation

concerns the data that the Web service instances of a

composite service exchange. The information perspective of

a service chart diagram indicates the compliance of a Web

service with a specific ontology. The reconciliation operation

concerns the data that the contexts of Web service instances

submit to the contexts of composite services. Before updating

the contexts, their heterogeneity needs to be dealt with. This is

done through OWL-C, a dedicated language for specifying

contexts ofWeb services. Backing the importance of OWL-C,

Wang et al. discuss the motivations of developing context

models based on ontologies [8]:

† Knowledge sharing: the use of a context ontology enables

different computational entities to have common concepts

about context when they engage in interactions with other

entities. We argued that component Web services of a

composite service will highly come from different origins.

† Logic inference: based on ontology, context-aware

computing can exploit various existing logic reasoning

mechanisms to infer high-level, conceptual context from

low-level, raw context, and to check and solve inconsistent

context knowledge due to imperfect sensing. We argued

that because of the three types of services (composite

service, Web service, and instance service) associating

each type with a specific type of context constitutes a

normal practice. In addition, this separation of types

enables generating contextual information at different

levels of abstraction.

† Knowledge reuse: by reusing well-defined Web ontolo-

gies of different domains (e.g. temporal and spatial

ontology), large-scale context ontology can be composed

without starting from scratch. Plus, a context ontology

facilitates the sharing, management, and inference of a

given context.
2.3. Foundations of OWL-C

Fig. 1 depicts three levels of abstraction, where each level

identifies a type of service: Web service instance, Web

service, and composite service. Contexts of Web service

instances have the fine-grained content, and contexts of

composite services have the coarse-grained content. The

content of I-context updates respectively the content of

W-context after consolidation and the content of C-context

Fig. 3. Connection between Web service and context.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 445
after reconciliation, too. In the following, we discuss the

foundations of OWL-C, a language for defining the structure

and content of context. It is stated that for a good language for

describing services, multiple requirements have to be fulfilled

such as editable, semantically expressive, automatically

comparable, and flexible. We consider that a language for

describing contexts has to fulfill the same requirements. In

addition, by taking OWL-S as a starting point for defining

OWL-C a compatibility with the existing standards for Web

services is achieved.

Context specification using OWL-C includes two parts.

The first part is about the arguments that define the structure of

context. The second part is about the capabilities associated

with context. In the first part, context is an additional

argument of a Web service. Web services regularly exhibit

their arguments (e.g. identifier, execution cost) to the external

environment (through UDDI). Because context is a multi-

argument structure, OWL-C assists in the stipulated semantics

of these arguments. As a result various parties agree now on a

common representation of the content of the context of Web

services.With regard to context capabilities, a service needs to

be embedded with awareness mechanisms, so that it can take

advantage of the information that context caters. These

mechanisms gather any contextual raw data from sensors and

detect any change in the environment. A change needs to be

evaluated by the Web service through an assessment module,
Fig. 4. Ontology-based description
so that it takes appropriate actions through a deployment

module (Fig. 3).

Fig. 4 represents the context ontology as a directed graph.

Nodes represent the ontology’s concepts and edges represent

relationships between concepts. Edges are annotated with

cardinality. For illustration purposes, some of the concepts

and relationships of the ontology context of Web services are

discussed below:

† Context is the core concept of the ontology. A context type

is associated with a specific type of service namely Web

service, Web service instance, or composite service.

† Label (1:n) on edge (Web service/Web service instance)

indicates that a Web service has one or more Web service

instances. In addition, label (1:1) on edge (Web service

instance/composite service) indicates that a Web

service instance belongs to one composite service.

† Edges (Web service/constraint) and (Web service

instance/constraint) illustrate respectively the con-

straints on a Web service (e.g. maximum number of

Web service instances that can be created) and the

constraints on a Web service instance (e.g. ontology of the

domain that the instance has to comply with).

† Edge (context/type) indicates that a context has exactly

one type namely I,W, and C. Each context type has a set of

sensors, purpose, description, name, and a set of
of context of Web services.

Table 1

Some arguments of I-context

Label: corresponds to the identifier of the service instance

Status: informs about the execution status of the service instance (in-

progress, suspended, aborted, and terminated)

Previous service instances: indicates if there were service instances before

the service instance. These service instances have already completed their

execution

Next service instances: explicates whether there will be service instances to

be executed after the service instance. The Web services of these service

instances will be called for execution

Regular actions: illustrates the actions the service instance performs

Begin time and end time (expected and effective): informs when the

execution of the service instance has started, and when this execution is

expected to terminate/has effectively terminated. End-time expected is user

dependent whereas end-time effective is execution dependent

Reasons of failure: informs about the causes that fail the execution of the

service instance

Corrective actions: illustrates the actions the service instance performs if

the execution fails

Date: identifies the time of updating the arguments above

Table 2

Some arguments of W-context

Label: corresponds to the identifier of the Web service

Number of service instances allowed: corresponds to the maximum number

of service instances that can be created from the Web service

Number of service instances running: corresponds to the number of service

instances of the Web service that are currently running

Next service instance availability: corresponds to when a new service

instance of the Web service will be made available

Status/Service instance/Composite service: corresponds to the status of

each service instance of the Web service that is deployed (based on status

argument of I-context)

Date: identifies the time of updating the arguments above

Table 4

Examples of arguments of contexts

Context Argument Value

I-context Name Status

Description Table 1

Data type String

List of synonyms Stage, State

W-context Name Number of instances allowed

Description Table 2

Data type Integer

List of synonyms Maximum number of

Table 3

Some arguments of C-context

Label: corresponds to the identifier of the composite service

Previous Web services: indicates which Web services of the composite

service have been executed with regard to the current Web services

Current Web services: indicates which Web services of the composite

service are currently under execution

Next Web services: defines which Web services of the composite service

will be called for execution with regard to the current active Web service(s)

Begin time: informs when the execution of the composite service has

started

Status/Web service instance: corresponds to the status of the Web service

instance of the composite service that is deployed (based on status

arguments of I-context)

Date: identifies the time of updating the arguments above

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455446
arguments. An argument has a name, data type,

description, and synonyms.

As mentioned earlier, a set of arguments constitute the

structure of context. The number of arguments varies

depending on the context type. We discuss below the

arguments of the structure that can populate each context

type. First of all, we start with the structure of I-context of a

Web service instance (Table 1): label, status, previous service

instance, next service instance, regular actions2, begin time,

end time (expected and effective), reasons of failure,

corrective actions3, and date.

For the structure of W-context of a Web service, which

will be built upon the I-contexts of its Web service instances,

Table 2 suggests some arguments: label, number of service

instances allowed, number of service instances running, next

service instance availability, status per service instance per

composite service, and date.

For the structure of C-context of a composite service,

which will be built upon the W-contexts of its component

Web services, Table 3 suggests some arguments: label,

previous Web services, current Web services, next Web

services, begin time, status per Web service instance, and

date.

In the structure of a context, an argument has a name,

description, type, and a list of synonyms. Name and

description arguments are already explained in Tables 1–3.

In the following, we provide examples on the type and set of

synonyms of an argument using Table 4. In I-context status is

the name of an argument, its description is in Table 1, its data
2 Regular actions argument of I-Context illustrates the actions that a Web

service instance has executed according to a certain context. This helps

track the execution trace of the Web service instance.
3 Corrective actions argument is in relation to regular actions argument.
type is string, and stage and state constitute both its list of

synonyms. A similar description applies to all arguments of

W-context and C-context.

OWL-S organizes the description of a Web service along

three categories [6]: profile, process model, and grounding.

While developing OWL-C, we aimed at making sure that the

description of a context happens along the same categories.

The profile describes the arguments and capabilities of context

(what does the context require and provide?). The process

model suggests how context collects raw data from sensors

and detects changes that need to be submitted to the service.
instances authorized

C-context Name Begin time

Description Table 3

Data type TIME

List of synonyms Start time

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 447
Finally, the grounding defines the bindings (protocol, input/

output messages, etc.) that make context accessible to a

service. Because context is an argument of the structure of a

service, the context profile can be used during the selection of

Web services for composition. Discovering Web services

using context is important since Web services are provisioned

according to specific preferences such as user location

(service selection in a context-sensitive manner) [22].
2.4. On using OWL-S

To illustrate the feasibility of OWL-S, a running

example is provided. Imagine a travel-agent service (to be

mapped onto a composite service) that has to put together

an itinerary for a tourist. Two of the most significant

component services of this composite service, would be taxi

booking (mapped onto Web service1 of provider1) and hotel

booking (mapped onto Web service2 of provider1 and Web

service2 of provider2). The instantiation process of both

Web services occurs as follows: (i) a hotel-booking service

instance for a 5-star hotel (Web Service Instance21); and (ii)

two taxi-booking service instances, one that books a taxi

from the airport to the hotel (Web Service Instance12), and

one that books a taxi that takes the tourist around the city

(Web Service Instance11).

Some arguments of the I-context of the airport taxi service

instance could be (as per Table 1):

† Previous service instances: airport-taxi service instance

could have been preceded by another service instance,

which finds out the arrival details of a tourist.

† Regular actions: airport-taxi service instance executes

some actions once a tourist is picked up from the airport by

informing for example the central reservation system. The

composite service is also informed about the progress of

airport-taxi service instance so that it can update its

C-context (after reconciliation).

† Begin and end time: airport-taxi service instance informs

its respective Web service when its execution (i.e. ride

from the airport to the hotel) has started and terminated.

The Web service is also informed about the progress of

airport-taxi service instance so that it can update its

W-context (after consolidation).

Similar information would also be sent out from the

I-context of the tourist-taxi service to the composite service.

With regard to the W-context of taxi-booking service, this

one would maintain the data regarding the running airport

and tourist-taxi service instances, and also the status of all

running service instances (as per Table 2). With regard to

the C-context of travel-agent service, this one would

maintain the information regarding the taxi and hotel-

booking services and service providers, and also the service

instance data received from the I-contexts via reconciliation

(as per Table 3).
3. Security of Web services contexts

In Section 2.4, we strengthened the necessity of dealing

with the content heterogeneity that features the contexts of

Web services. An unawareness or poor consideration of this

heterogeneity result in a lack of the quality and relevancy of

the information that is deemed appropriate for tracking

composition, monitoring its execution, and handling its

exceptions. In what follows, we focus on the security

breaches that threaten the integrity of the contexts of Web

services, and proposes appropriate means to achieve this

integrity.

3.1. Current situation

In Fig. 1, the three contexts have a double role: support

tracking the execution status of each Web service instance

of a composite service, and support deploying the

appropriate corrective actions in case of exceptions. Besides

the risk of intercepting SOAP messages that are passed

between a Web service invoker and a service provider in a

Web services transaction scenario, altering contextual

information during its transfer between the various parties

(composite services, Web services, and Web service

instances) has negative consequences on the normal

progress of a composition. Because current security

mechanisms for Web services interactions are pre-defined,

they, unfortunately, do not take advantage of the contextual

information that might help select the appropriate security

mechanism. In addition, these security mechanisms do no

distinguish between the specific requirements that each type

of service (composite, Web, or instance) has when it comes

to securing its contextual information.

In Fig. 1, the context model associated with Web services

composition spreads over three levels. This model, however,

does not integrate any security measures during context

exchanges. Because composition involves many Web service

instances, communication between the three levels happens

according to different patterns: between service instances of a

composite service, from service instances toWeb services and

vice-versa, from service instances to composite services and

vice-versa, and (iv) from Web services to composite services

and vice-versa. We categorize the threats that affect Web

services into three categories (adapted from [28]): identity

threats where an attacker impersonates a legitimate Web

service or user; content-borne threats where an attacker

attacks Web services directly (e.g. buffer overflow); and

operational threats that render Web services unusable (e.g.

denial of service attacks).

3.2. Proposed security model

The encryption of a content to be submitted over a

transport middleware is the most widely means that permits

facing interception and alteration threats. Digital certificates,

unique identifiers, and heuristic-based protections are used

Table 5

Some arguments of ISec-context

Label: identifies a service instance

Signature: establishes the identity of the service instance so that messages

to other components (instance, Web service, composite service) are

identified

Security mechanism: sets the encryption/decryption mechanism needed for

authenticating messages received from other components

Security status: Indicates the status of authenticating the received message

in terms of success or failure

Security violation: indicates the type of security violation that a message

was subject to (applies when security status is failure)

Corrective actions: illustrates the actions that the service instance takes

when security status is failure

Date: last time of update of the above security arguments

Table 6

Some arguments of WSec-context

Label: identifies a Web service

Signature: establishes the identity of the Web service so that messages to

other components (instance, composite service) are identified

Security mechanism: sets the encryption/decryption mechanism needed for

authenticating messages received from other components

Security status: Indicates the status of authenticating the received message

in terms of success or failure

Security violation: indicates the type of security violation that a message

was subject to (applies when security status is failure)

Corrective actions: illustrates the actions that the Web service takes when

security status is failure

Security status/service instances: indicates the security status of the

interactions for each completed/failed service instance of the Web service.

This is obtained from security-status argument of ISec-context. Date: last

time of update of the above security arguments

Table 7

Some arguments of CSec-context

Label: identifies a composite service

Signature: establishes the identity of the service so that messages to other

components (instance, Web service) are identified

Security mechanism: sets the encryption/decryption mechanism needed for

authenticating messages received from other components

Corrective actions: illustrates the actions the composite service takes in

case security status is failure

Security per previous Web service instances: indicates the encryption/

decryption mechanisms of the Web service instances of the composite

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455448
during encryption. However, these techniques are too

complex for Web services security, could be unwieldy,

and affect negatively the execution performance of Web

services. Our model for securing Web services interactions

during context exchange features three security contexts:

ISec-context for security of Web service instance, WSec-

context for security of Web service, and CSec-context for

security of composite service. These security contexts are

defined along with the regular service contexts (i.e. I-, W-,

and C-context). A security context has a major role in

highlighting the security strategy that a service adopts. Any

change in this strategy is automatically reflected in the

security context so that other peers are aware of the change

in case they have to comply with it. Stating the security

strategy in a security context is backed by Kagal et al. [18],

who mention that a Web service could clearly indicate what

it can perform4 and what it requires from invoker such as

authentication and use of XML for communication. The

distinction between service context and security context

gives better flexibility in the management of the aspects that

each type of context is concerned with. A service context

focuses on the changes that apply to a service (whether

composite, Web, or instance) like availability and commit-

ment, whereas the security context focuses on the strategy

of securing the interactions of services during data-context

exchange.

At the Web-service instance level, the primary use of

I-context is to track its execution status (Table 1). If a service

instance was subject to threats that attempted altering its

context, this should be reported in its respective ISec-context

so that corrective actions are planned for the forthcoming

service instances. Each Web service instance has its copy of

ISec-context. Table 5 contains samples of the arguments that

populate ISec-context.

At the Web-service provider level, whenever a Web

service receives a request of participation in a composition,

it validates its current capabilities using C-context and

checks its security requirements. If both are satisfactory, the

Web service creates a new service instance. Table 6

contains samples of the arguments that populate WSec-

context.

At the composite-service level, the C-context traces the

execution of the composite service and its respective

component service instances, and tries to identify potential

conflicts (in terms of resources, shared variables, shared log

files) between these service instances. The CSec-context

ensures that the essential security property of non-repudiation

of the messages sent and received by the composite service
4 For illustration purposes, if the security mechanism of a Web service

instance uses the Blowfish algorithm (www.schneier.com/paper-blowfish-

fse.html) in its interaction, then all messages sent to this service instance

from either its Web service, other service instances, or composite services,

should be encrypted using this algorithm. This, of course, assumes that each

Web service instance contains access to all the encryption mechanisms

needed by other Web service instances.
during its interactions with Web service providers and Web

service instances. This can be achieved by maintaining

message logs along with the identities of senders and

recipients. Table 7 contains samples of the arguments that

populate CSec-context.
service that have already been executed

Security for current Web service instances: Indicates the encryption/

decryption mechanisms of Web service instances that are currently under

execution

Security per next Web service instances: Indicates the encryption/

decryption mechanisms of Web service instances that will be called for

execution

Date: last time of update of the above security arguments

http://www.schneier.com/paper-blowfish-fse.html
http://www.schneier.com/paper-blowfish-fse.html

Fig. 5. Architecture of the proof-concept prototype.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 449
4. Implementation

We report on the status of our prototype that demonstrates

the feasibility of using ontologies for specifying and securing

contexts of Web services. The prototype has a set of plug-ins

that runs on top of Eclipse (www.eclipse.org). Eclipse is a

platform-independent, open, and extensible workbench, and

provides well-designed and well-documented extension

points for developers to build domain-specific applications.

These plug-ins can be integrated within the workbench

without the technical limitations imposed by most proprietary

development environments (www.phpeclipse.de/tiki-index.

php?pageZAboutCEclipse).

In the prototype, four plug-ins are developed: user

interface, WS-execution platform, ontology repository, and

help. Fig. 5 illustrates the way these plug-ins connect to

Eclipse. The user-interface plug-in extends the workbench in

terms of perspective, wizards, views, and editor. The WS-

execution platform plug-in extends the workspace in terms of

project nature (i.e. context-based Web services) and builder

(i.e. context assessment, validation, and reasoning). The

ontology repository plug-in stores and retrieves the context

ontologies by extending them. Finally, the help plug-in

provides the necessary documentation for using the proof-of-

concept. We use Eclipse PDE (Plug-in Development

Environment) for developing these plug-ins, and SWT

(Standard Widget Toolkit) and JFACE (User Interface tool

kits) classes for developing user interfaces.
Fig. 6. Extensions to O
The class diagram that represents the integration of

context into Web services and security is presented in

Appendix A. The connection that exists between OWL-C

and OWL-S is represented in Fig. 6. Next to information

about capabilities, access methods, and protocol of a Web

service, a new section is added to OWL-S, which contains

context information about the service and its security

means (depicted in yellow). Basically, the OWL-S

document of W-context will be defined as presented in

Appendix B.

For prototyping requirements, we have created Book

Finder and Book Payment Web services, as well as Book

Purchase composite service. Book Finder service identifies

the details about a given book, and Book Payment service

performs payment related operations (e.g. credit card

verification, account debiting). Book Purchase (noted Book

Service in the various interfaces) composite service integrates

theseWeb services sequentially.We have set the limit ofWeb

service instances of Book Finder and Book Payment to 3

and 1, respectively. When an instantiation request for either

service is received after its respective limit has been reached,

the prototype displays an error message, and the service is not

instantiated.
4.1. Context consolidation

As reported earlier, consolidation happens at the level of

Web services and means the combination of details that

stem from a lower level (Web service instances) to a higher

level (Web services). Fig. 7-(a) presents the initial values of

the W-context parameters of Book Finder. In this figure, the

focus is on InstanceRunning parameter (highlighted in

green). After the acceptance of two instantiation requests,

the consolidated version of W-context shows two Web

service instances under execution (Fig. 7-(b)). When one of

the instances completes its execution successfully, the

number of running instances drops to 1 (Fig. 7-(c)).

InstanceAllowed parameter corresponds to the maximum

number of service instances that a Web service can

concurrently deploy.
WL-S ontology.

http://www.eclipse.org
http://www.phpeclipse.de/tiki-index.php?page=About+Eclipse
http://www.phpeclipse.de/tiki-index.php?page=About+Eclipse

Fig. 7. Consolidation of contexts.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455450
4.2. Context reconciliation

As reported earlier, reconciliation happens at the level of

composite services, since the component Web services of a

composite service have multiple providers, and the definition

of their respective W-contexts (and obviously the definition of

the I-contexts of their service instances) varies in terms of

structure and content (e.g. different numbers of arguments,

different names of arguments).

A part of the reconciliation as supported by the prototype is

shown in Fig. 8. Fig. 8-(a,b) shows the initial status of both the

W-context of Book Finder and the C-context of Book

Purchase after Book Finder accepts the request of Book

Purchase. PreviousWebService, CurrentWebService, and

NextWebService parameters are significant for the demon-

stration. It can be seen for instance that Book Purchase will

sequentially execute Book Finder and Book Payment. In

Fig. 8-(b), Book Purchase is under execution whereas Book

Payment is expected to be initiated upon completion of this

execution. Fig. 8-(d) presents the I-context of Book Payment

service instance (highlighted in green). This instance has a

waiting status, i.e. waiting for the completion of Book_

Finder_Service_Instance_1. Once the execution of this
Fig. 8. Reconciliatio
instance is over (Fig. 8-(c)), Book_Payment_Instance_1 will

be changed to active (Fig. 8-(e)). The appropriate parameters

of the C-context of Book Purchase are also updated according

to the execution success of its component (Fig. 8-(f)).
5. Ongoing work: supporting adaptation of Web services

Given the dynamic nature of the environments in which

Web services operate, their adaptation during execution is

deemed appropriate. As part of our ongoing work, we are

studying Web services adaptation and analyzing existing

approaches based on workflow solutions (e.g. [3,14]) to

achieve this adaptation.

5.1. Motivation and proposed solution

The execution of Web services, like any other program, is

expected to happen according to a predefined specification

technique. In this paper, we adopted state/service chart

diagrams to conduct this specification (Fig. 2). Besides both

diagrams, a composition specification can be modeled as a

workflow where tasks map onto Web services.
n of contexts.

Fig. 9. State transition diagram of a Web service instance.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 451
Adaptation ofWeb services execution is needed not only in

case of execution failures, but also for any other reason that

changes the context of a service whether instance, Web,

or composite. Some reasons could be the insertion/deletion

of a Web service, and modification in a Web service

execution arguments. We are investigating the suitability of

the 3-tier adaptive workflow model of [4] for Web services

adaptation:

† Adaptation at the workflow-instance level: only the

workflow instances need to be modified due to a potential

improved efficiency.

† Adaptation at the workflow-schema level: the workflow

definition itself needs to be modified, causing major

changes to the subsequent workflow instances. However,

the workflow instances that are already under execution,

are not affected by this modification.

† Adaptation at the planning/goal level: the goals of the

workflow executionmay have to be changed, necessitating

radical changes at the workflow schema and instance

levels.

A natural mapping of the above 3-tier adaptive workflow

model onto the 3-level context model is possible. Indeed, one

of the main uses of context is during adaptation since changes

can be detected through awareness mechanisms. We advocate

that the following information would typically need to be

maintained during workflow definition and execution at the

level of the different contexts.

C-context Two types of workflow information regarding the

composite service, need to be stored here:

Goals of the workflow, along with a version number that

needs to be updated during adaptation

The version numbering is needed for tracking the goals in

case they are changed. The overall workflow definition

(also known as workflow schema in [4]) derived from the

goals; again, this workflow definition also needs to version

numbered, for use during adaptation

W-context Here also, two types of workflow information regarding

the individual Web service, need to be stored:

Sub-goals for the individual component Web Services,

derived from the overall goals; this can also be version

controlled for identification during adaptation

Sub-workflow schema, derived from the overall workflow

schema stored at the C-context, again version controlled

for identification during adaptation

I-context As shown in Table 1, this context would capture and store

data related to individual instances (i.e. which can be

mapped onto an individual workflow task which belongs

to a sub-workflow schema stored at the W-context)

execution, and this data is then transmitted to the

C-context as part of the sub-workflow execution data
5.2. Running example for exception handling

Before we describe our exception handling approach for

Web services, we present the state transition diagram of a

workflow task as suggested in [4] (Fig. 9). This diagram is
complementary to a service chart diagram, i.e. during

execution each service instance would transition from

ACTIVATED state to either DONE or FAILED state.

In case of exception handling of a service instance, several

possibilities arise (let the instance in question be called WSI1,

its Web service provider be called WS1, and composite

service be called CS).

Possibility A: before execution, WSI1 sends a message to

CS about its inability of performing its task.

† The message reaches CS in time. CS performs one of the

following operations without disrupting the execution of

the rest of the Web service instances:

(a) Try to renegotiate with WS1 about a replacement

possibility of WSI1, perhaps with different QoS that

still guarantee the user requirements.

(b) If the outcome of the renegotiation in (a) is not

satisfactory to CS, then negotiate with a new Web

service provider WSj(j!O1) for a replacement.

† The message reaches CS before WSI1 was supposed to

begin execution, but this still has an impact on the rest of

the execution of the Web service instances: same analysis

as case (b).

Possibility B: during execution, WSI1 sends a message

to CS about its inability of completing its execution,

which leads CS to suspend the execution of WSI1,

change its state to SUSPENDED, and perform aborts

and roll-backs of other instances that are affected by the

failure of WSI1:

† Web service instances in ACTIVATED state can be

either aborted or rolled back.

† Web service instances in DONE or FAILED state

can only be rolled back.

† Web service instances in NOT_ACTIVATED state

can only be aborted; this abortion will not have any

effect on the other service instances, since the

instance in question has not even started executing.

The difference between roll-backs and aborts resides

in the type of actions that are taken after exception. In a

roll-back scenario, we ensure that a service instance,

which compensates the failure of a peer, is available. For

example, a compensating instance of a credit-card

payment service is to reverse the credit card charges to

the customer. In an abort scenario, an instance in

ACTIVATED state is aborted by simply stopping its

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455452
execution, without any compensation. Abort actions are

to be implemented only when a service instance

execution does not change the state of any other Web

service component participating in the execution. For

example, the credit card payment service execution can

be aborted at any time before it actually deducts the

payment from the customer’s credit card account.
6. Related work

Our research is at the crossing point of several

initiatives on Web services, composition, ontology, and

context. While these concepts are independently studied

(except for Web services composition and ontology), our

research aims at their combination. In what follows,

some of the initiatives that have backed our thoughts are

discussed [7,21,23,25,27,30].

Strang and Linnhoff-Popien present interoperability of

services at four levels: signature, protocol, semantics,

and context [7]. The signature level focuses on the

syntax of a service interface. The protocol level defines

the relative order in which the methods of a service are

called. The semantic level addresses the problem of a

divergent understanding and interpretation of the infor-

mation exchanged. Finally, the context level uses

information that characterizes the state of an entity in

order to identify its relevant aspects. These four levels

illustrate the value-added of semantics and context to

service interoperability. We consider interoperability and

composition as the same because of their common

objective: making distributed and heterogeneous Web

services collaborate. In addition, we consider that our

work is at a higher level of abstraction since semantics

has driven context reconciliation instead of data

reconciliation only.

One of the relevant uses of context is during Web

services selection. Verheecke et al. argue that another

limitation encountered in the field of Web services is that

Web services can only be selected based on the

functionality they offer [25]. WSDL-based Web services

documentation does not support the explicit specification

of the non-functional requirements such as constraint-

based on QoS, access rights, and management state-

ments. While we back the statements of Verheecke et al.,

we advocate that context is suitable for hosting non-

functional requirements that are dynamic by nature.

Context has also a dynamic nature as backed by

Lonsdale and Beale in [30]. Both consider context not

as a static but dynamic phenomenon. Lonsdale and Beale

applied context to learning activities and noticed that

context is constructed through the learner’s interactions

with the learning materials and the surrounding world

over time.

While we strengthened the importance of reconciling

context using ontologies, some authors such as Keidl
and Kemper do not see any motive to that reconciliation

[23]. For both authors, context encompasses all the

information about the client of a Web service that may

be utilized by the Web service to adjust execution and

output delivery so that the client can benefit from a

customized and personalized behavior [23]. In addition,

they differentiate between context and the parameters of

a Web service. We advocate that there is no need to

exchange contextual information if the recipient Web

service does not understand this information and hence,

is not able to adapt its behavior according to the context

of other Web services. A common understanding of the

information exchanged is required, which backs our

context reconciliation efforts.
7. Conclusion

In this paper an ontology-based approach for the

specification and security of contexts of Web services

has been presented. Because multiple providers supply

Web services for potential compositions, a reconciliation

of their respective contexts was deemed appropriate.

Besides the multiple origins of Web services, disparities

between contexts at the granularity level also exist as the

three types of contexts (I-, W-, and C-context) have

shown. The importance of having a language such as

OWL-C for context specification and management was

stressed. Although Patil et al. claim that semantically

described services will enable better service discovery,

allow easier interoperation, and composition of services

[19], we claim that semantically described context of

services will enable better tracking and promote easier

interoperability of Web services.

Despite the widespread use of Web services, we have

shown that they still lack the capabilities that propel

them to the acceptance level of traditional integration

middleware. Web services are still unaware of the

environment in which they operate. However, there are

several situations that call for Web services self-

assessment so that scalability, autonomy, and stability

requirements are met. By scalability, we mean the

capacity of a Web service to interact with a small or

large community of Web services without having its

expected performance either disrupted or reduced. By

autonomy, we mean the capacity of a service to accept or

reject demands of participation in composite services.

Finally, by stability, we mean the capacity of a Web

service to resist change while maintaining function and

recover to normal levels of function after disturbances.

To satisfy these requirements, Web services have to

assess first, their current capabilities and ongoing

commitments, and second, their surrounding environment

prior they bind to any composition. Web services need to

be context-aware.

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 453
Acknowledgements

The second author wishes to thank his manager, K.

Muralidharan, for his support. The third author is supported

by the Center for Advanced Studies (CAS) program of IBM

Software Labs India. The third author would also like to thank
Prof. K.C. Shet ofNITK for supporting his doctoralwork. Last

but not least, the authors acknowledge the contributions of

Prof. Willem Jan van den Heuvel from Tilburg University in

The Netherlands, to the work presented in this paper. Other

company (i.e. non-IBM), product and service names may be

trademarks or service marks of others.
Appendix A. Class diagram for contexts of Web services and security

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455454
Appendix B. Excerpt of OWL-S document of W-context
References

[1] B. Medjahed, A. Bouguettaya, A. Elmagarmid, Composing

Web services on the semantic web, The Very Large Data Base

Journal, Special Issue on the Semantic Web, Springer Verlag 12

(4) (2003).

[2] B. Benatallah, Q.Z. Sheng, M. Dumas, The self-serv environment for

Web services composition, IEEE Internet Comput 7 (1) (2003).

[3] D. Berardi, D. Celanese, G. De Giacomo, M. Lenzerini, M. Mecella,

A foundational vision for E-Services, In Proceedings of the

Workshop on Web Service, E-Business, the Semantic Web

(WES’) held in conjunction with the 15th Conference on Advanced

Information Systems Engineering (CaiSE’2003) Klagenfurt/Velden,

Austria, 2003.

[4] N.C. Narendra, Design Considerations for incorporating flexible

workflow and multi-agent interactions in agent societies, J Assoc

Inform Syst (1) (2003).

[5] P. Brezillon, Focusing on context in human-centered computing,

IEEE Intell Syst 18 (3) (2003).

[6] J.J. Bryson, D. Martin, S.I. McIlraith, L.A. Stein, Agent-based

composite services in DAML-S: the behavior-oriented design of an
intelligent semantic web in: Ning Zhong, Jiming Liu, Yiyu Lao

(Eds.), Web Intelligence, Springer Verlag, 2003.

[7] T. Strang, C. Linnhoff-Popien, Service interoperability on context

level in ubiquitous computing environments, In Proceedings of

SSGRRR, The International Conference on Advances in

Infrastructure for Electronic Business, Education, Science,

Medicine, Mobile Technologies on the Internet, L’Aquila, Italy,

2003.

[8] X.H. Wang, D.Q. Zhang, T. Gu, H.K. Pung. Ontology based context

modeling and reasoning using OWL, In Proceedings of The Second

IEEE Conference on Pervasive Computing and Communications

Workshops (PerCom’2004), Orlando, Florida, US, 2004.

[9] J. Lilly. Tips and Tricks: Web Services Attacks and Defenses (White

Paper). January 2004 (osdn.bitpipe.com/detail/RES/1080320572_938.

html), visited June 2004.

[10] A.K. Dey, G.D. Abowd, D. Salber, A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware

applications, Human-Comput Interact J, Special Issue on Context-

Aware Computing 16 (1) (2001).

[11] M. Sabou, D. Richards, D. van Splunter, An experience report on

using DAML-S, In Proceedings of the 12th International World

Wide Web Conference (WWW’2003), Budapest, Hungary, 2003.

http://osdn.bitpipe.com/detail/RES/1080320572_938.html
http://osdn.bitpipe.com/detail/RES/1080320572_938.html

Z. Maamar et al. / Information and Software Technology 48 (2006) 441–455 455
[12] T.R. Gruber, A translation approach to portable ontologies,

Knowledge Acquisition, vol. 5, Academic Press, 1993.

[13] P. Lonsdale, H. Beale, Towards a dynamic process model of context,

In Proceedings of The First International Workshop on Advanced

Context Modelling, Reasoning, Management held in Conjunction

with The Sixth International Conference on Ubiquitous Computing

(UbiComp’2004), Nottingham, England, 2004.

[14] Z. Maamar, B. Benatallah, W. Mansoor, Service chart diagrams—

description and application, In Proceedings of The Alternate Tracks

of The 12th International World Wide Web Conference

(WWW’2003), Budapest, Hungary, 2003.

[15] Z. Maamar, S. Kouadri-Mostéfaoui, H. Yahyaoui, Towards an

agent-based and context-oriented approach for web services

composition, IEEE Transact Knowledge Data Eng 17 (5) (2005).

[16] M. Papazoglou, D. Georgakopoulos, Introduction to the special

issue on service-oriented computing, Commun ACM 46 (10)

(2003).

[17] B. Medjahed, A. Rezgui, A. Bouguettaya, M. Ouzzani, Infrastruc-

ture for E-government Web services, IEEE Internet Comput 7 (1)

(2003).

[18] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin,

K. Sycara, Authorization and privacy for semantic Web services,

IEEE Intell Syst 19 (4) (2004).

[19] A. Patil, S. Oundhakar, A. Sheth, K. Verma, METEOR-S Web

service annotation framework, In Proceedings of the 13th

International World Wide Web Conference (WWW’2004), New

York, USA, 2004.

[20] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana, The next

step in Web services, Commun ACM 46 (10) (2003).
[21] H.G. Hegering, A. Küpper, C. Linnhoff-Popien, H. Reiser, Manage-

ment challenges of context-aware services in ubiquitous environ-

ments, In Proceedings of the 14th IFIP/IEEE Workshop on

Distributed Systems: Operations and Management (DSOM’2003),

Heidelberg, Germany, 2003.

[22] A. Dogac, G. Laleci, Y. Kabak, A context framework for ambient

intelligence, In Proceedings of eChallenges Conference, Bologna,

Italy, 2003.

[23] M. Keidl, A. Kemper, Towards context-aware adaptable web

services, In Proceedings of the 12th International World Wide

Web Conference (WWW’2003), Budapest, Hungary, 2003.

[24] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H.

Stuckenschmidt, C-OWL: contextualizing ontologies. In Proceed-

ings of the 2nd International Semantic Web Conference

(ISWC’2003), Florida, US, 2003.

[25] B. Verheecke, M.A. Cibran, V. Jonckers, AOP for dynamic

configuration and management of web services, In Proceedings of

The International European Conference on Web Services

(ICWS’2003), Erfurt, Germany, 2003.

[26] Q.Z. Sheng, B. Benatallah, M. Dumas, E. Mak, SELF-SERV: a

platform for rapid composition of web services in a peer-to-peer

environment, In Proceedings of The 28th Very Large DataBase

Conference (VLDB’2002), Hong Kong, China, 2002.

[27] R. Power, D. Lewis, D. O’Sullivan, O. Conlan, V. Wade, A context

information service using ontology-based queries, In Proceedings of

The First International Workshop on Advanced Context Modelling,

Reasoning, Management Held in Conjunction with The 6th

International Conference on Ubiquitous Computing (Ubi-

Comp’2004), Nottingham, England, 2004.

	Towards an ontology-based approach for specifying and securing Web services
	Introduction
	Ontology-based context reconciliation
	Overview
	Operation of Web services
	Foundations of OWL-C
	On using OWL-S

	Security of Web services contexts
	Current situation
	Proposed security model

	Implementation
	Context consolidation
	Context reconciliation

	Ongoing work: supporting adaptation of Web services
	Motivation and proposed solution
	Running example for exception handling

	Related work
	Conclusion
	Acknowledgements
	Class diagram for contexts of Web services and security
	Excerpt of OWL-S document of W-context

	References

