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A B S T R A C T

Histopathology images are used for the diagnosis of the cancerous disease by the examination of tissue with the
help of Whole Slide Imaging (WSI) scanner. A decision support system works well by the analysis of the his-
topathology images but a lot of problems arise in its decision. Color variation in the histopathology images is
occurring due to use of the different scanner, use of various equipments, different stain coloring and reactivity
from a different manufacturer. In this paper, detailed study and performance evaluation of color normalization
methods on histopathology image datasets are presented. Color normalization of the source image by trans-
ferring the mean color of the target image in the source image and also to separate stain present in the source
image. Stain separation and color normalization of the histopathology images can be helped for both pathology
and computerized decision support system. Quality performances of different color normalization methods are
evaluated and compared in terms of quaternion structure similarity index matrix (QSSIM), structure similarity
index matrix (SSIM) and Pearson correlation coefficient (PCC) on various histopathology image datasets. Our
experimental analysis suggests that structure-preserving color normalization (SPCN) provides better qualita-
tively and qualitatively results in comparison to the all the presented methods for breast and colorectal cancer
histopathology image datasets.

1. Introduction

Histopathology refers to the pictorial examination of tissue to study
the cancerous disease under the microscope and Histology is the vi-
sualization of plant and animal tissue under the microscope.
Histopathology is defined as the study of change/variation in the tissue
caused by the disease. Digital histopathology (Gurcan et al., 2009) is a
new field for research where color normalization methods, segmenta-
tion methods, feature extraction of histopathology images and classi-
fication methods are exploited and make the computer to understand
histopathology images for the diagnosis purpose. Histopathology is
used in clinical medicine where it involves the examination of tissue
removed from the patient for a detailed study. In histology, histologist
prepares slide and find out the cell or tissue caused by disease or not. If
the cells or tissues are affected by the disease, then the diagnosis of
histology is said to be histopathology. Histopathology is a research
area. In some area, research was less, and there will be the better op-
portunity to the work. Usually, in color normalization of H&E histo-
pathology images.

The tissue under the microscope looks like transparent that’s why
we use stain or dye usually appear in different color. For the analysis of
tissue sample, we will treat tissue sample as a stain. The majority of the

stains present in the images are absorbed light if there is no stain pre-
sent in the image then the entire light passes through and appears
bright white (McCann, 2015). The area present near stains looks darker
in comparison to the area where no stain will present. Color variation in
histopathology images causes problems. In histopathology image pre-
paration, the image is stained by stain or dye usually appears in a dif-
ferent color. If we process the images without preprocessing, the result
obtained may be undergoing incorrect diagnosis. So, to decrease the
outcome of color variations present in the histopathology images. We
convert RGB images into the grey scale images. But in gray level, a lot
of information is lost, and then we go to another normalization tech-
nique. Accordingly, there are various methods present in the color
normalization of histopathology images to reduce the effect of color
variation by the transformation of RGB color images into grayscale. Cell
nuclei are present in the histopathology image looks shadowy under
some stains due to the surrounding environment. We use segmentation,
feature extraction and classification methods to categorize different
types of nuclei present in the histopathology images. However, con-
version from RGB to grayscale ignores a lot of information. Commonly,
two or three different types of colored stains used for the diagnosis
purpose. We use a mixer of stains is hematoxylin and eosin. The in-
tensity of each pixel depends on the concentration of the stain or dye
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present in the pixel.
Color variation in histopathology image is due to the use of different

scanner; during slide preparation, different equipment used, different
stain coloring, activity from different manufacture and batches of
stains. One of the ways to reduced color variation in histopathology
image is that convert RGB image into the grayscale, but in grayscale,
some of the information is lost. So, we have to go color normalization
techniques. Color normalization is the process where we do the mean
color transformation from one image to another image. There are the
various algorithms for the color normalization of histopathology image
like histogram specification, Reinhard method, macenko method, stain
color descriptor (SCD), complete color normalization and structure
preserving color normalization (SPCN) and other recent color normal-
ization methods are explored in the literature. The details about these
color normalization methods have presented in section 2.

The remaining part of this research manuscript is organized as fol-
lows: literature survey, regarding the color normalization of histo-
pathology images, is presented in section 2. In Section 3, the material
and methods are presented. Section 4 shows simulation results and
discussions, concluding remark is given in section 5 and implementa-
tion steps of various color normalization methods is given in appendix.

2. Literature Review

In the past, researchers mainly focused on color normalization, and
stain separation of histopathology images. There are three types of
color normalization method which are (1) Global color normalization
(Gurcan et al., 2009; Reinhard, 2001) (2) Color normalization after
stain separation by supervised method (Khan et al., 2014) and (3) Color
normalization after stain separation by unsupervised methods (Li and
Plataniotis, 2015). It is important to notify that color normalization,
and stain separation are an entirely different task. But separating stain
before color normalization has a significant impact on the experimental
results. In general, global color normalization is done by separating
color and intensity information in space. But, the second and third types
of color normalization method are done after separating the stains by
the supervised method and unsupervised method respectively. The su-
pervised method requires some prior information in the form of the
training set, and therefore computational complexity is much higher in
this method. On the other hand, an unsupervised, supervised method
doesn’t require any prior information or training set, and it can directly
decompose the stain Matrices by some orthogonal linear transformation
method. Consequently, its computational complexity is very much
lesser than supervised method. A summary of various color normal-
ization methods for histopathology image is presented in Table 1.

3. Materials and methods

This section presents materials and method related to color nor-
malization of histopathology images. In this paper, we have presented
the simulation of different color normalization methods on different
datasets such as breast, kidney and colorectal cancer which are taken
from publically available sources and liver cancer database is provided
from the Kasturba Medical College (KMC) hospital, Mangalore,
Karnataka, India. These datasets are also used for results comparison of
various color normalization methods. The detailed steps for the pre-
paration of histopathology slide is described in McCann and Ozolek
(2014).

3.1. Histopathology image datasets

For the conducting experiment, 80 different test histopathology
images are considered for results analysis from liver cancer, breast
cancer, kidney cancer and colorectal cancer histopathology image da-
tasets. The details about these histopathology image datasets are given
below.

1) Liver Cancer Dataset: Liver cancer dataset is provided from the
Kasturba Medical College (KMC) hospital, Mangalore, Karnataka,
India and it is not publically available database of liver cancer. This
database consists of 200 numbers of images or slides and each slide
is stained by standard dye such as Hematoxyline and Eosin. Each
slide consists of several frames at 10x, 20x and 40x magnification
inside the tumors of Liver. Each frame consists of 42 numbers of
images for 10x frames, 48 numbers of images of 20x frames and 110
numbers of images of 40x frame and these slides are scanned by the
Olympus DP 22 scanner. Dimensions of 10x, 20x and 40x are same
such as 1920 × 1440 pixels and resolution for 10x, 20x and 40x are
same that is 72dpi horizontal and 72dpi vertical. File format for 10x,
20x and 40x magnification are uncompressed. The frames are in
RGB bitmap image in TIFF format.

2) Breast Cancer Dataset: MITOS-ATYPIA-14 dataset is accessed from
the Pathology Informatics web-source: https://mitos-atypia-14.
grand-challenge.org/dataset/ and it is a publicly available dataset
of breast cancer (Roux and Racoceanue, 2013). This dataset consists
of 1302 number of image or slides and each slide are stained by
standard dye such as hematoxyline and eosin. These slides are
scanned by two scanners which are (1) Aperio Scanscope XT and (2)
Hamamatsu Nanozoomer 2.0-HT. This dataset consist of 651
number of slide scanned by Aperio Scanscope XT and another 651
number of slide scanned by Hamamatsu Nanozoomer 2.0-HT. Each
slide consists of several frames at 10x, 20x and 40x magnification
inside the tumours. 20x and 40x frames are used for the scoring
nuclear atypia and to annotate mitosis. 40x frames gave a score
related to six nuclear atypia. Dimensions of 10x and 20x are same
such as 1539 × 1376 pixels and resolution for 10x and 20x are also
same that is 1dpi horizontal and 1dpi vertical. Dimension of 40x
magnification is 1539 × 1376 pixels but the resolutions are different
such as 96dpi for horizontal and 96dpi for vertical. File format for
10x and 20x magnification are compressed but file format for 40x
magnifications is uncompressed. The frames are in RGB bitmap
image in TIFF format.

3) Kidney Cancer Dataset: CC-RCC dataset is accessed from the web-
source: http://michalkruk.pl/Images.zip) and is created by Military
Institute of Medicine, Warsaw, Poland (Kruk and Kurek, 2017). The
slide is taken from neoplasm cells a part of kidney and it is stained
by the standard dye such as Hematoxyline and Eosin. CC-RCC da-
taset consists of 400x magnification and it is scanned by an Olympus
BX-61 microscope and Olympus DP-72 camera. The slides are in
RGB bitmap image in TIFF format with dimension 2070 × 1548
pixels. The Horizontal and Vertical resolution of the slide is 200dpi.
The file format of 400x magnification is uncompressed.

4) Colorectal Cancer Dataset: Warwick QU Dataset is accessed from
the web-source: https://warwick.ac.uk/fac/sci/dcs/research/tia/
glascontest/download/) and it is used for the color normalization
method (Sirinukunwattana, 2015). This dataset is suitable for the
preprocessing. Warwick QU dataset is scanned by the Zeiss MIRAX
MIDI scanner and its file format is bmp. Warwick QU Dataset con-
tains 20x (0.62005μm/pixels) magnified H&E stained image with
resolution 775 × 522 of colorectal cancer. There are 165 numbers of
images; it contains 85 training dataset and 80 test dataset. In 85
training datasets, 37 are the benign tumor and 48 are the malignant
tumor and in 80 test datasets, it contains 37 benign tumors and 43
malignant tumors.

3.2. State-of- the-art color normalization methods

There are three types of color normalization method which are (1)
Global color normalization (e.g. Histogram specification, Reinhard
method) (2) Color normalization after stain separation by supervised
method and (3) Color normalization after stain separation by un-
supervised methods.

A. Global Color Normalization
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Table 1
Summary of different color normalization methods for histopathology images.

Approach Method Advantages Limitations

Histogram Specification
Gonzalez and Woods, 2002

• Convert the image from RGB to lαβspace.

• Map source image histogram with target
image histogram.

• Convert the image from lαβto RGB space.

• Both brightness and color statistics of
processed image are like target image.

• For contrast stretching it follows GHE
which is an unnatural process

• All source information is not preserved in
processed image.

• Not applicable if source image and target
image have very much dis-similar
statistics.

Color transfer algorithm
Reinhard, 2001

• Convert the image from RGB to lαβspace.

• Transfer the background color from target to
source image.

• Convert the image from lαβto RGB space.

• It preserves the structure of source
image

• Contrast of processed image is
approximately same as contrast of
target image

• It does the transformation in lαβspace in
which stains are not properly separated.

Color Deconvolution method
Ruifrok and Johnston, 2001

• Convert the image from RGB to OD space.

• Stain color appearance matrix (S) was
empirically found by measuring the relative
color proportion for R, G and B channel with
only single stain.

• Stain depth matrix was estimated by taking
inverse of S, multiplied with intensity values
in OD.

• This was the first attempt to separate
stains in a histology image, such that
color proportions of H & E stains in
each location can be estimated.

• This is a supervised method; its
computation complexity is higher.

• To estimate color appearance matrix some
prior information (single stained slide) is
needed.

• Once color histogram structure is ruined by
non-linear mixing of H & E stains, there is
no way we can get back that original color
which was before staining.

Spectral decomposition by NMF,
ICA
By Rabinovich and Agarwal,
2003

• Factorize stained images into color
appearance matrix (S) and stain depth matrix
(C) by NMF, where all co-efficient of S and C
are positive.

• Implement Joint Approximate
Diagonalization of Eigenmetrices (JADE) to
recover independent component for ICA
decomposition.

• Unlike supervised method, it doesn’t
have to estimate all the color
appearance co-efficient separately.

• Unlike SVD it doesn’t have negative
co-efficient which has no physical
interpretation.

• Solution of NMF is not closed. There is
scaling ambiguity.

• NMF doesn’t say anything about image
formation.

• ICA assumes that each stain act separately
(independently) in the image, which is
wrong.

Fringing method
By Macenko, 2009

• Convert the image from RGB to OD space.

• Find SVD and create plane corresponding to
its two largest singular values.

• Project data onto that plane and find the
corresponding angles.

• Minimum and maximum angles are estimated
by αthand − α(100 )thpercentile for robust
estimation.

• Those extreme values are converted back to
OD space.

• Unlike NMF it doesn’t have ambiguity
in its solution.

• It doesn’t have negative co-efficient in
color appearance matrix.

• Extreme angle values are evaluated
empirically, thus it is not suitable for
automatic cancer detection algorithm.

• This algorithm doesn’t preserve all
information of source image which is
unacceptable.

Blind color decomposition by
Gavrilovic, 2013

• It separates the intensity information from
color information by blind color
decomposition.

• The images are converted from RGB to
Maxwellian Color space to know about the
color distribution of separate stains.

• Identify reference color vectors and by linear
decomposition, estimate stain absorption
vectors and use them to adjust color variation.

• It is an unsupervised method which
implies that it doesn’t require any
prior information for decomposition
or it doesn’t need any training data.

• It outperforms NMF and other
previous supervised stain separation
method.

• It doesnot preserves all the source
intensity information.

• It introduced some artifacts in the
processed image.

Color standardization by color
correction matrix
Bautista et al., 2014

• The image is converted from non-linear RGB
to linear RGB.

• Color correction matrix is computed by least
square error between target image and source
image.

• Color correction is done in linear RGB space
followed by gamma correction.

• Convert the image back to original RGB space.

• This algorithm is very easy to
compute. Because, it does the
transformation globally, not pixel by
pixel.

• Least square error estimates all the
differences between source image and
color image in color space. Thus, it
replaces all the color variations of source
with target image as well as some new
color artifact may appear in the
processed image which is in fact color
information of target image.

• Although it does transformation in a linear
RGB space, it doesn’t separate the stains.

Wedge finding method by Cann
et al., 2014

• It finds a wedge of pixel color values for H & E
stained images where maximum and
minimum values will be either purely
Hematoxylin or purely Eosin.

• It follows same stain separation method as
Macenko did, except they assume that E-only
images are having lower contrast (minimum
value) than H-only images (maximum value).

• Assuming E-only images have
minimum values and H-only images
have maximum values, can reduce the
solution space of general fringing
method.

• It doesn’t have negative co-efficient in
color appearance matrix.

• Extreme angle values are evaluated
empirically. Thus, it is not suitable for
CAD.

• Its color normalization method doesn’t
preserve all the source color information.
Because combining E only and H only
images may not provide the exact H & E
stained image.

SCD global method followed by
RVM classification
Khan et al., 2014

• Deriving Principle Color Histograms from a
training set of quantized histograms and
compute a global SCD image specific color
descriptor.

• Learning a supervised classification
framework (RVM) to generate stain specific
probability maps to find color of each stain
separately.

• This is a unique supervised method
which.

• Works at pixel level and thus achieves
a good result for stain separation.

• By employing a non-linear function in
color normalization method, we can ruin
the structure of original image which is
producing undesirable artifacts in the
image.

• Once color histogram structure is ruined by
non-linear mixing of H & E stains, there is

(continued on next page)
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Table 1 (continued)

Approach Method Advantages Limitations

• A spline based non-linear function is
employed to transfer color from target image
to source image.

no way to get back the original image
structure.

• This is a supervised method in which
computation complexity is very much
higher.

Complete color normalization by
Li and Plataniotis, 2015

• Illuminance matching method to adjust the
illuminance variation due to imaging.

• Spectral normalization method comprises of
two steps: First is to employ SW statistics to
reduce the solution space of NMF and then by
NMF decompose the stains.

• 2nd is color normalization in which stain depth
matrix is preserved.

• Reduce the solution space of NMF by
employing SW statistics which
converts the image to saturated image
or color appearance matrix is
becoming diagonal.

• In color normalization method, the
structure of original image is
preserved.

• Saturated weight (SW) statistics is not a
natural process because it depends on
the dominant color.

• Contrast has not been enhanced for the fed
images.

• Although in color normalization method, it
totally preserves the brightness intensity
variation, it doesn’t preserve all color
information.

Sparse Stain Separation,
Structure preserving color
normalization by Vahadane,
2016

• Sparseness is added to the optimization
problem to reduce the solution space of NMF.
It is called Sparse NMF (SNMF)

• The non-convex optimization problem is
solved by block co-ordinate descent algorithm
which is readily available at SPAMS.

• A structure preserving color normalization
algorithm is employed to preserve all the
structure of source image.

• Solution space of NMF is totally
reduced by SNMF.

• It preserves all the structure of
original image.

• It outperforms all the previous
supervised stain separation method.

• Although solution space of NMF is
reduced by SNMF, its computation
complexity is higher.

• The solution of optimization problem may
reach to local minima rather than global
minima.

• Its color normalization method doesn’t
preserve all color information of source
image.

Centroid alignment, CLAHE by
Tam et al., 2016

• It normalizes intensity range of image by
centroid alignment.

• CLAHE divide the image into blocks and map
each block intensity histogram to the target
histogram.

• By centroid alignment illuminance
variation is corrected.

• Local histogram specification technique
for color normalization doesn’t work as it
depends on the spatial dependency of
pixels, thus it can replace the significant
source image (color) statistics by the
same of target image.

Whole-slide image color
standardizer by Bejnordi,
2016

• HSD model transforms RGB data into two
chromatic components and a density
component.

• Obtaining the chromatic and density
distribution of hematoxylin, eosin and
background.

• Weighting the contribution of stain for every
pixel.

• Transform the HSD color model to RGB color.

• Detection of stain components in WSI
has been done perfectly by using
unsupervised method.

• It preserves the spatial information
which makes the algorithm robust.

• The processing time of WSICS is very
high.

• All the source information is not preserved
such as red spot.

• It removes the original background color of
source image while doing color
normalization.

ICA, wavelet decomposition by
Alsubaie, 2017

• By wavelet transformation, the images are
decomposed into wavelet sub bands where the
source stains are becoming kind of
independent.

• Then by applying ICA decomposition
independent components are separated.

• It is an unsupervised method in which
computation complexity is very much
less.

• The wavelet transform reduces
redundancy in image pixels, but it
doesn’t make the source components
really independent.

• ICA is not applicable until the stains are
exactly independent to each other.

Color normalization using
cluster's centroid by Zarella
et al., 2017

• Convert RGB color space to the HSV color
space.

• We perform clustering by first transferring
pixel value into the Cartesian coordinate
system.

• Map each pixel in a cluster to the HSV value of
the cluster’s Centroid.

• It preserves the tissue structure of the
original image.

• Color variation is reduced in hue,
saturation and value by a factor of 6
to16.

• Dominant color has been transferred
from target image to the source image.

• Some information is lost because of
dominant color such as blue and pink are
transferred or preserved.

• Color normalization is depending on only
two dominant colour blue and pink.

Stain normalization by using
Sparse Autoencoders by
Janowczyk et al.,2017

• Training of unsupervised deep SAE on
randomely sub sampled patches.

• Apply the learned filter on both the source and
target image.

• An unsupervised clustering approach is
applied on source image to identify K cluster
centers.

• Histogram matching across clusters and color
channel.

• Color variation is due to different
scanner has been reduced.

• Global normalization technique (GL
and HS) perform poorly but if we
combined GL,HS and StaNoSA
technique it perform well.

• It scanned the same image multiple
number of time so some of the
information has been lost.

• It reduced the mean and standard
deviation by using GL and StaNoSA
technique, it may cause wrong color
normalization.

Stain normalization using
discriminative model by
Taieb and Hamarneh, 2017

• This method uses task-specific discriminative
model. It include stain normalization
component that perform non-linear mapping
between the images with different
distribution.

• Encoder and decoder architecture are used for
the stain transfer.

• It preserves all the content present in
the original image that is low-level
information related to texture.

• It also preserves the structural
information by using regularization
loss.

• Color normalization does not yield
expected result.

• Normalized image is deviated from the
target image.

• During color normalization some of the
data has been lost.

Stain normalization using
generative adversarial
network by Zanjani et al.,
2018

• Convert the RGB image into the CIE Lab color
space.

• Generate colorized H&E image by using
generator network.

• Estimate the element of transformed H&E
image noise at its output by using auxiliary
network.

• It preserves the source intensity
information.

• It also preserves the brightness of the
source image.

• Contrast of the normalized image is
increased.

• In CIE Lab color space, stain is not
separated properly.

• It fully relies on the color of the target
image, not the mean color of the target
image.

(continued on next page)
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Global color normalization is done after separating color and in-
tensity information in lαβ space by Principal Component Analysis (PCA)
(Reinhard, 2001). Global color normalization is very much suitable for
histopathology image, because autocorrelation coefficient or spatial
dependency of pixel (intensity) values of histopathology images.

Histogram specification (Coltuc and Bolon, 2006; Gurcan et al.,
2009) is a global color normalization method, in which source image
histogram is mapped with target image histogram such that both
brightness and color statistics of source image will be like target image.
Histogram specification follows Global Histogram Enhancement
method for contrast stretching which is a kind of unnatural process, to
the best of our knowledge. Because it forcefully stretches the histogram
of source image, until it will be approximately like target image his-
togram. Due to this unnaturalness, sometimes it may bring artifacts in
the processed image. Reinhard (Reinhard, 2001), preferred another
global color normalization method which transfers the mean color of
the target image to the source image such that all the intensity varia-
tions of source image have been preserved and the contrast of the
processed image will be approximately equal to contrast of the target
image.

B. Stain Separation by Supervised Method
According to Beer’s law, the color stains act linearly in Optical

Density (OD) space, given in equation (1). Where V is the intensity in
OD space, I is the intensity in RGB space, I0 is the illuminating intensity
incident on the sample (Ruifrok and Johnston, 2001). Thus, before stain
separation, the source image must be transformed into OD space such
that they act linearly.

= ⎛
⎝

⎞
⎠

V I
I

log 0

(1)

A.C. Ruifrok and D.A. Johnston (Ruifrok and Johnston, 2001) have
proposed a novel supervised Color Deconvolution (CD) method, in
which stain color appearance matrix (S) was empirically determined by
measuring the relative color proportion for R, G and B channel with
only single stained (Hematoxylin or Eosin only) histopathology slides.
After that stain depth matrix C can be easily evaluated by taking the
inverse of S, which is further multiplied with OD space intensity (ODC),
given in equation (2). This is known as color deconvolution method, in
which they have tried to get back the original image (before staining)
from the H & E stained image.

= −C OD S( ).C
1 (2)

A.M. Khan et al. (Khan et al., 2014) proposed a novel Stain Color De-
scriptor (SCD) global method to find overall stain color. Furthermore, a

supervised color classification method Relevance Vector Machine
(RVM) has been employed to identify the locations where each stain is
present. Color appearance matrix and stain depth matrix are then es-
timated from these set of classified pixels and after that a non-linear
spline-based color normalization method is incorporated for transfer-
ring color from target image to processed image.

C. Stain Separation by Unsupervised Method
In unsupervised method, computation complexity is very much

lesser than that of supervised method, since no training phase is re-
quired. Independent Component Analysis (ICA) and Non-negative
Matrix Factorization (NMF) methods have been employed in (Alsubaie,
2017; Rabinovich and Agarwal, 2003). The main advantage of NMF is
that unlike PCA it doesn’t have any negative color co-efficient. NMF is
an optimization technique which minimizes the distance between the
source image and decomposed matrices (S and C), such that all co-ef-
ficient of color appearance matrix must be non-negative (i.e. ≥S 0i j,
and ≥C 0i j, ). NMF method is having some problem with ambiguity and
has no closed form of solution. Thus, it has to be computed numerically,
which is not compatible in automatic cancer detection algorithm.

M. Macenko (Macenko, 2009) and M. McCann (McCann, 2014) both
of them have employed same kind of stain separation method which is
based on the fact that color of each pixel in histopathology image is
nothing but a linear combination of two stain vectors, whereas the
weightage of those vectors is non-negative. Thus, the weightage always
lies between those two stain vectors (i.e. only Eosin and only Hema-
toxylin).

In complete color normalization method, X. Li and Plataniotis (Li
and Plataniotis, 2015) have employed both illuminance normalization
and spectral normalization. Spectral normalization method comprises
of two parts I) NMF based spectral estimation, II) Spectral matching.
Before applying NMF, a novel Saturation Weighted (SW) statistics
method has been incorporated which smooth out Hue histograms and
converted the image to a highly saturated image such that color ap-
pearance matrix is converging to a diagonal matrix. SW statistics can
significantly reduce the solution space of NMF. However, to the best of
our knowledge, SW statistics is not a natural process, which forcefully
make the image saturated, thus it can bring some color artifacts in the
original image.

Structure preserving color normalization method is recently pro-
posed by A. Vahadane (Vahadane, 2016) which is comprised of two
steps. I) Stain separation by Sparse NMF (SNMF), II) Structure Preser-
ving Color Normalization (SPCN). In Sparse NMF, sparseness is added
to the optimization equation of NMF to reduce the solution space of
NMF. However, it increases the computation complexity significantly.

Table 1 (continued)

Approach Method Advantages Limitations

• Distinguish the generated color image from
the original image by using discriminator
network.

• Convert the CIE Lab color space into the RGB
color space.

Deep-learning solution inspired
by Cycle-Consistent
Adversarial Networks by
Shaban et al., 2018

• It use Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks.

• Style-transfer for the classic stain
normalization problem.

• It is used for Breast Cancer tumor
classification with increase in 12%
AUC.

• High visual similarity to the target
domain.

• Removing the need for a manually
picked reference template,

• Performance can be improved by Unified
representation.

• It is not suitable for many to many stain
style domains.
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Moreover, their color normalization method preserves the structure of
source image, in the processed image. But, it doesn’t preserve all the
color variation of the source image.

Andrew Janowczyk et al. (Janowczyk et al., 2017) proposed a novel
color normalization method based on neural network. First similar
types of tissues (e.g. stromal tissue, nuclei, lymphocytes etc.) of both
source image and target image are partitioned using an unsupervised
deep learning method, called sparse autoencoder. An iterative learning
filters are produced in this method which can optimally reconstruct the
original image. Furthermore, color is transferred tissue per tissue from
target image to source image, by conventional histogram specification
method. This method is more accurate than global color normalization
method, since unlike global method it doesn’t transfer the same color to
all of the pixels in image. However, computation complexity of this
method is significantly greater than other global normalization method.

The implementation steps of Histogram specification method
(Gurcan et al., 2009; Coltuc and Bolon, 2006), Reinhard method
(Reinhard, 2001), Macenko method (Macenko, 2009), Stain color de-
scriptor (Khan et al., 2014), Complete color normalization (Li and
Plataniotis, 2015), Structure preserving color normalization (SPCN)
(Vahadane, 2016) are presented in appendix.

3.3. Quality evaluation metrics

Image quality is the parameter for the analysis of the different color
normalization methods and it decide which is the best method for the
color normalization of histopathology images. Image quality metrics
such as Structural similarity index metric (SSIM) (Wang and Bovik,
2004), Quaternion structure similarity index metric (QSSIM) (Kolaman
and Pecht, 2012) and Pearson correlation coefficient (PCC) (Wang and
Bovik, 2002) are the automatic choice for quality analysis of histo-
pathology images. The brief descriptions about these quality metrics are
given in the further subsections.

A Structural similarity index metric (SSIM)

The structure of the natural image are highly correlated and there
pixels are exhibit strong dependency and these dependencies carry a lot
of information about the structure of the image. Structure similarity
index metric (SSIM) (Wang and Bovik, 2004) is consisting of the three
factors such as luminance, structural and contrast. The luminance is
defined as the product of the illumination and the reflectance on the
surface of image but the structure of the image is somewhat in-
dependent from the illumination. If we extract the structural informa-
tion then we separate the influence of the illumination from the image.
Structure similarity index metric (SSIM) satisfies the three parameters
such as symmetry, boundedness and unique maximum.

After visualization, we can say that the human visualization system
is highly agreed to the visual information like structural and luminance
information from visual scenes. It compares three functions such as
luminance, structural and contrasts between the source and processed
image which are given in equation (3), (4) and (5) respectively.

a) Luminance can be defined as
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b) Contrast can be defined as
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c) Structure can be defined as
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Where, μx and μy are the sample means of the source and processed
image respectively. σx and σy are the standard deviations of the source
and processed image respectively. σxy is the correlation coefficient be-
tween the source and processed image and c1, c2 and c3 are the constant
which is used to stabilize the SSIM when it is approaching to zero.
These statistics are calculated within a local window.

Structure similarity index metric equation is derived after com-
bining equations (3), (4) and (5) and is given in equation (6).
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SSIM is used to measure the structural, luminance and contrast
between the source and processed image and its index denotes the re-
ference metric. In other words, image quality is measured or predicted
based on an initial image or source image and the processed image. The
numerical value of SSIM lies between 0 to1. The value closer to 1, better
is the color normalization method.

B Quaternion Structural similarity index metric (QSSIM)

In SSIM (Wang and Bovik, 2004), we focus on the scalar cross
correlation but in quaternion structure similarity index metric (QSSIM)
(Kolaman and Pecht, 2012), we focus on both scalar and cross corre-
lation that is basically color cross correlation this is the main reason to
go through quaternion. QSSIM is related to vector correlation but SSIM
is related to scalar correlation, that why SSIM is failed in measuring
combined degradation. But by using quaternion, which shows quality
difference between the images. QSSIM measures every type of changes
between the color vectors with the help of cross and dot product. It
measures luminance, chrominance, and combined degradation while
SSIM measures only size but quaternion structure similarity index me-
tric measures both size and direction. QSSIM is basically used to mea-
sure the quality of the image degradation by the combination of desa-
turation or blur and also execute single degradation such as blur,
compression and noise. The numerical value of QSSIM lies between 0
to1. The value closer to 1, better is the color normalization method. The
parameter QSSIM is mathematical defined in equation (7).
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Where, μqref and μqdeg are the sample mean and the normalized image.
σqref and σqdeg are the standard deviation of the source and the nor-
malized image and σqref q, deg are the correlation coefficient between the
two images.

C Pearson correlation coefficient (PCC)

It measures the linear correlation between the two images and its
range from 0 to 1. A value of 0 indicates that there is no similarity
between the two images (Wang and Bovik, 2002). A value greater than
0 means there is some correlation between the two images. Pearson
correlation coefficient is mathematical defined in equation (8).
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Where, xi and yi are the source and the processed image. μx and μy are
the sample mean of the source and the processed image.
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4. Simulation results and discussuion

This section presents experimental results and analysis of state-of-
the-art color normalization methods on 80 different histopathology
images from liver cancer, breast cancer, kidney cancer, and colorectal
cancer histopathology image datasets. We have evaluated and com-
pared the qualitatively and quantitatively of results of Histogram spe-
cification method (Gurcan et al., 2009; Coltuc and Bolon, 2006),

Reinhard method (Reinhard, 2001), Macenko method (Macenko,
2009), Stain color descriptor (Khan et al., 2014), Complete color nor-
malization (Li and Plataniotis, 2015), Structure preserving color nor-
malization (SPCN) (Vahadane, 2016). All the previous mentioned color
normalization method were implemented and simulated with MATLAB
2015a running on an Intel® Core™ i3 PC with 2.1 GHz CPU and 8 GB
RAM. For experimentation, test breast cancer, kidney cancer, and col-
orectal cancer histopathology images are procured from publically

Fig. 1. Comparison of some of the color normalization techniques. The target and the source image are selected from the Liver cancer dataset. Image in the first
column represent the normalized image for test 1. The normalized image of the second column represents to test 2 and so on.
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available databases (Roux and Racoceanue, 2013; Kruk and Kurek,
2017; Sirinukunwattana, 2015) respectively but test liver cancer da-
taset is not publically available. Qualitative experimental results of the
state-of-the-art color normalization methods are given in Figs. 1–4 for
liver cancer, breast cancer, kidney cancer, and colorectal cancer his-
topathology image datasets, respectively. For qualitative experimental
results comparison, only 3-3 test histopathology images are presented
from each datasets but each color normalization methods is tested on

80 different test histopathology images from liver cancer, breast cancer,
kidney cancer, and colorectal cancer datasets.

From the Figs. 1–4, it is clear that in histogram specification method
(Gurcan et al., 2009; Coltuc and Bolon, 2006), the processed image
contrast is better than the source image. This approach does not per-
form well if the source and the target image are significantly different
from each other. In Reinhard approach (Reinhard, 2001), change of
space from RGB color space to lαβ color space is attractive but due to

Fig. 2. Comparison of some of the color normalization techniques. The target and the source image are selected from the breast cancer dataset. Image in the first
column represent the normalized image for test 1. The normalized image of the second column represents to test 2 and so on.
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the false assumption of uniform distribution of color in each channel.
This leads to the poor normalization for the least dominant channel but
it preserves all the source intensity variation. In macenko approach
(Macenko, 2009), it is very much deviated from the target image.

This method uses color deconvolution approach to find the stain
metric but if stain metric estimation fails, this method will also failed.
For stain metric estimation, unsupervised method can be used with non-

linear mapping. If the concentration of the stain changes non-linearly,
the result obtained from macenko approach is more deviated from the
target image.

In stain color descriptor approach, they use supervised method with
linear mapping and classification approach to find the accurate stain
matrix. This approach gave the better result in comparison to the ma-
cenko method but if the contrast of the source image is low then this

Fig. 3. Comparison of some of the color normalization techniques. The target and the source image are selected from the kidney cancer dataset. Image in the first
column represent the normalized image for test 1. The normalized image of the second column represents to test 2 and so on.
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approach is not work well and it is not preserved all the biological in-
formation of the source image. In complete color normalization ap-
proach, it removes the color bias caused by the illuminant variation in
the histopathology image and preserves all the histological information
from the source image. This method is more rely on the target image
and all the source intensity variation is not preserved. In structure
preserving color normalization approach, the mean color of the target
image is transfer into the source image while preserving all the histo-
logical information. This approach gave better results in comparison to

all the presented approach because of the accurate stain separation of
both the source and the target image based on the non-matrix factor-
ization (NMF) method.

The simulation experiments have been conducted on different test
images from four histopathology images datasets. In the Figs. 1–4, the
second column represent normalized image of Test 1, third column
represent normalized image of Test 2 and the fourth column represent
normalized image of Test 3. Our observation from the simulation results
are as follows. In Test 1, Test 2 and Test 3 have some different

Fig. 4. Comparison of some of the color normalization techniques. The target and the source image are selected from the colorectal cancer dataset. Image in the first
column represent the normalized image for test 1. The normalized image of the second column represents to test 2 and so on.
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information in all the four datasets of three test images. In Test 1 of four
source images 1, 4, 7, and10, histogram specification approach pre-
serves all the source intensity variation like red spot and also the source
intensity but in Test 2 of four source images 2, 5, 8, and 11, background
color transfer from the target image into the source image is perfectly
done but source intensity variation is not preserve perfectly. In test 3 of
four source images 3, 6, 9, and 12, some information is lost and also
color normalization process is not done perfectly. Overall performance
by the reinhard approach is significant in all four datasets of three tests
sets but stain separation is not done because some of the stains are
mixed.

In Test 1 of all the four datasets, macenko approach is worked very
well but in source image 7 is not preserved the red spot and it is also not
preserve all the source intensity variation. In Test 2 for the Warwick
datasets, it is too much deviated from the target image and in Test 3 for
all the four datasets; color normalization is not done perfectly. In breast
cancer dataset, stain color descriptor method work well. But other three
datasets the performance of the stain color descriptor approach is poor
because of the data loss and also color normalization is not yield as
expected. In all the four datasets, complete color normalization is
worked well but it is going to the pure saturated color that is not de-
sirable and it also not preserve source intensity variation. Structure
preserving color normalization approach gave good results because it
preserves all the source intensity variation, background mean color

transfer from the target image into the source image. Color normal-
ization and stain separation is done perfectly but in all other color
normalization approach some of the information is lost. So, we can say
that the structure preserving color normalization approach gave good
results in comparison to all the presented methods.

Quantitative experimental results of the state-of-the-art color nor-
malization methods are evaluated on liver cancer, breast cancer, kidney
cancer and colorectal cancer histopathology images presented in terms
of SSIM, QSSIM and PCC separately in Tables 2 and 3. In this table, the
quality index metrics for average of 20 images from each histo-
pathology image dataset is presented. From the Tables 2 and 3, it is
clear that structure preserving color normalization method provided
better quantitative results as compared to other existing color normal-
ization methods.

Our observation is that; qualitatively and quantitatively, structures
preserving color normalization approach gave better result in com-
parison to all the presented color normalization methods. Hence, based
on experimental results conducted on different histopathology image
datasets suggest that structures preserving color normalization ap-
proach is best suited for breast and colorectal cancer histopathology
image datasets.

5. Conclusions

This paper presented a study and implementation of different color
normalization methods for histopathology images. Experimentally, it is
clear that histogram specification introduced considerable artifacts in
the output images. This method is not applicable if the statistics of
target and source images are not same. In reinhard method, it preserves
all the source intensity variation but it is too much rely on the target
image. This method does not preserve the mean brightness of the ori-
ginal image. In macenko method, if we use more number of stains result
obtains from macenko algorithm is sometime inconsistent and it is too
much deviated from target image. In stain color descriptor method,
structural variation of the source image is not preserved and this
method is failed if the contrast of the image is low. In color normal-
ization pipeline method, it is rely on the target image and all the source
intensity variation is not preserved. From the visual color normalization
results, it is clear that structure-preserving color normalization (SPCN)
method was superior in comparison to all the presented color normal-
ization method. In SPCN method, both the brightness and structure of
the source image are well preserve and also it introduced fewer artifacts
than the other existing color normalization methods. But quantitatively
and qualitatively, structure-preserving color normalization method
provided better results in comparison to all the presented method
shown in table II and III in all the four histopathology datasets

Table 2
Quality metrics of various color normalization methods on liver and breast
cancer histopathology image datasets.

Color Normalization
method

Liver Cancer Dataset Breast Cancer Dataset

QSSIM SSIM PCC QSSIM SSIM PCC

Histogram specification
approach
(Gurcan et al., 2009)

0.8895 0.8605 0.9424 0.8900 0.9306 0.9943

Reinhard approach
(Reinhard, 2001)

0.9254 0.9040 0.9630 0.9713 0.9480 0.9798

Macenko approach
(Macenko, 2009)

0.9540 0.9411 0.9815 0.8540 0.9470 0.9988

Stain color descriptor
(Khan et al., 2014)

0.6534 0.6323 0.7621 0.8534 0.1567 0.8756

Complete color
normalization
(Li and Plataniotis,
2015)

0.8739 0.8492 0.8957 0.9739 0.9516 0.9728

Structure preserving
color normalization
(Vahadane, 2016)

0.9603 0.9417 0.9959 0.9763 0.9707 0.9834

Table 3
Quality metrics of various color normalization methods on kidney and colorectal cancer histopathology image datasets.

Color Normalization method Kidney Cancer Dataset Colorectal Cancer Dataset

QSSIM SSIM PCC QSSIM SSIM PCC

Histogram specification approach
(Gurcan et al., 2009)

0.9735 0.9306 0.9943 0.9678 0.9279 0.9931

Reinhard approach
(Reinhard, 2001)

0.9623 0.9480 0.9798 0.9560 0.9295 0.9695

Macenko approach
(Macenko, 2009)

0.9908 0.9470 0.9988 0.9319 0.8874 0.9879

Stain color descriptor
(Khan et al., 2014)

0.5873 0.1567 0.8756 0.8294 0.6318 0.9597

Complete color normalization
(Li and Plataniotis, 2015)

0.9668 0.9516 0.9728 0.9775 0.9678 0.9794

Structure preserving color normalization
(Vahadane, 2016)

0.9741 0.9707 0.9834 0.9779 0.9695 0.9849
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Appendix A

A.1 Implementation of Histogram specification method

Histogram specification is treated as a problem of optimization which was explored by D. Coltuc and Bolon and used for color normalization of
histopathology images (Coltuc and Bolon, 2006). The flow chart of the Histogram specification method is shown in Fig. A1 and implementation steps
of Histogram specification method is given below.

Step (1). Read both the input images such as source and target image.
Step (2). Let us consider the intensity of source and target image is a discrete random variable. For this purpose, we resize both the source and

target image.
Step (3). Evaluate the probability mass function (PMF) of all the pixels present in the source and target image and then obtained image

histogram.
Step (4). Compute the cumulative distribution function (CDF) of all the pixels and then multiply the cumulative distributive function value with

Gray levels minus one. Then, we round off the obtained value to the nearest integer.
Step (5). Mapping can be done between the new gray level values into initially present pixels value. This mapping can be done by mapping the

source intensity value to the target intensity value with the initially present pixel value.

Fig. A1. Flow chart for the histogram specification.
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A.2 Implementation of Reinhard method

This method was proposed by Reinhard for color normalization of histopathology images (Reinhard, 2001). The flow chart of the Reinhard
method is given in Fig. A2 and implementation steps of Reinhard method are given below.

Step (1). Read both the source and target image which is the input of this color normalization method.
Step (2). Convert the RGB image into lαβ color space because it is a transform of LMS cone space. While converting into LMS cone space, we first

convert RGB image into XYZ space which is independent and then we convert the independent XYZ space image to LMS cone space. In LMS cone
space, the data is in the form of skew which is removed by converting into the logarithmic space. Like RGB image, lαβ color space has its own color. l,
α and β axis represents an achromatic, chromatic blue-yellow, chromatic green-red channels. The information in lαβ color space is compact and
symmetrical.

Step (3). Initialize the number of channel i= 0 and the number of channel present in the RGB image c=3 and apply the condition if the number
of channel i is less than the number of channel present in the RGB image c, then we do the following transformation given in equation (A.1), (A.2)
and (A.3).

= + −l mean l l mean l std l std l( ) ( ( )). *( ( ). / ( ))2 1 1 (A.1)

= + −α mean α α mean α std α std α( ) ( ( )). *( ( ). / ( ))2 1 1 (A.2)

= + −β mean β β mean β std β std β( ) ( ( )). *( ( ). / ( ))2 1 1 (A.3)

where l2, l1 and l are the processed image, target image and the source image in l space, α2, α1 and α are the processed image, target image and the
source image in α space. β2, β1 and β are the processed image, target image and the source image in β space.

Step (4). Convert lαβ color space to RGB image to display it because there will be no comparison between lαβ color space and RGB color space.

Fig. A2. Flow chart for the Reinhard method.
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A.3 Implementation of Macenko method

This method was proposed by Macenko for color normalization of histopathology images (Macenko, 2009). The flow chart of the Macenko
method is shown in Fig. A3 and implementation steps of Macenko method are given below.

Fig. A3. Flow chart for the Macenko method.
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Step (1). Read both the source and target image which is the input of this color normalization method.
Step (2). Convert the RGB image into lαβ color space because it is a transform of LMS cone space
Step (3). Initialize the tolerance for the pseudo-minimum αth and pseudo-maximum − α(100 )th percentile. It will give better result at =α 1, OD

threshold value for transparent pixels =β 0.15, transmitted light intensity =I 240o , H&E OD matrix and stain concentration for further processing.
Step (4). All the present color in the histopathology image can be converted into the optical density value [9] which is given in equation (A.4).

= −OD Ilog ( )10 (A.4)

Where, I denotes the source image and each component is normalized in the range of [0 1]. This conversion from RGB image to optical density (OD)
values offers a space where a linear combination of stain will give result in a linear combination of optical density values.

Step (5). Apply the condition on the OD threshold value if the OD threshold value <β 0.15. Then we remove the transparent pixels. For this
purpose, the optical density values (OD) is split into two matrixes which are given in equation (A.5) and (A.6) respectively.

=OD V S* (A.5)

= ′S V OD* (A.6)

Where, OD denotes the optical density values, S is the saturation value of each stain and V is the stain vector matrix. Here, we find the stain vector of
each image based on the color. If the OD value is zero, then the corresponding pixel is white that means there are no stain present. For the stability
purpose, we assume a threshold value. By experimentally, we found that the threshold value of =β 0.15 and then defined the geodesic path.

Step (6). Calculate the singular value of the SVD decomposition on the optical density (OD) value. Geodesic path (Bautista et al., 2014) can be
used to find the direction where we can project the optical density transformed pixel into the order to find the endpoint of the stain vectors. Geodesic
path is the shortest distance between the two color vectors. In the next step, we evaluate the plane that is formed by vectors and this process can be
done by creating a plane with the help of two vectors correspond to the two largest singular values of the singular value decomposition of the optical
density transformed pixel values.

Step (7). All the optical density values is projected into the plane and normalized to unit length and the projected line is curved.
Step (8). The angle is calculated in every point with respect to the first singular value decomposition direction and thus mapping the direction in

the plane. Then, we can obtain the histogram of these angles. Intensity variation is the major problem in histopathology images. The original strength
of the stain depends on the intensity of a particular stain.

Step (9). The variation in the slide preparation is due to the different use of equipment, reactivity of the manufacturing, different storage time
and different staining producer. Let us consider that two stain present in the image having specific stain vector and their specific color present in
optical density (OD) space. The color present at every pixel is a linear combination of stain vectors. Since, it has a positive weight at every pixel. So,
we can find the fringes instead of searching for peaks. The minimum and maximum percentile can be used in found direction. For the robust result,
we calculate the minimum and maximum αth and − α(100 )th percentile. Numerically, =α 1 gives the better result. For each stain, we calculate
intensity histogram for all pixels of the stain which is in majority and then we find the 99th percentile and use the robust maximum approximation.
Experimentally, it is found that, the above method gives good result by analyzing a patch of slides. All intensity histogram scaled to have the same
pseudo-maximum and then compare to each other

Step (10). Determine the concentration of the individual stains by using Hematoxyline and Eosin matrix with respect to the OD values and then
normalized the stain concentration.

Step (11). Recreate the image by using reference mixing matrix and it is done by using HE matrix with the normalized stain concentration. After
these steps, we got normalized image.

A.4 Implementation of Stain color descriptor method

This method was proposed by A. M. Khan et al. for color normalization of histopathology images (Khan et al., 2014). The flow chart of the Stain
color descriptor method is shown in Fig. A4 and implementation steps of stain color descriptor method are given below.

Step (1). Read both the source and target image which is the input of this color normalization method.
Step (2). Determine the image specific stain matrix of target and source image by using a global stain color descriptor (SCD). In image specific

SCD, training sets are given for K RGB histopathology images. Then, we calculate the image specific color descriptor (SCD) that is denoted byĤ . For
this purpose, each image is quantized by using oct-tree quantization (Gervautz and Purgathofer, 1988) and it is used to generate a set of histogram of
255 color prototype. Color to prototype mapping algorithms is very efficient for the Oct-tree quantization (Gervautz and Purgathofer, 1988). Next,
we estimate the mean and co-variation of K RGB histopathology image of histogram are calculated to perform linear dimensionality reduction and
then we use color classification for probabilistic output.

Step (3). Color deconvolution is used to separate RGB image into three channels. These three channels correspond to the actual color of the stains
used. This method can also be use for the estimation of IHC stain (Taylor and Levenson, 2006) and nuclei detection (Khan et al., 2013). Here, we
transform the RGB color spaceV to another color spaceU because we stained the tissue section. If =I P V( , ) is defined as the image with pixel P and
associated color space V and each pixels assigning blue, green and red intensities. The relationship between the color space and new color space can
be determined by using Beer-Lambert Law (BLT) which is given in equation (A.7).

=V eSU (A.7)

Where, S represent the stain matrix and it determines the stain vectors (also called absorption factor). The solution (Ruifrok and Johnston, 2001) of
the equation (A.7) is determined if the pixel intensity ∈p P in another color space is also called new color space U which is defined in equation
(A.8).

=U p D φ p( ) * ( ) (A.8)

Where

= −D S 1 (A.9)

= −φ p V p( ) log( ( )) (A.10)
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In equation (A.8), D denotes the color deconvolution matrix and it is obtained if we takes the inverse of stain matrix S, φ denotes the optical
density space,U p( ) represents the concentration of each stain at every pixel. In optical density space, a linear combination of stain value results in a
linear combination of optical density value.

Step (4). Finally, we use non-linear mapping of channel statistic to de convolved the source and the target image and then we calculate the set of
statistics and these statistics can smoothly map between the statistic of the source image to that of target image by using a spline based non-linear
mapping. In non-linear mapping, AB spline is used for mapping purpose between the smooth mapping functions. The AB spline parameters are
calculated from the identity pairs plus the input-output pairs to ensure saturated (black) and optically saturated (white) pixels remains unchanged.
By solving a linear system using Tikhonov regularization, we are estimated B-spline parameters.

Step (5). Reconstruction can be done by using per-pixel basis.

A.5 Implementation of Complete color normalization

Complete color normalization method was proposed by Li. X for color normalization of histopathology images (Li and Plataniotis, 2015). The
flow chart of the Stain color descriptor method is shown in Fig. A5 and implementation steps of Stain color descriptor method is given below.

Step (1). Read both the source and target image which is the input of this color normalization method.
Step (2). Initialize the number of channel c= 3, number of count i= 0, threshold value =th 200b and the number of satins N=2.
Step (3). Apply the condition on the number of channel c if the number of count is less than the number of channels then we do the following

operation. Calculate the background intensity of source and target image by using equation (A.12) and (A.13). If the above condition is not satisfied
then we go for the illuminant normalization.

= ⊗I λ I p λ h( ) max [ ( , ) ]b
i i N (A.12)

= ⊗I λ I p λ h( ) max [ ( , ) ]s
b

i i N (A.13)

Step (4). Again, apply the condition on background intensity. If the intensity is greater than the threshold value then, we go for the intensity
matching on the source and target image otherwise we directly go for the illuminant normalization. Intensity matching has been done by using the
equation (A.14).

Fig. A4. Flow chart for the stain color descriptor (SCD).
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Step (5). Convert the illuminant normalized image to HSV domain because we want the dominant color or pure saturated color in place of
estimation of stain spectra.

Step (6). Spectral estimation is unreliable if we use less saturated color because colors are highly saturated for the estimation. A hue histogram
will give the light spectra which are not absorbed. So, this is used to obtained spectral matrix Min. For this purpose, we use SW hue histogram by
using equation (A.15).

Fig. A5. Flow chart for the color normalization method.
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Where, = ⎧
⎨⎩

=
δ θ h

ifθ h
otherwise

( , )
1,
0,p

p ∈ ∘ ∘θ [0 , ............, 360 ] denotes the bin of hue histogram, hp and sp represent the hue and saturation at a pixel p in the

HSV domain.
Step (7). From the SW-histogram HistSW , it is clear that the light spectra are not absorbed by any stain. So, we go for the estimation of purely

saturated color for each stain. For this purpose, we go for the K-mean clustering applied to HistSW for the estimation of N representative hues
h h, ............,SW

N
SW

1 . Hue value such as pink and purple to blue are used for the cluster centers of hematoxyline and eosin. Then, for each hue hi
SW , we

evaluate the value of vi
Sw and si

Sw in the HSV domain. This is defined in equation (A.16) and (A.17).

=
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(A.17)

Step (8). Apply the condition on the N center if the number of count is les than the number of N centers then, we go for the estimation of
satuaration si

Sw and value vi
Sw. After that we convert the hue histogram to the linear RGB color space and form an initial spectrum matrix. if the abve

condition is not satisfy then we go for the spectral matrix estimation by using non-negative matrix factorization (NMF) (Cichocki et al., 2009; Lee and
Seung, 1999).

Step (9). By using above matrix, we will go for the spectral matching to get the normalized image.
Step (10). Spectal matching can be done by using the equation (A.18).
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4

3

(A.18)

Where, Msi and Mi are denoted as the standard spectra and the estimated spectra.

A.6 Implementation of Structure preserving color normalization (SPCN)

Structure preserving color normalization method was proposed by Vahadane, (2016). The flow chart of the structure preserving color nor-
malization (SPCN) is shown in Fig. A6 and implementation steps of structure preserving color normalization are given below.

Step (1). Read both the source and target image which is the input of this color normalization method.
Step (2). The variation of stained tissue looks like a Beer-Lambert law and it attenuates light spectrum and concentration of stain. Let ∈ ×I Rm n is

the matrix of RGB image where =m 3, represents three channels of RGB image, n is the number of pixels and let Io be the illuminant light intensity.
Let ∈ ×w Rm r denotes the stain matrix whose column represents color variation of each stain and r denotes the stain number and ∈ ×H Rr n denotes
the stain density maps where the rows denotes the stain concentration. Then, mathematically I can be defined as

= −I I eo
WH (A.19)

Let us consider that V be the optical density maps then,

= ⎛
⎝

⎞
⎠

V I
I

log o

(A.20)

By using equation (A.19), we can write

=V WH (A.21)

Where, V is the observation matrix, H is the stain density map matrix, and W is the stain color appearance matrix.
Step (3). Color deconvolution (Bautista et al., 2014) is mostly used to separate stain. But, another method is used to separate stain is non-negative

matrix factorization (NMF) (Lee and Seung, 1999) and it is the unsupervised method (Rabinovich and Agarwal, 2003) to separate stains. The non-
negativity is absorbed by the stain optical density and the stain color appearance matrix that can be only absorb but not emits light which makes the
stain density and color appearance matrix non-negative. This problem is solved by solving the following problem.

−V WHmin || || ,F
1
2

2 such that ≥W H, 0 (A.22)

The above problem is basically non-convex optimization problem which converge local optimum values in place of global optimum values and
give stain vectors (Aharon et al., 2006). Now, they add sparsity constrain on nonnegative matrix factorization (NMF) to preserve the histological
information. So, it is called as the sparse nonnegative matrix factorization (SNMF). In SNMF based stain separation, we convert the RGB image into
the optical density maps by using the above equation (A.10) on the basis of beer-lambert law. Then, in equation (A.19), they add sparseness
constraint. SNMF based stain separation is an improved version of NMF method and it is used for the stain separation with the help of l1 and Hj. l1 and
Hj are the sparseness and the stain mixing coefficient where, j denotes the index of stains that is =j r1, 2, ....... , .

∑− + ≥
=

V WH λ H j W Hmin 1
2

|| || || ( , :) || , , 0F
j

r
2

1
1

(A.23)

=W j|| (:, ) || 12
2 (A.24)

Where, λ is denotes as the sparsity and regularization parameter. If we include any additional constraint on W and H , it will reduce the solution
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space of the type W α and >αH α, 0.
The above equation (A.20) is the problem of non-convex optimization and it can be used to solve by alternating between H and W in which we

optimize one parameter of H and W while taking other parameter constant. For that purpose, we are going to initialize color appearance matrix W
by randomly selected element from the optical density V .

For fixed W , = − + ≥
∧ ∧

H V WH λ H Hmin || || || || , 0F
1
2

2

1 (A.25)

For fixed H , = − ≥
∧ ∧

W V WH Wmin || || , 0F
1
2

2
(A.26)

=W j|| (:, ) || 12
2 (A.27)

The above equation (A.25) is the problem of dictionary learning (Aharon et al., 2006), but it include additional non-negative constraints on
dictionary elementsW and stain density maps H . The above two steps is the dictionary learning forW and sparse coding for H . Sparse coding is used

to estimate stain density maps H while fixing
∧

W is an l1 regularized linear least square optimization problem. This type of problem can be solved by
using coordinate descent with the LARS-LASSO algorithm (Efron, 2004) and soft thresholding (Wu and Lange, 2008) algorithm.

Step (4). Color normalization method can be done by transferring the mean color of target image to that of the source image while estimating the
color appearance matrix. By using SNMF technique, we are going to factorize the stain density maps Vs into W Hs s and Vt into W Ht t . Then, we combine
the stain density maps of source Hs to the color appearance matrix of the target Wt in place of the source color appearance matrix Ws to generate the
normalized image. Thus, stain density map H preserves the structure and the color appearance matrix W preserves the change in the color ap-
pearance.

Step (5). After stain normalization, we apply inverse Beer-Lambert transform (BLT) on the normalized stains to get normalized source image.
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