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Abstract

Vehicular Ad Hoc Network (VANET) is an emerging paradigm and an upcoming

reality in road transportation which is designed and developed to minimize the

road accidents and fuel consumption by giving a prior alert on traffic condition

and collision detection using Vehicle to Vehicle (V2V) and Vehicle to Roadside

Unit (V2R) communication.

VANET is said to be a subset of Mobile Ad Hoc Network (MANET) due to

similar node characteristics such as self-configuring node and multihop routing

for examples. Based on their similar characteristics, MANET routing protocols

are used in VANET. However, at various perspectives, VANET and MANET dif-

ferentiate each other such as power, speed and mobility. Hence, applicability of

MANET topology based routing protocols should be re-evaluated thoroughly us-

ing IEEE 802.11p standard which is specifically designed and developed to be used

with VANET communication. In addition, realistic mobility should be generated

by considering urban and non-urban vehicular traffic. However, position-based

routing protocols are more suitable than the topology based routing protocols as

position-based routing protocols do not maintain topology of the network rather

they use the vehicle position on the Earth’s surface. The vehicle positions are

obtained from the satellite navigation devices such as Global Positioning System

(GPS), Galileo, Compass and Glonass. The position-based routing protocols use

vehicle position as a location id during routing. Generally, satellite obtained loca-

tions are prone to have error due to environmental effect and urban infrastructure.

Due to this error, the real vehicle position would be 05-100m away from the GPS

location, approximately which effect the application performance. Thus, the lo-

cation accuracy of the vehicle is a prime concern in VANET which enhances the

application performance of automatic parking, cooperative driving, routing etc. to

give some examples. Hence, various location prediction techniques are proposed

in the literature to minimize the location error.



In order to address these issues, at the outset, this thesis aims to re-evaluate

the applicability of topology based routing protocols in VANET, particularly, it

evaluates the Ad Hoc On-demand Distance Vector (AODV) and Optimized Link

State Routing (OLSR) protocols on IEEE 802.11p standard. In the evaluation,

it uses two different road network scenarios, particularly a complex road network,

which represents the city road network, having multiple crossroads and an inter-

section of two roads.

The second contribution of this thesis aims to propose a location prediction al-

gorithm which is designed by considering nonlinear vehicular movement, as speed

of the vehicle in the city varies between 0 to 60 Km/h, due to traffic rules, driving

skills and traffic density. Likewise, the movement of the vehicle with steady speed

is highly impractical. Consequently, the relationship between time and speed to

reach the destination is nonlinear and with reference to the previous work on

location prediction in VANET, nonlinear movement of the vehicle was not con-

sidered. In addition, location error also effects the performance of position-based

routing protocol in VANET. Thus, it proposes a location prediction algorithm for

a nonlinear vehicular movement using Extended Kalman Filter (EKF). EKF is

more appropriate contrasted with the Kalman Filter (KF), as it is designed to

work with the nonlinear system. The efficacy of the prediction algorithm is eval-

uated on real and model based mobility traces for the city and highway scenarios.

Further, prediction accuracy of the EKF is compared with the KF on Average Eu-

clidean Distance Error (AEDE), Distance Error (DE), Root Mean Square Error

(RMSE) and Velocity Error (VE) metrics.

The third contribution of the thesis proposes to use KF and EKF based location

prediction techniques into the position-based routing protocol which is named as

prediction based position-based routing protocol. The inclusion of KF and EKF

based prediction techniques into the routing protocol has the aim to minimize

the location error to improve the routing performance. The performance of the

prediction based position-based routing protocol is evaluated on Two-ray ground

and Winner-II propagation models with different transmission ranges of 250m



and 500m for the city and highway scenarios. In simulation, two different traffic

environments such as heterogeneous and homogeneous traffic are used. The perfor-

mance of the prediction based position-based routing protocol using KF and EKF

prediction module is compared with Cross-layer, Weighted and Position-based

Routing (CLWPR) protocol on the metrics of Packet Delivery Ratio (PDR), Av-

erage Delay (AD) and throughput.

The fourth contribution of this thesis evaluates the location prediction based

position-based routing protocol using KF on real time GPS traces for 500m trans-

mission range. In addition, it evaluates KF by predicting advance location of a

vehicle on a highway scenario and error removal capacity.

Based on obtained experimental results, it is observed that topology based rout-

ing protocols are less effective for VANET, while EKF based prediction is more

accurate than KF based prediction. The PDR and AD got improved with EKF

and KF based prediction in position-based routing protocol.
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Chapter 1

Introduction to VANET

Wireless communication is the cornerstone for many emerging networks such as

MANET, Wireless Sensor Network (WSN) and VANET. Among these networks,

VANET is an emerging paradigm which uses inter vehicular communication to

establish the V2V and V2R communication among the vehicles and Roadside

Unit (RSU) to minimize the accidents, traffic and fuel consumption by providing

a prior alert (Boukerche 2008). In V2V communication, vehicle communicates

with other vehicles either directly or through intermediate vehicles using IEEE

802.11p standard. In the latter one, vehicle communicates directly to the fixed

RSU. Generally, in VANET following communication environments are found:

• Pure Ad Hoc Environment (V2V): In pure VANET, vehicle communicates to

other vehicles using Dedicated Short Range Communication (DSRC) stan-

dards to send, receive and forward safety and traffic messages. In V2V

communication, vehicle sensors are used to detect the events such as acci-

dents, bad roads, ice and fluid on the road, to alert the incoming vehicles on

the same road segment. V2V communication is preferred to exchange the

messages in highway scenario because deployment of the RSUs on the en-

tire road segment is not feasible now, it may get implemented in the future.

Hence, V2V communication plays a noteworthy role in the highway scenario.

Figure 1.1 depicts the V2V communication in the highway scenario.

• Pure Cellular Architecture (V2R): In this architecture, vehicle communicates

to other vehicle using RSU which may be connected to a wireless base station

to access 3G or 4G network which is used to forwards the messages to the

closest base station. However, communication through 3G or 4G network is

quite costly which makes it less feasible for the vehicular communication.
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Figure. 1.1: VANET communication

• Hybrid Architecture (V2V and V2R): VANET hybrid architecture is a com-

bination of the ad hoc and wireless network. The hybrid architecture for

VANET is shown in Figure 1.1. Generally, it eases the city transportation

and renders infotainment, advertisement services to the users.

Generally, a typical VANET architecture consists of the On-board Unit (OBU),

Application Unit (AU) and RSU as shown in Figure 1.2 (R. Baldessari 2008).

Among these devices, OBU and AU reside on the vehicle whereas RSU is fixed at

the junction point or prominent places of the city. In Figure 1.2, AR and PHS are

the acronyms for the Access Router and Public Hot Spot.

1.1 VANET APPLICATIONS

VANET has various applications in road transportation such as (Guerrero-Ibáñez

et al. 2013):

• Safety-based applications infer the dangerous situation to intimate neighbor-
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Figure. 1.2: VANET architecture

ing vehicles immediately to avoid the accidents and to minimize the collision

probability with other vehicles or objects such as building, pedestrian or ani-

mals. On-board sensors are used to recognize the dangerous events and avoid

it by using vehicle features such as deployment of airbag in case of collision,

application of emergency brakes etc.. Such applications heavily rely on the

real time information. This real time information is broadcasted to other

vehicles to take an appropriate decision. For instance, real time information

is required during the lane change assistance, intersection collision warning,

overtaking warning, head on collision warning.

• Infotainment-based applications offer passenger comfort and entertainment
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services. For instance, on-line games and promotional messages from other

commercial vehicles or restaurants. Generally, in these applications vehicle

does not communicate to other vehicles except RSU. In addition, it also

provides the IP-based services such as email, web access.

• Traffic-based applications deal with the issues related to traffic bottleneck,

fuel consumption and effect on environment. In these applications RSU and

sensors provide the traffic data to the central processing unit where traffic

information is processed. Then, this traffic information is disseminated to

other vehicles via radio broadcast. Based on this information, a driver uses

the GPS and digital map to plan his trip.

1.2 DEDICATED SHORT RANGE COMMUNICATION

DSRC is also know as Wireless Access in Vehicular Environment (WAVE) which

provides V2V, V2R communication using IEEE 802.11p standard. It is specifically

designed and developed to be used with vehicular communication. The IEEE

802.11p standard is developed on the basis of IEEE 802.11a standard, particularly

it decreases the overhead operations as compared to IEEE 802.11a (Al-Sultan

et al. 2014). It is a medium of communication among the vehicles and RSU which

supports from short to medium range distance. It aims to provide high data

rate with low latency. DSRC channels are organized into 7 channels of 75 MHz

spectrum of 5.9 GHz. Out of 75 MHz, each of the 7 channels is allocated 10 Mhz,

while 5 Mhz is reserved for the guard band. Out of the 7 channels, one channel

is allocated as a control channel to exchange the network control messages, while

reaming channels are allocated as service channels to exchange the data packet

and WAVE short messages as depicted in Figure 1.3 (Li 2012). DSRC supports

up to 1000m of transmission range with 6-27 Mbps data rate.

1.3 VANET CHARACTERISTICS

In VANET, vehicles behaviour are very similar to MANET mobile nodes, thus, it

is called as a subset of MANET which inherits various features such as multi-hop

routing, vehicle act as a both node and router and self-configuring node. Though
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the duo has some common features, however, both discriminate each other on

various aspects as discussed below (Sharef et al. 2014; Boukerche 2008):

• Intermittent Network Connection: Due to the frequent changes in vehicular

movement and speed, communication links get disconnected often which

increases the delay and packet loss. In VANET, life of a communication

link hardly exists for a short duration due to high speed and mobility. For

instance, if the two vehicles have radio range of 250m and running in opposite

direction with 80-100 Km/h speed. In that case, communication link hardly

exists for 9.00 to 11.25 seconds. In addition, ubiquitous Internet on a vehicle

is the need for VANET to offer infotainment services which is quite difficult

to achieve in the current scenario, as a solution, deployment of relay node

(RSU) on the road can mitigate this issue.

With respect to MANET, nodes are bound to ply with slower speed within

a confined area as compared to VANET nodes.

• Dynamism of Topology: Due to speed and movement, topology of the net-

work get disturbed frequently, as nodes join the network and leave it quickly.

Thus, topology handling in VANET is a cumbersome task for the node, in

addition, it incurs routing overhead, delay and convergence time.

• Computing Power: MANET node operates on battery power which limits

the computing capacity to maximize the node lifetime. Whereas, VANET

node has massive computing power as it consumes the power from vehicle
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battery. Hence, node lifetime exists as long as vehicle exists. In addition, it

can also have a large antenna, unlike MANET.

• Hard Delay: VANET communication meets hard delay to deliver the safety

and traffic messages to alert the driver quickly to forbid an accident. For

example, heavily congested road information need to be disseminated rapidly

to forthcoming vehicle drivers. So that they can make use of an alternate

path to reach the destination by choosing a less congested route. Moreover,

the node should broadcast emergency messages quickly to their neighbour

nodes to thwart the accidents.

• Mobility: In VANET, vehicle mobility can be predicted as vehicle move-

ment is restricted in one direction due to road layout and traffic signs. But,

MANET nodes move randomly. Nevertheless, precise forecasting of the ve-

hicle movement is hard, since movement of a vehicle also depends on the

speed of the vehicle and driver behaviour.

• Network Partitioning: Based on previous research, end-to-end connectivity

is limited to short range communication, thus network partitions tend to

infinite in VANET.

• Unlike MANET, VANET is a large scale network.

1.4 VANET CHALLENGES

Following are the existing challenges in VANET which need to be considered in

future, while designing the routing protocol.

• Simulation: In VANET, simulation part is quite difficult as researchers need

to deal with two different simulators such as network simulator and mobility

simulator to evaluate the effectiveness of a model. However, network sim-

ulator is well established as compared to mobility simulator. For instance,

simulating driver behaviour is quite difficult in VANET as the vehicle move-

ment also depends on driver’s decision and skills.
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Table 1.1: Required location precision in VANET applications

Application Low Medium High

Emergency & Safety

Adaptive Cruise Control X

Cooperative Intersection Safety X

Platooning X

Collision Warning X

Blind Crossing X

Vision Enhancement X

Services

Routing X

Data Dissemination X

Accident Detection X

• Localization: Satellite navigation devices, such as GPS is being used in

VANET to retrieve the vehicle location information which consists of lati-

tude, longitude and velocity information. This information is used in emer-

gency and safety applications to improve the efficiency such as collision warn-

ing, emergency braking, automatic parking etc.. In addition, location infor-

mation can also be used in service based applications.

As accuracy of the receiver is affected by trees, lofty buildings, bridge and

tunnels in the city. The accuracy of the GPS receiver is a noteworthy issue

in a navigation system. In addition, other environmental factors such as line

of sight, signal obstruction, fading and interference also affect the location

accuracy (Li et al. 2012). In general, GPS provides the location of an object

with an accuracy of 05-100m distance subject to the receiver quality. In
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the literature, different location prediction algorithms are proposed to com-

pensate the location error such as dead reckoning, cellular and video/audio

imaging (Qureshi & Abdullah 2014).

In VANET, location accuracy is the most critical information for some

applications. For instance, emergency and safety applications need a high

level of location precision, unlike service based applications. The location

precision required for the few applications is outlined in Table 1.1.

• Network Partitioning: It is a major issue amid nodes are unreachable. It

may occur in a sparse network or rural areas network scenarios.

• Variable Network Size: is another issue which needs to be considered while

designing the medium access control protocol. For instance, in urban sce-

nario, thousands of vehicles can be there in a small region and in such situ-

ations collision and transmission error is more likely to occur. In addition,

with highway scenario, sparse network causes the intermittent connection

(Cunha et al. 2016).

1.5 ROUTING IN VANET

Routing is an important component of VANET communication which facilitates

to deliver the packet delivery in safety, emergency and infotainment applica-

tions. Though VANET distinguishes itself from MANET at some perspective,

yet MANET routing protocols are used in VANET due to their similar charac-

teristics. However, MANET routing protocols performance do not endure with

VANET characteristics as MANET routing protocols are designed to work with

the energy constraint and limited computing power system. Along with these re-

strictions, it also supports for the less node mobility and speed, unlike VANET.

In the literature, various routing protocols have been proposed for the vehicular

communication which are modified and inherited from MANET. Based on the

available literature, this thesis classifies VANET routing protocols as shown in

Figure 1.4 and explained as follows:
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1.5.1 Uni-cast Based Routing

In uni-cast based routing, a message is delivered only to a single designated node.

This routing protocol involves the intermediate node to forward the packet to

the next hop if the destination node is in range of the source node, else it sends

directly. The source node broadcasts the destination node address among the

neighbor nodes to discover it. The uni-cast based routing protocols are categorized

as follows:

1.5.1.1 Topology Based Routing

In this protocol, each node maintains the information of the neighbour nodes, a

node is called as a neighbor node when it falls under the transmission range of

the node. Generally, in this protocol, node searches its topology table to find the

destination node or nearest neighbour node to forward the packet. If it does not

find the route, it broadcasts the destination node address to all the neighbour

nodes. The topology based routing protocols are classified into reactive, proactive

and hybrid routing protocols (Perkins & Bhagwat 1994; Perkins et al. 2003; Nikaein

et al. 2001; Johnson & Maltz 1996; Clausen & Jacquet 2003; Guangyu Pei 2000;

Chen & Gerla 1998; Haas 1997; Lochert et al. 2005).

The reactive routing protocol is also known as on-demand routing protocol,

wherein a node establishes a route only when it needs to send the packet. The on-

demand routing protocol uses the flooding technique to discover the route when

destination node address is not available in the neighbour table. Due to flooding

technique, it incurs more routing overhead and delay. AODV (Perkins et al. 2003),

Dynamic Source Routing (DSR) (Johnson & Maltz 1996) and Temporally Ordered

Routing Algorithm (TORA) (Park & Corson 1997) are the protocols which work

on the basis of on-demand routing protocol.

In proactive routing protocol, each node determines the shortest path to all the

nodes in the network well in advance and the same is stored in the routing table.

It updates the routing table, whenever topology change occurs. Due to frequent

topology change it updates the routing table frequently which consumes more

bandwidth. The routing protocols such as Destination Sequence Distance Vector
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(DSDV) (Perkins & Bhagwat 1994), OLSR (Clausen & Jacquet 2003), Fish-eye

State Routing (FSR) (Guangyu Pei 2000) and Global State Routing Protocol

(GSRP) (Chen & Gerla 1998) are the proactive based routing protocols.

A hybrid routing protocol is an amalgamation of the reactive and proactive

routing protocols. It reduces the routing overhead as hybrid based routing protocol

divides the network into zones, to ease the routing process. The routing protocols

such as Hybrid Ad Hoc Routing Protocol (HARP) (Nikaein et al. 2001) and Zone

Routing Protocol (ZRP) (Haas 1997) are the hybrid routing protocols.

The topology based routing protocols show meager performance in VANET

due to frequent topology change which incur more route convergence time, low

communication throughput and delay.

1.5.1.2 Position-Based Routing

The position-based routing protocol makes use of node location obtained from

satellite navigation device to identify the node on Earth’s surface. Node recog-

nizes the other node based on their geographic location and this location is used

as a location id in position-based routing protocol. Thus, position-based routing

protocol neither supports a route table nor exchanges the routing information,

albeit, it uses location id in packet forwarding.

There are various position-based routing protocols proposed in the literature

such as Greedy Perimeter Stateless Routing (GPSR) (B & HT 2000), Global

State Routing (GSR) (Lochert et al. 2003), Anchor-based Street and Traffic (A-

STAR) (Seet et al. 2004), Multi-hop Routing Protocol for Urban (MURU) (Mo

et al. 2006), Connectivity-Aware Routing (CAR) (Naumov & Gross 2007), Junc-

tion based Adaptive Reactive Routing (JARR) (Tee & Lee 2010), Spatial and

Traffic-Aware Routing (STAR) (Giudici & Pagani 2005) and Greedy Perimeter

Coordinator Routing (GPCR) (Lochert et al. 2005). However, most of them are

derived from the GPSR routing protocol. The performance of the position-based

routing protocol is poor for the urban scenario due to buildings, trees and road

intersections which hinder the signal propagation. However, GSR (Lochert et al.

2003), A-STAR (Seet et al. 2004), MURU (Mo et al. 2006), CAR (Naumov &
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Gross 2007), JARR (Tee & Lee 2010), STAR (Giudici & Pagani 2005), GPCR

(Lochert et al. 2005) tried to overcome the limitations of classical position-based

routing protocol such as GPSR.

1.5.1.3 Cluster Based Routing

Cluster based routing protocol partitions the network into the clusters and selects

one of the nodes from the cluster as a cluster head. A cluster head is respon-

sible for monitoring and managing the nodes available in the cluster. Within

the cluster, node communicates directly to other nodes is called as intra-cluster

communication, while in inter-cluster communication, a cluster node communi-

cates with other cluster nodes through the cluster head. The performance of the

cluster based routing protocol is influenced by the selection of cluster head and

cluster formation. The routing protocols such as Clustering for Open IVC Net-

work (COIN) (Blum et al. 2003), Cluster Based Routing (CBR) (Luo et al. 2010),

Cluster-based Directional Routing Protocol (CBDRP) (Song et al. 2010) are the

examples of cluster based routing protocols.

1.5.1.4 Geocast Based Routing

The geocast based routing protocol adopted many features of the position-based

routing protocol. It also uses the node location to establish the route. Geocast

routing protocol disseminates the packet from a source node to all other nodes in a

specific geographic region called as Zone of Relevance (ZoR). The nodes available

in the ZoR receive the packet sent by any other node if they are in the same zone. A

node located at outside of the zone does not receive the packet from other nodes

which are located in different zone. When a packet reaches to the destination

zone, uni-cast based routing is used to deliver the packet to the destination node.

Albeit, it decides a forwarding zone which further carries the flooded packet to

reduce the routing overhead and congestion. However, in this protocol, packet loss

may occur if a node fails to forward the packet. In addition, network partitioning

may also leads to the packet loss. The multicast services may be used by geocast

based routing in a specific region (Sharef et al. 2014). RObust VEhicular Routing

(ROVER) (Kihl et al. 2007), Inter Vehicle Geocast (IVG) (Bachir & Benslimane

11



2003), MOBICAST (Chen et al. 2009), and Contention-based Geographic Routing

(CGR) (Maihofer & Eberhardt 2004) are the geocast based routing protocols.

1.5.2 Multicast Based Routing

The conventional multicast routing protocols used in wired networks are unsuitable

for VANET. However, modified MANET based multicast routing protocol can be

used (Muoz Muoz). Numbers of multicast routing protocols are available in the

literature for MANET (Jetcheva & Johnson 2001; Souza et al. 2013; Royer &

Perkins 1999; Lee et al. 2002; Yan et al. 2012; Sinha et al. 1999; Xie et al. 2002;

Ji & Corson 2001). These multicast routing protocols may be suitable for the

vehicular communication. The multicast routing protocols are classified into the

following classes (De Morais Cordeiro et al. 2003):

1.5.2.1 Flooding

It is a simplest multicast routing protocol. In this protocol, a node floods the

packet to the neighbour nodes which further forward to next neighbour node,

exactly once. In a highly dense network, flooding is more feasible under the

emergency situation to disseminate the packet quickly to every node. In order to

avoid duplicate packet, each node maintains the information of recently received

packet in the cache to deter rebroadcasting the same packet repeatedly. It removes

the packet from the cache once it becomes stale. A newly received packet would

be forwarded only if it is not in the cache (Viswanath et al. 2006). Although, each

node receives the packet in the network, however, it incurs congestion, overhead

and delay in the crowded network as each node participates in the broadcasting

of a packet once.

1.5.2.2 Tree Based Routing (TBR)

Tree based routing functions either as a source based tree or shared based tree

(De Morais Cordeiro et al. 2003). Source based tree builds a tree for each multi-

cast group with shortest path and latter one builds only one tree for each group.

In tree based routing, each node of a group transmits the packet using a con-

structed tree. The performance of TBR protocol does not endure with VANET

constraint as it frequently rebuilds the distribution tree due to node mobility.
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In addition, it obstructs the services. Adaptive Demand-Driven Multicast Rout-

ing (ADMR) (Jetcheva & Johnson 2001), Multicast Ad Hoc On-Demand Distance

Vector (MAODV) (Royer & Perkins 1999) and bio-inspired based MAODV (Souza

et al. 2013) are the tree based multicast routing protocols in VANET.

1.5.2.3 Mesh Based Routing

This protocol solves the robustness problem of the tree based protocols using

redundant links. Mesh based routing protocol mitigates the effect of frequent

link disconnection due to topology change. This protocol performs fairly well in

contrast to the tree based routing protocols. However, routing overhead and packet

loss increases as network size grows (Viswanath et al. 2006). Since, it maintains

multiple routes to the destination. Thus, packet gets forwarded through one of the

available routes in case shortest route is unavailable, due to link failure. The On-

Demand Multicast Routing Protocol (ODMRP) (Lee et al. 2002) and Destination-

Driven On-Demand Multicast Routing Protocol (DODMRP) (Yan et al. 2012) are

the mesh based routing protocols.

1.5.2.4 Backbone Based Routing

Backbone based routing protocol reduces the control overhead maintenance in a

multicast infrastructure by introducing a simple and stable virtual backbone topol-

ogy. The state information is constrained to only that node who participates in

the formation of the backbone. A distributive selective approach is opted to select

a core node among the nodes of the network (Muoz Muoz). It inherits the merits

of the tree based routing and mesh based routing protocols. Nevertheless, back-

bone based routing is constrained by scalability due to the condition that traffic

must pass through the backbone. The Multicast Core-Extraction Distributed Ad

Hoc Routing (MCEDAR) (Sinha et al. 1999) protocol belongs to this category.

1.5.2.5 Overlay Based Routing

Tree and mesh based routing performance decreases as the number of source node

increases. Moreover, control overhead and collisions are more. The overlay based

routing minimizes the control overhead of maintaining state information only for

multicast group members. It forms a virtual network over VANET topology be-
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tween multicast group members. Virtual topology has null adaptability even un-

derlying topology changes (Muoz Muoz). The Ad Hoc Multicast Routing protocol

(AMROUTE) (Xie et al. 2002) falls under the overlay based routing. In this

protocol, inefficient path creation impacts on performance.

1.5.2.6 Stateless Routing

A timely maintenance of delivery tree reduces the performance of tree and mesh

based routing protocols due to brisk node mobility. A stateless routing protocol

is proposed to mitigate this issue. In stateless routing, source node includes a

list of destinations in the packet header. It focuses on a small multicast group

and forwards the incoming packet based on destination information present in

the packet header (De Morais Cordeiro et al. 2003). The Differential Destination

Multicast (DDM) (Ji & Corson 2001) protocol is of this category.

1.5.3 Broadcast Based Routing

Broadcast based routing protocol is a panacea in the communication network, it

delivers the packet to all other nodes present in the network. VANET exploits this

classical protocol to disseminate emergency, alert, advertising and traffic packets

to all the nodes. This routing protocol can also be used in route discovery pro-

cedure. Flooding is a basic method used for broadcasting a packet. Although

flooding guarantees the packet delivery to all the nodes in the network. However,

it incurs delay, overhead and consumes bandwidth. In addition, active involvement

of the node in receiving and broadcasting of the packet leads to contention (Li &

Wang 2007). BROADCOMM (Durresi et al. 2005), Urban Multihop Broadcast

(UMB) (Korkmaz et al. 2004), Distributed Vehicular Broadcast Protocol (DV-

CAST) (Tonguz et al. 2007), Edge-Aware Epidemic Protocol (EAEP) (Nekovee &

Bogason 2007), Hybrid Data Dissemination (HyDi) (Maia et al. 2012), Distributed

Efficient Clustering Approach (DECA) (Nakorn & Rojviboonchai 2010) are the

protocols which work on broadcast based routing protocol.

1.6 MOTIVATION

With increasing number of vehicles and limited road infrastructure, leads to traffic
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congestion, more fuel consumption and fatal accidents as a consequence millions

of people getting killed worldwide. The increasing number of the vehicles and

their speed are the prime factor for the accidents. For instance, in India alone,

1,46,133/- accidental deaths were reported in the year 2015 which is 4.6% more

from the previous year. The road transportation is not yet matured as enough

as Air and Marine transport where accidents rate is almost negligible. In that

context, VANET is a ray of hope to minimize the road traffic, fuel consumption

and fatal accidents using V2V and V2R communication to deliver the safety and

application messages to the destination in time. In VANET, position-based rout-

ing protocol plays a vital role in message dissemination accurately. Since routing

protocol in VANET has its own set of challenges due to unpredictable speed and

movement direction. In addition, node position obtained from the satellite sys-

tem also contains an error due to environmental and technical issues which impact

the routing performance such as PDR, throughput and delay. An efficient location

prediction technique has potential to reduce the location error up to certain extent

which will be very helpful in other applications too such as emergency and safety

applications. Though many location prediction techniques and prediction based

position-based routing protocols have been proposed in the literature but each of

them has its own limitations. So, there is a need to devise an efficient location

prediction technique and a prediction based position-based routing protocol, to

improve PDR, AD and throughput.

1.7 THESIS CONTRIBUTIONS

The major contributions of this dissertation are listed as follows:

• It evaluates the applicability of the topology based routing protocols such

as AODV and OLSR in VANET using city road network and single junction

point on IEEE 802.11p standard.

• It proposes a location prediction technique using EKF which minimizes the

location error considering nonlinear vehicular movement.

• It compares the EKF based location prediction with KF based prediction on
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the metrics of RMSE, DE, AEDE and VE.

• It proposes to use KF and EKF based prediction module in the position-

based routing protocol to minimize the location error and to improve the

PDR, AD and throughput.

• It compares the KF prediction based position-based routing protocol with

other prediction based position-based routing protocols such as CLWPR and

EKF based prediction based position-based routing protocols in VANET, on

PDR, throughput and AD.

• It also evaluates the performance of KF prediction based position-based

routing protocol with CLWPR protocol using real time GPS traces. In

addition, it also evaluates the error removal capacity and advance location

prediction on highway by using one time latitude and longitude, of KF.

1.8 THESIS OUTLINE

The remaining chapters of this dissertation are organized as follows:

Chapter 2 presents the existing works with respect to location prediction and

routing protocols. Basically, it highlights the literature review on:

• Applicability of MANET routing protocols in VANET.

• Location prediction techniques.

• Location prediction in position-based routing protocol.

Based on literature outcomes, it defines the problem statement and research ob-

jectives.

Chapter 3 does an assessment to scrutinize the applicability of AODV and

OLSR protocols in VANET with different traffic scenarios and transmission ranges

on IEEE 802.11p standard. It compares the performance of the AODV and OLSR

on two different road network scenarios, particularly a typical road network, which

represents the city road network, having multiple crossroads and an intersection

of two roads.
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In Chapter 4, a location prediction algorithm is designed and developed using

EKF for the nonlinear vehicular movement. It compares the performance of the

proposed algorithm with KF based location prediction on RMSE, AD, VE and

AEDE using real and model based mobility traces for the city and highway sce-

narios.

Chapter 5 proposes and evaluates the location prediction based position-based

routing protocol using KF and EKF which minimizes the location error to im-

prove PDR, AD and throughput on Two-ray ground and Winner-II (IST-WINNER

2007) propagation models for the 250m and 500m transmission range. The routing

performance is measured on the city and highway scenarios using heterogeneous

and homogeneous traffic environments for the variable speed, followed by perfor-

mance comparison with other prediction-based routing protocol on the metrics of

PDR, AD and throughput.

In addition it also evaluates the performance of the location prediction based

position-based routing protocol using KF on real time GPS traces for 500m trans-

mission range. In addition, it predicts the advance location of a vehicle on a

highway by supplying one time location information and it also computes the er-

ror removal capacity of KF.

Finally, Chapter 6 provides the conclusion on the entire thesis work and future

direction.

1.9 SUMMARY

This chapter introduces VANET and its role in road transportation which gives an

insight on it’s communication environment, characteristics, challenges, motivation

and communication standard. It also classifies various routing protocols. This

chapter also outlines the detailed contribution and structure of the thesis. In this

thesis, location and position, prediction and estimation, vehicle and node are used

vice-versa and resemble the similar meaning.
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Chapter 2

Literature Review

This chapter highlights the previous works with respect to topology and position-

based routing protocols and their applicability in VANET followed by location

prediction techniques and position-based routing protocol using location predic-

tion technique. Figure 2.1 shows the organization of literature review.

2.1 TOPOLOGY BASED ROUTING

This section discusses the related work with respect to topology based routing

protocols. The summary of the discussion is given in Table 2.1.

Perkins & Bhagwat (1994) proposed DSDV routing protocol. This protocol is

designed on the basis of link state and distance vector routing protocols of the

wired network. In this protocol, each node maintains a route table which consist

shortest path to the destination along with number of hops. Each row in the route

table is assigned a sequence number, originated from the destination. The most

recent sequence number is considered for the route selection. The downside of this

protocol is packet collision and channel contention due to time synchronization

among the nodes. In addition, routing overhead and congestion is more due to

packet advertisement amid topology change in a large network (Perkins & Royer

1999).

Johnson & Maltz (1996) proposed DSR protocol. It is a reactive routing proto-

col which computes the route on-demand. Prior to communication, source node is

responsible for computation of the route, it includes list of all intermediate nodes

came across route discovery phase, through which packet needs to traverse back

to reach the destination. Each node maintains the route cache to store the new

route. The node initiates the route discovery procedure when it does not find the

available route in cache. Once the route is established, node transmits the packet
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to the neighbour nodes as per the shortest path available in the route table. The

same process is repeated by the subsequent nodes during the packet journey till it

reaches the destination. It is observed that the lifetime of the route is ephemeral

since nodes are mobile and routing overhead is more.

Guangyu Pei (2000) proposed a bio-inspired FSR protocol. Fish-eye captures

more information about the object which is near to the focal point and it decreases

as the distance between fish-eye and the object increases. Based on this theory,

FSR is designed wherein a node maintains the accurate distance and quality of

link for those neighbour nodes which are near. This information becomes hazy as

the distance increases.

The global state routing (Chen & Gerla 1998) and FSR protocols have sim-

ilar features except the fish-eye technique. Albeit, FSR reduces communication

overhead during the routing process. However, mobility of the nodes affects the

accuracy of route computation which is not taken into account.

As aforediscussed routing protocols use route table to maintain topology which

is quite cumbersome in VANET to manage it, due to high speed and mobility.
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To address these issues, Perkins & Royer (1999) proposed the AODV routing

protocol. In this protocol, node neither maintains any routing information nor

participates in exchange of the routing table, until node needs to communicate. A

node broadcasts the route discovery packet to the neighbour nodes when destina-

tion node is not available in the neighbor table. Though using on-demand route

discovery procedure, AODV minimizes the communication overhead. However, it

consumes more bandwidth due to flooding of the route discovery packet. Addi-

tionally, on-demand route discovery procedure forces the packet to wait till route

is ascertained. To minimize the packet waiting time amid route search in AODV,

Haas (1997) proposed ZRP which combines the merits of reactive and proactive

routing protocols. In ZRP, each node maintains a route table to keep topologi-

cal information of the neighbour nodes present in the same zone. Consequently,

nodes can communicate directly to each other if the nodes belong to the same zone,

known as intra zone routing protocol. Outside of the zone, nodes communicate

to other nodes using inter zone routing protocol which initiates on-demand route

discovery procedure. Though ZRP uses hybrid technique to improve the routing

performance by decreasing the communication overhead and latency inside a zone

with the help of route table. However, outside zone communication is cumbersome

due to route discovery procedure and mobility.

Clausen & Jacquet (2003) proposed OLSR protocol. In this protocol, nodes

exchange the message periodically to update the network topology. Each node

constructs a list of designated neighbour nodes to work as a Multi Point Relay

(MPR) node and only the MPR nodes are responsible to forward the control traf-

fic. Thus, it reduces the number of transmissions. Each node floods the packet

only to the MPR nodes, which further forward the packet to the destination node

by the shortest path. Though OLSR reduces the number of transmissions by re-

stricting the broadcast only to the MPR node, nevertheless, some significant flaws

are identified in it. For instance, it increases communication overhead due to

periodic broadcast of HELLO packet to keep updated topology of the neighbour

nodes. Sometime packet get diverted for a long path rather than shortest path as
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the forwarding decision is taken by the MPR node and most importantly it does

not guarantee the loop-free routing.

Table 2.1: Summary of topology based routing protocols

Author Protocol Routing Mechanism Remarks

Perkins & Bhagwat (1994) DSDV
Based on link state and

distance vector

More routing overhead and

congestion

Johnson & Maltz (1996) DSR
On-demand route

computation
More routing overhead

Guangyu Pei (2000) FSR Based on fish eye concept
Information gradually

decreases with distance

Perkins & Royer (1999) AODV
On-demand route

computation
Packet waiting time is more

Haas (1997) ZRP
hybrid (reactive and non-

reactive)

Issues with outside zone

communication

Clausen & Jacquet (2003) OLSR Use multi point relay node
Does not guarantee loop

free routing

2.2 APPLICABILITY OF TOPOLOGY BASED ROUTING PROTO-

COLS IN VANET

Due to similar characteristics of MANET and VANET, MANET routing protocols

are used in VANET. However, it is necessary to re-evaluate the applicability of

MANET topology based routing protocols such as AODV and OLSR in VANET

environment, as VANET and MANET differentiate each other at some perspec-

tive, (as explained in Chapter 1). Thus, in the literature, many previous works

have been proposed which evaluate the applicability of MANET topology based

routing protocols in VANET as explained in following paragraph and summarized

in Table 2.2:

Clausen et al. (2002) compared the performance of the AODV and OLSR

routing protocols specifically for MANET. In their work, they used IEEE 802.11

standard for communication and mobility model based on random way-point. In
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random way-point model, a node decides its next location and speed randomly.

Henceforth, mobility obtained using random way-point model does not resemble

the typical vehicular characteristics. In addition, node moves seamlessly into a

region where obstacles are not considered which is quite adverse to VANET char-

acteristics. Thus, the parameters chosen for the performance evaluation are less

appropriate to test the protocols applicability in VANET. For instance, in VANET

environment, the routing performance depends on several factors such as mobility,

speed and consistency in network connectivity. Hence, applicability of MANET

routing protocols for VANET should be evaluated only on mobility generated with

VANET characteristics and communication standard.

Similarly, Haerri et al. (2006) compared the performance of the AODV and

OLSR protocols for VANET on IEEE 802.11 DCF standard. To get realistic ve-

hicular characteristics, the authors have used Vehicular Mobility Model (VMM)

from VANETMOBISIM. Though the authors have taken utmost care in deciding

simulation parameters. However, amid 2006 IEEE 802.11p was not in existence

which is mainly designed and developed to be used with vehicular communica-

tion. In addition, in this work, which signal propagation loss model is used, is

not known. It also impacts the routing performance due to signal fading in the

city. Thus, chosen parameters are inappropriate to conclude the applicability of

the AODV and OLSR protocols in VANET.

Khan & Qayyum (2009) assessed the performance of AODV and OLSR pro-

tocols using IEEE 802.11p standard with Nakagami fading model. The authors

have evaluated the performance using city based realistic map. To get vehicular

traffic, it uses MOVE and SUMO simulators. However, in simulation, it consid-

ered the uniform speed of 40 Km/h which may be insufficient to represent realistic

vehicular traffic for a city as uses of constant speed makes the vehicular network

more stable than the variable speed. Further, micro mobility parameters are not

discussed in their work which also affect the routing performance.

Similarly, Spaho et al. (2013) compared the AODV and OLSR protocols perfor-

mance on IEEE 802.11p standard for VANET. In their work, Cellular Automaton
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based VEhicular NETwork (CAVENET) simulator is used to generate vehicular

mobility for a crossroad scenario. The CAVENET simulator does not support

many essential features of VANET such as acceleration and deceleration, polite-

ness factor and intersection management (De Marco et al. 2007). It is also found

that the vehicles are distributed around the crossroad which is insufficient to as-

sess the applicability of the AODV and OLSR protocols. In particular, in their

simulation, vehicles cover each other in their transmission range as the simula-

tion area is restricted to 200m X 200m, while vehicle transmission range is 250m.

Consequently, the route discovery procedure is required only when vehicle needs

to communicate with the diagonal vehicle. Accordingly, communication links do

not get disconnected due to their transmission range which envelopes the entire

simulation area.

Table 2.2: Summary on applicability of topology based routing protocols in

VANET

Author Protocols Comm. Standard Mobility Model

Clausen et al. (2002) AODV, OLSR IEEE 802.11 Random way-point

Haerri et al. (2006) AODV, OLSR IEEE 802.11 DCF VMM based on VANETMOBISIM

Khan & Qayyum (2009) AODV, OLSR IEEE 802.11p MOVE and SUMO

Spaho et al. (2013) AODV, OLSR IEEE 802.11p VMM based on CAVENET

2.3 POSITION-BASED ROUTING

This section discusses the related work with respect to position-based routing pro-

tocols. Table 2.3 summarizes the discussion.

B & HT (2000) proposed GPSR protocol. In this protocol, each node forwards

the packet using greedy and perimeter forwarding. In GPSR, each node main-

tains a neighbor table to store the location id of those nodes which come under

the radio range. Before sending the packet to the destination, primarily, a source

node searches the destination location id in it’s neighbor table to send the packet
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directly, else it opts for the greedy forwarding. In greedy forwarding, a node for-

wards the packet to a node which is geographically nearer to the destination. If

the source node does not find any of the nodes in its neighbor table, closer to the

destination. Then it opts for the perimeter forwarding which forwards the packet

to the next node by using right-hand rule theory which is also used when packet

forwarding fails due to local maximum in greedy forwarding. A node is said to

be trapped into local maximum when it realizes that a neighbor node seems to be

closer to the destination but outside of its transmission range. Generally, GPSR

performs better with the highway scenario while its performance is lessened in the

city because of the signal obstruction. In addition, sometime perimeter forwarding

forwards the packet through the long path which increases delay.

To overcome the flaws of GPSR, lee et al. (2007) proposed an enhanced perime-

ter routing GPSRj+ protocol. In this protocol, node forwards the packet using

greedy forwarding and recovery mode. In greedy forwarding, it forwards the packet

greedily along the road segment which is as close to as destination. When greedy

forwarding fails to find a node closer to the destination then it opts for the recovery

mode. In recovery mode a packet is backtracked along with the perimeter of the

road from where it was arrived and then node looks for the next alternate junction

neighbor node to forward the backtracked packet. GPSRj+ generates more delay

in recovery mode as packet needs to be backtracked to the previous location to

find the alternate path. When a packet is get trapped into the local maximum,

GPSR and GPSRj+ both the protocols opt for the recovery mode, which increases

the delay and number of hops to route a packet.

To address the GPSR and GPSRj+ issues, Seet et al. (2004) proposed an A-

STAR protocol, specifically designed for the city scenario. It uses the sequence

of anchor nodes deployed at the crossroad to forward the packet. A-STAR works

with two forwarding modes viz. greedy forwarding and recovery mode, in latter

mode packet reaches to the destination only through the anchor nodes when it is

trapped into the local maximum. Though A-STAR reduces the number of hops,

however, packet do not always find the optimal path and it takes more time to

25



reach the destination.

Giudici & Pagani (2005) proposed STAR protocol to address the issues in GPSR

and spatial aware routing (Tian et al. 2003) protocols. In this protocol, a node

has partial information of the network around it’s position. Each node maintains

the traffic monitoring table and neighbor table. STAR protocol is organized in

two layers, lower layer and higher layer. The former one manages and gather the

information related with network status whereas latter one computes the shortest

path. Node forwards the packet on a road segment where vehicle density is more.

The selection of the road segment based on vehicle density may jeopardize the

packet and increases the delay.

Lochert et al. (2003) proposed GSR protocol. It exploits the city map in routing

process. Node floods the network with request packet containing location infor-

mation of the destination. When a node finds its location similar to the location

mentioned in request packet, a reply message is sent back to the source. Though

GSR exploits the city map to send the packet results in more packet delay and

it does not perform well in the sparse traffic. Additionally, periodic broadcast

of the HELLO packet also increases the routing overhead. In another position-

based routing protocol such as MURU routing protocol proposed by Mo et al.

(2006), considers vehicle trajectory and average speed to predict the location of

group of the vehicles. Among the group, available nodes act as the forwarding

node between source and destination for a time period. A new metric called ex-

pected disconnection degree is introduced to evaluate the probability of a path at

a predefined time. The performance of MURU protocol drops in the sparse traffic

scenario as packet gets forwarded only through the intermediate nodes between

source to destination.

Naumov & Gross (2007) proposed CAR protocol for VANET. CAR combines

two processes together in pursuit of destination location and connected path be-

tween source to destination. In this protocol, guard nodes track the current loca-

tion of the destination node even though it has travelled far distant from the initial

known location. The broken links between the nodes results in more routing error
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which increases the delay. Similarly, Tee & Lee (2010) proposed a novel junction

based adaptive routing protocol for VANET for the city scenario. In this proto-

col, packet get forwarded through the shortest and fastest path viz. optimal path

model. Initially routing process begins with the shortest path and later shifted

to the fastest path. Due to frequent broadcast of beacon the messages in sparse

traffic increases the routing overhead and delay.

Bitam et al. (2013) proposed a Hybrid Bio-inspired Bee Swarm Routing proto-

col for Safety Application in VANET (HyBr). This protocol integrates the AODV

and GPSR routing protocols. Selection of the routing protocol among these two

depends on the network density. The AODV routing protocol is preferred in dense

network, while GPSR routing protocol is preferred in sparse network. In this pro-

tocol, route discovery process of the AODV routing protocol is modified on the

basis of bee life theory. Though it combines features of AODV, GPSR protocols

and bio-inspired bee life in AODV together, standing drawbacks of AODV and

GPSR protocols affect the performance of HyBR.

Jerbi et al. (2006) proposed Greedy Traffic Aware Routing (GyTAR) protocol.

This protocol possess two forwarding modes viz. greedy forwarding, which forward

the packet only through the junction node. When the packet get trapped into the

local maximum, then it switches to the recovery mode in which node carries the

packet until the next junction node or a vehicle is identified. The road junction is

selected based on score assigned to it, to route the packet. To compute the score

value of each junction, it considers the traffic density and curve-metric distance

between the junctions.

2.4 LOCATION PREDICTION

This section discusses the state of the art with respect to location prediction tech-

nique which is summarized in Table 2.4.

Hu et al. (2003) proposed a location prediction algorithm based on adaptive KF

using fading memory and variance estimation on GPS data. The fading memory

approach estimates the scale factor to enhance the predicted variance component

of the state, while variance estimation method directly calculates the variance fac-
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Table 2.3: Summary on position-based routing protocols

Author Protocol Routing Mechanism Remarks

B & HT (2000) GPSR
Greedy and perimeter

forwarding

On highway gives good

performance

lee et al. (2007) GPSRj+ Greedy and recovery mode
Generates more delay in

recovery mode

Seet et al. (2004) A-STAR
Greedy and anchor based

forwarding

Does not provide optimal

path

Giudici & Pagani (2005) STAR
Greedy and traffic,

neighbor table based
Increases the delay

Lochert et al. (2003) GSR Greedy and map based
Perform less in sparse

traffic

Mo et al. (2006) MURU
Greedy and vehicles

trajectory based

Perform less in sparse

traffic

Naumov & Gross (2007) CAR
Greedy and guard nodes

based

Routing error due to

broken link

Tee & Lee (2010) JARR
Greedy and shortest and

fastest path based

More routing overhead and

delay

Bitam et al. (2013) HyBr
Bio-inspired AODV and

GPSR

Standing GPSR and

AODV issues

Jerbi et al. (2006) GyTAR Greedy and recovery mode More delay

tor of the dynamic model. To measure the divergence in filtering process it uses

both the method. It applies conventional KF in the absence of divergence else

it opt for the adaptive KF. In their results, it is found that the algorithm per-

forms better as compared to conventional KF. In similar work related to location

prediction, Xiao et al. (2007) used grey theory model to track a target using a

nonlinear system. Generally, this model is used where uncertainty and incomplete

sample is available. Their prediction results are better compared to a linear sys-

tem. However, in this work, it is concluded that grey theory is more appropriate
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for modeling the unknown part of the systems from a small number of sampling

data.

Li et al. (2011) proposed mobility prediction based autoregressive HELLO pro-

tocol for MANET which uses auto-regression method in prediction. The node

broadcasts the HELLO message only when difference is found between predicted

and actual location, then mobility is applied by a source node and its neighbor to

correct the position. Their model predicts the location of the node by considering

a linear movement and mobility is predicted only when the topology is changed

compared to the trajectory of the node. Similarly, Liu & Lim (2012) proposed

a distributed location estimate algorithm which improves the accuracy of loca-

tion prediction using cooperative inter-vehicle distance. In this work, each vehicle

shares its GPS location with neighbors and each node computes the predicted

location and broadcast it to the neighbor again, to recompute the final location.

This algorithm is designed on the basis of GPS pseudo-range information which

measures the distance between satellite and receiver. Thus, it performs better only

when the signal strength is good. However, it is known that location prediction

gets affected as GPS receiver could not receive the signal in the city due to trees,

tunnel, buildings, fading and environmental loss (Li et al. 2014). Similarly, Drawil

& Basir (2008) proposed Inter-Vehicle Communication Assisted Localization (IV-

CAL) algorithm for multipath environment. Basically IVCAL aims to avoid the

error incurred into the location due to signal outage which is detected by a clas-

sifier. IVCAL uses KF based location prediction.

Khan et al. (2014) evaluated the positioning and tracking performance of the

EKF in WSN. The algorithm performance is evaluated by using cricket sensors

which computes the prediction for different models such as position model, po-

sition velocity model and position velocity acceleration model. In their results,

they found that the EKF is more suitable for the localization of a node where

distance measurement is affected by noise. Similarly, Chen et al. (2015) pro-

posed a modified EKF based algorithm in target tracking of a single node in WSN

when it experiences multiple dropout and insufficient anchor node coverage. They
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modeled the packet dropout and insufficient anchor node coverage based on two

different Bernoulli random processes to see the packet arrival rate and its correct-

ness. Based on their simulation result, author conclude that the EKF is more

appropriate when communication is affected by packet drop and insufficient cov-

erage. However, Rad et al. (2011) developed a cooperative localization algorithm

for the mobile WSN using KF. Their algorithm exploits location of the anchor

node to linearize the nonlinear distance measured for the location of an unknown

node.

Mo et al. (2008) developed a Mobility Assisted Location Management (MALM)

protocol for VANET which provides the location services to the vehicles. MALM

practices the historical data and KF to compute the vehicle location. The MALM

take advantage of high mobility of the vehicle to broadcast the node location

information to other node and each node applies KF on received location. Con-

sequently a node can predict the location of the other node with out any location

query. Based on their theoretical analysis, MALM is able to achieve high location

information with little computation overhead.

Anagnostopoulos et al. (2011) proposed a short-memory adaptive location pre-

dictor for mobile applications which predicts the location in the absence of histori-

cal mobility information. This work uses local current spatiotemporal information

of the node having very less historical information. To achieve this, it designed

and implemented adaptive, short-memory location predictor using linear regres-

sion model for prediction and fuzzy controller to achieve adaptation capability.

Similarly, Alam et al. (2013) proposed cooperative positioning by avoiding radio

ranging and range rating which fuses GPS data from different sensor sources to

improve the performance of relative positioning in VANET. It shares the GPS

pseudo ranges to estimate the relative position among the vehicles which are in-

volved in communication. Their results showed 37% and 45% improvement in

accuracy and precision compared to other method, respectively.

Sun et al. (2012) proposed location prediction model for VANET where vehi-

cle does not have GPS device. Prediction of the location takes place using V2R
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communication and Dead Reckoning (DR) wherein initial position of the vehicle

is computed by using RSU position and DR. Basically, this method is designed

to be used with highway scenario. The accuracy of the model does not fit in

many critical VANET applications as it achieves minimum 8.79m location error in

prediction. While Fülöp et al. (2009) proposed a mobility model for the cellular

network using Markovian chain on time series pattern of the mobile node. It uses

the movement history of the node to maximize the accuracy compared to other

prediction models.

Reza et al. (2013) used Dirichlet-multinomial model under the Bayesian es-

timation framework to predict the future location of a non-cooperative vehicle.

Basically, this work proposed a tracking system using three different modules

such as localization, tracking data collection and prediction of future positions of

the target. Tracking messages are shared between RSUs and OBUs in the area

where probability is more for target tracking, additionally, it also restrict on num-

ber of RSUs and OBUs involved in this operation. Similarly, Feng et al. (2015)

proposed a location prediction algorithm in VANET using KF. The performance

of the prediction algorithm is compared with the Artificial Neural Network (ANN)

model and the results are better than ANN model. In their model, movement of

the vehicle is considered to be linear. However, movement of the vehicle is linear

when its speed is constant which may be possible only when vehicle is running on

the highway.

2.5 LOCATION PREDICTION BASED POSITION-BASED ROUT-

ING

This section discusses the literature review with respect to MANET and VANET

routing protocols which uses location prediction technique in position-based rout-

ing protocol. The summary of the discussion is given in Tables 2.5 and 2.7.

2.5.1 With Respect to MANET

A location prediction based geographic routing is proposed by Cheng & Huang

(2012) which uses prediction mechanisms on mobility information to search loca-

tion services and destination node. This work involves the location prediction in
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Table 2.4: Summary on location prediction

Author Prediction Technique Remarks

Hu et al. (2003)
Adaptive KF using fading

memory

Designed for vehicle

navigation

Xiao et al. (2007) Grey theory
Designed for nonlinear

movement

Li et al. (2011) Auto-regression method
Designed for linear

movement

Liu & Lim (2012)
Based on GPS

pseudo-range distance

Signal obstruction due to

objects

Drawil & Basir (2008) KF based prediction
Designed for linear

movement

Khan et al. (2014) EKF based prediction Designed for WSN

Chen et al. (2015)
Modified EKF based

prediction
Designed for WSN

Rad et al. (2011)
KF based cooperative

localization
Designed for WSN

Mo et al. (2008)
Uses KF along with

historical data
Designed for VANET

Anagnostopoulos et al. (2011) Linear regression model
Designed for mobile

application

Alam et al. (2013)

Based on relative

positioning and GPS

pseudo-range

Designed for VANET

Sun et al. (2012)
Based on dead reckoning

method
Designed for VANET

Fülöp et al. (2009) Markovian chain
Designed for mobile

application

Reza et al. (2013)
Dirichlet-multinomial

model
Designed for VANET

Feng et al. (2015) Based on KF Designed for VANET
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location update. It searches the destination using prediction with back-tracing

and refining mechanisms. With respect to location service, each node checks the

mobility information and current location in sent packet before sending the new

location-update packet. In this work, location is updated using previous location

and velocity of the node, in prediction equation of motion is used.

A prediction based location aided routing protocol is proposed by Doss et al.

(2004) which predicts the node position within a cluster to reduce the route dis-

covery overhead. Location prediction also help in reconstruction of the routes

which establishes new routes prior to the expiry of the current route to achieve

seamless communication. Similarly, Meghanathan (2008) proposed a Location

Prediction-based Routing (LPBR) protocol which minimizes the route discovery

and hop count overhead when the destination node is not in reach. In LPBR,

when a node wants to send the data packet to such destination whose path is not

known to the source, then it broadcast the route request packet. Amid broadcast

each node forwards the route request packet exactly once after the addition of

Location Update Vector (LUV) which consist node information such as current

x-y positions, node id, velocity and angle of movement. Based on collective LUV

information, a destination node predicts the topology using the equation of motion

and sends back a route reply packet. The source node sends the data packet based

on a path in route reply packet and it also informs dispatch time of next packet

to the destination. Further, the protocol designed and developed in Meghanathan

(2008) is modified to be used in multicast and multipath routing in Meghanathan

(2011). Basically, it aims to lessen the tree discovery number and hop count for

each source to multicast group receiver path.

Besides, Shah & Nahrstedt (2002) proposed a predictive location-based QoS

routing scheme. This protocol, predicts the delay of propagation along with node

location before setting up of the communication link. To determine the geographi-

cal location, location prediction is used either for intermediate node or destination

node at a particular time t in future, in prediction, it uses similarity of the triangle.

Whereas, propagation delay estimates the time t used in the location prediction.
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In Su et al. (2001), a prediction based routing protocol is designed which uses

Link Expiration Time (LET) and Route Expiration Time (RET) for an ad hoc

wireless network, to minimize the effect of topology change. In prediction of LET

and RET, it uses location, speed, direction and propagation range information.

Since it uses GPS based location, thus, its performance may be affected in some

situation such as fading, indoor location wherein GPS does not work properly.

In recent time, Cadger et al. (2016) proposes a prediction based geographic

routing protocol which uses machine learning approach in prediction. This work

is the extension of Cadger et al. (2012) in which machine learning and protocol

implemented using MATLAB, only the mobility traces are obtained from ns-2 sim-

ulator. While in former work both machine learning and protocol implemented

in ns-2 simulator. However, Cadger et al. (2012) emphasized only on location

prediction using three different techniques of machine learning such as decision

tree, neural network and support vector regression, unlike Cadger et al. (2016). A

routing protocol proposed in Chegin & Fathy (2008), uses prediction table based

on Manhattan mobility model which predict the worst-case link duration using

node location. On the basis of prediction, it finds the durable paths compared to

the shortest path algorithm.

A Landmark Guided Forwarding (LGF) protocol proposed by Lim et al. (2005)

is designed on the basis of GPSR, basically, it reduces the impact of location

inaccuracy in GPSR. It is a hybrid protocol which limits the advertisements prop-

agation and uses location information to guide the packet when a node does not

have a path to the destination. Author claims that LGF can improve upon GPSR

performance by 71% with position inaccuracy of up to 200m. Similarly, Son et al.

(2004) proposed Neighbor Location Prediction (NLP) and Destination Location

Prediction (DLP) based GPSR protocol. NLP is designed to solve the lost link

problem in GPSR, while DLP solves the loop problem. NLP estimates the cur-

rent locations of the neighbor nodes amid packet route decision. Whereas, DLP

helps the node to search the neighbor list for the destination node before packet

forwarding decision to the destination.
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For mobile underwater acoustic sensor network, Chirdchoo et al. (2009) pro-

posed a sector-based routing with destination location prediction which uses pre-

diction technique to predict the destination location. In this protocol, sensor nodes

neither have the information about the neighbor nodes nor the topology. Though,

each node knows its own position and prior information about the destination

movements through assumption.

2.5.2 With Respect to VANET

Zhu et al. (2014) proposed prediction based geographic routing protocol which uses

location prediction along with the buffer management and forwarding techniques.

In this protocol, prediction technique is developed on the basis of speed and vehicle

movement direction. It uses location history and velocity to estimate the current

vehicle location. In location prediction technique, it uses equation of motion. In

a similar manner, Ayaida et al. (2013) proposed a prediction-based hybrid rout-

ing and hierarchical location service routing protocol which uses the equation of

motion in location prediction in greedy forwarding mode of GPSR protocol, while

Zaki et al. (2012) proposed a vehicular quorum prediction based location service

protocol specifically designed for the urban scenario. It uses node information

such as distance to junction point and velocity, while selecting the stable location

server. This protocol adopts the hybrid grey theory and alpha-beta-gamma filter

in location prediction wherein node moves away from the junction point.

On the other hand, Ghafoor & Koo (2016) proposed a position-based routing

protocol for cognitive radio based VANET which uses KF as a location prediction

only for the highway scenario. This protocol selects the idle channel from all avail-

able channels to the vehicle on a straight road. Then it selects the best available

relay node to disseminate packet to the destination. It uses KF based prediction

to predict the future location of all moving vehicle, to reduce the delay.

A movement prediction in GPSR protocol is incorporated by Menouar et al.

(2007). It selects the node closer to the destination as a next forwarding node.

This protocol estimates the lifetime of each communication link stability then

most stable route is selected based on stable intermediate link from the source
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Table 2.5: Summary on location prediction used in position-based routing pro-

tocols for MANET

Author Prediction in Routing

Cheng & Huang (2012) Based on equation of motion

Doss et al. (2004) Based on sector cluster concept

Meghanathan (2008) Based on equation of motion

Meghanathan (2011)
Based on equation of motion

(Multicast)

Shah & Nahrstedt (2002) Based on similarity of triangle

Su et al. (2001)
Devised a prediction mechanism

based on LET and RET

Cadger et al. (2016) Based on machine learning

Chegin & Fathy (2008)

Devised a prediction mechanism

based on map and Manhattan

program

Lim et al. (2005)

Devised a prediction mechanism

Based on topological and

location information

Son et al. (2004) Based on equation of motion

Chirdchoo et al. (2009)

Devised a prediction mechanism

based on location deviation

notification
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to destination. It uses equation of motion in prediction to estimates the link

stability. While Namboodiri & Gao (2007) proposed a reactive prediction based

routing protocol which predicts the longevity of the routes and it replaces the old

route by new route before it is broken viz LET. In LET prediction, location and

velocity information are used. It predicts only for the highway scenario as the

vehicle movement is confined to a particular direction for a long time. Similarly,

Balico et al. (2015) proposed a localization prediction-based routing protocol. The

node forwards the packet with predicted future location. It exploits the vehicles

predicted location and digital map to forward data packet which does not need to

exchange additional control messages. It compares the results with the classical

flooding and simple forwarding over the trajectory algorithm.

Xue et al. (2012) proposed a prediction-based routing protocol which uses

variable-order Markov model to predict the Vehicular Mobility Pattern (VMP) on

real trace data. Taking the advantage of the VMP it also proposes the prediction-

based soft routing protocol. In their results, for certain scenario it is found that the

up to 90% and 75% overhead of control packet can be saved compared to DSR and

weak state routing, respectively. Similarly, Li et al. (2009) proposed a practical

location-based routing protocol to address the location inaccuracy problem and

vehicle mobility, it design the location predictor to estimate the probable location

of the vehicle based on location history. It uses the greedy forwarding technique in

proposed routing to differentiates the packet based on distance, closer to the des-

tination. It uses equation of motion based prediction in greedy forwarding. While

Cruz et al. (2017) addresses the localization issues, it uses the unscented KF for

vehicular movement and particle filter for V2V signal strength measurement. It

evaluates the performance using real time GPS data of four vehicles.

Vu & Kwon (2014) proposed a mobility-assisted on-demand routing protocol

to mitigate the location errors impact on routing performance. This work adopts

KF based prediction to minimize the measurement location errors, in addition it

estimates the link duration to lessen the overheads. Though proposed work also

uses KF for error removal. However, Vu & Kwon (2014) work is different from the
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Table 2.6: Summary on Difference Between Proposed Work and Vu & Kwon

(2014)

Proposed Work Vu & Kwon (2014)

CLWPR AODV

Performance computed on PDR, Throughput, Delay Performance computed on PDR, Routing overhead

It compares the KF performance with EKF. NA

It computes the performance on real time. NA

It computes the performance for city and highway. NA

proposed work as listed in table 2.6.

CLWPR routing protocol proposed by Katsaros et al. (2011) is an uni-cast,

multi-hop based opportunistic forwarding. It selects the next forwarding node

based on the minimum weight which is calculated using Euclidean distance, an-

gle, utilization and MACinfo. In this protocol, there is no provision of route dis-

covery, thus it does not incur route maintenance cost. Each node broadcasts the

HELLO packet periodically which consists of position, velocity and heading an-

gle. These information are utilized in prediction of the node position. It uses

Post = Post−1 + Vt−1 ∗ dt equation in prediction, where, Post, Post−1 are the

current and previous positions, while Vt−1 and dt are previous velocity and time

difference.

2.6 OUTCOME OF THE LITERATURE REVIEW

Based on discussed literature in Section 2.1 and Section 2.2, it is found that sim-

ulation parameters and scenarios so far used in the experiments are inadequate

to test the applicability of the topology based routing protocols such as AODV

and OLSR in VANET. Hence, it is required to re-evaluate the applicability of the

AODV and OLSR protocols on IEEE 802.11p standard with the specific mobility

generated by considering VANET characteristics such as high speed, acceleration,

deceleration, politeness factor. In addition, vehicles deployment must be uneven

and randomly distributed across the crossroad or on the road segment so that

vehicle can communicate with the other vehicle, while moving in different location
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Table 2.7: Summary on location prediction technique used in routing protocols

for VANET

Author Prediction in Routing

Zhu et al. (2014) Based on equation of motion

Ayaida et al. (2013) Based on equation of motion

Zaki et al. (2012) Grey theory and alpha-beta-gamma filter

Ghafoor & Koo (2016) Based on KF only for highway scenario

Menouar et al. (2007) Based on equation of motion

Namboodiri & Gao (2007) Based on equation of motion

Balico et al. (2015) Based on regression forecasting problem

Xue et al. (2012) Based on variable-order Markov model

Li et al. (2009) Based on equation of motion

Cruz et al. (2017) Based on unscented KF

Vu & Kwon (2014) Based on KF

Katsaros et al. (2011) Based on equation of motion

of the city as depicted in Figure 3.1 in which vehicles are represented by their node

Id’s. The geographic dimension should be enough large, while transmission range

should be lesser than the geographic region to avoid the seamless connectivity.

Section 2.3 discussed the various position-based routing protocols available in

the literature. Most of the position-based routing protocols are developed on

the basis of GPSR protocol, thus greedy forwarding mechanism is common in

all, mostly. However, it is noted that most of the routing protocol discussed in

Section 2.3 did not heed on the error available in position while computing the

performance. Henceforth, Section 2.4 highlights the previous work with reference

to error minimization using location prediction techniques. In discussion of Sec-

tion 2.4, it is found that the greater part of the work is completed with reference

to WSN or MANET. As such, the research conducted for the location prediction

with reference to VANET is limited.

Based on discussed literature in Section 2.4, it is concluded that an efficient
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location prediction algorithm can enhance the performance of VANET applica-

tions where precision of the location prediction is a prime variable. For instance,

automatic parking and collision warning system require precise location predic-

tion. Focusing beyond these applications, the performance of the position-based

routing protocol such as PDR and data dissemination can also be improved by

minimizing location error through prediction. In addition, position-based routing

protocol performance also get influenced by the continuous change in location. For

instance, Table 2.8 represents the GPS locations retrieved from OpenStreetMap

(Haklay & Weber 2008) for Fig. 2.2 which covers a region of around 500x500 m2.

It is observed that the location changes as often as possible for each 200-300m cir-

cumference. These distances could be covered rapidly if the vehicle keeps running

with high-speed (Raj K Jaiswal 2015). In addition, GPS locations are situated

05-100m apart from the real locations, due to error.

It is also observed that the research conducted so far towards the location pre-

diction in VANET is done only with the linear system. The movement of the

vehicle either in the city or on the highway is nonlinear as speed disruption is fre-

quent in the city limit due to traffic, speed limit and traffic signal. For instance,

a vehicle finishes 10Km distance in 26 minutes with the distinctive velocity for a

particular measure of time as follows:

1. 80 Kmph for 10 minutes.

2. 60 Kmph for 2 minutes.

3. 40 kmph for 4 minutes.

4. 30 Kmph for 11 minutes.

Hence, the relationship between speed and time of the vehicle in the city is

nonlinear.

In the review of literature discussed in Section 2.4, it is noted that the previous

prediction algorithms did not consider the nonlinear movement of the vehicle using

EKF. EKF is designed on the basis of KF to work with the nonlinear system.

It is evident from Section 2.4 discussion that the obtained location from GPS
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contains error and it is also known that the position-based routing protocol uses

the vehicle position in routing. Hence, it is evident that the routing performance

is likely to be affected by location error. Thus, it is crucial to see the effect of

location prediction in routing which aim to minimize the error. Section 2.5 discuss

the related work with respect to routing protocol which uses location prediction.

From the discussion carried out in Sections 2.5.1 and 2.5.2, it is found that limited

work is done using KF and EKF based prediction in position-based routing for

VANET. In addition, it is also noted that only limited work has used real time

GPS traces in performance evaluation.

Figure. 2.2: National Institute of Technology hostel area.

2.7 PROBLEM DEFINITION

In order to address the issues and challenges as discussed in Section 2.6, there is

a need to re-evaluate the applicability of topology based routing protocol from

the perspective of VANET characteristics. It is also noted that there is a prime

requirement to design a location prediction algorithm using EKF for a nonlinear

vehicular movement by considering an appropriate vehicular model. Uses of pre-

diction algorithm in position-based routing protocol is another prime requirement

in VANET to improve the routing performance by minimizing the location error.
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Table 2.8: Traced GPS coordinates

Place Latitude Longitude

Post Office 13.0088615 74.7933738

Canara Bank 13.0085505 74.7941301

State Bank of India 13.0089373 74.7940711

8th Block Hostel 13.0074293 74.7941167

Mega Hostel-Tower 1 13.0077351 74.7948382

Mega Hostel-Tower 2 13.0068832 74.7952084

Mega Hostel-Tower 3 13.0063213 74.7944279

Based on these facts, the research problem is defined as:

“Goal of this research work is to propose an improved/modified version of the

position-based routing protocol for VANET for urban scenario. Measure the per-

formance of the proposed routing protocol with earlier version by simulation”.

2.8 RESEARCH OBJECTIVES

The research objectives are defined as:

1. Study and measure the performance of latest VANET routing protocols avail-

able in the literature. Uncover the limitations present in it and propose a

modified version to overcome the observed limitation.

2. Compare the modified (proposed) routing protocol with previous version to

measure the performance in terms of Packet Delivery Ratio, Average Delay,

Throughput and Routing Overhead by simulation.

3. Conduct the simulation for different scenarios such as traffic types (homoge-

neous and heterogeneous with various speeds), different road layout, different

propagation model and different node size.
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4. Design a mathematical model for the proposed work.

In order to achieve the aforementioned objectives, a location prediction algorithm

based on KF and EKF has been designed to be used with VANET environment.

Further, KF and EKF based location predictions are used in position-based rout-

ing protocol. The performance of the proposed location prediction position-based

routing protocol will be evaluated using simulation rather than real time experi-

ment due to involvement of huge cost.

2.9 SUMMARY

In this chapter, existing state-of-the-art on topology based routing protocol,

position-based routing protocol and applicability of topology based routing pro-

tocols in VANET are discussed in detail. Discussion on existing literature on

location prediction algorithm for movement prediction of the vehicle by minimiz-

ing the location error are also carried out in this chapter. It also discusses the

existing work with respect to location prediction based routing in MANET and

VANET. Finally, open issues and research challenges in position-based routing are

highlighted.
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Chapter 3

Applicability of MANET Routing Protocols in

VANET

Based on Section 2.1 and Section 2.2 discussions. It is found that the performance

of AODV and OLSR varies in VANET/MANET due to their routing mechanism.

AODV is a reactive routing protocol which computes the route on-demand while

OLSR is proactive routing protocol where routes are computed prior to com-

munication. Due to mobility and high speed routing table will be obsolete at

the time of communication unlike MANET. Consequently, performance varies in

VANET/MANET.

In addition, while going through the literature we found limited works were car-

ried out with respect to applicability of these protocols. Amid literature review

we found research gaps such as uses of IEEE 802.11p in evaluation which is specif-

ically designed for VANET and came into existence by 2010-11. It is also found

that very limited work has considered single and crossroad scenarios. Based on

these observations, we are motivated to re-investigate AODV and OLSR routing

protocols from the prospects of VANET applicability. Henceforth, this chapter

re-evaluates the applicability of MANET topology based routing protocols into

VANET. In this work, AODV and OLSR protocols are considered for investiga-

tion based on their proven efficiency and widely used protocols in MANET. The

performance of the protocols is evaluated on IEEE 802.11p standard, with urban

and non-urban vehicular traffic scenarios. The Chapter 3 is organized as: Sec-

tion 3.1 discusses the experimental and simulation setup, while simulation results

are discussed in Section 3.2 followed by summary of the work in Section 3.3.
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Table 3.1: Mobility generation parameters (Härri et al. 2006)

Description Values

Mobility Generation Tool VANETMOBISIM

Simulation Time (s) 499

X dim.(m) 700

Y dim.(m) 700

No. of Traffic lights 05

Traffic Light Duration (s) 60

No. of Lanes 2

Min. Speed (m/s) 0.5

Max. Speed (m/s) 35

Constant Speed 20 (m/s)

Politeness Factor for Road Segment 0.2, 0.5, 0.8

Maximum Acceleration 0.9 (m/s2)

Maximum Deceleration 0.6 (m/s2)

Minimum Congestion Distance 2m

Safe Headway Time (s) 2

Length of Vehicle 5m

3.1 EXPERIMENTAL SETUP AND SIMULATION

Primarily, simulation is conducted for two different city road networks, multiple

crossroad and single crossroad as depicted in Figures 3.1 and 3.2, respectively.

The multiple crossroad scenario depicts the typical city road topology, on which

vehicles can move on any road segment and each road segment is assigned with a

speed limit. Whereas, single crossroad scenario has chosen to observe the AODV

and OLSR protocols performance in non-urban area over the entire city, in which

nodes are located nearby. Further, each scenario is sub-divided into different

transmission range of 250m and 500m. In simulation, the speed of the vehicle
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varies between 0 to 35 m/s randomly. In addition, performance is also evaluated

considering the constant speed 20 m/s. To fix the transmission range of the vehicle,

required transmission power is computed using Two-ray ground propagation model

for 250m and 500m transmission range as depicted in the Equation (3.1). The Two-

ray ground reflection model predicts the path losses between the transmitting and

receiving antenna.

Pr =

(
Pt ∗Gt ∗Gr(ht

2 ∗ hr2)
d4 ∗ L

)
(3.1)

Where, Pr=Receiving power, Pt=Transmitting power, Gt=Transmitting antenna

gain, Gr=Receiving antenna gain, d=Distance, L=Loss factor, ht=Transmitting

antenna height, hr=Receiving antenna height. The height of antenna is set to

1.5m for both transmitter and receiver and loss factor is assumed to be 1 in Equa-

tion (3.1). Mobilities are generated for 15, 30, 45 and 60 nodes using VANET-

MOBISIM which is an extension of the CANU Mobility Simulation Environment

(CanuMobiSim), a flexible framework for user mobility modeling. CanuMobiSim

is a Java based simulator which generates vehicle movement traces in different

formats for different network simulators for mobile networks such as NS2/NS3,

GloMoSim and QualNet. The VanetMobiSim generates the vehicular mobility

considering realistic automotive motion models at both macroscopic and micro-

scopic levels. Further, Nodes are deployed randomly in 700mx700m simulation

area for each scenario. In first scenario, some of the crossroads are equipped with

traffic lights with 60 seconds duration as depicted in Figure 3.1, whereas, in sec-

ond scenario only single crossroad is used which is also equipped with traffic light

as shown in Figure 3.2. Each road segment is divided into two lanes, which are

categorized into the fast and slow moving lane. The intelligent driving model

with intersection management controls the movement of the vehicle such as ac-

celeration and deceleration according to the front moving vehicle or traffic lights,

including driver behaviour during the overtake using politeness factor. It also

includes a safety gap of 2m between two vehicles to keep the safe distance and

safe headway time in mobility. In order to solve the contention issue, only 50%

of the nodes communicate. In addition, it is also taken care in simulation that
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Table 3.2: Protocol parameters considered for test scenario (Perkins et al. 2003;

Clausen & Jacquet 2003)

AODV OLSR

Active Route Timeout=10s Willingness=3

Hello Interval=1s Hello Interval=2s

Allowed Hello Loss=3 Pkts TC Interval=5

Net Diameter=5 MID Interval=5

Node Traversal Time=30ms

RREQ Retries=3

nodes communicate to other nodes at different timings which also minimizes the

effect of contention. Table 3.1 represents the mobility parameters considered in

the simulation. This work used the AODV protocol available in NS-2.35, whereas

OLSR protocol is incorporated in NS-2.35 using UM-OLSR patches. Parameters

of the both protocols are kept as per the standards as defined in their RFCs and

depicted in Table 3.2. The simulation is also conducted for the different data gen-

eration rate such as 512, 1024, 1536 and 2048 Kbps for each category to observe

the protocols behaviour with respect to data rate. Table 3.3 contains the list of

parameters used in NS-2.35.

3.2 EXPERIMENTAL RESULTS AND ANALYSIS

The AODV and OLSR performances are only evaluated for V2V communi-

cation and it is compared on the performance matrix of PDR, routing overhead,

throughput and average delay, respectively. Primarily, results are obtained for two

different scenarios such as 250m and 500m transmission range which is further di-

vided into variable and constant speed. The results are also computed to examine

the behaviour of AODV and OLSR protocols with respect to data transmission

rate for the city scenario. Each simulation for different scenarios are carried out

for multiple times to get the average results. With reference to the statistical

computation such as confidence interval it is found that we need at least 20-30
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Table 3.3: Network simulator parameters (Haerri et al. 2006)

Parameters Values

Network Simulator NS-2.35

Simulation Time (s) 499

Routing Protocols AODV and UM-OLSR

Antenna Model Omni-Directional Antenna

Modulation Technique BPSK

Radio Propagation Model Two-ray ground

Transmission Range 250m, 500m

MAC Type IEEE 802.11p

MAC Rate 2 Mbps

Interface Queue Type 50

Transport Protocol UDP

Data Type CBR

CBR Generation Rate (Kbps) 512, 1024, 1536, 2048

Packet Size 512 Bytes

No. of Connections 50% of Number of Vehicles

No. of Vehicles 15, 30, 45, 60

Vehicle Density #vehicles.(π.range2/xdim.ydim)
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Figure. 3.3: Packet delivery ratio for the city road network (250m)

times simulation run for a single scenario to generate the population size which

will be used to calculate either of 90%, 95% and 99% confidence level. From the

population size we select 30%-40% simulation result for sample size which is used

in calculation of mean and variance value. This is possible when we are doing
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Figure. 3.4: Packet delivery ratio for the city road network (500m)
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Figure. 3.5: Packet delivery ratio for single crossroad network (250m)

evaluation with 5-10 nodes for 10-30 seconds of simulation run. Based on this we

found that the current work is an extensive work where simulation time is 500

seconds and minimum simulation running time is 20 minutes for 15 nodes which

goes up to 1 days for 60 nodes. Henceforth, in this work confidence interval is

not considered. In results the abbreviation A and O are used for the AODV and

51



24 48 72 96
0.2

0.4

0.6

0.8

Vehicle Density

P
a
ck
et

D
el
iv
er
y
R
a
ti
o

A-512 A-1024 A-1536 A-2048

O-512 O-1024 O-1536 O-2048

Figure. 3.6: Packet delivery ratio for single crossroad network (500m)

OLSR protocols, respectively. The individual performance analysis with respect

to PDR, routing overhead, throughput and average delay are discussed as follows:

3.2.1 Packet Delivery Ratio

PDR is the ratio of total number of packets received and sent by the destination

and source, respectively, which is very much dependent on number of vehicles, data

generation rate and transmission range. Generally, transmission range makes the

network sparse and dense based on its range. For instance, with 250m transmis-

sion range less number of vehicles will be covered compared to 500m, consequently,

250m will have sparse network scenario while 500m will have dense network. Based

on simulation area transmission range has been fixed, if we increase the simula-

tion area then transmission range has to be increased. The results of PDR are

explained as follows:

Figures 3.3 and 3.4, show the PDR performance with respect to vehicle density.

From the results, it is clear that the AODV protocol outperforms as compared to

OLSR protocol in 250m transmission range for the entire city road network. It

achieves 78% PDR for 250m transmission range at 512 Kbps data generation rate.

Whereas OLSR protocol does better as compared to AODV protocol with 500m
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Figure. 3.7: Packet delivery ratio with respect to data transmission rate for

constant speed (city)
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Figure. 3.8: Packet delivery ratio with respect to data transmission rate for

variable speed (city)

transmission range, due to availability of route in route table, while AODV needs

to discover the route more frequently with more number of vehicles in 500m trans-

mission range. It achieves 82% PDR with respect to 512 Kbps data transmission
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rate. PDR marginally increases in the single crossroad scenario to 84% with re-

spect to OLSR protocol on 512Kbps, whereas AODV protocol reaches 81% for

250m transmission range. However, their performances are much closer to each

other with respect to 500m transmission range as shown in Figures 3.5 and 3.6.

Nevertheless, OLSR protocol has slight stable performance compared to AODV

protocol.

With reference to data transmission rate for the city scenario, AODV proto-
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Figure. 3.9: Routing overhead for the city road network (250m)

col has better PDR than OLSR protocol with constant speed of the vehicles for

the both transmission range, as constant speed makes the network stagnant and

stable topology which increases the longevity of the communication link. In ad-

dition, AODV does not need to process the route discovery procedure. Whereas

this performance results get reverses in favour of OLSR protocol with variable

speed. From the results, it can be observed that the route table maintenance does

favour to OLSR protocol in variable speed situation and it gets affected with the

constant speed, unlike AODV protocol. It is also observed that both the protocols

PDR decrease when data transmission rate increases. Overall, both the protocols

have poor PDR with respect to data transmission rate as shown in Figures 3.7

and 3.8. However, from Figures 3.7 and 3.8 it is observed that AODV has highest
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Figure. 3.10: Routing overhead for city road network (500m)

at 1536 data transmission rate for the constant speed, while OLSR has highest

PDR at 1024 data transmission rate for variable speed, due to less congestion at

that instant. Though AODV and OLSR protocols achieve acceptable PDR with

512Kbps data rate. However, PDR of both the protocols decreases as the vehicle

density and data generation rate increases.

Overall in all the scenarios, vehicle mobility increases packet drop with more

number of vehicles and data generation rate, which infuse more number of packets

in network. Hence, OLSR and AODV protocols could not achieve acceptable PDR

for high vehicle density and data transmission rate which is a prime requirement

to disseminate the safety messages in a critical situation in VANET.

3.2.2 Routing Overhead

Routing overhead represents the number of bytes required to construct and

maintain the routing table. In this work, all the control packets such as HELLO,

RREQ and RREP are considered, while computing the routing overhead, packet

bits are converted into bytes rather than number of packets. Among these, some

packets are broadcasted to each node such as HELLO, RREQ which increase the

routing overhead. The size of HELLO packet does not change in AODV protocol
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throughout the simulation, while the size of HELLO packet increases due to topol-

ogy control message which is the part of HELLO packet in OLSR protocol. For

instance, AODV protocol has 44 bits for HELLO and RREP packets and 48 bits

for RREQ packet. Whereas in OLSR protocol, HELLO packets have 48, 116, 160

bits and it further changes according to the size of topology control message which

is the main reason for having more routing overhead as compared to AODV.

From the results, it is observed that OLSR protocol has quite high routing

overhead, due to route table maintenance, with the city road network at all level

of data transmission rate. It increases as the vehicle density increases in both

the transmission range. The routing overhead in OLSR protocol increases due to

the maintenance of routing table which is heavily suffered by the topology change.

Whereas, AODV protocol has less routing overhead compared to the OLSR proto-

col in the city road network due to reactive nature. However, in AODV protocol,

routing overhead increases exponentially as the vehicle density increases, while it

decreases as the data transmission rate increases as shown in Figures 3.9 and 3.10.

With reference to single cross road scenario, OLSR protocol has more routing

overhead which is very much similar to the entire city road network. Intuitively,

from Figures 3.11 and 3.12, it can be concluded that data transmission rate does

not much effect the routing overhead for OLSR protocol with 250m and 500m

transmission range. Whereas, AODV protocol has less routing overhead compared

to OLSR protocol in the city road network. It is more improved with 500m range

as node covers more number of nodes in its proximity. However, routing overhead

is maximum at 72 vehicle density due to unreachable destination as shown in Fig-

ure 3.12. It is also observed that routing overhead computed for entire city road

network and single crossroad are different. The AODV protocol has highest

routing overhead with respect to data transmission rate for 250m transmission

range on constant speed as the node covers less number of nodes in its proximity.

It is improved drastically when the transmission range increases to 500m, while

routing overhead is keep on decreasing as the data transmission rate increases. The

OLSR protocol has 12.74% less routing overhead on an average than the AODV
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Figure. 3.11: Routing overhead for single crossroad network (250m)
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Figure. 3.12: Routing overhead for single crossroad network (500m)

protocol with respect to 250m transmission range, due to unreachable destination,

whereas AODV protocol does better than OLSR protocol with 500m transmission

range.

With reference to variable speed, OLSR protocol has 29.8% more routing over-

head on an average than the AODV protocol in both transmission range as topol-
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Figure. 3.13: Routing overhead with respect to data transmission rate for con-

stant speed (city)
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Figure. 3.14: Routing overhead with respect to data transmission rate for vari-

able speed (city)

ogy of the network changes frequently which sometime causes sudden rise and fall

in performance. The OLSR protocol has quite unpredictable routing overhead

with respect to data transmission rate unlike AODV protocol wherein routing
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Figure. 3.15: Throughput for the city road network (250m)
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Figure. 3.16: Throughput for the city road network (500m)

overhead is keep on decreasing with data transmission rate as depicted in Fig-

ures 3.13 and 3.14. Intuitively, it can be observed that AODV protocol has more

routing overhead at 250m transmission range, while it is lessen with 500m trans-

mission range due to reduced number of route discovery messages.

Hence, intuitively, transmission range and road topology does affect the routing
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overhead. From the results, it can be concluded that data transmission rate, vehi-

cle density and routing mechanism affect the routing overhead. Hence, protocols

which maintain the route table have more routing overhead in VANET and makes

it less applicable.
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Figure. 3.17: Throughput for single crossroad network (250m)
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Figure. 3.18: Throughput for single crossroad network (500m)
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Figure. 3.19: Throughput with respect to data transmission rate for constant

speed (city)
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Figure. 3.20: Throughput with respect to data transmission rate for variable

speed (city)

3.2.3 Throughput

The throughput of the network is the average number of bits transmitted per

second. The throughput of the AODV protocol reaches to 750Kbps with entire
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Figure. 3.21: Average delay for the city road network (250m)

city road network for 250m transmission range at 1024Kbps data transmission

rate and it is the maximum throughput received among the AODV and OLSR

protocols at all level of data transmission rate. The AODV protocol has stable

throughput for the entire city road network at 512Kbps data transmission rate

for both the transmission range. Both the protocols throughput decrease as the

vehicle density increase as shown in Figures 3.15 and 3.16.

In case of single crossroad scenario, throughput increases as the vehicle

density increases due to movement of the nodes near to each other as the nodes

are deployed only on road segments and its intersection point rather than the city

road network. However, OLSR protocol has more throughput compared to the

AODV protocol in 250m transmission range and it increases as the vehicle density

increases. Whereas, with respect to 500m transmission range, AODV protocol has

a pretty stable throughput with increasing vehicle density. However, it decreases

as the data transmission rate increases as shown in Figures 3.17 and 3.18.

With reference to data transmission rate, throughput of the AODV protocol

at 250m transmission range is 350Kbps at 1536Kbps data transmission rate with

constant speed, which is the highest throughput with respect to constant speed,

due to less congestion. Similarly, with variable speed AODV protocol achieves
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Figure. 3.22: Average delay for the city road network (500m)
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Figure. 3.23: Average delay for single crossroad network (250m)

220Kbps maximum throughput in 500m transmission range at 1024Kbps data

transmission rate as shown in Figures 3.19 and 3.20. However, in both the cases

OLSR could not achieve more than 190Kbps throughput.

Hence, throughput of the protocols decreases with respect to node density and

data transmission rate for the city road network, due to more number of packets,
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Figure. 3.24: Average delay for single crossroad network (500m)
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Figure. 3.25: Average delay with respect to data transmission rate for constant

speed (city)

whereas it increases with single crossroad. Which makes it less applicable in

VANET with respect to throughput. However, in some scenario throughput has

been increased this may be due to the availability of the destination node for the

longer time. It may happen that both the source and destination nodes might be
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Figure. 3.26: Average delay with respect to data transmission rate for variable

speed (city)

stable at traffic signal which is used in simulation.

3.2.4 Average Delay

Average delay is the measurement of end to end transmission delay between sender

and receiver only for the correctly received packet. From Figures 3.21 and 3.22 it

can be observed that AODV protocol has highest delay at 250m and 500m trans-

mission range on 512Kbps data transmission rate for the entire city road network.

Overall, the average delay decreases with the increase of data transmission rate for

both the protocols as shown Figures 3.25 and 3.26. However, it is also observed

that after 1536Kbps of data transmission rate, OLSR average delay increases as

data transmission rate increases, which is an exception due to injection of more

number of packets in network which get delayed due to route identification. Over-

all, from the results it is seen that average delay increases as the vehicle density

increases with few exceptions. Nevertheless, OLSR protocol has less average delay

compared to the AODV protocol as it maintains the route table.

With reference to single crossroad network, average delay is less, for the AODV

protocol. However, OLSR protocol has similar delay compared to the entire city
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road network as shown in Figures 3.23 and 3.24. However, in all the scenarios

AODV protocol has a more average delay compared to the OLSR protocol due

to on-demand route discovery procedure. It is also observe that the transmission

range and road topology have less effect on packet delay.

Hence, based on results both the protocols are less feasible to be used in VANET

due to more average delay with respect to vehicle density.

3.3 SUMMARY

The AODV and OLSR protocols do not have stable PDR and throughput with

respect to vehicle density and data generation rate. However, overall, routing

overhead and average delay increases with vehicle density and decreases when

data generation rate increases. It is also observed that the performance is better

on single crossroad compared to multiple crossroad. Hence, performance com-

puted considering single crossroad is not appropriate to decide the applicability of

MANET routing protocols in VANET. In addition, performance with the constant

speed is better than variable speed as it does not affect the topology compared

to the real scenarios. Hence, based on obtained results for the entire city road

network scenario, AODV and OLSR protocols are not feasible for VANET as en-

durance with vehicle density and data generation rate are not satisfactory with

VANET characteristics.

Related Publication

• Raj K Jaiswal and Jaidhar C D An Applicability of AODV and OLSR

Protocols on IEEE 802.11p for City Road in VANET, Internet of

Things, Smart Spaces and Next Generation Networks and Systems, Vol-

ume 9247, Lecture Notes in Computer Science, Springer International

Publishing, 2015, 286-298.

66



Chapter 4

Location Prediction Algorithm for a Nonlinear

Vehicular Movement in VANET using Extended

Kalman Filter

This chapter proposes the location prediction algorithm using EKF by considering

nonlinear vehicular movement. The salient contributions of this chapter are:

• It proposes a location prediction algorithm using EKF.

• It considers nonlinear vehicular movement, particularly in the city.

• The efficacy of the proposed algorithm is evaluated on the real and model

based traces for the city and highway scenarios.

• It compares the proposed algorithm performance with KF based location

prediction.

The remaining sections of Chapter 4 are organized as follows: Section 4.1 explains

about system model used in experiments. Section 4.2 briefs about KF and EKF.

The location prediction algorithm is explained in Section 4.3. Section 4.4 and

Section 4.5 discuss the implementation and evaluation settings and results of the

prediction algorithm, respectively. The comparison of the proposed algorithm is

shown in Section 4.6 and followed by summary in Section 4.7.

4.1 SYSTEM MODEL

All the vehicles are assumed to be equipped with an on-board unit and omnidi-

rectional antenna. A vehicle communicates to another vehicle or RSU using IEEE

802.11p standard. It is also assumed that GPS and inertial navigation system are

in place to measure the latitude, longitude, velocity and acceleration, orientation,
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steering angle, respectively. For the EKF, vehicle kinematics are defined consider-

ing Ackerman steering as shown in Figure 4.1, wherein Φ1 and Φ2 are the steering

angles of the outer tire and inner tire, respectively. The orientation of the vehicle

is determined by angle θ (Li et al. 2012). In this work, the steering angle is con-

sidered to be zero as the vehicle runs either in the city or on a highway. Thereon

steering angles Φ1 and Φ2 get changed only at the turning point or during the lane

change.

The state X of the vehicle at time t is defined by six parameters as [x, y, vx,

vy, ax, ay], where x and y represent the latitude and longitude of the vehicle.

Whereas, vx, vy, ax and ay represent the x and y component of the velocity and

acceleration, respectively.

The equation of motion of physics as in Equation (4.1), measures the changes

in the state of the vehicle. In Equation (4.1), initial state of the vehicle is de-

noted by x0 while v and a represent the velocity and acceleration of the vehicle,

respectively. The time interval for the change in velocity is denoted by ∆t.

x = x0 + v.∆t+ (a∆t2)/2 (4.1)

Hence, the state model X of the vehicle is defined as:

X =



x

y

vx

vy

ax

ay


=



x0 + vx∆t

y0 + vy∆t

vx0 + ax∆t

vy0 + ay∆t

ax0 +
∆vx
∆t

ay0 +
∆vy
∆t


(4.2)

Here,
∆vx
∆t

and
∆vy
∆t

in (5.2) are the change in x and y components of the accel-

eration, respectively.

4.2 DESCRIPTION OF KF AND EKF

The process model of a system is designed to estimate the state of the system

with a minimal set of information. Whereas, the measurement model describes

the state of the system using measurement device. The process and measurement
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Figure. 4.1: Vehicle kinematics

model equations for a linear system used in KF for state estimation are defined in

Equations (4.3) and (4.4) respectively.

x̂−t = A x̂−t−1 +B ut−1 + wt−1 (4.3)

zt = Ht.x̂
−
t + vt (4.4)

KF estimates and corrects a linear process recursively using feedback control

mechanism. It estimates the state of the system in regular intervals to obtain the

feedback measurement. The KF equations are grouped into Time Update and

Measurement Update equations. The steps involved in state estimation of the

system are described as follows:

Time Update (Prediction)

Location Prediction

x̂−t = A x̂−t−1 +B ut−1 + wt−1 (4.5)

Error Covariance

P−
t = A Pt−1 A

T +Q (4.6)

Measurement Update (Correct)
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Table 4.1: Description of KF symbols

Symbol Description

A State transition matrix.

AT Transpose of A.

B Model matrix, steering angle-

and acceleration change.

Ht Measurement matrix at t.

HT
t Transpose of Ht.

I Identity matrix.

Kt Kalman gain at t.

P−
t Error covariance at t.

Pt−1 Error covariance at t− 1.

Pt Estimated error covariance by filter at t.

Q Process noise covariance.

R Measurement noise covariance.

ut−1 Commanded input at t− 1.

vt Measurement noise at t.

wt−1 Process noise at t− 1.

x̂−t location predicted at t.

x̂−t−1 location at t− 1.

x̂t location predicted by filter at t.

zt Measured location at t.

Kalman Gain

Kt = P−
t Ht

T (HtP
−
t Ht

T +R)
−1

(4.7)

Prediction on Measurement zt (Update)

x̂t = x̂−t +Kt(zt −Htx̂
−
t ) (4.8)

Error Covariance (Update)

Pt = (I −KtHt) P
−
t (4.9)

In Equation (4.5), the state transition matrix At is obtained from the previ-

ous state x̂−t−1. Whereas, x̂−t and P−
t in Equations (4.5) and (4.6) are the prior

(predicted) estimate of the state X and process error covariance respectively. The

remaining description of each symbol used in KF is given in Table 4.1.
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Kalman gain Kt in Equation (4.7) minimizes the error between predicted and

measured values. Hence, Kt is the most critical factor in deciding the accuracy

of the filter. The measured error covariance Pt is obtained using estimated error

covariance matrix P−
t and identity matrix I showed in Equation (5.1). x̂t in Equa-

tion (4.8), is the estimated state of the system by KF. The estimated state x̂t and

error covariance Pt in correction steps are updated with x̂−t and P−
t of prediction

steps respectively for the computation of the next state (Welch & Bishop 1995).

4.2.1 Extended Kalman Filter

As discussed earlier, KF is designed to work with the linear system. It applies to

a vehicular system in which the movement is linear, which is not practical in real

world scenarios as explained in Section 2.6.

EKF is designed to work with the nonlinear system which can be used in lo-

cation prediction algorithm in VANET. It is designed on the basis of KF for a

nonlinear system. EKF linearized the nonlinear system using partial differentia-

tion which yields the Jacobian matrix to be used in computation to estimate the

current state of the system. The process and measurement models of the nonlinear

system used with EKF are defined in Equations (4.10) and (4.11):

x̂−t = f(x̂−t−1, ut−1, wt−1) (4.10)

zt = h(x̂−t , vt) (4.11)

The computational steps involved in EKF for location prediction in VANET

are explained as:

Time Update (Prediction)

Location Prediction

x̂−t = f(x̂−t−1, ut−1, wt−1) (4.12)

Error Covariance

P−
t = Ft Pt−1F

T
t +WtQWt

T (4.13)

Measurement Update (Correct)
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Kalman Gain

Kt = P−
t Ht

T (HtP
−
t Ht

T + VtRVt
T )

−1
(4.14)

Prediction on Measurement zt (Update)

x̂t = x̂−t +Kt

(
zt − h(x̂−t , vt)

)
(4.15)

Error Covariance (Update)

Pt = (I −KtHt) P
−
t (4.16)

As EKF is an extended form of KF, thus, most of the terms are similar to

KF as explained in Section 4.2 except Ft, Wt, Ht and Vt in Equations (4.13)

and (4.14), respectively which are the Jacobian matrix defined as:

Ft =
∂f(x̂−t−1, 0, 0)

∂x
(4.17)

Wt =
∂f(x̂−t−1, 0, 0)

∂w
(4.18)

Ht =
∂h(x̂−t−1, vt)

∂x
(4.19)

Vt =
∂h(x̂−t−1, 0, 0)

∂v
(4.20)

Whereas, F T
t , Ht

T , Vt
T and Wt

T are the transpose of Ft, Wt, Ht and Vt. Ja-

cobian matrix Ft is computed on partial differentiation of f(x̂−t−1, ut−1, wt−1) with

respect to x̂−t−1 as shown in Equation (4.21).

∂f

∂x
=



∂f1
∂x1

∂f1
∂x2

. .. ...
∂f1
∂x6

∂f2
∂x1

∂f2
∂x2

. .. ...
∂f2
∂x6

. .. .. .. .. ..

. .. .. .. .. ..

. .. .. .. .. ..
∂f6
∂x1

∂f6
∂x2

. .. ...
∂f6
∂x6


(4.21)

Where x = x̂−t−1, Similarly, Jacobian matrix of Wt, Ht and Vt are obtained on

partial differentiation of f(x̂−t−1, ut−1, wt−1) with respect to wt and h(x̂−t , vt) with
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respect to x̂−t−1 and vt respectively.

In this model, control input ut−1 and process noise wt−1 are assumed to be zero.

Hence, process model in Equation (4.12) becomes f(x̂−t−1, 0, 0) whereas measure-

ment model h(x̂−t , vt) remains the same.

4.3 LOCATION PREDICTION ALGORITHM

To predict the location of a vehicle in VANET considering nonlinear movement,

EKF is used in the prediction algorithm as mentioned in Figure 4.2. It is imple-

mented in the system model as described in Section 4.1. To initialize the filter,

Ft, Wt, Ht, Vt, Pt, Q and R parameters are initialized as follows:

Jacobian matrix Ft is obtained on differentiating partially to the function

f(x̂−t−1, 0, 0) with respect to x̂−t−1 which is state vector measured at time t − 1.

∆t is the sampling interval and assumed to be one. The initial value of Ft is

defined as:

Ft =



1 0 ∆t 0 0 0

0 1 0 ∆t 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.22)

The initial value of Jacobian matrix Wt is obtained on a partial differentiation of

function f(x̂−t−1, 0, 0) with respect to wt−1 since the process noise wt−1 is assumed

to be zero. Hence, the initial value of Wt is defined as:

Wt =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.23)

Similarly, the initial value of Jacobian matrix Ht and Vt are obtained on differ-

entiating partially to h(x̂−t , vt) with respect to x̂−t and vt as mentioned in matrices
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(5.10) and (5.11) as:

Ht =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.24)

and

Vt =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.25)

The error covariance matrix Pt is obtained using matrix (4.26) in which non-

diagonal elements represent the correlation term which is assumed to be indepen-

dent and does not affect the matrix value. The diagonal elements of the matrix

correspond to the covariance in the states.

Pt =



e(x, x) e(x, y) e(x, vx) e(x, vy) e(x, ax) e(x, ay)

e(y, x) e(y, y) e(y, vx) e(y, vy) e(y, ax) e(y, ay)

e(vx, x) e(vx, y) e(vx, vx) e(vx, vy) e(vx, ax) e(vx, ay)

e(vy, x) e(vy, y) e(vy, vx) e(vy, vy) e(vy, ax) e(vy, ay)

e(ax, x) e(ax, y) e(ax, vx) e(ax, vy) e(ax, ax) e(ax, ay)

e(ay, x) e(ay, y) e(ay, vx) e(ay, vy) e(ay, ax) e(ay, ay)


(4.26)

The initial state estimation of X is fixed at x̂0 = 0 and initial error covariance

P0 is fixed at a large value to minimize the error gap. Thus, the initial error

covariance matrix P0 is defined as:

P0 =



1000 0 0 0 0 0

0 1000 0 0 0 0

0 0 1000 0 0 0

0 0 0 1000 0 0

0 0 0 0 1000 0

0 0 0 0 0 1000


(4.27)

In the literature reviews, various methods have been proposed to select the

appropriate values of Q and R. However, in this study Q and R values are taken

manually in an ad hoc manner (Bavdekar et al. 2011). The measurement noise
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R is the device error and defined by the manufacturer. Hence, the measurement

noise R is defined as in (4.28) where Rx and Ry are the change in latitude and

longitude respectively.

R =

[
Rx 0

0 Ry

]
(4.28)

The initial value of measurement noise R is:

R =

[
1 0

0 1

]
(4.29)

The process noise Q is the observed error in the computational process which

is difficult to measure. Thus, the initial value of Q is kept minimum to make the

process error free. The initial value of Q is defined as:

Q =



0.01 0 0 0 0 0

0 0.01 0 0 0 0

0 0 0.01 0 0 0

0 0 0 0.01 0 0

0 0 0 0 0.01 0

0 0 0 0 0 0.01


(4.30)

The value of Q and R can be changed to tune the filter to get the best estimation

of the vehicle state.

4.4 IMPLEMENTATION AND EVALUATION SETTINGS

The prediction algorithm using EKF as shown in Figure 4.2 and KF are im-

plemented in C language on Intel Core i7-3770 CPU @ 3.40GHz on Windows 7

machine rather then network simulator. Both EKF and KF filters iterate the state

estimation process for 25 times to reduce the error to get the best state estimation.

4.4.1 GPS Traces/Dataset

The dataset used in our experiments is classified into the real and model based

dataset. Further, these mobility traces are categorized into the city and highway

scenarios, as the city road layouts are different compared to the highway. In

addition, the speed of the vehicle on the highway used to be consistent for a long

time, unlike the city.
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• Real GPS Traces for the city and highway scenarios are retrieved from the

OpenStreetMap. Flen city from Sweden is considered in the experiments.

As retrieved, traces are just similar to the city like road structure. For

the highway scenario, traces are retrieved haphazardly from OpenStreetMap

which describes the road structure almost the same as the highway. In both

the traces speed changes based on the vehicle movement.

• Model Based Traces are obtained for the city and highway scenarios us-

ing VANETMOBISIM simulator (Härri et al. 2006). The intelligent driving

model is chosen as it supports for the acceleration/deceleration, driver be-

havior, traffic signal and politeness factor which make the vehicular mobility

traces equal to the real-time vehicular traffic. For the highway scenario, sim-

ulation is conducted for a short time to get the traces equal to the highway

scenario. Due to the lack of support of the simulator for the highway. The

parameters considered for trace generation for the city and highway scenar-

ios are mentioned in Table 4.2. However, junction points and traffic lights

are not considered in the highway scenario.

4.4.2 Parameters for Performance Measurement

The efficiency of the prediction algorithm is measured on RMSE, DE, AEDE and

VE. These parameters are more appropriate to measure the performance of a

prediction algorithm.

4.4.2.1 Root Mean Square Error (RMSE)

It computes the error between measured and predicted location.

The RMSE for a prediction algorithm with respect to the measured value is

defined as the square root of the mean squared error. Equation (4.31) calculates

the RMSE of the prediction algorithm (Chai & Draxler 2014).

RMSE =

√√√√1/N
N∑
t=1

(xt − x̂t)2 (4.31)

Where xt and x̂t are the measured and predicted location of the vehicle respec-

tively. N is the total number of the predictions made.
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Table 4.2: Parameters for model based trace (Jaiswal & Jaidhar 2015)

Description Values

Simulator VANETMOBISIM

X dim.(m) 1000

Y dim.(m) 1000

No.of Traffic lights 05

Traffic Light Duration (s) 60

No. of Lanes 2

Min. Speed (m/s) 0.5

Max. Speed (m/s) 35

Politeness Factor 0.2,0.5,0.8

Maximum Acceleration 0.9(m/s2)

Maximum Deceleration 0.6(m/s2)

Min. Congestion Distance 2m

Safe Headway Time (s) 2

Length of Vehicle 5m

4.4.2.2 Distance Error (DE)

It measures the distance gap between measured and predicted location. It is

computed using Euclidean distance as:

derror =
√

(xt − x̂t)2 + (yt − ŷt)2 (4.32)

xt, yt and x̂t, ŷt in Equation (4.32), are the measured and predicted location of

the vehicle respectively.

4.4.2.3 Average Euclidean Distance Error (AEDE)

AEDE measures the average distance error between measured and predicted lo-

cation using Euclidean distance. Equation (4.33) used to calculate the AEDE for

each scenario is explained as:

AEDE = 1/N
N∑
i=1

√
(xt − x̂t)2 + (yt − ŷt)2 (4.33)
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4.4.2.4 Velocity Error (VE)

It measures the difference between measured and predicted velocity of the vehicle

as follows:

VE = |Vm − Vp| (4.34)

In Equation (4.34), Vm and Vp are the measured and predicted velocity, respec-

tively.

4.5 RESULTS AND DISCUSSION

The EKF based prediction results are computed for each scenario viz. real and

model based traces as discussed in Subsection 4.5.1 and compared with KF in

Section 4.6. For each sub-category of model based trace as discussed in Subsection

4.4.1, it is observed that the traces generated from the VANETMOBISIM do not

resemble the real GPS coordinates in any form such as angle or universal transverse

mercator. The former one uses two dimensional Cartesian coordinate system

to depict the location of an object on Earth’s surface. The coordinates of the

location on Earth’s surface measured by the GPS system varies between -180 to

180 with respect to the latitude and longitude. However, trace generated from

VANETMOBISIM takes the coordinates based on defined simulation area. For

instance, if the simulation area is 1000x1000 m2 then, the coordinates point varies

between 0 to 1000. Based on these observations, the measurement unit for the

location accuracy in meter, distance error in the meter and velocity error in Km/h

are inappropriate for the traces generated from the VANETMOBISIM. Hence, the

results are measured in decimal points rather than their actual measurement units.

4.5.1 Location Prediction with Extended Kalman Filter

4.5.1.1 Location Prediction Based on Model Traces

Figures 4.3 and 4.4 use magnifier to enhance the visibility of the results. Fig.

4.3 shows the prediction of the vehicle location in model based city. Intuitively,

it is evident that location prediction is almost equal to the measured location

with a few exceptions at some points. Though the results are in favour of EKF,

however, similar location precision is difficult to get in real time scenario as the

79



4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

L
a
titu

d
e

Longitude

A
ctu

a
l
M
o
b
ility

E
K
F
B
a
sed

M
o
b
ility

F
ig

u
re

.
4
.3

:
V

eh
icle

m
ob

ility
p
red

iction
for

th
e

city
scen

ario
b
ased

on
m

o
d
el

trace
u
sin

g
E

K
F

.

80



0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0
0
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

L
a
ti
tu
d
e

Longitude

A
ct
u
a
l
M
o
b
il
it
y

E
K
F
B
a
se
d
M
o
b
il
it
y

F
ig

u
re

.
4
.4

:
V

eh
ic

le
m

ob
il
it

y
p
re

d
ic

ti
on

fo
r

th
e

h
ig

h
w

ay
sc

en
ar

io
b
as

ed
on

m
o
d
el

tr
ac

e
u
si

n
g

E
K

F
.

81



59.05 59.05 59.05 59.05 59.05 59.06 59.06 59.06 59.06 59.06 59.06
16.59

16.59

16.59

16.59

16.59

16.59

16.59

16.6

16.6

16.6

Latitude

Lo
ng

it
ud

e

Actual Mobility
EKF Based Mobility

Figure. 4.5: Vehicle mobility prediction for the city scenario based on real trace

using EKF.
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Figure. 4.6: Vehicle mobility prediction for the highway scenario based on real

trace using EKF.

82



difference between two locations is huge as compared to real traces. In real traces,

location changes up to 10 decimal points which is more evident while comparing

the latitude and longitude coordinates in Figure 4.3, Figure 4.4 with Figure 4.5

and Figure 4.6, respectively. The prediction algorithm performance is slightly less

on the highway scenario as compared to the city scenario. However, both the

performances are in favour of EKF as location prediction is close to the measured

location.
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Figure. 4.7: Distance Error (DE) in the city scenario based on model trace

(EKF).

4.5.1.2 Location Prediction Based on Real Traces

The accuracy of location prediction with real GPS traces for the city and highway

scenarios are less compared to the model based traces as shown in Figures 4.5

and 4.6. However, predicted location with the real traces is close to the measured

location as the difference between these two locations is changed up to eight dec-

imal points. This difference is taken as the benchmark to decide the accuracy of

prediction. Hence, based on these observations EKF based prediction is an ap-

propriate technique to be used with those applications which demand the highest

accuracy in location prediction such as cooperative driving and collision warning
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Figure. 4.8: Distance Error (DE) in the city scenario based on model trace (KF).

system. Hence, accuracy in location prediction with real GPS traces is practi-

cal and acceptable with EKF whereas EKF based location prediction with model

based traces is not feasible in real world scenarios as it coordinates system.

4.6 PERFORMANCE COMPARISON WITH KF BASED PREDIC-

TION

The performance of the proposed EKF based prediction is compared with the

KF based prediction on DE, RMSE, AEDE and VE parameters. For both the

filters, the process model, measurement model and computational steps are same

as explained in Section 4.2.

4.6.1 DE Based Comparison

The following subsections compare the DE between EKF and KF based prediction.

4.6.1.1 DE with Model Trace

From, Figures 4.7 and 4.9, it is observed that EKF has 0.175 and 0.10 maximum

DE in the city and highway respectively. However, 0 and 0.01 are the minimum

DE with respect to the city and highway. Hence, on the highway distance error
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is less compared to the city using EKF based prediction. With reference to KF

based prediction, it is noticed that 0.27 and 0.177 are the maximum DE in the

city and highway scenarios as shown in Figures 4.8 and 4.9. Overall, EKF has less

DE compared to KF in both the scenarios.
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Figure. 4.9: Distance Error (DE) in the highway scenario based on model trace

(EKF/KF).

4.6.1.2 DE with Real Trace

Based on the results, as shown in Figures 4.12 and 5.28, it is found that the

EKF has the maximum DE of 0.18 and 0.125 for the city and highway scenarios,

respectively. However, DE increased to 0.24 and 0.179 using KF based prediction

in the city and highway as shown in Figures 4.11 and 4.12, respectively. KF based

prediction has more DE compared to the EKF with real trace.

Intuitively, DE is less for the highway as compared to the city with both models

using EKF and KF. However, DE slightly increased in KF based prediction in all

the scenarios.

Note: Some of the figures are drawn separately for EKF and KF due to superimposition of

the images.
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Figure. 4.10: Distance Error (DE) in the city scenario based on real trace (EKF).
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Figure. 4.11: Distance Error (DE) in the city scenario based on real trace (KF).

4.6.2 VE Based Comparison

The following subsections compare the VE between EKF and KF based prediction.
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Figure. 4.12: Distance Error (DE) in the highway scenario based on real trace

(EKF/KF).
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Figure. 4.13: Velocity error in the city scenario based on model trace (EKF).

4.6.2.1 VE with Model Trace

From Figures 4.13 and 4.15, it is learned that EKF has maximum VE of 0.125

and 0.10 in the city and highway scenarios respectively. However, VE increased to
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Figure. 4.14: Velocity error in the city scenario based on model trace (KF).

0.138 and 0.196 in the city and highway scenario using KF as shown in Figures 4.14

and 4.15, respectively. In general, EKF has less VE compared to KF in all the

scenarios. However, KF has more VE on the highway compared to the city, unlike

EKF.

4.6.2.2 VE with Real Trace

The maximum VE noted for EKF is 0.127 and 0.122 for the city and highway

respectively as shown in Figures 4.16 and 4.18. VE increases marginally to 0.143

and 0.131 in the city and highway using KF as shown in Figures 4.17 and 4.18,

respectively. In both the cases viz. EKF and KF highway has less VE compared

to the city. However, EKF outperforms KF with a marginal difference in all the

scenarios.

In general, KF has more VE compared to EKF in all the scenarios.

4.6.3 RMSE Based Comparison

In Figure 4.19, Figures 4.20 and 4.21, R and M on the x-axis are used for real and

model based traces which are used in conjunction with the city and highway.

From the Figure 4.19, it is observed that the KF based prediction has highest
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Figure. 4.15: Velocity error in the highway scenario based on model trace

(EKF/KF).
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Figure. 4.16: Velocity error in the city scenario based on real trace (EKF).

0.062 error in latitude whereas with EKF based prediction it reduced to 0.042.

Figure 4.20 shows the error in longitude. Intuitively, it can be seen in the result

that the error is most likely to be similar to an observed error for the latitude.
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Figure. 4.17: Velocity error in the city scenario based on real trace (KF).

However, it has an exception with EKF based prediction on model based city

traces wherein the error reduced to 0.022.

Based on RMSE results for the latitude and longitude as shown in Figures 4.19

and 4.20, it is evident that the EKF based prediction has less error in the predicted

location compared to the KF based prediction.

4.6.4 AEDE Based Comparison

The AEDE is shown in Figure 4.21 for all the scenarios. It is as highest as 0.14 for

KF based prediction with real traces for the highway scenario whereas with the

EKF based prediction AEDE is reduced to 0.122. From the figure, it is observed

that KF and EKF have highest AEDE with real traces for highway and model

based traces for the city, respectively, which is seen as an exception. Overall, EKF

has less AEDE compared to the KF in all the scenarios.

4.6.5 Analysis of Time Complexity

The time complexity of the KF based prediction algorithm is O(n3) where n rep-

resents the number of parameters used in the state as discussed in (Feng et al.

2015). As it involves the matrix multiplication and inverse operation. However,
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Figure. 4.18: Velocity error in the highway scenario based on real trace

(EKF/KF).
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Figure. 4.19: Root Mean Square Error (RMSE) for latitude.

the time complexity for EKF based prediction algorithm is seen as a future work

as it involves the computation of nonlinear function in Equations (4.12) to (4.15)

and partial differentiation to compute the Jacobian matrix in addition to matrix
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Figure. 4.20: Root Mean Square Error (RMSE) for longitude.

multiplication and inversion computation.

However, location precision has more priority over computational cost, as

VANET computational device has enough resources to work with EKF.

R-City R-High M-City M-High
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Trace

A
ve
ra
ge

D
is
ta
nc

e
E
rr
or

EKF
KF

Figure. 4.21: Average Euclidean Distance Error (AEDE).
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4.7 SUMMARY

Based on our experimental results, it is observed that location prediction using

EKF for model based traces is almost equal to the measured location. However,

coordinate system in model based traces is different from the GPS system. It

is also observed in our simulation results that the performance of the location

prediction using EKF is better on the highway compared to the city scenario.

With reference to the real traces, EKF prediction algorithm performs better

on the highway compared to the city. However, it is lower than the model based

traces. Nevertheless, model based traces are unrealistic to be used in real world

scenarios, unlike real traces. In addition, DE is less on the highway with real and

model based traces compared to the city. On comparison of DE between model

and real based traces, it is found that the model based traces showed less error

compared to the real traces. Velocity error is less with reference to model based

traces on the highway compared to the real traces. Overall, EKF performs well

in highway scenario as vehicle steering angle and speed and road layout do not

change for the long time unlike city scenario.

On the basis of DE, RMSE, AEDE and VE results, it is also observed that the

EKF based prediction outperforms the KF based prediction. Hence, it is concluded

that the EKF based prediction should be used in VANET where location precision

is more crucial, compared to KF based prediction. Though the time complexity

of the EKF based prediction algorithm is discussed briefly in the subsection 4.6.5,

nonetheless, it is a future work to analyze the time complexity of our EKF based

prediction algorithm with reference to VANET.

Related Publication

• Raj K Jaiswal, Jaidhar C D Location Prediction Algorithm for a Non-

linear Vehicular Movement in VANET using Extended Kalman Fil-

ter Wireless Networks, 2016, pages 1-16, issn 1572-8196,doi 10.1007/s11276-

016-1265-4, url=http://dx.doi.org/10.1007/s11276-016-1265-4.
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Chapter 5

Prediction Based Position-based Routing

Protocol

The accuracy of a location is affected by several factors such as underpass, build-

ings, trees in the city. In addition, environmental effect also impact on location

such as line-of-sight, signal interference. Consequently, the difference between real

and GPS position affects the position-based routing protocols performance. Thus,

to minimize the impact of location error, this chapter proposes prediction based

position-based routing protocol. The salient contributions of the chapter are:

• It proposes prediction based position-based routing protocol using KF and

EKF as a prediction module.

• The routing performance is evaluated on two different propagation models

such as Two-ray ground and Winner-II on 250m and 500m transmission

range using heterogeneous and homogeneous traffic environments for the

model based traces.

• It computes the error removal capacity of KF by adding one time error into

location.

• It predicts the advance location of the vehicle on highway by supplying one

time latitude and longitude information to the KF module.

• It evaluates the routing protocol performance on two different propagation

models viz. Two-ray ground and Winner-II only for 500m transmission range

on real time GPS traces.

• It compares the performance of prediction based position-based routing pro-

tocol with CLWPR protocol on model based and real time GPS traces.
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The remaining sections of this chapter are organized as follows: system model

is discussed in Section 5.1 which is different from the system model discussed in

Section 4.1 of Chapter 4. The proposed work is described in Section 5.3. The

performance of the proposed protocol is evaluated in two different sections viz.

Section Section 5.4 evaluates the performance of prediction based position-based

routing protocol using model based mobility traces while Section 5.5 evaluates the

performance of the protocol on real GPS traces. The simulation parameters and

results are discussed separately in each section. Section 5.6 the summarizes the

work.

5.1 SYSTEM MODEL AND ASSUMPTIONS

Each vehicle is outfitted with an on-board unit and a GPS device to retrieve

location. The speed of the vehicle varies with traffic conditions. It is assumed

that the vehicle heading gets changed either at a turning point or during the lane

change. Thus, steering angle and acceleration do not change instantly. The vehicle

state X is defined by four-tuple [x, y, vx, vy] where x and y are the latitude and

longitude position while vx and vy depict the speed towards latitude and longitude,

respectively. It is assumed that location server is deployed at the prominent places

or junction point to retrieve and register the vehicle location as a location id with

location server.

The change in vehicle state is measured by Equation (5.1) where Post−1, Vt−1

and at−1 are the vehicle position, velocity and acceleration at t−1, while dt shows

the time difference in change of velocity.

Post = Post−1 + Vt−1 ∗ dt+
1

2
at−1dt

2 (5.1)

Hence, the state model X of the vehicle is defined as:

X =


x

y

vx

vy

 =


xt−1 + vx ∗ dt
yt−1 + vy ∗ dt

vxt−1

vyt−1

 (5.2)

Here, xt−1 and yt−1 are the state of the vehicle measured at t− 1 and vxt−1 , vyt−1

are the velocity components.

95



5.2 PARAMETERS OF KF AND EKF

KF and EKF are described in Chapter 4. However, in this chapter KF and EKF

are designed and implemented by considering four system state which is different

from the Chapter 4.

5.2.1 KF and EKF Implementation

In this work, KF and EKF are implemented in C++ programming language

using Eigen library for linear algebra (Guennebaud et al. 2010) and incorporated

as a prediction module in position-based routing protocol using NS-3.23 simulator.

5.2.1.1 KF Initialization

In Equation (4.5), wt−1 and ut−1 are assumed to be zero. To initialize KF, the fol-

lowing parameters are set to an initial value. The transition matrix A is initialized

as:

A =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 (5.3)

Where dt is taken as one second. Ht is defined based on measurement location zt

which provides the latitude and longitude position of the vehicle. Thus, Ht is:

Ht =

[
1 0 0 0

0 1 0 0

]
(5.4)

The initial state X is fixed at zero. The error covariance P−
t should be large

enough to minimize the error gap in state estimation. Thus P−
t is:

P−
t =


10000 0 0 0

0 10000 0 0

0 0 10000 0

0 0 0 10000

 (5.5)

The process noise Q and measurement noise R are taken in an ad hoc manner

to get the best estimation results (Bavdekar et al. 2011). Thus, Q and R are
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initialized as:

Q =


0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 (5.6)

R =

[
0.001 0

0 0.001

]
(5.7)

5.2.1.2 EKF Initialization

To initialize EKF, Ft, Wt, Ht, Vt, Pt, Q and R parameters are initialized as follows:

f(x̂−t−1, 0, 0) is partially differentiated with respect to x̂−t−1 to obtain Jacobian

matrix Ft. Here, dt is assumed to be one. Thus Ft is initialized as follows:

Ft =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 (5.8)

Similarly, f(x̂−t−1, 0, 0) is differentiated partially with respect to wt−1 to get Wt,

however, wt−1 is taken as zero by assuming negligible error in the process model.

Thus, in this experiment, Wt is taken as:

Wt =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (5.9)

On partial differentiation of h(x̂−t , vt) with respect to x̂−t and vt, Jacobian Ht

and Vt are obtained on which are initialized as:

Ht =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (5.10)

and

Vt =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (5.11)
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The initial values of P−
t , Q and R are same as shown in Equations (5.5) to (5.7).

Though both the filters give quite reliable prediction, however, EKF predicted

position is quite closer to the real position as compared to KF which is more useful

in automatic parking and collision avoidance system and not in other fields such

as routing which does not need as high as correct location in EKF (Jaiswal &

Jaidhar 2016). Based on the experimental results, it is evident that KF and EKF

take more running time as compared to the equation of motion. However, energy

is not a constraint as computing device takes the energy from the vehicle battery.

This paper uses both the filters as a prediction module in routing to confirm it.

Algorithm 1 Location prediction using KF/EKF

1: procedure KF/EKF Prediction

2: Search (Destination location id in Neighbor Table at t)

3: if (Destination location id is found ) then

4: Compute (location id using KF/EKF at t+1 )

5: Update (Current location id ← Predicted location id)

6: Send (Packet with predicted location id to the destination)

7: else

8: Send (Request to location server to get destination location id)

9: Search (Neighbor node location id, closer to the destination)

10: Compute (Neighbor node location id using KF/EKF at t+1 )

11: Update (Current location id ← Predicted location id)

12: Send (Packet to neighbor node with Predicted location id)

13: end if

14: end procedure

5.3 PREDICTION BASED POSITION-BASED ROUTING PROTO-

COL

It uses the KF and EKF based prediction module into position-based routing pro-

tocol to minimize the location error. Each node broadcasts the HELLO packet

to its neighbor nodes for every 1.5 seconds beyond this time limit topology may
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get changed. The HELLO packet remains in the Neighbor Table up to 4.5 sec-

onds or until location gets changed. It contains the information of the node such

as Node id, location id and Velocity. Before sending the packet, a node identi-

fies the destination node location id in Neighbor Table, on the availability of it,

location id is sent to KF and EKF module to get predicted location id which is

added to the destination location id in the packet header. Upon unavailability

of the destination location id in the Neighbor Table, source node obtains it from

location server and then it searches the next neighbor node based on Euclidean

distance which is closer to the destination and passes its location id to KF and

EKF to get predicted location id as shown in Algorithm 1.

5.4 PERFORMANCE EVALUATION OF PREDICTION BASED

POSITION-BASED ROUTING PROTOCOL USING MODEL

BASED MOBILITY TRACES

This section evaluates the performance of the proposed routing protocol using

model based mobility traces.

5.4.1 Simulation Parameters

This experiment uses CLWPR NS-3.23 patch which is a position-based routing

protocol as explained in Section 2.5.2. In CLWPR, KF and EKF modules are

used instead of the equation of motion based prediction, one by one. CLWPR

routing parameters used in simulation are listed in Table 5.1, while parameters

used in NS-3.23 are listed in Table 5.2. In addition, it is also assumed that the

location servers are deployed at the prominent places and junction points to fetch

vehicle location when it is not found in Neighbor Table.

To see the effect of path loss on prediction, two different propagation models are

used such as Two-ray ground and Winner-II models. In later propagation model,

B1 scenario is taken in the experiment which implements more realistic path loss

model for a city scenario as compared to Two-ray ground model more detail can

be seen in (IST-WINNER 2007) work.
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VANETMOBISIM is used to get the vehicular mobility for 25, 50, 75 and 100

vehicles which are deployed in the area of 1000 x 1000 m2 for city and 30 x 2000

m2 for the highway as shown in Figures 5.1 and 5.2. All the vehicles are connected

using car following model. The number of vehicles remains constant in simulation

during the simulation period. Further, homogeneous and heterogeneous traffic

environments are used in mobility generation. The homogeneous traffic consists

of cars with equal length. The parameters used to generate homogeneous traffic are

enlisted in Tables 5.3a and 5.3b. The heterogeneous traffic environment consists

of cars, trucks and buses as these vehicles run in the city with varying speed and

have different acceleration and deceleration. In addition, vehicle body length also

varies from vehicle to vehicle and these parameters are likely to affect the location

prediction. The specific and common parameters considered for heterogeneous

traffic are listed in Table 5.3d. Every node in simulation has independent location

error which is introduced using Gaussian distribution.

Table 5.1: Routing parameters

CLWPR PROPOSED

HelloInterval=1.5s HelloInterval=1.5s

MaxQueueTime=10s MaxQueueTime=10s

DynHello=False DynHello=False

Prediction Module=Equation of motion Prediction Module=KF and EKF

5.4.2 Results and Discussion

The performance of the routing protocol is evaluated on the metrics of PDR,

AD and throughput and compared with CLWPR performance. The performance

results are grouped into heterogeneous and homogeneous traffic environment for

the city and highway scenarios which are further categorized in Two-ray ground

and Winner-II models for each scenario. In the simulation results, it is found that

KF and EKF both produce similar PDR, AD and throughput. Thus, EKF results

are not shown with KF results due to similarity and to avoid the overlapping of the
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Table 5.2: Network simulator parameters

Parameters Values

Network Simulator NS-3.23

Simulation Time (s) 300

Routing Protocols CLWPR & PROPOSED

Antenna Model Omni-Directional Antenna

Modulation Technique OFDM

Radio Propagation Model Winner-II and Two-ray Ground

Transmission Range (m) 250 & 500

MAC Type IEEE 802.11p

MAC Rate 6 Mbps

Transport Protocol UDP

Data Type CBR

CBR Generation Rate(Kbps) 128

Packet Size 500 Bytes

No. of Connections 30% of the Total Number of Vehicles

No. of Vehicles 25, 50, 75, 100

images. However, EKF takes more time to complete the simulation, unlike KF due

to the involvement of more computational steps such as computation of Jacobian.

Section 5.4.2.3 is the common legend for all the results shown in Figures 5.3, 5.4

and 5.6 to 5.27 in which 250 and 500 are attached with protocols name to depict

the transmission range. In addition, C and H are used as an acronym for the city

and highway scenarios in figure caption:

5.4.2.1 PDR

Following subsections discuss the PDR in different scenarios in which vehicle have

variable speed.

City based Heterogeneous Traffic

Figures 5.3 and 5.4 show the PDR on Two-ray ground and Winner-II propa-

gation models for city based heterogeneous traffic, in which PROPOSED-250 has

52% PDR with 25 nodes while CLWPR-250 has 54% PDR and it is reduced to

14% for PROPOSED-250 and 13% for CLWPR-250 with 100 nodes using Two-
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Table 5.3: Mobility parameters

(a) Common parameters

Description Values

Simulator VANETMOBISIM

Simulation Time (s) 499

Simulation Area (City) 1000 x 1000 m2

Simulation Area (Highway) 30 x 2000 m2

Traffic lights (City) 10

Traffic Light Duration (s) 60

No. of Lanes 2

Min. Congestion Distance 2m

Traffic Type Heterogeneous

Homogeneous

(b) Specific parameters for car

Description Values

Percentage in Traffic 60

Min. Velocity (m/s) 0.1

Max. Velocity (m/s) 25

Driver Politeness Factor 0.8

Max. Acceleration 0.9 (m/s2)

Max. Deceleration 0.6 (m/s2)

Vehicle Length (m) 4

Safe Headway Time (s) 2

(c) Specific parameters for bus

Description Values

Percentage in Traffic 30

Min. Velocity (m/s) 0.1

Max. Velocity (m/s) 17

Driver Politeness Factor 0.4

Max. Acceleration 0.5 (m/s2)

Max. Deceleration 0.3 (m/s2)

Vehicle Length (m) 8

Safe Headway Time (s) 5

(d) Specific parameters for truck

Description Values

Percentage in Traffic 10

Min. Velocity (m/s) 0.1

Max. Velocity (m/s) 11

Driver Politeness Factor 0.2

Max. Acceleration 0.3 (m/s2)

Max. Deceleration 0.5 (m/s2)

Vehicle Length (m) 12

Safe Headway Time (s) 10
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Figure. 5.3: PDR on Two-ray ground model (C-Heterogeneous Traffic)
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Figure. 5.4: PDR on Winner-II model (C-Heterogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

Figure. 5.5: Common legend for the results

ray ground model. However, PROPOSED-250 improves the PDR with 50 and 75

nodes compared to CLWPR as shown in Figure 5.3. With 500 transmission range

on Two-ray ground, due to location prediction technique, CLWPR-500 does better

compared to PROPOSED-500.

With reference to Winner-II model, using location prediction. Over-

all, PROPOSED-500 has 2.12% more PDR compared to CLWPR-500, while

PROPOSED-250 has 8% less PDR compared to CLWPR-250 in 250m transmis-
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Figure. 5.6: PDR on Two-ray ground model (H-Heterogeneous Traffic)

25 50 75 100
0.2

0.4

0.6

0.8

1

No. of Nodes

P
a
ck
et

D
el
iv
er
y
R
a
ti
o

Figure. 5.7: PDR on Winner-II model (H-Heterogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

sion range as shown in Figure 5.4.

City based Homogeneous Traffic

With reference to homogeneous traffic environment, it is found that PRO-

POSED protocol has better PDR almost in all types of network, compared to

CLWPR. PROPOSED-250 and CLWPR has 56% and 54% PDR in 25 nodes us-

ing Two-ray ground model. However, PDR decreases as the number of nodes

increases. PROPOSED-500 and CLWPR-500 has 94.9% and 95.7% PDR with

25 nodes. However, PROPOSED-500 improves the PDR compared to CLWPR
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Figure. 5.8: PDR on Two-ray ground model (C-Homogeneous Traffic)
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Figure. 5.9: PDR on Winner-II model (C-Homogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

with increasing number of nodes as shown in Figure 5.8. Using Winner-II model,

it is observed that PROPOSED-250 performs better compared to CLWPR-250

from sparse to dense network, whereas PROPOSED-500 can not perform better

in the sparse network as shown in Figure 5.9. On comparison between Figures 5.3

and 5.8 and Figures 5.4 and 5.9, it is found that prediction improves the routing

performance in both the traffic environment for the city scenario.

Highway based Heterogeneous Traffic

From Figure 5.6, it is obvious that the PROPOSED-500 has better PDR com-
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Figure. 5.10: PDR on Two-ray ground model (H-Homogeneous Traffic)
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Figure. 5.11: PDR on Winner-II model (H-Homogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

pared to CLWPR-500 unlike 250m transmission range wherein CLWPR-250 has

more PDR. With Winner-II in both the transmission range PROPOSED-250 and

500 have more PDR as shown in Figure 5.7.

Highway based Homogeneous Traffic

With homogeneous traffic in the highway scenario proposed protocol improves

the PDR in all scenarios except PROPOSED-250 as shown in Figures 5.10

and 5.11. On comparison with Figures 5.6 and 5.10 and Figures 5.7 and 5.11,

it is found that prediction is more accurate in heterogeneous traffic in the highway
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scenario. Though, prediction improves the PDR in most of the scenarios, however,

it is observed that PDR decreases with increasing number of nodes in all scenarios

in both the protocols.

5.4.2.2 Throughput

It measures the average number of bits received per second by each node.

City based Heterogeneous Traffic

Figures 5.12 and 5.13, show the throughput performance in heterogeneous

city traffic. In Figure 5.12, PROPOSED-250 has 2.17% more throughput than

CLWPR-250. With reference to 500m transmission range both the protocols

have equal throughput on Two-ray ground model with 75 and 100 nodes, while

PROPOSED-500 has less throughput with 25 and 50 nodes due to prediction. For

25 nodes, PROPOSED-250 gives 66.30 kbps, while CLWPR-250 gives 67.9 kbps

throughput and PROPOSED-250 improves the PDR compared to CLWPR-250 as

the number of node increases. Eventually, it reaches to 13.5 kbps and 11 kbps for

PROPOSED-250 and CLWPR-250 with 100 nodes, respectively. Throughput is

almost similar with 500m transmission range in both the protocols. With reference

to Winner-II model, in 500m transmission range throughput is better compared

to CLWPR, while CLWPR gives better throughput in 250m range (refer to Fig-

ure 5.13).
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Figure. 5.12: Throughput on Two-ray ground model (C-Heterogeneous Traffic)
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Figure. 5.13: Throughput on Winner-II (C-Heterogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

City based Homogeneous Traffic

From Figure 5.16, it is evident that PROPOSED-250 has 2.12% and 2.35%

more throughput with 25 and 50 nodes on Two-ray ground model, respectively.

However, it decreases with 75 and 100 nodes. 71.61 kbps and 70.01 kbps are the

maximum throughput with 25 nodes for PROPOSED-250 and CLWPR-250, while

with 100 nodes 26.51 kbps and 28.62 kbps minimum throughput is observed, re-

spectively. However, PROPOSED protocol has more throughput than CLWPR in

500m range.

With Winner-II model, throughput is more using PROPOSED-250 and

PROPOSED-500, in all scenarios. 105.40 kbps and 97.10 kbps are the maximum

throughput with 25 nodes using PROPOSED-500 and CLWPR-500, respectively,

while it is 50.85 kbps and 47.09 kbps minimum throughput with 100 nodes (refer

to Figure 5.17). In both the Figures 5.16 and 5.17 throughput decreases as the

number of node increases. Throughput is more in homogeneous traffic compared

to heterogeneous traffic (refer to Figures 5.12, 5.13, 5.16 and 5.17).

Highway based Heterogeneous Traffic

In both the propagation model throughput is improved. 48.46 kbps and 50.45

kbps are the maximum throughput with 25 nodes on Two-ray ground model for
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Figure. 5.14: Throughput on Two-ray ground model (H-Heterogeneous Traffic)
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Figure. 5.15: Throughput on Winner-II (H-Heterogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

PROPOSED-250 and CLWPR-250, however, proposed model improves the perfor-

mance as node increases. 44.46 kbps and 42.86 kbps are the observed throughput

with 100 nodes for PROPOSED-250 and CLWPR-25 which shows the growing

trend compared to 50 and 75 nodes. This growth in throughput is due to the desti-

nation availability for a longer period in the proximity of the source. Throughput

is improved with PROPOSED-500 compared to CLWPR-500 as shown in Fig-

ure 5.14.

With reference to Winner-II model, 111.84 kbps and 114.36 kbps are the max-

imum throughput for PROPOSED-500 and CLWPR-500 with 25 nodes, while it
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Figure. 5.16: Throughput on Two-ray ground model (C-Homogeneous Traffic)
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Figure. 5.17: Throughput on Winner-II (C-Homogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

is as minimum as 54.81 kbps and 52.39 kbps with 100 nodes for CLWPR-500 and

PROPOSED-500, respectively, as shown in Figure 5.15.

Highway based Homogeneous Traffic

50.45 kbps, 48.46 kbps, 124.87 kbps and 124.07 kbps minimum throughput

is observed with 25 nodes for CLWPR-250, PROPOSED-250, CLWPR-500 and

PROPOSED-500, respectively. With Two-ray ground model, it reaches to maxi-

mum 44.86 kbps, 42.61 kbps and 68.43 kbps and 69.88 kbps in the same sequence

as shown in Figure 5.18.
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Figure. 5.18: Throughput on Two-ray ground model (H-Homogeneous Traffic)
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Figure. 5.19: Throughput on Winner-II (H-Homogeneous Traffic)

CLWPR-250 PROPOSED-250 CLWPR-500 PROPOSED-500

With reference to Winner-II model, 57.22 kbps, 54.08 kbps, 111.84 kbps

and 114.36 kbps are the maximum throughput with 25 nodes for CLWPR-250,

PROPOSED-250, CLWPR-500 and PROPOSED-500, respectively. In the same

order 44.06 kbps, 45.38 kbps, 54.81 kbps and 52.39 kbps are the minimum through-

put 100 nodes as shown in Figure 5.19. Both the scenarios show the improved

throughput.
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5.4.2.3 AD

AD measures the end-to-end transmission delay for correctly received packet be-

tween two communicating nodes. Since location prediction technique estimates

the probable location of the nodes, thus, it minimizes AD by providing an accu-

rate location. Figures 5.20 to 5.27 show the AD with different scenarios described

as follows:

City based Heterogeneous Traffic

From Figures 5.20 and 5.21, it is evident that the prediction in routing minimizes

AD. With 25 nodes measured average delays are 0.1743 ms, 0.0536 ms, 0.0023 ms

and 0.0024 ms for CLWPR-250, PROPOSED-250, CLWPR-500 and PROPOSED-

500, respectively on Two-ray ground model, while it increases as number of nodes

increases and the maximum AD is recorded with 100 nodes which are 1.3753 ms,

0.8620 ms, 1.1589 ms and 1.13754 ms in the same order as shown in Figure 5.20.

On Winner-II model, the minimum delay is recorded as 0.2417 ms, 0.02714 ms,

0.0357 ms and 0.0384 ms for the aforementioned sequence with 25 nodes, while it

increases with 100 nodes to 0.4488 ms, 0.4876 ms, 1.2132 and 1.0894 ms as shown

in Figure 5.21.
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Figure. 5.20: AD on Two-ray ground model (C-Heterogeneous Traffic)

City based Homogeneous Traffic

With homogeneous traffic, proposed routing protocol minimizes the AD com-

pared to CLWPR as shown in Figures 5.24 and 5.25. With reference to Two-ray
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Figure. 5.21: AD on Winner-II model (C-Heterogeneous Traffic)
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ground model, the minimum delay is observed with 25 nodes which are 0.1994 ms,

0.1654 ms, 0.0132 ms and 0.0628 ms for CLWPR-250, PROPOSED-250, CLWPR-

500 and PROPOSED-500, respectively, while in similar manner, it increases in 100

nodes to 1.5315 ms, 1.3509 ms, 1.1368 ms and 1.0659 ms (refer to Figure 5.24).

On Winner-II model, the minimum observed delays are 0.1449 ms, 0.1165 ms,

0.2189 ms and 0.1567 ms, and maximum observed delays with 100 nodes are 1.036

ms, 0.6910 ms, 1.376 ms and 1.367 ms (refer to Figure 5.25). Overall, Two-ray

ground model minimizes the AD compared to Winner-II model.

Highway based Heterogeneous Traffic

Minimum delay in this scenario for CLWPR-250, PROPOSED-250, CLWPR-

500 and PROPOSED-500 is 0.1743 ms, 0.053 ms, 0.0024 ms and 0.0023 ms, while

the maximum is 0.9453 ms, 0.8620 ms, 0.8589 ms and 0.7754 ms, respectively

with Two-ray ground model (refer to Figure 5.22). Similarly, with Winner-II

model minimum observed delays are 0.1614 ms, 0.1743 ms, 0.006 ms and 0.007 ms

with 25 nodes, while maximum delays are 0.6634 ms, 0.4977 ms and 0.9473 ms,

0.8572 ms with 100 nodes as shown in Figure 5.23.

Highway based Homogeneous Traffic

In this scenario with 50 and 75 nodes PROPOSED-250 increases the AD com-
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Figure. 5.22: AD on Two-ray ground model (H-Heterogeneous Traffic)
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Figure. 5.23: AD on Winner-II model (H-Heterogeneous Traffic)
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pared to CLWPR with Two-ray ground and Winner-II models, respectively. Apart

from these exceptions, overall, prediction has reduced the delay in all other scenar-

ios. The minimum delays observed for CLWPR-250, PROPOSED-250, CLWPR-

500 and PROPOSED-500 are 0.1743 ms, 0.0536 ms, 0.0024 ms and 0.0023 ms,

while maximum delays are 0.9453 ms, 0.762 ms, 0.9789 ms and 0.75 ms with Two-

ray ground model (refer to Figure 5.26). Likewise, with reference to Winner-II

model, the minimum delays are 0.1714 ms, 0.1643 ms, 0.2189 ms and 0.0072 ms,

while the maximum delays are 1.558 ms, 1.364 ms, 0.9473 ms and 0.8572 ms (refer

to Figure 5.27).
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Figure. 5.24: AD on Two-ray ground model (C-Homogeneous Traffic)
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Figure. 5.25: AD on Winner-II model (C-Homogeneous Traffic)
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5.5 PERFORMANCE EVALUATION OF PREDICTION BASED

POSITION-BASED ROUTING PROTOCOL USING REAL GPS

TRACES

This section evaluates the performance of the prediction based position-based

routing protocol using real time GPS traces. Based on the results of Section 5.4,

herein, only KF is used in prediction based position-based routing compared to

EKF, due to similar performance and more computation time. It also evaluates

and compares the protocol performance on simulator generated mobility for the
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Figure. 5.26: AD on Two-ray ground model (H-Homogeneous Traffic)
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Figure. 5.27: AD on Winner-II model (H-Homogeneous Traffic)
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heterogeneous traffic on 500m transmission range. In this experiment homoge-

neous traffic is not considered due to real traffic which will be always heteroge-

neous in nature. The simulation and routing parameters used in this experiment

are explained in section 5.5.1 and Section 5.5.2 respectively, while system model

is explained in Section 5.1.

5.5.1 Simulation Parameters

This work simulation parameters are similar to Chapter 5 except the real time GPS

traces. The real time GPS traces are obtained from (rti 2016) which maintains
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archive for the real time GPS traces of the vehicles running in San Francisco city.

Since real GPS traces are not compatible to work with NS-3.23 simulator due to

time and unstructured data format. Thus, a python based parser is developed

to convert the real GPS traces into NS-3.23 simulator compatible traces. After

the conversion, consecutive 25, 50, 75 and 100 nodes are picked out among 1000

nodes. In this work, two different simulation time is used viz. with simulator

generated mobility it is 300s, while it is 875s with real GPS traces to cover the

entire time of the traces. With both the traces during simulation, to see the effect

of path loss on prediction, Two-ray ground and Winner-II propagation models are

used on 500m transmission range. In Winner-II model, B1 scenario is considered

which implements more realistic path loss model for a city scenario compared to

Two-ray model more detail can be seen in IST-WINNER (2007) work.

5.5.2 Results and Discussion
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Figure. 5.28: Advance location prediction on the highway

Figure 5.28 depicts the advance location prediction of the vehicle position on

the highway. The speed of the vehicle is kept constant at 10 m/s. Mobility is gen-
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Figure. 5.29: Error removal capacity

erated using VANETMOBISIM in which only latitude position is getting changed

while longitude is kept constant to resemble a scenario for a highway. Q and R

parameters are tuned to get the best estimation. To get an advance movement

prediction of the vehicle on a highway, one-time latitude (x )=216.2585823641 and

longitude (y)=23.000001 information supplied to the KF module, based on this in-

formation KF predicts the advance movement of the vehicle. More details related

to each position in advance prediction can be seen in Appendix I which consist the

real x, real y, pre x, pre y, DE and difference between real and predicted position.

However, advance prediction is not possible in the city scenario due to certain

reasons. Firstly, it is unlikely that the vehicle will run with constant speed in the

city, secondly, the city road network will not be straight for a long distance. Based

on these notes and results, advance prediction is possible only with the highway

scenario.

Figure 5.29 shows the error removal capacity of the KF. One time error is added

to the x and y positions. From Figure 5.29, it is evident that 72.07% of error is

removed on the addition of one percent error. The error removing capacity is

increased as error increases.
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The performance of the protocol is computed according to the different mobility

and propagation model used in simulation. The routing performance is evaluated

on the metrics of PDR, average delay and throughput and compared with the

performance of CLWPR. In Figures 5.30 to 5.41, T and W are used with routing

protocol as an acronym for Two-ray ground and Winner-II model, respectively.

The results are discussed as follows:
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Figure. 5.30: PDR on simulator generated mobility (Two-ray ground model)

25 50 75 100
0

0.2

0.4

0.6

0.8

1

No. of Nodes

P
a
ck
et

D
el
iv
er
y
R
a
ti
o

CLWPR-T PROPOSED-T

Figure. 5.31: PDR on real GPS traces (Two-ray ground model)

5.5.2.1 PDR

PDR of the proposed routing is computed on Winner-II and Two-ray ground

propagation models for 500m transmission range. Figure 5.30 shows the PDR on

simulator generated mobility on Two-ray ground model, it is observed that the

121



PROPOSED-T has 97.31% PDR for 25 nodes while CLWPR-T has 98.1% PDR.

These differences remain the same for other scenarios too. Overall PROPOSED-T

could not improve the PDR on Two-ray ground model with 500m transmission

range with simulator generated mobility.

With reference to real GPS traces, PROPOSED-T and CLWPR-T both have
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Figure. 5.32: PDR on simulator generated mobility (Winner-II model)
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Figure. 5.33: PDR on real GPS traces (Winner-II model)

100% PDR for 25 and 50 nodes, it decreases as the number of nodes increases.

With 75 nodes, CLWPR-T has 61.7% PDR, while it is 61.4% with PROPOSED-

T. With 100 nodes CLWPR-T has 39% and 38.9% with PROPOSED-T. From

Figure 5.31, it is evident that KF based prediction and equation of motion based

prediction has quite reliable and equal PDR up to 50 nodes on real GPS traces
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compared to simulator generated mobility as shown in Figures 5.30 and 5.31.

Generally, it is observed that PDR decreases as the number of node increases,

however with real GPS traces adverse results are shown. Up to 50 nodes, PDR

remain constant to 100%, while a steep fall in PDR can be seen with 75 and 100

nodes. On comparison with real GPS traces and simulator generated mobility, a

gradual decrement is observed with latter scenario.

With reference to Winner-II model on simulator generated mobility,
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Figure. 5.34: Throughput on simulator generated mobility (Two-ray ground

model)
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Figure. 5.35: Throughput on real GPS traces (Two-ray ground model)

PROPOSED-W has 74.53% PDR for 25 nodes while CLWPR-W has 72.6% PDR.

In both the routing protocols PDR decreases as node number increases. With 75
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Figure. 5.36: Throughput on simulator generated mobility (Winner-II model)
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Figure. 5.37: Throughput on real GPS traces (Winner-II model)

nodes, there is a slight improvement in PDR in PROPOSED-W which is 28.8%

compared to 27.7% of CLWPR-W. With 100 nodes, it is noticed that CLWPR-W

and PROPOSED-W have 24.7% and 24.5% PDR, respectively. Based on these

results, PROPOSED-W improves the PDR up to 75 nodes compared to CLWPR-

W in 500m transmission range as shown in Figure 5.32.

With reference to real GPS traces on Winner-II model, PROPOSED-W and

CLWPR-W both have stable PDR up to 50 nodes which are 100% for 25 nodes

and 99% for 50 nodes. For 75 nodes PROPOSED-W and CLWPR-W have 46.24%

and 46.23% PDR, a steep fall in PDR is observed while comparing with 50 nodes

in the same scenario, it continued till 100 nodes as shown in Figure 5.33.

On comparison with Figures 5.30 to 5.33, it is found that PDR is better with
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Figure. 5.38: AD on simulator generated mobility (Two-ray ground model)
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Figure. 5.39: AD on real GPS traces (Two-ray ground model)

Winner-II model compared to Two-ray ground model with simulator generated

mobility, while with real GPS traces on both the propagation model up to 50

nodes PDR is stable, after that a sharp fall is recorded in PDR. With context

to KF based prediction, it improves the PDR with Winner-II model on simulator

generated mobility, while marginal improvement can be seen with other scenarios

with the higher number of nodes.

5.5.2.2 Throughput

It measures the average number of bits received per second by each node. Fig-

ures 5.34 and 5.35 show the throughput on Two-ray ground model, while Fig-

ures 5.36 and 5.37 show throughput on Winner-II model for simulator generated

traces and real GPS traces, respectively. From Figure 5.34, it is noticed that
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Figure. 5.40: AD on simulator generated mobility (Winner-II model)
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Figure. 5.41: AD on real GPS traces (Winner-II model)

PROPOSED-T have less throughput compared to CLWPR-T in all the scenarios.

With 25 nodes CLWPR-T and PROPOSED-T has 125.68 kbps and 124.39 kbps

throughput, respectively and it decreases to 49.272 kbps and 49.083 kbps for 100

nodes with respect to Two-ray ground model. On the other hand, it remains

constant up to 50 nodes with real GPS traces after that throughput collapses to

31.909 kbps and 31.80 kbps with 75 nodes for CLWPR-T and PROPOSED-T,

respectively, while with 100 nodes it dips to 24.37 kbps and 24.37 in the same

order. On comparison with Figures 5.34 and 5.35, it is found that throughput is

stable with simulator generated mobility compared to real GPS traces.

With reference to simulator generated mobility with Winner-II model,

PROPOSED-W does better compared to CLWPR-W in all the scenario. 92.7943
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kbps and 95.251 kbps are the maximum throughput with 25 nodes for CLWPR-W

and PROPOSED-W, respectively. While 30.79 kbps and 33.16 kbps are the min-

imum throughput with 100 nodes for CLWPR-W and PROPOSED-W. From the

results as shown in Figure 5.36, PROPOSED-W has better throughput compared

to CLWPR-W.

With reference to real GPS traces with Winner-II model, PROPOSED-W and

CLWPR-W both have equal throughput compared to simulator generated mobil-

ity and it has 127.94 kbps maximum throughput with up to 50 nodes, while it

decreases to 27.92 kbps for 100 nodes for CLWPR-W and 27.93 for PROPOSED-

W. In both the cases either on simulator generated traces or real GPS traces,

only former scenario gives more throughput using KF based prediction, while it

remains same with the latter case as shown in Figure 5.37.

On comparison with Figures 5.34 to 5.37, it is found that the PROPOSED-W

has the highest throughput on simulator generated mobility compared to real GPS

traces on Winner-II model using KF based prediction. With real GPS traces on

both the propagation model up to 50 nodes throughput is stable and a sharp fall

in throughput is observed with 75 and 100 nodes. With context to KF based pre-

diction, it improves the throughput with Winner-II model on simulator generated

mobility.

5.5.2.3 AD

Figures 5.38 and 5.39 show the average delay on Two-ray ground model. From

Figure 5.38, CLWPR-T and PROPOSED-T has similar delay of 0.0022 ms with

25 nodes, while PROPOSED-T improves the delay as the number of nodes

increases. With reference to simulator generated mobility PROPOSED-T has

less delay compared to CLWPR-T. 0.0022 ms is the minimum delay in both

the protocol, while 1.15 ms and 1.13 ms are the maximum delay in the dense

network for CLWPR-T and PROPOSED-T, respectively. With reference to

real GPS traces, CLWPR-T and PROPOSED-T has the similar delay up to 50

nodes. Average delay rose to 4.13 ms and 4.08 ms for 75 nodes for CLWPR-T

and PROPOSED-T, respectively, while with 100 nodes it is 4.17 ms and 4.13
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ms in the same order. Overall, location prediction minimizes average delay with

Two-ray ground in all scenarios with simulator generated mobility, while marginal

improvements can be seen with real GPS traces as shown in Figure 5.39.

Figures 5.40 and 5.41 show the delay performance with reference to Winner-II

model, PROPOSED-W has 9.03% less delay compared to CLWPR-W in all the

scenarios. 0.035 ms and 0.038 ms are the minimum observed delay in the sparse

network for CLWPR-W and PROPOSED-W. However, PROPOSED-W has less

delay compared to CLWPR-W in 50, 75 and 100 nodes. The maximum delay

observed is 1.213 ms with CLWPR-W for 100 nodes while it is 1.08 ms with

PROPOSED-W with simulator generated mobility.

The average delay with respect to real GPS traces is common for PROPOSED-

W and CLWPR-W. Overall, in both the propagation model prediction based

routing protocol using KF minimizes the delay by 11.4% on an average in

500m transmission range on simulator generated mobility, while with real GPS

traces, KF based prediction and non KF based prediction routing protocol have

the similar delay. From the results, it is evident that KF based prediction

based position-based routing protocols minimizes the delay compared to other

prediction models.

5.6 SUMMARY

With Respect to Model Based Mobility Traces

In routing high precision in location prediction is not desired as compared to

other application such as automatic parking and cooperative driving our exper-

imental results validated this statement. Based on these observations, it is con-

cluded that the KF and EKF based prediction produce the same routing per-

formance, however, EKF increases the running time to complete the simulation

compared to KF due to involvement of additional computational steps such as

computation of Jacobian. However, with respect to routing performance, it is ob-

served that PROPOSED-500 has fair and consistent PDR compared to CLWPR,

unlike PROPOSED-250. The throughput of the proposed protocol is better with
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PROPOSED-500 in all scenarios, though it is noticed that the PROPOSED-250

shrinks the throughput with Two-ray ground model. Overall, location prediction

enhances the throughput. It is also found that prediction minimizes the AD com-

pared to CLWPR in both the protocol viz. PROPOSED-250 and PROPOSED-

500. On comparison with heterogeneous and homogeneous traffic environments,

it is found that the PDR, throughput and AD are almost similar in both the

environments. Based on these observations, intuitively it is said that traffic en-

vironment does not affect the location prediction. On comparison with city and

highway performance, it is found that the city has stable performance compared

to highway whereas it should be reciprocal, however, vehicle deployment and lo-

cation do affect the routing performance.

Based on the results it is said that the location prediction using KF and EKF in

position-based routing protocol improves PDR, AD and throughput irrespective

of traffic environment and propagation model.

With Respect to Real Time Mobility Traces

Based on our simulation results, it is observed that the prediction based position-

based routing protocol using KF improves the performance. In 500m range, it gives

better PDR, throughput and average delay compared to CLWPR on Winner-II

model using simulator generated mobility compared to real GPS traces. With

respect to Two-ray ground model, it is also noticed that the average delay is

improved compared to CLWPR except PDR and throughput which remains almost

same with simulator generated mobility.

On a comparison between Two-ray and Winner-II model results of the real

GPS traces, it is found that the PDR, throughput and average delay are almost

similar in proposed routing protocol with CLWPR in both the propagation model.

Based on these observations, intuitively it is said that prediction does not improve

routing performance with real GPS traces on NS-3.23 network simulator compared

to CLWPR in the city. However, in this experiment, only GPS traces are taken

from real time while remaining parameters are simulation based.

Overall, based on our simulation results including real GPS traces and simulator
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generated mobility it is evident that the prediction based routing protocol using

KF improves routing performance by minimizing the average delay and enhancing

the PDR and throughput compared to CLWPR with Winner-II model for 500m

transmission range.

From the perspective of real time implementation, inclusion of KF into vehicle

which rely on greedy forwarding can be used as a noise remover from the location.

However, KF marginally increases the routing performance while EKF can be

used where location precision is more important such as automatic parking and

self driving car.
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Chapter 6

Conclusion and Future Work

VANET is emerging as a promising paradigm in road transportation which aims

to curb roadside accidents, fuel consumption and day-to-day traffic choke by giv-

ing a prior alert. VANET characteristics are similar to MANET such as multihop

routing and self configuring node. Thus, many of the routing protocols developed

for MANET are being used in VANET. In spite of the fact that duo have some

common attributes yet MANET and VANET are divergent at some perspective

such as intermittent network, high speed, mobility and power restriction. Thus,

uses of MANET routing protocols in VANET is subject to the constraint. Though

many researchers have evaluated the applicability of the topology based routing

protocols in VANET, nevertheless, at the outset, it is observed that some of the

aspects missed out in previous works. Thus, Chapter 3 re-evaluates the applica-

bility of AODV and OLSR protocols from a different perspective and concludes

the work as follows:

Based on simulation results, it is found that AODV and OLSR routing protocols

do not have stable PDR and throughput with respect to vehicle density and data

generation rate. It is found that the routing overhead and average delay increases

with the vehicle density and decreases when data generation rate increases. It is

also observed that the single crossroad performance is better compared to multiple

crossroad. Hence, it is concluded that the based on single crossroad performance

applicability of MANET routing protocols in VANET can not be decided due

to inappropriate parameters. Additionally, performance with constant speed is

better than variable speed as it does not affect the topology compared to real sce-

narios. Thus, based on obtained results for the entire city road network scenario,

AODV and OLSR protocols are not feasible to be used in VANET as endurance

of the routing protocols with varying vehicle density and data generation rate are
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not satisfactory with VANET characteristics. However, further AODV and OLSR

protocols performance can be evaluated as a future work as follows:

• Both the protocols should be re-evaluated on same parameters as explained

in Chapter 3 by replacing the Two-ray ground propagation model with nak-

agami and Winner-II models.

• Simulation should be carried out only using multiple crossroad scenarios.

However, position-based routing protocols are more appropriate to be used in

VANET as they do not maintain network topology, rather they uses GPS position

as a location id during routing. However, GPS locations also have an error due

to various reasons such as trees, buildings and environmental effect. Thus, due

to this error, vehicle GPS position will be different from the real location. It is

also found that due to error, GPS location will be 05-100m apart from the real

location which certainly effects the performance of the many application used in

VANET such as automatic parking, cooperative driving and routing. Thus, in

this thesis, Chapter 4 proposed a location prediction algorithm based on EKF to

predict the vehicle location by minimizing error in it. To evaluate the efficacy of

the prediction model various set of experiments carried out. Based on their results,

following observations are made with respect to location prediction model:

It is observed that location prediction using EKF for model based traces is

almost equal to the measured location. However, a coordinate system in model

based traces is different from the GPS system. It is also observed in our simulation

results that the performance of the prediction algorithm is better on the highway

compared to the city scenario.

With reference to the real traces, EKF prediction algorithm performs better

on the highway compared to the city. However, it is lower than the model based

traces. Nevertheless, model based traces are unrealistic to be used in real world

scenarios, unlike real traces. In addition, DE is less on the highway with real and

model based traces compared to the city. On comparison of DE between model

and real based traces, it is found that the model based traces showed less error

compared to the real traces. Velocity error is less with reference to model based
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traces on the highway compared to the real traces.

On the basis of DE, RMSE, AEDE and VE results, it is also observed that the

EKF based prediction outperforms the KF based prediction. Hence, it is concluded

that the EKF based prediction should be used in VANET where location precision

is more crucial, compared to KF based prediction. Further, following suggestions

can be taken as future work:

• To use KF and EKF based prediction module in position-based routing

protocol in VANET.

• The performance of EKF should be evaluated with other VANET application

where high precision in location prediction is a prime concern such as self

driving car and automatic car parking.

• The performance of KF and EKF based prediction module should be com-

pared with machine learning approach.

• Mathematical computation of EKF time complexity is another area for fu-

ture exploration.

Based on the recommendations of Chapter 4 a KF and EKF based prediction

modules are devised in Chapter 5 to be used in position-based routing protocol.

Based on the experimental results following observations are made:

In experiments, it is found that the KF and EKF based prediction produce the

same routing performance as in routing protocol location precision is not that much

required how it is needed in other applications as showed in Table 1.1 of Chapter 1.

In addition, EKF takes more time to complete the simulation compared to KF due

to additional computational steps such as computation of Jacobian. However, with

respect to routing performance, it is observed that PROPOSED-500 has fair and

consistent PDR compared to CLWPR, unlike PROPOSED-250. The throughput

of the protocol is better with PROPOSED-500 in all scenarios, though it is noticed

that the PROPOSED-250 shrinks the throughput with Two-ray ground model.

Overall, prediction enhances the throughput. It is also found that prediction
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minimizes the AD compared to CLWPR in both the protocol viz. PROPOSED-

250 and PROPOSED-500. On comparison with heterogeneous and homogeneous

traffic environments, it is found that the PDR, throughput and AD are almost

similar in both the environments. Based on these observations, intuitively it is

said that traffic environment does not affect the prediction. On comparison with

city and highway performance, it is found that the city has stable performance

compared to highway scenario, whereas it should be reciprocal, however, vehicle

deployment and location do affect the routing performance.

Based on the results it is said that the location prediction using KF and EKF in

position-based routing improves PDR, AD and throughput irrespective of traffic

environment and propagation model. This work suggests the following future

work, to evaluate the efficacy of the prediction module.

• The KF and EKF prediction module performance must be evaluated on

real-time GPS traces.

Based on the recommendation of Chapter 5, Section 5.5 evaluates the prediction

based position-based routing performance on real-time GPS traces. Based on sim-

ulation results following conclusions are made.

It is observed that the prediction based position-based routing protocol using

KF improves the performance. In 500m range, it gives better PDR, throughput

and average delay compared to CLWPR on Winner-II model using simulator gen-

erated mobility compared to real GPS traces. With respect to Two-ray ground

model, it is also noticed that the average delay is improved compared to CLWPR

except PDR and throughput which remains almost same with simulator generated

mobility.

On a comparison between Two-ray ground and Winner-II model results of the

real GPS traces, it is found that the PDR, throughput and average delay are al-

most similar in proposed routing protocol with CLWPR in both the propagation

model. Based on these observations, intuitively it is said that prediction does not

improve routing performance with real GPS traces on NS-3.23 network simulator

compared to CLWPR in the city. However, in this experiment, only GPS traces
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are taken from the real time while remaining parameters are simulation based.

Thus, evaluation of the prediction based position-based protocol using KF with

real time environment is seen as a future work.

Overall, based on our simulation results including real GPS traces and simu-

lator generated mobility it is evident that the prediction based routing protocol

using KF improves routing performance by minimizing the average delay and en-

hancing the PDR and throughput compared to CLWPR with Winner-II model for

500m transmission range.
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Appendix I

Location of the Vehicle using Advance Prediction

Time(S) Real-X Real-Y Pre-X Pre-Y DE Diff. in X Diff. in Y

1 220.8783553757 23.000001 222.530073353 23.0004616298 1.6517180415 1.6517179773 0.0004606298

2 225.6608541899 23.000001 228.0744342861 23.0004617038 2.4135801402 2.4135800962 0.0004607038

3 230.5411367521 23.000001 233.6011636966 23.0004617148 3.0600269792 3.0600269445 0.0004607148

4 235.4768525653 23.000001 239.1103325644 23.0004617258 3.6334800283 3.6334799991 0.0004607258

5 240.4428349652 23.000001 244.6019943826 23.0004617367 4.1591594429 4.1591594174 0.0004607367

6 245.4249800027 23.000001 250.0761947821 23.0004617476 4.6512148022 4.6512147794 0.0004607476

7 250.4156494357 23.000001 255.5329946041 23.0004617585 5.1173451891 5.1173451684 0.0004607585

8 255.4107850261 23.000001 260.9724394794 23.0004617694 5.5616544723 5.5616544533 0.0004607694

9 260.4082521826 23.000001 266.3946054596 23.0004617802 5.9863532947 5.986353277 0.0004607802

10 265.4069342494 23.000001 271.7995229651 23.0004617909 6.3925887323 6.3925887157 0.0004607909

11 270.4062486843 23.000001 277.1872832579 23.0004618017 6.7810345893 6.7810345736 0.0004608017

12 275.405891876 23.000001 282.5579167584 23.0004618124 7.1520248973 7.1520248824 0.0004608124

13 280.405706431 23.000001 287.9114843078 23.000461823 7.5057778909 7.5057778768 0.000460823

14 285.4056099274 23.000001 293.2480467474 23.0004618337 7.8424368336 7.84243682 0.0004608337

15 290.4055595242 23.000001 298.5676344977 23.0004618443 8.1620749865 8.1620749735 0.0004608443
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16 295.4055333354 23.000001 303.8703084 23.0004618548 8.4647750771 8.4647750646 0.0004608548

17 300.4055197195 23.000001 309.1561292953 23.0004618654 8.750609588 8.7506095758 0.0004608654

18 305.4055126228 23.000001 314.4251580248 23.0004618759 9.0196454138 9.019645402 0.0004608759

19 310.4055087857 23.000001 319.6774554298 23.0004618863 9.2719466555 9.2719466441 0.0004608863

20 315.4055068113 23.000001 324.9130519309 23.0004618968 9.5075451307 9.5075451196 0.0004608968

21 320.4055057682 23.000001 330.1320083691 23.0004619072 9.7265026118 9.7265026009 0.0004609072

22 325.4055051908 23.000001 335.3343855858 23.0004619175 9.9288804057 9.928880395 0.0004609175

23 330.4055050791 23.000001 340.5202140014 23.0004619279 10.1147089328 10.1147089223 0.0004609279

24 335.4055049673 23.000001 345.6895544572 23.0004619382 10.2840495002 10.2840494899 0.0004609382

25 340.4055048556 23.000001 350.8424677943 23.0004619484 10.4369629489 10.4369629387 0.0004609484

26 345.4055047438 23.000001 355.979014854 23.0004619587 10.5735101203 10.5735101102 0.0004609587

27 350.405504632 23.000001 361.0992260567 23.0004619689 10.6937214346 10.6937214247 0.0004609689

28 355.4055045203 23.000001 366.2031622438 23.000461979 10.7976577334 10.7976577235 0.000460979

29 360.4055044085 23.000001 371.2908842564 23.0004619892 10.8853798576 10.8853798479 0.0004609892

30 365.4055042968 23.000001 376.3624529356 23.0004619993 10.9569486485 10.9569486388 0.0004609993

31 370.405504185 23.000001 381.417898702 23.0004620093 11.0123945266 11.012394517 0.0004610093

32 375.4055040732 23.000001 386.4572823969 23.0004620194 11.0517783333 11.0517783237 0.0004610194

33 380.4055039615 23.000001 391.4806344407 23.0004620294 11.0751304888 11.0751304792 0.0004610294

34 385.4055038497 23.000001 396.4880156748 23.0004620394 11.0825118347 11.0825118251 0.0004610394

35 390.405503738 23.000001 401.4794869403 23.0004620493 11.0739832119 11.0739832023 0.0004610493

36 395.4055036262 23.000001 406.4551090783 23.0004620592 11.0496054617 11.0496054521 0.0004610592

37 400.4055035144 23.000001 411.4149125094 23.0004620691 11.0094090046 11.009408995 0.0004610691

137



38 405.4055034027 23.000001 416.3589580749 23.000462079 10.9534546819 10.9534546722 0.000461079

39 410.4055032909 23.000001 421.2872761953 23.0004620888 10.8817729141 10.8817729044 0.0004610888

40 415.4055031792 23.000001 426.1999277118 23.0004620986 10.7944245425 10.7944245326 0.0004610986

41 420.4055030674 23.000001 431.0969734656 23.0004621083 10.6914704081 10.6914703982 0.0004611083

42 425.4055029557 23.000001 435.9784742978 23.0004621181 10.5729713522 10.5729713421 0.0004611181

43 430.4055028439 23.000001 440.8444606291 23.0004621278 10.4389577954 10.4389577852 0.0004611278

44 435.4055027321 23.000001 445.69496288 23.0004621374 10.2894601582 10.2894601479 0.0004611374

45 440.4055026204 23.000001 450.5300723123 23.0004621471 10.1245697024 10.1245696919 0.0004611471

46 445.4055025086 23.000001 455.349788926 23.0004621567 9.9442864281 9.9442864174 0.0004611567

47 450.4055023969 23.000001 460.1542039829 23.0004621662 9.7487015969 9.748701586 0.0004611662

48 455.4055022851 23.000001 464.9433479036 23.0004621758 9.5378456296 9.5378456185 0.0004611758

49 460.4055021733 23.000001 469.7172815292 23.0004621853 9.3117793673 9.3117793559 0.0004611853

50 465.4055020616 23.000001 474.4760352804 23.0004621948 9.0705332305 9.0705332188 0.0004611948

51 470.4055019498 23.000001 479.2196699982 23.0004622042 8.8141680604 8.8141680484 0.0004612042

52 475.4055018381 23.000001 483.9482161034 23.0004622136 8.5427142778 8.5427142653 0.0004612136

53 480.4055017263 23.000001 488.6617344371 23.000462223 8.2562327237 8.2562327108 0.000461223

54 485.4055016146 23.000001 493.3602858404 23.0004622324 7.9547842392 7.9547842259 0.0004612324

55 490.4055015028 23.000001 498.043900734 23.0004622417 7.6383992451 7.6383992312 0.0004612417

56 495.405501391 23.000001 502.7126399591 23.000462251 7.3071385826 7.3071385681 0.000461251

57 500.4055012793 23.000001 507.3665339362 23.0004622603 6.9610326722 6.9610326569 0.0004612603

58 505.4055011675 23.000001 512.005673927 23.0004622695 6.6001727756 6.6001727595 0.0004612695

59 510.4055010558 23.000001 516.6300295111 23.0004622788 6.2245284724 6.2245284553 0.0004612788
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60 515.405500944 23.000001 521.2396615296 23.0004622879 5.8341606038 5.8341605856 0.0004612879

61 520.4055008322 23.000001 525.8346916648 23.0004622971 5.4291908522 5.4291908326 0.0004612971

62 525.4055007205 23.000001 530.4151199167 23.0004623062 5.0096192175 5.0096191962 0.0004613062

63 530.4055006087 23.000001 534.9809462855 23.0004623153 4.5754457 4.5754456768 0.0004613153

64 535.405500497 23.000001 539.5322924533 23.0004623244 4.1267919821 4.1267919563 0.0004613244

65 540.4055003852 23.000001 544.0691584202 23.0004623334 3.663658064 3.663658035 0.0004613334

66 545.4055002734 23.000001 548.5916050275 23.0004623424 3.1861047875 3.1861047541 0.0004613424

67 550.4055001617 23.000001 553.0996931162 23.0004623514 2.694192994 2.6941929545 0.0004613514

68 555.4055000499 23.000001 557.5934226863 23.0004623604 2.187922685 2.1879226364 0.0004613604

69 560.4054999382 23.000001 562.0729154203 23.0004623693 1.667415546 1.6674154821 0.0004613693

70 565.4054998264 23.000001 566.5381713182 23.0004623782 1.1326715858 1.1326714918 0.0004613782

71 570.4054997147 23.000001 570.9891903798 23.0004623871 0.5836908475 0.5836906651 0.0004613871

72 575.4054996029 23.000001 575.4260942877 23.0004623959 0.0205998526 0.0205946848 0.0004613959

73 580.4054994911 23.000001 579.8488830417 23.0004624047 0.5566166407 0.5566164494 0.0004614047

74 585.4054993794 23.000001 584.2576174831 23.0004624135 1.147881989 1.1478818963 0.0004614135

75 590.4054992676 23.000001 588.6523584531 23.0004624223 1.7531408752 1.7531408145 0.0004614223

76 595.4054991559 23.000001 593.0331059516 23.000462431 2.3723932491 2.3723932043 0.000461431

77 600.4054990441 23.000001 597.3999208199 23.0004624397 3.0055782596 3.0055782242 0.0004614397

78 605.4054989323 23.000001 601.7528638991 23.0004624484 3.6526350624 3.6526350332 0.0004614484
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