
HIGHER ORDER ASYMPTOTICS AND

VISCOSITY METHOD TO BURGERS

SOLUTIONS

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

MANASA M

DEPARTMENT OF MATHEMATICAL & COMPUTATIONAL SCIENCES

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575025

May, 2018



To my family and my teachers



DECLARATION

By the Ph.D. Research Scholar

I hereby declare that the thesis entitled “HIGHER ORDER ASYMP-

TOTICS AND VISCOSITY METHOD TO BURGERS SOLUTIONS”

which is being submitted to the National Institute of Technology Kar-

nataka, Surathkal in partial fulfillment of the requirements for the award of

the degree of Doctor of Philosophy in Department of Mathematical and

Computational Sciences is a bonafide report of the research work car-

ried out by me. The material contained in this thesis has not been submitted

to any University or Institution for the award of any degree.

Place : NITK, Surathkal.

Date :

MANASA M

Reg. No. 155015 MA15P01,

Department of MACS,

NITK, Surathkal.



CERTIFICATE

This is to certify that the thesis entitled “HIGHER ORDER ASYMP-

TOTICS AND VISCOSITY METHOD TO BURGERS SOLUTIONS”

submitted by MANASA M, (Reg. No. 155015 MA15P01) as the record of the

research work carried out by her, is accepted as the thesis submission in partial

fulfillment of the requirements for the award of degree of Doctor of Philosophy.

Dr. Satyanarayana Engu.

Guide

Chairman - DRPC



ACKNOWLEDGEMENT

I would like to take this divine opportunity to express my special appreciation

and thank those people who supported me in making this doctoral dissertation

possible.

First, I would like to thank my thesis advisor Dr. Satyanarayana Engu., for

all his supports and encouragements in completing this thesis.

Its a great pleasure to thank my co-author Dr. Manas R Sahoo, National

Institute of Science Education and Research(NISER) for his fruitful suggestions.

I would like to thank my RPAC members, Dr. Vivek Sinha, Department of

Mathematical and Computational Sciences, and Prof. Ravikiran Kadoli, Depart-

ment of Mechanical Engineering, for going through all my reports and giving

insightful suggestions and valuable comments, which incented me to widen my

research from various perspectives.

I am thankful to Prof. Murulidhar N.N. and Prof. Santhosh George, former

Heads of the Department of Mathematical and Computational Sciences and Dr.

B R Shankar, present Head of the Department of Mathematical and Computa-

tional Sciences, for providing better facilities and developing good infrastructure

for research in the department. My sincere thanks to Dr. P Sam Johnson for his

unfailing support and assistance for getting me a clear picture of analysis. I also

thank all the teaching and non-teaching staff for all their support and help.

A very special gratitude goes out to all down at Department of Atomic En-

ergy(DAE) and National Board of Higher Mathematics(NBHM) Mumbai, India for

its financial support via grant No. 2/48(24)/2014/NBHM (R.P.)/R&D II/1455.

i



I am grateful to my parents, family members and dear friends, who kept on

encouraging me through out my Ph.D. unceasingly and intended me to strive

towards my goal, without which it would not have been possible.

Last but not the least, I would like to thank all my fellow research scholars of

Department of Mathematical and Computational Sciences for making my journey

at NITK fabulous and memorable.

Place: NITK, Surathkal. Manasa M

Date:

ii



ABSTRACT

The viscous Burgers equation ut+uux = νuxx is a nonlinear partial differential

equation, named after the great physicist Johannes Martinus Burgers (1895-1981).

We focused on the study of the large time asymptotic for solutions to the viscous

Burgers equation and also to the adhesion model via heat equation. Using gen-

eralization of the truncated moment problem to a complex measure space, we

construct asymptotic N-wave approximate solution to the heat equation subject

to the initial data whose moments exist up to the order 2n + m and i-th order

moment vanishes, for i = 0, 1, 2 . . .m− 1. We provide a different proof for a the-

orem given by Duoandikoetxea and Zuazua (1992), which plays a crucial role in

error estimations. In addition to this we describe a simple way to construct an

initial data in Schwartz class whose m moments are equal to the m moments of

given initial data.

Secondly, we focus on the Riemann problem for de-coupled system and obtain

the weak solutions explicitly. It is to be noted here that real valued solution for

the system exists in the case of rarefaction wave and the weak solution consist

of δ- measures in the case of raising the speed of characteristics. Eventually, we

consider inviscid Burgers equation with a forcing term, this is in fact the first

equation in the de-coupled system, but with a general initial function u0(x) =

o(|x|), as |x| → ∞. We then pick up an explicit solution from Satyanarayana

et al. (2017) for the parabolic approximation of the hyperbolic partial differential

equation using vanishing viscosity method, we construct weak solutions for the

considered hyperbolic partial differential equation.
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Chapter 1

General Introduction

Differential equations usually describe the change in the behavior of every material

object in the nature with respect to time and space variables. It can be change in

single variable for which one can use the concept of Ordinary Differential Equa-

tion(ODE). Otherwise one can describe the change in the behavior of the object

for several variables through Partial Differential Equation(PDE).

A PDE is an equation involving two or more independent variables, an un-

known function and its partial derivatives with respect to the independent vari-

ables up to certain order.

1.1 Preliminaries

We use the following notations for spaces in the thesis.

1. C(R) denotes the space of all continuous functions f : R→ R.

2. C∞(R) denotes the space of infinitely differentiable functions f : R→ R.

3. Lp(R) for 1 6 p < ∞, denotes the space of all functions f : R → R that

satisfy

‖f‖Lp(R) :=

(∫
R
|f(x)|pdx

) 1
p

<∞.

4. L∞(R) denotes the space of all functions f : R→ R that satisfy

‖f‖L∞(R) := ess sup
x∈R

|f(x)| <∞.
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Definition 1.1.1. (Evans (1998)). Big-oh notation: We write f = O(g) as

x→ x0, provided that there exists a constant C such that

|f(x)| 6 C|g(x)|,

for all x sufficiently close to x0.

Definition 1.1.2. (Evans (1998)). Little-oh notation: We write f = o(g) as

x→ x0, provided

lim
x→x0

|f(x)|
|g(x)|

= 0.

Definition 1.1.3. (Kesavan (1989)). Support of a function: Let φ be a real

(or complex) valued continuous function defined on an open set in Rn. The support

of φ, written as supp(φ), is defined as the closure of the set on which φ is non-zero.

Definition 1.1.4. (Kesavan (1989)). Test functions: The set of all infinitely

differentiable functions defined on Rn with compact support is called test functions.

Definition 1.1.5. Weak Solution: (Stavroulakis and Tersian (2004)). Assume

that u0(x) ∈ L1
loc(R). A function u(x, t) ∈ L2

loc(R× [0,∞)) is a weak solution of

ut + uux = 0, x ∈ R, t > 0, (1.1.1)

u(x, 0) = u0(x), x ∈ R (1.1.2)

if and only if∫ ∞
0

∫ ∞
−∞

(
uρt +

u2

2
ρx

)
dxdt+

∫ ∞
−∞

u0(x)ρ(x, 0)dx = 0, (1.1.3)

for every test function ρ ∈ C∞c (R× [0,∞)).

Definition 1.1.6. (Evans (1998)). Minkowski’s Inequality:

Assume 1 ≤ p ≤ ∞ and u, v ∈ Lp(U), U is open in Rn. Then

‖ u+ v ‖Lp(U)≤‖ u ‖Lp(U) + ‖ v ‖Lp(U) .

Definition 1.1.7. (Kesavan, 1989). The Schwartz Space, S: The Schwartz

Space, or the space of rapidly decreasing functions, S, is given by

S = {f ∈ C∞(Rn)/ lim
|x|→∞

|xβDαf(x)| = 0, for all multi-indicies α and β}.
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Definition 1.1.8 ( Kim (2011)). Let a doubly indexed complex sequence αij ∈ C

satisfy αij = αji. Then the full K-moment problem related to a set K ⊂ C and

the sequence {αij} is to find a positive Borel measure µ that is supported on K

and satisfies

αij =

∫
zizjdµ, i, j ≥ 0. (1.1.4)

Depending on the choices of K, the problem is called with the names Stieltjes

(K = R+), Hamburger (K = R), Hausdorff (K = [a, b]), and Toeplitz (K = T)(see

Akhiezer (1965), Atzmon (1975)). If K ⊂ R, then αij =
∫
xi+jdµ = αji. Therefore

the doubly indexed sequence αij is actually a singly indexed one with real values

and we write

αk =
∫
xkdµ, k ≥ 0.

Definition 1.1.9. ( Kim (2011)). The truncated K-moment problem related to a

set K ⊂ R and a sequence {αk} is to find a positive Borel measure µ such that

αk =

∫
xkdµ, 0 ≤ k < n, (1.1.5)

and

supp(µ) ⊆ K.

Usually, a measure in an atomic representation dµ =
n∑
i=1

ρiδ(x−ci)dx is considered,

where δci(x) = δ(x − ci) is the Dirac measure centered at ci. Therefore, the

truncated moment problem in (1.1.5) is to find 2n unknowns ρi ≥ 0 and ci ∈ R

that satisfy

αk =
n∑
i=1

ρic
k
i , 0 ≤ k < 2n, (1.1.6)

provided supp(µ) ⊂ R.

We start our discussion with the heat equation.

Heat Equation

As we know, one of the application of the heat equation is to study the heat

conduction. In this case, the heat equation provides an information about tem-

perature at a given location in a metal bar as time changes. To determine the

3



temperature in the bar at any given time, we need to solve the heat equation

subject to the initial and boundary conditions.

The one dimensional heat equation is given by

ut = kuxx, (1.1.7)

where k is the thermal conductivity. Then the function

u(x, t) =
1√

4πkt
e
−x2
4kt

is called the fundamental solution of the heat equation and is known as heat kernel.

We consider the initial value problem for heat equation on the whole real line

as following: ut = kuxx, x ∈ R, t > 0,

u(x, 0) = φ(x), x ∈ R.
(1.1.8)

Then for φ(x) ∈ L1(R) or φ ∈ C(R) ∩ L∞(R),

u(x, t) =

∫
R

φ(y)√
4πkt

e
−(x−y)2

4kt dy (1.1.9)

is the solution for (1.1.8) such that

lim
(x,t)→(x0,0)

u(x, t) = φ(x0).

One can observe that, the heat equation is a second order linear parabolic partial

differential equation. The solution (1.1.9) is the convolution of initial data with

the heat kernel.

Our main work in the thesis is on the study of Burgers solutions via heat

equation. Hereby we begin discussing about the Burgers equation.

1.1.1 Burgers Equation

Burgers equation is a second order non-linear parabolic partial differential equa-

tion, which is of the form

ut + uux = εuxx, x ∈ R, t > 0, (1.1.10)
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where ε is a coefficient of viscosity and u = u(x, t) is the velocity of fluid. This

equation consists of both non-linearity convection and diffusion terms. It is one of

the PDE occurring in various field of applied mathematics such as fluid mechanics,

traffic flow etc.

This equation was first discussed by Bateman (1915), due to extensive work

of Burgers (1948), it is known as Burgers equation. Later, this equation has

got much attention and studied by Hopf (1950), Cole (1951) and many others

beginning from 1948.

If ε = 0, then (1.1.10) becomes

ut + uux = 0, x ∈ R, t > 0. (1.1.11)

The equation (1.1.11) is called a inviscid Burgers equation and it is a hyperbolic

partial differential equation. As an application, the Burgers equation (1.1.10) can

be derived from Navier Strokes equations.

Navier Strokes Equations

Navier Strokes equations describes the motion of viscous fluid and the solution to

these equations gives the flow velocity.

Consider the Navier Strokes equations for incompressible flow5 · v = 0,

(ρv)t +5 · (ρvv) +5p− µ52 v = 0,
(1.1.12)

where ρ is the density of the fluid, p is the pressure, v is the velocity of the fluid

and µ is the viscosity of the fluid.

Simplification of second equation in (1.1.12) with respect to x component, we get

ρ
∂vx

∂t
+ ρvx

∂vx

∂x
+ ρvy

∂vx

∂y
+ ρvz

∂vx

∂z
+
∂p

∂x
− µ

(
∂2vx

∂x2
+
∂2vx

∂y2
+
∂2vx

∂z2

)
= 0.

If we take one dimensional problem with zero pressure gradient, then the above

equation is reduced to

ρ
∂vx

∂t
+ ρvx

∂vx

∂x
− µ∂

2vx

∂x2
= 0.
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Let us take vx = u and kinematic viscosity ε = µ
ρ
. Then we get the viscid Burgers

equation

ut + uux = εuxx.

1.1.2 Solution to viscous Burgers equation

Consider the initial value problem for viscous Burgers equation.ut + uux = εuxx, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.
(1.1.13)

Hopf (1950) and Cole (1951) considered a method to solve the above initial value

problem by introducing a transformation, later known as Cole-Hopf transforma-

tion by reducing (1.1.13) to a linear problem. This transformation is given by

φ(x, t) = exp

{
− 1

2ε

∫ x

−∞
u(y, t)dy

}
.

Note that, the lower limit for the integral above can be any real number also. In

fact, Hopf (1950) studied with lower limit zero.

Then the initial value problem (1.1.13) was reduced toφt = εφxx, x ∈ R, t > 0,

φ(x, 0) =: φ0(x) = exp{− 1
2ε

∫ x
−∞ u0(y)dy}, x ∈ R.

(1.1.14)

The solution to the above initial value problem is given by

u(x, t) =

∫
R

φ0(y)√
4πεt

e
−(x−y)2

4εt dy.

From this Hopf (1950) derived an explicit solution for the initial value problem

(1.1.13), which is given by

u(x, t) = −2ε
φx
φ

= −2ε

∫∞
−∞

x−y
t

exp{− (x−y)2
4εt
}φ0(y)dy∫∞

−∞ exp{− (x−y)2
4εt
}φ0(y)dy

.

Though the explicit solution exists, it is very difficult to evaluate both the integrals

in the numerator and denominator for many of the initial data. This is the main
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motivation to study the behavior of Burgers solution via asymptotic analysis. This

difficulty may be resolved by finding a simple approximate solution or one has to

try evaluating the integrals using numerical methods.

Initially, Hopf (1950) studied the behavior of the solution of Burgers equation

to obtain the higher order asymptotic in the following cases.

� The behavior of the solution as t→∞ while keeping viscosity constant.

� The behavior of the solution as ε→ 0 while x and t are fixed.

The following consists of brief review of work done for the higher order asymptotic

for Burgers solutions.

Duoandikoetxea and Zuazua (1992) has taken

ψ2n(x, t) =
2n−1∑
i=0

(−1)iγi

i!
√

4πt
∂ix(e

−x2
4t )

as an approximate solution to the heat equation and they obtained ψ2n approaches

to the solution u of heat equation with a convergence order O
(
t(

1
2p
− 2n+1

2
)
)

as t→

∞. Yanagisawa (2007) constructed an approximate solution to Viscous Burgers

equation, which is of the form

χk(x, t) = −2
φk(x, t)

1 +
∫ x
−∞ φ

k(y, t)dy

where

φk(x, t) =
k−1∑
j=1

(−1)j
Mj(H[u0]

′
)

j!

( ∂
∂x

)j
Gt(x)+(−1)k

Mk(H[u0]
′
)

k!

( ∂
∂x

)k
G(t+(tk)+)(x−γk)

is the solution for heat equation, Mj(H[u0]
′
) is the jth moment of H[u0]

′
, j ≥ 0,

(tk)+ is the time shift, γk is the space shift and Gt(x) is the one dimensional heat

kernel. He estimated that the approximation differs from the true solution by an

error whose Lp- norm is of order O(t−(
4+k
2

)+ 1
2p ) as t → ∞, by assuming that the

initial data satisfies (1 + |x|k+3+ε) ∈ L1(R), where 1 ≤ p ≤ ∞.

Kim and Ni (2009) considered an initial value problem for heat equationut − uxx = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

7



They studied the large time behavior of the solution of the heat equation using

the moments of the solution by imposing conditions on initial data. They assumed

that

x2nu0 ∈ L1(R) and u0 is bounded,

which shows that the moments of the initial data exist and is given by

γk =

∫
R
xku0(x)dx for k = 0, 1, ...., 2n− 1.

Kim and Ni (2009) has taken a linear combination of n heat kernels

φn(x, t) =
n∑
i=1

ρi√
4πt

e−(x−ci)
2/4t.

as an approximate solution for heat equation, where these ρi’s and ci’s are chosen

in such a way that, the moments

γk = lim
t→0

∫
R
xkφn(x, t)dx,

agree with those of true solution of heat equation. The above relation turns out

to a truncated moment problem and the problem has a unique solution if u0(x)

is a non-negative function (Curto and Fialkow, 1991). Hence, there exists unique

ρi’s and ci’s which gives the positive approximate solution. Thus, the constructed

solution converges to the exact solution in the order t−(
2n+1

2
)+ 1

2p as t→∞.

Further, Kim (2011) removed the condition of non-negative initial data and

generalized the truncated moment problem in Kim and Ni (2009) to a complex

measure space. He considered a complex sequence which is of the form,

mk := αk + iβk, 0 ≤ k ≤ 2n− 1, where βk =
∫
xkq0(x)dx.

Now the truncated moment problem related to this complex sequence is to find a

complex measure µ such that

mk :=
∫
zkdµ, supp(µ) ⊆ C, 0 ≤ k ≤ 2n− 1,

i.e, it is reduced to find complex solutions ρi’s and ci’s that satisfy,

n∑
i=1

ρic
k
i = mk (1.1.15)

8



and he proved that there exists ρi, ci ∈ C such that (1.1.15) is satisfied. Thus, for

any sequence αk ∈ R, there exist ρi’s and ci’s such that

αk = Re

( n∑
i=1

ρic
k
i

)
, ρi, ci ∈ C, 0 ≤ k < 2n.

Thus the approximate solution is

φn(x, t) = Re

( n∑
i=1

ρi√
4πt

e−(x−ci)
2/4t

)
,

where ρi, ci ∈ C.

Now we introduce briefly the works related to N -wave initial data, a special case

of zero mass initial data.

It is seen that (Sachdev, 1987), the N -waves move out from a planar source in

the form

u(x, ti) =

x, |x| < 1,

0, otherwise.
(1.1.16)

To find the evolution of (1.1.16) under the planar Burgers equation, we consider

the following solution of heat equation:

φ(x, t) = 1 +

√(
t0
t

)
exp

{
− x2

2δt

}
, (1.1.17)

where t0 is a constant. Using Cole-Hopf transformation, u = −δφx
φ

, we obtain

u(x, t) =
x

t
[
1 +

√
t0
t
e−

x2

2δt

] . (1.1.18)

Now define the Reynolds number as follows:

R =
1

δ

∫ ∞
0

u(x, t)dx

= log[φ(0, t)]

= log

[
1 +

√
t0
t

]
. (1.1.19)

Hence, (1.1.18) can be expressed as

u(x, t) =
x

t[1 + 1
eR−1e

− x2

2δt ]
. (1.1.20)

It is to be noted that the above N -wave solution is not self-similar, unlike single

hump solutions for viscous Burgers equation.
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Sachdev and Joseph (1994) showed that the true solution of

ut + uux =
δ

2
uxx (1.1.21)

with

u(x, 0) =

x, |x| < l0,

0, otherwise,
(1.1.22)

can be expressed as

u(x, t) =
x

t[1 +
√
t

C0
e
x2

2δt ]
+O

(
1

t

)
, (1.1.23)

where

C0 =
2

π
e
l20
2δ

∫ l20√
2δ

0

e−ξ
2

dξ −
√

2

πδ
l0.

It is well known that most of the generalizations of Burgers equation can’t be

linearized by Hopf like transformation.

Let us now consider the following generalized Burgers equations, namely, non

planar Burgers equation

ut + uux +
ju

2t
=
δ

2
uxx, for j ≥ 0. (1.1.24)

While studying the propagation of weakly non-linear longitudinal waves in liquids,

the nonplanar Burgers equation (1.1.24) was obtained by Lighthill (1956) and

Leibovich and Seebass (1974). Here j = 1 corresponds to the case when the

source is cylindrical symmetric and j = 2 for the case when the source is spherical

symmetric.

Sachdev et al. (1999) considered (1.1.24) subject to

u(x, ti) =

(1−j
2

) x
ti

if x < d0,

0 otherwise.
(1.1.25)

Here d0 is the length of one lobe of the initial profile (1.1.25). They introduced

the similarity variables

t, η = xta, u = tcv(η, t)

10



and reduced (1.1.24) to(
c+ j

2

)
v + aηvη + tvt =

δ

2
t(2a+1)vηη − ta+c+1vvη. (1.1.26)

The above equations play an important role in analyzing the solutions in the

following three regions.

� Convection dominated region.

� Diffusion dominated region.

� Convection-diffusion balanced region

Sachdev et al. (1999) first considered the convection dominated region [that is

a = −1, c = 0] and obtained the following old-age solution:

u(x, t) =

(
1− j

2

)
x

t
+O(1), j 6= 2 as t→∞.

In fact this behavior of the solution agrees with that of the work done by Crighton

and Scott (1979). They then considered the diffusion dominated region, i.e. the

case when

a = −1

2
and c < −1

2
.

Motivated by the old-age solution

u(x, t) = c1
x

t(3+j)/2
e−

x2

2δt

of (1.1.24), they took

c = −1 + j

2
.

This, in turns, changes (1.1.26) to

− v − η

2
vη + tvt =

δ

2
vηη − t−(j+1)/2vvη. (1.1.27)

Assuming

v(η, t) = v0(η) + o(1) as t→∞,

they obtained the old-age behavior as

v0(η) = Aηe−η
2/2δ. (1.1.28)

11



It is to be noted that they happen to depend on numerical scheme to find the

old-age constant A in (1.1.28).

To incorporate the behavior of solution at far in back time from old-age be-

havior, they assumed the following form for v:

v = v0(η) + ε(η, t) as t→∞. (1.1.29)

Substituting (1.1.29) into (1.1.27) leads to a PDE. To reduce the resulting PDE

to ODE, they took

ε(η, t) = t−(j+1)/2f(η) as t→∞. (1.1.30)

With the help of confluent hyper-geometric equation, the variation of parameters

and the antisymmetricity of the solution u, they arrived at

u(x, t) = t−(1+j/2)

[ Ax exp

(
− x2

2δt

)
t1/2 + t−(j+1)/2f( x

t1/2
) +O(t−(j+1))

]
. (1.1.31)

It was then showed that the constructed solution agrees with the N -wave solution

of viscous Burgers equation up to the error of order O(t−5/2) when j = 0. They

then obtained an asymptotic expression for Reynolds number . Finally they an-

alyzed the N -wave solution for generalized Burgers equation (1.1.24) under the

assumption that

j =
m

n
, 0 < j < 2

with m and n are positive integers with no common factors.

Sachdev and Srinivasa Rao (2000) constructed N -wave solutions for the fol-

lowing generalized Burgers equation

ut + unux =
δ

2
uxx (1.1.32)

with

u(x, 0) =

−x, |x| ≤ 1

0, |x| > 1.
(1.1.33)
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It is known that

u(x, t) = c
x

t3/2
e−x

2/2δt (1.1.34)

is the antisymmetric profile satisfying the equation (1.1.32) in the diffusion dom-

inated region. However, numerical study of (1.1.32)-(1.1.33) suggests that the

node will be shifting from y-axis when (1.1.33) evolves under generalized Burgers

equation (1.1.32). It suggested to assume the old-age solution for (1.1.32)-(1.1.33)

as follows:

u(x, t) = c
(x− x0)
t3/2

e−
(x−x0)

2

2δt .

They introduced the similarity variables

ξ =
(x− x0)√

2δt
, τ = t1/2, u =

(2δ)1/2ξ

v1/n
. (1.1.35)

Using these variables, (1.1.32) leads to

2nvvξ + ξ[nvvξ − 2n2v2 − 2nτvvτ ] + 2nξ2vvξ + 4n2(2δ)(n−1)/2τξnv

−4n(2δ)(n−1)/2τξn+1vξ − (n+ 1)ξv2ξ = 0. (1.1.36)

Inspired by the exact N -wave solution for viscous Burgers equation, they sought

the solution in the following form:

u =

√
2δξ

v1/n

with

v =
∞∑
i=0

fi(τ)
ξi

i!
.

Substituting the above expression of v into (1.1.36), they found that

f1(τ) = 0,

f3(τ) = −4
√

2δτ, n = 2,

= 0, n > 2.

They then sought the expression f0,f2 and f4 in the following form:

f0(τ) = τ 2n
p∑

k=0

akτ
−k, f2(τ) = τ 2n

p∑
k=0

bkτ
−k, f4(τ) = τ 2n

p∑
k=0

ckτ
−k. (1.1.37)
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Though passing the limit p → ∞ in (1.1.37) would give better approximation, it

was only possible explicitly to evaluate f0,f2 and f4 for the cases p = 2, 3, 4.

They defined the Reynolds number for the N -wave solution of (1.1.32) to be

R(t) =
1

δ

∫ x0

−∞
u(x, t)dx,

then

R(t) =


R(t0) + 1

c2
log
[
c1+c2/t1/2

c1+c2/t
1/2
0

]
, n = p,

R(t0) + 1
c2

n
n−p(h(t)− h(t0)), n 6= p,

(1.1.38)

where

h(s) =

(
c1 +

c2
s1/2

)(n−p)/n

. (1.1.39)

They finally compared Reynolds number (1.1.38)-(1.1.39) obtained by improving

the old-age solution with the Reynolds numbers obtained via numerical scheme

for some specific cases and found very good agreement.

Enflo and Rudenko (1994) studied N -wave solutions for a Generalized Burgers

equation

ut + uux =
ε√
2t
uxx (1.1.40)

subject to the N -wave initial condition

u(x, t) =

x, if |x| < 1,

0, otherwise.
(1.1.41)

In the case as ε→ 0, they obtained the behavior of the outer solution of (1.1.40)-

(1.1.41) as follows:

u(x, t) =


x

t
+O(εn), if |x| <

√
t,

0, otherwise.
(1.1.42)

Srinivasa Rao and Satyanarayana (2008), first, constructed large time N -wave

solution, namely,

u(x, t) = t−(1+
j
2
)

[
Aξe−

ξ2

2δ + t−(
j+1
2

)e−ξ
2/δ

×

(
− A2ξ +

A2j

6δ
ξ3 + A2 (8j − j2)

120δ2
ξ5 + . . .

)
+ . . .

]
(1.1.43)

14



for the nonplanar Burgers equation

ut + uux +
ju

2t
=
δ

2
uxx, j ≥ 0, δ ≥ 0. (1.1.44)

For which, they assumed that the leading order behavior of solution is

u(x, t) = c1t
−(3+j)/2e−

x2

2δt . (1.1.45)

Then they incorporated the effect of non-linear term by adding a correction term

ε(ξ, t) to old-age solution.

Inspired by the form of (1.1.43), they arrived at

u(x, t) = t−(1+
j
2
)

[
Aξe−

ξ2

2δ + t−ke−
ξ2

δ

(
− A2ξ +

A2j

6δ
ξ3 + A2 (8j − j2)

120δ2
ξ5 + . . .+ A2n+3ξ

2n+3 + . . .

)

+ t−2ke−
3ξ2

2δ

(
A2ξ − A3j

3δ
ξ3 +

A3j(j − 5)

30δ2
ξ5 + . . .+ C2n+1ξ

2n+1 + ...

)
+ . . .

]
(1.1.46)

with the help of N -wave solution of viscous Burgers equation. It is to be noticed

that the old-age constant A in (1.1.46) was found from numerical solution. Then

they picked up approximate N -wave solutions from Parker (1981) for (1.1.44)

subject to two different zero mass initial datas:

1. u(x, t0) = xe−x
2

2. u(x, t0) = x3e−x
2

and found the agreement of these approximate solutions with that of (1.1.46) for

large t. They noticed that Sachdev et al. (1999)’s N wave solution depends on

only one unknown function f0 in the following form :

u(x, t) =

√
2δζ

V (η, T )
,

V (η, T ) =
∞∑
i=0

fi(T )
ηi

i!
.

That is once f0 is found, remaining all fi, i ≥ 1 are found. This f0 was found by

Srinivasa Rao and Satyanarayana (2008) from (1.1.46) via the relation

ux(0, t) =
1√

tf0(
√
t)
.
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They found a drawback of N -wave solution in Sachdev et al. (1999)’s work that

it is not possible to truncate the series in the denominator as every term is of the

order O(t
2+j
2 ). To rectify this , they proposed N -wave solution in the following

form

u(x, t) =

√
2δζ

V (η, T )
,

V (η, T ) = T 2+jU(η, T ),

U(η, T ) = g0(η) + T−k1g1(η) + T−2k1g2(η) + . . .,

where k1 = j + 1. This, eventually, led to closed form like solution which is

convenient for computational techniques.

1.2 Organization of the thesis

This thesis is organized as follows:

Chapter 2 deals with the study of large time asymptotic of solutions to the

viscous Burgers equation and adhesion model subject to a class of zero mass

initial data. This is done by transforming the Burgers equation to heat equation

using Cole-Hopf transformation. Initially, we transform Burgers equation to heat

equation via Cole-Hopf transformation and construct an N -wave approximation

using truncated moment problem. Then we obtain the error estimates between

the exact and approximate solutions of heat equation as well as Burgers equation.

This chapter ends with a proposition which helps us to construct an initial data

in Schwartz class whose m moments matches with the moments of given initial

data.

In Chapter 3, we consider a Riemann problem for a de-coupled system and

obtain an explicit solutions. Later, we consider a forced Burgers equation with

the forcing term k
(2βt+1)3/2

, β > 0 and k is a non-zero constant, subject to the initial

condition u0(x) = o(|x|) as |x| → ∞. From Satyanarayana et al. (2017), we find

the exact solution to the forced Burgers equation. Further we will prove that

the obtained solution of forced Burgers equation will approach to the generalized

16



solution of ut + uux = k
(2βt+1)3/2

as viscosity tends to zero. Finally, Chapter 4 sets

forth the conclusions of the thesis and future work.
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Chapter 2

Higher order asymptotic for

Burgers equation and Adhesion

model

2.1 Introduction

The aim of this chapter is to study higher order asymptotic of Burgers equation,

ut + uux = µuxx, x ∈ R, t > 0 (2.1.1)

with initial datum

u(x, 0) = u0(x), x ∈ R (2.1.2)

and de-coupled system

ut + uux = µuxx, x ∈ R, t > 0,

ρt + (uρ)x = µρxx, x ∈ R, t > 0
(2.1.3)

with initial data

(u(x, 0), ρ(x, 0)) = (u0(x), ρ0(x)), x ∈ R,

where µ is the viscosity coefficient. Burgers equation (2.1.1) was introduced

as the simplest model for the differential equations of fluid flow (Hopf, 1950).

The de-coupled system (2.1.3) is the one dimensional adhesion model for large
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scale structure formation of universe, see, Gurbatov and Saichev (1993). For

more literature on this decoupled equation we cite Joseph (2010); Sahoo (2015);

Oberguggenberger (1992) and references therein.

Cole-Hopf transformation gives the explicit solution of (2.1.1)- (2.1.2) as

u(x, t) = −2µ
v(x, t)

1 +
∫ x
−∞ v(y, t)dy

. (2.1.4)

Here v(x, t) has the integral representation

v(x, t) =
1√

4πµt

∫ ∞
−∞

v0(y)e
−(x−y)2

4µt dy (2.1.5)

satisfying the heat equation

vt =µvxx, x ∈ R, t > 0, (2.1.6)

v(x, 0) =− 1

2
u0(x) exp

(
−1

2

∫ x

−∞
u0(s)ds

)
=: v0(x), x ∈ R. (2.1.7)

Though the solution (2.1.5) in the explicit form is available (Hopf, 1950) for

(2.1.6)-(2.1.7), it is a tedious work to evaluate the integral exactly in right hand

side of (2.1.5) for several initial functions v0. Then one can imagine the difficulty

in evaluating the integral exactly in the denominator of right hand side of (2.1.4).

So, one may resort to evaluate the integrals numerically. As an alternative (Chern

and Liu, 1987; Jaywan et al., 2010; Miller and Bernoff, 2003; Witelski and Bernoff,

1998; Yanagisawa, 2007), we go for finding an approximate solution in a simpler

form which has fine asymptotic order similar to the solution.

By scaling time and space variables, we can reduce (2.1.1) and (2.1.3) to

ut + uux = uxx, x ∈ R, t > 0 (2.1.8)

and

ut + uux = uxx, x ∈ R, t > 0, (2.1.9)

ρt + (uρ)x = ρxx, x ∈ R, t > 0. (2.1.10)

Therefore, without loss of generality, one can consider (2.1.8) with the initial

condition

u(x, 0) = u0(x), x ∈ R (2.1.11)
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and the de-coupled system (2.1.9)-(2.1.10) with initial condition

(u(x, 0), ρ(x, 0)) = (u0(x), ρ0(x)), x ∈ R. (2.1.12)

We first study the large time behavior of solutions to the Cauchy problem (2.1.8)

and (2.1.11) by imposing conditions on the initial function u0 that u0, x
2n+1u0 ∈

L1(R) and
∫∞
−∞ u0(x)dx = 0. Set M :=

∫∞
−∞ u0(x)dx. If M is a non zero real

number, the solution of (2.1.8) and (2.1.11) approaches Gaussian form as t→∞,

which is a solution of (2.1.8) with the initial profile Mδ0(x). Here δ0 is the Dirac

measure giving unit mass to the point 0. In case of zero mass initial profiles

i.e., M = 0, the solution of (2.1.8) and (2.1.11) approaches to N-wave solutions

(see Whitham (1974)) of (2.1.8) for sufficiently large t. For which, we construct

asymptotic N-wave approximate solution to the concerned heat equation using

generalization of truncated moment problem. This approximation is made as

a spatial derivative of linear combination of n heat kernels. We also provide a

different proof from the existing one that the constructed solution differs from the

true solution by an error of order O(t−(m+1)+ 1
2p ) in Lp-norm, where 1 ≤ p ≤ ∞,

if m moments of initial data vanish and m-th order moment exists. This result is

used to get higher order asymptotic for Burgers equation.

We then generalize the above results to heat equation having initial data whose

i-th order moment vanishes, for i = 0, 1, 2 . . .m− 1. This approximation is made

as a m-th order spatial derivative of linear combination of n heat kernels. Further,

using a generalized Hopf-Cole transformation, we provide higher order asymptotics

for the adhesion model (2.1.9)-(2.1.10) by imposing conditions on the concerned

initial data. In addition to this we describe a simple way to construct an initial

data in Schwartz class whose m moments are equal to those of given initial data.

This in turn gives an error estimate of order O(t−(
1+m

2
)+ 1

2p ) in Lp-norm for heat

solutions if m-th order moment exists.

We now describe three remarks of our N-wave approximation over the Gaussian

approximation [Jaywan et al. (2010); Kim (2011)].

1. The 2n-th moment of N-wave approximation for the heat solution matches

with the 2n-th moment of true solution (see Remark 2.2.2).
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2. The N-wave approximation for the Burgers solution consists of a simpler form

without any integrals to be evaluated (see equation (2.1.14) and Remark

2.3.1).

3. The rate of convergence is higher when compared to Jaywan et al. (2010);

Kim (2011) (see Remark 2.3.1).

The main results are stated herewith:

Theorem 2.1.1. Let u(x, t) be a solution to the Burgers equation (2.1.8) subject

to (2.1.11) with the zero mass initial data u0(x) satisfying u0, x
2n+1u0 ∈ L1(R).

Then, for any t0 > 0, there exist bi, ci ∈ C and T > 0 such that

||u(., t)− un(., t)||p = O(t−(n+1)+1/2p), t→∞, (2.1.13)

where 1 ≤ p ≤ ∞ and

un(x, t) := −2

Re

(
n∑
i=1

bi√
4π(t+ t0)

∂x

(
e
− (x−ci)

2

4(t+t0)

))

1 + Re

(
n∑
i=1

bi√
4π(t+ t0)

e
− (x−ci)

2

4(t+t0)

) (2.1.14)

is well defined for t ≥ T.

Theorem 2.1.2. Let u(x, t), ρ(x, t) be solutions to the de-coupled system (2.1.9)-

(2.1.10) with the initial condition (2.1.12) satisfying the following conditions:

V0, x
2n+mV0, C0, x

2n+mC0 ∈ L1(R),∫ ∞
−∞

xkV0(x)dx =

∫ ∞
−∞

xkC0(x)dx = 0, 0 ≤ k < m

with

C0(x) =− 1

2

∫ x

−∞
ρ0(s)ds exp

(
−1

2

∫ x

−∞
u0(s)ds

)
, (2.1.15)

V0(x) = exp
(
− 1

2

∫ x

−∞
u0(y)dy − 1

)
. (2.1.16)

Then, there exist bi, ci, b̃i, c̃i ∈ C and T > 0 such that

‖ u(., t)− un(., t) ‖p=O(t−
2n+1+m

2
+ 1

2p ), t→∞, (2.1.17)

‖ ρ(., t)− ρn(., t) ‖p=O(t−
2n+2+m

2
+ 1

2p ), t→∞, (2.1.18)
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where un(x, t) is given by (2.1.14) and

ρn(x, t) :=

[
1 +

∫ x
−∞ vn(y, t)dy

]
∂xCn(x, t)− vn(x, t)Cn(x, t)[

1 +
∫ x
−∞ vn(y, t)dy

]2
is well defined for t ≥ T with

Cn(x, t) = Re

(
n∑
i=1

b̃i√
4πt

∂mx

(
e−

(x−c̃i)
2

4t

))
. (2.1.19)

Proposition 2.1.3. If n+ 1 moments, namely,∫ ∞
−∞

xjf(x)dx = cj, j = 0, 1, 2, . . . n. (2.1.20)

exist for a given function f , then there exists a Schwartz class function g such that

the moments of g agree with that of f . Further if xn+1f ∈ L1(R), the solution

of heat equation with initial profile f − g is of order O(t−
n+2
2

+ 1
2p ) as t → ∞ in

Lp-norm, 1 ≤ p ≤ ∞.

Miller and Bernoff (2003) investigated the asymptotic self-similar behavior of

solutions to (2.1.1) with non negative initial data. They estimated that their

asymptotic self-similar approximation differs from the true solution by an error

whose Lp-norm is of order O(t−2+
1
2p ) as t → ∞, where 1 ≤ p ≤ ∞. For which,

they incorporated total mass, space shift and time shift into the approximate

heat kernel while studying asymptotic behavior of solutions to the concerned heat

equation. Their work is an improvement over the work of Chern and Liu (1987)

by a factor of
1

t
. Duoandikoetxea and Zuazua (1992) considered the linear com-

bination of derivatives of atmost order 2n − 1 to the heat kernel as approximate

solutions for heat equation. They then gave the Lp-norm rates of convergence to

the true solutions of heat equation as of order O(t−
2n+1

2
+ 1

2p ) when t → ∞, where

1 ≤ p ≤ ∞. Motivated by the works of Duoandikoetxea and Zuazua (1992) and

Miller and Bernoff (2003), Yanagisawa (2007) constructed higher order approxi-

mate solutions to the viscous Burgers equation (2.1.8). Kim (2011) successfully

generalized truncated moment problem to a complex measure space and subse-

quently dealt with sign changing initial data to the heat equation. Kim and Ni
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(2009) introduced linear combination of n heat kernels as an approximation to the

solutions of relevant heat equation and showed that the kth order moments of the

true and approximate solutions of (2.1.1) were contracting with an error whose

Lp-norm is of order O((
√
t)k−2n−1+

1
p ) as t→∞. For an interesting study of large

time asymptotics to the solutions of heat equation and Porous media equation in

the context of introducing total mass, space shift and time shift, we refer to the

work of Witelski and Bernoff (1998). For the existence and decay rate of solutions

to generalizations of viscous Burgers equation, we refer to Lu and Jäger (2001)

and the references therein.

The scheme of this chapter is as follows. Section 2.2 deals with the construction

of asymptotic N-wave solution, vn(x, t), to the relevant heat equation and then

brings out error estimates to the solutions of heat equation. Section 2.3 gives

the N-wave asymptotic approximation, un(x, t), to the solution u(x, t) of viscous

Burgers equation (2.1.8). The decay order of u(x, t)−un(x, t) for sufficiently large

t is also derived in the Lp-norm, where 1 ≤ p ≤ ∞. In Section 2.4, we also present

higher order asymptotics to the solutions of adhesion model. In addition to this

we construct a smooth function in Schwartz class whose m moments are equal to

the m moments of any given initial data.

2.2 On the moments and asymptotics of heat so-

lutions

In this section, we reduce the initial value problem (2.1.8) and (2.1.11) to an initial

value problem for heat equation via Cole-Hopf transformation and then study the

asymptotic behavior of solutions to the relevant heat equation by introducing a

suitable approximate solution.

Assume that the initial data u0 is of zero mass, i.e.,
∫∞
−∞ u0(x)dx = 0 and

(1 + x2n)u0 ∈ L1(R). (2.2.21)
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We employ Cole -Hopf transformation

H(u) = exp

(
−1

2

∫ x

−∞
u(s, t)ds

)
− 1 =: V (x, t)

to the initial value problem (2.1.8), (2.1.11) and then obtain

Vt =Vxx, x ∈ R, t > 0, (2.2.22)

V (x, 0) =exp

(
−1

2

∫ x

−∞
u0(s)ds

)
− 1, x ∈ R. (2.2.23)

In general, the initial data (2.2.23) is not summable on R and as we deal with

moments of initial data, we consider space derivative of V (x, t);

∂xV (x, t) = −1

2
u(x, t) exp

(
−1

2

∫ x

−∞
u(s, t)ds

)
=: v(x, t).

Thus, the Cauchy problem (2.2.22)-(2.2.23) leads to

vt =vxx, x ∈ R, t > 0 (2.2.24)

v(x, 0) =− 1

2
u0(x) exp

(
−1

2

∫ x

−∞
u0(s)ds

)
=: v0(x), x ∈ R. (2.2.25)

It can be seen that v0 is of zero mass if and only if u0 is of zero mass. We

define the k -th order moment of the function v(x, t) as

αk(t) :=

∫ ∞
−∞

xkv(x, t)dx, k = 0, 1, 2, . . . .

For t = 0, the above moments are well defined in view of the condition (2.2.21)

imposed on u0. It is known that the initial mass α0(t) and the center of mass α1(t)

are conserved for all t ≥ 0. However, it is not true for the moments of order two

or higher. The moments of the solution to (2.2.24)-(2.2.25) satisfy the following

algebraic relations Kim (2011) for any time t ≥ 0:

α2k(t) =
k∑
l=0

(2k)!

(k − l)!(2l)!
tk−lα2l(0), (2.2.26)

α2k+1(t) =
k∑
l=0

(2k + 1)!

(k − l)!(2l + 1)!
tk−lα2l+1(0). (2.2.27)

We define the backward moment αk(−t0) of the function v(x, t) at a backward

time t0 > 0 by making use of summations in (2.2.26)-(2.2.27). One may notice
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that the backward moments of v(x, t) are also moments of v(x, t) for t > −τ,

where τ is the age Philip (1968) of the heat distribution v0(x).

Suppose that v(x, t) and ṽ(x, t) are solutions of the heat equation (2.2.24) with

initial profiles v0(x) and ṽ0(x) respectively. If v and ṽ share the moments upto

k -th order at any specific value of t, then they share the moments upto the same

order for all t ∈ R in view of (2.2.26)-(2.2.27).

2.2.1 Contraction of moments

Lemma 2.2.1. Assume v(x, t) is the solution of the heat equation (2.2.24)-(2.2.25)

with zero mass initial data v0(x) such that (1 + x2n)v0(x) ∈ L1(R). Then, for any

given t0 > 0, there exist bi, ci ∈ C such that∫ ∞
−∞

xkv(x, t)dx =

∫ ∞
−∞

xkvn(x, t)dx, 0 ≤ k ≤ 2n, (2.2.28)

where

vn(x, t) := Re

(
n∑
i=1

bi√
4π(t+ t0)

∂x

(
e
− (x−ci)

2

4(t+t0)

))
.

Proof. Consider a linear combination of the spatial derivative of heat kernels,

namely,

wn(x, t) :=
n∑
i=1

bi√
4π(t+ t0)

∂x

(
e
− (x−ci)

2

4(t+t0)

)
, (2.2.29)

where x and t are real variables with t > −t0, bi’s and ci’s are complex parameters

and t0 is any positive constant. Further, consider the real part of the complex

function wn(x, t), denoted by

vn(x, t) := Re (wn(x, t)) . (2.2.30)

We now make the first 2n + 1 moments of v(x, t) and vn(x, t) equal by suitably

assigning values to 2n parameters bi’s, ci’s, i = 1, 2, . . . , n. Since

lim
t→−t0

∫ ∞
−∞

xkvn(x, t)dx = −k Re

(
n∑
i=1

bic
k−1
i

)
, 1 ≤ k ≤ 2n,

one obtains

αk(−t0) =


0, for k = 0

Re

(
−k

n∑
i=1

bic
k−1
i

)
, for k = 1, 2, . . . , 2n,

(2.2.31)
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by equating the first 2n + 1 moments of v(x, t) and vn(x, t) when t → −t0. Since

the initial mass under the heat equation is conserved and we picked up the zero

mass initial data (2.2.25), k = 0 case in (2.2.31) is obtained. One can observe

that, if we take t0 = 0, the initial data v0 is approximated by real part of linear

combination of dipole distributions. So, taking into consideration of backward

time helps in approximating the initial data v0 by the function vn(x, 0).

Introducing

α̃k−1 := −αk(−t0)
k

for k = 1, 2, . . . , 2n, (2.2.32)

equations (2.2.31) reduce to

α̃k = Re

(
n∑
i=1

bic
k
i

)
, 0 ≤ k < 2n. (2.2.33)

It is known that, if α̃k’s are moments of a non-negative function, then the existence

of bi, ci ∈ R such that

α̃k =
n∑
i=1

bic
k
i , 0 ≤ k < 2n (2.2.34)

is guaranteed by truncated moment problem. However, the truncated moment

problem (2.2.34) need not be solvable for arbitrary α̃k’s. Using the generalization

of truncated moment problem to a complex measure space developed by Kim

(2011), we solve (2.2.33) for the complex values bi’s and ci’s.

Pick up a nonnegative function q0(x) satisfying the following properties:

I It decays fast enough as |x| → ∞ so that its k-th order moments, βk, are well

defined for 0 ≤ k < 2n. Denote mk := α̃k + iβk, 0 ≤ k < 2n.

II The auxiliary n-th degree complex polynomial gn(z) := zn −
∑n−1

i=0 ψiz
i has

n- distinct zeros, where the column vector (ψ0, ψ1, . . . , ψn−1)
t is the unique

solution of the system,

m0 m1 . . . mn−1

m1 m2 . . . mn

. . . . . .

. . . . . .

. . . . . .

mn−1 mn . . . m2n−2





ψ0

ψ1

.

.

.

ψn−1


=



mn

mn+1

.

.

.

m2n−1


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It is to be noted that the coefficient matrix in the above system is Hankel

Matrix. Then the Generalized truncated moment problem,

n∑
i=1

bic
k
i = mk, 0 ≤ k < 2n (2.2.35)

has a solution set bi, ci ∈ C which is unique upto reordering. Here, ci’s are none

other than zeros of the auxiliary complex polynomial gn. Thus, the zeros depend

not only on α̃k’s, but also on nonnegative function q0. Further, bi’s, 1 ≤ i ≤ n, are

obtained by solving the Augmented system:

1 1 . . . 1

c1 c2 . . . cn

. . . . . .

. . . . . .

. . . . . .

cn−11 cn−12 . . . cn−1n





b1

b2

.

.

.

bn


=



m0

m1

.

.

.

mn−1


.

It is to be noted that these complex values ci, bi also satisfy the rest n equations

in (2.2.35). Equating the real parts on both sides of (2.2.35), we get

Re

(
n∑
i=1

bic
k
i

)
= α̃k, 0 ≤ k < 2n

concluding the proof.

Remark 2.2.2. Under the same hypothesis of Lemma 2.2.1, we can find a Gaus-

sian approximation ṽn from Kim (2011) as follows:

For any given t0 > 0, there exist ρi, ci ∈ C such that∫ ∞
−∞

xkv(x, t)dx =

∫ ∞
−∞

xkṽn(x, t)dx, k = 0, 1, . . . , 2n− 1, (2.2.36)

where

ṽn(x, t) := Re

(
n∑
i=1

ρi√
4π(t+ t0)

e
− (x−ci)

2

4(t+t0)

)
.

In consideration of (2.2.28) and (2.2.36), we can say that 2n + 1 moments of N-

wave approximation vn for heat solution agree with 2n+ 1 moments of v whereas

only 2n moments of the Gaussian approximation ṽn agree with those of v. It is
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to be noticed that we imposed an extra condition of zero mass when compared to

the class of initial functions considered in Kim (2011). So the vanishing of the

0-th moment of v makes the 2n-th moment of vn to agree with 2n-th moment of

v. Illustrating this contraction of moments for n = 2, an example is discussed in

Section 2.2.2.

2.2.2 An example of contracting moments

Consider the initial value problem (2.2.24)-(2.2.25) with a discontinuous function

v0(x) =


−1

5
, −1 < x < 1,

1

x6
, otherwise.

(2.2.37)

It is easy to see that v0 has moments upto 4-th order only. These are;

α0(0) = 0, α1(0) = 0, α2(0) = 8/15, α3(0) = 0, α4(0) = 48/25.

Then the backward moments at t0 = 1 are

α0(−1) = 0, α1(−1) = 0, α2(−1) =
8

15
, α3(−1) = 0, α4(−1) = −112

25
,

where the algebraic relations (2.2.26)-(2.2.27) were used. Then (2.2.32) gives

α̃0 = 0, α̃1 = − 4

15
, α̃2 = 0, α̃3 =

28

25
.

Pick up a nonnegative function q0(x) = 1√
π
e−x

2
and introduce mk = α̃k + iβk with

βk =
∫∞
−∞ x

kq0(x)dx for k = 0, 1, 2, 3. Then, we have

m0 = i,m1 = − 4

15
, m2 =

i

2
, m3 =

28

25
.

Solving the Hankel system,(
m0 m1

m1 m2

)(
ψ0

ψ1

)
=

(
m2

m3

)
,

we have

ψ0 = − 219

2570
, ψ1 = −564

257
i. (2.2.38)

29



Then the auxiliary polynomial g2(z) = z2 − ψ0 − ψ1z has two distinct complex

zeros, namely,

z =
−2820i+

√
8515230i

2570
=: c1, z =

−2820−
√

8515230

2570
i =: c2. (2.2.39)

Now, solving the Augmented system,(
1 1

c1 c2

)(
b1

b2

)
=

(
i

−4/5

)
,

we have

b1 =
10516 + 3

√
8515230

6
√

8515230
i, b2 =

i

2
− 5258

12772845
i. (2.2.40)

Hence, the N-wave approximation for (2.2.24)-(2.2.25) with (2.2.37) is given by

v2(x, t) =
1√

4π(t+ 1))
Re

[
∂x

(
b1e
− (x−c1)

2

4(t+1) + b2e
− (x−c2)

2

4(t+1)

)]
,

where c1, c2, b1, b2 are given by (2.2.39)-(2.2.40) satisfying∫ ∞
−∞

xkv(x, t)dx =

∫ ∞
−∞

xkv2(x, t)dx, 0 ≤ k ≤ 4. (2.2.41)

Let us now obtain a result which reveals the relation between moments and asymp-

totic behavior of solution of heat equation.

Theorem 2.2.3. Let E(x, t) be a solution to the Cauchy problem

Et(x, t) = Exx(x, t), x ∈ R, t > 0, (2.2.42)

E(x, 0) = E0(x), x ∈ R (2.2.43)

satisfying ∫ ∞
−∞

xkE0(x)dx = 0, 0 ≤ k < m (2.2.44)

and xmE0 ∈ L1(R). Then, for 1 ≤ p ≤ ∞,

||E(., t)||p = O(t−
(m+1)

2
+ 1

2p ), t→∞. (2.2.45)

Remark 2.2.4. In fact, Duoandikoetxea and Zuazua (1992) gave the proof of

Theorem 2.2.3. They defined the sequence of functions recursively;

Ek(x) =

∫ x

∞
Ek−1(x)dx k = 1, 2, . . . ,m.
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They then proved that 0-th moment of each Ek vanishes and Ek’s approach to zero

as |x| → ∞ by applying integration by parts and making use of inductive argu-

ments. The following proof makes use of Taylor’s series expansion and Minkowski

inequality and is of our independent interest only.

Proof of Theorem 2.2.3. The solution of heat equation (2.2.42)-(2.2.43) is given

by

E(x, t) =
1√
4πt

∫ ∞
−∞

E0(ξ)e
−(x−ξ)2

4t dξ. (2.2.46)

Changing the variable as (r, s) =
(

x√
4t
, ξ√

4t

)
and applying (2.2.44), the above

equation (2.2.46) reduces to

E(x, t) =
1√
π

∫ ∞
−∞

E0(2
√
ts)e−(r−s)

2

ds

=
1√
π

∫ ∞
−∞

E0(2
√
ts)

[
∞∑
j=m

pj(r)
(−s)j

j!

]
ds.

Here we used the following Taylor expansion,

e−(r−s)
2

=
∞∑
j=0

pj(r)
(−s)j

j!
with pj(r) =

dj

dsj
e−(r−s)

2
∣∣∣
s=0

.

and the conditions (2.2.44). We now introduce the notation,

Tm(r, y) =
∞∑
j=m

pj(r)
(−y)j

j!
.

Then e−(r−s)
2

=
∑m−1

j=0 pj(r)
(−s)j
j!

+ Tm(r, y). This implies

∂ms

[
e−(r−s)

2
]

= ∂ms Tm(r, s). (2.2.47)

Now since ∂is(Tm(r, s))
∣∣∣
s=0

= 0, for i = 0, 1, 2...m− 1, we have

∂is(Tm(r, s)) =

∫ s

0

∂i+1
s (Tm(r, s′))(r, s′)ds′.

Applying Lp norm on both sides and using Minkowski inequality we get:

‖∂is(Tm(r, s))‖p≤ |s|‖∂i+1
s (Tm(r, s))‖p, for i = 0, 1, . . . ,m.
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Applying the above inequality m-times, starting with i = 0, we have

‖(Tm(r, s))‖p ≤ |s|m‖∂ms (Tm(r, s))‖p= |s|m
∥∥∥∂ms (e−(r−s)

2
)∥∥∥

p
= O(|s|m).

(2.2.48)

In the above derivation we have used (2.2.47).

For 1 ≤ p <∞,

‖E(., t)‖p =
(2
√
t)1/p√
π

(∫ ∞
r=−∞

∣∣∣∣∫ ∞
s=−∞

E0(2
√
ts)Tm(r, s)ds

∣∣∣∣p dr)1/p

≤ (2
√
t)1/p√
π

∫ ∞
s=−∞

(∫ ∞
r=−∞

∣∣∣E0(2
√
ts)Tm(r, s)

∣∣∣p dr)1/p

ds

≤ (2
√
t)1/p√
π

∫ ∞
−∞
|E0(2

√
ts)| ‖Tm(., s)‖pds,

= O(1)(
√
t)1/p

∫ ∞
−∞
|E0(2

√
ts)| |s|mds

= O(1)(
√
t)−(m+1)+ 1

p

∫ ∞
−∞
|E0(ξ)| |ξ|mdξ

= O(t−
(m+1)

2
+ 1

2p ).

In the above derivation, we used Minkowski inequality and inequality (2.2.48). An

analogous result can be obtained for the case p =∞.

Lemma 2.2.5. Let v(x, t) be a solution to the heat equation (2.2.24)-(2.2.25)

with the zero mass initial data v0(x) satisfying v0, x
2n+1v0 ∈ L1(R). Then, for any

t0 > 0, there exist bi, ci ∈ C with

vn(x, t) := Re

(
n∑
i=1

bi√
4π(t+ t0)

∂x

(
e
− (x−ci)

2

4(t+t0)

))
(2.2.49)

such that

||v(., t)− vn(., t)||p = O(t−(n+1)+1/2p), t→∞, (2.2.50)

where 1 ≤ p ≤ ∞.

Proof. Making use of Lemma 2.2.1, we can construct vn as if 2n + 1 moments of

vn(x, t) agrees with 2n+ 1 moments of v(x, t). Having the agreement of moments

for v(x, t) and vn(x, t), we now define the difference function as follows:

E(x, t) :=v(x, t)− vn(x, t) (2.2.51)

E(x, 0) =v0(x)− vn(x, 0) =: E0(x), x ∈ R. (2.2.52)
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Then E(x, t) satisfies the hypothesis of Theorem 2.2.3 with m = 2n+ 1 and hence

the conclusion is derived.

We can now generalize the above Lemma 2.2.5 and proof is omitted as it is

almost a repetition.

Lemma 2.2.6. Let v(x, t) be a solution to the heat equation (2.2.24)-(2.2.25)

with the measurable function v0(x) satisfying
∫∞
−∞ x

kv0(x)dx = 0, 0 ≤ k < m and

v0, x
2n+mv0 ∈ L1(R). Then, for any t0 > 0, there exist bi, ci ∈ C such that

||v(., t)− vn(., t)||p = O(t−(
2n+1+m

2
)+ 1

2p ), t→∞,

where 1 ≤ p ≤ ∞, with

vn(x, t) := Re

(
n∑
i=1

bi√
4π(t+ t0)

∂mx

(
e
− (x−ci)

2

4(t+t0)

))
.

2.3 Asymptotics for Burgers solutions

In this section, we introduce the asymptotic N-wave approximation, un(x, t), to

the solution u(x, t) of (2.1.8) and then obtain the error estimates. It is to be

noted that the moments of the true solution and approximate solution of the heat

equation (2.2.24) are made equal for attaining higher order error estimates. The

same higher order error estimates between the true solution and the approximate

solution of the Burgers equation (2.1.8) are obtained even though the concerned

moments of the solutions of (2.1.8) are not necessarily agreeing.

The inverse Cole-Hopf transformation H−1 gives us

u(x, t) = − 2v(x, t)

1 +
∫ x
−∞ v(s, t)ds

.

We now prove Theorem 2.1.1. It is to be noted that the Lp contraction is

mainly due to the agreement of moments, not due to the specific form of vn.

Proof of Theorem 2.1.1. We prove this theorem in 4 steps.

Step 1 : We prove that there exists a T > 0 such that the solution un(x, t),

given in (2.1.14), of (2.1.8) is well defined for all x ∈ R and t ≥ T.
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In order to prove that (2.1.14) is well defined for all (x, t) ∈ R × [T,∞), it

suffices to prove that the denominator in right hand side of (2.1.14) is positive for

all (x, t) ∈ R × [T,∞). A calculation on the denominator in right hand side of

(2.1.14) gives

1 +

∫ x

−∞
vn(s, t)ds =1 +

∫ x

−∞
Re

[(
n∑
i=1

bi√
4π(t+ t0)

∂xe
− (x−ci)

2

4(t+t0)

)]
dx

=1 + Re

[
n∑
i=1

bi√
4π(t+ t0)

e
− (x−ci)

2

4(t+t0)

]
.

Hence, the above expression converges to 1 as t→∞ uniformly on R. Thus, there

exists a T > 0 such that

1 +

∫ x

−∞
vn(s, t)ds ≥ δ > 0, ∀(x, t) ∈ R× [T,∞) (2.3.53)

for any sufficiently small δ.

Step 2 : We prove that 1 + V (x, t) is bounded below by a positive constant for

all t > 0 and x ∈ R.

Set B := supx∈R
∫ x
−∞ u0(s)ds. Since u0 is L1-function, one can say that B exists

and so 1 + V (x, 0) in (2.2.23) is bounded below by e−B/2 for all x ∈ R. Thus, as

V (x, t) is a solution of (2.2.22)-(2.2.23), it is not hard to see that 1 + V (x, t) is

also bounded below by e−B/2 ∀(x, t) ∈ R× (0,∞).

Step 3 : We now get the L∞-norm estimate for
∫ x
−∞E(s, t)ds with respect to

the space variable x.

For 1 ≤ k ≤ 2n, integration by parts gives us∫ ∞
−∞

xkE0(x)dx = −k
∫ ∞
−∞

xk−1
(∫ x

−∞
E0(s)ds

)
dx+

[
xk
∫ x

−∞
E0(s)ds

]∞
x=−∞

.

Thus, for 0 ≤ r < 2n, we obtain∫ ∞
−∞

xr
(∫ x

−∞
E0(s)ds

)
dx = 0,

as x2nE0(x) ∈ L1(R) and
∫∞
−∞ x

kE0(x)dx = 0 with 0 ≤ k ≤ 2n. Further, a

calculation shows that∫ ∞
−∞

∣∣∣∣x2n ∫ x

−∞
E0(s)ds

∣∣∣∣ dx ≤ 1

2n+ 1

∫ ∞
−∞

∣∣x2n+1E0(x)
∣∣ dx.
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Therefore, x2n
∫ x
−∞E0(s)ds ∈ L1(R). Hence, in view of Theorem 2.2.3 and its

Remark 2.2.4, we arrive at∥∥∥∥∫ x

−∞
E(s, t)ds

∥∥∥∥
∞

= O(t−(n+1/2)) as t→∞. (2.3.54)

Step 4 : We now obtain the Lp-norm estimate for u(x, t)−un(x, t) with respect

to the space variable x.

Consider

|u(x, t)− un(x, t)| = 2

∣∣∣∣∣ v(x, t)

1 +
∫ x
−∞ v(s, t)ds

− vn(x, t)

1 +
∫ x
−∞ vn(s, t)ds

∣∣∣∣∣
=2

∣∣∣∣∣E(x, t)(1 +
∫ x
−∞ vn(s, t)ds)− vn(x, t)

∫ x
−∞E(s, t)ds

(1 + V (x, t))(1 +
∫ x
−∞ vn(s, t)ds)

∣∣∣∣∣ .
By virtue of Step 2 and the inequality (2.3.53) of Step 1, there exists a positive

real number k1 such that

|u(x, t)− un(x, t)| ≤k1
∣∣∣∣E(x, t)

(
1 +

∫ x

−∞
vn(s, t)ds

)
− vn(x, t)

∫ x

−∞
E(s, t)ds

∣∣∣∣
∀(x, t) ∈ R× (T,∞). (2.3.55)

We now get the Lp-norm estimates for the two terms in the right hand side of

the inequality (2.3.55). Since vn(x, t) is an L1-function, there exists a positive real

number k2 such that∥∥∥∥E(x, t)

(
1 +

∫ x

−∞
vn(s, t)ds

)∥∥∥∥
p

≤ k2||E(x, t)||p.

Then by (2.2.45), we have∥∥∥∥E(x, t)

(
1 +

∫ x

−∞
vn(s, t)ds

)∥∥∥∥
p

= O(t−(n+1)+1/2p) as t→∞. (2.3.56)

In view of (2.3.54) and Minkowski inequality, there exists a constant k3 > 0 so

that∥∥∥∥vn(x, t)

∫ x

−∞
E(s, t)ds

∥∥∥∥
p

≤k3t−(n+
1
2
)

n∑
i=1

∥∥∥∥∥Re

(
bi√

4π(t+ t0)
∂x

(
e
− (x−ci)

2

4(t+t0)

))∥∥∥∥∥
p

=O(t−(n+
3
2
)+ 1

2p ) as t→∞. (2.3.57)
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Taking Lp-norm to (2.3.55) and then making use of the results (2.3.56)-(2.3.57),

we obtain, for each 1 ≤ p ≤ ∞,

||u(x, t)− un(x, t)||p = O(t−(n+1)+ 1
2p ) as t→∞.

Remark 2.3.1. Under the same hypothesis as in Theorem 2.1.1, one can obtain

an approximation in terms of Gaussian approximation (Jaywan et al., 2010) as

follows:

For any t0 > 0, there exist ρi, ci ∈ C and T > 0 such that

||u(., t)− ũn(., t)||p = O(t−
2n+1

2
+ 1

2p ), t→∞, (2.3.58)

where 1 ≤ p ≤ ∞ and

ũn(x, t) := −2
ṽn(x, t)

1 +
∫ x
−∞ ṽn(y, t)dy

(2.3.59)

is well defined for t ≥ T with

ṽn(x, t) = Re

(
n∑
i=1

ρi√
4π(t+ t0)

e
− (x−ci)

2

4(t+t0)

)
. (2.3.60)

In view of (2.1.13) and (2.3.58), we can say that rate of convergence of N-wave

approximation is higher than that of Gaussian approximation. Further, we can

notice that N-wave approximation un is in a simpler form whereas Gaussian ap-

proximation ũn involves an integral in the denominator (2.3.2) to be evaluated

numerically. It is further to be noted that Chung, Kim and Ni (2009) consid-

ered the class of initial functions for which odd number of moments exist whereas

we dealt with the class of zero mass initial functions for which even number of

moments exist. In this regard, an example is given in Section 2.3.2.

Remark 2.3.2. We considered the Burgers equation (2.1.8) with respect to the

zero mass initial data u0 on R by imposing a condition on u0 that

(1 + |x|2n+1)u0 ∈ L1(R). (2.3.61)

The necessity of the condition (2.3.61) is to assure the existence of 2n+1 moments

for u0. One may even replace the condition (2.3.61) by assuming that u0 is bounded

almost everywhere on the open interval (−1, 1) and x2n+1u0 ∈ L1(R).
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2.3.1 Examples with single heat kernel

We pick up two initial functions for the Burgers equation (2.1.8) and construct

corresponding approximate solutions, in the form of spatial derivate of a single heat

kernel, to (2.1.8) with such initial functions. Then we show that these constructed

solutions approach the true solutions with an error of order O(t−2+1/2p) as t→∞

in Lp-norm, where 1 ≤ p ≤ ∞. It is known that u0(x) is of zero mass if and only

if v0(x) = −1
2
u0(x)exp

(
−1

2

∫ x
−∞ u0(s)ds

)
is of zero mass. Hence, as we deal with

zero mass initial data u0(x) for (2.1.8), (2.1.11), one may find the moments of the

initial data v0 of the concerned heat equation (2.2.24)-(2.2.25) with Yanagisawa

(2007).

However, for the sake of easier calculations, we first consider the initial pro-

files for the heat equation and then describe the approximate solutions for the

concerned initial value problem posed for Burgers equation (2.1.8).

The first example we see is the initial data

v0(x) :=
1

3
√
π

[
e−(x−1)

2 − 3e−9(x+2)2
]

(2.3.62)

to the problem (2.2.24)-(2.2.25). Then

α0 = 0, α1 = 1, α2(0) = −23

27
.

In consideration of (2.2.32), we have

α̃0 = −1, α̃1 =
23

54
.

Hence the truncated moment problem

b1 = α̃0, b1c1 = α̃1 (2.3.63)

has a unique solution as the concerned Hankel matrix is non singular. The solution

of the truncated moment problem (2.3.63) is

b1 = −1, c1 = −23

54
.

Thus the approximate solution of the problem (2.2.24)-(2.2.25) with (2.3.62) is

given by

v1(x, t) := − 1√
4π(t+ 1)

∂x

(
e−

(x+23/54)2

4(t+1)

)
.
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Define

u(x, 0) := − 2v0(x)

1 +
∫ x
−∞ v0(s)ds

, x ∈ R, (2.3.64)

where v0 is given in (2.3.62). Then the approximate solution of (2.1.8) subject to

(2.3.64) is given by

u1(x, t) := −2
v1(x, t)

1 +
∫ x
−∞ v1(y, t)dy

=
x+ 23/54

(1 + t)

[
1− 2

√
π(1 + t)e

(x+23/54)2

4(t+1)

]
and the error estimate is given by

||u(., t)− u1(., t)||p = O(t−2+1/2p), t→∞. (2.3.65)

Let us consider another initial data

v0(x) :=
1√
π

[
e−(x−1)

2

+ e−4(x+2)2 − 9

2
e−9x

2

]
(2.3.66)

to the problem (2.2.24)-(2.2.25). Then

α0 = 0, α1 = 0, α2(0) =
167

48

In consideration of (2.2.32), we have

α̃0 = 0, α̃1 = −167

48
.

Hence the truncated moment problem

b1 = α̃0, b1c1 = α̃1

can not be solved as the concerned Hankel matrix is singular. Then by introducing

q0(x) = e−x
2/2

2
√
π

and βk =
∫∞
−∞ x

kq0(x)dx, one has

m0 =α̃0 + iβ0 = i

m1 =α̃1 + iβ1 = −167

96
.

Then the generalized truncated moment problem

b1 = m0, b1c1 = m1
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has a solution

b1 = i, c1 =
167

96
i.

Thus the approximate solution of the problem (2.2.24)-(2.2.25) with (2.3.66) is

given by

v1(x, t) := Re

(
i√

4π(t+ 1)
∂x

(
e−

(x− 167
96 i)

2

4(t+1)

))
.

Define

u(x, 0) := − 2v0(x)

1 +
∫ x
−∞ v0(s)ds

, x ∈ R, (2.3.67)

where v0 is given in (2.3.66). Then the approximate solution u1(x, t) of the Burgers

equation (2.1.8) with reference to (2.3.67) satisfies the error estimate (2.3.65) and

is given by

u1(x, t) := −2

Re

(
i√

4π(t+1)
∂x

(
e−

(x− 167
96 i)

2

4(t+1)

))
1 + Re

(
i√

4π(t+1)

(
e−

(x− 167
96 i)

2

4(t+1)

)) .

2.3.2 An example with three heat kernels

Consider the initial value problem (2.1.8), (2.1.11) with

u0(x) =



16

x− 8x9
, if x ≤ −1,

− 16x

3 + 4x2
, if − 1 < x < 1,

16

x− 8x9
, if x ≥ 1.

(2.3.68)

It is seen that moments of u0 exist upto the 7-th order only. Due to Cole-Hopf

transformation, we now study heat equation (2.2.24)-(2.2.25) with

v0(x) =

x, −1 < x < 1,

1

x9
, otherwise.

(2.3.69)

We then see that v0 has moments upto the order 7 only. These are;

α0(0) = 0, α1(0) = 20/21, α2(0) = 0, α3(0) = 4/5,

α4(0) = 0, α5(0) = 20/21, α6(0) = 0, α7(0) = 20/9.
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Then the backward moments at t0 = 1 are

α0(−1) = 0, α1(−1) = 20/21, α2(−1) = 0, α3(−1) = −172/35,

α4(−1) = 0, α5(−1) = 884/21, α6(−1) = 0, α7(−1) = −4516/9,

where the algebraic relations (2.2.26)-(2.2.27) were used. Then (2.2.32) gives

α̃0 = −20/21, α̃1 = 0, α̃2 = 172/105,

α̃3 = 0, α̃4 = −884/105, α̃5 = 0.

Pick up a nonnegative function q0(x) = 1√
π
e−x

2
and introduce mk = α̃k + iβk with

βk =
∫∞
−∞ x

kq0(x)dx for k = 0, 1, 2, 3, 4, 5. Then, we have

m0 = −20

21
+ i,m1 = 0, m2 =

172

105
+
i

2
,

m3 = 0, m4 = −884

105
+

3i

4
,m5 = 0.

Solving the Hankel system,
m0 m1 m2

m1 m2 m3

m2 m3 m4




ψ0

ψ1

ψ2

 =


m3

m4

m5

 ,

we have

ψ0 = 0, ψ1 = −1183309

258722
+

239820

129361
i, ψ2 = 0. (2.3.70)

Then the auxiliary polynomial g3(z) = z3 − ψ1z has three distinct complex zeros,

namely,

z = 0, z = c, z = −c, where

c =

√
−1183309

258722
+

239820

129361
i. (2.3.71)

Now, solving the Augumented system,
1 1 1

0 c −c
0 c2 c2




b1

b2

b3

 =


m0

m1

m2

 ,
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we have

b1 = − 903556004

1323264705
+

15357222

12602521
i, b2 = b3 = − 178348048

1323264705
− 2754701

25205042
i. (2.3.72)

Hence, the N-wave approximation for (2.1.8), (2.1.11) with (2.3.68) is given by

u3(x, t) = −2

Re

[
1√

4π(t+1)
∂x

(
b1e
− x2

4(t+1) + b2e
− (x−c)2

4(t+1) + b3e
− (x+c)2

4(t+1)

)]
1 + Re

[
1√

4π(t+1)

(
b1e
− x2

4(t+1) + b2e
− (x−c)2

4(t+1) + b3e
− (x+c)2

4(t+1)

)] , (2.3.73)

where b1, b2, b3 and c are given in (2.3.72) and (2.3.71). The rate of convergence is

||u(., t)− u3(., t)||p = O(t−4+1/2p), t→∞. (2.3.74)

For the same initial value problem (2.1.8), (2.1.11), (2.3.68), one can construct

a Gaussian approximation (Jaywan et al., 2010) ũ2(x, t) as follows:

||u(., t)− ũ3(., t)||p = O(t−
7
2
+ 1

2p ), t→∞, (2.3.75)

where 1 ≤ p ≤ ∞ and

ũ3(x, t) := −2
ṽ3(x, t)

1 +
∫ x
−∞ ṽ3(y, t)dy

is well defined for t ≥ T with

ṽ3(x, t) = Re

(
3∑
i=1

ρi√
4π(t+ 1)

e−
(x−ci)

2

4(t+1)

)
,

where ρi, ci ∈ C and T > 0.

We are now in a position to generalize the Theorem 2.1.1 as follows.

Corollary 2.3.3. Let u(x, t) be a solution to the Burgers equation (2.1.8) subject

to (2.1.11) with the measurable function u0(x) satisfying
∫∞
−∞ x

kv0(x)dx = 0, 0 ≤

k < m and v0, x
2n+mv0 ∈ L1(R), where v0 is given by (2.2.25). Then, there exist

bi, ci ∈ C and T > 0 such that

||u(., t)− un(., t)||p = O(t−(
2n+1+m

2
)+ 1

2p ), t→∞,

where 1 ≤ p ≤ ∞,

un(x, t) := −2
vn(x, t)

1 +
∫ x
−∞ vn(y, t)dy

(2.3.76)

41



is well defined for t ≥ T with

vn(x, t) = Re

(
n∑
i=1

bi√
4πt

∂mx

(
e−

(x−ci)
2

4t

))
.

The proof of Corollary 2.3.3 is also repetition of the procedure discussed and

hence we omit the proof.

2.4 Asymptotics for solutions of Adhesion model

In this section, we present main results about Lp-contraction rate of solutions to

Adhesion Model.

We now extend the results obtained in previous Sections to the de-coupled

system (2.1.9)-(2.1.10) with initial functions

u(x, 0) = u0(x), x ∈ R, (2.4.77)

ρ(x, 0) = ρ0(x), x ∈ R, (2.4.78)

by proving the Theorem 2.1.2.

Proof of Theorem 2.1.2. In view of the lemma 2.2.6, it is enough to consider the

partial differential equation (2.1.10) with initial condition (2.4.78). Using the

generalized Cole-Hopf transformation (Joseph, 2009),

C(x, t) = −1

2

∫ x

−∞
ρ(s, t)ds exp

(
−1

2

∫ x

−∞
u(s, t)ds

)
,

the equations (2.1.10) and (2.4.77)-(2.4.78) lead to

Ct =Cxx (2.4.79)

C(x, 0) =C0(x), (2.4.80)

where C0 is given by (2.1.15). Let Cn(x, t) and ρn(x, t) be approximations to

C(x, t) and ρ(x, t) respectively. Further, let C(x, t)−Cn(x, t) = γ(x, t) and recall v(x, t)−

vn(x, t) = E(x, t). By virtue of the lemma 2.3.3, we have

‖ γ(., t) ‖p= O(t−
2n+1+m

2
+ 1

2p ), t→∞.
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Using the inverse generalized Cole-Hopf transformation, we now obtain

ρ(x, t) =

[
1 +

∫ x
−∞ v(s, t)ds

]
∂xC(x, t)− v(x, t)C(x, t)[

1 +
∫ x
−∞ v(s, t)ds

]2 , (2.4.81)

where

C(x, t) =
1√
4πt

∫ ∞
−∞

C0(y) exp

(
−(x− y)2

4t

)
dy, (2.4.82)

v(x, t) =− 1

4
√
πt

∫ ∞
−∞

u0(y) exp

(
−1

2

∫ y

−∞
u0(s)ds−

(x− y)2

4t

)
dy. (2.4.83)

Consider

ρ(x, t)− ρn(x, t) =

[
1 +

∫ x
−∞ v(s, t)ds

]
∂xC(x, t)− v(x, t)C(x, t)[

1 +
∫ x
−∞ v(s, t)ds

]2
−

[
1 +

∫ x
−∞ vn(s, t)ds

]
∂xCn(x, t)− vn(x, t)Cn(x, t)[

1 +
∫ x
−∞ vn(s, t)ds

]2 (2.4.84)

=
A(x, t)[

1 +
∫ x
−∞ v(s, t)ds

]2 [
1 +

∫ x
−∞ vn(s, t)ds

]2 , (2.4.85)

where the numerator A(x, t) is given by

A(x, t) = −
[∫ x

−∞
E(s, t)ds ∂xCn(x, t) + 2

∫ x

−∞
E(s, t)ds

∫ x

−∞
vn(s, t)ds×

∂xCn(x, t)− 2Cn(x, t)vn(x, t)

∫ x

−∞
E(s, t)ds+

∫ x

−∞
E(s, t)ds×(∫ x

−∞
vn(s, t)ds

)2

∂xCn(x, t)− 2Cn(x, t)vn(x, t)

∫ x

−∞
E(s, t)ds

∫ x

−∞
vn(s, t)ds

]

−
(∫ x

−∞
E(s, t)ds

)2 [
∂xCn(x, t) + ∂xCn(x, t)

∫ x

−∞
vn(s, t)ds− Cn(x, t)vn(x, t)

]
+ ∂xγ(x, t)

∫ x

−∞
E(s, t)ds∂xγ(x, t) + 3∂xγ(x, t)

∫ x

−∞
vn(s, t)ds− E(s, t)

[
Cn(x, t)

+ γ(x, t)
]
− vn(x, t)γ(x, t) + 2∂xγ(x, t)

∫ x

−∞
E(s, t)ds

∫ x

−∞
vn(s, t)ds

+ 3∂xγ(x, t)

(∫ x

−∞
vn(s, t)ds

)2

− 2E(x, t)Cn(x, t)

∫ x

−∞
vn(s, t)ds
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− 2γ(x, t)vn(x, t)

∫ x

−∞
vn(s, t)ds− 2E(x, t)γ(x, t)

∫ x

−∞
vn(s, t)ds

+

(∫ x

−∞
vn(s, t)ds

)2 [
∂xγ(x, t)

∫ x

−∞
E(s, t)ds+

∫ x

−∞
vn(s, t)ds∂xγ(x, t)

−E(x, t)(Cn(x, t) + γ(x, t))− vn(x, t)γ(x, t)
]
.

The existence of T > 0 is obtained by repeating the proof of Step 1 of the Theorem

2.1.1. The existence of b̃i, c̃i with (2.1.19) is obtained by repeating the proof of

Lemma 2.2.5. Eventually, we have∥∥∥∥∫ .

−∞
E(s, t)ds

∥∥∥∥
p

=O(t−
2n+m

2
+ 1

2p ), t→∞,

‖E(., t)‖p =O(t−
2n+1+m

2
+ 1

2p ), t→∞,

‖∂xγ(., t)‖p =O(t−
2n+2+m

2
+ 1

2p ), t→∞,

‖∂xCn(., t)‖p =O(t−
2+m

2
+ 1

2p ), t→∞,∥∥∥∥∫ .

−∞
vn(s, t)ds

∥∥∥∥
p

=O(t−
m
2
+ 1

2p ), t→∞,

‖vn(., t)‖p =O(t−
1+m

2
+ 1

2p ), t→∞,

‖Cn(., t)‖p =O(t−
1+m

2
+ 1

2p ), t→∞,

for 1 ≤ p ≤ ∞. Taking Lp-norm on equation (2.4.84) and then making use

Minkowski inequality with above order estimates, we conclude the proof.

We conclude this section by proving the Proposition 2.1.3, which shows a way

to construct Schwartz function sharing the moments with the given function.

Proof of Proposition 2.1.3. In view of (2.1.20), construct a polynomial pn by

pn(x) =
n∑
k=0

(2πi)kck
k!

xk

Denote the Fourier transform of pnφ by g as follows:

g(y) = F(pn(x)φ(x)) =

∫ ∞
−∞

pn(x)φ(x)e−2πixydx,

where φ is any test function having compact support in R which is 1 in the interval

[−1, 1] and zero out side [−2, 2].

44



Then g is a Schwartz class function and denote the Fourier transform of g by

h as follows:

h(x) =

∫ ∞
−∞

g(y)e−2πixydy (2.4.86)

As h(x) = pn(−x) for −1 ≤ x ≤ 1, we get

h(j)(0) = (−2πi)jcj, j = 0, 1 . . . n, (2.4.87)

where h(j)(x) is the jth derivative of h(x).

On the other hand, the equation (2.4.86) gives

h(j)(0) = (−2πi)j
∫ ∞
−∞

yjg(y)dy (2.4.88)

Comparing (2.4.87) and (2.4.88), we have
∫∞
−∞ y

jg(y)dy = cj, j = 0, 1 . . . n.

The rest part of the Proposition follows from the Theorem 2.2.3.
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Chapter 3

Generalized solutions for a

de-coupled system and a forced

Burgers equation

3.1 Introduction

The forced Burgers equation

ut + uux = νuxx + f(x, t), x ∈ R, t > 0, (3.1.1)

has wide variety of applications in different fields of science (Xu et al., 2007). In

this chapter, we consider the forced Burgers equation

ut + uux = νuxx +
k

(2βt+ 1)3/2
, x ∈ R, t > 0, (3.1.2)

where ν > 0, β > 0 and k is a non-zero constant, subject to the initial condition

u(x, 0) = u0(x), x ∈ R, (3.1.3)

with the assumption that u0(x) = o(|x|) for large |x|.

Hopf (1950) studied the vanishing viscosity behavior of solutions to the viscous

Burgers equation

ut + uux = νuxx, x ∈ R, t > 0, (3.1.4)

u(x, 0) = u0(x), x ∈ R, (3.1.5)
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with the assumption that the initial data u0 satisfies
∫ x
0
u0(y)dy = o(x2) for large

|x| and he proved that the solution of (3.1.4)-(3.1.5) converges to the weak solution

of the concerned inviscid Burgers equation as the viscosity ν → 0.

Joseph (1993) considered a system of conservation lawsut +
(
u2

2

)
x

= 0, x ∈ R, t > 0,

vt + (uv)x = 0, x ∈ R, t > 0,
(3.1.6)

with the initial conditions

(u, v)t(x, 0) =

(uL, vL)t if x < 0,

(uR, vR)t if x > 0
(3.1.7)

which is known as Riemann problem. He analyzed the solution of above problem

by using vanishing viscosity method. For which he took an approximate solution

(uν(x, t), vν(x, t)) of (3.1.6)-(3.1.7) which is defined by the Riemann problemuνt +
(
uν

2

2

)
x

= 1
2
νuνxx, x ∈ R, t > 0,

vνt + (uv)νx = 1
2
νvνxx, x ∈ R, t > 0,

(3.1.8)

with the initial conditions

(uν , vν)t(x, 0) =

(uνL, v
ν
L)t if x < 0,

(uνR, v
ν
R)t if x > 0.

(3.1.9)

He proved that the solution so obtained for the above Riemann problem will give

the solution of (3.1.6)-(3.1.7) in the sense of distribution as ν → 0. The explicit

solution for (3.1.6)-(3.1.7) given by Joseph (1993) is

(i) .uL > uR

(u0(x, t), v0(x, t)) =


(uL, vL) if x < st,

(1
2
(uL + uR), 1

2
(uL − uR)(vL + vR)tδx=st) if x = st,

(uR, vR) if x > st,

(3.1.10)
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where s = 1
2
(uL + uR) and δx=st is the usual δ- measure concentrated along the

line x = st.

(ii) uL < uR

(u0(x, t), v0(x, t)) =


(uL, vL) if x < uLt,

(x/t, 0) if uLt < x < uRt,

(uR, vR) if x > uRt,

(3.1.11)

(iii) uL = uR = u

(u0(x, t), v0(x, t)) =

(u, vL) if x < ut,

(u, vR) if x > ut,
(3.1.12)

Ding and Ding (2003) showed that, for fixed (x, t), the solution of

ut + uux = νuxx + 4x, x ∈ R, t > 0, (3.1.13)

u(x, 0) = u0(x), x ∈ R, (3.1.14)

converges to the weak solution of relevant inviscid forced Burgers equation as

ν → 0, assuming the initial data satisfies

u0(x) = o(x), |x| → ∞.

This chapter is organized as follows. In the Section 3.2, we consider a Riemann

problem for de-coupled system and obtain the explicit solution. In Section 3.3, we

find the solution to the initial value problem for forced Burgers equation (3.1.2)-

(3.1.3). Section 3.4 shows that the solution obtained in the Section 3.3 converges

to the relevant inviscid forced Burgers equation as ν → 0.

3.2 Riemann problem for de-coupled system

In this section we construct the solution of the following Riemann problem for

decoupled system.

ut + uux = k
(2βt+1)3/2

, x ∈ R, t > 0

ρt + (uρ)x = 0, x ∈ R, t > 0,
(3.2.15)
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with the initial value

(u, ρ)t(x, 0) =

(uL, ρL)t if x < 0,

(uR, ρR)t if x > 0.
(3.2.16)

Assuming that there exists a v such that

vx = ρ, vt = −uρ.

Then the system (3.2.15) with (3.2.16) reduces to

ut + uux = k
(2βt+1)3/2

,

vt + uvx = 0,

u(x, 0) =

uL, x < 0,

uR, x > 0,

v(x, 0) =
∫ x
0
ρ(x, 0)dx =

ρLx, x < 0,

ρRx, x > 0.

(3.2.17)

We now solve the Riemann problem for inviscid forced Burgers equation using the

method of characteristics.

The characteristic equations are

dx

dt
= u,

du

dt
=

k

(2βt+ 1)3/2
. (3.2.18)

Solving this system of ODEs, we obtain the characteristic curve originated at the

point (x0, 0) and is given by

x(t) =
k

β2

(
1−

√
2βt+ 1

)
+

(
u(x0, 0) +

k

β

)
t+ x0, (3.2.19)

and the solution along the curve is

u(x(t), t) =
k

β

(
1− 1√

2βt+ 1

)
+ u(x0, 0). (3.2.20)

Depending on the values of uL and uR, we have the following cases.

Case 1: uL > uR

In this case, we will have a shock wave originated from (0, 0) and satisfies
dx

dt
=

1

2

[
2k
β

(1− 1√
2βt+1

) + uL + uR

]
,

x(0) = 0.
(3.2.21)
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Then the equation of shock wave is

x(t) =
1

2

[
2k

β2

(
1−

√
2βt+ 1

)
+
(2k

β
+ uL + uR

)
t

]
=: g(t). (3.2.22)

Thus the solution for the Riemann problem for inviscid forced Burgers equation

is

u(x, t) =



k

β

(
1− 1√

2βt+ 1

)
+ uL if x < g(t),

c if x = g(t),

k

β

(
1− 1√

2βt+ 1

)
+ uR if x > g(t),

(3.2.23)

where c is any constant.

Using the solution u(x, t) given in (3.2.23), we solve the Riemann problem for the

second equation in de-coupled system (3.2.17).

If x < g(t), then we have

x(t) =
k

β2

(
1−

√
2βt+ 1

)
+

(
uL +

k

β

)
t+ ξ1, (3.2.24)

u(x, t) =
k

β

(
1− 1√

2βt+ 1

)
+ uL, (3.2.25)

where x(0) = ξ1 < 0. Hence,

v(x, t) = ρLξ1

= ρL

(
x− k

β2

(
1−

√
2βt+ 1

)
−
(
uL +

k

β

)
t

)
(3.2.26)

for the case x < g(t).

If x > g(t), then we have

x(t) =
k

β2

(
1−

√
2βt+ 1

)
+

(
uR +

k

β

)
t+ ξ2, (3.2.27)

u(x, t) =
k

β

(
1− 1√

2βt+ 1

)
+ uR, (3.2.28)

where x(0) = ξ2 > 0. Hence,

v(x, t) = ρRξ2

= ρR

(
x− k

β2

(
1−

√
2βt+ 1

)
−
(
uR +

k

β

)
t

)
(3.2.29)
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for the case x > g(t).

Here we find the distribution derivative of v(x, t).

Let

eL(t) =
k

β2
(
√

2βt+ 1− 1) +

(
uL +

k

β

)
t,

eR(t) =
k

β2
(
√

2βt+ 1− 1) +

(
uR +

k

β

)
t.

ρ(x, t) = T ∂v
∂x

(φ)

= −Tv
(
∂φ

∂x

)
= −

[∫ ∞
0

∫
R
v(x, t)

∂φ

∂x
dxdt

]

= −

[∫ ∞
0

∫
x<g(t)

ρL[x+ eL(t)]
∂φ

∂x
dxdt+

∫ ∞
0

∫
x>g(t)

ρR[x+ eR(t)]
∂φ

∂x
dxdt

]

=

∫ ∞
0

∫ g(t)

−∞
ρLφ(x, t)dx−

∫ ∞
0

ρL[g(t) + eL(t)]φ(g(t), t)

+

∫ ∞
g(t)

ρRφ(x, t)dx+

∫ ∞
0

ρR[g(t) + eR(t)]φ(g(t), t)dt

=

∫ ∞
t=0

∫ g(t)

−∞
ρLφ(x, t)dxdt+

∫ ∞
t=0

∫ ∞
g(t)

ρRφ(x, t)dxdt

+

∫ ∞
t=0

[
ρR[g(t) + eR(t)]− ρL[g(t) + eL(t)]ρR

]
φ(g(t), t)dt,

for every C∞c (R× (0,∞)). Thus

ρ(x, t) =


ρL if x < g(t),

ρR if x > g(t),

(ρR[g(t) + eR(t)]− ρL[g(t) + eL(t)]) δx=g(t) if x = g(t).

(3.2.30)

Case 2: uL < uR

From (3.2.19), the characteristic curves originated from (x0, 0) for the Riemann

problem for inviscid forced Burgers equation are

x(t) =


k
β2

(
1−
√

2βt+ 1
)

+

(
uL + k

β

)
t+ x0 if x0 < 0,

k
β2

(
1−
√

2βt+ 1
)

+

(
uR + k

β

)
t+ x0 if x0 > 0,

(3.2.31)
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and the solution along these curves respectively is

u(x, t) =


k

β

(
1− 1√

2βt+ 1

)
+ uL,

k

β

(
1− 1√

2βt+ 1

)
+ uR.

(3.2.32)

Let

fL(t) =
k

β2

(
1−

√
2βt+ 1

)
+
(k
β

+ uL

)
t, (3.2.33)

fR(t) =
k

β2

(
1−

√
2βt+ 1

)
+
(k
β

+ uR

)
t. (3.2.34)

It is clear that the region {fL(t) < x < fR(t)} is not covered by the characteristics.

Therefore, the solution in this case is

u(x, t) =



k

β

(
1− 1√

2βt+ 1

)
+ uL if x < fL(t),

1

t

[
x− k

β2 (1−
√

2βt+ 1)
]
− k

β
√
2βt+1

if fL(t) < x < fR(t),

k

β

(
1− 1√

2βt+ 1

)
+ uR if x > fR(t)

(3.2.35)

and

ρ(x, t) =


ρL, if x < fL(t),

0, if fL(t) < x < fR(t),

ρR, if x > fR(t).

(3.2.36)

Now we prove that the solution so obtained is a weak solution of (3.2.15)-(3.2.16).

First we prove that u is the weak solution of the first equation in (3.2.15), i.e.

to show that u satisfies the integral equation∫ ∞
0

∫ ∞
−∞

(uφt +

(
u2

2

)
φx)dxdt = −

∫ 0

−∞
uLφ(x, 0)dx−

∫ ∞
0

uRφ(x, 0)dx

−
∫ ∞
0

∫ ∞
−∞

k

(2βt+ 1)3/2
φ(x, t)dxdt. (3.2.37)

for every φ(x, t) ∈ C∞c (R× (0,∞).
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Case 1: uL > uR

Consider∫ ∞
0

∫ ∞
−∞

(uφt +

(
u2

2

)
φx)dxdt =

∫ ∞
0

∫ g(t)

−∞
(uφt +

(
u2

2

)
φx)dxdt+

∫ ∞
0

∫ ∞
g(t)

(uφt +

(
u2

2

)
φx)dxdt

= I1 + I2.

Then

I1 =

∫ ∞
0

∫ g(t)

−∞


[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]
φt +

1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2
φx

 dxdt

=

∫ ∞
0

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

](∫ g(t)

−∞
φtdx

)
dt

+

∫ ∞
0

1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2(∫ g(t)

−∞
φxdx

)
dt

=

∫ ∞
0

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

](
d

dt

∫ g(t)

−∞
φ(x, t)dx− φ(g(t), t)g′(t)

)
dt

+

∫ ∞
0

1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2
φ(g(t), t)dt

= −
∫ ∞
0

∫ g(t)

−∞

k

(2βt+ 1)3/2
φ(x, t)dxdt− uL

∫ 0

−∞
φ(x, 0)dx

−
∫ ∞
0


[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]
g
′
(t)− 1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2φ(g(t), t)dt,

(3.2.38)

and

I2 =

∫ ∞
0

∫ ∞
g(t)


[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]
φt +

1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2
φx

 dxdt

=

∫ ∞
0

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

](∫ ∞
g(t)

φtdx

)
dt

+

∫ ∞
0

1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2(∫ ∞
g(t)

φxdx

)
dt

=

∫ ∞
0

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

](
d

dt

∫ ∞
g(t)

φ(x, t)dx+ φ(g(t), t)g′(t)

)
dt

−
∫ ∞
0

1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2
φ(g(t), t)dt
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= −
∫ ∞
0

∫ ∞
g(t)

k

(2βt+ 1)3/2
φ(x, t)dxdt− uR

∫ ∞
0

φ(x, 0)dx

+

∫ ∞
0


[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]
g
′
(t)− 1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2φ(g(t), t)dt.

(3.2.39)

Thus∫ ∞
0

∫ ∞
−∞

(uφt +
(u2

2
)φx
)
dxdt =

∫ ∞
0

∫ ∞
−∞

k

(2βt+ 1)3/2
φ(x, t)dxdt− uL

∫ 0

−∞
φ(x, 0)dx

− uR
∫ ∞
0

φ(x, 0)dx+

∫ ∞
0

([
k

β

(
1− 1√

2βt+ 1

)
+ uR

]

−

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

])
g
′
(t)φ(g(t), t)dt

+

∫ ∞
0

1

2

[[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2

−

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2]
φ(g(t), t)dt

=

∫ ∞
0

∫ ∞
−∞

k

(2βt+ 1)3/2
φ(x, t)dxdt− uL

∫ 0

−∞
φ(x, 0)dx

− uR
∫ ∞
0

φ(x, 0)dx.

(3.2.40)

Hence, u(x, t) given in (3.2.23) is the weak solution of inviscid forced Burgers

equation (3.2.15).

Case 2: uL < uR

We prove that u(x, t) given in (3.2.35) is a weak solution of (3.2.15)-(3.2.16). For

that we show that u(x, t) satisfies (3.2.37).

Consider∫ ∞
0

∫ ∞
−∞

(uφt +

(
u2

2

)
φx)dxdt =

∫ ∞
0

∫ fL(t)

−∞
(uφt +

(
u2

2

)
φx)dxdt+∫ ∞

0

∫ fR(t)

fL(t)

(uφt +

(
u2

2

)
φx)dxdt

+

∫ ∞
0

∫ ∞
fR(t)

(uφt +

(
u2

2

)
φx)dxdt

=: I1 + I2 + I3.
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Then

I1 =

∫ ∞
0

∫ fL(t)

−∞

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]
φtdxdt

+

∫ ∞
0

∫ fL(t)

−∞

(
1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2)
φxdxdt

= −
∫ 0

−∞
uLφ(x, 0)dx−

∫ ∞
0

∫ fL(t)

−∞

k

(2βt+ 1)3/2
φ(x, t)dxdt

+
1

2

∫ ∞
0

[
k

β

(
1− 1√

2βt+ 1

)
+ uL

]2
φ(fL(t), t)dt.

Since I2 has singularity at t = 0, we consider I2 = limε→0 I2,ε.

I2,ε =

∫ ∞
ε

∫ fR(t)

fL(t)

(uφt +

(
u2

2

)
φx)dxdt.

=

∫ ∞
ε

∫ fR(t)

fL(t)

(
1

t

[
x− k

β2
(1−

√
2βt+ 1)

]
− k

β
√

2βt+ 1

)
φtdxdt

+
1

2

∫ ∞
ε

∫ fR(t)

fL(t)

(
1

t

[
x− k

β2
(1−

√
2βt+ 1)

]
− k

β
√

2βt+ 1

)2

φxdxdt

= −1

2

∫ ∞
ε

(
uR +

k

β

(
1− 1√

2βt+ 1

))2

φ(fR(t), t)dt

+
1

2

∫ ∞
ε

(
uL +

k

β

(
1− 1√

2βt+ 1

))2

φ(fL(t), t)dt

−
∫ ∞
ε

∫ fR(t)

fL(t)

k

(2βt+ 1)3/2φ(x, t)
dxdt.

I2 = lim
ε→0

I2,ε

=
1

2

∫ ∞
0

(
uR +

k

β

(
1− 1√

2βt+ 1

))2

φ(fR(t), t)dt

− 1

2

∫ ∞
0

(
uL +

k

β

(
1− 1√

2βt+ 1

))2

φ(fL(t), t)dt

−
∫ ∞
0

∫ fR(t)

fL(t)

k

(2βt+ 1)
3
2

dxdt.
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Also,

I3 =

∫ ∞
0

∫ ∞
fR(t)

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]
φtdxdt

+

∫ ∞
0

∫ ∞
fR(t)

(
1

2

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2)
φxdxdt

= −
∫ 0

−∞
uRφ(x, 0)dx−

∫ ∞
0

∫ ∞
fR(t)

k

(2βt+ 1)3/2
φ(x, t)dxdt

− 1

2

∫ ∞
0

[
k

β

(
1− 1√

2βt+ 1

)
+ uR

]2
φ(fR(t), t)dt.

Thus,∫ ∞
0

∫ ∞
−∞

(uφt + (
u2

2
)φx)dxdt = I1 + I2 + I3

= −
∫ 0

−∞
uLφ(x, 0)dx−

∫ 0

0

uRφ(x, 0)dx

−
∫ ∞
0

∫ ∞
−∞

k

(2βt+ 1)3/2
dxdt.

Similarly, one may prove that, the solution ρ(x, t) given in (3.2.30) and (3.2.36) is

a weak solution of (3.2.15), i.e. to prove the following,∫ ∞
0

∫ fL(t)

−∞

[
ρφt + (uρ)φx

]
dxdt+

∫ ∞
0

∫ fR(t)

fL(t)

[
ρφt + (uρ)φx

]
dxdt

+

∫ ∞
0

∫ ∞
fR(t)

[
ρφt + (uρ)φx

]
dxdt = −

∫ 0

−∞
ρLφ(x, 0)dx−

∫ ∞
0

ρRφ(x, 0)dx.

(3.2.41)

for every φ(x, t) ∈ C∞c (R× (0,∞))
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3.3 Solution of the forced Burgers equation

In this section, we show that the solution of the forced Burgers equation (3.1.2)

converges to the generalized solution of relevant inviscid forced Burgers equation

ut + uux =
k

(2βt+ 1)3/2
, x ∈ R, t > 0 (3.3.42)

as ν → 0.

From Satyanarayana et al. (2017), we can see that under the Cole-Hopf like trans-

formation

u(x, t) = − 2ν√
2βt+ 1

ψη(η, t)

ψ(η, t)
, (3.3.43)

where η =
x√

2βt+ 1
, the problem (3.1.2)-(3.1.3) reduces to

(2βt+ 1)ψt = βηψη + νψηη −
k

2ν
ηψ, (3.3.44)

ψ(η, 0) = exp

{
− 1

2ν

∫ η

0

u0(s)ds

}
≡ ψ0(η). (3.3.45)

Scaling the variables

η =
√
νη′, ψ(η, t) = ψ(

√
νη′, t) = ϕ(η′, t), (3.3.46)

in (3.3.44)-(3.3.45), we find that

(2βt+ 1)ϕt = βη′ϕη′ + ϕη′η′ −
k

2
√
ν
η′ϕ, (3.3.47)

ϕ(η′, 0) = ψ0(
√
νη′) = ϕ0(η

′). (3.3.48)

A solution for (3.3.47)-(3.3.48) was obtained by Satyanarayana et al. (2017) by

assuming that the initial data u0 ∈ L1(R) and u0 is continuous over R, which is

ϕ(η′, t) = (2βt+ 1)
k2

8νβ3

∫ ∞
−∞

K(η′, y′, t)ϕ0(y
′)dy′, (3.3.49)

where,

K(η′, y′, t) =
1

2
√
πt

exp

{
k

2
√
νβ

(η′ − y′)− 1

4t

[√
2βt+ 1

(
η′ +

k√
νβ2

)
−
(
y′ +

k√
νβ2

)]2}
.

(3.3.50)
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Scaling back to η and ψ, we get a solution of (3.3.44)-(3.3.45), which is

ψ(η, t) =
(2βt+ 1)

k2

8νβ3

2
√
πtν

×
∫ ∞
−∞

exp

{
k

2βν
(η − y)− 1

4νt

[√
2βt+ 1

(
η +

k

β2

)
−
(
y +

k

β2

)]2}
ψ0(y)dy.

(3.3.51)

Let t′ =
1√

2βt+ 1
, then (3.3.51) becomes

ψ(η, t) =

√
β√

2πν(1− t′2)
t′
(
1− k2

4νβ3

)

×
∫ ∞
−∞

exp

{
k

2βν
(η − y)− βt′2

2ν(1− t′2)

[
1

t′

(
η +

k

β2

)
−
(
y +

k

β2

)]2}
ψ0(y)dy.

(3.3.52)

Set

F (η, y, t′) = −

{
k

β
(η − y)− βt′2

(1− t′2)

[
1

t′

(
η +

k

β2

)
−
(
y +

k

β2

)]2}
+

∫ y

0

u0(s)ds

=
β

1− t′2
η2 +

βt′2

1− t′2
y2 +

k

β

(
1− t′

1 + t′

)[
η − y +

k

β2

]
− 2βt′

1− t′2
ηy

+

∫ y

0

u0(s)ds. (3.3.53)

Then, from (3.3.52) we see that

ψ(η, t) =

√
β√

2πν(1− t′2)
t′
(
1− k2

4νβ3

) ∫ ∞
−∞

exp

{
− 1

2ν
F (η, y, t′)

}
dy. (3.3.54)

One can find

Fη(η, y, t
′) =

2β(η − t′y)

1− t′2
+
k

β

(
1− t′2

1 + t′2

)
.

Therefore, the solution of the Cauchy problem (3.1.2)-(3.1.3) is

u(x, t) = − 2ν√
2βt+ 1

ψη(η, t)

ψ(η, t)
= −2νt′

ψη(η, t)

ψ(η, t)

=
t′
∫∞
−∞ Fη(η, y, t

′) exp
{
− 1

2ν
F (η, y, t′)

}
dy∫∞

−∞ exp
{
− 1

2ν
F (η, y, t′)

}
dy

=

∫∞
−∞

[
2βt′(η−t′y)

1−t′2 + kt′

β

(
1−t′
1+t′

)]
exp

{
− 1

2ν
F (η, y, t′)

}
dy∫∞

−∞ exp
{
− 1

2ν
F (η, y, t′)

}
dy

=: û(η, t′), (3.3.55)

where F is given in (3.3.53), η =
x√

2βt+ 1
and t′ =

1√
2βt+ 1

.
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3.4 Vanishing viscosity behavior

In this section, denoting the solution in (3.3.55) by u(x, t, ν), we show that u(x, t, ν)

converges to the generalized solution of inviscid forced Burgers equation (3.3.42)

as ν → 0. In order to prove this, we use the original ideas from Hopf (1950).

Since

u0(y) = o(y) as |y| → ∞,

it can be seen that

F (η, y, t′)

y2
→ βt′2

1− t′2
as |y| → ∞, for every fixed η, t′. (3.4.56)

Then there exists a natural number N such that

1

2

(
βt′2

1− t′2

)
< F (η, y, t′) <

3

2

(
βt′2

1− t′2

)
, ∀ |y| > N. (3.4.57)

Since F is continuous in y for all |y| ≤ N and by the virtue of (3.4.57), minimum

of F (η, y, t′) exists for all y. Say,

min
y
F (η, y, t′) =: m(η, t′).

Let y∗(η, t
′) and y∗(η, t′) be the smallest and largest value of y for which F (η, y, t′)

attains its minimum.

Lemma 3.4.1. We have the following

(i). y∗(η, t′) 6 y∗(η
′, t′) if η 6 η′;

(ii). y∗(η − 0, t′) = y∗(η, t
′), y∗(η + 0, t′) = y∗(η, t′);

(iii). y∗(+∞, t′) = +∞, y∗(−∞, t′) = −∞.

Proof. Setting

G(η, y, t′) := F (η, y, t′)− β

1− t′2
η2 − k

β

(
1− t′

1 + t′

)[
η +

k

β2

]
, (3.4.58)

it can be seen that G(η, y, t′) also attains its minimum at y∗(η, t
′) and y∗(η, t′). So

G(η, y, t′)−G(η, y∗, t′)

> 0 if y < y∗,

> 0 if y > y∗,

(3.4.59)
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where y∗ = y∗(η, t′). In view of (3.4.58) and (3.3.53), we have

G(η, y, t′) = G(0, y, t′)− 2βt′

1− t′2
ηy (3.4.60)

and

G(η+a, y, t′)−G(η+a, y∗, t′) = G(η, y, t′)−G(η, y∗, t′)− 2βt′a

1− t′2
(y−y∗). (3.4.61)

Then from (3.4.59),(3.4.60), we find that

G(η + a, y, t′)−G(η + a, y∗, t′) > 0 for y < y∗ and a > 0. (3.4.62)

Therefore, G(η + a, y, t′) attains its minimum for y > y∗. Hence (i) is proved.

We will prove y∗(η + 0, t′) = y∗(η, t′), i.e, we will prove that for a given ε > 0

there exists a real number a such that

|y∗(η + h, t′)− y∗(η, t′)| < ε ∀ h ∈ (0, a). (3.4.63)

Let ε > 0 be given. Set

gη,t′(y) :=
G(η, y, t′)−G(η, y∗, t′)

y − y∗
. (3.4.64)

Then in view of (3.4.59), we have gη,t′(y) > 0 for y > y∗.

From (3.4.56), we can say that there exists a natural number N such that

1

2

(
βt′2

1− t′2

)
y2 < F (η, y, t′) ∀ |y| > N.

The above inequality leads to

1

2

(
βt′2

1− t′2

)
y2

y − y∗
− F (η, y∗, t′)

y − y∗
<
F (η, y, t′)− F (η, y∗, t′)

y − y∗
= gη,t′(y).

Thus, we find that gη,t′(y)→∞ as y →∞. Then, corresponding to M > 0, there

exists a N > 0, such that

gη,t′(y) > M ∀ y > N. (3.4.65)

On the other hand, from (3.4.59), gη,t′(y) > 0 and is continuous in [y∗ + ε,N ], so

it attains a positive minimum say d > 0 in [y∗+ ε,N ] in the case that y∗+ ε < N ,
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the other case is trivial.

Let α = min{d,M}, then

gη,t′(y) ≥ α > 0, ∀ y > y∗ + ε. (3.4.66)

In view of (3.4.61) and (3.4.66), we can choose sufficiently small a, such that

G(η + h, y, t′)−G(η + h, y∗, t′)

y − y∗
= gη,t′(y)− 2βt′h

1− t′2

> α− 2βt′a

1− t′2
,

> 0, (3.4.67)

for all h ∈ (0, a) and y > y∗ + ε. Hence, from (3.4.62) and (3.4.67) it is clear that

G(η + h, y, t′)−G(η + h, y∗, t′) > 0, (3.4.68)

holds when y < y∗ or y > y∗ + ε. This means,

y∗ 6 y∗(η + h, t′) 6 y∗ + ε ∀ h ∈ (0, a).

Therefore, (3.4.63) follows. Similarly, we can prove y∗(η− 0, t′) = y∗(η, t
′). Hence,

(ii) is proved.

We will prove y∗(+∞, t′) = +∞, i.e., we will prove that for every real number

I > 0, there exists η0 > 0 such that

y∗(η, t
′) > I ∀ η > η0. (3.4.69)

Let the minimum of G(0, y, t′) be m for fixed t′. Take a real number A such that

A > y∗(0, t′). (3.4.70)

Then,

0 <
1− t′2

2βt′
[G(0, A+ 1, t′)− n]

=: η0

And in view of (3.4.60), we have

G(η0, y, t
′)− n+

2βη0t
′

1− t′2
A = G(0, y, t′)− n− 2βη0t

′

1− t′2
(y − A). (3.4.71)
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Hence, G(η0, y, t
′) and left hand side of (3.4.71) attain their minimum at same

points. Clearly,

G(η0, y, t
′)− n+

2βη0t
′

1− t′2
A

> 0 if y < A,

= 0 if y = A+ 1.

(3.4.72)

Thus, the function G(η0, y, t
′) attains its minimum only for y > A. That is

y∗(η0, t
′) > A. Hence, in view of (i), we get

y∗(η, t
′) > A ∀ η > η0. (3.4.73)

Case(a): If I 6 A, then (3.4.69) follows from (3.4.73).

Case(b): If I > A, then (3.4.69) follows by replacing A with I in (3.4.70) and

proceeding the same upto (3.4.73).

Similarly we can prove y∗(−∞, t′) = −∞. Hence, (iii) is proved.

Lemma 3.4.2. The function

m(η, t′) = F (η, y∗(η, t
′), t′) = F (η, y∗(η, t′), t′)

is continuous in the region {(η, t′) : η ∈ R, 0 < t′ < 1}.

Proof. Take an arbitrary point (η0, t
′
0) in the region {(η, t′) : η ∈ R, 0 < t′ < 1}.

We will show that m(η, t′) is continuous at (η0, t
′
0).

Denote

y∗ = y∗(η0, t
′
0), y

∗ = y∗(η0, t
′
0) and m′ = F (η0, y∗, t

′
0) = F (η0, y

∗, t′0).

Since m′ is the minimum of F (η0, y, t
′
0), there exists a constant p > 0 such that

F (η0, y, t
′
0) > m′ + p whenever y < y∗ − 1 and y > y∗ + 1. (3.4.74)

In view of (3.3.53), F (η, y, t′) → ∞ uniformly as |y| → ∞ in a neighborhood of

(η0, t
′
0). Hence, in view of (3.4.74), there exists 0 < q < t′0, such that

F (η, y, t′) > m′+
p

2
, whenever y < y∗−1, y > y∗+1 and |η−η0|+ |t′− t′0| 6 q.

(3.4.75)
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Besides, from the fact that F (η, y, t′) is continuous at the point (η0, y∗, t
′
0), we see

that there exists r > 0, r < q, such that

F (η, y, t′) < m′ +
p

2
, whenever |η − η0|+ |t′ − t′0| 6 r. (3.4.76)

In view of (3.4.75) and (3.4.76), we conclude that, for all (η, t′) satisfying

|η − η0|+ |t′ − t′0| 6 r, F (η, y, t′) attains its minimum in

y∗ − 1 6 y 6 y∗ + 1.

Thus, there exists y′ in [y∗−1, y∗+ 1] such that F (η, y, t′) attains its minimum for

all (η, t′) satisfying |η − η0|+ |t′ − t′0| 6 r. Then uniform continuity of F (η, y, t′)

over the region

{(η, y, t′) : y∗ − 1 6 y 6 y∗ + 1 and |η − η0|+ |t′ − t′0| 6 r}

will imply the existence of 0 < δ1 6 r such that

F (η0, y
′, t′0)− F (η, y′, t′) < ε whenever |η − η0|+ |t′ − t′0| < δ1.

Therefore,

m(η0, t
′
0)−m(η, t′) = min

y
F (η0, y, t

′
0)−min

y
F (η, y, t′)

6 F (η0, y
′, t′0)− F (η, y′, t′) < ε,

(3.4.77)

whenever |η − η0|+ |t′ − t′0| < δ1.

Consider,

m(η, t′)−m(η0, t
′
0) = min

y
F (η, y, t′)− F (η0, y∗, t

′
0)

6 F (η, y∗, t
′)− F (η0, y∗, t

′
0).

Since F (η, y, t′) is continuous at (η0, y∗, t
′
0), we get

m(η, t′)−m(η0, t
′
0) < ε whenever |η − η0|+ |t′ − t′0| < δ2. (3.4.78)

Thus, in view of (3.4.77) and (3.4.78), choosing δ to be the minimum of δ1 and δ2

we infer that m(η, t′) is continuous at (η0, t
′
0).

Lemma 3.4.3. The functions y∗(η, t
′) and y∗(η, t′) are lower and upper semi con-

tinuous respectively. And at the point (η, t′) where y∗(η, t
′) = y∗(η, t′), they are

continuous.

64



Proof. Let (η0, t
′
0) be a fixed point in t > 0, t′ = 1√

2βt+1
and (ηn, t

′
n) be a sequence

of points approaching to (η0, t
′
0). And also let U be an open and bounded set that

contains (η0, t
′
0) and (ηn, t

′
n) ∀ n = 1, 2, 3, · · · . Firstly, we prove that the sequence

{y∗(ηn, t′n)} is bounded, for which let us assume contrarily that {y∗(ηn, t′n)} is

unbounded. The fact that m(η, t′) is continuous proved in Lemma 3.4.2 will imply

that

sup
U

m(η, t′) =: M

exists. Due to (3.4.56), corresponding to this M > 0 there exists a N > 0 such

that

F (η, y, t′) > M, whenever |y| > N, (3.4.79)

for all (η, t′) ∈ U . Since {y∗(ηn, t′n)} is unbounded, so corresponding to this

N > 0 there exists a point (ηi, t
′
i) such that |y∗(ηi, t′i)| > N . From (3.4.79), we get

F (ηi, y∗(ηi, t
′
i), t

′
i) > M , which is a contradiction, since M is supremum of m(η, t′).

Thus {y∗(ηn, t′n)} is bounded.

Let

lim
(ηn,t′n)→(η0,t′0)

y∗(ηn, t
′
n) =: ȳ. (3.4.80)

Then the sequence {y∗(ηn, t′n)} has a subsequence {y∗(ηn′ , t′n′)}, such that

lim
(ηn′ ,t

′
n′ )→(η0,t′0)

y∗(ηn′ , t
′
n′) = ȳ. (3.4.81)

Though we use the general notation of limit in (3.4.81), our meaning here is to

say that (ηn, t
′
n) converges to (η0, t

′
0) along the specific curve.

If y is arbitrary, then from

F (ηn′ , y, t
′
n′) > F (ηn′ , y∗(ηn′ , t

′
n′), t

′
n′),

we get

F (η0, y, t
′
0) > F (η0, ȳ, t

′
0),

in view of (3.4.81), by letting (ηn′ , t
′
n′) → (η0, t

′
0). Therefore, it is clear that ȳ is

also a point at which F (η0, y, t
′
0) attain its minimum. So

y∗(η0, t
′
0) 6 ȳ = lim

(ηn,t′n)→(η0,t′0)

y∗(ηn, t
′
n). (3.4.82)
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Thus, y∗(η, t
′) is lower semi continuous at (η0, t

′
0). Similarly, we can show that

y∗(η, t′) is upper semi continuous. It is obvious that, if y∗(η0, t
′
0) = y∗(η0, t

′
0), then

lim
(η,t′)→(η0,t′0)

y∗(η, t
′) = y∗(η0, t

′
0),

lim
(η,t′)→(η0,t′0)

y∗(η, t′) = y∗(η0, t
′
0).

So y∗(η, t
′) and y∗(η, t′) are continuous at (η0, t

′
0).

Theorem 3.4.4. Suppose u(x, t, ν) be a solution of (3.1.2) subject to (3.1.3) with

u0(x) = o(x) as |x| → ∞. Then for x, t > 0 we have,

lim
(α,τ,ν)→(η,t′,0)

û(α, τ, ν) 6
2βt′[η − t′y∗(η, t′)]

1− t′2
+
kt′

β

(
1− t′

1 + t′

)
, (3.4.83)

2βt′[η − t′y∗(η, t′)]
1− t′2

+
kt′

β

(
1− t′

1 + t′

)
6 lim

(α,τ,ν)→(η,t′,0)

û(α, τ, ν). (3.4.84)

Proof. We will prove (3.4.83). We know from (3.3.55) that

û(η, t′) =

∫∞
−∞

[
2βt′(η−t′y)

1−t′2 + kt′

β

(
1−t′
1+t′

)]
exp

{
− 1

2ν
F (η, y, t′)

}
dy∫∞

−∞ exp
{
− 1

2ν
F (η, y, t′)

}
dy

,

where t′ = 1√
2βt+1

, η = x√
2βt+1

and F is as given in (3.3.53). Now we have

û(α, τ, ν) =

∫∞
−∞

[
2βτ ′(ξ−τ ′y)

1−τ ′2 + kτ ′

β

(
1−τ ′
1+τ ′

)]
exp

{
− 1
ν
P (ξ, y, τ ′)

}
dy∫∞

−∞ exp
{
− 1
ν
P (ξ, y, τ ′)

}
dy

, (3.4.85)

where τ ′ = 1√
2βτ+1

, ξ = α√
2βτ+1

and

P (ξ, y, τ ′) =
1

2
[F (ξ, y, τ ′)−m(ξ, τ ′)] (3.4.86)

with

m(ξ, τ ′) = F (ξ, y∗(ξ, τ
′), τ ′) = F (ξ, y∗(ξ, τ ′), τ ′).

Now, we notice that

P (ξ, y, τ ′) =

> 0 if y < y∗(ξ, τ
′) or y > y∗(ξ, τ ′),

= 0 if y = y∗(ξ, τ
′) or y = y∗(ξ, τ ′)

(3.4.87)

and from Lemma 3.4.2, P (ξ, y, τ ′) is continuous in ξ, y, τ ′. In view of (3.3.53),

we see that

lim
|y|→∞

P (ξ, y, τ ′)

y2
=

βτ ′2

2(1− τ ′2)
, (3.4.88)

holds uniformly with respect to ξ, τ ′ on every closed set.
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We choose an arbitrary point (η, t′) and then let

Y∗ = y∗(η, t
′), Y ∗ = y∗(η, t′).

For any small real number ε > 0, if a and b are chosen sufficiently small, then we

find that

l :=
2βt′(η − t′Y ∗)

1− t′2
+
kt′

β

(
1− t′

1 + t′

)
− ε

<
2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
<

2βt′(η − t′Y∗)
1− t′2

+
kt′

β

(
1− t′

1 + t′

)
+ ε =: L.

(3.4.89)

holds when

|ξ − η|+ |τ ′ − t′| < a, and Y∗ − 2b < y < Y ∗ + 2b.

From Lemma 3.4.3, since y∗(ξ, τ
′) is lower semi continuous at (η, t′), corresponding

to this b > 0 there exists a1 > 0 such that

Y∗ − b < y∗(ξ, τ
′),

whenever |ξ − η| + |τ ′ − t′| < a1. At the same time, since y∗(ξ, τ ′) is upper semi

continuous at (η, t′), corresponding to the same b > 0 there exists a2 > 0 such

that

y∗(ξ, τ
′) < Y∗ + b,

when |ξ − η|+ |τ ′ − t′| < a2.

Therefore, if a = min{a1, a2}, then

Y∗ − b < y∗(ξ, τ
′) 6 y∗(ξ, τ ′) < Y ∗ + b, (3.4.90)

when

|ξ − η|+ |τ ′ − t′| < a. (3.4.91)

Now, in view of (3.4.89) and (3.4.90), the numerator in right hand side of (3.4.85)

is less than

L

∫ ∞
−∞

exp

{
−P
ν

}
dy +

∫ Y∗−2b

−∞

[
2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
− L

]
exp

{
−P
ν

}
dy

+

∫ ∞
Y ∗+2b

[
2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
− L

]
exp

{
−P
ν

}
dy,

(3.4.92)
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whenever ξ, τ ′ satisfy (3.4.91), where P is as given in (3.4.86).

Claim: There exist sufficiently small positive numbers a and b such that∣∣∣∣∣2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
− L

∣∣∣∣∣ ≤ K(y − Y ∗),

for all y > Y ∗ + 2b, |ξ − η|+ |τ ′ − t′| < a and for some constant K.

We have

lim
y→∞

∣∣∣∣∣
2βτ ′(ξ−τ ′y)

1−τ ′2 + kτ ′

β

(
1−τ ′
1+τ ′

)
− L

y − Y ∗

∣∣∣∣∣ =
2βτ ′2

1− τ ′2
. (3.4.93)

Then for d > 0 there exists M such that∣∣∣∣∣
2βτ ′(ξ−τ ′y)

1−τ ′2 + kτ ′

β

(
1−τ ′
1+τ ′

)
− L

y − Y ∗

∣∣∣∣∣ <
2βτ ′2

1− τ ′2
+ d.

≤ 2β(t′ + a)2

1− (t′ + a)2
+ d =: K2, (3.4.94)

for all y > M and |ξ − η| + |τ ′ − t′| < a. In fact a is chosen sufficiently small so

that t′ + a < 1, remember that 0 < t′ < 1. Therefore,∣∣∣∣∣2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
− L

∣∣∣∣∣ ≤ K2(y − Y ∗), for all y > M

and |ξ − η|+ |τ ′ − t′| < a. (3.4.95)

If Y ∗ + 2b ≥M , then the claim holds. If Y ∗ + 2b < M , then∣∣∣∣∣
2βτ ′(ξ−τ ′y)

1−τ ′2 + kτ ′

β

(
1−τ ′
1+τ ′

)
− L

y − Y ∗

∣∣∣∣∣
is continuous on [Y ∗ + 2b,M ]. Hence it is bounded by K1, for some real K1.

Thus, ∣∣∣∣∣2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
− L

∣∣∣∣∣ ≤ K(y − Y ∗), (3.4.96)

for all y > Y ∗ + 2b and |ξ − η|+ |τ ′ − t′| < a, where K = sup{K1, K2}. Claim

holds.

Similarly one can obtain that∣∣∣∣∣2βτ ′(ξ − τ ′y)

1− τ ′2
+
kτ ′

β

(
1− τ ′

1 + τ ′

)
− L

∣∣∣∣∣ ≤ K(Y ∗ − y), (3.4.97)
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for all y < Y ∗ − 2b,|ξ − η|+ |τ ′ − t′| < a and for some constant K̂.

Therefore, from (3.4.92), (3.4.96) and (3.4.97), we have

û(α, τ, ν) < L+K

∫ Y∗−2b
−∞ (Y∗ − y) exp

{
−P

ν

}
dy∫ y∗(ξ,τ ′)

−∞ exp
{
−P

ν

}
dy

+ K̂

∫∞
Y ∗+2b

(y − Y ∗) exp
{
−P

ν

}
dy∫∞

y∗(ξ,τ ′)
exp

{
−P

ν

}
dy

,(3.4.98)

(3.4.99)

when |ξ − η|+ |τ ′ − t′| < a is satisfied.

Claim : lim
ν→0
ξ→η
τ ′→t′

K̂

∫∞
Y ∗+2b

(y − Y ∗) exp
{
−P

ν

}
dy∫∞

y∗(ξ,τ ′)
exp

{
−P

ν

}
dy

= 0.

To prove this, we first show that P (ξ,y,τ ′)
(y−Y ∗)2 is bounded below by a positive constant

ξ, y, and τ ′ satisfy y > Y ∗+2b and |ξ−η|+|τ ′−t′| < a. Since P (ξ,y,τ ′)
(y−Y ∗)2 →

βτ ′2

2(1−τ ′2) as

|y| → ∞ uniformly on any closed set of (ξ, τ ′), there exist a natural number N such

that P (ξ,y,τ ′)
(y−Y ∗)2 is bounded below by βτ ′2

4(1−τ ′2) =: A1 for all y > N and |ξ−η|+|τ ′−t′| <

a is satisfied.

On the other hand P (ξ,y,τ ′)
(y−Y ∗)2 attains its positive minimum on B =

{
(ξ, y, τ ′)/Y ∗+

2b ≤ y ≤ N, |ξ − η|+ |τ ′ − t′| < a} say A2.

Take A = min{A1, A2}. Then

A

2
<
P (ξ, y, τ ′)

(y − Y ∗)2
, when ξ, y, τ ′ satisfy y > Y ∗ + 2b and |ξ − η|+ |τ ′ − t′| < a}.

Further, a calculation shows that∫ ∞
Y ∗+2b

(y − Y ∗) exp

{
−P
ν

}
dy <

∫ ∞
Y ∗+2b

(y − Y ∗) exp

{
− A

2ν
(y − Y ∗)2

}
dy

=

∫ ∞
2b

r exp

{
− A

2ν
r2
}
dr

=
ν

A
exp

{
−2Ab2

ν

}
, (3.4.100)

whenever ξ, τ ′ satisfy |ξ− η|+ |τ ′− t′| < a. Meanwhile, the uniform continuity of

P on the set

{(ξ, y, τ ′) : |ξ − η|+ |τ ′ − t′| 6 a and Y∗ − 2b 6 y 6 Y ∗ + 2b}

and the fact (3.4.87) imply that there exists a positive δ such that P < 2Ab2 holds

whenever ξ, y, and τ ′ satisfy y∗(ξ, τ ′)−δ < y < y∗(ξ, τ ′)+δ and |ξ−η|+|τ ′−t′| < a.
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Thus∫ ∞
y∗(ξ,τ ′)

exp

{
−P
ν

}
dy =

∫ y∗(ξ,τ ′)+δ

y∗(ξ,τ ′)

exp

{
−2Ab2

ν

}
dy +

∫ ∞
y∗(ξ,τ ′)+δ

exp

{
−2Ab2

ν

}
dy

>

∫ y∗(ξ,τ ′)+δ

y∗(ξ,τ ′)

exp

{
−2Ab2

ν

}
dy

= δ exp

{
−2Ab2

ν

}
(3.4.101)

whenever |ξ − η|+ |τ ′ − t′| < a is true.

Therefore, the third term in right hand side of the inequality (3.4.99) is less than

ν/Aδ and hence it tends to 0 as ν → 0, whenever ξ, τ ′ satisfy |ξ−η|+ |τ ′− t′| < a.

Claim holds. Similarly, second term in (3.4.99) also vanishes as ν → 0.

Thus we have proved (3.4.83). Similarly we can prove (3.4.84).

In view of Theorem 3.4.4, we observe that, at the point (η, t′) where y∗(η, t
′) =

y∗(η, t′),

lim
(α,τ,ν)→(η,t′,0)

û(α, τ, ν)

exists and

lim
(α,τ,ν)→(η,t′,0)

û(α, τ, ν) =
2βt′[η − t′y∗(η, t′)]

1− t′2
+
kt′

β

(
1− t′

1 + t′

)
=

2βt′[η − t′y∗(η, t′)]
1− t′2

+
kt′

β

(
1− t′

1 + t′

)
=: û(η, t′)

=: u(x, t).

(3.4.102)

By virtue of Lemma 3.4.1, y∗(η, t
′), y∗(η, t′) are monotonic in R for fixed t′. Then

the set of points η at which y∗(η, t
′)and y∗(η, t′) are discontinuous is at most

countable.

Further, suppose y∗(η, t
′) is continuous at η̃. Take a sequence ηk such that ηk ≤

η̃ and ηk converges to η.

Then

y∗(ηk, t
′) ≤ y∗(η̃, t

′).

Therefore,

lim
k→∞

y∗(ηk, t
′) ≤ y∗(η̃, t

′).
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Hence,

y∗(η̃, t′) = y∗(η̃, t
′).

Thus, we obtain,

y∗(η, t
′) = y∗(η, t′) a.e.

Finally, for every t > 0,

lim
ν→0

u(x, t, ν) = u(x, t) a.e., (3.4.103)

But we know that the weak formulation of (3.1.2) is

−
∫ ∞
0

∫ ∞
−∞

[
u(x, t, ν)Ψt +

(u(x, t, ν))2

2
Ψx

]
dxdt+

∫ ∞
−∞

Ψ(x, 0)u(x, 0, ν)dx

= ν

∫ ∞
0

∫ ∞
−∞

u(x, t, ν)Ψxxdxdt+ k

∫ ∞
0

∫ ∞
−∞

Ψ

(2βt+ 1)3/2
dxdt,

(3.4.104)

for any Ψ ∈ C∞0 (R2
+), R2

+ = R×(0,∞). Let supp(Ψ) =: K1×K2 ⊆ R2
+. Therefore,

passing to ν → 0 for the limit function u(x, t), we have∫
K2

∫
K1

[
u(x, t)Ψt +

(u(x, t))2

2
Ψx +

k

(2βt+ 1)3/2
Ψ

]
dxdt−

∫
K1

Ψ(x, 0)u(x, 0)dx = 0.

(3.4.105)

Hence, u(x, t) is the generalized solution of

ut + uux =
k

(2βt+ 1)3/2
, x ∈ R, t > 0, (3.4.106)

where β > 0 and k is a non-zero constant, with the initial condition (3.1.3).
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Chapter 4

Conclusions and future work

� We assumed that u0 ∈ L1(R), x2n+1u0 ∈ L1(R) with
∫∞
−∞ u0(x)dx = 0, then

we showed the existence of approximate solution un(x, t) to the true solution

u(x, t) of ut + uux = µuxx, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.
(4.0.1)

such that ||u(., t)− un(., t)||p = O(t−(n+1)+1/2p), as t→∞.

For which, an asymptotic N -wave approximate solution was constructed for

heat equation in such a way that, the moments of exact solution of the heat

equation agree with those of approximate solution and achieved higher or-

der estimates. In the case of Burgers solutions also, we obtained the same

higher order convergence, even though the moments of exact and approxi-

mate solution of Burgers equation are not equal. The proposed approximate

solution is much simpler and the rate of convergence of the N -wave approx-

imate solution is higher when it is compared with the Gaussian approxi-

mation proposed by Kim (2011) in certain cases. Finally, we constructed

an approximate solution for a de-coupled system and obtained higher order

convergence.

� Using generalization of truncated moment problem, we just showed the ex-

istence of approximate solutions for (4.0.1). However, one can further study

which one among all those approximate solutions would be convenient to
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applications.

� It will be more challenging to consider the problem (4.0.1) with

(1 + |x|2n+1)u0 ∈ L1(R) and then looking for an approximate solution u(x, t)

such that ||u(., t) − v(., t)||p = O(t−m+1/2p), as t → ∞, where m > n + 1.

Perhaps one has to introduce time shifts in approximate solution in addition

to considering space shift parameters. It is worthy to consider n = 2 case

first and then one can look for generalizing it.

� It will be exciting to consider the non planar Burgers equationut + uux + ju
2t

= γuxx,

u(x, 0) = u0(x),
(4.0.2)

where
∫∞
−∞ u0(x)dx = 0 and u0 ∈ C(R). By mimicking the solution, con-

structed in Chapter 2, one may investigate the behavior of solution of (4.0.2).

It will be more worthy to obtain approximate N -wave solutions with precise

error estimations.

� We constructed approximate solutions for

ut + uux = uxx, x ∈ R, t > 0, (4.0.3)

ρt + (uρ)x = ρxx, x ∈ R, t > 0. (4.0.4)

u(x, 0) = u0(x), x ∈ R, (4.0.5)

ρ(x, 0) = ρ0(x), x ∈ R, (4.0.6)

under the assumption that

V0, x
2n+mV0, C0, x

2n+mC0 ∈ L1(R),∫ ∞
−∞

xkV0(x)dx =

∫ ∞
−∞

xkC0(x)dx = 0, 0 ≤ k < m.

One can look for the solution of (4.0.3)-(4.0.5) under the conditions that

u0 ∈ C∞(R) and ρ0 ∈ C∞(R). One can also investigate the behavior of

solutions for the generalization of (4.0.3)-(4.0.5) in higher dimensions.
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� We constructed generalized solutions for the following problem

ut + uux = k
(2βt+1)3/2

, x ∈ R, t > 0

ρt + (uρ)x = 0, x ∈ R, t > 0,
(4.0.7)

subject to

(u, ρ)t(x, 0) =

(uL, ρL)t if x < 0,

(uR, ρR)t if x > 0.
(4.0.8)

Also, we obtained the generalized solutions for

ut + uux =
k

(2βt+ 1)3/2
, x ∈ R, t > 0 (4.0.9)

subject to u(x, 0) = u0(x), where u0(x) = o(|x|) as |x| → ∞. For which, we

made use of viscosity method.

If one can try to study (4.0.7) subject to the general initial data

(u(x, 0), ρ(x, 0)) = (u0(x), ρ0(x)), (4.0.10)

where u0(x) = o(|x|), as |x| → ∞,

ρ0(x) = o(|x|), as |x| → ∞,
(4.0.11)

it gives good insight into the properties of solutions and hence it will be

helpful in dealing with the problem (4.0.9) with f(x, t) in place of specific

expression k
(2βt+1)3/2

.

� One can even though study the initial value problem (4.0.9)-(4.0.11) regard-

ing uniqueness of solutions by following the well known results from Evans

(1998).

� While studying (4.0.7)-(4.0.10), we completed the cases uL < uR and uL >

uR. One can also investigate the case uL = uR.

75



76



Bibliography

Akhiezer, N. (1965). The classical moment problem and some related questions

in analysis. 1965. Hafner, New York.

Atzmon, A. (1975). A moment problem for positive measures on the unit disc.

Pacific J. Math., 59(2):317–325.

Bateman, H. (1915). Some recent researches on the motion of fluids. Monthly

Weather Review, 43(4):163–170.

Burgers, J. M. (1948). A mathematical model illustrating the theory of turbulence.

In Advances in Applied Mechanics, pages 171–199. Academic Press, Inc., New

York, N. Y.

Chern, I. L. and Liu, T. P. (1987). Convergence to diffusion waves of solutions for

viscous conservation laws. Comm. Math. Phys., 110(3):503–517.

Cole, J. D. (1951). On a quasi-linear parabolic equation occurring in aerodynamics.

Quart. Appl. Math., 9:225–236.

Crighton, D. G. and Scott, J. F. (1979). Asymptotic solutions of model equations

in nonlinear acoustics. Philos. Trans. Roy. Soc. London Ser. A, 292(1389):101–

134.

Curto, R. E. and Fialkow, L. A. (1991). Recursiveness, positivity, and truncated

moment problems. Houston J. Math., 17(4):603–635.

Ding, X. and Ding, Y. (2003). Viscosity method of a non-homogeneous Burgers

equation. Acta Math. Sci. Ser. B (Engl. Ed.), 23(4):567–576.

77



Duoandikoetxea, J. and Zuazua, E. (1992). Moments, masses de Dirac et
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