

DEVELOPMENT OF DEMAND

FORECAST AND INVENTORY

MANAGEMENT DECISION SUPPORT

SYSTEM

USING AI TECHNIQUES.

Thesis

Submitted in partial fulfilment of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

by

PRASANNA KUMAR

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE -575025

June, 2018

Dedicated to

My Dear Parents,

Beloved Wife

 And

Loving Children

DECLARATION

By the Ph. D. Research Scholar

I hereby declare that the Research Thesis entitled “DEVELOPMENT OF

DEMAND FORECAST AND INVENTORY MANAGEMENT DECISION

SUPPORT SYSTEM USING AI TECHNIQUES” which is being submitted

to National Institute of Technology Karnataka, Surathkal in partial

fulfillment of the requirements of award of the degree Doctor of Philosophy

in Department of Mechanical Engineering is a bonafide report of the

research work carried out by me. The material contained in this Research

Thesis has not been submitted to any University or Institution for the award of

any degree.

Register Number : 100469ME10P02

Name of the Research Scholar : Prasanna Kumar

Signature of the Research Scholar :

Department of Mechanical Engineering

Place: NITK- Surathkal

Date:

Acknowledgement

I extend my warm and sincere gratitude to Dr. Mervin A. Herbert, Department of

Mechanical Engineering, for all his valuable guidance, help and encouragement

throughout this work. It has been indeed a great honor for me to work under his guidance

and advice.With deep sense of gratitude and humility, I express my sincere thanks to him

for his continuous support, motivation and inspiration, which made the research not

merely educational but also enjoyable.

My sincere thanks to Mr. Gururaj, director of Valve chem Industries, Mumbai, who has

given me an opportunity to study the Inventory Management System in his organization

and provided me with the real time industrial data for my research work without which

this doctoral work would not have been possible.

My genuine gratitude to Dr. Shrikanth Rao, who has been the driving force behind me

and my thesis. My heart felt thanks to him for his initiative, continuous technical support.

I also take this opportunity to thank the Director, NITK Surathkal and Head of

Mechanical Engineering Department, NITK Surathkal for allowing me to carry out my

doctoral studies.

I sincerely thank the Research Progress Assessment Committee consisting of Dr. Vijaya

Desai (Department of Mechanical Engineering), Dr. Shri Hari (Department of Civil

Engineering), Dr. Mervin Herbert for their valuable comments and constructive criticism

which have helped the enrichment of this doctoral work.

I am immensely indebted to the unending help and support I received from my co-

research colleagues Mr. Subramanya, Mrs. Rashmi, Miss Charita, Mr. Karthik, Mr.

Vignesh, Dr. Arun Kumar and Dr. Nagraj Shetty during the course of my research work.

I am indebted to my parents for inculcating in me the right values and virtues. I am

extremely grateful to my beloved wife Jyothi and lovely children Vignesh and maneesha

for enduring a lot of hardships caused on the domestic front due to my research priorities.

I wish to express my special thanks to all my family members and friends who were a

constant source of motivation and encouragement during the entire course of my doctoral

work.

PRASANNA KUMAR

i

Contents

Page

No.

Declaration

Certificate

Acknowledgements

Abstract

Content i

List of Figures vii

List of Tables xi

Nomenclature xv

1 INTRODUCTION 1

1.1 GENERAL BACKGROUND 1

1.2 BACK GROUND OF DEMAND FORECAST 2

1.3 BACK GROUND OF INVENTORY MANAGEMENT 3

 1.3.1 EOQ model 4

 1.3.2 Safety stock 7

 1.3.3 Reducing safety stock 8

1.4 BACK GROUND OF ARTIFICIAL INTELLIGENCE 9

 1.4.1 Fuzzy Logic 10

 1.4.2 Artificial Neural Network 10

 1.4.3 Evolutionary Algorithm 11

 1.4.4 Ant Colony Optimisation 11

1.5 PROPOSED WORK SUMMARY 13

1.6 ORGANIZATION OF THE THESIS 14

2 LITERATURE 17

2.1 METHODS OF DEMAND FORECAST 18

 2.1.1 Qualitative techniques 18

ii

 2.1.2 Casual approach 20

2.2 EVALUATING FORECSTING ACCURCY 21

2.3 TIME SERIES METHODS OF DEMAND FORECAST 22

 2.3.1 Naive Methods 22

 2.3.2 Simple Moving average 23

 2.3.3 Weighted Moving average 24

 2.3.4 Exponential Moving average 25

2.4 AI APPLICATIONS IN DEMAND FORECAST 26

 2.4.1 Limitations of Quantitative Methods of Demand forecast 26

 2.4.2 Advantages of AI techniques in demand forecast 27

 2.4.3 ANN in demand forecast 28

2.4.4 Genetic algorithm and hybrid AI technique in demand

forecast
30

2.5 INVENTORY MANAGEMENT 32

 2.5.1 Inventory - An Introduction 32

 2.5.2 Inventory Costs 33

 2.5.3. Inventory models 35

 2.5.4 ABC analysis 38

 2.5.5 Advanced inventory models 39

 2.5.6 Multi Period Periodic Review Inventory Models 40

 2.5.7 AI application in Inventory management 42

 2.5.8 AI in multi period periodic review inventory models: 45

 2.5.9 Application of ACO in Dynamic Lot sizing 47

2.6 SUMMARY AND GAP IN KNOWLEDGE 48

2.7 OBJECTIVES OF THE PRESENT WORK 50

2.8 SCOPE 50

3 RESEARCH METHODOLOGY 53

3.1 DECISION ON RESEARCH APPROACH 53

3.2 RESEARCH METHODOLOGY 54

3.3
REVIEW OF CURRENT INVENTORY MANAGEMENT

PRACTISE COMPANY UNDER STUDY
56

iii

 3.3.1 Inventory planning and scheduling 57

 3.3.2 Inventory recording 58

 3.3.3 Inventory valuation 59

 3.3.4 Inventory control 59

 3.3.5 ABC analysis 60

 3.3.6 Inventory levels 61

 3.3.7 Two Bin system 62

 3.3.8 Inventory costs 62

 3.3.9 Challenges faced by the company in Inventory control 63

3.4 DATA COLLECTION METHODS 64

3.5 CHOICE OF PRODUCT FOR INVENTORY MANAGEMENT 65

 STUDY

3.6 DATA COLLECTION 65

 3.6.1 Sales data 66

 3.6.2 Ordering cost data 66

 3.6.3 Inventory carrying cost data 68

3.7 NUERAL NETWORK MODEL 71

 3.7.1 Architecture of Multi layer Perceptron model 72

 3.7.2 Back propagation training algorithm 74

3.8 RADIAL BASIS FUNCTION NUERAL NETWORK 74

 3.8.1 Structure of RBF network 76

 3.8.2 RBFNN training strategies 78

3.9 GENETIC ALGORITHM 79

 3.9.1 Chromosome representation 81

 3.9.2 Initial population generation 81

 3.9.3 Fitness calculation of chromosome 81

 3.9.4 Selection operator 82

 3.9.5 Cross over operator 82

 3.9.6 Mutation operator 83

 3.9.7 Replacement strategy 83

iv

 3.9.8 Stopping criteria 83

3.10 ANT COLONY OPTIMISATION 83

3.11 TAGUCHI DESIGN 86

 3.11.1 Signal to noise ratio 87

 3.11.2 Taguchi method implementation 87

3.12 ANOVA 88

 3.12.1 ANOVA table analysis 89

3.13 SUMMARY 90

4.
RESULTS AND DISCUSSION PART 1: ANN APPROACH

FOR DEMAND FORECAST
91

4.1 INTRODUCTION 91

4.2
MLP ARCHITECTRURE FOR ANN MODEL FOR DEMAND

FORECAST
91

 4.2.1 Identification of best training method 92

 4.2.2 TRAINLM as best training method 93

4.2.3 MLP Model 1: Demand Forecast for Globe Valve 10‘‘X

150 GTV 101
94

4.2.4 MLP Model 2: Demand forecast for For 6‘‘X 600 GTV 102

Valve Series
105

 4.2.5 Summary of results 108

4.3 RADIAL BASIS FUNCTION NUERAL NETWORK 109

4.3.1 RBF model 1: Demand forecast of 10‘‘X 150 GTV 101

Valve series
111

4.3.2. RBF model 2: Demand forecast of 6‘‘X 600 GTV 102

Valve series
122

 4.3.3 Summary of results 127

4.4

COMPARISON OF PREDICTION ACUURACY BY NEURAL

NETWORK MODELS AND TRADITIONAL METHODS OF

DEMAND FORECAST

129

4.5 ANN MODEL VALIDATION 131

5
RESULTS AND DISCUSSION PART II: MULTI ITEM

MULTI PERIOD LOT SIZING- ACO MODELLING
135

5.1 INTRODUCTION 135

v

5.2 MATHEMATICAL FORMULATION 136

5.3 ACO ALGORITHM MODELLING 139

5.4 COMPUTATIONAL RESULTS 139

 5.4.1 Setting ACO program parameter 141

 5.4.2 Results analysis 146

5.5 SENSITIVITY ANALYSIS 154

 5.5.1 Sensitivity to ordering cost 155

 5.5.2 Holding cost sensitivity 157

 5.5.3 Sensitivity to discounts and price breaks 158

5.6 Summary of results 160

6
RESULTS AND DISCUSSION PART III: MULTI ITEM

MULTI PERIOD LOT SIZING- GA MODELLING
161

6.1 INTRODUCTION 161

6.2 MATHEMATICAL MODEL 161

6.3 GENETIC ALGORITHM MODELLING 162

 6.3.1 Parameter calibration using Taguchi Design 163

6.3.2 Effect Of variation of GA parameters on objective function

value
167

 6.3.3 Computational results 170

6.4 SENSITIVITY ANALYSIS 182

 6.4.1 Sensitivity to ordering cost 183

 6.4.2 Holding cost sensitivity 184

 6.4.3 Sensitivity to discounts and price breaks 185

6.5 COMPARISION OF PERFORMANCE OF ACO & GA MODEL 187

 6.5.1 Comparison of best solution total cost or objective function 188

6.5.2 Comparison of CPU time of execution for GA and ACO

model
189

6.5.3 Comparison of Spread between Best and Worst Solution for

GA and ACO models

6.5.4

190

6.6 SUMMARY OF RESULTS 192

vi

7 CONCLUSION AND SCOPE FOR FUTURE WORK 195

7.1 CONCLUSION 195

7.2 DIRECTIONS FOR FUTURE RESEARCH 198

 References 199

 Appendix I 225

 Appendix II 227

 Appendix III 259

vii

List of Figures

Figure

No.
Figure Caption

Page

No.

1.1 Annual cost based on size of order (Courtesy: Silver et al. 1990) 6

1.2 Fixed order quantity model with safety stock (Courtesy: Lee et al.

1997)

8

1.3 Basic Behavior of Ant Colony Optimization at different time periods.

(Courtesy: Ali Roozbeh Nia, et al. 2014)

12

1.4 The procedure involved in the ACO algorithm. (Courtesy: Ali Roozbeh

Nia, et al. 2014)

13

2.1 Forecasting techniques 19

2.2 Linear Regression as a Casual Forecasting model (Chandra, C. et al.

2005)

20

2.3 Inventory Management Basics(Courtesy:Krone,L.,1964) 33

3.1 Schematic representation Research Study 55

3.2 Two Bin System:(Courtesy: Fei-Long et al.2010) 63

3.3 Components of Inventory Carrying Cost (Source: Leenders et al. 1985) 69

3.4 Work flow in neural network design 71

3.5 Multilayered ANN structure (Courtesy: Simon Haykin,1999) 72

3.6 A Learning cycle in an ANN model (Courtesy: Herbrich, R et al,

2000)

73

3.7 General architecture of RBF network (Simon Haykin, 1999) 75

3.8 Radial Basis Function 77

3.9 Flow chart of proposed genetic algorithm 80

3.10 Chromosome representation 81

3.11 Single point crossover 82

3.12 Flow chart of proposed ant colony optimization algorithm 84

4.1 Scheme of training MLP 95

viii

4.2 Identification of Optimum number of Neurons 97

4.3 MLP model 1: Demand forecast for Globe valve 10‘‘X 150 GTV 101 98

4.4 Actual sales Vs. Demand forecast using MLP (Trainlm Method) 100

4.5 10 X 150 GTV101 Actual sales vs. Demand forecast using

MLP (Trainrp Method)

101

4.6 10 X 150 GTV101 Actual Sales Vs. Demand Forecast Using

MLP (Traingdx Method)

102

4.7 Actual Sales Vs. Demand Forecast Using MLP (Trainscg Method) 103

4.8 Identification of Optimum number of Neurons for MLP model 2 106

4.9 MLP model 2 : 6‘‘X 600 GTV 102valve series 106

4.10 Scheme of RBF network training 110

4.11 Variation of error with number of epochs for Random selection of centers for

RBF model 1. (RBF centers=110)

112

4.12 Demand forecast for 10 X 150 GTV101 Valve Series Performance of RBF

model 1 (Centers selected randomly, variable width)

113

4.13 RBF model 1: Demand forecast for Globe valve 10‘‘X 150 GTV 101 114

4.14 Demand Forecast for 10 X 150 GTV101 Valve Series Performance of RBF

model 1 (Centers selected randomly, fixed width)

116

4.15 RBF model 1 (Centers selected using FCM algorithm) 117

4.16 Demand Forecast for 10 X 150 GTV101 Valve Series- Performance of RBF

model 1 (Centers selected using FCM, Variable width)

118

4.17 Demand Forecast for 10 X 150 GTV101 Valve Series--Performance of RBF

model 1 (Centers selected using FCM, Fixed width)

120

4.18 RBF model 1 :Demand Forecast of 10‘‘X 150 GTV 101 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture

121

4.19 Variation of error with number of epochs for random selection of centers for

RBF model 2 (RBF centers =115)

122

4.20 RBF model 2 : demand forecast of 6‘‘X 600 GTV 102 VALVE SERIES

(Centers selected randomly)

123

4.21 RBF model 2 : demand forecast of 6‘‘X 600 GTV 102 VALVE SERIES 125

ix

(Centers selected with FCM)

4.22 RBF model 2 : demand forecast of 6‘‘X 600 GTV 102 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture

126

4.23 Comparison of forecasting accuracy for MLP and different RBF

network for model 1 & 2

128

4.24 Comparison of Prediction Accuracy By Neural Network Models And

Traditional Methods Of Demand Forecast

130

4.25 Demand Forecast For 10‘‘x 150 GTV 101 Series Valves ANN Model

Validation (For Year 2014)

132

4.26 Demand Forecast For 6‘‘x 600 class GTV 102 Series Valves :ANN

Model Validation (For Year 2014)

133

5.1 ACO model performance measure 139

5.2 Variation of Objective function value with No . of cycles- ACO model 145

5.3 Variation of Time of execution with No . of cycles- ACO model 146

5.4 Ordering cost : Sensitivity Analysis- ACO model 156

5.5 Holding Cost –sensitivity analysis- ACO model 158

6.1 GA algorithm parameters 163

6.2 Main effect plot of SN ratios- Taguchi design 166

6.3 Main effect plot of means- Taguchi design 166

6.4 Convergence of Objective function value with No. of Generations- GA

model

168

6.5 Convergence of Objective Function Value with Population Size- GA

model

169

6.6 GA model performance measure 170

6.7 Ordering cost : Sensitivity Analysis- GA model 184

6.8 Holding Cost –sensitivity analysis- GA model 185

6.9 Comparison of Objective Function value GA & ACO 189

6.10 Comparison of CPU time of execution for GA and ACO model 191

6.11 Comparison of Spread between Best and Worst Solution for GA and

ACO models

191

x

xi

List of Tables

Table

No.

Table Caption Page

No.

2.1 Comparative study on basis features: Fixed–Order Quantity and Fixed–

Time Period models
37

3.1 Sample Bi-monthly Sales Data for 10‘‘X 150 GTV 101 67

3.2 Structure of results of ANOVA table 90

4.1 Identification of optimum number of nodes for MLP neural network 96

4.2 Mean Square Error for different training algorithms for MLP

model 1
99

4.3 10 X 150 GTV101 Actual Sales Vs. Demand Forecast Using MLP (Trainlm

Method)
100

4.4 10 X 150 GTV101 Actual sales vs. Demand forecast using

MLP (Trainrp Method)
101

4.5 10 X 150 GTV101 Actual Sales Vs. Demand Forecast Using

MLP (Traingdx Method)
102

4.6 10 X 150 GTV101 Actual Sales Vs. Demand Forecast Using

MLP (Trainscg Method)
103

4.7 Mean Absolute Percentage Error for MLP model 1 with different training

algorithms
104

4.8 Comparison Of Percentage Error In Forecasting Using MLP With Different

No. of Neurons And Hidden Layers : MLP model1
104

4.9 Identification of optimum number of Neurons for MLP model 2 105

4.10 MSE and number of epochs for different training algorithms for MLP

model 2
107

4.11 Mean Absolute Error for MLP model 2 with different training algorithms 107

4.12 Comparison Of Percentage Error In Forecasting Using MLP With Different

No. of Neurons And Hidden Layers: MLP model 2
108

xii

4.13 Variation of MSE with number of RBF units for RBF model 1(Centers

selected randomly)
112

4.14 Demand forecast for 10 X 150 GTV101 Valve Series- Performance of

RBF model 1 (Centers selected randomly, variable width)
113

4.15 Variation of MSE with widths for RBF model 1 (Centers selected

randomly)
115

4.16 Demand Forecast for 10 X 150 GTV101 Valve Series--Performance of

RBF model 1 (Centers selected randomly, fixed width)
115

4.17 Variation of MSE with number of RBF units for RBF model 1 (Centers

selected using FCM)
116

4.18 Demand Forecast for 10 X 150 GTV101 Valve Series--Performance of

RBF model 1 (Centers selected using FCM, variable width)
118

4.19 Variation of MSE with widths for RBF model 1. (Centers selected using

FCM)
119

4.20 Demand Forecast for 10 X 150 GTV101 Valve Series-Performance of

RBF model 1 (Centers selected using FCM, Fixed width)
120

4.21 RBF model 1 :Demand Forecast of 10‘‘X 150 GTV 101 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture
121

4.22 Variation of MSE with number of RBF units for RBF model-2 (Centers

selected randomly)
122

4.23 Variation of MSE with widths for RBF model 2 (Centers selected

randomly)
123

4.24 Variation of MSE with number of RBF centers for RBF model 2

(Centers selected using FCM)
124

4.25 Variation of MSE with widths for RBF model 2 (Centers selected using

FCM)
125

4.26 RBF model 2 :Demand Forecast of 6‘‘X 600 GTV 102 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture
126

4.27 Comparison of forecasting accuracy for MLP and different RBF network

for model 1 & 2
128

4.28 Comparison of Prediction Accuracy By Neural Network Models And
130

xiii

Traditional Methods Of Demand Forecast

4.29 Demand Forecast For 10‘‘x 150 GTV101 Series Valves ANN Model

Validation (For Year 2014)
131

4.30 Demand Forecast For 6‘‘x 600 class GTV 102 Series Valves ANN Model

Validation (For Year 2014)
132

5.1 Input data for Lot Sizing Problem: Data set no. 1,2,3,4&5 142

5.2 Input data for Lot Sizing problem: Data set no. 6 & 7 143

5.3 Input data for Lot Sizing problem : data set no. 8 144

5.4 Variation of Objective function value and Time of execution with No . of

cycles
145

5.5 ACO run results for Data set no. 1: c=1, p=3, w=2 147

5.6 ACO run results for Data set no. 2: c=1, p=3, w=3 148

5.7 ACO run results for Data set no. 3: c=2, p=3, w=2 148

5.8 ACO run results for Data set no. 4: c=2, p=3, w=3 149

5.9 ACO run results for Data set no. 5: c=3, p=3, w=3 149

5.10 ACO run results for Data set no. 6: c=4, p=3, w=3 150

5.11 ACO run results for Data set no. 7: c=5, p=3, w=3 151

5.12 ACO run results for Data set no. 8: c=6, p=3, w=3 152

5.13 ACO run performance parameter for 8 different programs 153

5.14 Ordering cost –sensitivity analysis- ACO model 155

5.15 Holding Cost –sensitivity analysis- ACO model 157

5.16 Price discounts and price break sensitivity- ACO model 159

6.1 GA parameters and levels for Taguchi Design 164

6.2 Experimental response for Taguchi design 165

6.3 Optimum GA parameters 167

6.4 Convergence of Objective function value with No. of Generations 168

6.5 Convergence of Objective Function Value with Population Size 169

6.6 Input data for Lot Sizing Optimisation: Data set no. 1,2,3,4&5 172

xiv

6.7 Input data for Lot Sizing problem: Data set no. 6 & 7 173

6.8 Input data for Lot Sizing problem : data set no. 8 174

6.9 GA run for Multi item Multi period Lot size Optimisation Data set no. 1:

c=1, p=3, w=2
176

6.10 GA run for Multi item Multi period Lot size Optimisation Data set no. 2:

c=1, p=3, w=3
177

6.11 GA run for Multi item Multi period Lot size Optimisation:

Data set no. 3: c=2, p=3, w=2
177

6.12 GA run for Multi item Multi period Lot size Optimisation:

Data set no. 4: c=2, p=3, w=3
178

6.13 GA run for Multi item Multi period Lot size Optimisation

Data set no. 5: c=3, p=3, w=3
178

6.14 GA run for Multi item Multi period Lot size Optimisation

Data set no. 6: c=4, p=3, w=3
179

6.15 GA run for Multi item Multi period Lot size Optimisation

Data set no. 7: c=5, p=3, w=3
180

6.16 GA run for Multi item Multi period Lot size Optimisation

Data set no. 8: c=6, p=3, w=3
181

6.17 Performance Parameters of GA for different data sets 182

6.18 Ordering cost –sensitivity analysis- GA model 183

6.19 Holding Cost –sensitivity analysis- GA model 184

6.20 Sensitivity to discounts and price breaks- GA model 186

6.21 Comparison of performance parameters of ACO and GA model 187

6.22 ANOVA results to compare best solution cost 188

6.23 ANOVA results to compare the solution methodologies based on CPU

time of execution
190

6.24 ANOVA results to compare the solution methodologies based spread

between best and worst solution
192

xv

 Nomenclature

AI Artificial Intelligent

ANN Artificial neural networks

GA Genetic algorithm

ACO Ant colony optimisation

NP Non deterministic Polynomial time

RBFNN Radial basis function neural network

IM Inventory management

OA Orthogonal Array

MLP Multi layer perceptron

MSE Mean squared error

MAPE Mean Absolute Percentage Error

DF Degree of Freedom

Seq SS Sequential Sum of Square

Adj SS Adjusted Sum of square

F Fisher‘s ratio

P Probability

Pred Predicted

R Err Relative Error

xvi

NOTATIONS USED

c number of items

p number of periods

Ru,v demand rate of the item u at period v

Gu ordering cost of the u
th

component at the beginning of an interval

Ou,v ordering quantity of u
th

 component in interval - main decision

variable

w number of price discount breakpoint

bu,w w
th

discount breakpoint of u
th

 component w=1,2,…….,w (bu,1=0)

T total storage space

Tu required warehouse space per unit of the u
th

component

Cu,w purchasing cost of the u
th

component at the breakpoint ‗w‘

Cu purchasing cost of u
th

component paid at the start of the interval

OC total ordering cost

PC total purchasing cost

HC total holding cost

IC total inventory cost

A total budget

Z1 upper band for Ouv

Iu,v initial inventory of the component ‗u‘ in interval ‗v‘

Bu,v,w a binary decision variable; set equal one if component c is

purchased at price breakpoint w in period v, and zero otherwise

Qu,v a binary decision variable; set equal one if a purchase of a

component u is made in period v, and zero otherwise

M total warehouse space

mu warehouse space for u
th

 component

1

Chapter 1

INTRODUCTION

1.1 GENERAL BACKGROUND

Effective and efficient inventory management is vital for the organization to enhance

functional efficiency across competitive business, to boost customer service and to

improve the inventory cost effectiveness at different points of a supply chain network

(Burgin et al. 1967). Critical decision which the companies are to implement on a regular

basis is the procurement of products and raw materials. Errors in inventory decisions can

lead to over stock that are expensive to maintain or understock which would lead to

reduction in customer satisfaction level.

Inventory management decisions have to be arrived at under uncertain demand situations.

They are also characterized by optimization of multiple objectives, most of the times,

conflicting objectives like cost and service level (Brahimi et al. 2006).

The inventory control mechanism is the key issue in the field of industrial engineering

and operational research (IE/OR) and still a green area in spite of several studies around

this subject. As a crucial activity for any organisaton, inventory planning attempts to

frame the decisions on procurement lot size and timing of stock replenishment. A

common approach is a continuous-review (r,Q) reorder mechanism in which a

procurement order of lot size Q is placed whenever the stock level gets reduced to the

reorder point, r (Chopra et al. 2001). Lead time, historical fluctuation in lead time and

the variation of demand govern the determination of (r, Q) so that inventory cost is

minimized and customer service is maximized. Cost reduction and service level

optimization are mutually incompatible goals which conflict with each other, as

2

increasing the service level would require no stock out under any condition which can be

achieved with only high inventory. Thus inventory decisions involve multi objective

optimization strategies (Silver et al. 1990).

Also inventory management involves decision making under imprecise and uncertain

demand, lead time and inventory cost. Fuzzy logics can be used to model these inherent

uncertainties in the decision parameters so that decision environment comes as close as

possible to real life situations (Du. T.C. et al. 1997).

Artificial intelligence techniques and tools such as neural networks, Genetic Algorithm,

Fuzzy Logics, Ant Colony Optimisation provide a robust platform to deal with such

uncertainty, imprecise details and multi objective optimization (Fei-Long Chen et al.

2010).

1.2. BACKGROUND OF DEMAND FORECAST

Demand forecast is an evaluation of anticipated future demand. A forecast can be

estimated by mathematical means based on past data or it can be obtained by the

subjective inferences of highly informed sources like subject matter experts. Sometimes

the judicial combination of objective and subjective estimate makes the best forecast. A

judicious hybridization of above procedures can also be adopted for demand forecast

(Chandra et al. 2005).

Demand Forecast is essential for (Chen. F. et al. 2000):

 Future planning by reducing the effect of uncertainty.

 Anticipating in advance and effective change management.

 Improved communication and integration of planning teams.

 Balancing the demand fluctuation, capacity loading, inventory stock outs and

delayed deliveries.

 Incorporating the operation cost variations into budgeting process.

3

 Enhancing the productivity and competitiveness by cost optimization, quality

performance and higher level of customer satisfaction.

General methods of forecasting include qualitative techniques which are based on

subjective judgment of experts in the field regarding future product demands and

quantitative methods which are based on either time series or casual methods (Crum,C et

al. 2003).

Recently there has been an increase in the research interests on the application of

machine learning techniques such as neural networks for the demand forecast (Tugba

Efendigil et al. 2009).

1.3 BACKGROUND OF INVENTORY MANAGEMENT

Inventory is the physical stock of goods kept for the purpose of future use. The term is

generally used to indicate raw materials, work in process stock and finished goods,

packaging, spares which are stored for meeting an anticipated demand in the future

(Handfield et al. 2009).

Inventory management is the function of controlling the movement of goods through

each and every component of supply chain from the procurement of the raw material to

the inventory of finished goods in a systematic process to achieve the conflicting goals

of maximum customer satisfaction with minimum cost and efficient operation (Javad

Sadeghi et al. 2014).

The purposes of inventory are (Harris,F.W. 1990):

 To handle fluctuation in product demand without delayed deliveries or lost sales.

 To have increased flexibility in production scheduling to take advantage of better

capacity loading and reduced machine loading time.

 To ensure smooth production even in case of delayed delivery from vendor

side.

4

 To capitalize on optimum purchase order quantity.

 To maintain buffer in the production line through in process inventory to avoid

independence of operations.

Many inventory control models have been proposed to effectively manage inventory

minimizing the total cost and maximizing the service level to customers. Several AI

techniques have been used to model the uncertainties involved in inventory management

like demand, lead time, inventory cost etc.

Optimisaton of conflicting objectives in inventory management using the different AI

approaches is a field of study which has attracted lot of research interests [Jui-Tsung

Wonga et al.2011, Hui-Ming et al. 2009, Kazemia et al. 2010].

1.3.1 EOQ model

 It is one of the oldest, simple inventory control models. Ford W. Harris in 1913 has

suggested this model for the first time (Harris, F.W., 1990). It is an important

deterministic continuous review model. As the ordering quantity increases, inventory

holding cost also increases but ordering cost comes down due to lesser number of orders.

Economic order quantity is that optimum order size which minimizes the total inventory

cost. The total inventory cost generally consists of two main components, carrying cost

and ordering cost.

The EOQ model works under the assumption that the demand for the product is constant

over the year and that each order is supplied in entirety when the stock level falls to

zero. Each order will incur a fixed cost irrespective of number of units ordered (Krone,

L., 1964).

The optimum number of units in each order has to be determined so that total cost related

to purchase, delivery and storage of material is minimized.

The data required for the solution of the EOQ model are (Leender et al. 1985):

5

 Annual demand for the product.

 Fixed cost incurred for placing each order.

 Purchase cost of item.

 Storage or carrying cost for each item.

Following basic assumptions are the basis for computing EOQ (Phillips, D. et al. 2006).

 The demand rate is deterministic, and uniform during all the periods of the

year.

 The ordering cost is fixed.

 The lead time is constant.

 No discounts in purchase price are considered.

 The stock renewal is made instantly and full batch of the items is delivered

immediately.

 No multiple products are involved.

EOQ is the order quantity for minimizing (ordering cost + carrying cost).

 P = Procurement Price.

 Q = quantity ordered.

 = Economic order quantity.

 D =yearly demand.

 S = Ordering cost.

 H = yearly carrying cost per unit or holding cost (Cost incurred for warehousing,

cold storage, insurance etc. usually are not a part of the unit cost).

The following cost function is minimised for obtaining the Economic order Quantity:

Total Cost = Purchase cost + Ordering cost + Holding cost (Silver et al. 1990).

6

Purchase cost: This is the cost to purchase the item. It is variable and equal to the

product of unit price and annual demand quantity.

 Ordering cost: This is the cost incurred for placing orders. Each order incurs a fixed cost

S. Total ordering cost is the product of S and the number of orders. The number of

orders/ year = D/Q. Total ordering cost is S × D/Q.

Holding cost: Total holding cost is the product of per unit holding cost and the average

stock during specified horizon. In this case, average stock is

(initial inventory + final inventory)/2

Minimum value of the function is obtained by equating the partial differentiation with

respect to Q to zero. (based on assumption that all other variables are constant)

Solving for Q gives Q* (the optimal order quantity):

Therefore:

Q* is independent of P; it is a function of only S, D, H.

Fig 1.1 graphically represents the relationship between the different cost components, and

relationship between cost and order quantity size.

7

 Fig 1.1 Annual cost based on size of order (Courtesy: Silver et al. 1990)

The simple EOQ model can be made to represent more practical situations with the

addition of several constraints like back ordering costs, Quantity discounts, price breaks

and multiple items.

1.3.2 SAFETY STOCK

Safety stock (also called buffer stock) denotes a level of additional stock that is held to

alleviate risk of stock out due to uncertainties in demand level and delay in delivery.

Optimum safety stock levels enable business continuity without interruptions due to stock

out. Safety stock insures the business operations against stock outs. Average historical

variations in demand level and lead time would provide the required data to fix the safety

stock for each item (Tan et al. 2000).

When the company introduces a new product, safety stock can be used as a tactical tool

until a few months or weeks of operation, when the marketing department can come up

with more accurate demand forecast. When demand cannot be forecast with precision,

higher safety stock is required to maintain a higher service level to customers. However,

appropriate business approach is to minimize the safety stock level to reduce the locked

up capital when the product demand prediction gets better. For companies which adopt

lean manufacturing and for those who have very limited financial cushion this becomes a

crucial business strategy to reduce the safety stock to minimum (Chang et al. 2001).

8

The amount of safety stock which a business entity opts to hold, can have a large scale

impact on their bottom line. Excess safety stock causes increase in inventory holding

costs. In addition, when the items are in the inventory for a long time, there is a chance of

product quality getting deteriorated, validity getting expired, or getting out dated which

will increase, considerably, the inventory cost. Less than optimum safety stock may make

it difficult to service the customers specially when there is high demand and when there

is heavy supplier lead time fluctuation. Dissatisfied customers are heavy on balance sheet

of organization. As a result, finding the precise trade off premise between excess and

insufficient safety stock is very crucial for the organization (Chopra et al. 2001).

Organizations adopting ‗make to stock‘ business strategy find the concept of safety stock

very useful and justified to support their business operations. When the lead time from

supplier side is too long, this strategy is used by the organizations so that they can

deliver to their customers from the stock without the impact of delayed deliveries of

the raw materials from their suppliers.

The other foremost objective of safety stocks is to absorb the variation of the product

demand level. The predicted demand is the basis for the production planning. But actual

demand scenario may be far different based on the prediction accuracy or changing

situations. Safety stock would bridge the gap and avoid lost sales keeping high customer

service level. It will also guard against the effects of any unforeseen interruptions like

machinery failure or delayed supplies. Fig 1.2 depicts the importance of safety stock in

the inventory model.

9

Fig. 1.2 Fixed order quantity model with safety stock (Courtesy: Lee et al. 1997)

1.3.3 Reducing safety stock

Safety stock is utilized as a safeguard to defend organizations from ill effects of zero

inventory level caused by imprecise planning or delayed deliveries by suppliers.

Generally cost of inventory is perceived as a burden on financial bottom line of the

organisation. In addition, perishable goods like food and drink, could get spoilt and

cannot be stored beyond their shelf life. Organizations can make use of several

approaches to minimize the safety stock. Achieving accurate prediction of demand is one

of them. Increased collaboration with suppliers to minimize lead time fluctuation and

guarantee on time delivery is another approach. Company which adopts lean supply

strategy, tries to reduce the lead time. Lead time reduction would help to minimize safety

stock levels (Christopher, 1992).

 To have a tradeoff between service level and safety stock, the organizations practice

safety stock calculation based on their opted service level (Cox, A. et al. 2001). Just as an

illustration, an organization can specify that its safety stock requirement is for a service

level of 95%, which means that 95 out of 100 times, the company would be able to serve

the customers with the help of its safety stock, and this is satisfactory for the company.

Higher than this level, would not be cost effective for the company. The lower the service

level company settles for, lower will be the safety stock requirement.

10

An efficient Enterprise Resource Planning system (ERP system) can effectively assist

an organization in framing their inventory management policy so as to minimize its

buffer of safety stock. Most ERP systems are equipped with a well organised Production

Planning module. This module enables an efficient demand prediction system so that

company can work with a highly accurate and dynamic sales forecasts. Precise and

dynamic forecast would reduce the probability of stock out of raw material or inadequate

inventory of finished products. This would drastically reduce the amount of safety stock

that the company should maintain for the same service level. In addition, ERP systems

recommend proven formulas to help compute the required levels of safety stock based on

their experience in similar industries and similar business conditions. While an ERP

system helps an organization in assessing a reasonable amount of safety stock, the ERP

module must be designed and implemented to plan requirements effectively and

efficiently (Gilbert, K. et al. 2005).

1.4 BACK GROUND OF ARTIFICIAL INTELLIGENCE

Artificial Intelligence is a comprehensive concept covering a variety of disciplines and

applications like machine learning, natural language processing, pattern-matching, and

expert systems (Rolston, D.W. 1988). In the year of 1956, John McCarthy coined the

word and idea of Artificial Intelligent system. Artificial intelligence is the computational

model of human behavior.

AI techniques, also known as soft computing is a collection of distinctive approaches,

comprising mainly of Neural Networks (NN), Expert System (ES), Fuzzy Logic (FL),

and Evolutionary Algorithms (EA), which offer flexible information handling and

processing capabilities and human thinking approach to solve real-life problems. They

are intelligent agents and solve real life problems which are hard to be simulated as

mathematical model (Mark Ko et al. 2010).

1.4.1 Fuzzy logic

11

Fuzzy set theory was initially proposed by Lotfi Zadeh (Zadeh Lotfi, 1965). It provides a

basis for framing mathematical model to deal with and characterize uncertainty,

ambiguity vagueness, imprecision, fractional truth, and deficiency of information (A.

Tettamanzi et al. 2001). As the fundamental concept of artificial intelligence, fuzzy logic

provides computational capability for the simulation of the thought and perception

processes. Fuzzy systems are beneficial in conditions involving highly complex systems

and in scenario where exact solution is too costly to achieve and that is why approximate

solution at lesser cost is justified (Ross, T.J.2004). To represent and treat qualitative,

approximate, indeterminate and complex processes, the fuzzy logic system can be well

implemented since it displays a human like thinking process. In contrast to on-off logic,

fuzzy logic utilizes multi valued logic concept to simulate approximate reasoning (Du.

T.C et al. 1997).

1.4.2 Artificial Neural Network

Neural network is a collection of nonlinear processing units called neurons which are

capable of parallel processing. They have distributed information handling and

processing structure. Neural network have the capability to accept the input and to

function as mathematical processor executing the specified operations to produce the

output (P. Musilek et al. 2000). They can also identify the pattern from the given data

and then complete the next data range by simulating the human brain process of

reasoning and pattern matching, They can be trained in eliminating noisy data and in

retrieving correct information by duplicating human brain process.

In terms of modeling, significant research work has been carried out in the recent past to

develop the capability of artificial neural networks (ANN). In artificial neural networks,

neurons are powerfully interlinked. By themselves, they exhibit simple behavior, but

when connected they are powerful enough to solve complex problems (Kartalopoulos,

1996).

1.4.3 Evolutionary algorithms

12

Evolutionary algorithms (EA) were conceived to simulate some of the processes which

are evident in natural evolution. In the natural evolution process, chromosomes are the

organic systems which are responsible for encoding the structure of living beings. Failed

structure chromosomes do not reproduce more, but chromosomes which represent

successful structures reproduce more frequently. This is ensured by the natural evolution

process. This process of survival of the fittest is utilized to solve many complex real life

situations by using simple encoding and reproduction mechanisms (Davis, 1991).

One of the distinctive subclass of broader set of EA technique is Genetic Algorithm. GA

was first introduced by John Holland (John Holland, 1975). Since then lot of research has

been done on the application of GA for multi objective optimization (Tettamanzi, 1991).

Wherever search and optimization problems are involved, GA has been used as robust

solutions methodology with the advantage of adaptiveness and flexibility. In complex

multi objective optimization problems, where the number of variables is very high and

where traditional search and optimisations techniques have failed to yield a satisfactory

result, GA has been gainfully adopted to obtain near optimal solutions using the

simulation of some of the features of biological evolution. That is why, GA has attracted

a lot of attention among research fraternity (Goldberg, 1989).

1.4.4 Ant colony Optimisation

Ant colony optimization (ACO) is a meta heuristic algorithm which is used for near exact

optimization solution. It draws its working principle from swarm intelligence and was

first introduced by Dorigo in the 1990s (Dorigo M. et al. 1994). It is one of the innovative

approaches for the Multi objective optimization which is motivated by the real ants who

search an approximately optimal path between their Nest and the food source, as shown

in Fig. 1.3 [Ali Roozbeh Nia, et al. 2014, Colorni et al.1992]

During their food pursuing journey, ants accumulate chemical substances called

pheromones on their return trip back to their nest. Next group of ants while searching for

the food, are guided by the smell of pheromones and are attracted to the marked paths.

13

The higher the density of the pheromone that is deposited on a path, the more number of

ants would follow that path. The pheromone vapors are evaporated over time.

Evaporation reduces the pheromone concentration on extended and less interesting paths

.Shorter paths are visited again and again, revitalized more rapidly, therefore having the

chance of being repeatedly explored. Obviously, ants will connect themselves to the most

efficient trail because it acquires the heavier density of pheromone (Ali Roozbeh Nia, et

al. 2014).

Fig 1.3 Basic Behavior of Ant Colony Optimization at different time periods.

Concentration of pheromones on each path is represented by the green line.

(Courtesy: Ali Roozbeh Nia, et al. 2014)

ACO algorithm simulates the above performance by generating pheromone concentration

maximization. This is effected by two important operations.

 The quantity moderation of pheromone which determines the pheromone

accumulation and drying up rate.

 The state transitional rule that is probabilistic in nature and picks up an end point

depending on pheromone concentration. (Colorni et al. 1992, 1994).

Fig.1.4 shows the procedural steps of standard ACO algorithm.

14

Fig.1.4 The procedure involved in the ACO algorithm. (Courtesy: Ali Roozbeh Nia, et

al. 2014)

1.5 PROPOSED WORK SUMMARY

Accurate demand forecast, efficient and effective inventory management are the crucial

factors for an organization to compete in the marketplace. Traditional demand forecast

methods and inventory management models suffer from severe limitations due to

inability to process non linear data and meet the complexities of modeling and simulating

real life situations. Over the past two decades, AI technology has emerged as an

important development in the field of information science. So, it is proposed to study in

detail the current practice of demand forecast and inventory management in the case of a

valve manufacturing company which represents a semi make to order manufacturing

industry. AI technique of neural network will be applied for demand forecast. Different

architectures of neural network will be explored for achieving higher demand forecasting

accuracy. The output of neural network demand forecast will be input for a novel GA

inventory model for optimum lot sizing. Developed GA model will be compared and

validated with the conventional inventory control model.

15

1.6 ORGANIZATION OF THE THESIS

In the present investigation, a systematic study is carried out on the two important aspect

of supply chain management: demand forecast and inventory management. Data

collection carried out from the researched valve manufacturing company which represent

semi make to order industry. An integrated application of AI methodologies is carried out

to improve demand forecast accuracy and optimize the lot size for a periodic review multi

item, multi period inventory model. The various stages of the study and investigation are

divided into six chapters. The summary of discussions carried out chapter wise is detailed

below.

Chapter 1 elucidates on the historical background as well as the encounters tackled and

inspiration to take up the present work. An overview of the proposed work with specific

objectives is also articulated in this chapter.

Chapter 2 deals with a step by step detailed and critical review of literature in the area of

demand forecast, inventory management. The importance of demand forecast and

inventory management as important supply chain management functions have been

reviewed. Traditional demand forecast techniques have been analysed in terms of

advantages and limitations. Neural network application for the demand forecast has been

discussed. Brief explanations of different inventory management models are discussed.

The past and current research work related to application of different AI techniques is

reviewed with more focus on multi item multi period periodic review lot sizing

optimization. The mathematical model created for analysis, optimization and prediction

in the field of demand forecast and inventory management is highlighted. Application of

GA technique for the field of multi objective optimization is also emphasized. Gaps in

the knowledge which has inspired the present work is listed. Clear objective for the

present study is set and the elaborate scope is defined.

Chapter 3 deals with the research methodology. Block diagram representing the various

steps of the planned research work has been furnished. Data collection methods that are

16

adopted have been defined and explained. Sample data for demand forecast is shown.

Detailed description regarding the application of AI tools-neural networks, Genetic

Algorithm, Ant colony Optimisation to the present work has been elucidated. Taguchi

Design of experiments to arrive at the optimum values of parameters for GA program has

been explained.

Next 3 chapters are dedicated for the results and discussion in 3 parts. Chapter 4

elaborates on results of the present research work on ANN modeling of demand forecast.

The demand predicted based on different ANN models have been compared with actual

sales data and best architecture of ANN model has been identified. Further, the model has

been validated based on the comparison of future predicted demand and actual sales data

for that particular time period.

Chapter 5 and 6 discuss the ACO (Ant Colony Optimisation) modeling and GA modeling

of inventory management respectively. Mathematical formulation of the Multi objective

optimization GA and ACO model for multi period, multi item periodic review lot sizing

has been explained in these chapters followed by the application the of the tool for the

data sets obtained from real world industrial scenario of inventory control. The ACO and

GA model have been validated and their performance compared based on the important

parameters of objective function and CPU time of execution.

In Chapter 7, the overall conclusion derived from the present research work is elaborated

and further direction of research work is presented.

17

Chapter2

LITERATURE

INTRODUCTION

Demand forecasting is one of the most important functions of organization. Accurate

demand forecast keeps demand and supply in equilibrium. It has a great role in

decreasing surplus and scarcity of inventories and enhancing the profitability (C.Crum et

al.2003).

In a continuously shifting and highly competitive business environment, arriving at the

correct decisions in right time based on demand forecast becomes mandatory for the

organization (Tugba Effendigil et al. 2009). Accurate demand forecast is an important

constituent of supply chain management and an important prerequisite for inventory

management. An increase in forecasting accuracy will result in cost effectiveness because

of optimized inventory (R. Carbonneau et al. 2008). It will improve the key performance

indicator of customer satisfaction and on time deliveries.

 Forecast is an evaluation of future values of specific quantified pointers relating to a

business decision environment by analytically combining and extrapolating the data

about the past. It is a numerical indication of the future trend. Upward misjudging of the

demand forecast will prove very expensive for the company due to disproportionate

inventory costs, forced price slash and squeeze in margins due to market glut,

unwarranted increase in production and storage capacity and missed opportunity for

the sale of higher margin products. On the other hand, downward bias for demand

forecast would lead to inability to serve the market requirements and exploit the market

opportunities, increased customer dissatisfaction, losing to competitors in market place

(Ravi Mahendra Gor et al. 2010). Marketing and production managers need to

comprehend well the significance of accurate demand forecast if they have to steer the

company to high growth trajectory.

18

2.1 METHODS OF DEMAND FORECAST

Generally, forecasting methods can be classified into three classes. Different approaches

are used under each class [Aburto et al. 2007, Weihui Deng et al. 2016, Chirag Deba et

al. 2017, Maria Rosien kiewicz et al. 2017]. The main classification is as follows:

Qualitative approaches: Used mainly for planning of long term objective and goals and

also for planning the major investment facilities decision.

Quantitative approaches: Used mainly in short term tactical decision making like

production forecast, inventory control. Many analytical and mathematical tools like time

series are used in this method.

Casual Technique approach: These methods are used in intermediate-term aggregate

planning.

Fig 2.1 shows the various Forecasting techniques that can be used for demand prediction

in an organization.

2.1.1 Qualitative techniques in Forecasting

Qualitative methods are characterized predominantly by subjective decision making. In

this approach, more stress and reliance is on human judgment and ability to make an

accurate opinion and extrapolation of business indicators. Tugba Effendil et al. (2009),

Chandra C. et al. (2005), Dejonckheere et al. (2003), Cox A. et al. (2001) worked

extensively on different qualitative technique approaches.

Chandra, C. et al. (2005) examined the qualitative demand forecasting method where the

estimation is built based on the decisions and deliberations of the person who are at the

grass roots or who are in close proximity to the end user. He established that the

fundamental basis for this method is the fact that person close to customer or end user

would be able to predict the future demand very accurately. Even though, this method

cannot always be true, its basis is on valid assumption which makes it many times highly

reliable

19

Fig 2.1 Forecasting techniques (Aburto et al. 2007).

 Cox et al. (2001) refined the qualitative approach for demand forecast and used the panel

consensus method. The basis of panel consensus method is the concept that two heads

always think better than one. A panel of people from different positions and departments

are consulted and a forecast is developed which is definitely more accurate than

developed by a smaller group. It was established that unrestricted flow of information and

ideas in open meetings is essential for the panel consensus to succeed.

Improvement on this method was suggested by the work of Dejonckheere J. et al. (2003),

where the demand forecast was obtained by research made by specialists in this field,

through different data collection methods like market survey and interviews. This type of

survey is conducted mainly for development and testing of new product concepts, taste

and distaste of current products and customer preference of particular product class. Tan,

K.C. (2001) used Delphi method which is based on the response of a group of experts to

20

a survey form set by a moderator which reflects their opinion about the demand. He

compared it with other qualitative methods and arrived at the conclusion that Delphi

method can yield highly reliable result within a reasonable time provided that optimum

number of experts are contacted.

2.1.2 Causal Methods

Causal methods are based on the presumption that demand forecast is substantially linked

with specific aspects in the external domain e.g., the financial position of the country,

general business conditions, rate of interest. Lee, H. L. et al. (1997), Chopra, S. et al.

(2001) and Chandra, C. et al. (2005) reported numerous research work carried out on this

approach of demand forecast.

In his research studies, Lee, H. L. et al. (1997), primarily identified the relationship

between dependent and independent variables and modeled the forecast based on the

measured association. He used linear regression analysis which is one of the main casual

methods, and determined the correlation between a dependent variable and one or more

independent variables through mathematical formulation.

.

Fig 2.2 Linear Regression as a Casual Forecasting model (Chandra, C. et al. 2005)

Independent Variable

Depen

dent

Variabl

e

21

Chopra, S. et al. (2001) further refined the process of establishing the relationship from

data collected. Linear regression represents the distinct division of regression where the

variables are linearly related. Fig 2.3 shows the application of linear regression as a

Casual Forecasting model.

Chandra, C. et al. (2005) compared the technique of linear regression as applied for

forecasting of time series and for casual relationship forecasting. In time series analysis,

the dependent variable which is plotted on Y-axis is analysed with respect to time on X-

axis. In the casual relationship forecasting, regression analysis develops the mathematical

equation to describe the relationship between dependent and independent variable.

2.2 EVALUATING THE FORECAST ACCURACY

There are many approaches to evaluate prediction accuracy. Mean Absolute Error

(MAE), the mean absolute percentage error (MAPE) and the mean square error (MSE)

are the important indicators used to judge the forecast accuracy (Makridakis, S. et al.

1998).

Error = Actual Observed value – Predicted value.

Absolute Percentage Error = (Actual value - forecast value / Actual Value) × 100.

MAPE = the average of the Absolute Percentage Errors.

MSE = the average of the squared errors.

MSE and MAPE are defined as in following Equations [Tugba Efendigil et al. 2009,

Lewis C.D.,1982].

 Eq 2.1

 Eq. 2.2

22

where Ot denotes the actual observed value for time period t and Ft represents the

predicted value for the same time period, n is the number of periods.

2.3. TIME SERIES METHODS OF DEMAND FORECAST

Time-series techniques employ past data to build a forecast [Tugba Effendil et al. 2009,

Aries et al. 2016, John E. Boylan et al. 2012, Van Wingerden et al. 2014]. Some of the

examples of time series data are past periodic sales records of products, quantity

requirement data records of services like telephone, power or transportation. Numerous

standard approaches are available which are widely recognized as the time series

methods. These models analyse past statistical data to workout forecasts for the future.

The essential hypothesis here is that past correlations will continue to retain in the future

(Boylan, J.E. et al. 2007). The various procedures differ largely in the way in which the

past values are correlated to the predicted ones.

A time series corresponds to the historical recorded values of the variables under study.

The values for the variable under study are collected for different time intervals as per the

problem under study and depending on the analysis required. The periods may be very

short like seconds or minutes or longer like days, weeks or months (Makridakis, S. et al.

1998). Following are different approaches to analyze the time series for demand forecast.

2.3.1 Naive methods

As the name suggests, naive forecasting method is simple and does not involve much

mathematical calculation. Makridakis, S. et al. (1998), Gurani, H. et al.(1999), and R.

Carbonneau et al. (2008) carried out detailed research into various aspects of Naive

methods. Makridakis, S. et al. 1998 investigated the obvious and simplest form of naive

forecast which assigns the most recently noticed value as the predicted value for the next

periodic interval. Essentially, this approach to naive forecast depends only on the just

previous observation and prior values are ignored. In another approach of naive forecast

called free hand projection method, a free hand curve is fitted to represent the time series

and forecast is done by extrapolation (Gurani, H. et al.1999). The free hand curve is

23

extended to develop the forecast values of the time series. R. Carbonneau et al. (2008)

compared naive method with other time series methods to highlight its limitations with

respect to the achieved prediction accuracy.

2.3.2 Simple Moving Average Method

A simple moving average is calculated based on the formula:

where, Vt = Forecast value for the next period, n = Periodic intervals under study, ot-1,

ot-2, ot-3 and so on are the actual observed demand in the previous period, two periods

before, three periods before and so on, respectively (E.Bradley. 2003). Investigative

research reports on moving average methods have been presented by various analysts like

E. Bradley (2003), G.E.P. Box et al. (2004), Hill T. et al. (2006).

E. Bradley (2003) studied the conflicting requirements of larger period lengths on

prediction accuracy. For higher forecasting accuracy, it is essential that the best period of

moving period is chosen. Longer moving average period will help in smoothening out or

averaging out the random elements. Main limitation of moving average method is the

undesirable characteristic of trailing the trend. Shorter time span has the disadvantage of

larger fluctuation, but at the same time, has the advantage of closely following the trend.

Hill T. et al. (2006) investigated the effect of extensive randomness with underlying trend

in the data pattern which would necessitate greater number of periods of moving average.

He concluded that higher number of intervals in the moving average will increase the

smoothing effect and regulate the fluctuations. Box et al. (2004) through his research

work suggested that giving more weightage to recent data would definitely increase the

forecasting accuracy as it would more closely reflect the recent conditions. He also

quantified the effects of not considering all the past data for the moving average

calculation by comparing the moving average of different periods.

24

 2.3.3 Weighted Moving Average

The limitation of equal weightage for all the data in the moving average calculation is

overcome by differential weightage assigned to the different data in weighted moving

average method. Any fractional weights can be placed on the individual data depending

on its importance in prediction performance, subject to condition that sum of all the

weights is unity (Kuo C. et al.1995).

The weighted moving average is calculated as

Where Vt = Forecast value for the next period, n = Periodic intervals under study

 = Assigned weight to the actual observed value for the period t-i .

oi = Actual observed value for the period t-i

All the weights assigned should sum up to unity.

Contributions of Kuo C. et al.(1995), Gurani, H. et al. (1999), Chen, F. et al. (2000) are

worth mentioning in suggesting the various modification for weighted moving average

method to obtain higher prediction accuracy. Kuo C. et al. (1995) suggested two

methods to assign the weights. One is based on the subject matter expertise regarding the

demand of the product and other one is by trial and error. He further reported that the

weights are chosen based on any of the two methods or a judicial combination of both.

Gurani, H. et al. (1999) argued that as a usual conventional rule, recent past data is the

most crucial pointer to the future prediction. Hence, higher weightage is assigned to data

which is nearer in the time horizon. Chen, F. et al. (2000) explored how the influence of

25

historical data on the future prediction can be adjusted very well with the weighted

moving average method.

2.3.4 Exponential Smoothing

Serious limitation of basic methods of forecasting like simple and weighted moving

average is the requirement to recurrently hold a large amount of past data. The older data

is replaced by new data and the new forecast is computed. In many applications, the latest

happenings are more representative of the future than those which are distant in the time

horizon (Frohlich, M.et al. 2002). This premise works out a basis for the other method of

forecasting which is called exponential smoothing. Logical reasoning behind this method

is that the significance of the data in forecasting practice weakens as the past becomes

more distant.

Under exponential smoothing method, following formula is used for calculating the

forecast.

New predicted value = Earlier predicted value + a fraction of the prediction error.

New prediction = Earlier prediction + α (Most recent observation – Earlier prediction)

where α (alpha) is known as the smoothing constant.

Or mathematically,

Vt = Vt-1 + α (ot-1 – Vt-1)

i.e Vt = α ot-1 + (1- α) Vt-1 Eq. 2.6 (Heikkila, J. 2003)

where

Vt = Forecast obtained by exponential smoothening for period t.

Vt-1 = Forecast obtained by exponential smoothening for the previous period.

ot-1 = Previous period actual demand.

26

α = Smoothening constant.

The works of Ryan et al. (2000), Lee H. L. et al. (2003), Zhao X. et al. (2002) have used

exponential smoothening as the demand forecasting approach and investigated into

different factors which decide the achievable prediction accuracy. Ryan et al. (2000)

concluded that exponential models have remarkably higher accuracy in most of demand

forecast situations. They have relatively easier computational complexity. When used in

computerized demand management system, storage requirement are minor because of the

very less use of past data history. In the exponential smoothing method, the data required

for forecast is very limited, only three pieces of information are needed to predict the

future demand: the most current prediction, the observed demand during that forecast

period and a smoothing factor alpha (α). The degree of smoothening is governed by

smoothening constant. It also determines how fast the forecast system responds to the

variances between predicted value and observed value.

Zhao, X. et al. (2002) reported that more recent data assumes higher significance and

greater influence in the future forecast. He revealed that main advantage of this method

is that it is an adaptive forecasting system. Due to its adapting nature, the system adjusts

or modifies itself continuously when the data set is renewed to incorporate more recent

data. Hence, exponential smoothing forecasting technique has become an integral part of

most of ERP system.

Lee H. L. et al. (2003) conclusively argued that the selection of smoothing constant α is

crucial for accurate forecasting. It is done by trial and error method with the expert

knowledge of the research analyst in the appropriate domain field of demand

management. Smoothing constant is adjusted so that forecasting error reduced to

minimum over a time horizon. It has been observed that values in the range 0.1 to 0.3

offer a suitable basis to start with.

2.4 ARTIFICIAL INTELLIGENCE APPLICATIONS IN DEMAND FORECAST

2.4.1 Limitations of Quantitative Methods of Demand forecast.

27

Although the quantitative methods referred to in the previous sections function well, they

suffer from some serious drawbacks. Garetti, M. et al. (2000), Zhao et al.(2002),

Chandra, C. et al.(2005), Tugba Effendigil et al. (2009) revealed limitations of

quantitative methods of forecast. Garetti, M. et al. (2000) established that lack of

sufficient proficiency in the respective domain might cause a deficiency in the proper

mapping of relationship between the independent and dependent variables, causing an

inferior regression. Another important point is that an enormous quantity of data is often

necessary to be assured of a precise forecast.

Zhao et al. (2002) used the advanced versions of the conventional methods. Main tools

which need to be mentioned under this category are time series models such as complex

Box-Jenkins method, moving-average and exponential smoothing, Causal models, like

econometric models and regression have also been explored. He concluded that with

non-linear data offering a great challenge to be mapped exactly, meaningful forecast is

difficult to be obtained even with these advanced versions.

The influence of forecasting approaches on the successful functioning of supply chain

was analysed by Chandra, C. et al.(2005) using a computer simulation model with one

capacitated supplier and number of retailers in the uncertain demand scenario. He

analysed that data which are outside the normal range can cause erroneous evaluation of

the standard parameters with all the quantitative technique.

Tugba Effendigil et al. (2009) proposed that some of these drawbacks of quantitative

demand techniques can be improved upon by the application of different AI techniques

like neural networks. It has been mathematically proved that neural networks have the

capability to approximate any functions without being influenced by the above listed

limitations.

2.4.2 Advantages of AI techniques

AI technique also referred to as soft computing is a group of unique approaches to the

general problem solution using human like thinking [Dorffner, G., 1996, Vakharia, A.J.

2002, Al-Saba et al. 2007, Mark Ko et al. 2010]. Some of main the methodologies which

28

come under this category are Evolutionary Algorithms (EA), Neural Networks (NN),

Fuzzy Logic (FL) and Expert System (ES). These techniques furnish adaptable

information processing and data handling competencies to unravel real-life complicated

scenario. The advantages of employing AI technique is its ability to endure inexactitude,

ambiguity, and fractional truth to accomplish manipulability and reliability on mimicking

human decision-making competence [Mark Ko et al. 2010, Pal, S. et al. 2004, Roy, R.,

et al. 1999, Tettamanzi, A. et al. 2001].

Soft computing forecasting practices have been receiving ample responsiveness recently

in problem solving applications where traditional methods have failed to yield good

results. It has been demonstrated that AI techniques have the capability of human

learning, by accruing information, acquaintance and familiarity through recurring

learning actions [Tugba Efendigil et al. 2009, Yager, R. et al. 1994, Chiu, M.,2004].

Various research studies have assessed the potential of AI techniques in comparison with

traditional methods such as regression and moving averages in the field of demand

prediction. The studies have concluded that conventional approaches cannot match the

capability of AI based systems in terms of accuracy of forecast results [Hung, J.C., 2009,

Park, J.I. et al. 2010, Silva, C.A., et al. 2005].

2.4.3 ANN in demand forecast

Intellectual thought process, reasoning and learning process of human brain is attempted

to be replicated through Artificial Neural Network (ANN) models. Substantial success in

this attempt has promoted the application of ANN in different business solutions.

Demand forecast is a prime candidate for ANN application. Demand forecast can tap the

efficient modelling capability of ANN for inadequately understood problems for which

ample data are available (Wong, B. K. et al. 2007). The capability of ANN to learn by

examples is very well exploited in demand forecast and the neural network is trained with

the records of a past response or historical data (Wei et al.1997).

With the revolution in AI techniques, neural network has become one of the primary

approaches for demand prediction in supply chain management. Specifically, capability

29

of Multi-layer feed forward neural network in modelling any linear as well as nonlinear

and function accurately for demand forecasting has been well examined [Aburto, L. et al.

2003 , Faraway, J. et al. 2008].

Preliminary application of artificial neural networks (ANN) started with the energy utility

companies to predict short or long term demands for electric load (Al-Saba et al. 1999,

Beccali et al. 2004). Wang, T. et al. (2006), Funahashi, K. (2009), Cybenko,G (1989),

Singh, P et al. (2007) established through their investigation related to research work

that ANN is a universal function approximator and that its capability to map any linear

or nonlinear domain is better than various traditional methods.

De Carvalho et al. (1998), Hill et al. (2006), Luxhoj et al. (2006) , Aburto et al. (2007) ,

Lau et al. (2013), Nikolaos Kourentzes (2013) Lolli F. et al. (2017) have rendered

immense contribution in the field of application of neural network for demand forecast.

Considerable amount of work was carried out by De Carvalho et al. (1998) in matching

and blending traditional and neural network based forecasting methodology which

suggested that neural network can improve the performance of prediction. Hansen et al.

(2003) examined the conceivable causes for inferior forecast of traditional methods and

inferred that use of neural networks is the best solution. Hill et al. (2006) analyzed

demand forecasting problems employing this artificial intelligent technique and

concluded that neural network can function considerably well in forecasting problems.

Luxhoj et al. (2006) worked on a hybrid econometric neural network model through

which he proved that forecasting accuracy of total monthly sales of a Danish company

can be improved considerably. This model portrayed the integration of the essential trait

of non-linear pattern recognition features of neural network with the econometric models.

Aburto et al. (2007) proposed a stock renewal system for Chilean supermarket which

works on the basis of a hybrid intelligent system with the fusion of autoregressive

integrated moving average models and neural network for predicting the demand in

supply chain.

30

Lau et al. (2013) have presented an exact methodology, the minimum description length

(MDL) to decide on the best artificial neural network (ANN which can improve the

forecasting accuracy). Their research work proved that balancing methodology of the

surrogate data method and neural network creates a complete and detailed structural

background for making various demand forecast which can be applied to an extensive

range of practical data.

Nikolaos Kourentzes (2013) proposed a neural network methodology to predict the

intermittent demand. These NN were used to predict the dynamic demand rate forecasts

which did not assume constant demand rates. Lolli F. et al. (2017) used single-hidden

layer neural network architecture trained by back-propagation to predict the intermittent

demand and studied the application of extreme learning machines algorithm because of

their lower computational complexity and good generalisation ability.

2.4.4 Application of genetic algorithm and hybrid models for demand forecast

Genetic Algorithm (GA) is used as a tool to evaluate the forecasting model parameters as

in Chiraphadhanakul et al. (1997), Jeong B et al. (2002). Numerous applications of GA

can also be noticed in many research works as a component of fusion algorithms with

other heuristics such as simulated annealing neural networks, taboo search and

application- specific heuristics [Kim D. et al. 2009, Ju, Y. K. et al. 1997].

Escoda et al. (1997), Du and Wolfe (1997), Kuo et al. (1998), Kuo et al. (2002), R.

Carbonneau et al. (2008), Jamal Shahrabi et al. (2013), Komgrit Leksakul et al. (2015)

had conducted research on application of GA and Hybrid algorithm for demand forecast.

Du and Wolfe (1997) made a detailed analysis of application and implementation details

of different AI techniques in varied business functionalities like inventory and quality

control, planning and scheduling, application of group technology and also forecasting.

Escoda et al. (1997) concentrated on the deployment and enhancement of linguistic

variables using ANN and Fuzzy Neural Network in the study on product demand. Kuo et

al. (1998) presented an intelligent sales forecasting system which worked on the basis

31

both quantitative and qualitative inputs and by the combined power of ANN and FNN.

Kuo et al. (2002) examined the hybrid application of neural network and other AI

techniques in demand forecasting in a scenario of uncertain customer demands. He

modeled the use of fuzzy inference system with adaptive network and artificial neural

networks to handle fuzzy demand with inadequate system data. His target area was

demand forecast for multi-level supply chain structure.

R. Carbonneau et al (2008) quantified the bullwhip effect by predicting the distorted

demand at the end of supply chain using the application of the advanced machine

learning techniques, including support vector machines, neural networks, recurrent neural

networks. He made a comparative study of these methods with conventional techniques

like moving average, linear regression and naive forecasting.

Jamal Shahrabi et al. (2013) developed a new hybrid intelligent model by the integration

of genetic fuzzy expert systems and data preprocessing for improving the demand

forecasting accuracy in the tourism industry. The new model was named the Modular

Genetic-Fuzzy Forecasting System (MGFFS). The accuracy of demand forecast by this

new model based on the MAPE and RMSE evaluation was found to be far better when

compared with conventional time series models, neuro fuzzy models.

Komgrit Leksakul et al. (2015) suggested an organized and logical method for off-season

longan fruit supply forecasting in Thailand using various machine learning tools. He

established the supremacy of Fuzzy Support Vector Regression (FSVR) in accuracy of

demand forecast over other machine learning like neural network, fuzzy neural network.

In spite of such a vast literature for demand forecast using AI technique, it is found that

study on demand forecast of semi make to order industries like industrial valves is rare.

Even if neural network is used for many prediction analysis, different network

architecture like Radial basis neural network have not been explored to improve the

prediction accuracy.

32

2.5 INVENTORY MANAGEMENT

2.5.1 Inventory - An Introduction

Inventory represents goods or materials that are owned by an organization for future

usage. Such goods include (i) raw materials, (ii) purchased parts, (iii) components, (iv)

sub-assemblies, (v) work-in-process, (vi) finished goods and (vii) supplies [Harris, F. W.

1913, Burgin, T. A. et al. 1967, Yi Tao Loo et al. 2017].

One main reason that company stores sufficient inventory is that it is seldom possible to

exactly forecast / predict sale levels, production times, demand and usage needs. An

inventory system is the group of policies and controls that monitors levels of inventory,

in order to minimise the inventory cost and to guarantee a smooth operation of the

organization [Phillips,D. et al. 1976, Yazgi Tu et al. 2008, Garcia et al. 2013].

Inventory control ensures a balanced bargain by establishing a judicious trade-off

between carrying and obsolescence costs of excess stock on one hand and lower service

level and lost sales cost due to too little stock on other hand. Inventory management

would ensure an optimum service level without maintaining unreasonably excess

inventory that are expensive and demanding to handle (George Nenes et al. 2010).

One of the important purposes of managing stock is to resolve these potentially

contradicting goals [Zoller, K.1997, Davood Mohammaditabar et al. 2010, Hindriyanto

et al. 2012]. The main purpose of Inventory management is to identify the inventory

level which would reconcile these potentially diverging goals.

• Optimising customer satisfaction.

• Increasing efficiency of production and purchase functions.

• Optimising financial outlay in inventory.

• Maximizing profit, return on inventory and return on asset.

33

Inventory serves as a cushion against indeterminate and unstable demand / consumption

and keeps a steady supply of items available until replenishments are received. Therefore

an inventory system essentially answers two important questions (Leenders, M. et al.

1985).

 What should be the optimum re-order size?

 When should the reordering to be done?

Fig 2.4 represents a basic inventoy replenishment model which graphically explains the

the relevant technical terms like reorder point, lot size, safety stock, lead time etc.

Fig 2.3 Inventory Management Basics (Courtesy: Krone,L.,1964)

2.5.2 Inventory Costs

Decision on optimum inventory level requires careful consideration of the following

costs [Silver, E. A. et al. 1990, Samak-Kulkarnia et al. 2013, Hira, D. S. et al. 2009].

TIME

STOCK

Lot size

Availability date Release date

Safety stock

Re-order point

Replenishment

Lead time

34

2.5.2.1 Holding or carrying costs

This broad classification comprises of the costs for storage facilities, handling and

insurance. The cost of pilferage, breakage and obsolescence are also included under this

heading. Costs due to depreciation and taxes are also components of holding cost. The

opportunity cost of capital is another important constituent. Evidently, larger holding

costs tend to support lower stock levels and frequent renewals or top ups [Silver, E. A. et

al. 1990, Alejandro Serran et al. 2017, Torkul,O. et al. 2016].

2.5.2.1 Setup or production change costs

This cost is related to production preparation like the tool set up, obtaining or shifting

certain material, arranging specific equipment set up, clearing the previous material

stock.

Main objective of efficient production planning and inventory management would be to

reduce the set up cost. Low set up cost would encourage and justify smaller production

lots. This results in low inventory levels and subsequent saving in cost. Just In Time(JIT)

production system or lean production faces the challenge of reducing the set up cost to

minimum to allow smaller lot sizes [Tamas Koltai et al. 2009, Torkul,O. et al. 2016,

Minghui Lai et al. 2016].

2.5.2.3 Ordering costs

This is the administrative cost involved in ordering the material. It includes managerial

and clerical cost to prepare the purchase or production order. Ordering cost includes the

cost incurred to the company to maintain the system which is used to prepare the

purchase order and to track the orders or carry out the follow up activity [Samak-

Kulkarnia et al. 2013, Longsheng Cheng et al. 2016].

2.5.2.4 Shortage costs

When the inventory of an item is exhausted or in a stock out scenario, either of two things

can happen. The customer will wait for the order to be executed when the inventory is

replenished. Effectively a back order is created and filled at a later date depending on the

35

customers approval. Another possibility is that the order gets cancelled which is referred

as lost sale. Striking a balance between higher carrying stock to satisfy the demand on

one side and costs from lost sales and back orders on the other side is a difficult

proposition. This is because of the difficulty in evaluating the lost profits, effects of lost

customer base or agreed terms of lateness penalty. Shortage cost is very difficult to

determine as it is more of a notional cost [Fiestras-Janeiro et al. 2013, Azzi, A. et al.

2014, Dilay Celabi, 2015].

2.5.2.5 Cost of the item

Discounts and price breaks are important influencing factors under the cost of the item

which decides lot size for procurement.

Combined effects of five individual cost components have to be considered to determine

the optimal lot sizing either for internal or external procurement. These are holding costs,

setup costs, ordering costs, and shortage costs and cost of the item itself. When to order is

also a critical factor along with how much to order which will influence inventory cost

[Christopher, M., 1992, George Nenes et al. 2010, Dilay Celabi, 2015].

2.5.3. Inventory models

An inventory system can be modelled quantitatively based on demand patterns

[Bretthauer, K. et al.1994, Shu-Chin Chang et al. 2016]. They are

 Deterministic inventory models in which demand rate of an item is assumed to be

constant [Alejandro Serran et al. 2017, Jui-Jung Liao et al. 2013].

 Probabilistic inventory models where the demand for an item fluctuates and is

specified in probabilistic terms [JiSun Shinn et al. 2015, Biswajit Sarkar et

al.2013].

Based on the frequency at which orders are placed for procuring inventory, there are two

models. They are single period and multi-period inventory systems.

2.5.3.1 Single Period models

36

Typically orders are made only once. They are also known as the Dollar Limit System

and are used for one time ordering for seasonal products or spare parts purchases.

Classical example is the newspaper vendor problem [Zhong Yao et al. 2011, Baruch

Keren,2009, Chia-Shin Chung et al. 2013]. It models the trade off scenario of optimizing

the number of papers to be stoked on the stand. Potential conflict is between the condition

on one hand where too many papers are stocked resulting in loss due to unsold

newspapers and other scenario where too few papers are stocked and there will be

opportunity loss due to lost sales. Single-period inventory models are adopted gainfully

in a wide variety of service and manufacturing applications like overbooking of airline

flights, ordering of fashions items or any type of one time order.

This is a popular inventory model with the non deterministic demand. Useful life of the

product is considered to be very short or only one planning cycle. (Hadley et al. 1963),

(Khouja,M.,1999), Hsu et al.(2008) and Chung et al.(2011) developed replenishment

policies for products with short life-cycle under different demand conditions and

constraints situations.

2.5.3.2 Multi Period models

In the Multi period inventory models, orders are placed multiple times over the entire

production cycle. Multi period inventory systems are planned to guarantee that the

component will be in the inventory continuously without any period of non availability.

Usually the component may be ordered number of times during the planning horizon

where the program in the system decides on the lot size of ordering and the timing of the

order. Based on the pattern of reviewing current inventory, they are further classified

into [Leenders et al. 1985, Ilkay Saracoglu et al. 2014, Leopoldo Eduardo et al. 2014].

i. Continuous Review (also called Fixed Quantity or Q system), where

Inventory is reviewed continuously and when inventory drops to a certain

prefixed reorder level, a fixed quantity is ordered. This model is generally

37

used for high volume, valuable, or important items [Ilkay Saracoglu et al.

2014, Manuel Cardos et al. 2011, Mahdi Tajbakhsh, M. 2010].

ii. Periodic Review (also called as P system), where inventory is reviewed at

prefixed periodic intervals irrespective of the levels to which inventory drops

and an order is placed to bring up the inventory to the maximum level. This is

used for moderate volume items [Manuel Cardos et al. 2011, Yi Tao et al.

2017, Chiang, C. et al. 1999].

The fundamental difference between these two models is that fixed–order quantity

models are ―event activated‖ whereas fixed–time period models are ―time activated.‖

Table 2.1 Comparative study on basic features: P & Q models (Leenders et al. 1985).

Features
Q-MODEL

Fixed–Order Quantity Model

P-MODEL

Fixed–Time Period

Model

Quantity ordered

Q—constant (the lot size is

same or quantity ordered each

time is same)

q—variable (Order

quantity varies each

time dependent on the

demand)

Time of placing the order
R—when the stock level

reaches the reorder point

T—In the beginning of

scheduled time interval

known as review

period.

Requirement for

maintaining the document.

Each time a stock amendment

is made.

Updated only at review

period

Inventory size Smaller than P-model Greater than Q-model

Time and resources

required to maintain

Greater due to requirement for

continuous maintaining of

records

That is, with a fixed–order quantity model an order is triggered when the stock level

drops to a particular reorder level. This event may transpire at any time, depending on the

demand for the items considered. In contrast, in the fixed–time period model, orders are

placed at the end of a scheduled time period; only the time is the trigger for order

initiation in this model. Table 2.1 shows the comparative study on basic features of P &

Q models.

38

2.5.4 ABC analysis

For companies that keep inventory of large number of items, it is impracticable to give

same attention to each item. It becomes imperative for managers to segregate these items

based on their relative importance rating so that each inventory class can be suitably

controlled [Cohen et al. 1988, Wan Lung Ng, 2007]. ABC analysis is a mostly used

efficient method to categorise stock components into particular groups that can be

managed and controlled independently.

Traditional ABC analysis sorts out inventory items into three types: A, B or C on the

basis of yearly consumption value of an inventory component. This method was first

devised by General Electric in 1950s [Guvenir, H.A., 1998, Min-ChunYu, 2011]. The

segregation plan is centered around the Pareto principle, or the 80/20 rule, that utilizes the

thumb rule- ‗vital few and trivial many‘, which means 20 percent of highly important

items and 80 percent less important items. Yearly usage value is calculated by

multiplying the price of each item by the annual consumption rate. Flores et al. (1987),

Cohen et al. (1988), Partovi et al. (2002), Ramanathan (2006) and Jamshidi et al. (2008)

contributed significantly through their research in this field of study.

In the study by Flores et al. (1987), inventory items were organized in the descending

order of their annual dollar usage. Class A items are comparatively smaller in quantity,

but higher in yearly consumption value. In contrast, class C items are relatively more in

number, but account for a smaller amount of yearly consumption. Class B items are those

which fall in between class A and C. In the study by Cohen et al. (1988), the application

of ABC analysis has been extended by the use of multi criteria inventory classification.

Their research works focused on factors other than annual dollar usage. Some of these

factors were lead time, product durability &obsolescence. Ramanathan et al. (2006)

focused on inventory cost and order size requirement as the basis for classification and

observed that inventory planning was more efficient with these methods.

39

Jamshidi et al. (2008) employed the analytic hierarchy process (AHP) for classifying

inventory into A, B, C categories in order to incorporate the use of both quantitative and

qualitative classification criteria.

2.5.5 Advanced inventory models

Economic order quantity (EOQ) is one of the extensively used models to address various

productions and inventory management challenges. This is a basic model which was

proposed by Whitney as early as 1966. In its earliest form, it can be applied for planning

a single item in single period with many assumptions. Adopting these assumptions has

the advantage of simplifying the model. The model becomes so simple that it will be far

away from the complexities of real world situations, thereby restricting its applicability.

Literature on inventory management is full of research work dissertations on extensions

and modifications of EOQ model and periodic review inventory models which are aimed

at reflecting real life scenarios. They extended various approaches for different

complicated inventory models like inventory models with finite replenishments, with

shortages, with price breaks and discounts, by considering the time value of money using

different inflation rates, single item and multi item inventory models etc.

Works of Dunsmuir et al. (1989), Benton, W. C. (1991), Das K.et al. (2000), Chang et

al. (2001), Syntetos et al. (2006), George Nenes et al. (2010), Leopoldo Eduardo et al.

(2012) etc. suggested different advanced inventory models for the cost optimization and

service level maximization for the customers. Dunsmuir et al. (1989) worked on

advanced EOQ model to integrate different practical situations like assessments on

quantity discount under variable conditions of multiple suppliers, multiple items and

resource limitations. He mathematically simulated the interaction between fixed customer

service level and a continuous review inventory system for defining reorder levels to

maintain a required customer service level. Benton, W. C. (1991) studied the case of

highly irregular demand and tried to model the relationship between demand forecasting

and continuous review reordering subsystems in the condition of continuous varying

demand.

40

Das K.et al. (2000) worked on an inventory model for multi items in the constant demand

and infinite replenishment scenario with the limitations on storage area and total average

inventory investment cost. Additional constraint of total average shortage cost was also

studied.

Chang et al. (2001) explored the use of a linear programming model created around

piece-wise linearization techniques to compute the lot size and reorder point in the

situations of variable lead-time and crashing cost. Price and quantity discount were also

built into the model. Syntetos et al. (2006) examined the use of different forecasting

methods in relation with a periodic review order-up-to inventory control policy to address

the intermittent demand issue. The unique characteristic of their model is the application

of a gamma distribution with a peak at zero to portray the no demand period frequency

distribution. This special case of intermittent and fast moving demand is well integrated

into this model with the combination of gamma density and probability mass at zero.

George Nenes et al. (2010) carried out a case study on the inventory management in the

irregular demand scenario and suggested an effective procedure for precise computation

of the base stock levels. His focus was on the study of periodic review system based on

gamma distribution.

Research work of Leopoldo Eduardo et al. (2012) focused on vendor managed inventory

control system. Multi items were considered under different constraints and classical

economic order quantity model was extended to suggest a simple heuristic algorithm. It

was proved that this algorithm works better than all other previous models on both the

evaluation parameters of total cost and execution time for computation.

2.5.6 Multi Period Periodic Review Inventory Models

Decision on the procurement of multiple items over multiple time periods will be based

on the best optimization consideration of different cost objectives to establish ideal lot

size and timing of purchase within the procurement horizon. Different costs which have

to be considered to arrive at the best tradeoff are purchasing cost, ordering cost,

transportation cost and inventory carrying cost. Shortage cost is also another important

41

parameter which needs to be given due importance [Devendra Choudhary et al. 2011

Behnam Vahdani et al. 2017]. It makes business sense for the supplier to offer discounts

when larger quantities are ordered. The company can exploit this opportunity to reduce

the purchase cost and also the ordering cost if it can increase the lot size of procurement

provided the larger holding cost incurred should be balanced by the savings on purchase

and ordering cost. The operating advantage of economy of scale is additional benefit of

having larger lot size. In such situations, the items could be carried forward for the

consumption during next planning cycle. But there would be additional inventory

carrying cost.

The consumption for the planning period is met either by the material procured during

that period or by the material carried forward from the last planning period. If

procurement is done through smaller lot sizes, the carrying cost will be reduced, but

ordering cost would increase. On the other hand, larger lot size procurement strategy

would reduce the ordering and transportation cost, but would increase the inventory

holding cost substantially. Supply chain disruptions resulting in late deliveries and

quality rejections would also influence the purchase lot sizing decisions. On the whole,

lot sizing decisions would be driven by the trade off between purchase cost, ordering cost

on one hand and carrying cost on the other hand over the total procurement horizon

[Robinson et al. 2009, Ann M. Noblesse et al. 2014].

 Wagner et al. (1958), Aggarwal et al. (1993), Pratsini (2000), Brahimi et al.(2006),

Smith et al. (2009), Devendra Choudhary et al. (2011) and Woon-Seek et al. (2015)

have done significant contributions in this subject of multi period periodic inventory

model. Exact solution for multi period single product inventory lot sizing was first

presented by Wagner et al. (1958). The concept of Dynamic programming was used in

obtaining the solution. Aggarwal et al. (1993) further attempted through their research

work for the improvement of the optimum solution suggested by dynamic Programming.

The solution consisted more realistic input constraints to reflect real world scenario.

 Brahimi et al. (2006) reviewed the single item lot-sizing problem considering both

uncapacitated and capacitated versions. He presented his work involving the study of a

42

number of significant extensions to classical lot-sizing models, altering its basic

characteristics like planning horizon, number of levels, number of products, capacity or

resource constraints, deterioration of items. Joint procurement and production decision

problem for single item, multiple period time horizon was studied by Smith et al. (2009).

The objective function maximized the profit under the capacity and inventory constraints.

They considered decision variables, such as sales price, production quantity, and sales

amount for a single item.

 Rejections, late deliveries and quantity discounts for a multi-period procurement lot-

sizing problem for single product and single supplier were modeled by Devendra

Choudhary et al. 2011. Integer linear programming methodology was employed by him

to obtain the solution where he tried to optimize cost objectives by procuring the material

in appropriate lot size and at appropriate time.

 A goal programming model was suggested by Pratsini (2012) taking into account price,

quality and delivery objectives to plan procurement for single product over a defined

scheduling horizon. Single level, multi item with capacity constraint inventory model was

studied by considering the effect of set up learning. He elaborated upon the lot sizing

model for this problem by developing a heuristic to examine the consequences of set up

learning on production planning.

Woon-Seek et al. (2015) suggested an inventory model to study the simultaneous impact

of the procurement quantity and the shipping policy on the aggregate costs, which

comprises of components on production cost, inventory carrying cost, and consignment

cost. The model determined the optimum lot size and transport policy so that total cost is

minimsed. A heuristic algorithm with a modification mechanism was suggested based on

the ideal solution properties.

2.5.7 AI application in Inventory management

Over the past two decades, AI technology has emerged as an important development in

the field of information science. A number of artificial intelligence techniques including

fuzzy logic and genetic algorithms, neural network, ant colony optimization, particle

43

swarm optimization have been deployed to enhance effectiveness and efficiency in

various aspects of inventory management [Mark et al. 2010, Angappa Gunasekaran et al.

2014, Borja Pontet et al. 2017]. Inventory management decisions have to be worked out

in uncertain demand environment. They are also characterized by optimization of

multiple objectives, most of the times, conflicting objectives like cost and service level.

AI techniques provide a valuable tool to address these issues of uncertainty and multi

objective optimization (He-Yau Kanga et al. 2010).

2.5.7.1 Application of Fuzzy Logic in Inventory management

Fuzzy set theory was first suggested by Professor Lotfi Zadeh during 1960s for

mathematical representation of ambiguity, vagueness, imprecision and uncertainty

(Zadeh, L. A., 1965). The use of approximate information and uncertainty in decision

making by human reasoning is modelled though Fuzzy theory. It has further been used

to create validated tools to take care of the imprecision and vagueness which is inherent

characteristic of a number of real life situations [Zadeh, L.A.1978, Giachetti, R.E. et al.

1997, Dubois, D. et al.1986].

 Researchers in inventory management field have always found application of Fuzzy

theory very fascinating and fertile (Du et al. 1997). This has become even more relevant

now because of growing importance of supply chain and logistics management in today‘s

global environment which is characterized by uncertainty and impreciseness (Mark et al.

2002). Ample inventory models have been conceived which uses the Fuzzy set theory to

simulate the factors that involve uncertainty, vagueness and ambiguity. Some of the

important models were by suggested by the research works of Juite Wanga et al. (2004),

Wang Xiaobin et al. (2004), Lin Wang et al. (2012).

Juite Wanga et al. (2004) reported that demand quantity is the main uncertain factor in

inventory control which justifies the application of fuzzy theory. To model the supply

chain uncertainties and to establish the supply chain inventory strategies considering the

ambiguity in various parameters, he worked on a fuzzy decision algorithm which would

work very well while there is uncertainty in data or even in case of non-availability of

44

past data. The algorithm which was presented, would help to improve the decision on the

inventory strategies by analyzing the fuzzy variables of risk, customer service level and

inventory investment in supply chain.

Wang Xiaobin et al. (2004) extended the classical economic order quantity models to

include the independent fuzzy variables cost of each unit quantity and order cost of each

cycle. Holding cost, lead time, penalty cost, storage area other fuzzy parameters were

incorporated into his model.

Lin Wang et al. (2012) reworked the continuous review inventory models to incorporate

the fuzzy variables of lost sales rate and lead time. With this, he modeled a situation

which allowed shortages and variation in lead time. The model also reflects the real

world scenario where a certain fraction of demand is back ordered in case of stock out.

The partial information of lead time was modeled using minimax distribution free

procedure to find the optimum inventory strategy.

2.5.7.2 Application of GA in Inventory Management

Genetic algorithm is search and optimization technique which works based on natural

evolution philosophy. Due to their robustness and adaptive nature, an intense interest had

been generated among the researchers in the field of inventory management [C.A. Silva

et al. 2005, Dilay Celabi, 2015, Maryam Akbari Kaasgari et al. 2017]. Traditional search

and optimization methods including exact methods are effective only in the cases where

the number of variables to be optimized is limited. But Genetic algorithm, by adopting

certain principles of biological evolution, can work very well for multi objective

optimization. Research fraternity strongly contends that Genetic algorithm has a lot of

unexplored potential for the application to variety of field in Inventory Management

[Goldberg et al. 1989, Ali Diabat et al. 2016, Ilkay saracoglu et al. 2014].

Maiti et al. (2006), Arindham Roy et al. (2009), Seyed Hamid et al. (2011), Dilay Çelebi

(2015) and Ali Diabat et al. (2015) have applied GA for the problems related to inventory

management and reported substantial improvement in the results obtained. In the

research work by Maiti et al. (2006), GA has been applied to solve the multi objective

45

inventory model involving order quantity and re-order point problem on two storage

inventory scenario. He further extended his model and developed a heuristic based on GA

to solve the economic lot size scheduling problem. Arindham Roy et al. (2009) suggested

a modified genetic algorithm for multi item multi-buyer joint replenishment problem.

Compared to conventional approach, his novel GA was able to obtain better optimization

results for production and inventory hybrid model for stock dependent demand

integrating learning and inflationary effect. Fuzzy GA was used with changing

population size method.

Seyed Hamid et al. (2011) suggested a genetic algorithm model to optimize two-echelon

continuous review inventory systems. He worked on tuning the parameters of GA to

optimize its performance. An effective stocking policy was developed with the goal of

optimizing the total annual inventory investment. The model was made more practical by

considering restrictions on budget, the average annual order frequency, expected number

of backorders.

Dilay Çelebi (2015) studied the spare part distribution system of a Turkish automotive

manufacturer under a unified control system. He developed a case study based on his

findings which deals with his proposed GA based inventory model to determine optimum

stock level and efficient management of distribution network. In his case study, he

addressed two echelon inventory control problem with both combinatorial and sequential

behavior. He also extended his model to incorporate a large number of specific properties

of supply chain which would make it more practical.

Ali Diabat et al. (2015) studied integrated supply chain problem, with the emphasis on a

capacitated multi echelon joint location inventory control scenario. A hybrid GA based

heuristic was developed which would identify the location of set of warehouses to

optimize the total inventory cost including transportation.

2.5.8 Application of AI in multi period periodic review inventory models

Maiti et al.(2008), Reza Zanjirani Farahania et al. (2008), R.K. Gupta et al. (2009),

Taleizadeh et al. (2013), Seyed Mohsen Mousavi et al. (2013), Javad Sadeghi et al.

46

(2014) have investigated the multi period periodic review inventory management

optimsation problems through the application of AI techniques. Maiti et al. (2008)

extended the GA model from single item to multi-item inventory control problem. He

also considered the effects of two types of price discounts, All Units Discount (AUD) and

Incremental Quantity Discounts (IQD). Roulette wheel selection, arithmetic crossover

and uniform mutation were other important features of GA proposed by him.

Reza Zanjirani Farahania et al. (2008) presented a mixed-integer linear programming

model to represent inventory management and distribution network of a supply chain

with three echelons. The bi objective model optimized the two objective functions of cost

minimization and minimisaton of sum of back orders and surpluses of all products.

Constraints included the delivery lead time and installed capacity. A novel approach of

non dominated sorting genetic algorithm was used to solve the problem.

An inventory policy was modeled by R.K. Gupta et al. (2009) with uniform demand rate,

unvarying lead time, finite time horizon and a discount triggered by advance payment. It

was solved by Real Coded Genetic Algorithm (RCGA). The optimal number of cycles

and lot size in each cycle was determined along with optimal profit. RCGA was

characterized by ranking selection, new approach to arithmetic cross over and uneven

mutation.

 Taleizadeh et al. (2013) presented a mixed-integer nonlinear mathematical model to

represent a multiproduct multi-constraint inventory control problem. He incorporated

stochastic replenishment intervals and discount into this model. The problem was solved

using Genetic algorithm.

Seyed Mohsen Mousavi et al. (2013) modeled an optimized multi-item multi-period

procurement and inventory control scenario taking into account the effects of discounted

cash flow and inflation. Two calibrated meta-heuristic algorithms, GA and simulated

annealing was used for its solution. The performance of the algorithm was evaluated in

obtaining the optimal lot sizing of the products. The objective function minimized the net

present value of total system cost over a procurement planning horizon. The model was

47

made more practical by considering the constraints of storage space, budget, and order

quantity.

Javad Sadeghi et al. (2014) worked on vendor managed inventory control. Conflicting

objectives of reducing the total supply chain cost and maximizing the reliability was

modeled using GA. Order size along with the order frequency of the retailers, travelling

distance from vendor to retailors and the number of machines required was optimized.

2.5.9 Application of Ant Colony Optimisation in Dynamic lot sizing

Ant Colony Optimization (ACO) meta heuristic is characterized by biologically

optimized searching capability of ant colonies. Jui-Tsung Wonga et al. (2011), Ali

Roozbeh Nia et al. (2013) and Loius et al. (2013) have applied ACO for the dynamic lot

sizing problem of inventory management. Jui-Tsung Wonga et al. (2011) used ant colony

optimization (ACO) to solve stochastic dynamic lot-sizing problem. In this novel

approach, ANN was utilized as machine learning platform to study the simulation results.

Based on the learning, optimal decision variables were determined using the application

of real valued improved ACO algorithm. The results were compared with that obtained

from response surface methodology and found to be far better with ACO application. In

another study by Ali Roozbeh Nia et al. (2013), advanced ACO model was presented

which represented multi item economic order quantity scenario under shortage for fuzzy

vendor managed inventory. He compared the results obtained by solving this model with

the outcome two other meta-heuristics, GA and Differential Evolution Algorithm (DEA).

In addition to normal constraints, contractual agreement between vendor and buyer on the

number of pallets required to supply the items is considered. Number of deliveries and

quantity of order under fuzzy environment were also incorporated. His sensitivity

analysis showed that ACO algorithm was best in terms of CPU time of execution whereas

differential evaluation gave the optimum total cost.

Loius et al. (2013) developed an inventory control model with the objective of

minimizing the supply chain total cost and products‘ lead time. Consequently, the model

optimized the safety stock and lead time throughout the supply chain. ACO based

48

approach was adopted and bi-objective MAX–MIN ant system was used to solve this

model.

However, not much work has been carried out on the front of multi item multi period

dynamic lot sizing applications with ACO.

2.6 SUMMARY AND GAP IN KNOWLEDGE

This extensive review of literature in demand forecast and inventory management

inferred that demand forecast and inventory management are integral part of supply chain

management. Inventory management is an essential constituent of organizational core

competencies which need to be given prime importance for the successful standing in

market place. Strategies adopted by the companies to improve their bottom line and profit

margin should cover accurate demand forecast and optimized inventory management.

These are the enablers for improved customer service at the minimum operational cost.

Uncertainty in demand has made accurate demand forecast an important contributing

factor for the healthy bottom line of organization. Demand forecast assumes a vital role

within supply chain management. A trust worth and unfailing demand management can

enhance the superiority and power of organisational strategy. But, the conventional

demand forecast technique have been found to be inaccurate which as a result would

amplify the bullwhip effect across different stages of supply chain. Other limitations of

the conventional methods point to the requirement of large volume of historical data and

inability to process nonlinear patterns and bias of data which is not within normal range.

Most of these limitations are overcome by the use of neural networks, which have been

mathematically validated to be universal approximates of functions. The ability of neural

network to learn and generalize from the provided set of past data about the patterns in

the problem domain of interest, have made them excellent choices for demand forecast

application.

Decisions, regarding when to buy and how much to buy, have been influencing the

efficiency and effectiveness of supply chain management. Optimising the conflicting

objective of cost minimization, profit and service level maximization in the environment

49

of uncertain procurement lead time product demand has drawn much interest from

researchers. Artificial intelligence techniques have revolutionized the research work

related to inventory management. Fuzzy theory, GA, ACO and Particle Swarm

Optimisation (PSO) find vast application in multi objective optimization.

Detailed analysis of existing literature has shown following gaps in knowledge which has

presented an opportunity for further research:

 Even if there are number of independent studies using AI applications on

demand forecast and optimum lot sizing for inventory management, very less

instances of integrated AI application on demand forecast and inventory

management can be seen. The output of neural network demand forecast can be

used for lot sizing optimization using GA application, which has been rarely

explored.

 Most of the studies on demand forecast have concentrated on the MLP

architecture of neural network. Very few attempts have been made for exploring

the use of other architectures like Radial basis network which can improve the

forecast accuracy.

 Most of the studies, either in demand forecast or lot sizing, have worked on the

simulated data. Limited number of applications and model validations can be seen

from the real industrial data.

 Very few studies have the background of semi-make to order type products like

industrial valve which is the subject of current study.

 On the front of periodic review model of inventory management, research

literature is full of single item multi period lot size optimizing application of GA.

It is observed that very little work has been carried out on multi item multi period

lot sizing.

The current work proposes an in depth study of existing inventory management system

of an industrial valve manufacturing and trading company and suggests a novel integrated

application of AI technique for demand forecast and multi period multi item periodic

review inventory model.

50

2.7 OBJECTIVES OF THE PRESENT WORK

The objective of this research work is to explore the integrated application of different AI

techniques to the problem of demand forecast and inventory management for a company

dealing with industrial valves. With reference to the above objective, the inventory

management system of an existing company specialized in the field of industrial valves

has been analyzed, and following major research goals have been set.

 To apply Artificial Neural Network (ANN) for forecasting the periodic demand

rate of the product for the company under study and explore the different

architectures to improve prediction performance.

 To apply and validate the ant colony optimization and GA model for multi

objective optimization problem of multi product multi item multi period

procurement lot sizing, based on ANN results of periodic demand rate.

 To compare the performance of developed ACO and GA model based on the

different evaluation parameters.

2.8 SCOPE

Based on the proposed objective of the current study, the scope for the research work in

the area of demand forecast and inventory management includes:

 A detailed study of the inventory management system of existing company

dealing with industrial valves and current demand forecast techniques which is

being followed.

 Collect information regarding the historical demand data which will be used for

training the neural network

 Modelling of ANN with MLP architecture for demand forecast and ascertaining

the forecast accuracy.

 Exploring the use of different architecture of radial basis neural network for the

demand forecast model with the objective of improving the prediction accuracy.

51

 Usage of the constructed ANN model to forecast the periodic demand rate for the

next periods which will be used as the data for the inventory model.

 Identify and gather all the data regarding the various inventory costs and the

budget and space constraints which is necessary to formulate the inventory model.

 Modelling of ACO & GA for multi item multi period periodic review inventory

lot sizing problem to optimise the ordering, carrying and purchase cost with the

budget constraints , space constraints and reserve stock constraints.

 Tune the parameters of GA based on Taguchi design of experiments and evaluate

the effectiveness of the model.

 Validate the developed models and compare ACO and GA models based on the

performance parameters of minimized cost objective function and CPU time of

execution.

52

53

Chapter 3.

RESEARCH METHODOLOGY

Based on the literature survey, it is observed that very little work has been done in

obtaining optimal solutions for the inventory problems utilizing the combined benefits of

neural network and genetic algorithm techniques.

Artificial Neural Network (ANN) is used for forecasting the periodic demand rate of the

product for an existing valve manufacturing and trading unit based on the study of its

inventory management system. Two different approaches to ANN, namely Multi Layer

Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN) were tried out to

develop prediction system for demand forecast. To identify the right kind of optimization,

two models namely Ant Colony Optimisation (ACO) and Genetic Algorithm (GA)

technique were used for multi objective optimization to arrive at the inventory control

model based on ANN results.

The data for the inventory management of an existing firm dealing with industrial valves

Shalimar valves, MIDC Industrial Area, Ghansoli, Navi Mumbai was used to validate the

models for the demand forecasting and multi objective optimization of inventory control

system.

3.1 DECISION ON THE RESEARCH APPROACH

The research process consists of various stages like framing and justifying a topic for

research, studying the literature, choosing an approach, gathering data, examining,

investigating and evaluating data and preparing report and scripting the thesis (Saunders

et al., 2003). Saunders et al. (2003) classified the research approach into two ways:

Deductive and Inductive. In deductive approach, the researcher develops certain concepts

or propositions and a research strategy is designed to authenticate and validate the

hypotheses. In the inductive approach, the researcher develops models and concepts

based on result of the data analysis after collecting the relevant data.

54

There are some fundamental differences between deductive and inductive approaches in

its application to research process. Deduction approach stresses on the following aspects:

 Developing the theory and then gathering data to validate the theory

 The need to explain causal relationships between variables.

 The collection of quantitative data.

 Legitimacy and soundness of data to be ensured by the exercise of suitable

controls.

 The implementation of theoretical knowledge to ensure clarity and intelligibility

of definition.

 To ensure that samples are of adequate size in order to generalize inferences.

 Induction method focuses the following features:

 Understanding the connotations linked with proceedings and actions.

 A proper and in depth understanding of the research context.

 Gathering quantitative data, and also the information which cannot be expressed

in quantitative form.

 Flexibility required in permitting the changes of research direction as the research

work progresses.

 Lower importance on generalization.

Based on the research questions and purpose of the thesis, the deductive approach has

been chosen as the most appropriate approach to be employed. A wide range of relevant

models and principles have been reviewed, new methods have been proposed for demand

forecast and multi objective optimization which would help to improve the inventory

management of the company under research. The methods have been validated using the

data collected from the organization subject to research.

3.2 RESEARCH METHODOLOGY

Fig 3.1 depicts clearly the research methodology adopted. The scope of the research

work includes an integrated application of AI tools for the twin objectives of demand

55

Figure 3.1 Schematic representation of research Study

Multi objective IM dynamic lot

sizing using ACO model

Multiobjective IM dynamic lot

sizing using GA model

Lot size Calculation, Model

comparison and validation

Parameter tuning using Taguchi

Technique

Prediction and validation of

Model

Training the models using MLP

and RBN

Parameter selection and model

building

Study of Inventory Management system of existing company

Collection of time series data of past sales records for identified

products for demand prediction.

Multi layer Perceptron ANN

model for demand forecast

Radial basis Function Network

ANN model for demand forecast

Predicted demand data as input for

lot sizing models

 Collection of data for

inventory model from

the company under

study

56

forecast and periodic order lot sizing. The inventory management system and practices of

company under study is analyzed in depth. Relevant data is collected. Historic sales data

for selected product units are collected.

Artificial neural network approach is adopted for the demand forecast. Different network

architecture were tried out to improve the prediction accuracy. First, demand forecast

was done based on Multi layer perceptron model after training the model with the past

sales data of the selected product unit. Prediction accuracy was compared with the

demand forecast obtained from Radial basis function architecture neural network.

Based on the best method of forecast, demand was predicted for subsequent periods. This

demand data was used as input for the multi objective inventory optimization model to

compute the multi period multi item reorder lot size. Conflicting objective of optimizing

the order cost, holding cost and purchase cost with different price breaks is modelled

using different AI approaches of Ant Colony Optimisation and Genetic algorithm.

Optimum reorder quantities, objective function value of minimum total cost of inventory

were calculated using different models and compared to identify the best method of

optimization. The CPU execution time of algorithm run was also considered as another

evaluation parameter.

3.3 REVIEW OF THE CURRENT INVENTORY MANAGEMENT PRACTICES

OF COMPANY UNDER STUDY

The company under study is pioneer in the Indian valve manufacturing and trading and

through its sister concern has designed and manufactured excellent products for different

engineering fields. Since many years, they have indigenously carried out functional

research and produced wide range of valves thus earning an international distinction for

technical superiority in the field of valve manufacturing and trading. The technical

excellence of company has been recognized and they have been awarded with dual ISO

9001, API 6D, API-Q1, API 600 marking. The product range comprises carbon steel

valves, stainless steel valves and strainers. Versatility in design and development has

57

given the company an edge over the competitors in its primary capability in developing

products that is supplied to a variety of chemical and construction industries.

The company has got a big warehousing facility at Rabale in new Mumbai. Company has

got in house manufacturing facility and testing facility. It has got a good marketing

network. The company gets most of the valves manufactured through its vendors as per

the stringent testing requirements. The company needs a good demand management

capability and inventory management lot sizing decision making mechanism for their

trading business to reduce total inventory cost.

 Acquiring, allocating and controlling the factors of production is important for

organisations to achieve its objectives and retain its core competence. For the

organization to survive and grow, inventory management is a key activity of business

logistics. With this point of view, the organization under study has set one of the key

performance indicators to hold inventories at the lowest possible cost, without

interrupting the supplies for ongoing operations. Management makes the inventory

decisions based on a trade off between the different aspects of cost, such as the holding

cost, carrying cost and cost of insufficient inventory. Important points related to

inventory management practices by the company under study are highlighted below:

3.3.1 Inventory Planning and Scheduling

 This process takes care of determining the stock essential for the organization to

ascertain interval of time for smooth functioning of day to day business activity. A good

inventory plan is characterized by preparation of stock plan sufficiently ahead of

requirement which will facilitate planners to carry out the buying of required material in

right quantity at the right period without overstocking and also without causing

inconvenience due to quantity and quality deficiency.

58

3.3.2 Inventory Recording

 Company believes that precise and current stores records are important for efficient

management of stores. The central business process of inventory management comprises

of correct stock taking and prompt maintenance of records of goods receipt or production.

Goods issue from the stores is properly approved and the records of approval need to be

maintained which can be used as audit trail later. It is responsibility of the stores

department to totally eliminate the inaccuracies of stock management and to ensure

precise and dependable stock records. Annual and cycle physical inventory checks,

surprise and spot checks form a part of monitoring process which ensures an effective

inventory management and control. In order to facilitate the auditing and to confirm that

each and every transaction is authorized by the competent authority, the company uses

many documents. These can be used for legal purpose also. Some of them are listed

below:

Purchase requisition note: Document created by either the person responsible for stores

or person from user department requesting the purchasing department for procurement of

certain material within certain time frame.

Goods received note: Document recording the goods receipt into stores which describes

the goods and quantity.

Stock record card/Bin cards: This document for individual material records the goods

receipt, issues and the balance in store.

Materials return note: This document records and authorizes the unused inventory to be

returned to stores. The goods not used during production or goods which could not be

sold are returned back to stores based on this document.

Scrap note: This is a document used for keeping track on scrap produced and its

movement across the different departments and stores.

59

3.3.3 Inventory Valuation

Inventory valuation refers to the process by which the raw material, semi finished goods

and finished goods inventory are valuated based on the agreed norms. This valuation is

an important input to profit and loss account of the company. There are usually three

common methods adopted for inventory valuation: First in First out (FIFO), Last in First

out (LIFO) and the average price method. The company adopts FIFO method as it

believes that it represents the correct way of measuring the company assets.

First in First out (FIFO) is a valuation technique in which value of material is computed

based on the price of the oldest inventory until all the units are used and then the price of

second lot is used to determine the value and the process is continued. FIFO method is

based on the standard that inventory bought first are issued first. After the first lot or

batch of materials procured is consumed, the next lot is prepared for use. The inventory is

valuated at the earliest costs.

3.3.4 Inventory control

 Inventory control in the organization under study is the activity which organizes the

availability of raw material for production and assembly lines and finished goods for

sales. It involves the co-ordination of important functions of organization, the

procurement, manufacturing, sales and distribution to meet the requirements of marketing

division. Inventory control also includes ensuring the availability of not only the current

sales items and new products but also consumables, spare parts and other supplies. The

company strives through its inventory/stock control techniques to make sure that different

kinds of inventory including stocks of raw materials, work in process and finished goods

are maintained at appropriate levels which provide highest service level to customers at

minimum cost to the company. An efficient Inventory management system should reduce

to minimum, the time and carrying costs. It must also be capable of providing required

stock for uninterrupted production, sales operation and for satisfactory customer service.

Following activates are studied which support inventory control.

60

Checking Receipts – Quantities of material received in to the stores are checked as per

the document either by weighing, counting or measuring. Proper checking of receipts,

ensures that the quantities are correct at first instance thereby providing a good basis for

further operation.

 Checking Issues – Issued quantities and description of material issued are properly

checked so that it matches with the goods issue slip, before they are issued for production

or sales. The policies and procedure of the company specify that both the issuer and

receiver should cross check the quantities and description and sign for it , which would

provide a reasonable assurance that there would be no discrepancy between the

documented and actual quantities.

 Spot checking – In order to have a safe guard against the mal practices related to stores

issues and receipts, a practice of random spot cross checks at irregular intervals by the

senior stores officers and managers is implemented. This is in addition to regular stock

taking. This practice is followed with a good intention of excluding any scope for

material misappropriations.

3.3.5 ABC Analysis

 The company regards this as the best approach for the inventory management based on

the principle of selective control. ABC analysis classifies products on the basis of

importance they assume in company operation and financial performance. Importance

may be based on cash flows, time required from purchase order stage to goods receipt

stage, impact of shortages, sales volume, or profitability. The company gives 80%

weightage to annual usage and 20% for the stock out cost. Class A comprises of around

20% of items but constitute around 80% of annual usage. Class B forms around 30% of

items by quantity and 15% by value. Rest of 5% by value is class C which makes around

50% by quantity. Company follows the following procedure to classify inventory items

into A, B, C categories (Company handbook, Shalimar valves, 2013).

1. Annual consumption of each item is determined.

61

2. Annual consumption of each item is multiplied by the cost of the item to obtain

the total annual usage value.

3. Aggregate annual inventory expenditure is arrived at by adding the total annual

usage of all the items.

4. List out all the items and arrange them in the descending value (Annual Value);

5. Accumulate value and add up number of items and calculate percentage on total

inventory in value and in number.

6. Percentage of total consumption for each item is calculated by dividing the total

annual usage value of each item by the cumulative annual inventory financial

outflow.

7. Items are ranked based on the percentage of aggregate consumption.

8. Evaluate annual consumption distribution and categorize items as A, B, or C.

3.3.6 Inventory Levels.

Maintaining the inventory level is a stock management tool, which deals with regulating

the amount of inventory stocked by an organization. The main aim of this control is to

strike an equilibrium between profitability and liquidity to ensure that there is no shortage

or excess of raw materials.

The company has determined the inventory level it needs so that over or under stock is

avoided. The company has established the following parameters in order to intelligently

escape from adverse stock levels i.e. the re-order level, average stock level and maximum

stock level, minimum stock level of safety stock.

Re-order level cautions the stores that the stock has touched the lowest point and it is the

time to make stock renewal orders. The re-order level must be adequate enough to make

provision for the maximum possible consumption of stock during the reorder period and

for delayed deliveries.

Re-order point = Maximum daily consumption x maximum lead time/period (Hadley, G.

et al. 1963).

62

Safety stock or buffer stock is maintained to avoid shortages. It is the stock level of a

material below which it should not be permitted to drop. This is an insurance against only

unusual situations.

Minimum stock level/safety stock=Re-order level – (average rate of usage x average lead

time) (Hadley, G.et al. 1963).

Maximum stock level denotes the highest amount of inventory the company can stock at

any time. Maximum level represents the level above which stock should not be permitted

to exceed as it becomes uneconomical to hold the inventory due to locked up capital and

higher holding cost (Krone,L.,1964).

3.3.7 Two bin system:

The company uses this method for inventory control of relatively inexpensive or non-

essential items or items of category C. The inventory is divided and placed in two

separate compartments or bins. The items are used from the first bin during normal

consumption. New supply is ordered as soon as the first bin is empty. The second bin

contains quantity of items that will cover the usage between the dates of placing an order

to the date of delivery.

As depicted in Figure 3.2, the two-bin method for re-ordering material can be easily

implemented and it offers an easy and direct method for tracking the usage. As in the Part

A of pictorial representation, material is used from the first section of the bin only. When

all the items are consumed in the first section, the items in second section of the bin are

used and an order is placed with the supplier for a replenishment. In the Part B diagram,

instead of section, a certain level is used as the reference. When the inventory reaches

certain specified level, reorder is placed.

3.3.8 Inventory Costs.

The cost and benefits of the inventory have to be balanced in order to have a successful

inventory management.

63

PART A PART B

BIN SECTION 1 BIN SECTION 2

Order point
quantity

 Section1

Normal consumption

When empty, reorder and use from
section2

Normal
consumption

When empty,
reorder and

use from
section2

 Section2
Order point quantity

Fig 3.2 Two Bin System (Courtesy: Fei-Long et al.2010)

True cost of inventory, in most of the times, is elusive as it involves not only

warehousing cost and cost of capital tied up with inventory, but also the insurance and

taxes and cost of obsolescence and stock out. The company has got a very good

perspective of this fact.

The main objective of the Inventory management in the company is to ensure that costs

associated with inventory are minimized. These cost include holding /carrying costs,

ordering costs and purchase costs which make a sum of total stock costs.

3.3.9 Challenges faced by the researched company in the field of inventory

management

The company maintains all the store records in the excel format and updates the

inventory in the system with the goods receipt and goods issue. The company tried to

implement ERP to stream line purchasing and inventory management functions.

Accurate demand forecast being the vital component for a prudent inventory management

decisions, the company want to improve their forecast accuracy. At present 3 months

moving average method is used for prediction.

64

Company adopts ABC classification for identifying the material of higher importance.

Class A and B items inventory management is done on a continuous basis with the

reorder point and maximum stock level. Company finds it extremely difficult to monitor

the stock and place the order and monitor it. Because of this the company misses the

reorder points leading to short fall of the critical items resulting in delayed deliveries

and compromise in service level. There is excess stock for certain items. The company

wants to bring down the inventory value, without compromising customer service level.

Inventory stock-out often occurs despite the heavy investment in inventory.

 The company prefers to have a periodic review and place the order at regular interval.

A dynamic lot sizing procedure to be followed with budget and space constraints which

optimizes ordering, carrying and purchase cost. With this, the company hopes to

minimize the frequent ordering cycles and reduce the missed order and thereby

improving inventory management.

Based on the requirements of the company under study, the aim of this research is to

apply AI technique to demand forecast so as to achieve higher accuracy of prediction.

Further application of AI approach was tried to arrive at the optimum dynamic lot sizing

for the periodic reorders based on the forecasted demand.

3.4 DATA COLLECTION METHODS

 Primary data was collected mainly through detailed interview with the operations head

of company and through observations into the daily activities of stores, goods receipt,

goods issue and other operational process of warehouse activities. Data related to the

purchase was collected by interviewing the purchase manager and access into the

information system related to purchase and material department. Wherever face to face

interview could not be held due to logistic difficulties, e-mails were used for data

collection and compilation. The interview questions were prepared in advance keeping in

mind the exact requirement for the proposed research work. The unstructured interview

approach helped in giving better flexibility in data collection so that a very clear picture

65

of facts emerged after the deliberations. The semi-structured interview approach ensured

that focus was not diverted away from important identified questions, but at the same

time, allowed a certain degree of flexibility during the interview (Barbara B.Flynn et al.

1990).

The product catalogue of the company was also studied to get the additional data for the

project thesis. All data collection methods and channels were fully authorized by the

company management and it was carried out without transgressing any ethical rules of

the company.

3.5 CHOICE OF PRODUCT FOR INVENTORY MANGEMENT STUDY

The company produces more than fifty types of valve assemblies of different valve types,

gate valve, ball valve, globe valve, check valve etc. Among this wide product range,

purposive sampling was used to identify and select 6 product items for the study. The

sales report and purchase orders history was retrieved from the company‘s information

system. The fast moving items from the products are selected which are ordered in large

numbers so that representative items are used for research study.

3.6 DATA COLLECTION

Extensive data collection campaign was carried out with a broad perspective of

following details related to inventory management.

 Historical annual demand of the major product range, 6 product items were

selected through purposive sampling.

 Finished goods inventory maintained for each of the product

 Work in process inventory.

 Bill of Material for each of valve assembly.

 Company inventory policy.

66

 List of important raw material and component assembly with the list of suppliers

(multiple suppliers if any).

 Ordering cost and inventory carrying cost of each of the product item.

 Lot size, reorder point and safety stock of each of the product item.

 Quantity discounts offered by the supplier and price breaks.

 Delivery lead time for each of the component and history.

 Quality of received components and rejection rate.

 Raw material and finished goods storage capacity restrictions.

 Bidding policy of the company.

 Procurement philosophy of the company.

Relevant data for the AI modeling was based on the importance of selected factors.

3.6.1 Sales data

Past historical bimonthly sales data for these product categories were compiled. This data

formed the time series for forecasting the demand for these types of valves. Sample Bi-

monthly Sales data for one of the product item under study, 10‘‘X 150 GTV 101 is

shown in the Table 3.1. It is considered not necessary to study the different influencing

factors for the demand prediction, as the time series itself is the reflection of aggregate

response of the variable under consideration to the different factors.

The company has got a historic data regarding the on time delivery performance and

quality rejection rate of the established vendors which helps to fix the reserve stock. The

reserve stock will help to meet the sudden rush demand and act as buffer against the

delayed deliveries from the vendors.

3.6.2 Ordering cost data

Ordering cost is the administration cost of ordering the material. This cost is incurred

every time the material is ordered. It consists of two parts.

67

Table 3.1 Sample Bi-monthly Sales Data for 10’’X 150 GTV 101

Year Month Domestic sales

Qty (Nos)

2001 Jan-Feb 48

 Mar-April 64

 May-June 52

 July-Aug 35

 Sept-Oct 55

 Nov-Dec 70

2002 Jan-Feb 65

 Mar-April 63

 May-June 76

 July-Aug 66

 Sept-Oct 40

 Nov-Dec 70

2003 Jan-Feb 30

 Mar-April 42

 May-June 40

 July-Aug 44

 Sept-Oct 55

 Nov-Dec 40

2004 Jan-Feb 58

 Mar-April 60

 May-June 62

 July-Aug 70

 Sept-Oct 55

 Nov-Dec 42

2005 Jan-Feb 55

 Mar-April 54

 May-June 76

 July-Aug 36

 Sept-Oct 39

 Nov-Dec 90

2006 Jan-Feb 68

 Mar-April 66

 May-June 45

 July-Aug 72

 Sept-Oct 73

 Nov-Dec 56

68

The cost of the ordering process itself: This is the fixed cost and does not depend on

the number of units ordered. It includes the clerical cost of purchase function like vendor

identification, invoice processing, communication and accounting related expenses. This

part of ordering cost per unit will reduce as we order more units per order

The inbound logistics costs: This refers to cost involved in transportation, loading&

unloading and inspection. Those costs may be variable. Thus the ordering cost can be

different for different products depending on the distance of supplier from the point of

delivery, type of transportation and containerization used, type of requirement of

inspection methods (Hans-Joachim Girlich, 2003).

The cost data maintained by the company records is referenced and is used in the lot size

calculation.

3.6.3 Inventory carrying cost data

There are costs incurred for carrying all inventories. Accounting and economic cost form

the two components of carrying cost. Accounting costs are obvious costs and they are

actual cash payments. Economic costs are abstract costs and hidden like opportunity costs

(Goldsby et al. 2005). The finer constituents of inventory carrying costs are illustrated in

Figure 3.3.

3.6.3.1 Capital costs

WACC (weighted average cost of capital) is the usual approach to calculate the capital

cost. This turns out to be the rate which the company pays on average to all its security

holders to finance its assets. Capital cost comprises of the interest on working capital

and the opportunity cost which means the difference between the returns when the

same capital is invested in inventory and in other comparable assets like treasury or

mutual fund.

69

3.6.3.2 Storage space costs:

These are the expenses incurred on building and maintenance of the facility for storing

the inventory. The cost of maintaining basic facilities like air conditioning, heating,

lighting will form a part of the storage space cost. Notional expenses of depreciation

will also contribute to storage space cost. Expenses on property tax and lease, cost of

purchase also need to be taken into consideration under this head. Company owned or

rented property for storage will greatly influence this cost. The company faces the

problem of saturation or near saturation of storage space which is increasing its storage

cost non linearly. This is caused due to the obstruction for the free movement in an

almost filled warehouse and increased difficulty in finding alternate storage space or

extra emergency storage space .

Fig 3.3 Components of Inventory Carrying Cost (Source: Leenders et al. 1985)

70

3.6.3.3 Inventory services costs

These are costs involved in system hardware and software installed for the inventory

management, RFID if implemented, manual material handling for servicing the

inventory. Cost involved in cycle counting for physical stock verification is also a part of

his cost.

 3.6.3.4 Inventory risk costs

This cost includes the degradation in value of the inventory over the period of storage.

This may be the result of the product shrinkage, theft, fraud at different points of

purchase like the vendor himself or stores etc. Administrative errors like misplaced

goods, shipping errors are also covered under this head. Obsolescence, outdated products,

damages in transit will also add to inventory risk cost.

Inventory Carrying Costs in Summary:

 Cost of Money 5% - 11%

Taxes 2% - 5%

Insurance 1% - 3%

Warehouse Expenses 2% - 6%

Physical Handling 3% - 6%

Clerical & Inventory Control 2% - 5%

 Obsolescence 5% - 15%

Deterioration & Pilferage 2% - 5%

Total 20% - 50%

Inventory carrying costs for the product items chosen are taken from the company

records and used for the calculation in the multi objective optimization study.

71

The above compiled data is used for solving the lot sizing problem which covers the

second objective of research. Lot sizing decision comprises of determining how much

of a product is to be produced at what time so that the total cost is minimized, at the same

time responding well for the demand requirements under the available capacity.

Estimating the right lot sizes affects inventory cost and also the service level and

customer satisfaction.

3.7 NEURAL NETWORK MODEL

Neural networks are flexible data driven models that have appealing properties for

prediction. Fig. 3.4 shows the work flow in neural network design.

Fig 3.4 Work flow in neural network design (Garetti, M. et al. 1990)

Data collection

 Network creation

 Network

Configuration

Bias and weights

Initialisation

Network Training

 Network Validation Use the network

72

Neural networks are universal approximators and are well known to capture the non-

linear relationship thus improving the performance of the forecast (Hill,T. et al.2006).

The aim of the study is to build a neural network model for the demand forecast of the

industrial valves. There are two models developed for prediction, namely, Multilayer

Perceptron (MLP) and Radial basis Networks (RBN). The learning algorithm used in the

both study are Error back propagated Gradient Decent method. The following section will

focus on the architecture and training methods used in the present work.

3.7.1 Architecture of Multi-Layer Perceptron model

The complex engineering and business application related problems have been

successfully resolved by using ANN with the Multilayer perceptron (MLP) architecture

(Singh, P. et al. 2007). These problems are successively solved by machine learning with

an effective error back propagation algorithm. The errors occurred during training are

fixed using different learning rules. Least Mean Square algorithm and Gradient Decent

are some of them. The architecture contains three types of layers. They are named input

layer, hidden layer, and output layer. Fig 3.5 represents the multilayered ANN structure.

The definition of the architecture determines the different parameters like the number of

layers in the network, the number of neurons in each layer, the transfer function of each

layer and the layers interconnectivity. The best architecture is chosen based on the type of

the problem that network represents.

 Fig 3.5 Multilayered ANN structure (Courtesy: Simon Haykin,1999)

Input Layer

Hidden Layer

Output Layer

73

The flow of signal is carried from input layer to output layer in a forward direction, thus

it is named as Feed Forward Neural Network. The supervised learning involves the

process of adjusting the network, so that a particular input or a group of inputs result in a

specific target output. This process is called training the network. Network training

compares the output and the target until the output matches the target. A number of input

and corresponding target outputs are fed to the system as training data. During the

process of training, the relationship between the input and output is studied. The synaptic

weight adjustment process continues as the learning process progresses. Fig. 3.6 explains

the learning process (Herbrich, R. et al. 2000).

Fig 3.6 A Training process in an ANN model (Courtesy: Herbrich, R et al. 2000)

 The configured neural network has to work in such a way that the set of inputs should

provide anticipated result. The weights are basically set in two ways. One method is to set

the weights based on the previous knowledge. The other way is by providing the data as a

train to learn the pattern of output by means of learning rules. Networks must be trained

in such a way that the errors between the desired and target are minimal. There are two

types of error specification, by specifying the number of epochs and by specifying the

error value. In epoch specification, the training data will run up to the specified number

of epoch and once it reaches specified value, the testing of the data is carried out. In the

case of error criterion, the training iteration will run till the error is minimised to specified

value. In the present study, MLP architecture is used for training and predicting sales

demand of industrial valves. Inputs to the neural network are actual demand for the

Output Target rate Error

Modify

ANN

74

immediate last period, moving average of last two periods, three periods and six periods.

Output or predicted parameter is the demand forecast for next period.

3.7.2 Back Propagation Training Algorithm

Mapping of input and output relationships through multi layer networks for the proper

training of ANN is achieved by Back propagation algorithm. The essential working

process of back propagation consists of two passes through different layers of the

network. In the forward computation, the input data is acquired and propagated through

network from one layer to another layer. The network responds by generating the output

set. Forward pass fixes all the connection weights. Backward pass of the algorithm

adjusts the weights base on the error between actual and target output. The process of

forward and backward pass persists till the learning is complete with adequate accuracy

or till the overall error is reduced to acceptable level. The error gets accumulated over

the entire training cycle. This computation cycle is called training epoch. After the

training phase, it will be the testing phase. During this time the trained network whose

synaptic weights were fixed during training phase, operates with forward pass or normal

feed forward algorithm to give the output (James A. Anderson1995).

Different back propagation algorithms are used to train the neural network depending on

the architecture. The most used is Levenberg-Marquardt (trainlm), which is ideal for

training the small and medium sized problems (Wong, B. K. et al. 2007).

3.8 RADIAL BASIS FUNCTION NEURAL NETWORKS

This section presents an overview of radial basis function neural networks and their

application for prediction of product demand (Moody et al. 1989).

Radial basis function (RBF) networks are a class of feed-forward networks. Supervised

training algorithm is their learning platform. The network configuration in case of RBF

networks normally consists of a single hidden layer of units. The triggering of these units

is from a class of functions called basis functions. RBF networks inherit all the basic

characteristics and advantages of back propagation. They even score several plus points

75

over Multi layer perceptron. RBF usually train and converge more quickly than back

propagation networks. Non-stationary inputs will not adversely affect the performance of

this type of network because of the behavior of the radial basis function hidden units.

RBF models are considered superior due to their simplicity and ease of implementation (

Srinivasa Pai.P, et al. 2004). These networks have got superb learning and function

approximation capabilities. A radial basis function network in its simple form consists of

three different layers. Source nodes or sensory units form the input layer. The second

layer is the hidden layer. Third layer is output layer which gives the response to the

activation patterns applied to input layer. From input space to the hidden-unit space, the

transfer function is non linear, whereas the transformation from the hidden-unit space to

the output space is linear. Fig 3.7 shows the typical RBF architecture. In this figure, p1 to

pn represent the input and y represents the output.

Fig 3.7 General architecture of RBF network (Simon Haykin, 1999)

Main advantage of RBF network comes from their capability in universal approximation.

Other important benefit of RBF network application is that learning requires very less

computation time and it produces smaller network than other algorithms (Simon Haykin,

1999). Gaussian function is selected as basis function in the standard approach to RBF

network implementation. Input data characteristics govern the selection of number of

Output layer

pn

Hidden layer

y

 p1

p2

pn-1

 Input layer

1

2

3

c

Radial basis units

76

hidden units. Normal least square method is used to estimate the weights between hidden

and output units as they are linear.

Moody and Darken (1989) conducted in depth research into RBF networks and have

proven the usefulness of neural network architecture. Significant variance between RBF

and MLP is caused due to the behavior of the single hidden layer. Activation function

used in MLP back propagation is sigmoidal or S-shaped. Gaussian or some other basis

kernel function is the activation function used by hidden units in RBF. Each hidden unit

behaves as a locally adjusted processor.

Broomhead and Lowe (1988) pioneered the application of radial-basis functions to the

design of neural networks. Papers presented by Moody and Darken (1989), Poggio and

Girosi (1990), Simon Haykin (1999) and Renals (1989) were the other major works in the

field of design and application for RBF neural network.

3.8.1 The Structure of the RBF Networks

Radial Basis Function was first applied in the solution of interpolation problems for real

multivariable fnctions. Broomhead and Lowe (1988), and Moody and Darken (1989) are

credited with the first deployment of the radial basis functions in the design of neural

networks. The basic form of RBF network consists of three different layers, input, output

and hidden layers.

The input layer contains the source nodes. The number of source nodes is determined by

the dimension ‗m‘ of the input vector ‗s’. Hidden layer of nonlinear units constitutes the

second layer. These nonlinear units are linked straight to all the nodes in the input layer.

Each hidden unit consists of a basis function. The basis function is characterized by two

parameters, center and width. Graphical presentation in fig 3.8 shows the basis function

curve. The width of basis units is determined by the variance, σi. of the basis function.

The basis function has highest value at zero distance and it reduces as the distance from

the center rises.

77

Fig. 3.8 Graphical representation of Radial Basis Function (Courtesy: Moody et al.

1989).

The hidden units are connected to the input units by non linear transfer functions. The

output layer is connected to hidden layer by linear transfer functions.

The j th output is computed as

Where j = 1, 2,…m , i= 1, 2, …c

The centers of RBF units have to be fixed using different approaches and their learning

characteristics will be analyzed. Performance of RBF neural networks to be compared

with MLP for effectiveness in prediction.

The RBF network is a single hidden-layer feed forward neural network. Each node of the

hidden is characterized by two parameters, a center xj and a width σj. The parameter

di is Radial distance of input vector U from the center of basis function.

hi is the output of each hidden unit i

78

center is responsible for the radially symmetrical response of network input vectors.

Interpolating function smoothness property is influenced by the width of the network.

3.8.2 RBFNN training strategies

RBF networks are trained on different learning strategies based on the specification of

centers of radial basis functions. Two such different learning strategies are discussed

below.

3.8.2.1 Fixed Centers Selected at Random

Activation functions of hidden units are defined by fixed radial basis functions in the

simplest approach for RBF neural network. Centers are selected on random basis from

the training data set. The RBFs use Gaussian activation function which is defined as

Φj (x) = Eq. 3.2 (Matlab, 2008)

where xj is the center and σj is the width (standard deviation), j = 1, 2 …c where c is the

number of centers, pi is the input value and Φj(x) is the activation function. Linear

weights in the output layer of the network will be fixed during learning process. This is

the only parameter which is evaluated during learning. LMS approach or gradient

descent approach is used for network learning (Beale et al. 2000).

3.8.2.2 Self-Organized selection of centers.

This is another approach for network learning strategy where the radial basis functions

locate their centers in a self organized design. A supervised learning rule is used to

compute output layer weights. The network fixes its parameters by hybrid learning

process (Prasanna Kumar et al. 2013). The network resources will be apportioned in a

highly planned process by locating the centers of radial basis functions in those sections

of input horizon where significant data are present. Clustering algorithms like fuzzy c-

79

means (FCM) and its modified versions are used to achieve the self organized selection

of centers.

After the center selection, next phase of training is the evaluation of width of radial basis

units σj. Different heuristics can be applied for the computation of width parameter. One

of the simplest method is to choose all the σj to be equal. This method ensures a smooth

distribution of training data caused by the overlap of basis functions.

Another convenient and more effective method is to find the widths is the P-nearest

neighbor heuristic (Moody & Darken, 1989). In this method, the width parameter σj is

given by the root mean square distance of the given cluster center to the P- nearest

neighboring centers. That is

σj = Eq. 3.3 (Hadjahmadi et al. 2008).

Where vector xj (j =1….c) are the centers and xj1, xj2,…. xjp (1<=j1, j2,…..jp< = c) are the

P nearest neighboring centers.

3.9 GENETIC ALGORITHM

Genetic algorithm is a population based meta-heuristic which can be utilized to solve

complex optimization problems. John Holland invented genetic algorithm which mimics

the principle of natural genetics in order to solve optimization problems. (John Holland,

1962). Genetic algorithm uses knowledge from previous generations to direct the future

search (John Holland, 1975). A number of chromosomes at once rather than a single

chromosome can be used to carry out the search process. The optimum or near-optimum

solution of optimization problems can be efficiently obtained using genetic algorithm

(John Holland, 1962). The flow chart of genetic algorithm to solve inventory control

problem is shown in Fig. 3.9

80

The GA algorithm has been implemented on JAVA platform and the program can be run

with Net Beans IDE. The following components of genetic algorithm have been

implemented to solve the problem.

Figure 3.9 Flow chart of proposed genetic algorithm

Add the child to

new population

Calculate Fitness of Each Chromosome

Store the Best Chromosome in Each Generation

Termination

Criteria met?

Stop

Display the

Minimum of Best

Chromosomes as a

Final Solution

Apply Selection

Apply Crossover

Apply Mutation

Generate Initial Population of Size PS

Start

N offspring

created?

Replace old

population with new

population Generation = Generation + 1

Yes

No

Yes

No

81

3.9.1 Chromosome Representation

The chromosomes represent the strings of the order quantities of the items in each period

in this research work. For example, the chromosome representation matrix (CR) with four

items and three periods is shown in Fig. 3.10. In Fig 3.10, the number of items and

periods are represented by rows and columns, respectively.

CR =

Figure 3.10 Chromosome representation (Seyed Mohsen Mousavi et al. 2013).

3.9.2 Initial population generation

Initial population of size PS is generated by using problem specific knowledge so that it

does not violate the constraints 3, 4, 5 and 6. Population size (PS) can be increased or

decreased based on the input size of the problem. Population size is determined by

Taghuchi method in this research work (Seyed Hamid Reza Pasandideh et al. 2011).

3.9.3 Calculate fitness of each chromosome

The process of calculating the fitness of each chromosome consists of the following two

steps.

1. Calculate the objective function of each chromosome.

2. Calculate the fitness of each chromosome based on its objective function value using

the following equation.

f (x) = 1/ (1+O(x)) Eq. 3.4 (Seyed Mohsen Mousavi et al. 2013)

where, f (x) is the fitness function of each chromosome and O(x) is the objective function

of each chromosome.

82

3.9.4 Selection operator

The roulette wheel selection is used to select the chromosomes. In roulette wheel

selection, chromosomes are selected into the mating pool according to their raw fitness.

The chromosomes having high fitness have more chances to be selected. The probability

of i
th

-selected chromosome is

 Eq. 3.5

where, f (i) and f (j) are the fitness of the chromosomes i and j respectively (Patel, J.N.

2011).

3.9.5 Crossover operator

Single point crossover is used in this research work. The following Figure 3.11

demonstrates the application of single point crossover on the two selected parents.

 »

Figure 3.11 Single point crossover (Seyed Hamid Reza Pasandideh et al. 2011)

The offspring may not satisfy the constraint 3 of inventory status as specified in section

5.2 of mathematical model formulation. If, any, offspring does not satisfy the constraint

3, then the correction step is applied after the crossover operation in a way that it will

satisfy the constraint 3. Furthermore, crossover rate is taken as 0.9 in order to protect

some of good chromosomes that are already present in the mating pool.

83

3.9.6 Mutation operator

A novel mutation operation, namely ―subtraction-addition‖ mutation is used in this

research work as follows (Gupta,R.K. et al. 2009):

Step 1: Any one period is selected randomly for each component.

Step 2: Mutation value is randomly generated.

Step 3: If selected period is t then mutation value is subtracted from period t and added to

period T. If selected period t is the last period then T is the first period. If selected period

t is not the last period then T = t + 1 period.

This novel mutation operation never violates the constraint 3. Again the mutation value is

generated in a way that this novel mutation operation never violates the constraint 4 too.

Moreover, mutation rate is taken as 0.4 in order to escape from local optima.

3.9.7 Replacement strategy

The chromosomes in old population are replaced by newly generated chromosomes

which meet both the budget constraint 5 and warehouse area constraint 6 in each

generation. The newly generated chromosomes which do not meet either the constraint 5

or constraint 6 will be discarded.

3.9.8 Stopping criteria

Genetic algorithm stops when it has completed maximum number of generations.

Maximum number of generations can be increased or decreased based on the input size of

the problem. Optimum number of generations to be used is an important GA parameter

which is determined using Taghuchi design in this research work.

3.10 ANT COLONY OPTIMISATION.

NP-hard combinatorial multi objective optimization problems can be solved by different

Artificial Intelligence Algorithm. Ant Colony Optimization (ACO) is one such approach.

84

It is a meta-heuristic population based method (Dorigo et al. 2010). This approach

mimics the natural process of the indirect communication which takes place between real

ants by means of trails of a chemical substance called pheromone. Simple agents called

artificial ants are used in problem solution. They use the information regarding the

particular problem which is analogous to artificial pheromone information, to share their

experience to other ants in the problem solution population. This is the basis on which all

ant algorithms approach for multi objective optimization works. Fig. 3.12 shows the flow

chart of proposed ant colony optimization algorithm

Fig. 3.12 Flow chart of proposed ant colony optimization algorithm (Coutersy: J.J.

Patel et al. 2011).

Yes
No

Termination

Criteria met?

Construct Initial Solutions

Start

Stop

Display the Minimum of

Best Solutions as a Final

Solution

Pheromone Update

 Solutions Evaluation

Store the Best Solution in Each Cycle

Construct Solutions

Cycle Completed = Cycle Completed + 1

85

Ant cycle model is used in this research work. In this model, the trails are globally

updated during each cycle by all ants. The amount of pheromone deposited by each ant is

a function of the solution quality. As per the flowchart of proposed ant colony

optimization algorithm, first the ant based initial solution construction method is

executed.

Next values of pheromone are set based on ant based initial solution construction method.

Thus the values of pheromone are set accurately after the execution of ant based initial

solution construction method. Next ant based solution construction method will execute

in each cycle which will utilize the values of pheromone in order to construct better

solutions (Colorni et al. 1991).

The novel concept is implemented for ant based solution construction in each cycle as

follows. First each ant will construct the solution according to the probabilistic rule. After

constructing the solution according to the probabilistic rule, ant 1 will discard its order

quantity values of all periods for item 1 and item 3 and the values of order quantity of all

periods for item 1 and item 3 of ant 2 will be copied into the solution generated by ant 1.

Similarly, ant 2 will discard its order quantity values of all periods for item 1 and item 3

and the values of order quantity of all periods for item 1 and item 3 of ant 3 will be

copied into the solution generated by ant 2. This discard-copy step is repeated for all ants.

Last ant will discard its order quantity values of all periods for item 1 and item 3 and the

values of order quantity of all periods for item 1 and item 3 of ant 1 will be copied into

the solution generated by last ant. This novel concept represents the direct

communication between ants in each cycle in order to further improve the solution

constructed by individual ant separately (J.J.Patel et al. 2011).

In this research work, ant based solution is constructed by using problem specific

knowledge so that it does not violate the constraint 3 and constraint 4, specified under

mathematical modeling under section 5.2. Once the value of order quantity is generated

for all components for all periods, it will be verified that whether the generated values of

order quantity will meet the budget constraint and warehouse area constraint or not. If

86

either of the constraints is not met then the generated values of order quantity (solution)

will be discarded. If both the budget constraint and the warehouse area constraint are met

then the solution is valid and it is stored for further processing.

The ACO (Ant Colony Optimisation) algorithm has been implemented on JAVA

platform and the program can be run with Net Beans IDE. (Integrated Development

Envionment)

3.11 TAGUCHI DESIGN

The Taguchi method is one of the commonly employed approach used to optimize a

response using some designed experiments that are performed based on different

combinations of some controllable factors (Javad Sadeghi et al. 2014). Taguchi studied

and devised fractional factorial designs of experimentation to reduce the large number of

experiments in full factorial design (Najafi, A. et al. 2009).

In this work, the Taguchi method is used to tune the parameters of meta-heuristic

algorithm of multi objective optimization, genetic algorithm. The parameters of a meta-

heuristic that are needed to be tuned act like controllable factors in the design of

experiments (DOE). The aim is to find an optimal combination of the parameters such

that the response (the fitness function) is optimized. Consequently, a set of experiments is

performed in this section and the results are statistically analyzed. Design of experiment

consists of two or more parameters, with different sets of levels. Each level is varied in

statistical manner. The outcome of the particular test combinations is observed, and the

complete set of results is analysed to determine the influencing factors.

The Taguchi method is a special case of the fractional factorial design in which some

special orthogonal arrays are used. In order to study the results acquired by the Taguchi

method, two approaches are suggested in the literature. First, for experiments with single

run, application of the analysis of variance is advised. For experiments that are carried

out on multiple runs, a response variable known as Signal to Noise ratio (S/N) is

87

suggested. In the above relation, S denotes factors which are controllable; N represents

noise elements affecting response (R. Roy 1990). Since the meta-heuristics need to be run

number of times to acquire a better solution, in this research we use S/N to analyze the

results using Taguchi et al. (2005).

Many statistical tools are available to optimize the control parameters. But orthogonal

arrays under Taguchi method would help to study a large number of decision variables

with a limited number of experiments. Decision variables are divided into controllable

and noise factors. Noise factors can not be controlled directly. It is also impractical and

most of the time impossible to eliminate the noise factors (Phadke MS, 1989). Taguchi

experimental design will help to reduce the effect of noise factors.

3.11.1 Signal to Noise Ratio (S/N ratio)

Taguchi adopted the concept of signal to noise ratio to reduce the effect of noise factors

in the experiment. The desired value or mean response value is represented by signal.

The undesirable value or standard deviation is denoted by noise. The variation present in

the response variable or the component of noise factor is represented by S/N ratio (Ross

RJ, 1989). Objective functions are classified into 3 types for design of experiment

applications by Taguchi. They are ―smaller the better‖, the ―larger the better‖, and ―the

nominal is best.‖ Since almost all objective functions in inventory control systems are

grouped in the ―smaller the better‖ type, its corresponding S/N ratio is:

 (Syed, M.M et al. 2013).

3.11.2. Taguchi method implementation

Taguchi method implementation consists of five basic steps (R.Roy, 1990).

 Parameters with significant effects on the response are determined.

88

 The parameter value is determined by the trial and error procedure so that good

fitness value is obtained while implementing the experiments.

 Taking into consideration the available degree of freedom (DOF), a suitable

orthogonal array is selected which would specify the number of experiments to

minimize the experimentation time, and at the same time would be giving full

weightage for all the combination of influencing factors.

 Experiments are conducted based on obtained design.

 The results are recorded. The S/N approach will give the basis for evaluation and

analysis of the results.

3.12 ANALYSIS OF VARIANCE (ANOVA)

Analysis of variance (ANOVA) is a statistical technique which can be applied to analyse

the differences among different population means. ANOVA is used to study the variation

among and between groups. ANOVA computation partitions the variance of a particular

variable into different components which can be assigned to different causes of variation.

ANOVA provides a basis of a statistical tool which confirms if the means of several

population are equal (Seyed Hamid et al. 2010).

ANOVA has got tremendous application in the analysis of experimental data as a tool for

testing statistical hypothesis.

When there are two or more than 2 groups, ANOVA is the tool which determines, if there

are any, statistically significant differences between the means of groups. In this research

work, one way ANOVA is used to compare the results obtained by the different meta

heuristic algorithm for the solution of the mathematical model for the multi item multi

period periodic lot sizing in inventory control analysis. Software Mini tab 15 is used for

the computational purpose.

89

As a statistical computation instrument, one way ANOVA compares the means between

groups to conclude if any of these means are significantly different from each other.

Effectively, it examines the null hypothesis.

where µ = group mean and k = number of groups. On the other hand, if the one-way

ANOVA gives a result of significant different means, the alternative hypothesis (HA), is

accepted which means that there are at least 2 group means that are significantly different

from each other (Amy H.I. Lee et al. 2013).

3.12.1 ANOVA table analysis

ANOVA analysis yields the ANOVA table as its main output irrespective of the software

used for computation Anova table is characterized by number of columns with the

following labels in order: (Table 3.2)

 source of variation

 Sum of squares

 Degree of freedom

 Mean square

 F- value

 P value

The rows are labeled ‗Between Group variation‘, ‗Within Group variation‘. There is an

additional row containing total variation (Javad Sadeghi et al.2014).

Mean square =

Single F statistic is placed in the‘ between groups row‘ and is calculated using formula:

90

F=

P value is obtained by comparing the F value to its null sampling distribution.

The F-statistic tends to be greater if the alternative hypothesis is true or if the null

hypothesis is false. We reject the null hypothesis if p ≤ α. Where α is the confidence

level.

Table 3.2 Structure of results of ANOVA table.

Source of Variation
Sum of

Squares

Degree of

Freedom

Mean

Square
F value p

Between groups SSb k-1 MSb MSb/MSw p value

Within groups SSw N-k MSw

Total SSb + SSw N-1

(Source: Javad Sadeghi et al.2014)

 3.13 SUMMARY

To summarize, the research methodology adopted is explained in detail in this section.

Inventory management of company under study has been analysed. Data collection

method has been briefly explained. AI approaches of Artificial neural network with

its different architecture of MLP and RBFNN are described with respect to their

application for demand forecast. ACO and GA Modeling of multi objective optimization

inventory problem for period lot sizing have been elucidated. Application of Taguchi

method of Design of Experiments for tuning the parameters of GA has been

explained. Concept of one way ANOVA analysis has been detailed which will be used

to compare the performance of GA and ACO algorithm for inventory control problem.

Results and discussion have been presented in the subsequent chapters.

91

Chapter 4

4. RESULTS AND DISCUSSION – PART I

ANN APPROACH FOR DEMAND FORECAST

4.1 INTRODUCTION

 With the objective of attaining better accuracy for the demand forecast, two different

architectures of artificial neural network modeling have been discussed namely Multi

Layer Perceptron and Radial Basis Function Neural Network. The periodic demand data

generated out of resulting demand forecast has been used for constructing GA and ACO

models for optimizing dynamic lot sizing for multi period multi item periodic reorder.

The results of the studies are presented and discussed in-depth in this chapter.

Detailed discussion has been carried out under the Research methodology chapter

regarding the versatility, importance and wide ranging application of ANN in prediction

related problem solution.

Multilayer perceptron (MLP) and Radial basis functions (RBF) are the two types of feed

forward neural networks which have been utilized for modeling of demand forecast in the

current research work. Section under Research Methodology deliberated extensively on

these two architectures. In the following sections, a systematic and detailed review has

been presented regarding the application of the important theoretical concepts regarding

the MLP, RBFNN and back propagation algorithm to build the ANN model for the

demand forecast.

4.2 MLP architecture for ANN model for demand forecast

 MLP has already been introduced in the section 3.2 as one the most used ANN

architecture (Simon Haykin 1999). We have seen that Back propagation algorithm is one

of the important training methods for MLP [Herbrich, R. et al. 2000, Singh, P. et al.

2007]. It was also described how the Back propagation algorithm performance can be

improved by adjusting different factors like rate of learning, initial weight, transfer

92

function of nodes, presentation training data, momentum coefficient, number of neurons

in each layer, training algorithm etc. (Wong, B. K. et al. 2007).

4.2.1 Identification of best training Method:

In this research study, a preliminary ANN model was developed by using MATLAB 8

(2008) to evaluate the different training methods. On confirmation of Trainlm as the best

training method, a robust demand forecast ANN model was developed on C++ platform

using this training method.

Preliminary ANN model was tested using the standard training functions available in the

neural network tool box. The MLP network is trained using the following training

algorithms [Tugba Efendigil et al.2009, Koskivaara, E. et al. 2004].

Traingdx

Trainrp

Trainscg

Trainlm

traingdx is back propagation method of Standard Gradient descent with momentum and

adaptive learning rate (Simon Haykin,1999). The learning rate varies throughout the

training process with this algorithm. In the beginning, the output from the network and

the errors are computed. At the end of each iteration, new connection weights and

network errors are computed again by applying the current learning rate. If the new error

so calculated takes up a value exceeding the old error by more than a threshold ratio, new

weights and biases are rejected. The learning rate is lowered, error is re determined, and

the process is continued (Wong et al. 2007). On the other hand, if the new error shows

reducing trend compared to old one, the changed weights and bias are preserved and

learning rate is further improved. Using the above reiterative procedure, the best learning

rate for the given problem is obtained (Matlab, 2008).

Trainrp is resilient back propagation method which removes the detrimental effects of

partial derivatives. Magnitude of derivative has no impact on the process of weight

93

update. Positive or negative sign of the derivative decides the direction of weight update

(Wong, B. K. et al. 2007).

 Trainscg (Scaled conjugate gradient back propagation) is a conjugate gradient algorithm.

In this method, quicker convergence is achieved than other methods using the search

strategy along conjugate directions (Lau, H.C.W. 2013).

4.2.2 Trainlm as best training method

Trainlm method, which is known as Levenberg–Marquard (LM) training, converges

faster and also has higher stability (Yu-Hsin et al. 2009). This algorithm was found to be

highly appropriate for training small and medium-sized problems, and therefore most apt

in the present research work where the training data is a medium sized time series

consisting of around 110 past historical sales figures.

The Levenberg–Marquardt algorithm balances the faster convergence advantage of the

Gauss–Newton algorithm with stability of steepest descent method. It becomes more

robust by inheriting both these properties and can converge much faster even if the error

surface is more complex than quadratic condition.

The primary advantage of trainlm comes from the fact that it accomplishes a hybrid

training process. The LM algorithm shifts to steepest descent when it has to pass through

the area of intricate curvature, till the local curvature simplifies to a quadratic

approximation. Then, it switches back to Gauss newton algorithm which rapidly

converges.

On confirmation of Trainlm as the best training method, C++ program was developed for

ANN model for demand forecast using this training method.

Detailed description of ANN model for the demand forecast of 2 products is furnished

here for better generalization.

4.2.3 MLP Model 1: Demand Forecast for Globe Valve 10’’X 150 GTV 101

ANN models based on MLP, for demand forecast of two types of products were

developed with the help of the historical sales data. Accordingly, Model 1 is for Globe

94

valve 10’’X 150 GTV 101 series and Model 2 is for Gate valve 6’’X 600 GTV 102

series. Under each case, Demand forecast obtained from different training approaches

were compared to identify the most suitable architecture which gives good generalization

capability.

The scheme of training using MLP is as shown in fig 4.1. The data set was segregated

into 3 parts. The first part consisting of 70% of data was utilized as training set, next 15%

was used as testing data. The remaining 15% was employed for validation purpose.

Input for the neural network demand forecasting model:

Previous bimonthly sales data.

Second

previous bimonthly sales data (sales of last 3

rd
 and 4 th month)

Moving average of last 2 bimonthly sales data

Moving average of last 3 bimonthly sale data

Output of neural network is the forecasted demand for the next bimonthly sales.

The data inputs to the ANN model went through a preprocessing stage. Because of this,

data got transformed into common number range (0, 0.9). This is to ensure that all the

data contributed equally to the model.

Normalising function adopted was

Where xn refers to the normalised value, xmin is the minimum and xmax is the maximum

value in the range (Negalye et al. 2012). Upon completion of training, post processing of

output is carried out. The denormalising equation used was (Negalye et al. 2012).

95

Fig 4.1 Scheme of training MLP.

In the beginning, Single hidden layer was utilized with tan sigmoid activation function.

The output layer had linear activation function.

The performance of MLP is highly influenced by the number of neurons in the hidden

layer. To start with, a randomly selected number of neurons in the hidden layer trained

the network. Based on the MSE, the number of neurons increased or reduced to improve

the performance of MLP. Lesser the MSE, better is the performance. An optimum

number of neurons in hidden layer was the one for which the MSE was minimum.

MLP

MLP model1:

Globe valve 10’’X 150 GTV 101

MLP model 2

:Gate valve 6’’X 600 GTV 102 SERIES

trainrp traingdx trainscg trainlm

Optimized

NN model

trainrp traingdx trainscg trainlm

Optimized

NN model

96

The trial and error method was adopted to optimize the number of neurons in the

hidden layer as there is no other standard procedure (Beale et al.2008). Table 4.1 shows

the different number of nodes and the Mean Square Error obtained. Fig 4.2 shows the

plot of MSE on Y- axis and number of neurons on X- axis. It is evident from the graph

that MSE was 0.22 with hidden layer containing 10 neurons. MSE continuously got

improved with increase in the number of neurons to reach a minimum value of 0.004 at

20 neurons. Beyond this point, there was the reversal of the trend. There was slow

increase of MSE with increase in number of used neurons. This experiment established

the optimum number of neurons used in the hidden layer as 20 for the further

investigations. The final architecture of MLP model 1 is shown in Fig 4.3. This figure

depicts inputs and outputs of the MLP model and also the number of hidden layers.

Table 4.1 Identification of Optimum No. of Nodes For Multilayer Perceptron

Neural Network

 No. of nodes Mean Square Error

2 0.70

3 0.71

5 0.59

7 0.28

8 0.25

10 0.22

12 0.20

14 0.04

15 0.13

16 0.07

17 0.07

18 0.01

20 0.004

22 0.06

24 0.15

26 0.34

97

Fig 4.2 Identification of optimum number of Neurons

Four different training algorithm were used for training the MLP network. The MSE

achieved was noted as in Table no. 4.2. For all the four training methods the limiting

number of epoch was set at 2000. Momentum value was fixed at 0.09 and learning rate

was set at 0.6 (Megalie et al. 2003). Training Mean square error goal was given a value

of 0.001. Training was stopped when any one of the following three conditions were

satisfied: Performance goal reach or validation error crossing test error or crossing

maximum number of epochs. It can be inferred from the table 4.2 that Trainlm method

gives the least MSE, and therefore best for prediction.

Further experiments were also carried out and proved that increasing the number of

epochs could not reduce the MSE or improve the prediction accuracy.

98

Fig 4.3 MLP model 1: Demand forecast for Globe valve 10’’X 150 GTV 101

The performance of trained network was tested using Mean Absolute Percentage Error

(MAPE) as the performance parameter. MAPE is defined as

where Yt is the actual demand for time period t and Ft is the forecast for the same period

predicted by ANN model, n denotes the quantity of data under consideration (Tugba

Efendigil et al. 2009).

Table 4.3 shows the actual values and forecasted values for the test data when Trainlm

method is used for training the neural network. The absolute percentage error varies from

2.8 % to 7.8% as can be seen from the Table 4.3. Mean absolute percentage error is

20

Hidden Layer

1

19

2

Previous bimonthly

sale

2nd previous bimonthly

sale

Moving average of last 2

bimonthly sales

 Moving average of last

3 bimonthly sales

Forecasted

demand for the

next bimonthly

sale

Input Layer

Output Layer

99

4.91% with the trainlm method. Fig. 4.3 is the plot showing the demand forecast and

actual sales of the corresponding time period when Trainlm method is used. It is evident

that actual sales closely follow the forecasted demand as the demand predictions are

highly accurate.

Table 4.4 shows the demand forecast vs actual sales for 10 X 150 GTV101 valve series

employing MLP (Trainrp Method). The mean Mean absolute error is higher at 11.19%.

Fig 4.4 graphically represents that there is wider difference between the forecasted

demand and actual sales realized when the demand forecast is done using Trainrp

method for the neural network. Table 4.5 and Fig.4.6 compares actual sales figures with

the demand forecast using traingdx method. A still higher mean absolute error is recorded

at 15.02%.

The actual sales figure and demand forecast predicted by Trainscg training method of

neural network is shown in the Table 4.6. Fig. 4.7 represents the above comparison

graphically.

Comparison of data from the tables 4.4 to 4.7 shows the MAPE value of 4.91%, 11.69%,

15.02% and 11.16%, respectively from trainlm, trainrp, traingdx and trainscg methods of

neural network training. This establishes the supremacy of trainlm method which has

yielded the minimum MAPE or the best prediction accuracy.

Table 4.2 Mean Square Error for different training algorithms for MLP model 1

Name of Algorithm used Mean Square Error

trainrp 0.0734

traingdx 0.1140

trainscg 0.0656

trainlm 0.0040

100

Table 4.3 10 X 150 GTV101 Demand Forecast Vs. Actual Sales

employing MLP (Trainlm Method).

Actual Sales (Qty) Forecast Demand(Qty) Absolute Error (%)

63 64.77 2.81

44 41.36 6.00

62 59.23 4.47

54 50.20 2.67

68 64.28 5.47

56 51.55 7.95

74 71.58 3.27

70 75.26 3.81

65 67.34 3.60

55 53.43 2.85

56 57.76 3.14

45 42.36 0.09

56 53.78 3.96

Mean Absolute Percentage Error = 4.91%

Time interval

Fig.4.4 Acutal sales Vs. Demand forecast utilising MLP (Trainlm Method).

101

Table 4.4 10 X 150 GTV101 Demand forecast vs Actual sales employing

 MLP (Trainrp Method).

Mean Absolute Percentage Error = 11.69%.

Time interval

Fig 4.5 10 X 150 GTV101 Demand forecast vs Actual sales employing MLP

(Trainrp method).

Actual Sales

(Qty)

Forecast

Demand(Qty)
Absolute Error(%)

63 63.13 0.20

44 54.69 24.29

62 66.00 6.44

54 57.68 6.82

68 64.40 5.29

56 71.20 27.15

74 58.91 20.39

70 57.66 17.64

65 55.27 14.97

55 53.67 2.41

56 51.36 8.29

45 52.43 16.52

56 56.85 1.51

102

Table 4.5 10 X 150 GTV101 Demand Forecast Vs Actual Sales employing

 MLP (Traingdx Method).

Actual Sales (Qty) Forecasted Demand(Qty) Absolute Error (%)

63 58.03 7.89

44 60.17 36.75

62 69.39 11.92

54 62.91 16.51

68 61.33 9.81

56 63.41 13.23

74 58.64 20.76

70 57.64 17.66

65 57.05 12.24

55 54.81 0.34

56 45.99 17.87

45 56.35 25.22

56 58.82 5.03

Mean Absolute Percnt Error = 15.02%

Time interval

Fig. 4.6 10 X 150 GTV101 Demand Forecast Vs. Actual Sales employing

 MLP (Traingdx Method).

103

Table 4.6 Demand Forecast Vs. Actual Sales under MLP (Trainscg Method).

Actual Sales

(Qty)
Forecast Demand(Qty) Absolute Error (%)

63 63.66 1.05

44 58.00 31.82

62 50.63 18.34

54 61.37 13.65

68 71.29 4.84

56 52.21 6.77

74 53.52 27.67

70 68.59 2.01

65 61.12 5.98

55 53.85 2.10

56 53.01 5.33

45 51.59 14.65

56 62.06 10.82

Mean Absolute Error = 11.16%

Time interval – Bimonthly

Fig 4.7 Demand Forecast Vs Actual Sales with MLP (Trainscg Method).

104

Table 4.7 Mean Absolute Percentage Error for MLP model 1 with different

training algorithms.

The same set of experiments were repeated using 2 hidden layers with 10 & 20 neurons

per hidden layer. Table 4.8 lists the forecasting accuracy in terms of percentage error in

prediction under different scenario with different training methods. It can be seen that the

optimum architecture is 1 layer of 20 hidden neurons with trainlm training method which

gives the best demand forecast accuracy at 4.91% error. It can also be observed that

trainlm training method always gives better result than other training methods with the

different architecture. It can also be inferred from the table that no much improvement in

the forecasting accuracy is observed with increase in the number of hidden layers. This

can be attributed to the fact that proper balance of model complexity and approximation

ability is achieved with single hidden layer 20 neurons.

Table 4.8 Comparison of Percentage Error in forecasting using MLP with

different no. of neurons And hidden layers.

Training

Method

10 neuron

1 layer

20 neuron

1 layer

10 neuron

2 layer

20 neuron

2 layer

MLP-

TRAINLM
7.54 4.91 7.91 5.29

MLP-

TRAINRP
15.42 11.69 12.06 12.18

MLP-

TRAINGDX
15.85 15.02 15.36 15.25

MLP-

TRAINSCG
11.45 11.16 11.97 11.35

Training Method Trainrp Traingdx Trainscg Trainlm

Mean Absolute

Error
11.69 15.02 11.16 4.91

105

4.2.4 MLP Model 2: For 6’’X 600 GTV 102 Valve Series

In another study, MLP modeling was done using sales data for the 6‘‘X 600 GTV 102

valve series. Same procedure was followed for the development of the MLP model. Out

of the total experimental data, 70% was used for training, 15% for validation and

remaining 15% for testing purpose. Initially, the network was trained with 2 neurons in

the hidden layer. The number of neurons in the hidden layer was increased and each time

Mean Square Error (MSE) was recorded. The correlation of Mean Square Error with

number of neurons is clearly depicted in Fig. 4.8 and table 4.9. With 2 neurons, the MSE

recorded was 0.64. With the increase in the number of neurons deployed, the MSE got

reduced, until an optimum number of neurons was reached. In this case, for 20 neurons

MSE was 0.01 which was found to be minimum. Further increase of neurons resulted in

increase of MSE. The final MLP architecture for demand forecast for 6‘‘X 600 GTV 102

valve series. shown in Fig 4.9.

Table 4.9 Identification of optimum number of Neurons for MLP model 2.

No. of nodes Mean Square Error

2 0.64

5 0.49

8 0.43

10 0.22

15 0.07

20 0.01

25 0.25

30 0.84

Fig 4.9 clearly shows the inputs for the MLP model, the number of neurons in the hidden

layer, number of hidden layers and output of the neural network model. Network was

trained using trainrp, trainscg, traingdx and trainlm algorithms in the same procedure as

adopted for Model1

106

Fig 4.8 Identification of optimum number of neurons for MLP model 2.

MSE observed using each of the training algorithms is listed below in table 4.10. It shows

the value of 0.784%, 0.1646%, 0.0715% and 0.0042% respectively for trainrp, trainscg,

traingdx and trainlm methods of neural network training. It can be concluded from the

Table 4.10 that trainlm outperforms other algorithms as the MSE that could be reached

was the least with trainlm when compared to other algorithms.

Fig4.9 MLP model 2 : 6’’X 600 GTV 102valve series.

107

 Table 4.10 Mean square error achieved for various training algorithms-MLP

model 2.

Name of Algorithm used Mean Square Error

trainrp 0.0784

traingdx 0.1646

trainscg 0.0715

trainlm 0.0042

Similarly, a comparative study of the performance of the evolved MLP model for

different training algorithms revealed that trainlm outperformed other algorithms in terms

of lower MAPE or higher prediction accuracy as shown in Table 4.11. MAPE with

trainlm training was as low as 5.5%, whereas it was quite high at 12.58%, 15.35% and

11.96% for trainrp, traingdx and trainscg methods respectively.

Table 4.11 Mean Absolute Error for MLP model 2 with different training

algorithms.

Training Method Trainrp Traingdx Trainscg Trainlm

Mean Absolute

Error (%)
12.58 15.35 11.96 5.5

MLP model 2 was also tried by varying the number of layers, number of neurons in each

layer and training methods. Table 4.12 shows the prediction accuracy achieved in each

case. It lists the MAPE achieved for each training method in different cases of adopting

10 and 20 neurons with one and two hidden layers. Increasing the number of neurons

from 10 to 20 has improved considerably prediction accuracy with all training methods.

Substantial improvement was observed in case of trainlm learning. The MAPE got

improved from 8.56% to 5.5 % with the increase in the number of neurons from 10 to 20.

Anyway, altering the number of layers from 1 to 2 did not improve the result in any of

108

training methods. It is evident from the table that best MLP model 2 architecture is one

neuron layer with 20 neurons and trained with trainlm method.

Table 4.12 Comparison Of Percentage Error in Forecasting Using MLP with

Different No. of Neurons And Hidden Layers.

Training

Method

10 neuron

1 layer

20 neuron

1 layer

10 neuron

2 layer

20 neuron

2 layer

MLP-

TRAINLM
8.56 5.5 7.90 6.10

MLP-

TRAINRP
15.65 12.58 12.56 12.30

MLP-

TRAINGDX
16.15 15.35 15.76 16.02

MLP-

TRAINSCG
11.88 11.96 12.55 12.15

4.2.5 Summary of results.

In this section, MLP NN model has been investigated for predicting the bimonthly

demand of 10 X 150 GTV101valve series and 6‘‘X 600 GTV 102valve series called as

MLP model 1 and MLP model 2.

Learning characteristics of MLP in terms of number of neurons in the hidden layer, has

been studied for faster convergence and desired level of accuracy. Table 4.1 lists the no.

of nodes used for the hidden layer of MLP neural network and the resulting mean square

error keeping other parameters constant using the TRAINLM method. As the number of

nodes increases, the resulting mean square error decreases initially and after an optimum

value, the error starts increasing. At the optimum number of neurons, that is 20, the error

is minimum 0.01. The same is plotted in the graph in Fig. 4.2 taking number of neurons

on X-axis and Mean square error on Y-axis. More neurons than the optimum result in

109

overfitting. This means the ANN would overestimate the target problem complexity. It

reduces the capability of the network to generalize, thereby adversely affecting the

forecasting accuracy. Hence for the neural network, to effectively carry out the function

approximation, it is highly essential that optimum number of neurons should be

employed. This is illustrated in table 4.1 and Fig 4.2.

MLP has fixed architecture, where the number of hidden neurons was established by trial

and error method. This is very time consuming.

Different back propagation training algorithms namely trainlm, traingdx, trainrp, and

trainscg algorithms were used to train the network.

Performance of the algorithms or the prediction accuracy was compared in terms of

MAPE. Trainlm algorithm performed better than other algorithms with an average MAPE

of less than 5%. Results indicated that MLP can be effectively applied for demand

forecast, when sufficient historical data is available.

4.3 RADIAL BASIS FUNCTION NEURAL NETWORKS

This section presents a detailed analysis of use of radial basis function neural networks

for demand forecast. As already described in the section 3.6, RBF network is a feed

forward neural network with only one hidden layer. Two parameters center xj and width

σj characterize the node of the hidden layer. Two different methods were adopted to fix

the centers of RBF and two methods for width σj., and their learning characteristics were

analyzed. Performance of RBF neural networks have been compared with MLP for

prediction. The scheme of training using MLP is as shown in fig 4.10.

In the present work, RBFNN models have been developed for demand forecast of 10‘‘X

150 GTV 101valve series & 6‘‘X 600 GTV 102 valve series represented as RBF model 1

and RBF model 2, respectively. Center initialization and selection is achieved using two

learning strategies.

RBF

RBF model 2: 6’’X 600 GTV

102valve series RBF model 1: : 10’’X 150 GTV

101valve series

110

Fig. 4.10 Scheme of RBF network training.

Fixed centers selected at random

Self organized selection of centers based on Clustering algorithms like fuzzy C-means

(FCM)

 Similarly, two strategies have been used for width selection.

Fixed width

Variable width computed based on P-nearest neighbor heuristic

Demand forecast is carried out using each of the above learning strategies and prediction

accuracy is determined for both models.

4.3.1 RBF Model 1: Demand forecast of 10’’X 150 GTV 101 Valve series

The data set was segregated into 3 parts. The first part consisting of 70% of data was

utilized as training set, next 15% was used as testing data. The remaining 15% was

employed for validation purpose.

Input for the neural network demand forecasting model:

111

1. Previous bimonthly sales data.

2. Second previous bimonthly sale data (sales of last 3rd and 4th month).

3. Moving average of last 3 bimonthly sales data.

4. Moving average of last 4 bimonthly sale data.

Next bimonthly demand forecast is obtained as the output of neural network. C++

programming platform has been explored for evolving the code for RBF network

implementation using different learning strategies. Similar to MLP method, data

preprocessing is carried out so that the input data are in the range of (0, 0.9)

4.3.1.1 RBF training and testing with centers selected randomly

The algorithm used for this training has been explained in chapter 3. Optimum value of

parameters learning rate η =0.85 and momentum α=0.05 was selected and used

throughout experiments and evaluations.

With the centers selected randomly two studies were done:

With variable width of RBF units determined using P-nearest neighbor heuristic

With fixed and equal width for RBF units.

To study the convergence behavior, the maximum number of cycles was fixed at 2000

epochs. The program was run and network error was tabulated for different number of

centers. The network goal error was taken as 0.001. It is evident from the Table 4.13 that

there was a decrease in error and reached a minimum of 0.001 for the number of centers

110. After 110, the error starts increasing again. Therefore, 110 was chosen as optimum

number of centers. The RBF structure is illustrated in the Fig. 4.13. It shows the different

input parameters for RBF model, the number of random centers and output of the model

which is the demand forecast for next period.

With the number of centers as 110, the network error is noted for different number of

epochs. The Fig 4.11 shows the error vs number of epochs response. As the number of

epochs increases, the error in forecast decreases. It can be inferred from the Fig. 4.11 that

112

the optimum number of epochs is at around 600. Increasing the number of epochs above

600 is not required for obtaining the best prediction accuracy.

Table 4.13 Mean square Error and number of RBF units- co-relation study for the

RBF model 1(Centers selected randomly).

Number of

RBF centers
50 70 80 100 110 120

MSE (%) 0.001965 0.001432 0.001298 0.00119 0.001000 0.00120

Table 4.14 shows the performance of RBF model 1 with variable width of RBF units and

centers chosen randomly. It lists the actual sales, forecasted demand and prediction

accuracy in terms of error in prediction. The mean absolute percentage error is recorded

as 4.81%. Fig. 4.12 graphically illustrates the error in prediction by trending actual sales

and forecasted demand. X-axis represents the time interval.

Fig 4.11. Variation of error with number of epochs for Random choice of centers for

RBF model 1. (RBF centers=110).

Table 4.14 Demand forecast for 10 X 150 GTV101 Valve Series -Performance of

RBF model 1 (variable width and center chosen randomly).

113

Actual Sales (Qty) Demand Forecast (Qty) Absolute Error(%)

63 63.50 0.79

44 42.00 4.55

62 59.00 4.84

54 51.00 5.56

68 63.20 7.06

56 52.50 6.25

74 70.60 4.59

70 74.80 6.86

65 67.20 3.38

55 53.10 3.45

56 58.40 4.29

45 42.60 5.33

56 52.90 5.54

Mean absolute Error =4.81%

Time interval

Fig. 4.12 Demand forecast for 10 X 150 GTV101 Valve Series- Performance of

RBF model 1 (variable width and random choice of center).

Random centers

1

2

Previous bimonthly

sale

Input

Layer

Weighted

connection

114

Fig 4.13 RBF model 1: Demand forecast for Globe valve 10’’X 150 GTV 101.

Demand for the product is shown on Y axis. Two curves are drawn to represent the forecasted

demand and actual sales. Since the error was very less at around 4.81%, the actual sales figure

curve closely follows the forecasted demand curve as obvious from the Fig. 4.12.

In second part of the study with random centers, widths are not allowed to vary during

the study. Keeping the width constant for all radial basis function units, network training

carried out for different value of fixed widths. The optimum number of centers 110 is

used in this study. Network error variation with the different values of fixed widths is

captured in Table 4.15. Table clearly points out to the fact that as the width increases, the

error decreases till an optimum value of width is reached. After this optimum value of

width, any further increase in width will cause increase in error. The optimum value of

width is 0.08 and corresponding error is 0.001.

Table 4.15 Variation of MSE with widths for RBF model 1

 (Random selection of center).

115

RBF units Width 0.01 0.03 0.05 0.07 0.10 0.15

Mean Square Error 0.0014 0.0013 0.0010 0.0011 0.007 0.2970

The performance of the network for this fixed width is shown in table 4.16 and Fig. 4.14.

Table 4.16 lists the forecasted demand and corresponding actual sales . From this data,

the prediction error is computed. The mean Absolute percentage error in this case is

4.73%. The results show that MAPE decreased slightly when compared to the use of P-

heuristic method with a corresponding improvement in prediction accuracy.

4.3.1.2 RBF training and testing with centers chosen utilizing fuzzy c means

algorithm.

This methodology makes use of clustering algorithm namely Fuzzy C means for the self-

organized selection of centers (Hadjahmadi et al. 2008).

Table 4.16 Demand Forecast for 10 X 150 GTV101 Valve Series-Performance of

RBF model 1 (fixed width and random selection of centers).

Actual Sales (Qty) Demand Forecast(Qty) Absolute Error(%)

63 63.4 0.63

44 42.3 3.86

62 59.4 4.19

54 51.5 4.63

68 63.6 6.47

56 52.2 6.79

74 70.7 4.46

70 74.8 6.86

65 68 4.62

55 52.6 4.36

56 58.1 3.75

45 42.7 5.11

56 52.8 5.71

Mean Absolute Percentage Error = 4.73%

116

Time interval

Fig: 4.14 Demand Forecast for 10 X 150 GTV101 Valve Series- Performance of

RBF model 1 (fixed width and random selection of centers).

Optimum value of parameters η =0.85 and α=0.05 was selected and used through out

experiments and evaluations. With the centers selected using Fuzzy C means, two studies

were done:

1. With variable width of RBF units established employing P-nearest neighbor heuristic.

2. With fixed and equal width for RBF units

Table 4.17. Correlation study of Mean Square Error with number of RBF units for

RBF model 1 (Centers selected using FCM).

Number of

centers
40 50 60 70 80 90 100

MSE

(x 10
-3

)
1.89 1.41 1.278 1.001 1.000 1.025 1.296

The training of the fuzzy c-means algorithm has been executed with various number of

centers, and the final optimal number of centers obtained after convergence have been

117

used to train the RBF network. Network was trained initially by using P-nearest neighbor

heuristic width (Krishna et al. 2008). Table 4.17 illustrates the response of the network

for different number of centers, with the variation of MSE. With the increase in number

of centers, the error got improved till it reached the lowest at 0.001. After that increasing

the number of centers had detrimental effect for network learning and error started

raising. The lowest error corresponds to the number of centers 80, which is best suited for

the purpose.

Fig. 4.15 depicts the final RBF structure with optimum number of centers. The figure

portrays the input parameters, the hidden layer configuration with the centers selected by

FCM and output from RBF neural network. Table 4.18 and Fig 4.16 show output of the

demand forecast obtained using RBF network. Fuzzy C means is used to select the

centers for training this network. Table 4.18 shows the forecasted demand and actual

sales and prediction accuracy in terms of MAPE. It can be observed that MAPE and

there by the prediction accuracy slightly improved in comparison with the fixed center

selection method.

Fig 4.15 RBF model 1 (Centers selected using FCM algorithm).

118

Table 4.18 Demand Forecast for 10 X 150 GTV101 Valve Series- Performance of

RBF model 1 (variable width and Centers selection based on FCM).

Actual Sales (Qty) Demand Forecast(Qty) Absolute Error(%)

63 63.4 0.63

44 42.5 3.41

62 59.7 3.71

54 51.6 4.44

68 63.6 6.47

56 52.2 6.79

74 70.9 4.19

70 74.5 6.43

65 67.7 4.15

55 52.6 4.36

56 58.4 4.29

45 43.2 4.00

56 52.8 5.71

MAPE= 4.51%

Time Interval

Fig. 4.16 Demand Forecast for 10 X 150 GTV101 Valve Series Performance of RBF

model 1 (Variable width and Centers selection based on FCM).

119

When the Fuzzy C means algorithm was used, the number of centers required for

optimum performance of the network got considerably reduced compared with the use of

centers selected randomly. This has been attributed to the use of clustering while

selecting centers which optimizes the number of centers.

In the second part of study of RBF units with self organized centers, network training was

carried out using different fixed width values. The response of network for the different

width values in terms of variation of MSE is shown in Table 4.19. This shows that for a

width of 0.06, the MSE was found to be minimum. Using a width of 0.06 and number of

centers 80, the network training was carried out and the network performance is depicted

in Table 4.20 in terms of MAPE. The performance of the RBF network using fixed width

values for RBF units was found to be better than with varying widths, thereby improving

the prediction accuracy marginally. Fig 4.17 shows the demand forecast vs actual sales

for RBF model 1 (Centers selected using FCM, Fixed width).

Table 4.19 Correlation of network width with MSE for RBF model 1.

 (Centers selection based on FCM).

Value of

Width
0.02 0.04 0.06 0.08 0.10 0.12

Mean Square

Error (x10
-3

)
2.667 1.194 1.000 1.011 2.53 3.12

4.3.1.3 Comparison of Forecast Accuracy for Different RBF Architecture

Table 4.21 lists the MAPE in the demand forecast for RBF model 1 with the different

RBF architecture. Fig. 4.18 graphically illustrates the same with the bar chart. It

summarises the results obtained for the demand forecast using RBF model 1 with

random center and Fuzzy C means center.

120

Table 4.20 Demand Forecast for 10 X 150 GTV101 Valve Series-Performance of

RBF model 1 (Fixed width and Centers selection based on FCM).

Actual Sales (Qty) Demand Forecast(Qty) Absolute Error(%)

63 63.4 0.63

44 42.7 2.95

62 59.7 3.71

54 51.5 4.63

68 63.6 6.47

56 53.2 5.00

74 70.6 4.59

70 74.1 5.86

65 67.7 4.15

55 52.8 4.00

56 58.8 5.00

45 43.2 4.00

56 52.7 5.89

MAPE=4.38%

Time interval

Fig. 4.17 Demand Forecast for 10 X 150 GTV101 Valve Series- Performance of

RBF model 1 (Fixed width and Centers selection based on FCM).

121

 Both fixed and variable width are considered in each case. It can be inferred that the

architecture with the self organized centers selected using Fuzzy C means and fixed

width has got highest prediction accuracy, even if the improvement over other methods is

marginal.

Table 4.21 RBF model 1 : Demand Forecast of 10’’X 150 GTV 101 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture.

RBF Architecture

Fig: 4.18 RBF model 1 :Demand Forecast of 10’’X 150 GTV 101 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture.

RBF Architecture Mean Absolute Percent Error

Random center , variable width 4.81%

Random center , Fixed width 4.73%

FCM Center- variable width 4.50%

FCM Center- Fixed width 4.38%

122

4.3.2 RBF MODEL 2: DEMAND FORECAST FOR 6’’X600 GTV 102 VALVE

SERIES

Similar to Model no. 1, the inputs are taken from past historical sales data of the 6‘‘X 600

GTV 102 VALVE SERIES. Same input and output configuration is followed. Same

training strategy as shown in Fig 4.10 is adopted.

4.3.2.1 RBF training and testing with RBF centers selected randomly

RBF centers were selected randomly and network training was carried out employing

variable width values. The variation of network error with the number of centers is shown

in Table 4.22. Train and error method for obtaining the optimum number of centers was

started with 75 which gave MSE of 0.00393. Error is reduced with the increase in the

number of centers and the optimum number of centers obtained was 115. The correlation

of Mean Square error that was achieved with the limiting number of epochs during

training the network with 115 RBF units is shown in Fig 4.19. The MAPE or accuracy of

prediction improved to 5%.

Table 4.22. Correlation of Mean Square Error with number of RBF units for RBF

model-2 (Centers selected randomly).

Number

of centers
75 90 100 105 110 115 120

MSE 0.00393 0.00373 0.0024 0.00154 0.00106 0.001000 0.00107

Fig 4.19 Correlation of error with number of epochs with centers selected randomly

for RBF model 2 (RBF centers =115).

123

In next phase of study for RBF model no. 2 with randomly selected centers, network

training was carried out employing different fixed value widths. For various value of

widths the network error was computed and captured as shown in Table 4.23. From the

table it can be inferred that for a width of 0.05, the error tapered off to a minimum value

of 0.001. The network training was executed with optimum number of centers established

from the random selection method. A fixed value of 0.05 was taken for the width. For

RBF model 2, demand forecast of 6’’X 600 GTV 102 VALVE SERIES forecasting

accuracy in terms of MAPE marginally improved to 4.95% with RBF network

architecture using random selection of centers and fixed optimum width as seen from

Table 4.26.

Table 4.23. Correlation of Mean Square Error and widths for RBF model 2

(Centers selected randomly).

Value of Width 0.02 0.03 0.05 0.06 0.10 0.12

Mean Square Error

(x10
-3

)
2.0 1.31 1.00 1.08 8 21.34

Fig 4.20 RBF model 2 : demand forecast of 6’’X 600 GTV 102 VALVE SERIES

(Centers selected randomly).

124

4.3.2.2. RBF training and testing with centers selection based on Fuzzy C means

algorithm

RBF network architecture was decided based on center selection utilizing the Fuzzy C

means. Value of width was established based on P- nearest neighborhood heuristic. It was

noted that the network error was higher when the number of centers was less. With the

increase in the number of centers, MSE decreased and optimum value was obtained for

95. (Table 4.24). Fig 4.20 shows the complete structure for RBF model 2 with above

architecture.

 On comparison with the random selection method, there was considerable decrease in

the number of centers for optimum network performance. It was observed that there was

a slight improvement in the performance demand forecast and MAPE was 4.82%, as

shown in Table 4.26

Table 4.24 Correlation of MSE and of RBF centers for RBF model 2 (Centers

selected using FCM).

Further the network was trained using fixed width values for the optimized number of

RBF centers. The error value decreased as width value increased and the optimum value

reached corresponding to a width of 0.07 (Table 4.25). The performance of the network

was analyzed for this value of width. It can be inferred from the Table 4.26, that Mean

Square error slightly decreased to 4.65% and prediction accuracy improved slightly.

Hence the prediction performance obtained employing fuzzy C means algorithm with

fixed width values was better than with RBF centers selected using random selection of

centers.

Number

of centers
70 80 90 95 100 105 115

MSE 0.0017 0.0014 0.0012 0.001 0.00102 0.00103 0.00129

125

Table 4.25 Correlation of MSE and width value for RBF model 2

 (Center selection based on FCM).

Value of

width
0.01 0.03 0.07 0.10 0.13 0.16

Mean

Square error

(X10
-3

)

22.1 2.13 1.00 1.34 3.55 5.45

Fig 4.21 RBF model 2 : demand forecast of 6’’X 600 GTV 102 VALVE SERIES

(Centers selected with FCM).

95

1

 94

2

Previous bimonthly

sale

2nd previous

bimonthly sale

Moving average of last

2 bimonthly sales

 Moving average of

last 3 bimonthly sales

Forecasted demand for

the next bimonthly sale

Input

Layer

Weighted

connection

126

4.3.2.3 Comparison of Forecast Accuracy for Different RBF Architecture for RBF

model 2

Table 4.26 lists the MAPE in the demand forecast for RBF model 2 with the different

RBF architecture. Fig. 4.22 graphically illustrates the same with the bar chart for quick

visualization and better comprehension. The random center RBF architecture gives a

MAPE of 5.0% and 4.95% with variable width and fixed width respectively.

Table 4.26 RBF model 2: Demand Forecast of 6’’X 600 GTV 102 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture.

Fig 4.22 RBF model 2 : Demand forecast of 6’’X 600 GTV 102 Valve Series-

Comparison of Forecast Accuracy for Different RBF Architecture.

RBF Architecture Mean Absolute Percent Error

Random center , variable width 5.0%

Random center , Fixed width 4.95%

FCM Center- variable width 4.82%

FCM Center- Fixed width 4.65%

127

It can be inferred that the architecture with the self-organized centers selected using

Fuzzy C means and fixed width has got the highest prediction accuracy, even if the

improvement over other methods is marginal. Both in the RBF model 1 & 2, the

performance of the different RBF architecture has been consistent.

4.3.3 SUMMARY OF RESULTS

1. Two approaches were adopted for center selection for investigating the effectiveness of

RBF neural networks. One of the methodologies was random choice of centers, other

was use of FCM. The limitation of random selection of centers was the difficulty in

determining the right number of RBF units using trial and error method On the other

hand, Use of FCM algorithm facilitated the determination and location of the optimum

number of centers for required level of performance. FCM algorithm outperformed

random selection of centers with respect to prediction accuracy. Investigations also

revealed that results acquired employing the fixed widths for the RBF centers were more

accurate than results from the variable width architecture.

2. Table 4.27 lists out the different architectures used for neural network demand

prediction. It includes MLP and variations of RBF network. For every type of network

architecture, MAPE realized for both demand forecast models is recorded. Fig. 4.23

presents the above data in the form of bar chart. Effectively, Table 4.27 and Fig. 4.23

show the comparative evaluation of RBF networks using two different methods of center

selection with multilayer perceptron for model 1 and 2.

The evaluation has been done on the basis of the minimum Mean Absolute Percentage

Error that the different algorithm can achieve in terms of prediction accuracy. This is a

measure of how accurately the algorithm can predict the future demand based on the

previous data.

128

Table 4.27: Comparison of forecasting accuracy for MLP and different RBF

network for model 1 & 2.

Fig: 4.23 Comparison of forecasting accuracy for MLP and different RBF network

for model 1 & 2.

Network
MAPE for Demand

Forecast model-1

MAPE for Demand

Forecast model-2

MLP 4.91% 5.3%

Random center -

variable width
4.81% 5.0%

Random center - Fixed

width
4.73% 4.95%

FCM Center- variable

width
4.50% 4.82%

FCM Center- Fixed

width
4.38% 4.65%

129

From Table 4.27 and Fig 4.23, we can observe that the performance of both the MLP and

RBF networks is comparable, as both are robust and accurate in estimating the demand

forecast. MLP requires less number of hidden units when compared to RBF networks, for

the same level of performance. The generalization capability of FCM center selection

RBF algorithm was found to be better than the other methods of RBF and MLP, as the

MAPE was lowest in this case. RBF neural networks with FCM center selection have

been effective in demand forecast with the MAPE consistently low at 4.38% and 4.65%,

respectively for model 1 and model 2 for test data.

4.4 COMPARISON OF PREDICTION ACUURACY BY NEURAL NETWORK

MODELS AND TRADITIONAL METHODS OF DEMAND FORECAST

The traditional demand forecast methods of 3 months moving average method and

exponential smoothing methods were applied for the past historic sales data for the two

types of valves, here referred as model 1 and model 2. The resulting data have been

tabulated and compared with the forecasting accuracy of different ANN networks. Table

4.28 presents the MAPE between the demand forecast and actual sales for different

forecasting methods for different forecast models. Fig 4.24 helps to pictorially visualize

and compare the prediction accuracy of different traditional methods with that of neural

network approaches. The traditional methods of 3 monthly moving average and

exponential smoothening could predict only upto the accuracy of 10.56% and 9.39%

respectively Numeral network approach has registered the forecast accuraly upto 4.38%

MAPE.

It can be seen from the Table 4.28 and Fig 4.24 that the forecast accuracy of the ANN

models is far superior to traditional methods. This can be attributed to superior functional

approximation capability of machine learning technique and their capability to analyse

the non linear and noisy data.

130

Table 4.28 Comparison of Prediction Accuracy By Neural Network Models And

Traditional Methods Of Demand Forecast.

Different Demand forecast ANN algorithm

Fig 4.24 Comparison of Prediction Accuracy by Neural Network Models and

Traditional Methods Of Demand Forecast.

Demand Forecast method
MAPE for Demand Forecast

model-1

MAPE for Demand Forecast

model-2

3months Moving Average

Method
10.56% 11.22%

Exponential Smoothing

Method
9.39% 10.1%

MLP 4.91% 5.3%

Random center - variable

width
4.81% 5.0%

Random center - Fixed

width
4.73% 4.95%

FCM Center- variable

width
4.50% 4.82%

FCM Center- Fixed width 4.38% 4.65%

131

ANN MODEL VALIDATION

The bimonthly sales data for the year 2014 for the two types of valves under study is

compared with demand forecast using ANN with MLP and RBF architecture. The results

are shown in Table 4.29 and Fig 4.25 for 10‘‘x 150 GTV101 Series Valves and Table

4.30 and Fig 4.26 for 6‘‘x 600 class GTV 102 Series Valves. For every two months

duration, the sales demand values are predicted using MLP and RBF neural network

models. These values are recorded against the actual sales in the Table 4.29 for 10‘‘x

150 GTV101 Series, and in Table 4.30 for 6‘‘x 600 class GTV 102 Series Valves. Then

percentage absolute error is calculated for both MLP and RBF prediction with reference

to actual sales figures. Fig 4.25 and Fig 4.26 show the graphical representation with

bimonthly time intervals on X-axis and corresponding demand and sales figures on Y-

axis for 10‘‘x 150 GTV101 Series valves and for 6‘‘x 600 class GTV 102 Series Valves

respectively. Both Fig 4.26 and Fig 4.26 compare the 3 plots- demand figures as

predicted by MLP architecture, demand figured as predicted by FBF architecture and

actual sales.

Table 4.29 Demand Forecast for 10’’x 150 GTV101 Series Valves ANN Model

Validation (For Year 2014).

Demand Forecast (Qty)

Using

MLP
Using RBF

Actual

sales(Qty)

MLP

Absolute

Error %

RBF

Absolute

Error %

JAN- FEB 56 56 58 3.45 3.45

MAR-APR 62 64 66 6.06 3.03

MAY-JUN 60 61 64 6.25 4.69

JULY-AUG 65 67 70 7.14 4.29

SEPT-OCT 66 61 64 3.13 4.69

NOV-DEC 64 64 61 4.92 4.92

Mean Absolute

Error % 5.16 4.18

132

Bimonthly time period

Fig 4.25 Demand Forecast For 10’’x 150 GTV 101 Series Valves ANN Model

Validation (For Year 2014).

Table 4.30 Demand Forecast For 6’’x 600 class GTV 102 Series Valves ANN Model

Validation (For Year 2014).

Time

Peroiod

Demand forecast

(Qty) Actual Sales

(Qty)

MLP

Abs. Error %

RBF

Abs. Error % Using

MLP

Using

RBF

Jan- Feb 145 147 154 5.84 4.55

Mar-Apr 152 152 146 4.11 4.11

May-Jun 158 160 168 5.95 4.76

Jul-Aug 148 149 154 3.90 3.25

Sept-Oct 154 155 145 6.21 6.90

Nov-Dec 150 148 145 3.45 2.07

Mean Absolute

Error % 4.91 4.27

133

Bimonthly time period

Fig 4.26 Demand Forecast For 6’’x 600 class GTV 102 Series Valves :ANN Model

Validation (For Year 2014).

It is clear from the Table 4.29 and Fig 4.25 that the ANN model 1 for demand forecast

of 10‘‘x 150 GTV 101 Series Valves has given a prediction accuracy, in terms of MAPE,

of 5.16% and 4.17% respectively with MLP and RBFNN architecture. ANN model 2

for demand forecast of 6‘‘x 600 class GTV 102 Series Valves has given corresponding

MAPE of 4.91 % & 4.27%, as illustrated in Table 4.30 and Fig 4.26. These results

validate our model and show that they are robust enough to be used in real world

industrial application. It has also proved that RBFNN models are consistently

outperforming MLP models in terms of better prediction accuracy.

134

Chapter 5.

135

RESULTS AND DISCUSSIONS –PART II

MULTI ITEM MULTI PERIOD LOT SIZING - ACO MODELLING

5.1 INTRODUCTION

Different ANN models for demand forecast have been discussed in chapter 4. Accurate

demand forecast is an important input to the dynamic lot sizing optimization problem. In

this chapter, the multi objective optimization ACO models developed have been

presented. The total cost of the inventory control system comprises of total holding cost,

total ordering cost, and total purchasing cost. Objective is to find out the optimum values

of order quantities for multi-item multi-period in order to reduce total cost of the

inventory control system. A mathematical programming model is developed for

inventory control systems, in which price break discount is also considered. Demand

rates which are determined from ANN models discussed in previous chapter are used.

Budget and warehouse area constraints are considered in order to make the model more

realistic.

The developed mathematical model is a multi objective optimization problem which is

NP-hard (non-deterministic polynomial-time hard). Exact methods cannot solve the

large-size problems of the multi-objective mixed-integer linear programming. So meta-

heuristic, novel approach through Ant Colony Optimisation is proposed to solve the

large-size problems. ACO algorithm application results for small size problems are

matched with the results acquired from exact methods like LINGO optimization software,

the comparison of which helps in verifying and validating the performance of the

proposed ACO algorithm.

 Further meta-heuristic, namely Genetic algorithm solution is also developed to solve the

problem as well, because no benchmarks can be found in the literature to evaluate the

performance of the proposed novel ACO method. Both the methods are compared on the

basis of evaluation parameters like best objective value function, minimum

computational time and less spread between best and worst solution in pareto front (Ali

Roozbeh Nia et al. 2014).

136

5.2 MATHEMATICAL FORMULATION

The company maintains the stock of several items in order to satisfy its customers‘

known demand rates. The customers‘ known demand rates may change in different

periods within a finite planning horizon having N periods as estimated from the demand

forecast models detailed in last chapter. The initial inventory of all items is the reserve

stock. Only one order is placed for a particular item in a given period. Lower limit and

upper limit of order quantity for each item is also specified. Price discount breakpoints

are also defined, so that, if an item is ordered in price break 1 then no discount will be

offered. But if an item is ordered in price break 2, then 5% discount will be offered and if

an item is ordered in price break 3, then additional 5% discount will be offered and so on.

Moreover, the storage space to hold the stock for each period is constrained and the

available budget for each period is also constrained. The objective is to find out the

optimum values of order quantities of all the items for all the periods such that the total

cost of the inventory control system is minimized and the constraints are satisfied. The

concept explained above can be applied to many real-world inventory control systems

and hence detailed research is carried out in this direction. The mathematical formulation

of the problem is presented here (Seyed, M.M et al. 2013).

The inventory of the product u is depicted in three typical intervals. The beginning

inventory of product u in period v + 1 is equal to the sum of initial inventory and the

purchased quantity minus its demand, all in interval v. In other words

Iu,v+1 = Iu,v + Ou,v – Ru,v (1) (Seyed, M.M et al. 2013)

Where Iu,v is the inventory of item u in the beginning of period v , Ou,v is the quantity of

item u arrived in the interval v and Ruv is the demand of the item u for the period v.

The total cost of the inventory control problem comprises of total purchasing cost, total

holding cost, and total ordering cost, i.e.,

137

IC = OC + HC + PC (2) (Seyed, M.M et al. 2013)

The total ordering cost OC is obtained by

Where Quv is a binary variable, with the value equal to one if the component ‗u‘ is

ordered in period v, value equal to zero otherwise.

Holding cost is the product of per unit holding cost and average inventory during that

period.

Holding cost = unit holding cost x Average inventory (4) (Brahimi, N. et al. 2006)

Average inventory = ½ x (initial inventory during the start of period + remaining

inventory at the period end). (5)

Using equation (1) and (5)

Bu,v,w is a binary decision variable which is equal to one if component u is purchased at

price breakpoint w in period v, and zero otherwise. As a result, the total purchasing cost

will be

As a result, the mathematical model of the inventory control system is as follows.

138

Minimize the total cost or the objective function

(Source: Seyed, M.M et al. 2013).

The constraints are as follows for u=1, 2,…,c. v=1, 2,...,p and w=1, 2,...,d.

1. Qu,v = 0 or 1 (Boolean value), Bu,v,w = 0 or 1 (Boolean value)

2. =1

The above constraint ensures that the quantity should be bought at only one price break.

3. Iu,v+1 = Iu,v + Ou,v – Ru,v

The informal meaning of the above constraint is that inventory brought forward to next

period = inventory brought forward to this period + quantity ordered in this period -

demand (or consumption) in this period.

4. Iu,v ≥ Su

The above constraint ensures that the inventory brought forward should be greater than or

equal to the reserve stock.

5. for v=1, 2,...p.

The above equation ensures that budget constraint should be satisfied for each period.

6.) <= M for v=1, 2,...p.

The above equation ensures that warehouse area constraint should be satisfied for each

period.

139

In this type of problem of mixed-integer linear programming model the computation time

will increase enormously with the increase in the size of problem in polynomial order.

Thus, for solving large-size problems, a population based meta heuristic method like

ACO is proposed.

5.3 ACO ALGORITHM MODELLING

One of the most successful methods of swarm intelligence is ant colony optimization.

Marco Dorigo invented ant colony optimization during his research work. It was created

as a probabilistic method that could be utilized to solve optimization problems (Chen-

Yang Cheng et al.2015). Ant colony optimization algorithm mimics the principle of

biological or real ant colony system. The flow chart of meta-heuristic ant colony

optimization to solve inventory control problem is shown in figure 3.12 and detailed

description is given in section 3.10 to narrate how the ACO model has been developed

for the inventory control problem.

5.4 COMPUTATIONAL RESULTS

This section briefly explains the computational procedure and presents the results of the

numerical studies to evaluate and validate the developed ACO model.

140

Fig 5.1 ACO model performance measure.

Fig 5.1 shows the different performance measures which will be used to test the

capability of the ACO model. The performance of developed model can be evaluated

based on 3 important parameters namely, minimum total cost, minimum CPU time of

execution, minimum spread between best and worst solution. In addition, best sensitivity

to different problem parameter is another platform to evaluate the effectiveness of the

model. [Ali Diabat et al. 2016, Ba-Yi Cheng et al. 2010, Behnam Vahdani et al. 2017]

In order to demonstrate the application of the developed ACO, and investigate their

performance in suggesting the most economical periodical lot sizing taking into

consideration dynamic demand, ordering, holding and purchase cost, 8 numerical

examples are considered with 8 different data sets. The data input is from the real

industry scenario under study. Data for six most important valve configuration are

studied in depth and tabulated as in Table 5.1 to 5.3. For ease of identification, the data

sets are numbered from 1to 8. Each data set can be conveniently represented as data set

no. (c-p-w) where c is the number of items for procurement, p is the period and w is the

number of price breaks for discount. The tables contain data on bimonthly projected

demand of items under study. Information on holding cost , ordering cost, purchase cost,

reserve stock , budget and warehouse constraints are also listed in the above tables for

different data sets.

ACO was run 4 times for each problem configuration. For each ACO run, the order

quantities of every item for each period are tabulated. Minimum total cost or the value of

objective function which is an important performance measure is listed. The CPU

execution time is also noted for each ACO run. The spread between best and worst

solution is also marked for each ACO run. The lesser the spread, better is the algorithm.

All the test problems are solved on a lap top with Intel core i3-2100 processor having

3.10 GHz CPU and 4 Gig RAM.

141

5.4.1 Setting ACO program Parameter

The number of cycles which is used for ACO run plays an important role in determining

the quality of optimization result and also the time taken to arrive at the result. Initially

increasing the number of cycles may improve the quality of result. After reaching a

certain threshold value, additional number of cycles would only increase the CPU time

taken for the cycle execution without adding any value for improvement of the quality

of the solution.

To arrive at the optimum value of number of cycles, which is an important ACO

algorithm parameter, data set no. 4 (3-3-3) is run several times changing the number of

cycles each time and recording the objective value function and CPU processing time

(Ba-Yi Cheng et al. 2010).

Each row of Table 5.4 records number of cycles adopted and corresponding objective

function value obtained and CPU execution time. Same data is presented in the graphical

form in Fig 5.2 marking number of cycles on X axis and objective function value on Y

axis. Fig. 5.3 contains the plot of number of cycles vs the CPU execution time. Results

are tabulated in Table 5.4.

When the number of cycles used is 500, the objective function value is Rs 8088430/- and

CPU execution time is 41sec. The number of cycles adopted is increased by 100. The

objective function value improved to Rs 8082510/- and CPU execution time is 54. When

the number of cycles is increased to 700, there is a marginal improvement in the objective

function value to Rs8082435/-. The CPU execution time is drastically increased to 62

sec.

From the Table 5.2 and Fig. 5.2 & Fig.5.3, it is clear that objective value reaches

optimum value at 600 cycles. After that, increasing the no. of cycles will only increase

the CPU time without improving the objective function value.

142

Table 5.1 Input data for Lot Sizing Problem: Data set no. 1,2,3,4&5.

Data set no. 1

c=1, p=3, w=2

 Data set no. 3

c=2, p=3, w=2

Data set no. 4

 Data set no. 5

c=3, p=3, w=3

C 1 c 2 c 2 c 3

p 3 p 3 p 3 p 3

w 2 w 2 w 3 w 3

R11 40 R11 40 R11 40 R11 40

R12 70 R12 70 R12 70 R12 70

R13 50 R13 50 R13 50 R13 50

G1 25000 R21 130 R21 130 R21 130

H1 1020 R22 110 R22 110 R22 110

C11 6025 R23 140 R23 140 R23 140

C12 5723.75 G1 25000 G1 25000 R31 300

S1 20 G2 20000 G2 20000 R32 260

A1 5000000 H1 1020 H1 1020 R33 280

A2 5000000 H2 500 H2 500 G1 25000

A3 5000000 C11 6025 C11 6025 G2 20000

m1 0.25 C12 5723.75 C12 5723.75 G3 9000

M 300 C21 5100 C13 5422.5 H1 1020

 C22 4845 C21 5100 H2 500

 S1 20 C22 4845 H3 425

Data set no.2

c=1, p=3, w=3

 S2 40 C23 4590 C11 6025

 A1 5000000 S1 20 C12 5723.75

C 1 A2 5000000 S2 40 C13 5422.5

p 3 A3 5000000 A1 5000000 C21 5100

w 3 m1 0.25 A2 5000000 C22 4845

R11 40 m2 0.2 A3 5000000 C23 4590

R12 70 M 300 m1 0.25 C31 4575

R13 50 m2 0.2 C32 4346.25

G1 25000 M 300 C33 4117.5

H1 1020 S1 20

C11 6025 S2 40

C12 5723.75 S3 85

C13 5422.5 A1 5000000

S1 20 A2 5000000

A1 5000000 A3 5000000

A2 5000000 m1 0.25

A3 5000000 m2 0.2

m1 0.25 m3 0.15

M 300 M 300

(c= no. of items, p= no. of periods, w= no. of price breaks).

143

Table 5.2 Input data for Lot Sizing problem: Data set no. 6 & 7.

Data set no.6 (4-3-3)

c=4, p=3, w=3

 Data set no.7 (5-3-3)

c=5, p=3, w=3

c 4 C31 4575 c 5 C12 5422.5

p 3 C32 4346.25 p 3 C13 5121.25

w 3 C33 4117.5 w 3 C21 5100

R11 40 C41 3550 R11 40 C22 4590

R12 70 C42 3372.5 R12 70 C23 4335

R13 50 C43 3195 R13 50 C31 4575

R21 130 S1 20 R21 130 C32 4346.25

R22 110 S2 40 R22 110 C33 4117.5

R23 140 S3 85 R23 140 C41 3550

R31 300 S4 30 R31 300 C42 3195

R32 260 A1 5000000 R32 260 C43 3017

R33 280 A2 5000000 R33 280 C51 4500

R41 80 A3 5000000 R41 80 C52 4275

R42 92 m1 0.25 R42 92 C53 4050

R43 98 m2 0.2 R43 98 S1 20

G1 25000 m3 0.15 R51 600 S2 40

G2 20000 m4 0.1 R52 665 S3 85

G3 9000 M 300 R53 620 S4 30

G4 5000 G1 25000 S5 190

H1 1020 G2 20000 A1 10000000

H2 500 G3 9000 A2 10000000

H3 425 G4 5000 A3 10000000

H4 300 G5 7000 m1 0.25

C11 6025 H1 600 m2 0.2

C12 5723.75 H2 300 m3 0.15

C13 5422.5 H3 425 m4 0.1

C21 5100 H4 200 m5 0.1

C22 4845 H5 150 M 600

C23 4590

C11 6025

(c= no. of items, p= no. of periods, w= no. of price breaks).

144

 Table 5.3 Input data for Lot Sizing problem : data set no. 8.

Data set no.8 (6-3-3)

c=6, p=3, w=3

c 6 H6 300 m6 0.15

p 3 C11 6025 M 600

w 3 C12 5422.5

R11 40 C13 5121.25

R12 70 C21 5100

R13 50 C22 4590

R21 130 C23 4335

R22 110 C32 4346.25

R23 140 C33 4117.5

R31 300 C41 3550

R32 260 C42 3195

R33 280 C43 3017

R41 80 C51 4500

R42 92 C52 4275

R43 98 C53 4050

R51 600 C61 7000

R52 665 C62 6650

R53 620 C63 6300

R61 425 S1 20

R62 440 S2 40

R63 460 S3 85

G1 25000 S4 30

G2 20000 S5 190

G3 9000 S6 130

G4 5000 A1 10000000

G5 7000 A2 10000000

G6 7000 A3 10000000

H1 600 m1 0.25

H2 300 m2 0.2

H3 425 m3 0.15

H4 200 m4 0.1

H5 150 m5 0.1

(c= no. of items, p= no. of periods, w= no. of price breaks).

145

.

Table 5.4 Variation of Objective function value and Time of execution with No. of

cycles.

No. of cycles

Objective

function

value (Rs)

Time of

execution(Sec)

50 8382155 5

100 8255916 9

200 8101560 20

300 8094680 32

500 8088430 41

600 8082500 54

700 8082435 62

800 8082440 75

1000 8082440 90

Fig 5.2 Variation of objective function value with no. of cycles- ACO model.

146

Fig 5.3 Variation of Time of execution with number of cycles- ACO model.

5.4.2 Results analysis

Table 5.5 shows the ACO run results for data set no. 1, where one product, 3 periods and

2 price breaks are considered. Table 5.6 shows the results of ACO run for data set no. 2,

where 1 component, 3 periods and 3 price break point are considered for lot sizing. Table

5.7 & 5.8 tabulates the results for 2 products. The results shown in the table are the

records of the order quantities for each period, best solutions obtained for total cost of

inventory or objective function value in the cost minimization model and CPU execution

time for each iteration and spread of between best and worst solution. ACO is run four

times. But same result is obtained all the 4 times. Our ACO prescribed the same optimal

solution each time, as that is obtained via exact methods using the LINDO 14 Linear

Integer Programming software. Since this is a case of simple problem which involves

small number of variables, the solution obtained using ACO is the exact or the most

optimal one. Solving the above problem using other optimization software like GAMS or

LINDO also gives the same result. This fact validates model (Hamed Soleimani et al.

2015). Having verified its ability to optimize the lot sizing, ACO can now be used to

147

solve the complex problems having more number of decision variables. However, exact

methods cannot be used for large size problem because of very large number of variables

involved, the program becomes unstable or takes very long time.

Similar strategy for model validation was adopted by Fardin et al. 2015, Hamed

Soleimani et al. 2015, Ata Allah Taleizadeh et al. 2013, in their research work related to

application of soft computing techniques to supply chain management. Hamed Soleimani

validated his Particle swarm optimisation and GA model of closed loop supply chain

network by matching the results obtained by their proposed algorithm with that acquired

from exact methods like LINGO using small size problem instances. Fardin used the

same approach of comparing the results of exact method from GAMS software to

evaluate and validate the performance of their hybrid GA, for three echelon supply chain

problem.

When only one discount is considered the order quantity lot was 51, 59 & 50 for the 3

periods, as in Table 5.5 and the minimum total cost was Rs 1159882/- . When 2 discounts

or 3 price breaks are considered as in data set no. 2, the most economical lot was found to

be 40, 120, 0 as can be seen from the table 5.6.

Table 5.5 ACO run results for Data set no. 1: c=1, p=3, w=2.

Run

no.

Item

no.

Order Qty.

(No)

Period 1

Order Qty.

(No)

Period 2

Order

Qty(No)

Period3

Best Sol.

Total

Cost

(Rs)

Spread

bet. Best

and worst

solution

(Rs)

CPU

time

(Sec)

1 1 51 59 50 1159882/- 144660/- 12

2 1 51 59 50 1159882/- 144660/- 12

3 1 51 59 50 1159882/- 144660/- 12

4 1 51 59 50 1159882/- 144660/- 12

148

Table 5.6 ACO run results for Data set no. 2: c=1, p=3, w=3.

Run

no.

Item

no.

Order

Qty.(No)

Period 1

Order

Qty(No)

Period 2

Order

Qty(No)

Period3

Best Sol

Total

Cost(Rs)

Spread

bet. Best

and worst

solution

CPU

time

(Sec)

1 1 40 120 0 1135500/- 121445/- 12

2 1 40 120 0 1135500/- 121445/- 12

3 1 40 120 0 1135500/- 121445/- 12

4 1 40 120 0 1135500/- 121445/- 12

Table 5.7 ACO run results for data set no. 3: c=2, p=3, w=2.

Run

no.

Item

no.

Order

Qty.(No)

Period 1

Order

Qty(No)

Period 2

Order

Qty(No)

Period3

Best Sol

Total

Cost(Rs)

Spread

bet. Best

and worst

solution

CPU

time

(Sec)

1
1 51 59 50

3215982/- 336700/- 20
2 130 110 140

2
1 51 59 50

3215982/- 336700/- 20
2 130 110 140

3
1 51 59 50

3215982/- 336700/- 20
2 130 110 140

4
1 51 59 50

3215982 336700 20
2 130 110 140

149

Table 5.8 ACO run results for data set no. 4: c=2, p=3, w=3.

Run

no.

Item

no.

Order Qty.

(No).

Period 1

Order Qty.

(No).

Period 2

Order Qty.

(No).

Period3

Best Sol

Total

Cost(Rs)

Spread

bet. Best

and worst

solution

CPU

time

(Sec)

1 1 40 120 0
3494700/- 316015/- 22

 2 130 110 140

2 1 40 120 0
3494700/- 316015/- 22

 2 130 110 140

3 1 40 120 0
3494700/- 316015/- 22

 2 130 110 140

4 1 40 120 0
3494700/- 316015/- 22

 2 130 110 140

Table 5.9 ACO run results for data set no. 5: c=3, p=3, w=3.

Run

no.

Item

no.

Order

Qty. (No).

Period 1

Order

Qty.(No)

Period 2

Order

Qty. (No)

Period3

Best Sol.

Total

Cost (Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 42 118 131

7015841/- 493352/- 40 2 131 120 129

3 361 208 271

2

1 40 120 0

7010875/- 497825/- 40 2 134 108 138

3 372 468 00

3

1 43 117 0

7017807/- 485675/- 40 2 138 102 140

3 372 468 0

4

1 41 119 0

7021825/- 491372/- 40 2 130 110 140

3 377 426 377

Average Objective Fn value & Avg. spread 7016587/- 492056/- 40

150

Table 5.10 ACO run results for Data set no. 6: c=4, p=3, w=3.

Run

no.

Item

no.

Order

Qty.(No)

Period 1

Order

Qty.(No)

Period 2

Order

Qty.(No)

Period3

Best Sol.

Total

Cost(Rs)

Spread bet.

Best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 41 103 16

8070056/- 487646/- 62
2 141 109 130

3 375 214 251

4 270 0 0

2

1 60 53 47

8072996/- 469560/- 62
2 139 103 138

3 361 414 65

4 270 0 0

3

1 51 109 0

8082756/- 485410/- 62
2 144 112 124

3 377 401 62

4 270 0 0

4

1 54 106 0

8073832/- 489540/- 62
2 131 116 133

3 380 402 58

4 270 0 0

Average Objective Fn value & Avg. spread 8074910/- 483039/- 62

151

Table 5.11 ACO run results for data set no. 7: c=5, p=3, w=3.

Run

no.

Item

no.

Order

Qty.(No)

Period 1

Order

Qty(No)

Period 2

Order

Qty(No)

Period3

Best Sol

Total

Cost(Rs)

Spread bet.

Best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 160 0 0

15718292/- 755940/- 75

2 380 0 0

3 361 244 235

4 270 0 0

5 756 654 475

2

1 51 109 0

16447257/- 720387/- 75

2 159 211 10

3 370 233 237

4 270 0 0

5 671 756 458

3

1 157 3 0

15726613/- 745871/- 75

2 380 0 0

3 365 211 264

4 110 144 16

5 815 504 566

4

1 53 107 0

15702395/- 766744/- 75

2 153 227 0

3 307 253 280

4 270 0 0

5 663 711 511

Average Objective Fn value & Avg. spread 15899639/- 747235/- 75

152

Table 5.12 ACO run results for data set no. 8: c=6, p=3, w=3.

Run

no.

Item

no.

Order

Qty.(No)

Period 1

Order

Qty.(No)

Period 2

Order Qty.

(No)

Period3

Best Sol. Total

Cost (Rs)

Spread bet.

Best and

worst solution

(Rs)

CPU

time

(Sec)

1

1 46 114 0

25321202/- 645500/-

80

2 153 210 17

3 377 411 52

4 260 6 4

5 628 721 536

6 480 413 432

2

1 72 55 33

25331901/- 622969/- 80

2 160 220 11

3 377 380 83

4 268 2 0

5 635 648 602

6 444 425 456

3

1 52 108 0

25324673/- 651288/- 80

2 203 161 16

3 364 262 214

4 104 146 20

5 616 680 589

6 429 440 456

4

1 42 118 0

25301616/- 680659/- 80

2 201 179 0

3 366 244 230

4 270 0 0

5 637 658 590

6 426 456 443

Average Objective Fn value & Avg. spread 25324848/- 650104/- 80

153

Table 5.13 ACO run performance parameter for 8 different programs

Problem

no.

Problem

Description

Best Sol Total

Cost (Rs)

Spread bet. best

and worst

solution(Rs)

CPU time

(Sec)

1 c=1, p=3, w=2 1159882/- 144660/- 12

2 c=1, p=3, w=3 1135500/- 121445/- 12

3 c=2, p=3, w=2 3215982/- 336700/- 20

4 c=2, p=3, w=3 3494700/- 316015/- 22

5 c=3, p=3, w=3 7016587/- 492056/- 40

6 c=4, p=3, w=3 8068146/- 509588/- 62

7 c=5, p=3, w=3 15899639/- 747235/ 75

8 c=6, p=3, w=3 25324848/- 650104/- 80

The minimum total cost also came down to Rs1135500/- , a saving of around 5%, due to

savings from one less order and higher discount above the price break quantity of 100

units, in spite of higher carrying cost expenses.

For lot sizing decisions for 3 components and above, the number of decision variables

increases and we can find different solutions in different ACO runs. This is evident

from table 5.9 to 5.12. ACO run results for data set no. 5 (3-3-3), data set no 6(4-3-3),

data set no. 7(5-3-3) and data set no. 8(6-3-3) are tabulated in Table 5.9, Table 5.10,

Table 5.11 & Table 5.12 respectively. Four data sets are considered with same number of

periods and price breaks but different number of items. Above tables show the ACO run

results in terms of order quantities and optimal total cost and CPU processing time.

154

Table 5.11 refers to the result obtained for data set which reflects a scenario of inventory

control where four components are considered. The ACO algorithm optimizes the

quantities of procurement of these components when three periods and three price breaks

are taken into account. Results from four different runs of ACO algorithm are tabulated.

First run specifies that the item no.1 has to be procured in the lot sizes of 41, 103 and 16

respectively during the period 1, 2 and 3. Item 2 should be bought in the lot sizes of 141,

109 and 130. Recommended lot size for item 3 and 4 are 375, 214, 251 and 270,0, 0,

respectively in the period 1, 2 and 3. The total cost of procurement amounts to Rs.

8070056/-. This lot size has been suggested by the ACO algorithm considering the

carrying cost, ordering cost and purchase cost of all the four components, thereby

optimizing the total cost of inventory. The limiting constraints of total annual budget,

warehouse area and reserve stock have also been taken into account.

 Each run of ACO consists of 600 cycles. Each cycle suggests the order quantities and

total cost. Among these 600 values, minimum total cost and corresponding order

quantities have been recorded. The spread between the best and worst solution is also

recorded which gives an indication of stability of algorithm and robustness of the solution

from this population based meta heuristic algorithm.

The average optimal cost for the data set no. 5 (3-3-3), data set no. 6 (4-3-3), data set no.

7 (5-3-3) and data set no. 8 (6-3-3) are Rs 7016587/-, Rs 8068146/-, Rs15899639/- and

Rs 25324848/-, respectively as seen from tables to 5.9 to 5.12. The CPU time also

increases from 12 sec for 3 items to 80 sec for 6 items. Table 5.13 lists the ACO run

performance parameter for 8 different data sets.

5.5 SENSITIVITY ANALYSIS

Sensitivity analysis is the key to performance appraisal of the mathematical models and

their solution (Devendra Choudhary et al. 2011). Goh Sue et al. (2012) has used the

sensitivity analysis to evaluate the performance of Particle Swarm Optimisation based

heuristics in determining the optimal solution for vendor managed inventory control

155

problems in multi echelon supply chain. Devendra Choudhary et al. (2011) used the

sensitivity of problem parameters to prove the effectiveness of their novel Linear Integer

based program in determining the dynamic lot size for single item multi period

procurement.

 In this section, the effect of variation in problem parameters is investigated on multi-

period lot-sizing decision from our algorithm. The ordering cost, holding cost, purchase

cost in terms of discounts and price breaks are the major input parameters for the

proposed algorithm.

5.5.1 Sensitivity to ordering cost

Data set no. 1 (c=1, p=3, w=2) is used to study the effect of ordering cost on the

procurement lot size and total cost by keeping all the data same as in Table 5.6, except

the ordering cost Gu. Table 5.14 lists the different periodic lot size by running the ACO

by varying the ordering cost.

Table 5.14 Ordering cost –sensitivity analysis- ACO model.

Run

no.

Ordering

cost

(Rs)

Order Qty.

(No.)

Period 1

Order Qty

(No.)

Period 2

Order Qty.

(No.)

Period3

Best Sol

Total

Cost

(Rs)

1 25000/- 51 59 50 1159882/-

2 35000/- 51 59 50 1189882/-

3 35940/- 51 109 0 1192700/-

4 111180/- 160 0 0 1343180/-

156

Fig. 5.4 graphically shows the effect of varying the ordering cost on the order quantities

suggested by the model through bar chart. It can be seen from Table 5.14 and Fig. 5.4,

that the algorithm suggested order quantities for 3 periods when the ordering cost was

less than around Rs. 35940/-. After that the lot sizing suggested to buy the items only at

2 periods reducing the number of annual order to 2. The saving in ordering cost was more

than the increase in holding cost expenses.

Fig 5.4 Ordering cost: Sensitivity Analysis- ACO model.

When the ordering cost is still higher at Rs 111180/- the algorithm suggests only one lot

to be bought at the year beginning on the basis of ordering cost- holding cost trade off.

This clearly suggests that the proposed ACO model responds well to the changes in the

ordering cost

157

5.5.2 Holding cost sensitivity

 Again data set no. 1 (c=1, p=3, w=2) is used to study the effect of holding cost on the

procurement lot size and total cost by keeping all the data same as in table 5.6, except the

holding cost Hu. Table 5.15 lists the different periodic lot size by running the ACO by

varying the holding cost. For the present problem, at holding cost of Rs 1020/-, the order

quantities are 51, 59 and 50 for the three periods, respectively. If holding cost is

increased, a point will reach at around Rs 1100/-, where the GA algorithm will suggest

the Just In Time(JIT) procurement of quantities 40, 70, 50 respectively for the 3 periods

because at this cost, there can not be any trade off between holding and ordering cost.

 Fig 5.5 shows graphically the effect of holding cost variation. The bar chart in Fig.5.5

has the order quantities marked on Y-axis. X-axis shows the holding cost. The order

quantities for the 3 periods as suggested by the model at different ordering cost are

displayed. Bar chart clearly shows at holding cost valve of 800/-, period 3 ordering

quantity is zero. At holding cost value of 225/- both period 3 and period 2 ordering

quanity value is zero.

Table 5.15 Holding cost –sensitivity analysis- ACO model.

Run no.
Ordering Cost

(Rs)

Order Qty.

(No.)

Period 1

Order Qty

(No.)

Period 2

Order Qty.

(No.)

Period3

Best Sol

Total Cost

(Rs)

1 1020/- 51 59 50 1159882/-

2 1100/- 40 70 50 1171912/-

3 800/- 51 109 0 1126600/-

4 225/- 160 0 0 1010550/-

158

Fig 5.5 Holding Cost –sensitivity analysis- ACO model.

It will be interesting to note that as the holding cost is reduced to around Rs 800/-, first

trade off is reached between ordering and holding cost. So, it becomes more

advantageous to reduce one order in spite of higher carrying expenses due to larger

inventory. So, we get order quantities 51, 109, 0. When the holding cost is further

reduced, at around Rs 220/-, it becomes less expensive to buy all the annual demand of

160 at the beginning of the year, due to saving in ordering cost. This clearly suggests that

ACO model responds well to the change in holding cost.

5.5.3. Sensitivity to discounts and price breaks

Referring to Table 5.6, problem no. 1 and 2 are same except that in problem no. 2, there

is an additional price break that is specified at quantity 100 which will become eligible

for discount of 10%. Comparing ACO solution to problem 1 and 2, (table 5.5 & 5.6), it is

clear that order quantity has been increased to full requirement of 120 units in the second

period, as there is a cost reduction due to higher discounts of 10% at the price break

quantity 100 units.

Additional sensitivity exercises are carried out as per the table 5.16 taking the data from

problem no.2, but varying the discounts and price break quantities.

159

Table 5.16 Price discounts and price break sensitivity- ACO model.

No.

Discount/

price break

1

Discount/

price break

2

Order Qty.

(No)

Period 1

Order Qty.

(No)

Period 2

Order Qty.

(No)

Period3

Best Sol

Total Cost

(Rs)

1
5% at &

above 50
NIL 51 59 50 1159882/-

2
5% at &

above 60

10% @

and above

100

40 120 0 1135500/-

3
25% at and

above 150
Nil 160 0 0 1064200/-

In the scenario no.1, all the order quantities are selected that they are above 50 to see that

they are eligible for the 5% discount at the first price break. In the scenario 3, there is

single discount of 25% above price break quantity of 150. To avail this huge discount,

the order quantity of 160 is suggested in the first period itself to ensure that the order

quantity stays at above 150.

It is evident from above three sub sections that the proposed multi period multi item

periodic lot sizing model responds to the variation in problem parameters, or in other

words, it is sensitive to changes in different parameters which specify the problem.

Results analyzed confirm that the suggested model responds well to all realistic

constraints and tradeoffs in cost objectives. Optimal procurement lot-size is obtained by

striking best tradeoffs among multiple cost objectives.

Smaller lot-size reduces inventory holding cost but increases purchasing cost and

ordering cost due to lack of economy of scale. Larger lot-size reduces purchasing cost,

and leads to higher inventory holding cost. All these are reflected in the sensitivity

analysis.

160

5.6 SUMMARY OF RESULTS

1. The mathematical model is constructed for inventory management problem for

optimizing multi item multi period lot sizing considering deterministic but

variable demand. Model is made more realistic to suit the requirements of

company under study by constraining budget and storage space.

2. Since the model is NP hard, Meta heuristic ACO algorithm is developed for the

solution.

3. ACO program parameter is set by running the representative problem several

times and optimizing the objective value function.

4. ACO model solution is evaluated based on performance parameters- minimum

total cost of best solution which is the objective function value, CPU processing

time, spread between best and worst solution & problem parameter sensitivity

analysis.

5. ACO run carried out for each of 8 data set scenario and performance parameters

along with order quantities are tabulated. Simple problem solutions with single

item are verified against exact method which validates the proposed ACO model.

6. Comprehensive graph developed indicating the ACO model solution performance

parameters for each of the problem scenario.

7. Sensitivity analysis carried out for the problem parameters like ordering cost,

holding cost and price break and discount. Cost trade off scenarios are well

verified.

8. It is evident from the computational results that suggested ACO model properly

analyses the trade off in cost objectives and that it captures well all the realistic

constraints in the decision making process for the multi period procurement lot

sizing problem. The model is robust enough to accommodate the real life scenario

in an industrial and trading set up for suggesting the optimum procurement lot

sizes.

Chapter 6.

161

RESULTS AND DISCUSSIONS –PART III

MULTI ITEM MULTI PERIOD LOT SIZING- GA MODELLING

6.1 INTRODUCTION

A mixed binary integer mathematical programming model was developed in chapter 5 for

ordering items in multi-item multi-period inventory control systems, where the demand

rate is deterministic, but varying. A meta heuristic solution methodology ACO was also

developed. Since there are no bench marking methods available in the ready literature to

evaluate the performance of the ACO model, GA model is developed in this chapter and

employed to solve the problem. As an established practice, the performance measures of

both the algorithm are compared. One way Analysis of Variance (ANOVA) is employed

to explore the statistically significant differences in the performance parameters (Javad

Sadeghi et al. 2014, Seyed Mohsen Mousavi et al. 2014).

A mechanism based on the Taguchi optimization technique is used to calibrate the

parameters of GA program thereby attempting to enhance the performance of GA.

6.2 MATHEMATICAL MODEL

 Complete mathematical model of the inventory control system for periodic order lot

sizing which has been developed in chapter 5 is as follows.

Minimize:

The constraints are as follows for u=1, 2,…c, v=1, 2,...p and w=1, 2,...d.

1. Qu,v = 0 or 1 (Boolean value), Bu,v,w = 0 or 1 (Boolean value).

2. =1

162

The above constraint ensures that the quantity should be bought at only one price break.

3. Iu,v+1 = Iu,v + Ou,v – Ru,v

The informal meaning of the above constraint is as follow. Inventory brought forward to

next period = inventory brought forward to this period + quantity ordered in this period -

demand (or consumed) in this period.

4. Iu,v ≥ Su

The above constraint ensures that the inventory brought forward should be greater than or

equal to the reserve stock.

5. for v=1, 2,...,p

The above equation ensures that budget constraint should be satisfied for each period.

6.) <= M for v=1, 2,...,p

The above equation ensures that warehouse area constraint should be satisfied for each

period.

6.3 GENETIC ALGORITHM MODELLING

Solution for the above mathematical model for multi objective optimization inventory

control problem has been developed based on Genetic Algorithm (GA) approach.

Detailed description about GA implementation including selection of initial population,

execution of GA operation – selection, cross over and mutation, stopping criteria have

been furnished in the chapter 3 on Research Methodology. The GA has been

implemented on JAVA platform and the program can be run with Net Beans IDE. In the

following sections, computational results have been explained along with the procedure

for parameter selection for the developed GA model and effect of the various parameters

on the GA solution efficiency.

6.3.1 PARAMETER CALIBRATION

163

Setting GA parameters including the crossover probability (Pc), the mutation probability

(Pm), population size (PS), and number of generation (NG) is very important in

determining the efficiency of the meta-heuristic algorithms like GA. Different parameter

influence on the performance of meta heuristic algorithm is usually investigated with

full factorial experiment and exhaustive approach (Montgomery D.C, 2000). However,

this approach becomes inefficient when the number of factors becomes significantly high

and it will be difficult to carry out experiments for all the possible combination of

influencing factors. In such situations, practical solution is suggested by fractional

factorial experiments (FFEs) which will reduce the number of required tests. However,

FFEs only allow a part of total possible combinations to estimate the main effect of

factors and some of their interactions.

Fig 6.1 GA algorithm parameters (Javed Sadegi et al. 2015).

In famous Taguchi optimization technique, FFE implemented by orthogonal arrays are

used to study a large number of decision variables with a small number of experiments,

thereby building robustness into experimental setup. Taguchi experimental design has

164

been recognized as a cost-effective and labor-saving method that can simultaneously

scrutinize several factors and distinguish quickly the factors with principal impacts on

final solution. Under Taguchi Method, the factors are separated into two main groups:

controllable and noise factors. Noise factors are those over which we have no direct

control. Since elimination of the noise factors is impractical and often impossible, the

Taguchi method optimizes by minimizing the effect of noise and by determining the

optimal level of important controllable factors based on the concept of robustness.

Taguchi uses the concept of Signal/Noise ratio. As already explained under section

3.11.1, the

is used for almost all inventory management problems, which are mostly ‗smaller the

better‘ type.

GA parameters and their level to be considered in Taguchi analysis are listed in Table 6.1

Table 6.1 GA parameters and levels for Taguchi Design

Levels

GA PARAMETERS

Cross over

Probability

(Pc)

Mutation

probability

(Pm)

Population size

(PS)

Number of

Generations

(NG)

1 0.7 0.15 4000 500

2 0.8 0.20 5000 600

3 0.9 0.30 6000 700

Values of 0.7, 0.8 & 0.9 are considered for cross over probability Pc. For mutation

probability Pm, 3 levels of 0.15, 0.2 and 0.3 are considered.

 For population size and number of generations, the values of 4000, 5000, 6000 and 500,

600, 700 are considered for Taguchi analysis. Minitab 15 is used to employ the Taguchi

method. Under the menu options of Minitab, Stat-DOE-Taguchi Design-Create Design is

165

selected. For 3 levels of 4 factors, L9 orthogonal array is suggested which will facilitate

representative Fractional Factorial Experimentation. L9 orthogonal array lists the

different combinations of factors at different levels at which the response value of

experiments have to be determined. 3 items, 3 periods and 3 price breaks data is selected

for experimentation and response in terms of minimum total cost is tabulated as shown in

Table 6.1. For different combinations of the factor levels, each example is solved three

times and the mean response was used in the analysis. Fig. 6.2 shows the main effect plot

of SN ratio and Fig 6.3 shows the main effect plot of means for different parameter levels

of the proposed algorithms.

The S/N ratio indicates the amount of variation present in the response variable, and the

aim is to maximize it. Pc value of 0.9, Pm value of 0.3, PS value of 5000 and NG value

of 500 yields the maximum value of S/N ratio as can be seen from Fig. 6.2. This can also

be verified from Fig 6.3, where the above values give the best or the lowest value of

objective function. Optimal parameter values of the algorithms are shown in Table 6.3.

Table 6.2 Experimental response for Taguchi design

Cross over

Probability

 (Pc)

Mutation

probability

(Pm)

Population

size

 (PS)

Number of

Generations

(NG)

Response value

obj. function
S/N ratio

0.7 0.15 4000 500 8070423 -138.138

0.7 0.20 5000 600 8071445 -138.139

0.7 0.30 6000 700 8070334 -138.138

0.8 0.15 5000 700 8070656 -138.138

0.8 0.20 6000 500 8072345 -138.140

0.8 0.30 4000 600 8074558 -138.142

0.9 0.15 6000 600 8066732 -138.134

0.9 0.20 4000 700 8065550 -138.133

0.9 0.30 5000 500 8058597 -138.125

166

0.90.80.7

-138.1300

-138.1325

-138.1350

-138.1375

-138.1400

0.300.200.15

600050004000

-138.1300

-138.1325

-138.1350

-138.1375

-138.1400

700600500

Pc

M
e

a
n

 o
f

S
N

 r
a

ti
o

s

Pm

PS NG

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better

Fig. 6.2 Main effect plot of SN ratios- Taguchi design

0.90.80.7

8072000

8070000

8068000

8066000

8064000

0.300.200.15

600050004000

8072000

8070000

8068000

8066000

8064000

700600500

Pc

M
e

a
n

 o
f

M
e

a
n

s

Pm

PS NG

Main Effects Plot for Means
Data Means

Fig.6.3 Main effect plot of means- Taguchi design

Pc : Cross over Probability Pm : Mutation probability PS: Population size

NG :Number of Generation

167

Table 6.3 Optimum GA parameters

OPTIMUM GA PARAMETERS

Cross over

Probability

(Pc)

Mutation

probability

(Pm)

Population size

(PS)

Number of

Generations (NG)

0.9 0.30 5000 500

6.3.2 EFFECT OF VARIATION OF GA PARAMETERS ON OBJECTIVE

FUNCTION VALUE

Following table 6.4 and Fig 6.4 shows the effect of variation of no. of generations on the

objective function value and CPU time. Table 6.4 records the number of generations,

objective function value and CPU execution time. Fig 6.4 is the plot of objective function

value on the Y-axis against number of generations on X- axis. Keeping Cross over

probability Pc, mutation probability Pm and population size PS at optimum values of 0.9,

0.3 & 5000, the number of generations is varied from 50 to 800 in steps and objective

function value and CPU execution value for representative problem no. 6 (4-3-3) is

tabulated. It shows that the objective function value converges at 500 generations. After

500 generations, there is no much change in objective function value, only CPU time of

execution increases.

Similarly, Table 6.5 and Fig 6.5 show the effect of variation of population size on the

objective function value and CPU time of execution. GA run carried out for the problem

no. 6 (4-3-3) for a wide range of population size keeping other parameters at the optimum

value as decided by Taguchi Design. It shows that the objective function value converges

at population size of 5000 generations. After 5000, there is no much change in objective

function value, only CPU time of execution increases

168

Table: 6.4 Convergence of objective function value with No. of Generations.

No. of

generations

Objective

function value

(Rs)

Time of

execution

(Sec)

50 8175155 2

100 8159916 3

200 8105671 6

300 8084691 8

400 8073430 11

500 8065455 14

700 8065445 19

800 8065440 22

1000 8065436 28

Fig: 6.4 Convergence of Objective function value with No. of Generations- GA

model.

169

Table 6.5 Convergence of Objective Function Value with Population Size.

Population size
Objective

function value

Time of

execution

10 8123971 1

50 8113395 1

100 8107776 2

300 8094113 2

500 8085252 2

1000 8083290 4

2000 8080560 6

3000 8077696 7

4000 8075565 11

5000 8065560 14

7000 8065520 24

10000 8065510 47

Fig 6.5 Convergence of Objective Function Value with Population Size- GA model.

170

6.3.3 COMPUTATIONAL RESULTS

This section briefly explains the computational procedure and presents the results of the

numerical studies to evaluate the performance and validate the developed GA model.

Fig.6.6 shows the GA model performance measures used to establish its validity and

compare with ACO model. The best mathematical model will be able to suggest

minimum total cost objective function value for the inventory. It will also take minimum

computer time to be processed. This is especially important due to the fact that a large

number of iterative operations need to be carried out to arrive at a representative value.

The best mathematical model would ensure a minimum spread between best and worst

solution. Validity of the model can be established by proving that the objective function

value obtained is responsive towards the various problem parameters. These four

important parameters would constitute a platform to evaluate and compare the

performance of GA model as shown in Fig. 6.6.

Fig 6.6 GA model performance measure.

171

Ilkay Saracoglu et al. (2014) adopted the above approach to evaluate the performance of

Genetic Algorithm solution proposed by them for multi product multi period continuous

review inventory model. They compared the objective function value and CPU execution

time of the Genetic algorithm with the Integer Linear Programming solution presented by

them.

Javad Sadeghi et al. (2015) implemented the approach of comparing the objective

function value and CPU execution time to verify and validate the performance of their

Non sorting Genetic Algoritm model in the case of multi echelon vendor managed

inventory control.

In order to demonstrate the application of the developed GA, and investigate their

performance in suggesting the most economical periodical lot size taking into

consideration dynamic demand, and ordering, holding and purchase cost, 8 numerical

examples are considered. The data input is from the real industry scenario under study.

Data for six most important valve configuration is studied in depth and tabulated as in the

tables no 6.6 to 6.8. For ease of identification, the data sets are numbered from 1to 8.

Each data set can be conveniently represented as data set no. (c-p-w) where c is the

number of items for procurement, p is the period and w is the number of price breaks for

discount.

The data presented in Tables 6.4 to 6.8 contain information related to projected

bimonthly demand for the different products as predicted from ANN models, ordering

cost, inventory carrying cost, purchase cost, reserve stock, warehouse and budget

constraints, price breaks and discounts. GA was run 4 times for each problem

configuration. For each GA run, the order quantities of each item or product for each

period are tabulated. Minimum total cost or the value of objective function which is an

important performance measure is listed. The CPU execution time is also noted for each

GA run. The spread between best and worst solution is also marked for each GA run. The

lesser the spread, better is the algorithm. All the test problems are solved on a lap top

with Intel core i3-2100 processor having 3.10 GHz CPU and 4 GB RAM.

172

Table 6.6 Input data for Lot Sizing Optimisation: Data set no. 1,2,3,4&5.

Data set no. 1

c=1, p=3, w=2

 Dataset no.3, c=2

p=3, w=2

 Data set no. 4

c=2, p=3, w=3

 Data set no. 5

c=3, p=3, w=3

C 1 c 2 c 2 c 3

p 3 p 3 p 3 p 3

w 2 w 2 w 3 w 3

R11 40 R11 40 R11 40 R11 40

R12 70 R12 70 R12 70 R12 70

R13 50 R13 50 R13 50 R13 50

G1 25000 R21 130 R21 130 R21 130

H1 1020 R22 110 R22 110 R22 110

C11 6025 R23 140 R23 140 R23 140

C12 5723.75 G1 25000 G1 25000 R31 300

S1 20 G2 20000 G2 20000 R32 260

A1 5000000 H1 1020 H1 1020 R33 280

A2 5000000 H2 500 H2 500 G1 25000

A3 5000000 C11 6025 C11 6025 G2 20000

m1 0.25 C12 5723.75 C12 5723.75 G3 9000

M 300 C21 5100 C13 5422.5 H1 1020

 C22 4845 C21 5100 H2 500

 S1 20 C22 4845 H3 425

Data set no.2

c=1, p=3, w=3

 S2 40 C23 4590 C11 6025

 A1 5000000 S1 20 C12 5723.75

C 1 A2 5000000 S2 40 C13 5422.5

p 3 A3 5000000 A1 5000000 C21 5100

w 3 m1 0.25 A2 5000000 C22 4845

R11 40 m2 0.2 A3 5000000 C23 4590

R12 70 M 300 m1 0.25 C31 4575

R13 50 m2 0.2 C32 4346.25

G1 25000 M 300 C33 4117.5

H1 1020 S1 20

C11 6025 S2 40

C12 5723.75 S3 85

C13 5422.5 A1 5000000

S1 20 A2 5000000

A1 5000000 A3 5000000

A2 5000000 m1 0.25

A3 5000000 m2 0.2

m1 0.25 m3 0.15

M 300 M 300

(c= no. of items, p= no. of periods, w= no. of price breaks)

173

Table 6.7 Input data for Lot Sizing Optimisation: Data set no. 6 & 7.

Data set no.6

c=4, p=3, w=3

 Data set no.7

c=5, p=3, w=3

c 4 C31 4575 c 5 C12 5422.5

p 3 C32 4346.25 p 3 C13 5121.25

w 3 C33 4117.5 w 3 C21 5100

R11 40 C41 3550 R11 40 C22 4590

R12 70 C42 3372.5 R12 70 C23 4335

R13 50 C43 3195 R13 50 C31 4575

R21 130 S1 20 R21 130 C32 4346.25

R22 110 S2 40 R22 110 C33 4117.5

R23 140 S3 85 R23 140 C41 3550

R31 300 S4 30 R31 300 C42 3195

R32 260 A1 5000000 R32 260 C43 3017

R33 280 A2 5000000 R33 280 C51 4500

R41 80 A3 5000000 R41 80 C52 4275

R42 92 m1 0.25 R42 92 C53 4050

R43 98 m2 0.2 R43 98 S1 20

G1 25000 m3 0.15 R51 600 S2 40

G2 20000 m4 0.1 R52 665 S3 85

G3 9000 M 300 R53 620 S4 30

G4 5000 G1 25000 S5 190

H1 1020 G2 20000 A1 10000000

H2 500 G3 9000 A2 10000000

H3 425 G4 5000 A3 10000000

H4 300 G5 7000 m1 0.25

C11 6025 H1 600 m2 0.2

C12 5723.75 H2 300 m3 0.15

C13 5422.5 H3 425 m4 0.1

C21 5100 H4 200 m5 0.1

C22 4845 H5 150 M 600

C23 4590

C11 6025

174

 Table 6.8 Input data for Lot Sizing Optimisation Data set no. 8.

Data set no.8

c=5, p=3, w=3

c 6 H6 300 m6 0.15

p 3 C11 6025 M 600

w 3 C12 5422.5

R11 40 C13 5121.25

R12 70 C21 5100

R13 50 C22 4590

R21 130 C23 4335

R22 110 C32 4346.25

R23 140 C33 4117.5

R31 300 C41 3550

R32 260 C42 3195

R33 280 C43 3017

R41 80 C51 4500

R42 92 C52 4275

R43 98 C53 4050

R51 600 C61 7000

R52 665 C62 6650

R53 620 C63 6300

R61 425 S1 20

R62 440 S2 40

R63 460 S3 85

G1 25000 S4 30

G2 20000 S5 190

G3 9000 S6 130

G4 5000 A1 10000000

G5 7000 A2 10000000

G6 7000 A3 10000000

H1 600 m1 0.25

H2 300 m2 0.2

H3 425 m3 0.15

H4 200 m4 0.1

H5 150 m5 0.1

.

175

6.3.3.1 Results Analysis

Table 6.9 shows the GA run results for data set no.1, where one product, 3 periods and 2

price breaks are considered. Recorded values for order quantities are 51, 59 and 50. The

objective function value is Rs 1159882/- and CPU execution time is 11 secs. Table 6.10

shows the results of GA run for data set no. 2, where 1 component, 3 periods and 3 price

break point are considered for lot sizing. The results indicate the order quantities of 40,

120 and zero for the three periods. The minimum total inventory cost comes to 1135500/-

and computer time of execution is 12 secs.

Table 6.11 & 6.12 tabulates the results for 2 products. GA is run four times. But same

result is obtained all the 4 times. GA pre-scribed the same optimal solution each time, the

same solution that was obtained via exact methods using the LINDO 14 Linear Integer

Programming software. Since this is a case of simple problem which involves small

number of variables, the solution obtained using GA is the exact or the most optimal one.

Solving the above problem using other optimization softwares like GAMS or LINDO

also gives the same result. This fact validates the model. Having verified its ability to

optimize the lot sizing, GA can now be used to solve the complex problems having more

number of decision variables. Comparison between the results of the GA and LINGO, for

small-size problems, shows that we can also trust the GA for the larger problem sizes.

This approach for validation of population based meta heuristic algorithm was adopted

by Hamed Soleimani et al. (2015), Fardin et al. (2015), Kuo, R.J et al. (2014) in their

research work in the field of Supply chain management and Inventory control. Smaller

problem instances having limited number of variables were solved using the exact

method. Proposed heuristic algorithms were validated by comparing the solutions

obtained from them with the solutions from exact method.

 When only one discount is considered the order quantity lot was 50, 59 & 50,

respectively, for the 3 periods, as shown in Table 6.9. The minimum total cost was Rs

1159882/-. With 2 discounts or 3 price breaks as in data set no. 2, the most economical

176

lot was found to be 40, 120, 0 respectively for 3 periods as can be seen from the table

6.10. The minimum total cost also came down to Rs 1135500/- due to savings from one

less order and higher discount above the price break quantity 100 units, in spite of higher

carrying cost expenses.

For the lot sizing decision problems for 3 components and above, the number of

decision problems increases and we can find different solutions in different GA runs.

This is evident from Table 6.13 to 6.16. Four problems are considered with same number

of periods and price breaks but different number of items. All the 4 tables show the GA

run results in terms of order quantities and optimal total cost and CPU processing time.

The average optimal cost for the data set no. 5 (3-3-3), data set no. 6 (4-3-3), data set

no. 7 (5-3-3) and data set no. 8 (6-3-3) are Rs 7016587/-, Rs 8068146/-, Rs15702229/-

and Rs25457852/-, respectively, as seen from Tables 6.13 to 6.16 . The CPU time also

increases from 8 sec for 3 items to 15 sec for 6 items. In section 6, the objective function

value and CPU time from different optimization models will be compared. Table 6.17

summarizes the lot sizing optimization results for different data sets.

Table 6.9 GA run for Multi item Multi period Lot size Optimisation Data set no. 1:

c=1, p=3, w=2.

Run

no.

Item

no.

Order Qty.

(No)

Period 1

Order Qty

(No)

Period 2

Order Qty

(No)

Period3

Best Sol

Total

Cost

(Rs)

Spread

bet. Best

and worst

solution

(Rs)

CPU

time

(Sec)

1 1 51 59 50 1159882 144660 11

2 1 51 59 50 1159882 144660 11

3 1 51 59 50 1159882 144660 11

4 1 51 59 50 1159882 144660 11

(c= no. of items, p= no. of periods, w= no. of price breaks).

177

Table 6.10 GA run for Multi item Multi period Lot size Optimisation Data set no. 2:

c=1, p=3, w=3.

Run

no.

Item

no.

Order

Qty. (No)

Period 1

Order Qty

(No)

Period 2

Order Qty

(No)

Period3

Best sol

total

Cost

(Rs)

Spread

bet. best

and worst

solution

(Rs)

CPU

time

(Sec)

1 1 40 120 0 1135500 121445 11

2 1 40 120 0 1135500 121445 11

3 1 40 120 0 1135500 121445 11

4 1 40 120 0 1135500 121445 11

Table 6.11 GA run for Multi item Multi period Lot size Optimisation:Data set no. 3:

c=2, p=3, w=2.

Run

no.

Item

no.

Order

Qty. (No)

Period 1

Order Qty

(No)

Period 2

Order Qty

(No)

Period3

Best sol

total

Cost(Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 51 59 50

3215982 336700 12

2 130 110 140

2

1 51 59 50

3215982 336700 12

2 130 110 140

3

1 51 59 50

3215982 336700 12

2 130 110 140

4

1 51 59 50

3215982 336700 12
2 130 110 140

(c= no. of items, p= no. of periods, w= no. of price breaks).

178

Table 6.12 GA run for Multi item Multi period Lot size Optimisation:Data set no. 4:

c=2, p=3, w=3.

Run

no.

Item

no.

Order

Qty. (No)

Period 1

Order Qty

(No)

Period 2

Order Qty

(No)

Period3

Best sol

total

Cost

(Rs)

Spread

bet. best

and worst

solution

(Rs)

CPU

time

(Sec)

1
1 40 120 0

3494700 316015 12
2 130 110 140

2
1 40 120 0

3494700 316015 12
2 130 110 140

3
1 40 120 0

3494700 316015 12
2 130 110 140

4
1 40 120 0

3494700 316015 12
2 130 110 140

Table 6.13 GA run for Multi item Multi period Lot size Optimisation Data set no. 5:

c=3, p=3, w=3.

Run

no.

Item

no.

Order

Qty. (No)

Period 1

Order Qty.

(No)

Period 2

Order

Qty. (No)

Period3

Best Sol

Total

Cost

(Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 42 118 131

7015841 493352 13 2 131 120 129

3 361 208 271

2

1 40 120 0

7010875 497825 13 2 134 108 138

3 372 468 00

3

1 43 117 0

7017807. 485675 13 2 138 102 140

3 372 468 0

4

1 41 119 0

7021825 491372 13 2 130 110 140

3 377 426 377

Average Objective Fn value & Avg. spread 7016587 492056 13

(c= no. of items, p= no. of periods, w= no. of price breaks).

179

Table 6.14 GA run for Multi item Multi period Lot size Optimisation Data set no. 6:

c=4, p=3, w=3.

Run

no.

Item

no.

Order

Qty. (No)

Period 1

Order Qty

(No)

Period 2

Order

Qty (No)

Period3

Best sol

total

Cost(Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 51 109 0

8090702 510110 12
2 131 109 140

3 367 227 246

4 80 106 84

2

1 41 119 0

8058597 514989 12
2 140 106 164

3 368 472 0

4 81 96 93

3

1 40 120 0

8067023 514867 12
2 130 113 137

3 367 228 245

4 80 119 79

4

1 40 120 0

8056263 498388 12
2 130 112 138

3 363 221 256

4 83 89 98

Average Objective Fn value & Avg. spread 8068146 509588 12

(c= no. of items, p= no. of periods, w= no. of price breaks).

Table 6.17 lists the different data sets considered for multi item multi period dynamic lot

sizing inventory management problem differentiated by the number of items , periods

and price breaks considered. The solution set for each of data set GA run suggests the

order quantities for the different periods.

180

Table 6.15 GA run for Multi item Multi period Lot size Optimisation Data set no. 7:

c=5, p=3, w=3.

Run

no.

Item

no.

Order Qty.

(No)

Period 1

Order Qty

(No)

Period 2

Order Qty

(No)

Period3

Best sol.

total

Cost(Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 57 103 0

15764097 802316 12

2 168 212 0

3 407 395 38

4 270 0 0

5 634 742 509

2

1 45 115 0

15659722 828462 12

2 153 227 0

3 367 208 265

4 120 150 0

5 674 623 588

3

1 47 113 0

15736621 785438 12

2 164 216 0

3 312 254 274

4 270 0 0

5 828 446 611

4

1 48 112 0

15648478 790905 12

2 165 215 0

3 369 407 64

4 270 0 0

5 600 665 620

Average Objective Fn value & Avg. spread 15702229 801780 12

(c= no. of items, p= no. of periods, w= no. of price breaks).

181

Table 6.16 GA run for Multi item Multi period Lot size Optimisation Data set no. 8:

c=6, p=3, w=3.

Run

no.

Item

no.

Order Qty.

(No)

Period 1

Order

Qty. (No)

Period 2

Order Qty

(No)

Period3

Best sol

total

Cost

(Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1

1 105 55 0

25260387 675846 18

2 170 210 0

3 364 209 267

4 270 0 0

5 620 651 614

6 426 442 457

2

1 54 106 0

25287605 692205 18

2 159 221 0

3 370 214 256

4 149 93 28

5 603 662 620

6 425 440 460

3

1 57 103 0

25307731.25 699552 13

2 157 223 0

3 430 387 23

4 150 120 0

5 617 650 618

6 428 438 459

4

1 81 79 0

25305686 658103 13

2 167 213 0

3 373 223 244

4 118 137 15

5 602 665 618

6 428 437 460

Average Objective Fn value & Avg. spread 25290352 681426. 15.5

(c= no. of items, p= no. of periods, w= no. of price breaks).

182

Table 6.17 Performance Parameters of GA for different data sets.

Data set

no.

Data set

Description

Best Sol

Total Cost

(Rs)

Spread bet. best

and worst solution

(Rs)

CPU time (Sec)

1 c=1, p=3, w=2 1159882 144660 11

2 c=1, p=3, w=3 1135500 121445 11

3 c=2, p=3, w=2 3215982 336700 12

4 c=2, p=3, w=3 3494700 316015 12

5 c=3, p=3, w=3 7016587 492056 11

6 c=4, p=3, w=3 8068146 509588 12

7 c=5, p=3, w=3 15702229 801780 12

8 c=6, p=3, w=3 25290352 681426 13

(c= no. of items, p= no. of periods, w= no. of price breaks).

When there are six items, (c=6), for each of six component, the solution suggests order

quantities for each period so that total inventory cost is minimsed considering the

ordering cost, holding cost and purchase cost subject to the constraint of maximum

budget and ware house area. The optimum objective function value or the minimum

inventory cost in each of the data set scenario is listed along with CPU time for

algorithm execution.

6.4 SENSITIVITY ANALYSIS

Sensitivity analysis is the key to Performance appraisal of the mathematical models and

their solutions (Devendra Choudhary et al. 2011). Various research works in the field of

supply chain and inventory management point to the application of sensitivity analysis of

the problem variables as a proven approach to validate their mathematical model[Hamed

Soleimani et al. 2015, Ata Allah Taleizadeh et al. 2013, Gupta, R. K et al. 2009].

In this section, the effect of variation in problem parameters is investigated on multi-

period lot-sizing decision from our algorithm. The ordering cost, holding cost, purchase

183

cost in terms of discounts and price breaks are the major input parameters for the

proposed algorithm.

6.4.1 Sensitivity to ordering cost

Data set no. 1 (c=1, p=3, w=2) is used to study the effect of ordering cost on the

procurement lot size and total cost by keeping all the data same as in table 6.6, except the

ordering cost Gu. Table 6.18 lists the different periodic lot size by running the GA by

varying the ordering cost. Fig 6.7 graphically represents the variation in suggested order

quantities with the variation in ordering cost through bar chart.

Table 6.18 Ordering cost –sensitivity analysis- GA model.

Run no.
Ordering

cost(Rs)

Order Qty.

(No)

Period 1

Order Qty

(No.)

Period 2

Order

Qty.(No)

Period 3

Best Sol

Total Cost

(Rs)

1 25000 51 59 50 1159882

2 35000 51 59 50 1189882

3 35940 51 109 0 1192700

4 111180 160 0 0 1343180

It can be seen from the Table 6.18 and Fig 6.7 that the algorithm suggested order

quantities for 3 periods when the ordering cost was less than around Rs. 35940/- .

After that the lot sizing suggested to buy the quantities only at 2 periods reducing the

number of annual order to 2. The saving in ordering cost was more than the increase in

holding cost expenses.

When the ordering cost is still higher at Rs 111180/-, the algorithm suggests only one lot

to be bought at the year beginning on the basis of ordering cost- holding cost trade off.

This is the clear proof to show that the proposed GA is responsive to the problem

parameter ordering cost and suggested order quantities closely follow the cost trade offs

to give minimum inventory cost.

184

Fig 6.7 Ordering cost: Sensitivity Analysis- GA model

 Fig. 6.8 is the plot of order quantities on Y axis against holding cost on X-axis which can

be used to clearly visualize the sensitivity of holding cost on order quantities. For the

present problem, at holding cost of Rs1020/-, the order quantities are 51, 59 and 50 for

the three periods. If the holding cost is increased, a point will be reached at around Rs

1100/-, where the GA algorithm will suggest the JIT(Just in Time) procurement of

quantities 40, 70, 50, respectively, for the 3 periods because at this cost, there can not be

any trade off between holding and ordering cost.

Table 6.19 Holding Cost –sensitivity analysis- GA model

Run no.
Ordering

cost(Rs)

Order Qty.

(No)

period 1

Order Qty

(No.)

period 2

Order

Qty.(No)

Period3

Best Sol Total

Cost(Rs)

1 1020 51 59 50 1159882

2 1100 40 70 50 1171912

3 800 51 109 0 1126600

4 225 160 0 0 1010550

185

Fig 6.8 Holding Cost –sensitivity analysis-GA model

It will be interesting to note that as the holding cost is reduced to around Rs, 800/-, the

first trade off point between ordering and holding cost is reached. So, it becomes more

advantageous to reduce one order in spite of higher carrying expenses due to larger

inventory. So, optimized order quantities are obtained as 51, 109, 0. When the holding

cost is further reduced, at around Rs 220/-, it becomes less expensive to buy all the

annual demand of 160 at the beginning of the year, due to saving in ordering cost. The

above analysis highlights the sensitivity of decision variable holding cost on order

quantities suggested by the proposed GA model.

6.4.3. Sensitivity to discounts and price breaks

Referring to Table 6.6, data set no. 1 and 2 are same except that in data set no. 2, there is

an additional price break that is specified at quantity 100 which will become eligible for

discount of 10%. Comparing GA solution to data set 1 and 2, (Table 6.9 & 6.10), it is

clear that order quantity has been increased to full requirement of 120 units in the second

period, as there is a cost reduction due to higher discounts of 10% at the price break

quantity 100 units. Additional sensitivity exercises are carried out as per the following

186

Table 6.20 taking the data from data set no.2 , but varying the discounts and price break

quantities.

Table 6.20 Sensitivity to discounts and price breaks- GA model.

No.
Discount/price

break

Discount/price

break 2

Order

Qty.(No)

Period 1

Order

Qty

(No)

Period 2

Order

Qty

(No)

Period3

Best Sol

Total

Cost(Rs)

1
5% at & above

50 Qty
NIL 51 59 50 1159882

2
5% at & above

60

10% @ and

above 100
40 120 0 1135500

3
25% at and

above 150
Nil 160 0 0 1064200

In the scenario no.1, all the order quantities are selected so that they are above 50 to see

that they are eligible for the 5% discount at the first price break. In the scenario 3, there is

single discount of 25% above price break quantity of 150. To avail this huge discount,

the order quantity of 160 is suggested in the first period itself to ensure that the order

quantity stays at above 150.

It is evident from above three sub sections, that procurement lot-sizing model proposed is

sensitive to the variation in problem parameters. The computational results suggest that

the proposed model captures all realistic constraints in multi-period procurement lot-

sizing decision making process and analyzes tradeoffs in cost objectives. Optimal

procurement lot-size is obtained by striking best tradeoffs among multiple cost

objectives.

Smaller lot-size reduces inventory holding cost but increases purchasing cost and

ordering cost due to lack of economy of scale. Larger lot-size reduces purchasing cost,

and leads to higher inventory holding cost. All these are reflected in our sensitivity

analysis.

187

6.5 COMPARISION OF PERFORMANCE OF ACO & GA MODEL

It is evident from the above computation results that both the models are robust enough

and can be relied upon to give most economical lot sizes for periodic reorder of the

multi item multi period procurement. Two methods are compared on the basis of their

performance parameters as shown in Table 6.21 based on the result of problem solutions.

Table 6.21 Comparison of performance parameters of ACO and GA model.

Data set

no.

Data set

Description

GA model ACO model

Best sol.

Total Cost

(Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

Best

sol.Total

Cost (Rs)

Spread bet.

best and

worst

solution

(Rs)

CPU

time

(Sec)

1
c=1, p=3,

w=2
1159882 144660 11 1159882 144660 11

2
c=1, p=3,

w=3
1135500 121445 11 1135500 121445 12

3
c=2, p=3,

w=2
3215982 336700 12 3215982 336700 20

4
c=2, p=3,

w=3
3494700 316015 12 3494700 316015 22

5
c=3, p=3,

w=3
7016587 492056 11 7016587 492056 40

6
c=4, p=3,

w=3
8068146 509588 11 8082410 483039 62

7
c=5, p=3,

w=3
15702229 801780 12 15899639 747235 75

8
c=6, p=3,

w=3
25290352 681426 13 25624848 650104 80

(c= no. of items, p= no. of periods, w= no. of price breaks).

188

One way ANOVA is employed to compare statistically the performance of GA and ACO

solution methodologies. Minitab 15 software is used to execute the ANOVA. Three

different tests were carried out to compare the performance parameters of best solution

cost, CPU time and spread between best and worst solution. The output is shown in Table

6.22, 6.23 and 6.24. The results are discussed in each of the following sections.

6.5.1 Comparison of best solution total cost or objective function

It can be observed from Table 6.20 and Fig. 6.12 that the best total cost or the value of

objective function is almost same with GA and ACO and there is no significant change.

For initial problems where the number of variables is smaller, the objective function

values are exactly same. After the data set no. 6, with the increase in the number of items

c in the problem definition, the number of variables to be optimized increases. GA was

able to give small improvement in the total cost of inventory investment when compared

to ACO.

Table 6.22 lists the result of ANOVA analysis to compare the solution methodologies

statistically on the basis of best solution cost or best fitness value. The output indicates

that at confidence level 95%, the two algorithms have no statistically significant

differences in the best fitness value between their means as P-value is 0.987 >0.05. This

follows from the acceptance of null hypothesis that the two population means are equal.

Table 6.22 ANOVA results to compare best solution cost.

SOURCE DF SS MS F P-value

Solution

Methodology
1 18643854306 18643854306 0 0.987

Error 14 1.00697E+15 7.19267E+13

Total 15

189

Fig 6.9 Comparison of Objective Function value GA & ACO.

6.5.2 Comparison of CPU time of execution for GA and ACO model

Table 6.23 lists the result of ANOVA analysis to compare the solution methodologies

statistically on the basis of CPU time of execution based on the results of 8 problems.

The output indicates that at confidence level 95%, the two algorithms have statistically

significant differences as far as CPU time is concerned, as P-value is lesser than 0.05.

This conclusion follows from rejection of null hypothesis that the two population means

are equal.

Fig 6.10 and Table 6.21 illustrates the comparative evaluation of GA & ACO models

with respect to the CPU time of execution of the algorithm. It is highly evident that GA is

far superior to ACO based on this performance parameter.

190

Table 6.23 ANOVA results to compare the solution methodologies based on CPU

time of execution.

SOURCE DF SS MS F P-value

Solution

Methodology
1 3306 3306 8.26 0.012

Error 14 5604 400

Total 15

 With smaller number of variables, there is no much difference in the execution time. But

as the problem becomes more complex and the number of variables increases, there is a

distinct trend of lesser CPU time in the case of GA model.

This shows that for our mathematical model of inventory cost optimization, GA works

more efficiently than ACO in terms of CPU time. This can be attributed to the simplicity

of GA compared to ACO in the algorithm formulation which is reflected in the lesser

CPU time.

6.5.3 Comparison of Spread between Best and Worst Solution for GA and ACO

models

Table 6.20 and Fig 6.11 show the comparison of spread between best and worst solutions

for GA and ACO. It can be seen that ACO has got superior performance than GA on this

count as spread in the objective function value between the best and worst solution is

lesser in case of ACO than in GA.

Table 6.24 lists the result of ANOVA analysis to compare the solution methodologies

statistically on the basis of spread between best and worst solution based on the results of

8 problems.

191

Fig 6.10 Comparison of CPU time of execution for GA and ACO model.

Fig 6.11 Comparison of Spread between Best and Worst Solution for GA and ACO

model.

192

The output indicates that at confidence level 95%, the two algorithms have no

statistically significant differences as far as this performance parameter is concerned, as

P-value is 0.906 >0.05. This follows from the acceptance of null hypothesis that the two

population means are equal.

Table 6.24 ANOVA results to compare the solution methodologies based on spread

between best and worst solution.

SOURCE DF SS MS F P-value

Solution

Methodology

1 789834816

789834816

0.01 .906

Error 14 789834816

54363070713

Total 15

6.5.4 Role of GA and ACO models in decision making

Results obtained from the present research work based ACO and GA model can be

utilised as major decision making platform by the company for procurement lot sizing.

The company need not depend on the subjective decision of purchase managers regarding

the reorder point and reorder quantities. Since all the practical considerations including

reserve stock, budget and storage space constraints have been incorporated into the

model, the company can effectively use this model for important inventory management

decisions on how much to buy and when to buy for its multi item multi period

procurement keeping the total inventory cost at the minimum.

6.6 Summary of results:

1. The mathematical model is constructed for inventory management problem for

optimizing multi item multi period lot sizing considering deterministic but

variable demand. Model is made more realistic to suit the requirements of

company under study by constraining budget and storage space.

2. Since the model is NP hard (non-deterministic polynomial-time hard), Meta

heuristic ACO algorithm is developed for the solution in the last chapter. Since

193

there is no bench mark available in the standard to compare the performance of

ACO model, another meta heuristic model GA is developed. Achieving

improvement in algorithm performance parameters is added objective for

development of GA model.

3. GA model parameters are calibrated using Taguchi design of experiments.

4. GA model solution is evaluated based on performance parameters- minimum total

cost of best solution which is the objective function value, CPU processing time,

spread between best and worst solution & problem parameter sensitivity analysis.

5. GA run carried out for each of 8 problem scenario and performance parameters

along with order quantities are tabulated. Simple problems solutions with single

item are verified against exact method which validates the proposed GA model

6. Comprehensive graph developed indicating the GA model solution performance

parameters for each of the problem scenario.

7. Sensitivity analysis carried out for the problem parameters like ordering cost,

holding cost and price break and discount. Cost trade off scenarios are well

verified.

8. The computational results suggest that the proposed model captures all realistic

constraints in multi-period procurement lot-sizing decision making process and

analyzes tradeoffs in cost objectives. The model is robust enough to accommodate

the real life scenario in an industrial and trading set up for suggesting the

optimum procurement lot sizes.

9. Comparative evaluation of the GA and ACO model reveals that GA is better than

ACO as far as CPU time of execution is concerned. There is no significant

difference in the objective function value that both these methods can achieve.

The spread in objective function value between the best and worst solutions is

higher in GA than ACO which shows the superiority of ACO on this count.

10. One way ANOVA analysis results are also used to compare these solution

methodologies, GA and ACO. It accepts null hypothesis that the two populations

are equal in case of best objective function value and spread between best and

194

worst objective function value, which means that there is statistically no

significant difference. ANOVA rejects null hypothesis in the case of CPU

execution time which means that the there is significant difference in the mean

value of populations based on this performance parameter. Present research work

suggests that for a comparable problem with sufficient complexity, the CPU

execution time has been reduced by 400% when using GA model.

195

7. CONCLUSIONS AND SCOPE FOR FUTURE WORK

In the present research work, the application of AI techniques for the demand forecast

and inventory management has been explored. Neural network models with different

architecture have been suggested for demand forecast and their prediction accuracy have

been determined. MLP architecture has been compared with RBFNN in terms of Mean

absolute Error of prediction. In the second part of research work, multi objective

optimization model has been developed for multi item multi period procurement lot

sizing under determinate but variable demand condition. ACO and GA programs have

been developed for solving the mathematical model. The models have been validated

with the real time industrial data and their comparative merits and demerits have been

studied. Following broad conclusions have been drawn from the present research study.

The novelty of present research work is the integrated AI application on demand forecast

and inventory management. There are independent studies using AI techniques for

demand forecast [[Aburto et al. 2007, Wong, B. K. et al. 2007 Nikolaos Kourentzes (

2013)] and optimum lot sizing [Zhong Yao et al. 2011, Baruch Keren,2009, Chia-Shin

Chung et al. 2013]. In this research work, the output of neural network demand forecast is

used for lot sizing optimization using GA application, which is a novel approach.

Another novelty has been the application of periodic review lot sizing model of inventory

management to multi item system. Most of the earlier works have been targeted to single

item multi period. The present research work adopts a new approach of using both ACO

and GA for the lot sizing optimization of multi item multi period periodic review

inventory management which can be considered significant contribution.

Following broad conclusions have been drawn from the present research study.

CONCLUSIONS

1. Neural network can effectively be used for the demand forecast with different

network architecture like MLP or RBFNN. Neural network results in higher

prediction accuracy than the traditional methods. The ability to increase

196

forecasting accuracy will result in lower costs and higher customer satisfaction

because of more on-time deliveries. The proposed methodology can be considered

as a successful decision support tool in forecasting customer demand. RBFNN

can be configured with random selection of centers or self organized selection of

centers using clustered algorithms like Fuzzy C means. The width can be fixed

and equal or variable and determined using P-nearest neighbor heuristic. FCM

centers yielded a best prediction accuracy of 4.38% whereas the maximum

accuracy in the case of random centers was 4.81%.

2. Meta heuristic algorithms like GA and ACO can effectively be used to solve NP

hard (non-deterministic polynomial-time hard) mathematical models related to

inventory management problems like the multi period multi item periodic lot

sizing problem. ACO program parameter can be set by running the representative

problem several times and optimizing the objective value function. Simple

problem solutions for multi period lot sizing with single item are verified against

exact method like LINDO or GAMMAS software which validate the proposed

ACO and GA model. Sensitivity analysis which is carried out for both GA and

ACO programs with respect to the problem parameters like ordering cost, holding

cost and price break and discount, proves that cost trade off scenarios are well

verified. Computational results concluded that suggested ACO and GA models

properly analyse the trade off in cost objectives and that they capture well, all the

realistic constraints in the decision making process for the multi period

procurement lot sizing problem. The models are robust enough to accommodate

the real life scenario in an industrial and trading set up for suggesting the

optimum procurement lot sizes.

3. Comparative evaluation of the GA and ACO model reveals that GA is better than

ACO as far as CPU time of execution is concerned. There is no significant

difference in the objective function value that both these methods can achieve.

197

The spread in objective function value between the best and worst solutions is

higher in GA than ACO which shows the superiority of ACO on this count, even

though the difference in spread is minor and statistically insignificant. One way

ANOVA analysis results are also used to compare these solution methodologies,

GA and ACO. It accepts null hypothesis that the two populations are equal in case

of Best objective function value and spread between best and worst objective

function value, which means that there is statistically no significant difference.

ANOVA rejects null hypothesis in the case of CPU execution time which means

that there is significant difference in the mean value of populations based on this

performance parameter. Present research work suggests that for a comparable

problem with sufficient complexity, the CPU execution time has been reduced by

400% when using GA model.

7.2 DIRECTIONS FOR FUTURE STUDY

Present research work has revealed that ANN with MLP and RBFNN network gives

much higher prediction accuracy when used for demand forecast. Also ACO and GA

models can be used for optimizing multi item multi period lot sizing where the exact

methods would take very long time for the solution or become unstable due to the large

number of decision variable. Even though a huge amount of research work has been

done in the field of inventory management and demand forecast, there are still a lot of

new avenues that can be explored in the application of AI technique in these respective

fields.

 Future research can explore the possibility of using other ANN types like

recurrent neural networks to make a similar approach and better the accuracy of

prediction.

 Other meta-heuristic search algorithms such as simulated annealing, may be

employed for the optimization of inventory planning and procurement lot sizing

and a comparison may be made among the algorithms.

198

 Uncertainty in the estimation of the different variables like carrying cost, ordering

cost etc. can be modeled by the fuzziness to take care of their stochastic nature

which will give a different approach to problem solution.

 The model can be extended to accommodate some more real world scenario like

rejections and late deliveries from vendor side.

 Different variations in Genetic algorithm and ACO can be explored to improve

the optimization of the procurement lot sizes.

 Co-ordination between supplier and buyer is an important influencing factor in

the recent trends of collaborative procurement strategies. This factor can be

modeled in optimizing the multi item multi period lot size.

199

REFERENCES

Aburto, L., & Weber, R. (2007). ―Improved supply chain management based on hybrid

demand forecasts.‖ Applied Soft Computing, 7, 136–144.

Aggarwal, A., & Park, J. K. (1993). ―Improved algorithms for economic lot-size

problems.‖ Journal of Operations Research, 45, 49–71.

Alejandro Serran, Rogelio Oliva, Santiago Kraiselbur (2017). ―On the cost of capital in

inventory models with deterministic demand.‖ International Journal of Production

Economics, 15, 14-20.

Ali Diabat, Rany, Deskoores (2016). ―Hybrid genetic algorithm based heuristic for an

integrated supply chain problem.‖ Journal of Manufacturing Systems, 50, 9568-9575.

Ali Roozbeh Nia, Mohammad Hemmati Far, Seyed Taghi Akhavan Niaki (2014). ―A

fuzzy vendor managed inventory of multi-item economic order quantity model under

shortage: An ant colony optimization algorithm.‖ Int. J.Production Economics, 155,

259–27.

Al-Saba, T. & El-Amin, I. (2009). ―Artificial neural networks as applied to long-term

demand forecasting.‖ Artificial Intelligence in Engineering, 13, 189–197.

Amy H.I. Lee, He-Yau Kang, Chun-Mei Lai, Wan-Yu Hong (2013). “An integrated

model for lot sizing with supplier selection and quantity discounts.‖ Applied

Mathematical Modelling, 37, 4733–4746.

Angappa Gunasekaran, Eric W.T.Ngai (2014). ―Expert systems and artificial intelligence

in the 21st century logistics and supply chain management.‖ Expert Systems

Applications ,Volume 41, Issue 1, Pages 1-4.

http://www.sciencedirect.com/science/article/pii/S0925527316302869#!
http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174/41/1

200

Ann M. Noblesse, Robert N. Boute, Marc R. Lambrecht, Benny Van Houdt (2014). ―Lot

sizing and lead time decisions in production/inventory systems.‖ International Journal of

Production Economics, Volume 155, Pages 351-360

Arindam Roy A, Sova Pal, Manas Kumar Maiti (2009). ―A production inventory model

with stock dependent demand incorporating learning and inflationary effect in a random

planning horizon: A fuzzy genetic algorithm with varying population size approach.‖

Computers & Industrial Engineering, 57, 1324–1335.

 Aris, Syntetos, Zied Babai, John E. Boylan (2016). ―Supply chain forecasting: Theory,

practice, their gap and the future.‖ European Journal of Operational Research, 252, 1–26.

Ata Allah Taleizadeh, Seyed Taghi Akhavan Niaki (2013). ―A hybrid method of fuzzy

simulation and genetic algorithm to optimize constrained inventory control systems with

stochastic replenishments and fuzzy demand.‖ Information Sciences, 220, 425–441.

Azzi, A., Battini, D., Faccio, M., Persona, A. (2014). ―Inventory holding costs

measurement: A multi-case study.‖ The International Journal of Logistics Management,

25, 109–132.

Barbara B.Flynn, SadaoSakakibara, Roger G.Schroeder (1990). ―Empirical research

methods in operations management.‖ Journal of Operations Management, Volume 9,

Issue 2, April 1990, Pages 250-284.

Baruch Keren (2009). ―The single-period inventory problem: Extension to random yield

from the perspective of the supply chain.‖ Omega,Volume 37, Issue 4, Pages 801-810.

Ba-Yi Cheng, Joseph Y.T., Leung (2010). ―Integrated scheduling of production and

distribution to minimize total cost using an improved ant colony optimization method.‖

Computers & Industrial Engineering, 83, 217–225.

http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273/155/supp/C
http://www.sciencedirect.com/science/journal/02726963
http://www.sciencedirect.com/science/journal/02726963/9/2
http://www.sciencedirect.com/science/journal/02726963/9/2
http://www.sciencedirect.com/science/journal/03050483
http://www.sciencedirect.com/science/journal/03050483/37/4

201

Beale & Jackson (2000). ―Neural Computing: An introduction.‖ Institute of Physics

Publishing, Bristol and Philadelphia, 13, 370-378.

Beccali, M., Cellura, M., Lo Brano, V. & Marvuglia, A. (2004). ―Forecasting daily urban

electric load profiles using artificial neural networks.‖ Energy Conversion and

Management, 45, 2879–2900.

Behnam Vahdani, Soltani, M. Yazdani, Meysam Mousavi (2017). ―A three level joint

location-inventory problem with correlated demand, shortages and periodic review

system: Robust meta-heuristics.‖ Computers & Industrial Engineering, Volume 109,

Pages 113-129.

Benton, W. C. (1991). ―Quantity discount decisions under conditions of multiple items,

multiple suppliers and resource limitation.‖ International Journal of Production Research,

29, 953–961.

Biswajit Sarkar (2013). ―A production-inventory model with probabilistic deterioration in

two-echelon supply chain management.‖ Applied Mathematical Modelling, 37, 3138–

3151.

Boylan, J.E., Syntetos, A.A., Karakostas, G.C. (2007). ―Classification for forecasting and

stock control: a case study.‖ Journal of the Operational Research Society, 59, 473–481.

Borja Ponte, Enrique Sierra, David de la Fuente, Jesus Lozano (2017). ―Exploring the

interaction of inventory policies across the supply chain: An agent-based approach.‖

Computers & Operations Research Volume 78, Pages 335-348.

Bradley,E. (2003). ―Intelligent Data Analysis—an Introduction.‖ Springer, Heidelberg,

Berlin, pp. 199–227.

http://www.sciencedirect.com/science/journal/03608352
http://www.sciencedirect.com/science/journal/03608352/109/supp/C
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548/78/supp/C

202

Brahimi, N., Dauzere-Peres, S., Najid, N. M. & Nordli, A. (2006). ―Single item lot sizing

problems.‖ European Journal of Operational Research, 168, 1–16.

Bretthauer, K. B. Shetty, S. Syam, S. White (1994). ―A model for resource constrained

production and inventory management.‖ Decision Sciences, 25, 561–580.

Buffa, F. P., & Jackson, W. M. (1983). ―A goal programming model for purchase

planning.‖ Journal of Purchasing and Materials Management, 19, 27–34.

Burgin, T.A., Wild, A.R. (1967). ―Stock control-experience and usable theory.‖

Operational Research Quarterly, 18, 35–52.

Chan, C.K., Cheung, Langevin, A. (2003). ―Solving the multi-buyer joint replenishment

problem with a modified genetic algorithm.‖ Transportation Research Part B:

Methodological, 37 (3) 291–299.

Chandra, C., Grabis, J. (2005). ―Application of multi-steps forecasting for restraining the

bullwhip effect and improving inventory performance under autoregressive demand‖.

European Journal of Operational Research, 166 (2), 337–350.

Chang, C.T., S.C. Chang (2001). ―The inventory model with variable lead time and price-

quantity discount.‖ Journal of the Operational Research Society, 52, 1151–1158.

Chang, P., Yao, M., S. Huang, S., Chen, C. (2006). ―A genetic algorithm for solving a

fuzzy economic lot-size scheduling problem,‖ International Journal of Production

Economics, 102 (2) 265–288.

Chen, F., Drezner, Z., Ryan, J. K. and Simchi-Levi, D. (2000). ―Quantifying the

bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and

information.‖ Management Science, 46(3), 436–443.

203

Chen-Yang Cheng, Yin-Yann Chen, Tzu-LiChen, JohnJung- WoonYoo (2015). ―Using

a hybrid approach based on the particle swarm optimization and ant colony optimization

to solve a joint order batching and picker routing problem.‖ Int. J.Production Economics,

17, 805–814.

Chiang, C., Gutierrez, G.J. (1996). ―A periodic review inventory system with two supply

modes.‖ European Journal of Operational Research, 94, 527–547.

Chia-Shin Chung, James Flynn, Roelof Kuik, Piotr Stalinski (2013). ―A single-period

inventory placement problem for a supply system with the satisficing objective.‖

European Journal of Operational Research, Volume 224, Issue 3, Pages 520-529.

Chi Kin Chan, Bernard, K.S., Cheung, Andre Langevin (2003). ―Solving the multi-buyer

joint replenishment problem with a modified genetic algorithm.‖ Transportation

Research, Part B, 37 291–299.

Chirag Deba, Fan Zhangb, Junjing Yanga (2017). ―A review on time series forecasting

techniques for building energy consumption.‖ Renewable and Sustainable Energy

Reviews, 74, 902–924.

Chiraphadhanakul, S., Dangprasert, P. & Avatchanakorn V. (1997). ―Genetic algorithms

in forecasting commercial banks deposits.‖ Proceedings of the IEEE international

conference on intelligent processing systems, IEEE Press, pp. 116–210.

Chiu, M. & Lin, G. (2004). ―Collaborative supply chain planning using the artificial

neural network approach.‖ Journal of Manufacturing Technology Management, 15(8),

787–796.

Chopra, S. & Meindl, P. (2001). ―Supply chain management: Strategy, planning and

operation.‖ ―Demand Management.‖ NJ: Prentice-Hall, Edition 5, pp. 234-270.

http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217/224/3

204

Christopher, M. (1992). ―Logistic and Supply Chain Management.‖ Pitman Publishing,

London, Edition 13, pp. 343-376.

Chung,C,J., Wee (2011). ―Short life-cycle deteriorating product remanufacturing in a

green supply chain inventory control system.‖ International Journal of Production

Economics, 129, 195–203.

Cohen, M. A., & Ernst, R. (1988). ―Multi-item classification and generic inventory stock

control policies.‖ Production and Inventory Management Journal, 29(3), 6–8.

Colorni, A., Dorigo, M., Maniezzo,V. (1991). ―Distributed optimization by ant colonies:

―Proceedings of the European Conference on Artificial Life.‖ Paris, France, pp. 134-142.

Company Handbook, Shalimar valves (2013). ―Standard operating procedures- ABC

analysis‖ pp. 176-190.

Cox, A., Sanderson, J., Watson, G. (2001). ―Supply chains and power regimes: Towards

an analytic framework for managing extended networks of buyer and supplier

relationships.‖ Journal of Supply Chain Management, 37 (2), 28–35.

Crum, C. and Palmatier, G. E. (2003). ―Demand Management Best Practices.‖ J. Ross

Publishing, 6th Edition, pp. 435-445.

Cybenko, G. (1989). ―Approximation by superposition of a sigmoidal function.‖

Mathematics of Control Signals and Systems, 2, 303–314.

Das, K., Roy, Maiti, M. (2000). ―Multi-item inventory model with quantity-dependent

inventory costs and demand-dependent unit cost under imprecise objective and

restrictions: a geometric programming approach.‖ Prod. Planning &. Control, 11, 781–

788.

205

Davood Mohammaditabar, SeyedHassan, Ghodsypour, ChrisO‘Brien (2010). ―Inventory

control system design by integrating inventory classification and policy selection.‖ Int. J.

Production Economics, 140, 655–659.

De Carvalho, M.C.M, Dougherty, A.S. Fowkes, M.R. Wardman (1998). ―Forecasting

travel demand: a comparison of different artificial neural network methods.‖ The Journal

of the Operational Research Society, 49 (7), 717–722.

Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R. (2003). ―Measuring and

avoiding the bullwhip effect: A control theoretic approach.‖ European Journal of

Operational Research, 147 (3), 567–590.

Devendra Choudhary, Ravi Shankar (2011). ―Modeling and analysis of single item

multi-period procurement lot-sizing problem considering rejections and late deliveries.‖

Computers & Industrial Engineering, 61, 1318–1323.

Dilay Celabi (2015). ―Inventory control in a centralized distribution network using

genetic algorithms: A case study.‖ Computers & Industrial Engineering, 87, 532–539

Dorigo M and Stutzle (2004). ―Ant Colony Optimization.‖ MIT Press, Cambridge, MA,

15
th

 edition, pp. 221-229.

Dorffner, G. (1996). ―Neural Networks for Time Series Processing.‖ Neural Network

World (4), 447–468.

Dubois, D., Prade, H. (1986). ―Fuzzy sets and statistical data,‖ Eur. J. Oper. Res. 25 (3)

(1986) 345–356.

Du, T.C., Wolfe, P.M. (1997). ―Implementation of fuzzy logic systems and neural

networks in industry.‖ Computers in Industry, 32, 261–272.

206

Dunsmuir, W.T.M., Snyder, R.D. (1989). ―Control of inventories with intermittent

Demand.‖ European Journal of Operational Research, 40 (1), 16–21.

Escoda, I. Ortega, A., Sanz, A. & Herms, A. (1997). ―Demand forecast by neuro-fuzzy

techniques.‖ In Proceedings of the sixth IEEE international conference on fuzzy systems,

pp. 1381–1386.

Faraway, J. C., Chatfield (2008). ―Time series forecasting with neural networks: a

comparative study using the airline data.‖ Applied Statistics, 47 (2), 231–250.

Fardin Ahmadizar , Mehdi Zeynivand, Jamal Arkat (2015). ―Two-level vehicle routing

with cross-docking in a three-echelon supply chain: A genetic algorithm approach.‖

Applied Mathematical Modelling, 39, 7065–7081.

Fiestras-Janeiro, M.G., García-Jurado, Meca, Mosquera M.A. (2013). ―A

new cost allocation rule for inventory transportation systems.‖ Operations Research

Letters, Volume 41, Issue 5, Pages 449-453.

Flores, B. E. & Whybark, D. C. (1987). ―Implementing multiple criteria ABC analysis.‖

Journal of Operations Management, 7(1), 79–84.

Frohlich, M. (2002). ―Demand chain management in manufacturing and services: Web-

based integration, drivers and performance.‖ Journal of Operations Management, 20 (6),

729–745.

Funahashi, K. (2009). ―On the approximate realization of continuous mappings by neural

networks.‖ Neural Networks, 2, 183–192.

G.E.P. Box, G.M. Jenkins, G. Reinsel (2004). ―Time Series Analysis: Forecasting and

Control‖, third ed. Prentice Hall, pp: 137-158.

http://www.sciencedirect.com/science/article/pii/S0167637713000679
http://www.sciencedirect.com/science/article/pii/S0167637713000679
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science/journal/01676377/41/5

207

Garetti, M., & Taisch, M. (1999). ―Neural networks in production planning and control.‖

Production Planning and Control, 10(4), 324–339.

Garcia, Ibeas, Vilanova, R. (2013). ―A switched control strategy for inventory control of

the supply chain.‖ Journal of Process Control, 23, 868– 880.

George Nenes, Sofia Panagiotidou, George Tagaras (2010). “Inventory management of

multiple items with irregular demand: A case study.‖ European Journal of Operational

Research, 20 ,313–324.

Gilbert, K. (2005). ―An ARIMA supply chain model.‖ Management Science, 51, 305–

310.

Giachetti, Young (1997). ―A parametric representation of fuzzy numbers and their

arithmetic operators.‖ Fuzzy sets and systems, 91, 185–202.

Goh Sue-Ann, Ponnambalam, Jawahar (2012). ―Evolutionary algorithms for optimal

operating parameters of vendor managed inventory systems in a two-echelon supply

chain.‖ Advances in Engineering Software, 52, 47–54.

Goldberg, D.E. (1989). ―Genetic Algorithms in Search, Optimization and Machine

Learning.‖ Addison-Wesley Publishing Company, Massachusetts, Edition 5, 105-130.

Gupta, R. K., Bhunia, A.K., Goyal, S.K. (2009). ―An application of Genetic Algorithm in

solving an inventory model with advance payment and interval valued inventory costs.‖

Mathematical and Computer Modelling, 49, 893-905.

Gurani, H. & Tang, C.S. (1999). ―Optimal ordering decision with uncertain cost and

demand forecast updating.‖ Management Science, 45(10), 1456-1462.

Guvenir, H.A., Erel (1998). ―Multi criteria inventory classification using a genetic

algorithm,‖ European Journal of Operational Research, 105 (1), 29–37.

208

 Hadjahmadi, A, H., Homayounpour, M. M. & Ahadi, S.M. (2008). ―Robust weighted

Fuzzy C means clustering.‖ IEEE International Conference on Fuzzy Systems, 978 (1),

4244- 1819.

Hadley, G., Whiten, T.M. (1963). ―Analysis of Inventory Systems,‖ Prentice-Hall,

Englewood Cliffs, NJ, Edition 3, 240-270.

Hamed Soleimani, Govindan Kannan (2015). ―A hybrid particle swarm optimization and

genetic algorithm for closed-loop supply chain network design in large-scale networks.‖

Applied Mathematical Modelling, 39, 3990–4012.

Handfield, R., Warsing, D., Wu, X., (2009.) ―Q, r inventory policies in a fuzzy uncertain

supply chain environment.‖ European Journal of Operational Research, 197, 609–619.

Hansen, J.V., R.D. Nelson (2003). ―Forecasting and recombining time-series components

by using neural networks.‖ The Journal of the Operational Research Society, 54 (3), 307–

317.

Hans-Joachim Girlich (2003). “Transaction costs in finance and inventory research.‖ Int.

J. Production Economics, 81(2), 341–350.

Harris F.W. (1913). ―How many parts to make at once?‖ The Magazine of Management,

10, 135–152.

Heikkila, J. (2002). ―From supply to demand chain management: Efficiency and

customer satisfaction.‖ Journal of Operations Management, 20 (6), 747-767.

Herbrich, R., Keilbach, M.T., Graepel, P.B.S., Obermayer, K. (2000). ―Neural networks

in economics: Background, applications and new developments.‖ Computational

Techniques for Modeling Learning in Economics, 11, 169–196.

209

He-Yau Kanga, Amy H.I., Leeb (2010). ―Inventory replenishment model using fuzzy

multiple objective programming: A case study of a high-tech company in Taiwan.‖

Applied Soft Computing, 10, 1108–1118.

Hill,T., Connor, M.O., Remus, W. (2006). ―Neural networks for time series forecasts,‖

Management Science, 42 (7), 1082–1092.

Hindriyanto, Purnomo, Hui Weeb, Yugowati Praharsi (2012). ―Two inventory review

policies on supply chain configuration problem.‖ Computers & Industrial Engineering,

63, 448–455.

Hira, D.S., Gupta, P.K. (2009). ―Analysis of Inventory costs‖ in Operations Research, S.

Chand & Company Ltd., New Delhi, India, 5
th

 Edition, page no. 235-250.

Hobbs, B. F., Helman, U., Jitprapaikulsarn, S., Konda, S., & Maratukulam, D. (1998).

―Artificial neural networks for short-term energy forecasting: Accuracy and economic

value.‖ Neuro computing, 23, 71–84.

Hsu, P. H, Wee, H.M. (2008). ―Coordinated ordering decisions for products with short

life cycle and variable selling price, Computers & Industrial Engineering, 54 (2008) 602–

612.

 Hung, J.C. (2009). ―A fuzzy GARCH model applied to stock market scenario using a

genetic algorithm.‘‘ Expert Syst. Applications, 36, 11710–11717.

Ilkay Saracoglu, Seyda Topaloglu, Timur Keskinturk (2014). ―A genetic algorithm

approach for multi-product multi-period continuous review inventory models.‖ Expert

Systems with Applications, Volume 41, Issue 18, Pages 8189-8202.

http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174/41/18

210

Jamal Shahrabi , Esmaeil Hadavandi, Shahrokh Asadi (2013). “Developing a hybrid

intelligent model for forecasting problems: Case study of tourism demand time series.‖

Knowledge-Based Systems, 43, 112–122.

Jamshidi, H., & Jain, A. (2008). ―Multi-criteria ABC inventory classification: With

exponential smoothing weights.‖ Journal of Global Business Issues, 2(1), 61

Javad Sadeghi, Seyed Taghi, Akhavan Niaki (2014). ―A hybrid vendor managed

inventory and redundancy allocation optimization problem in supply chain management:

An NSGA-II with tuned parameters.‖ Computers & Operations Research, 41, 53–64.

Jeong B, Jung H.S., Park N. K. (2002). ―A computerized causal forecasting system using

genetic algorithms in supply chain management.‖ Journal of Systems and Software, 60,

223–37.

John Holland (1975). ―Adaptation in Natural and Artificial Systems.‖ MIT Press,

Cambridge, MA. Edition 7, 172-205.

John Holland (1962)."Outline for a logical theory of adaptive systems." JACM, Vol 9,

no. 3, pp. 279–314.

JiSun Shinn, Sungshin Kimn, Jang-Myung Leen (2015). ―Production and inventory

control of auto parts based on predicted probabilistic distribution of inventory.‖ Digital

Communications and Networks 1, 292–301.

John E. Boylan, Aris Syntetos (2012). ―Forecasting in management science.‖

Omega, Volume 40, Issue 6, Page 68-76.

Ju Y.K., Kim, C., Shim, J. C. (1997). ―Genetic based fuzzy models: interest rate

forecasting problems.‖ Computers and Industrial Engineering, 33, 561–565.

http://www.sciencedirect.com/science/article/pii/S0305048311001654

211

Juite Wanga, Yun-Feng Shub (2004). ―Fuzzy decision modeling for supply chain

management.‖ Fuzzy Sets and Systems, 150, 107–127.

Jui-Jung Liao, Kun-Jen Chung, Kuo-Nan Huang (2013).―A deterministic inventory

model for deteriorating items with two warehouses and trade credit in a supply chain

system.‖ International Journal of Production Economics, Volume 146, Issue 2, Pages

557-565.

Jui-Tsung, Wonga, Chwen-Tzeng S., Chun-Hsien (2011). ―Stochastic dynamic lot-sizing

problem using bi-level programming based on artificial intelligence techniques.‖ Applied

Mathematical Modelling, 79, 9556–9572.

Kai F, Wenhua, X. (1997). ―Training neural networks with genetic algorithms for

forecasting the stock price index.‖ In: Proceedings of the IEEE international conference

on intelligent processing systems, IEEE Press, p. 401–405.

Karimi, B., Fatemi Ghomi & Wilson, J. M. (2003). ―The capacitated lot sizing Problem-

A review of models and algorithms.‖ Omega, 31(5), 365–378.

Kartalopoulos, S.V. (1996). ―Understanding Neural Networks and Fuzzy Logic.‖ IEEE

Press, New York, Edition 9, pp: 322-350.

Katagiri, H., Ishii, H. (2002). ―Fuzzy inventory problems for perishable commodities.‖

European Journal of Operational Research, 138, 545–553.

 Khouja, M. (1999). ―The single-period (news-vendor) problem: Literature review and

suggestions for further research.‖ Omega, Int. J. Management Science, 27, 537–553.

Kim D, Kim C. (2009). ―Forecasting time series with genetic fuzzy predictor ensemble.‖

IEEE Transactions on Fuzzy Systems, 5, 523–35.

212

Komgrit Leksakul, Pongsak Holimchaya chotikul, Apichat Sopadang (2015). “Forecast

of off-season longan supply using fuzzy support vector regression and fuzzy artificial

neural network.‖ Computers and Electronics in Agriculture, 118, 259–269.

Koskivaara, E. (2004). ―Neural networks in analytical review procedures.‖ Managerial

Auditing Journal, 19(2), 191–223.

Krishna K., Chintalpundi & Moshe Kam (1998). ―A noise resistant fuzzy c means

algorithm for clustering.‖ IEEE Conference on Fuzzy systems Proceedings, 150-156.

Krone,L. (1964). ―A note on economic lot sizes for multi-purpose equipment.‖

Management Science, 10, 461–464.

Kuo, R. J., & Xue, K. C. (1998). ―An intelligent sales forecasting system through

integration of artificial neural network and fuzzy neural network.‖ Computers in Industry,

37, 1–15.

Kuo, R. J., Wu, P. & Wang, C. P. (2002). ―An intelligent sales forecasting system

through integration of artificial neural networks and fuzzy neural networks with fuzzy

weight elimination‖ Neural Networks, 15, 909–925.

Kuo, C. A., Reitsch, A. (1995). ―Neural networks vs. conventional methods of

forecasting.‖ Journal of Business Forecast, 14 (4), 315-327.

 Kuo, R.J., Leeb, Ferani (2014). ―Solving bi level linear programming problem through

hybrid immune genetic and particle swarm optimization algorithm.‖ Applied

Mathematics and Computation, 266, 1013–1026.

Lau, H.C.W., Yi Zhao (2013). ―A demand forecast model using a combination of

surrogate data analysis and optimal neural network approach.‖ Decision Support

Systems, 54, 1404–1416.

213

Lee, H. L., Padmanabhan, V. & Whang, S. (1997). ―The bullwhip effect in supply

chains.‖ Management Review, 38, 93–102.

Leenders, M. H., Fearon, W. England (1985). ―Purchasing and Materials Management.‖

Richard D. Irwin, Inc., Homewood, IL, Edition 5, pp. 78-89.

Leopoldo Eduardo, Cárdenas-Barron, Gerardo Treviño Garza, Hui Ming Wee (2012).

“Simple and better algorithm to solve the vendor managed inventory control.‖ Expert

Systems with Applications, 39, 3888–3895.

Leopoldo Eduardo, Cárdenas-Barron, Gerardo Trevino Garza (2015). ― A new approach

to solve the multi-product multi-period inventory lot sizing with supplier selection

problem.‖ Computers & Operations Research, Volume 64, Pages 225-232.

Lewis, C.D. (1982). ―Industrial and Business Forecasting Methods: A Practical Guide to

Exponential Smoothing and Curve Fitting.‖ Butterworth Scientific, London; Boston,

Edition 10, pp: 435-446.

Lin Wang, Qing-Liang Fu, Yu-Rong Zeng (2012). ―Continuous review inventory models

with a mixture of backorders and lost sales under fuzzy demand and different decision

situations.‖ Expert Systems with Applications, 39, 4181–4189.

Lolli, F., Gamberini, R. (2017). ―Single-hidden layer neural networks for forecasting

intermittent demand.‖ International Journal of Production Economics, Vol 183, part A,

116-128.

Longsheng Cheng, Ching-ShihTsou, Dong-YuhYang (2016). ―Cost-service tradeoff

analysis of reorder-point-lot-size inventory models.‖ Journal of Manufacturing Systems,

37, 1, 217-226.

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548/64/supp/C
http://www.sciencedirect.com/science/journal/02786125

214

Luis, Moncayo Martinez, David Zhang (2013). ―Optimising safety stock placement and

lead time in an assembly supply chain using bi-objective MAX–MIN ant system.‖ Int. J.

Production Economics, 145, 18–28.

Luis Aburto, Richard Weber (2007). ―Improved supply chain management based on

hybrid demand forecasts.‖ Applied Soft Computing, 7, 136–144.

Luxhoj, J. T. & Stensballe, B. (2006). ―A hybrid econometric-neural network modeling

approach for sales forecasting.‖ International Journal of Production Economics, 43, 175–

192.

Magali R.G.Meireles & Paulo E.M. Almeida (2003). ―A comprehensive review of

Industrial Applicability of artificial neural networks.‖ IEEE transactions on Industrial

Electronics, Vol 50, pp. 585-601.

Mahdi Tajbakhsh, M.(2010). ―On the distribution free continuous-review inventory

model with a service level constraint.‖ Computers & Industrial Engineering Volume 59,

Issue 4, Pages 1022-1024.

Maiti, M. K., M. Maiti (2006). ―Fuzzy inventory model with two warehouses under

possibility constraints.‖ Fuzzy Sets and Systems, 157 (1), 52–73.

Maiti, M. K., M. Maiti (2007). ―Two-storage inventory model with lot-size dependent

fuzzy lead-time under possibility constraints via genetic algorithm.‖ European Journal of

Operational Research, 179 (2) 352–371.

Maiti, A. K., M. Maiti (2008). ―Discounted multi-item inventory model via genetic

algorithm with roulette wheel selection, arithmetic crossover and uniform mutation in

constraints bounded domains.‖ Int. J. Computer Mathematics, 85, 1341–1353.

http://www.sciencedirect.com/science/journal/03608352
http://www.sciencedirect.com/science/journal/03608352/59/4
http://www.sciencedirect.com/science/journal/03608352/59/4

215

Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). ―Forecasting: Methods

and applications‖ (3rd ed.). New York: John Wiley & Sons, pp. 201-220.

Manuel Cardos, Eugenia Babiloni (2011). ―Exact and approximated calculation of the

cycle service level in a continuous review policy.‖ International Journal of Production

Economics, Volume 133, 1, Pages 251-255.

Mark Ko, Ashutosh Tiwari, Jorn Mehnen (2002). ―Soft computing in SCM‖ Applied Soft

Computing, 10, 661–674.

 Maria Rosienkiewicz, Edward Chlebus, Jerzy Detyna (2017). ―A review on time series

forecasting techniques for building energy consumption.‖ Renewable and Sustainable

Energy Reviews, 74, 902–924.

Mark Ko , Ashutosh Tiwari, Jorn Mehnen (2010). ―A review of soft computing

applications in supply chain management.‖ Applied Soft Computing ,10, 661–674.

Maryam Akbari Kaasgari, Din Mohammad Imani, Mehdi Mahmoodjanloo (2017).

―Optimizing a vendor managed inventory (VMI) supply chain for perishable products by

considering discount: Two calibrated meta-heuristic algorithms.‖ Computers & Industrial

Engineering, Volume 103, 227-241.

Matlab (2008). ―Neural Network Toolbox
‖
Mathworks, Edition 13, pp. 248-266.

Min-ChunYu (2011). “Multi-criteria ABC analysis using artificial-intelligence-based

classification techniques.‖ Expert Systems with Applications, 38, 3416–3421.

Minghui Lai, Weili Xue, Lindu Zhao (2016). ―Cost allocation for cooperative inventory

consolidation problems.‖ Operations Research Letters, Volume 44, Issue 6, Pages 761-

765.

http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science/journal/01676377/44/6

216

Mogale, Alexandre Dolgui, Rishabh Kandhway, Sri Krishna Kumar, Manoj Kumar

Tiwari (2017). ―A multi-period inventory transportation model for tactical planning of

food grain supply chain.‖ Computers & Industrial Engineering, Volume 110, 379-394.

Moin, N.H., Aziz A.B., (2010). ―An efficient hybrid genetic algorithm for the multi-

product multi-period inventory routing problem.‖ Int. J. Production Economics, 42, 3352-

3362.

Montgomery, D.C. (2000). ―Design and analysis of experiments.‖ Wiley, New York,

Edition 5, 275-285.

Musilek, P., Gupta (2000). ―Neural networks and fuzzy systems.‖ in: ―N.K. Sinha, M.M.

Gupta‖ (Eds.), Soft Computing and Intelligent Systems, Academic Press, San Diego, pp:

346-367.

Najafi, A., Niaki, S., Shahsavar (2009). ―A parameter-tuned genetic algorithm for the

resource investment problem with discounted cash flows and generalized precedence

relations.‖ Computers & Operations Research, 36, 2994–3001.

Nikolaos Kourentzes (2013). ―Intermittent demand forecasts with neural networks.‖ Int.

J. Production Economics, 14, 198–206.

Niranjan Roy & Ranjan Ganguli (2006). ―Filter design using RBF neural network for

improved health monitoring.‖ Applied Soft Computing, 6(4), pp. 154- 169.

Park, J. I., Lee, Song, and Chun (2010). ―TAIFEX and KOSPI 200 forecasting based on

two-factor high-order fuzzy time series and particle swarm optimization.‖ Expert Syst.

Applications, 37, 959–967.

 Pal, S., Ghosh, A. (2004). ―Soft computing data mining.‖ Information Sciences, 163,

100–320.

217

Partovi, F. Y., & Anandarajan, M. (2002). ―Classifying inventory using artificial neural

network approach.‖ Computers and Industrial Engineering, 41, 389–404.

Partovi, F. Y., & Burton, J. (1993). ―Using the analytic hierarchy process for ABC

analysis.‖ International Journal of Operations &Production Management, 13(9), 29–44.

Patel, J. N. (2011). ―Accuracy Comparison of Various Techniques to Solve Machine

Layout Problem.‖ International Journal of Advanced Research in Computer

Science, 2(1), 40-50.

Phadke, M. S. (1989). ―Quality engineering using robust design.‖ Prentice-Hall, Upper

Saddle River. Edition 8, pp. 432-445.

Phillips, D., Ravindran, Solberg, (2006). ―Operations Research: Principles and Practice.‖

Wiley, New York, 3
rd

 edition, pp. 240-250.

Pourakbar, M. R. Z., Farahani, Asgari (2007). ―A joint economic lot-size model for an

integrated supply network using genetic algorithm.‖ Applied Mathematics and

Computation, 189 (1) 583–596.

Prasanna Kumar, Mervin Herbert, Srikanth Rao (2013). ―AI Technique Applications in

Inventory Management A Review and Analysis of Literature.‖ International Journal of

Business and Management for Tomorrow, 3, (5), pp. 105-112.

Prasanna Kumar, Mervin Herbert, Srikanth Rao (2014). ―Demand forecasting using

Artificial Neural Network based on different learning methods: Comparative Analysis.‖

International Journal for Research in Applied Science and Engineering Technology, 2

(4), pp 76-85.

Prasanna Kumar, Mervin Herbert, Srikanth Rao (2015). ―Genetic algorithm approach for

analysis of multi item multi period procurement lot sizing problem.‖ International Journal

of Management (IJM),6, (12), pp. 50-58.

218

Pratsini, E. (2000). ―The capacitated dynamic lot size problem with variable technology‖

Computers & Industrial Engineering, 38(4), 493–504.

R. Roy (1990). ―A Primer on the Taguchi Method.‖ Society of Manufacturing Engineers,

New York, Edition 4, pp. 125-175.

 Roy, R., Furuhashi, T., Chawdhry, P.K.(1999). ―Advances in Soft Computing.‖

Engineering Design and Manufacturing, Springer, 40, 370-80.

Raghunathan, S. (1999). ―Inter organizational collaborative forecasting and

replenishment systems and supply chain implications.‖ Decision Sciences, 30 (4), 56-69.

Ramanathan, R. (2006). ―ABC inventory classification with multiple-criteria using

weighted linear optimization.‖ Computers and Operations Research, 33, 695–700.

Ravi Mahendra (2010). ―Industrial Statistics and Operational Management.‖ ―Chapter 6,

Forecasting technique.‖ Edition 4, pp. 176-185.

Real Carbonneau, Kevin Laframboise, Rustam Vahidov (2008). ―Application of machine

learning techniques for supply chain demand forecasting.‖ European Journal of

Operational Research, 184, 1140–1154.

Reza Zanjirani Farahania, Mahsa Elahipanah ((2008). ―A genetic algorithm to optimize

the total cost and service level for just-in-time distribution in a supply chain.‖ Int. J.

Production Economics, 111, 229–243.

Robinson, P., Narayanan, A. & Sahin, F. (2009). ―Coordinated deterministic dynamic

demand lot-sizing problem: A review of models and algorithms.‖ Omega, 37(1), 3–15.

Rolston, D.W. (1988). ―Principles of Artificial Intelligence and Expert Systems

Development.‖ McGraw-Hill, New York, Edition 7, pp. 340-345.

219

Ross R. J. (1989). ―Taguchi techniques for quality engineering.‖ McGraw-Hill, New

York, Edition 4, pp: 98-112.

Ross, T. J. (2004). ―Fuzzy Logic with Engineering Applications.‖ 2nd ed., John Wiley

and Sons, West Sussex, pp. 216-225.

Ryan Chen, F., Simchi-Levi, D. (2000). ―The impact of exponential smoothing forecasts

on the bullwhip effect.‖ Naval Research Logistics, 47(4), 269–286.

Samak-Kulkarnia S.M., Rajhansb, N.R. (2013). ―Determination of Optimum Inventory

Model for Minimizing Total Inventory Cost.‖ Procedia Engineering, 51, 803 – 809.

Sana,S.S., K.S. Chaudhuri (2008). ―A deterministic EOQ model with delays in payments

and price-discount offers.‖ Eur. J. Operations Research, 42, 509–533.

Seyed Hamid Reza Pasandideh, Seyed Taghi Akhavan Niaki, Nafiseh Tokhmehchi B.

(2011). ―A parameter-tuned genetic algorithm to optimize two-echelon continuous

review inventory systems.‖ Expert Systems with Applications, 38, 11708–11714.

Seyed Mohsen Mousavi, Vahid Hajipour, Seyed Taghi Akhavan Niaki,Najmeh Alikar

(2013). “Optimizing multi-item multi-period inventory control system with discounted

cash flow and inflation: Two calibrated meta-heuristic algorithms.‖ Applied

Mathematical Modelling, 37, 2241–2256.

Shing Chih Tsai, Sin Ting Chen (2017). ―A simulation-based multi-objective

optimization framework: A case study on inventory management.‖ Omega, Volume 70,

148-159.

Shu-Chin Chang, Ching-Ter Chang (2016). ―Multi-stage and multi-supplier inventory

model allowing different order quantities.‖ Applied Mathematical Modelling Volume

52, Pages 613-625.

http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X/52/supp/C
http://www.sciencedirect.com/science/journal/0307904X/52/supp/C

220

Silva, C.A., J.M.C. Sousa, T. Runkler, R. Palm. (2005). ―Soft computing optimization

methods applied to logistic processes.‖ International Journal of Approximate Reasoning,

40 (3), 280–301.

Silva, C.A., J.M.C. Sousa, T. Runkler, R. Palm (2005). ―Soft computing optimization

methods applied to logistic processes.‖ International Journal of Approximate Reasoning,

40, 280–301.

Silver, E. A., Pyke, D., & Peterson, R. (1990). ―Inventory management and production

planning and scheduling (2 nd ed), John Wiley and Sons, New York, pp:157-180.

Simon Haykin (1999). ―Neural Networks- A Comprehensive Foundation‖. Pearson

Education Publishing. Edition 5, pp: 130-170.

Singh, P., Deo,M.C. (2007). ―Suitability of different neural networks in daily flow

forecasting.‖ Applied Soft Computing, 7, 968–978.

Smith, N. R., Robles, J. L. & Cárdenas, L. E. (2009). ―Optimal pricing and production

master planning in a multi period horizon considering capacity and inventory

constraints.‖ Mathematical Problems in Engineering, 11, 1–15.

Srinivasa Pai. P., Nagabhushan, Ramakrishna Rao (2003). ―Radial basis function neural

networks for Tool wear monitoring.‖ Int. Journal of COMADEM, Vol 5, pp. 521-30.

Syntetos, A. A., Boylan, J. E. (2006). ―Stock control performance of intermittent demand

estimators‖. International Journal of Production Economics 103 (1), 36– 47.

Taguchi, G., Chowdhury, S., Y. Wu (2005). ―Taguchi‘s Quality Engineering Handbook.‖

Wiley, New Jersey. Edition 10, pp: 232-252.

Taleizadeh, A.A., Niaki, M.B., Aryanezhad, A. & Fallah Tafti (2010). ―A genetic

algorithm to optimize multi-product multi-constraint inventory control systems with

221

stochastic replenishments and discount.‖ Int. J. Adv. Manufacturing Technology, 51,

311–323.

Tamas Koltai (2009). ―Robustness of a production schedule to inventory cost

calculations.‖ International Journal of Production Economics Volume 121, Issue 2, Pages

494-504.

Tan, K.C. (2001). ―A framework of supply chain management literature.‖ European

Journal of Purchasing & Supply Management, 7 (1), 39–48.

Tettamanzi, A., Tomassini, M. (2001). ―Soft computing: Integrating Evolutionary, Neural

and Fuzzy Systems.‖ Springer, Heidelberg, 45, 250-65.

Torkul, Yimalz, Selvi, Cesur, M.R. (2016). ―A real-time inventory model to manage

variance of demand for decreasing inventory holding cost.‖ Computers & Industrial

Engineering, Volume 102, Pages 435-439.

Tugba Efendigil, Semih Onut, Cengiz Kahraman (2009). ―A decision support system for

demand forecasting with artificial neural networks and neuro-fuzzy models: A

comparative analysis.‖ Expert Systems with Applications, 36, 6697–6707.

Vakharia, A.J. (2002). ―E-business and supply chain management.‖ Decision Sciences,

33 (4), 495–505.

Van Wingerden, E., Basten, R., Dekker, R., & Rustenburg, W. (2014). ― More grip on

inventory control through improved forecasting: a comparative study at three

companies.‖ International Journal of Production Economics, 157, 220–237.

Wagner, H. M. & Whitin, T. M. (1958). ―Dynamic version of the economic lot-size

model‖. Management Science, 5, 89–96.

http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273/121/2
http://www.sciencedirect.com/science/article/pii/S0360835216301395
http://www.sciencedirect.com/science/article/pii/S0360835216301395

222

WANG Xiaobin, TANG Wansheng (2007). “Fuzzy Economic Order Quantity Inventory

Models without Backordering.‖ Tsinghua Science and Technology, 12, 91-96.

Wang, T. S. Chien (2006). ―Forecasting innovation performance via neural networks – a

case of Taiwanese manufacturing industry.‖ Technovation, 26, 635– 643.

Wan Lung Ng (2007). ―A simple classifier for multiple criteria ABC analysis.‖ European

Journal of Operational Research 177, 344–353.

Watson, R.B. (1987). ―The effects of demand-forecast fluctuations on customer service

and inventory cost when demand is lumpy.‖ Journal of the Operational Research Society,

38 (1), 75–82.

Wei, S., Zhang, J., & Li, Z. (1997). ―A supplier-selecting system using a neural network

1997‖. In IEEE international conference on intelligent processing systems, pp. 468– 471.

Weihui Deng, Guoyin Wang, Xuerui Zhang, JiXu GuangdiLi (2016). ―A multi-

granularity combined prediction model based on fuzzy trend forecasting and particle

swarm techniques.‖ Neuro computing, 173, 1671–1682.

Wong, B. K., Bodnovich, T. A. & Selvi, Y. (2007). ―Neural network applications in

business: A review and analysis of the literature.‖ Decision Support Systems, 19, 301–

320.

Woon Seek Leea, Jong-Han Hana, Sung-Jin Cho (2005). “A heuristic algorithm for a

multi-product dynamic lot-sizing and shipping problem.‖ Int. J. Production Economics,

98, 204–214.

Yager, R., Zadeh, L., (1994). ―Fuzzy Sets, Neural Networks, and Soft Computing.‖ Van

Nostrand Reinhold Publ., New York, 50, 230-270.

223

Yazgi Tu , Onur Ako, Ays-en Apaydınc, Dobrila Petrovic (2008). ―Continuous review

inventory control in the presence of fuzzy costs.‖ Int. J. Production Economics, 113, 775–

784.

Yi Tao Loo, Hay Lee, Ek Peng Chew (2017). ―Inventory control policy for a periodic

review system with expediting.‖ Applied Mathematical Modelling, 49, 375–393.

Yi Tao, Loo Hay Lee, Ek Peng Chew, Gang Sun, Vincent Charle (2017). ―Inventory

control policy for a periodic review system with expediting.‖ Applied Mathematical

Modelling, Volume 49, Pages 375-393.

Zadeh, L. A. (1965). ―Fuzzy sets.‖ Information and Control, 8, 338–353.

Zadeh, L.A. (1978). ―Fuzzy sets as a basis for a theory of possibility,‖ Fuzzy Sets and

Systems, Volume 1, issue 3, 3–28.

Zhao, Xie, J., Wei, J.C., (2002). ―The impact of forecast errors on early order

commitment in a supply chain.‖ Decision Sciences, 33 (2), 251–280.

Zhong Yao, Ke Liu, Stephen C.H. Leung, K.K. Lai (2011). ―Single period stochastic

inventory problems with ordering or returns policies.‖ Computers & Industrial

Engineering, Volume 61, Issue 2, Pages 242-253.

Zoller, K.(1997). ―Deterministic multi-item inventory systems with limited capacity.‖

Management Science, 24, 451–455.

http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X/49/supp/C
http://www.sciencedirect.com/science/journal/03608352
http://www.sciencedirect.com/science/journal/03608352
http://www.sciencedirect.com/science/journal/03608352/61/2

224

225

APPENDIX -I

Product range of company under study

Wedge Gate Valve

valve rating 150 300 600 900 1500 2500

GTV 101

inches 1/2"-48" 1/2"-36" 1/2"-24" 2"-24" 1/2"-12" 1/2"-12"

mm 15-1200 15-900 15-600 15-600 15-300 15-300

Parallel Slide Gate Valves

valve rating 150 300 600 900 1500 2500

PGT 101

inches 2"-24" 2"-24" 2"-24" 2"-24" 2"-12" 2"-12"

mm 50-600 50-600 50-600 50-600 50-300 50-300

Angle Globe Valve

valve rating 150 300 600 900 1500 2500

AGV 102

inches 2"-16" 2"-16" 2"-16" 2"-10" 2"-10" -

mm 50-400 50-400 50-400 50-250 50-250

Swing Check Valve

valve rating 150 300 600 900 1500 2500

CHV 108

inches 2"-30" 2"-24" 2"-24" 2"-16" 2"-12" 2"-12"

mm 50-750 50-600 50-600 50-400 50-300 50-300

226

The Wide Product Range –Industrial Valves (Source: www.shalimar valves.com)

http://www.shalimar/

227

APPENDIX II

C++ Program for Demand forecast using Neural Network with MLP

architecture

#include <iostream>

#include <stdlib.h>

#include <conio.h>

#include <math.h>

#include <time.h>

#include <fstream>

#include <sstream>

#include <cmath>

using namespace std;

#define INPUT 4

#define OUTLAYER 1

int Pattern_Nos,Train_Nos,Epochs,Epochs_Max;

float ****Delta,

 ***Weight_ih,

 ***Jacobbi,

 **Identity_Mue,

 **Net,

 **Slope,

 **Input_X,

 **Input_X_Test,

 **Weight_ho,

 **ActVal,

 *Output_X,

 *Desired,

 *Deter_Total,

 *D_Max,

 ERMS,

 E_Out,

 Mue,

 Beta;

class MLP_LM{

public:

MLP_LM(){

 Pattern_Nos = 66;

 Mue = 0.7;

 Beta = 0.5;

 Epochs_Max = 150;

}

void ERate_Calc(){

228

 int i;

 E_Out = 0.0;

 //cout<<"\nMean Square Error Calculation . . .\nPress any key to

continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 E_Out += pow(Desired[i]-Output_X[i],2);

 E_Out *= 0.5;

}

void ERMS_Calc(){

 int i;

 ERMS = 0.0;

 //cout<<"\nError Rms Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 ERMS += pow(Desired[i]-Output_X[i],2);

 ERMS = (float)sqrt(ERMS/Pattern_Nos);

}

void Output_Calc(){

 int i,j;

 //cout<<"\nOutput Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++){

 Output_X[i]=0.0;

 for(j=0;j<INPUT;j++)

 Output_X[i] += (ActVal[i][j]*Weight_ho[i][j]);

 }

}

void Test_Output_Calc(){

 int i,j;

 //cout<<"\nOutput Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Train_Nos;i++){

 Output_X[i]=0.0;

 for(j=0;j<INPUT;j++)

 Output_X[i] += (ActVal[i][j]*Weight_ho[i][j]);

 }

}

void Net_Calc(int I){

 int i,j;

 //cout<<"\nNet Calculation"<<I;

 //cout<<"\nPress any key to continue.";

 //_getch();

 if(I==0){

 for(j=0;j<Pattern_Nos;j++){

 Net[I][j]=0.0;

 for(i=0;i<4;i++){

 Net[I][j] += (float)(Weight_ih[j][I][i]*Input_X[j][i]);

 }

 Net[I][j] = (float)(Net[I][j] + Weight_ho[0][i]);

229

 }

 }

 else{

 for(j=0;j<Pattern_Nos;j++)

 Net[I][j] =

(Weight_ho[j][I]*Output_X[j]+Weight_ho[0][j]);

 }

}

void Slope_Calc(int I){

 int j,i;

 //cout<<"\nSlope Calculation"<<I;

 //cout<<"\nPress any key to continue.";

 //_getch();

 if(I==0){

 for(j=0;j<Pattern_Nos;j++){

 // sec^2x

 //float tanhx = std::tanh(Output_X[I][j]);

 //Slope[I][j]=(float)(1.0+pow(tanhx,2));

 Slope[I][j]=0.0;

 for(i=0;i<INPUT;i++)

 Slope[I][j] += Weight_ih[j][I][i];

 }

 }

 else{

 for(j=0;j<Pattern_Nos;j++)

 Slope[I][j] = Weight_ho[I][j];

 }

}

float Test_DistWeight_ih_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++){

 Temp += pow(Weight_ih[I][J][i]-Weight_ih[I][0][i],2);

 }

 return sqrt(Temp);

}

float Test_DistInput_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++){

 Temp += pow(Input_X_Test[I][i]-Weight_ih[I][J][i],2);

 }

 return Temp;

}

void Activation_Fcnt(int I){

 int j;

 //cout<<"\nActivation Function Calculation"<<I;

 //cout<<"\nPress any key to continue.";

 //_getch();

 this->Net_Calc(I);

230

 for(j=0;j<Pattern_Nos;j++)

 Net[I][j]=(float)tanh(Net[I][j]);

 //Output_X[I][j]=Net[I][j];

 this->Slope_Calc(I);

}

float DistWeight_ih_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++){

 Temp += pow(Weight_ih[I][J][i]-Weight_ih[I][0][i],2);

 }

 return sqrt(Temp);

}

float DistInput_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++){

 Temp += pow(Input_X[I][i]-Weight_ih[I][J][i],2);

 }

 return Temp;

}

void Identity_Mue_Calc(){

 int i,j;

 for(i=0;i<INPUT;i++)

 for(j=0;j<INPUT;j++){

 if(i==j)

 Identity_Mue[i][j]=Mue;

 else

 Identity_Mue[i][j]=0.0;

 }

}

void Test_Activation_Calc(){

 int i,j;

 //cout<<"\nActivation Function Calculation . . .\nPress any key to

continue.";

 //_getch();

 for(i=0;i<Train_Nos;i++)

 for(j=0;j<INPUT;j++)

 ActVal[i][j] = (float) exp(-INPUT*this-

>Test_DistInput_Calc(i,j)/pow(D_Max[i],2));

 //ActVal[i][j]=

(float)(1/pow((pow(DistInput_Calc(i,j),2)*pow(D_Max[i],2)),0.5));

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++)

 cout<<ActVal[i][j]<<" ";

 cout<<"\n";

 }

 */

231

}

void Test_Width_Calc(){

 int i,j;

 float Temp_Max=0.0,Temp;

 //cout<<"\n Width Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Train_Nos;i++){

 for(j=1;j<INPUT;j++){

 Temp = this->Test_DistWeight_ih_Calc(i,j);

 if(Temp>Temp_Max)

 Temp_Max = Temp;

 }

 D_Max[i]=Temp_Max;

 }

}

void Activation_Calc(){

 int i,j;

 //cout<<"\nActivation Function Calculation . . .\nPress any key to

continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 ActVal[i][j] = (float) exp(-

INPUT*DistInput_Calc(i,j)/pow(D_Max[i],2));

 //ActVal[i][j]=

(float)(1/pow((pow(DistInput_Calc(i,j),2)*pow(D_Max[i],2)),0.5));

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++)

 cout<<ActVal[i][j]<<" ";

 cout<<"\n";

 }

 */

}

void Width_Calc(){

 int i,j;

 float Temp_Max=0.0,Temp;

 //cout<<"\n Width Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++){

 for(j=1;j<INPUT;j++){

 Temp = this->DistWeight_ih_Calc(i,j);

 if(Temp>Temp_Max)

 Temp_Max = Temp;

 }

 D_Max[i]=Temp_Max;

 }

}

232

float Deter_Calc(int I,float ***A,int Nor)

{

 int x,y,j1,j2,p;

 float Det;

 float ***M=NULL;

 //printf("\n\n~~~~~~~~~~DETER CALCULATION~~~~~~~~~~\n\n");

 if(Nor == 1.0){

 Det = A[I][0][0];

 }

 else if (Nor == 2.0){

 Det = A[I][0][0] * A[I][1][1] - A[I][1][0] * A[I][0][1];

 }

 else {

 Det = 0.0;

 for(j1=0;j1<Nor;j1++){

 M = new float ** [Pattern_Nos];

 for(p=0;p<Pattern_Nos;p++){

 M[p]= new float * [Nor-1];

 for (x=0;x<Nor-1;x++)

 M[p][x] = new float [Nor-1];

 }

 for (x=1;x<Nor;x++){

 j2 = 0;

 for (y=0;y<Nor;y++){

 if (y == j1)

 continue;

 M[I][x-1][j2] = A[I][x][y];

 j2++;

 }

 }

 Det += pow(-1.0,j1+2.0) * A[I][0][j1] * this-

>Deter_Calc(I,M,Nor-1);

 for(p=0;p<Pattern_Nos;p++){

 for (x=0;x<Nor-1;x++)

 delete(M[p][x]);

 delete(M[p]);

 }

 delete(M);

 }

 }

 return(Det);

}

float ** CoFactors_Calc(int I,float ***A,int Nor)

{

 int x,y,ii,jj,i1,j1,p;

 float Det;

 float ***C,**B;

 //printf("\n\n~~~~~~~~~~~~COFACTOR MATRIX~~~~~~~~~~~~\n\n");

 B = new float * [Nor];

 for (x=0;x<Nor;x++)

 B[x] = new float [Nor];

 C = new float ** [Pattern_Nos];

 for(p=0;p<Pattern_Nos;p++){

233

 C[p]= new float * [Nor-1];

 for (x=0;x<Nor-1;x++)

 C[p][x] = new float [Nor-1];

 }

 for (y=0;y<Nor;y++){

 for (x=0;x<Nor;x++){

 i1 = 0;

 for (ii=0;ii<Nor;ii++){

 if (ii == x)

 continue;

 j1 = 0;

 for (jj=0;jj<Nor;jj++){

 if (jj == y)

 continue;

 C[I][i1][j1] = A[I][ii][jj];

 j1++;

 }

 i1++;

 }

 Det = this->Deter_Calc(I,C,Nor-1);

 B[x][y] = pow(-1.0,x+y+2.0) * Det;

 }

 }

 for(p=0;p<Pattern_Nos;p++){

 for(x=0;x<Nor-1;x++)

 delete(C[p][x]);

 delete(C[p]);

 }

 delete(C);

 return B;

}

float** MatTrans_Calc(int I,float *** Mat){

 int i,j,m;

 //cout<<"\nTrans Matrix Calculation";

 //cout<<"\nPress any key to continue.";

 //_getch();

 float ** MatTrans;

 MatTrans = new float * [INPUT];

 for(i=0;i<INPUT;i++)

 MatTrans [i] = new float [INPUT];

 for(m=0;m<INPUT;m++)

 for(j=0;j<INPUT;j++)

 MatTrans[m][j] = Mat[I][j][m];

 return MatTrans;

}

float *** Inverse_Calc(float *** Num){

 //cout<<"\nInverse Calculation";

 //cout<<"\nPress any key to continue.";

 //_getch();

 int i,x, y;

 float *** Fac, *** Inv, *Dt;

234

 Dt = new float [Pattern_Nos];

 Inv = new float **[Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++){

 Inv[i] = new float * [INPUT];

 for(x=0;x<INPUT;x++)

 Inv [i][x] = new float [INPUT];

 }

 Fac = new float **[Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++){

 Fac [i]= new float * [INPUT];

 for(x=0;x<INPUT;x++)

 Fac [i][x] = new float [INPUT];

 }

 for(i=0;i<Pattern_Nos;i++){

 Fac[i] = this->CoFactors_Calc(i,Num,INPUT);

 Inv[i] = this->MatTrans_Calc(i,Fac);

 Dt[i] = this->Deter_Calc(i,Num,INPUT);

 //cout<<"To Deter for inverse";

 for(x=0;x<INPUT;x++) {

 for(y=0;y<INPUT;y++) {

 Inv[i][x][y] = (float)Inv[i][x][y]/Dt[i];

 }

 }

 }

 return (Inv);

}

float *** MatMultiply_Calc(float *** a, float *** b){

 int i,j,m,k;

 //cout<<"\nMultiple Matrix Calculation";

 //cout<<"\nPress any key to continue.";

 //_getch();

 float ***c;

 c = new float ** [Pattern_Nos];

 for(k=0;k<Pattern_Nos;k++){

 c[k]= new float * [INPUT];

 for(i=0;i<INPUT;i++)

 c[k][i] = new float [INPUT];

 }

 for(k=0;k<Pattern_Nos;k++)

 for(i=0;i<INPUT;i++){

 for(j=0;j<INPUT;j++){

 c[k][i][j]=0;

 for(m=0;m<INPUT;m++)

 c[k][i][j]=c[k][i][j]+a[k][i][m]*b[k][m][j];

 }

 }

 return c;

}

float *** MatAdd_Calc(float *** a, float ** b){

 int i,j,k;

 //cout<<"\nAdd Matrix Calculation";

 //cout<<"\nPress any key to continue.";

235

 //_getch();

 float ***c;

 c = new float **[Pattern_Nos];

 for(k=0;k<Pattern_Nos;k++){

 c[k] = new float * [INPUT];

 for(i=0;i<INPUT;i++)

 c[k][i] = new float [INPUT];

 }

 for(k=0;k<Pattern_Nos;k++)

 for(i=0;i<INPUT;i++)

 for(j=0;j<INPUT;j++)

 c[k][i][j]=a[k][i][j]+b[i][j];

 return c;

}

void Instance_Calc(){

 int k,i;

 //cout<<"\nInstance Calculation";

 //cout<<"\nPress any key to continue.";

 //_getch();

 float ***Ans1, ***Ans2;

 Ans1 = new float ** [Pattern_Nos];

 for(k=0;k<Pattern_Nos;k++){

 Ans1[k] = new float * [INPUT];

 for(i=0;i<INPUT;i++)

 Ans1[k][i] = new float [INPUT];

 }

 Ans2 = new float ** [Pattern_Nos];

 for(k=0;k<Pattern_Nos;k++){

 Ans2[k] = new float * [INPUT];

 for(i=0;i<INPUT;i++)

 Ans2[k][i] = new float [INPUT];

 }

 for(i=0;i<Pattern_Nos;i++)

 Ans2[i]=this->MatTrans_Calc(i,Jacobbi);

 Ans1=this->MatMultiply_Calc(Ans2,Jacobbi);

 this->Identity_Mue_Calc();

 Ans1=this->MatAdd_Calc(Ans1,Identity_Mue);

 Ans1=this->Inverse_Calc(Ans1);

 Ans2=this->MatMultiply_Calc(Ans1,Jacobbi);

 //cout<<"\nHelllllllllldffffffffffff\n";

 for(i=0;i<Pattern_Nos;i++)

 Deter_Total[i]=this->Deter_Calc(i,Ans2,INPUT);

 //cout<<"\nHelllllllllldffffffffffff\n";

}

void JacobbiMat_Calc(){

 int i,j,m;

 //cout<<"\nJacobbi Matrix Calculation";

 //cout<<"\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

236

 for(m=0;m<INPUT;m++)

 for(j=0;j<INPUT;j++)

 Jacobbi[i][m][j] = (float)(- Delta[0][i][m][j]*

Input_X[i][m]);

}

void Delta_JJ(int I){

 int i,j;

 //cout<<"\nDelta_JJ Calculation"<<I;

 //cout<<"\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 Delta[I][i][j][j] = Slope[I][i];

}

void Delta_JK(int I){

 int i,j,m;

 //cout<<"\nDelta_JK Calculation"<<I;

 //cout<<"\nPress any key to continue.";

 //_getch();

 if(I==OUTLAYER){

 this->Delta_JJ(I);

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(m=0;m<INPUT;m++)

 if(j!=m)

 Delta[I][i][j][m]=0;

 }

 else{

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(m=0;m<INPUT;m++)

 Delta[I][i][j][m] =

(float)(Weight_ho[I][i]*Delta[1][i][j][j]);

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(m=0;m<INPUT;m++)

 Delta[I][i][j][m] =

(float)(Delta[I][i][j][m]*Slope[I][i]);

 this->JacobbiMat_Calc();

 }

}

void ForBack_Pass(){

 int fdw;

 //cout<<"\nForward Pass Calculation";

 //cout<<"\nPress any key to continue.";

 //_getch();

 for(fdw=0;fdw<2;fdw++)

 this->Activation_Fcnt(fdw);

 for(fdw=1;fdw>=0;fdw--)

 this->Delta_JK(fdw);

}

237

void Update_Weight(){

 int i,j;

 //cout<<"\nUpdate Weight . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 Weight_ho[i][j] += (Beta*(Desired[i]-

Output_X[i])*ActVal[i][j]);

}

void Update_Center(){

 int i,j,k;

 //cout<<"\nUpdate Center . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(k=0;k<INPUT;k++)

 Weight_ih[i][j][k] += (2*INPUT*Mue*(Desired[i]-

Output_X[i])*Weight_ho[i][j]*ActVal[i][j]*(Input_X[i][j]-

Weight_ih[i][j][k])/pow(D_Max[i],2));

}

float GetRand(float Max){

 return ((-Max-Max)*((float)rand()/RAND_MAX))+Max;

}

void Initiate_Weight(){

 int i,j;

 //cout<<"\nInitiate Weight . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<INPUT;i++)

 Weight_ho[0][i] = GetRand(0.5);

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 Weight_ho[i][j] = Weight_ho[0][j];

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++)

 cout<<Weight_ho[i][j]<<" ";

 cout<<"\n";

 }

 */

}

void Weight_ih_Selection(){

 float Min=1000.0,Max=0.0,Temp;

 int i,j,k,I_Min,I_Max;

 time_t timev;

 //cout<<"\nCenter Selection . . .";

 //cout<<"\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++){

238

 Temp = 0.0;

 for(j=0;j<INPUT;j++)

 Temp += Input_X[i][j];

 if(Temp>Max){

 Max = Temp;

 I_Max = i;

 }

 if(Temp<Min){

 Min = Temp;

 I_Min = i;

 }

 }

 //cout<<"\nMin = "<<I_Min<<"\tMax = "<<I_Max;

 for(j=0;j<INPUT;j++){

 Weight_ih[0][0][j] = Input_X[I_Min][j];

 Weight_ih[0][INPUT-1][j] = Input_X[I_Max][j];

 }

 srand((unsigned) time(&timev));

 k = rand()%Pattern_Nos;

 for(j=1;j<INPUT-1;j++){

 for(i=0;i<INPUT;i++)

 Weight_ih[0][j][i] = Input_X[k][i];

 k = (k+97)%Pattern_Nos;

 }

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(k=0;k<INPUT;k++)

 Weight_ih[i][j][k] = Weight_ih[0][j][k];

 /*

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++){

 for(k=0;k<INPUT;k++)

 cout<<Weight_ih[i][j][k]<<" ";

 cout<<" ";

 }

 cout<<"\n";

 }

 */

}

void Initiate_Data(){

 float Ip;

 int i=0,j=0,set;

 //cout<<"\nInitiating Data . . .";

 //cout<<"\nPress any key to continue.";

 //_getch();

 std::ifstream MyCsvFile("Train_Data.csv");

 if(!MyCsvFile)

 cout<<"Cant open file";

 std::string Line;

 while(getline(MyCsvFile,Line)){

 i=0;

 std::stringstream Line_stream(Line);

 std::string value;

239

 while(getline(Line_stream,value,',')){

 set=0;

 //cout<<"Record "<<record<<"\n";

 Ip=::atof(value.c_str());

 if(Ip){

 set=1;

 if(i==4){

 Desired[j]=Ip;

 //cout<<Desired[j];

 }

 else{

 Input_X[j][i]=Ip;

 //cout<<Neuron[j][i];

 }

 i++;

 }

 //cout<<"\n";

 }

 if(set)

 j++;

 }

}

void Test_Initiate_Data(){

 int i,j,m=0,p=1,k;

 for(i=0;i<Pattern_Nos;i++){

 if(p%5==0){

 for(j=0;j<INPUT;j++)

 Input_X_Test[m][j] = Input_X[i][j];

 m++;

 }

 p++;

 }

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++){

 Weight_ho[0][j] += Weight_ho[i][j];

 for(k=0;k<INPUT;k++)

 Weight_ih[0][j][k] += Weight_ih[i][j][k];

 }

 for(i=0;i<INPUT;i++){

 Weight_ho[0][i] /= Pattern_Nos;

 for(j=0;j<INPUT;j++)

 Weight_ih[0][i][j] /= Pattern_Nos;

 }

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++){

 Weight_ho[i][j] = Weight_ho[0][j];

 for(k=0;k<INPUT;k++)

 Weight_ih[i][j][k] = Weight_ih[0][j][k];

 }

}

void InitiateInput_Data(){

 float Ip;

240

 int i=0,j=0,set;

 //cout<<"\nInitiating Data . . .";

 //cout<<"\nPress any key to continue.";

 //_getch();

 std::ifstream MyCsvFile("Input.csv");

 if(!MyCsvFile)

 cout<<"Cant open file";

 std::string Line;

 while(getline(MyCsvFile,Line)){

 i=0;

 std::stringstream Line_stream(Line);

 std::string value;

 while(getline(Line_stream,value,',')){

 set=0;

 //cout<<"Record "<<record<<"\n";

 Ip=::atof(value.c_str());

 if(Ip){

 set=1;

 if(i==4){

 Desired[j]=Ip;

 //cout<<Desired[j];

 }

 else{

 Input_X[j][i]=Ip;

 //cout<<Neuron[j][i];

 }

 i++;

 }

 //cout<<"\n";

 }

 if(set)

 j++;

 }

}

void Print_Learn(){

 int i;

 std::ofstream Myfile;

 Myfile.open("Train_output.csv");

 Myfile<<",Inputs,,,,Hidden-Weights\n";

 for(i=0;i<Pattern_Nos;i++)

Myfile<<Input_X[i][0]<<","<<Input_X[i][1]<<","<<Input_X[i][2]<<","<<Inpu

t_X[i][3]<<","<<Weight_ho[i][0]<<","<<Weight_ho[i][1]<<","<<Weight_ho[i]

[2]<<","<<Weight_ho[i][3]<<"\n";

 Myfile.close();

}

void Print_Test(){

 int i;

 std::ofstream Myfile;

 Myfile.open("Test_output.csv");

 Myfile<<",Inputs,,,Outputs\n";

241

 for(i=0;i<Train_Nos;i++)

Myfile<<Input_X_Test[i][0]<<","<<Input_X_Test[i][1]<<","<<Input_X_Test[i

][2]<<","<<Input_X_Test[i][3]<<","<<Output_X[i]<<"\n";

 Myfile.close();

}

void Print_Output(){

 int i;

 std::ofstream Myfile;

 Myfile.open("Output.csv");

 Myfile<<",Inputs,,,Outputs\n";

 for(i=0;i<Pattern_Nos;i++)

Myfile<<Input_X[i][0]<<","<<Input_X[i][1]<<","<<Input_X[i][2]<<","<<Inpu

t_X[i][3]<<","<<Output_X[i]<<"\n";

 Myfile.close();

}

void Allocate_Memory(){

 int i,j,k;

 char ch;

 cout<<"\nNumber of Patterns = "<<Pattern_Nos<<"\nDo you want to

change (y/n)";

 cin>>ch;

 if(ch=='y'||ch=='Y'){

 cout<<"Enter Number of patterns : ";

 cin>>Pattern_Nos;

 }

 Train_Nos = Pattern_Nos/5;

 cout<<"\nEpochs Limit = "<<Epochs_Max<<"\nDo you want to change

(y/n)";

 cin>>ch;

 if(ch=='y'||ch=='Y'){

 cout<<"Enter the Epochs Limit : ";

 cin>>Epochs_Max;

 }

 //cout<<"\nAllocating Memory\nPress any key to continue.";

 //_getch();

 Weight_ih = new float ** [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++){

 Weight_ih [i] = new float * [INPUT];

 for(j=0;j<INPUT;j++)

 Weight_ih [i][j] = new float [INPUT];

 }

 Input_X = new float * [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++)

 Input_X[i] = new float [INPUT];

 Input_X_Test = new float * [Train_Nos];

 for(i=0;i<Train_Nos;i++)

 Input_X_Test[i] = new float [INPUT];

 Weight_ho = new float * [Pattern_Nos];

242

 for(i=0;i<Pattern_Nos;i++)

 Weight_ho [i] = new float [INPUT];

 ActVal = new float * [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++)

 ActVal [i] = new float [INPUT];

 Output_X = new float [Pattern_Nos];

 Desired = new float [Pattern_Nos];

 D_Max = new float [Pattern_Nos];

 Net = new float * [2];

 for(i=0;i<2;i++)

 Net [i] = new float [Pattern_Nos];

 Slope = new float * [2];

 for(i=0;i<2;i++)

 Slope [i] = new float [Pattern_Nos];

 //cout<<"\nAllocating Memory . . .";

 Delta = new float *** [2];

 for(i=0;i<2;i++){

 Delta[i] = new float ** [Pattern_Nos];

 for(j=0;j<Pattern_Nos;j++){

 Delta [i][j] = new float * [INPUT];

 for(k=0;k<INPUT;k++)

 Delta [i][j][k] = new float [INPUT];

 }

 }

 Deter_Total = new float [Pattern_Nos];

 //cout<<"\nAllocating Memory . . .";

 Jacobbi = new float ** [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++){

 Jacobbi[i] = new float * [INPUT];

 for(j=0;j<INPUT;j++)

 Jacobbi[i][j] = new float [INPUT];

 }

 Identity_Mue = new float * [INPUT];

 for(i=0;i<INPUT;i++)

 Identity_Mue[i] = new float [INPUT];

}

void Real_Phase(){

 //this->InitiateInput_Data();

 this->Width_Calc();

 this->Activation_Calc();

 this->Output_Calc();

 this->Print_Output();

 cout<<"\nExecution Phase executed successfully\n";

}

void Testing_Phase(){

 //int i;

 this->Test_Initiate_Data();

 this->Test_Width_Calc();

 this->Test_Activation_Calc();

 this->Test_Output_Calc();

 this->Print_Test();

243

 cout<<"\nTesting Phase executed successfully\n";

 /*

 cout<<"\n~~~~~~~~~~~~~~~~~~TEST OUTPUT~~~~~~~~~~~~~~~~~~~~~~~~\n";

 for(i=0;i<Train_Nos;i++)

 cout<<Input_X[i][0]<<" "<<Input_X[i][1]<<" "<<Input_X[i][2]<<"

"<<Input_X[i][3]<<" "<<Output_X[i]<<"\n";

 */

}

void Initiate_phase(){

 this->Width_Calc();

 this->ForBack_Pass();

 this->Instance_Calc();

 this->Activation_Calc();

 this->Output_Calc();

 this->ERate_Calc();

 this->ERMS_Calc();

 cout<<"\nEpochs = "<<Epochs<<"\tMean Square Error =

"<<E_Out<<"\tError RMS Value = "<<ERMS;

 Epochs++;

}

void Learning_Phase(){

 //int i;

 Epochs = 1;

 while(Epochs<=Epochs_Max){

 this->Initiate_phase();

 this->Update_Center();

 this->Update_Weight();

 //cout<<"\nEpochs = "<<Epochs<<"\tMean Square Error =

"<<E_Out<<"\tError RMS Value = "<<ERMS;

 }

 /*

 cout<<"\n\n~~~~~~~~~~~~~~~~~~~~~learning Weight~~~~~~~~~~~~~~~~~\n";

 for(i=0;i<Pattern_Nos;i++)

 cout<<Weight[i][0]<<" "<<Weight[i][1]<<" "<<Weight[i][2]<<"

"<<Weight[i][3]<<"\n";

 */

 cout<<"\n\nLearning Phase executed successfully\n";

}

void Configuring_Phase(){

 this->Allocate_Memory();

 this->Initiate_Data();

 this->Weight_ih_Selection();

 this->Initiate_Weight();

}

};

int main(){

 int i;

 MLP_LM obj;

 cout<<"\n\n~~~~~~~~~~WELCOME TO MULTILAYER PERCEPTRON NETWORK -

RANDOM CENTER~~~~~~~~~~~~~\n\n";

244

 while(1){

 cout<<"\n\nKindly choose the option below\n\n 1.Configuration

\n 2.Learning Phase \n 3.Testing Phase \n 4.Execution \n

5.Exit\n";

 cin>>i;

 switch(i){

 case 1: {

 obj.Configuring_Phase();

 break;

 }

 case 2: {

 obj.Learning_Phase();

 break;

 }

 case 3:{

 obj.Testing_Phase();

 break;

 }

 case 4:{

 obj.Real_Phase();

 break;

 }

 default:exit(0);

 }

 }

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++)

 cout<<Input_X[i][0]<<" "<<Input_X[i][1]<<" "<<Input_X[i][2]<<"

"<<Input_X[i][3]<<" "<<Desired[i]<<"\n";

 */

 return 0;

}

245

C++ Program for Demand forecast using Neural Network with RBF

architecture

#include <iostream>

#include <stdlib.h>

#include <conio.h>

#include <math.h>

#include <time.h>

#include <fstream>

#include <sstream>

#include <cmath>

using namespace std;

#define INPUT 4

int Pattern_Nos,Train_Nos,Epochs,Epochs_Max,C_Nos;

float ***Center,

 **Input_X,

 **Input_X_Test,

 **Weight,

 **PhiVal,

 **U_Part,

 **U_Part1,

 **A_Mat,

 *V_Center,

 *Output_X,

 *Desired,

 *D_Max,

 M_Exp,

 E_Toler,

 E_Toler_Out,

 ERMS,

 E_Out,

 Nue1,

 Nue2;

class RBF_FCM{

public:

RBF_FCM(){

 Pattern_Nos = 66;

 Nue1 = 0.5;

246

 Nue2 = 0.3;

 Epochs_Max = 40;

 M_Exp = 2.0;

 E_Toler = 0.01;

}

void ERate_Calc(){

 int i;

 E_Out = 0.0;

 //cout<<"\nMean Square Error Calculation . . .\nPress any key to

continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 E_Out += pow(Desired[i]-Output_X[i],2);

 E_Out *= 0.5;

}

void ERMS_Calc(){

 int i;

 ERMS = 0.0;

 //cout<<"\nError Rms Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 ERMS += pow(Desired[i]-Output_X[i],2);

 ERMS = (float)sqrt(ERMS/Pattern_Nos);

}

void Output_Calc(){

 int i,j;

 //cout<<"\nOutput Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++){

 Output_X[i]=0.0;

 for(j=0;j<INPUT;j++)

 Output_X[i] += (PhiVal[i][j]*Weight[i][j]);

 }

}

void Test_Output_Calc(){

 int i,j;

 //cout<<"\nOutput Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Train_Nos;i++){

 Output_X[i]=0.0;

 for(j=0;j<INPUT;j++)

 Output_X[i] += (PhiVal[i][j]*Weight[i][j]);

 }

}

float Test_DistCenter_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++){

 Temp += pow(Center[I][J][i]-Center[I][0][i],2);

247

 }

 return sqrt(Temp);

}

float Test_DistInput_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++)

 Temp += pow(Input_X_Test[I][i]-Center[I][J][i],2);

 return Temp;

}

void Test_Activation_Calc(){

 int i,j;

 //cout<<"\nActivation Function Calculation . . .\nPress any key to

continue.";

 //_getch();

 for(i=0;i<Train_Nos;i++)

 for(j=0;j<INPUT;j++){

 //cout<<this->Test_DistInput_Calc(i,j)<<" ";

 PhiVal[i][j] = (float) exp(-INPUT*this-

>Test_DistInput_Calc(i,j)/pow(D_Max[i],2));

 }

 /*

 cout<<"\n";

 for(i=0;i<Train_Nos;i++){

 for(j=0;j<INPUT;j++)

 cout<<PhiVal[i][j]<<" ";

 cout<<"\n";

 }

 */

}

void Test_Width_Calc(){

 int i,j;

 float Temp_Max=0.0,Temp;

 //cout<<"\n Width Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Train_Nos;i++){

 for(j=1;j<INPUT;j++){

 Temp = this->Test_DistCenter_Calc(i,j);

 if(Temp>Temp_Max)

 Temp_Max = Temp;

 }

 D_Max[i]=Temp_Max;

 }

 /*

 for(i=0;i<Train_Nos;i++)

 cout<<D_Max[i]<<" ";

 */

}

float DistCenter_Calc(int I,int J){

248

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++){

 Temp += pow(Center[I][J][i]-Center[I][0][i],2);

 }

 return sqrt(Temp);

}

float DistInput_Calc(int I,int J){

 int i;

 float Temp=0.0;

 for(i=0;i<INPUT;i++)

 Temp += pow(Input_X[I][i]-Center[I][J][i],2);

 return Temp;

}

void Activation_Calc(){

 int i,j;

 //cout<<"\nActivation Function Calculation . . .\nPress any key to

continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++){

 //cout<<D_Max[i]<<" ";

 for(j=0;j<INPUT;j++){

 //cout<<this->DistInput_Calc(i,j)<<" ";

 PhiVal[i][j] = (float) exp(-INPUT*this-

>DistInput_Calc(i,j)/pow(D_Max[i],2));

 }

 }

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++)

 cout<<PhiVal[i][j]<<" ";

 cout<<"\n";

 }

 */

}

void Width_Calc(){

 int i,j;

 float Temp_Max=0.0,Temp;

 //cout<<"\n Width Calculation . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++){

 for(j=1;j<INPUT;j++){

 Temp = this->DistCenter_Calc(i,j);

 if(Temp>Temp_Max)

 Temp_Max = Temp;

 }

 D_Max[i]=Temp_Max;

 }

 /*

 for(i=0;i<Train_Nos;i++)

249

 cout<<D_Max[i]<<" ";

 */

}

void Update_Weight(){

 int i,j;

 //cout<<"\nUpdate Weight . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 Weight[i][j] += (Nue2*(Desired[i]-

Output_X[i])*PhiVal[i][j]);

}

void Update_Center(){

 int i,j,k;

 //cout<<"\nUpdate Center . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(k=0;k<INPUT;k++)

 Center[i][j][k] += (2*INPUT*Nue1*(Desired[i]-

Output_X[i])*Weight[i][j]*PhiVal[i][j]*(Input_X[i][j]-

Center[i][j][k])/pow(D_Max[i],2));

}

float GetRand(float Max){

 return ((-Max-Max)*((float)rand()/RAND_MAX))+Max;

}

void Initiate_Weight(){

 int i,j;

 //cout<<"\nInitiate Weight . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<INPUT;i++)

 Weight[0][i] = GetRand(0.5);

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 Weight[i][j] = Weight[0][j];

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++)

 cout<<Weight[i][j]<<" ";

 cout<<"\n";

 }

 */

}

float U_Mue_Input_Calc(int I){

 int i;

 float MueZ=0.0;

 //cout<<"\nU_Mue_Input_Calc Data . . .\nPress any key to continue.";

 //_getch();

250

 for(i=0;i<INPUT;i++)

 MueZ += (float)(pow(U_Part[I][i],M_Exp)*Input_X[I][i]);

 return MueZ;

}

float U_Mue_Calc(int I){

 int i;

 float Mue=0.0;

 //cout<<"\nU_Mue_Calc Data . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<INPUT;i++)

 Mue += pow(U_Part[I][i],M_Exp);

 return Mue;

}

void V_Center_Calc(){

 int i;

 //cout<<"\nV_Calc Data . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<C_Nos;i++)

 V_Center[i]=(float)(this->U_Mue_Input_Calc(i)/this-

>U_Mue_Calc(i));

}

float Dist_Input_V_Calc(int I,int K){

 int i;

 float Dist = 0.0;

 for(i=1;i<C_Nos;i++)

 Dist += pow(Input_X[i][K],2);

 Dist += pow((Input_X[0][K]-V_Center[I]),2);

 return sqrt(Dist);

}

float Dist_A_V_Calc(int I,int K){

 int i;

 float Dist=0.0;

 for(i=0;i<C_Nos;i++)

 Dist += pow(A_Mat[i][K],2);

 Dist += pow(A_Mat[0][K]-V_Center[I],2);

 return sqrt(Dist);

}

void A_Mat_Calc(){

 int i,k;

 //cout<<"\nA_Mat Calc Data . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<C_Nos;i++)

 for(k=0;k<INPUT;k++)

 A_Mat[i][k] = sqrt(this->Dist_Input_V_Calc(i,k)*this-

>Dist_A_V_Calc(i,k));

}

float Differ_U_Part_Calc(int K){

 int i;

251

 float Part = 0.0;

 for(i=0;i<C_Nos;i++)

 if(i!=K)

 Part += U_Part1[i][K];

 return Part;

}

float Div_A_Mat_Calc(int I,int K){

 int i;

 float Div=0.0,power=2/(M_Exp-1);

 for(i=0;i<C_Nos;i++)

 Div += pow((float)(A_Mat[I][K]/A_Mat[i][K]),power);

 return Div;

}

void U_Part_Calc(){

 int i,k;

 //cout<<"\nU_Part Data . . .\nPress any key to continue.";

 //_getch();

 for(i=0;i<C_Nos;i++)

 for(k=0;k<INPUT;k++){

 if(A_Mat[i][k]>0.0)

 U_Part1[i][k] = 1/this->Div_A_Mat_Calc(i,k);

 else if(A_Mat[i][k]==0.0)

 U_Part1[i][k] = 0.0;

 }

 for(i=0;i<C_Nos;i++)

 for(k=0;k<INPUT;k++){

 if(A_Mat[i][k]<0.0)

 U_Part1[i][k] = 1-this->Differ_U_Part_Calc(k);

 }

}

void E_Toler_Calc(){

 int i,k;

 //cout<<"\nE_Toler Calc Data . . .\nPress any key to continue.";

 //_getch();

 float E_M=0.0;

 for(i=0;i<C_Nos;i++)

 for(k=0;k<INPUT;k++)

 if(abs(U_Part1[i][k]-U_Part[i][k])>E_M)

 E_M = abs(U_Part1[i][k]-U_Part[i][k]);

 E_Toler_Out = E_M;

}

void Fuzzy_C_Means(){

 do{

 this->V_Center_Calc();

 this->A_Mat_Calc();

 this->U_Part_Calc();

 this->E_Toler_Calc();

 }

 while(E_Toler_Out<E_Toler);

}

252

void Center_Selection(){

 int i,j,k,n=0;

 //cout<<"\nCenter Selection . . .";

 //cout<<"\nPress any key to continue.";

 //_getch();

 this->Fuzzy_C_Means();

 /*

 cout<<"\n~~~~~~~~~~~~~~Fuzzy Center~~~~~~~~~~~~~~~\n\n";

 for(k=0;k<C_Nos;k++)

 cout<<V_Center[k]<<" ";

 */

 for(i=0;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++)

 for(k=0;k<INPUT;k++){

 Center[i][j][k] = V_Center[n];

 n++;

 n %= Pattern_Nos;

 }

 /*

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++){

 for(k=0;k<INPUT;k++)

 cout<<Center[i][j][k]<<" ";

 cout<<" ";

 }

 cout<<"\n";

 }

 */

}

void Initiate_Data(){

 float Ip;

 int i=0,j=0,set;

 //cout<<"\nInitiating Data . . .";

 //cout<<"\nPress any key to continue.";

 //_getch();

 std::ifstream MyCsvFile("Train_Data.csv");

 if(!MyCsvFile)

 cout<<"Cant open file";

 std::string Line;

 while(getline(MyCsvFile,Line)){

 i=0;

 std::stringstream Line_stream(Line);

 std::string value;

 while(getline(Line_stream,value,',')){

 set=0;

 //cout<<"Record "<<record<<"\n";

 Ip=::atof(value.c_str());

 if(Ip){

 set=1;

 if(i==4){

 Desired[j]=Ip;

 //cout<<Desired[j];

253

 }

 else{

 Input_X[j][i]=Ip;

 //cout<<Neuron[j][i];

 }

 i++;

 }

 //cout<<"\n";

 }

 if(set)

 j++;

 }

}

void Test_Initiate_Data(){

 int i,j,m=0,p=1,k;

 for(i=0;i<Pattern_Nos;i++){

 if(p%5==0){

 for(j=0;j<INPUT;j++)

 Input_X_Test[m][j] = Input_X[i][j];

 m++;

 }

 p++;

 }

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++){

 Weight[0][j] += Weight[i][j];

 for(k=0;k<INPUT;k++)

 Center[0][j][k] += Center[i][j][k];

 }

 for(i=0;i<INPUT;i++){

 Weight[0][i] /= Pattern_Nos;

 for(j=0;j<INPUT;j++)

 Center[0][i][j] /= Pattern_Nos;

 }

 for(i=1;i<Pattern_Nos;i++)

 for(j=0;j<INPUT;j++){

 Weight[i][j] = Weight[0][j];

 for(k=0;k<INPUT;k++)

 Center[i][j][k] = Center[0][j][k];

 }

 /*

 for(i=0;i<Pattern_Nos;i++){

 for(j=0;j<INPUT;j++){

 //cout<<Weight[i][j]<<" ";

 for(k=0;k<INPUT;k++)

 cout<<Center[i][j][k]<<" ";

 cout<<" ";

 }

 cout<<"\n";

 }

 */

}

254

void InitiateInput_Data(){

 float Ip;

 int i=0,j=0,set;

 //cout<<"\nInitiating Data . . .";

 //cout<<"\nPress any key to continue.";

 //_getch();

 std::ifstream MyCsvFile("Input.csv");

 if(!MyCsvFile)

 cout<<"Cant open file";

 std::string Line;

 while(getline(MyCsvFile,Line)){

 i=0;

 std::stringstream Line_stream(Line);

 std::string value;

 while(getline(Line_stream,value,',')){

 set=0;

 //cout<<"Record "<<record<<"\n";

 Ip=::atof(value.c_str());

 if(Ip){

 set=1;

 if(i==4){

 Desired[j]=Ip;

 //cout<<Desired[j];

 }

 else{

 Input_X[j][i]=Ip;

 //cout<<Neuron[j][i];

 }

 i++;

 }

 //cout<<"\n";

 }

 if(set)

 j++;

 }

}

void Print_Learn(){

 int i;

 std::ofstream Myfile;

 Myfile.open("Train_output.csv");

 Myfile<<",Inputs,,,,Weights\n";

 for(i=0;i<Pattern_Nos;i++)

Myfile<<Input_X[i][0]<<","<<Input_X[i][1]<<","<<Input_X[i][2]<<","<<Inpu

t_X[i][3]<<","<<Weight[i][0]<<","<<Weight[i][1]<<","<<Weight[i][2]<<","<

<Weight[i][3]<<"\n";

 Myfile.close();

}

void Print_Test(){

 int i;

255

 std::ofstream Myfile;

 Myfile.open("Test_output.csv");

 Myfile<<",Inputs,,,Outputs\n";

 for(i=0;i<Train_Nos;i++)

Myfile<<Input_X_Test[i][0]<<","<<Input_X_Test[i][1]<<","<<Input_X_Test[i

][2]<<","<<Input_X_Test[i][3]<<","<<Output_X[i]<<"\n";

 Myfile.close();

}

void Print_Output(){

 int i;

 std::ofstream Myfile;

 Myfile.open("Output.csv");

 Myfile<<",Inputs,,,Outputs\n";

 for(i=0;i<Pattern_Nos;i++)

Myfile<<Input_X[i][0]<<","<<Input_X[i][1]<<","<<Input_X[i][2]<<","<<Inpu

t_X[i][3]<<","<<Output_X[i]<<"\n";

 Myfile.close();

}

void Allocate_Memory(){

 int i,j;

 char ch;

 cout<<"\nNumber of Patterns = "<<Pattern_Nos<<"\nDo you want to

change (y/n)";

 cin>>ch;

 if(ch=='y'||ch=='Y'){

 cout<<"Enter Number of patterns : ";

 cin>>Pattern_Nos;

 }

 Train_Nos = Pattern_Nos/5;

 C_Nos = Pattern_Nos;

 cout<<"\nEpochs Limit = "<<Epochs_Max<<"\nDo you want to change

(y/n)";

 cin>>ch;

 if(ch=='y'||ch=='Y'){

 cout<<"Enter the Epochs Limit : ";

 cin>>Epochs_Max;

 }

 cout<<"\nFuzzy Tolerance Rate = "<<E_Toler<<"\nDo you want to change

(y/n)";

 cin>>ch;

 if(ch=='y'||ch=='Y'){

 cout<<"Enter the Fuzzy Tolerance Rate : ";

 cin>>E_Toler;

 }

 //cout<<"\nAllocating Memory\nPress any key to continue.";

 //_getch();

 V_Center = new float [C_Nos];

 U_Part = new float * [C_Nos];

256

 for(i=0;i<C_Nos;i++)

 U_Part[i] = new float [INPUT];

 U_Part1 = new float * [C_Nos];

 for(i=0;i<C_Nos;i++)

 U_Part1[i] = new float [INPUT];

 A_Mat = new float * [C_Nos];

 for(i=0;i<C_Nos;i++)

 A_Mat[i] = new float [INPUT];

 for(i=0;i<C_Nos;i++)

 for(j=0;j<INPUT;j++){

 U_Part[i][j]=1.0;

 if(i==j) A_Mat[i][j]=1.0;

 else A_Mat[i][j]=0.0;

 }

 Center = new float ** [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++){

 Center [i] = new float * [INPUT];

 for(j=0;j<INPUT;j++)

 Center [i][j] = new float [INPUT];

 }

 Input_X = new float * [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++)

 Input_X[i] = new float [INPUT];

 Weight = new float * [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++)

 Weight[i] = new float [INPUT];

 Input_X_Test = new float * [Train_Nos];

 for(i=0;i<Train_Nos;i++)

 Input_X_Test[i] = new float [INPUT];

 PhiVal = new float * [Pattern_Nos];

 for(i=0;i<Pattern_Nos;i++)

 PhiVal [i] = new float [INPUT];

 Output_X = new float [Pattern_Nos];

 Desired = new float [Pattern_Nos];

 D_Max = new float [Pattern_Nos];

}

void Real_Phase(){

 //this->InitiateInput_Data();

 //this->Width_Calc();

 this->Activation_Calc();

 this->Output_Calc();

 this->Print_Output();

 cout<<"\nExecution Phase executed successfully\n";

}

void Testing_Phase(){

 //int i;

 this->Test_Initiate_Data();

 //this->Test_Width_Calc();

 this->Test_Activation_Calc();

 this->Test_Output_Calc();

 this->Print_Test();

 cout<<"\nTesting Phase executed successfully\n";

257

 /*

 cout<<"\n~~~~~~~~~~~~~~~~~~TEST OUTPUT~~~~~~~~~~~~~~~~~~~~~~~~\n";

 for(i=0;i<Train_Nos;i++)

 cout<<Input_X[i][0]<<" "<<Input_X[i][1]<<" "<<Input_X[i][2]<<"

"<<Input_X[i][3]<<" "<<Output_X[i]<<"\n";

 */

}

void Initiate_phase(){

 this->Width_Calc();

 this->Activation_Calc();

 this->Output_Calc();

 this->ERate_Calc();

 this->ERMS_Calc();

 cout<<"\nEpochs = "<<Epochs<<"\tMean Square Error =

"<<E_Out<<"\tError RMS Value = "<<ERMS;

 Epochs++;

}

void Learning_Phase(){

 //int i;

 Epochs = 1;

 while(Epochs<=Epochs_Max){

 this->Initiate_phase();

 this->Update_Center();

 this->Update_Weight();

 //cout<<"\nEpochs = "<<Epochs<<"\tMean Square Error =

"<<E_Out<<"\tError RMS Value = "<<ERMS;

 }

 /*

 cout<<"\n\n~~~~~~~~~~~~~~~~~~~~~learning Weight~~~~~~~~~~~~~~~~~\n";

 for(i=0;i<Pattern_Nos;i++)

 cout<<Weight[i][0]<<" "<<Weight[i][1]<<" "<<Weight[i][2]<<"

"<<Weight[i][3]<<"\n";

 */

 cout<<"\n\nLearning Phase executed successfully\n";

}

void Configuring_Phase(){

 this->Allocate_Memory();

 this->Initiate_Data();

 this->Center_Selection();

 this->Initiate_Weight();

}

};

int main(){

 int i;

 RBF_FCM obj;

 cout<<"\n\n~~~~~~~~~~~~~~~~WELCOME TO RADIAL BASIS NETWORK - FUZZY C

MEANS~~~~~~~~~~~~~~~~~\n\n";

 while(1){

258

 cout<<"\n\nKindly choose the option below :\n\n

1.Configuration \n 2.Learning Phase \n 3.Testing Phase \n

4.Execution \n 5.Exit\n";

 cin>>i;

 switch(i){

 case 1: {

 obj.Configuring_Phase();

 break;

 }

 case 2: {

 obj.Learning_Phase();

 break;

 }

 case 3:{

 obj.Testing_Phase();

 break;

 }

 case 4:{

 obj.Real_Phase();

 break;

 }

 default:exit(0);

 }

 }

 /*

 cout<<"\n";

 for(i=0;i<Pattern_Nos;i++)

 cout<<Input_X[i][0]<<" "<<Input_X[i][1]<<" "<<Input_X[i][2]<<"

"<<Input_X[i][3]<<" "<<Desired[i]<<"\n";

 */

 return 0;

}

259

APPENDIX:III

JAVA program for Inventory Management Lot sizing

optimisation using ACO
/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_aco;

/**

 *

 * @author Parv

 */

public class Advanced_ACO {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 InputData.Get_InputData();

 SolutionConstruction.generate_initial_solution();

 PheromoneUpdate pu = new PheromoneUpdate();

 TerminationCriteria tc = new TerminationCriteria();

 while (tc.TerminationCriteriaCheck() == false) {

 pu.initialize_fields();

 pu.pheromone_update();

 pu.store_best_solution();

 pu.store_worst_solution();

 SolutionConstruction.generate_solution();

 tc.Increment_Cycle_Completed_Byone();

 }

 pu.print_final_solution();

 }

}

260

Input data

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_aco;

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

/**

 *

 * @author Parv

 */

public class InputData {

 public static int c;

 public static int p;

 public static int d;

 public static int[] O_lower;

 public static int[] O_upper;

 public static int[][] R;

 public static int[] G;

 public static int[] H;

 public static double[][] C;

 public static int[][] I;

 public static double[] A;

 public static double[] m;

 public static double M;

 public static int[][] PriceBreak_upper;

 public static void Get_InputData() {

 BufferedReader br = null;

 String line = "";

 String cvsSplitBy = ",";

 try {

 String csvFile = System.getProperty("user.dir") +

"/InputFiles/cpd.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

261

 String[] cpd = line.split(cvsSplitBy);

 c = Integer.parseInt(cpd[0]);

 p = Integer.parseInt(cpd[1]);

 d = Integer.parseInt(cpd[2]);

 csvFile = System.getProperty("user.dir") +

"/InputFiles/VariableLimit.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 int[] O_lower_limit = new int[c];

 int[] O_upper_limit = new int[c];

 String[] variable_limit = line.split(cvsSplitBy);

 int l = 0, u = 0;

 for (int i = 0; i < variable_limit.length; i++) {

 if (i % 2 == 0) {

 O_lower_limit[l++] =

Integer.parseInt(variable_limit[i]);

 } else {

 O_upper_limit[u++] =

Integer.parseInt(variable_limit[i]);

 }

 }

 O_lower = O_lower_limit.clone();

 O_upper = O_upper_limit.clone();

 csvFile = System.getProperty("user.dir") +

"/InputFiles/InputData.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 String[] InputData = line.split(cvsSplitBy);

 int data = 0;

 int[][] RR = new int[c][p];

 for (int i = 0; i < c; i++) {

 for (int j = 0; j < p; j++) {

 RR[i][j] = Integer.parseInt(InputData[data++]);

 }

 }

 R = RR.clone();

 int[] GG = new int[c];

262

 for (int i = 0; i < c; i++) {

 GG[i] = Integer.parseInt(InputData[data++]);

 }

 G = GG.clone();

 int[] HH = new int[c];

 for (int i = 0; i < c; i++) {

 HH[i] = Integer.parseInt(InputData[data++]);

 }

 H = HH.clone();

 double[][] CC = new double[c][d];

 for (int i = 0; i < c; i++) {

 for (int j = 0; j < d; j++) {

 CC[i][j] = Double.parseDouble(InputData[data++]);

 }

 }

 C = CC.clone();

 int[][] II = new int[c][p];

 for (int i = 0; i < c; i++) {

 II[i][0] = Integer.parseInt(InputData[data++]);

 }

 I = II.clone();

 double[] AA = new double[p];

 for (int i = 0; i < p; i++) {

 AA[i] = Double.parseDouble(InputData[data++]);

 }

 A = AA.clone();

 double[] mm = new double[c];

 for (int i = 0; i < c; i++) {

 mm[i] = Double.parseDouble(InputData[data++]);

 }

 m = mm.clone();

 M = Double.parseDouble(InputData[data]);

 csvFile = System.getProperty("user.dir") +

"/InputFiles/PriceBreak.csv";

263

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 String[] PriceBreak = line.split(cvsSplitBy);

 data=0;

 int[][] PriceBreak_upper_limit = new int[c][d-1];

 for (int i = 0; i < c; i++) {

 for (int j = 0; j < d-1; j++) {

 PriceBreak_upper_limit[i][j] =

Integer.parseInt(PriceBreak[data++]);

 }

 }

 PriceBreak_upper = PriceBreak_upper_limit.clone();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 if (br != null) {

 try {

 br.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 System.out.println("Input data files have been successfully

read.");

 System.out.println();

 }

}

PHERMONE UPDATE

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_aco;

264

/**

 *

 * @author Parv

 */

public class PheromoneUpdate {

 double[] objective = new

double[SolutionConstruction.solution.length];

 public static double[] pheromone = new

double[SolutionConstruction.solution.length];

 int[][][] store_best_solution = new

int[TerminationCriteria.MaxCycle][InputData.c][InputData.p];

 double[] store_best_objective = new

double[TerminationCriteria.MaxCycle];

 double[] store_best_pheromone = new

double[TerminationCriteria.MaxCycle];

 int[][][] store_worst_solution = new

int[TerminationCriteria.MaxCycle][InputData.c][InputData.p];

 double[] store_worst_objective = new

double[TerminationCriteria.MaxCycle];

 double[] store_worst_pheromone = new

double[TerminationCriteria.MaxCycle];

 public static double sum_pheromone;

 public void initialize_fields() //initialize instance variables in

each cycle

 {

 int i;

 sum_pheromone = 0;

 for (i = 0; i < SolutionConstruction.solution.length; i++) {

 objective[i] = 0;

 pheromone[i] = 0;

 }

 }

 public void pheromone_update() // Update the pheromone in each

iteration (cycle)

 {

 int i, j, k;

265

 double[] total_ordering_cost = new

double[SolutionConstruction.solution.length];

 double[] total_holding_cost = new

double[SolutionConstruction.solution.length];

 double[] total_purchasing_cost = new

double[SolutionConstruction.solution.length];

 for (i = 0; i < SolutionConstruction.solution.length; i++) {

 for (j = 0; j < InputData.c; j++) {

 for (k = 0; k < InputData.p; k++) {

 if (SolutionConstruction.solution[i][j][k] > 0) {

 total_ordering_cost[i] = total_ordering_cost[i]

+ InputData.G[j];

 }

 if (k == 0) {

 total_holding_cost[i] = total_holding_cost[i] +

InputData.H[j] * (InputData.I[j][k] +

SolutionConstruction.solution[i][j][k] - InputData.R[j][k] / 2);

 } else {

 if (k > 1) {

 InputData.I[j][k - 1] = InputData.I[j][k -

2] + SolutionConstruction.solution[i][j][k - 2] - InputData.R[j][k - 2];

 }

 total_holding_cost[i] = total_holding_cost[i] +

InputData.H[j] * (InputData.I[j][k - 1] +

SolutionConstruction.solution[i][j][k - 1] - InputData.R[j][k - 1] +

SolutionConstruction.solution[i][j][k] - InputData.R[j][k] / 2);

 }

 int l;

 for (l = 0; l < InputData.d - 1; l++) {

 if (SolutionConstruction.solution[i][j][k] <=

InputData.PriceBreak_upper[j][l]) {

 break;

 }

 }

 total_purchasing_cost[i] = total_purchasing_cost[i]

+ (SolutionConstruction.solution[i][j][k] * InputData.C[j][l]);

 }

 }

 objective[i] = total_ordering_cost[i] +

total_holding_cost[i] + total_purchasing_cost[i];

 pheromone[i] = 1 / objective[i];

 sum_pheromone = sum_pheromone + pheromone[i];

 }

266

 }

public void store_best_solution() // Print the best solution in each

cycle

 {

 int i, j, k, maxIndex = 0;

 for (i = 0; i < pheromone.length; i++) {

 double newfitness = pheromone[i];

 if (newfitness > pheromone[maxIndex]) {

 maxIndex = i;

 }

 }

 System.out.println("Cycle {" +

TerminationCriteria.CycleCompleted + "}: Order qty:");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 System.out.format("%6d",

SolutionConstruction.solution[maxIndex][i][j]);

store_best_solution[TerminationCriteria.CycleCompleted][i][j] =

SolutionConstruction.solution[maxIndex][i][j];

 }

 System.out.println();

 }

 store_best_pheromone[TerminationCriteria.CycleCompleted] =

pheromone[maxIndex];

 store_best_objective[TerminationCriteria.CycleCompleted] =

objective[maxIndex];

 System.out.println("Cycle {" +

TerminationCriteria.CycleCompleted + "}: Decision variable Q: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 if

(store_best_solution[TerminationCriteria.CycleCompleted][i][j] == 0) {

 System.out.format("%6d", 0);

 } else {

 System.out.format("%6d", 1);

 }

 }

 System.out.println();

 }

 System.out.println("Cycle {" +

TerminationCriteria.CycleCompleted + "}: Decision variable B: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 boolean OnePrinted = false;

 for (k = 0; k < InputData.d - 1; k++) {

267

 if

(store_best_solution[TerminationCriteria.CycleCompleted][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 OnePrinted = true;

 } else {

 System.out.format("%2d", 0);

 }

 } else {

 System.out.format("%2d", 0);

 }

 }

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 System.out.print(" ");

 } else {

 System.out.format("%2d", 0);

 System.out.print(" ");

 }

 }

 System.out.println();

 }

 System.out.print("Cycle {" + TerminationCriteria.CycleCompleted

+ "}: Total cost: {" + objective[maxIndex] + "}");

 System.out.println();

 System.out.println();

 }

 public void store_worst_solution() // Print the worst solution in

each cycle

 {

 int i, j, minIndex = 0;

 for (i = 0; i < pheromone.length; i++) {

 double newfitness = pheromone[i];

 if (newfitness < pheromone[minIndex]) {

 minIndex = i;

 }

 }

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

store_worst_solution[TerminationCriteria.CycleCompleted][i][j] =

SolutionConstruction.solution[minIndex][i][j];

 }

 }

268

 store_worst_pheromone[TerminationCriteria.CycleCompleted] =

pheromone[minIndex];

 store_worst_objective[TerminationCriteria.CycleCompleted] =

objective[minIndex];

 }

 public void print_final_solution() // Print the final best and worst

solution

 {

 int i, j, k, maxIndex = 0;

 for (i = 0; i < store_best_pheromone.length; i++) {

 double newfitness = store_best_pheromone[i];

 if (newfitness > store_best_pheromone[maxIndex]) {

 maxIndex = i;

 }

 }

 System.out.println("Best final order qty: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 System.out.format("%6d",

store_best_solution[maxIndex][i][j]);

 }

 System.out.println();

 }

 System.out.println("Best final decision variable Q: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 if (store_best_solution[maxIndex][i][j] == 0) {

 System.out.format("%6d", 0);

 } else {

 System.out.format("%6d", 1);

 }

 }

 System.out.println();

 }

 System.out.println("Best final decision variable B: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 boolean OnePrinted = false;

 for (k = 0; k < InputData.d - 1; k++) {

 if (store_best_solution[maxIndex][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 OnePrinted = true;

269

 } else {

 System.out.format("%2d", 0);

 }

 } else {

 System.out.format("%2d", 0);

 }

 }

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 System.out.print(" ");

 } else {

 System.out.format("%2d", 0);

 System.out.print(" ");

 }

 }

 System.out.println();

 }

 System.out.println("Best final total cost: {" +

store_best_objective[maxIndex] + "}");

 System.out.println();

 int minIndex = 0;

 for (i = 0; i < store_worst_pheromone.length; i++) {

 double newfitness = store_worst_pheromone[i];

 if (newfitness < store_worst_pheromone[minIndex]) {

 minIndex = i;

 }

 }

 System.out.println("Worst final order qty: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 System.out.format("%6d",

store_worst_solution[minIndex][i][j]);

 }

 System.out.println();

 }

 System.out.println("Worst final decision variable Q: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 if (store_worst_solution[minIndex][i][j] == 0) {

 System.out.format("%6d", 0);

 } else {

 System.out.format("%6d", 1);

 }

 }

 System.out.println();

 }

 System.out.println("Worst final decision variable B: ");

270

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 boolean OnePrinted = false;

 for (k = 0; k < InputData.d - 1; k++) {

 if (store_worst_solution[minIndex][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 OnePrinted = true;

 } else {

 System.out.format("%2d", 0);

 }

 } else {

 System.out.format("%2d", 0);

 }

 }

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 System.out.print(" ");

 } else {

 System.out.format("%2d", 0);

 System.out.print(" ");

 }

 }

 System.out.println();

 }

 System.out.println("Worst final total cost: {" +

store_worst_objective[minIndex] + "}");

 System.out.println();

 double diff = store_worst_objective[minIndex] -

store_best_objective[maxIndex];

 System.out.println("Total cost difference: {" + diff + "}");

 System.out.println();

 }

}

TERMINATION CRITERIA

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_aco;

/**

271

 *

 * @author Parv

 */

public class TerminationCriteria {

 public static int CycleCompleted;

 public static final int MaxCycle = 500;

 public static boolean TerminationCriteriaCheck() //Check whether

termination criteria met

 {

 if (CycleCompleted == MaxCycle) {

 return true;

 } else {

 return false;

 }

 }

 public static void Increment_Cycle_Completed_Byone() {

 CycleCompleted = CycleCompleted + 1;

 }

}

JAVA program for Inventory Management Lot sizing

optimisation using GA

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

272

 */

package advanced_ga;

/**

 *

 * @author Parv

 */

public class Advanced_GA {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 InputData.Get_InputData();

 Population.generate_initial_population();

 Chromosome c = new Chromosome();

 TerminationCriteria tc = new TerminationCriteria();

 while (tc.TerminationCriteriaCheck() == false) {

 c.initialize_fields();

 c.calculate_fitness();

 c.store_best_chromosome();

 c.store_worst_chromosome();

 c.selection();

 c.crossover();

 c.mutation();

 c.replace();

 tc.Increment_Generation_Completed_Byone();

 }

 c.print_final_chromosome();

 }

}

Chromosome definition:

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_ga;

import java.util.Random;

273

/**

 *

 * @author Parv

 */

public class Chromosome {

 double[] objective = new double[Population.population.length];

 double[] fitness = new double[Population.population.length];

 int[][][] store_best_chromosome = new

int[TerminationCriteria.MaxGeneration][InputData.c][InputData.p];

 double[] store_best_objective = new

double[TerminationCriteria.MaxGeneration];

 double[] store_best_fitness = new

double[TerminationCriteria.MaxGeneration];

 int[][][] store_worst_chromosome = new

int[TerminationCriteria.MaxGeneration][InputData.c][InputData.p];

 double[] store_worst_objective = new

double[TerminationCriteria.MaxGeneration];

 double[] store_worst_fitness = new

double[TerminationCriteria.MaxGeneration];

 double sum_fitness;

 Random random = new Random();

 double random_number;

 int[] parent_selection = new int[Population.population.length];

 int[][][] offspring1 = new int[Population.population.length /

2][InputData.c][InputData.p];

 int[][][] offspring2 = new int[Population.population.length /

2][InputData.c][InputData.p];

 public void initialize_fields() //initialize instance variables in

each iteration

 {

 int i, j, k;

 sum_fitness = 0;

 random_number = 0;

 for (i = 0; i < Population.population.length; i++) {

 objective[i] = 0;

 fitness[i] = 0;

 parent_selection[i] = 0;

 }

 for (i = 0; i < Population.population.length / 2; i++) {

 for (j = 0; j < InputData.c; j++) {

 for (k = 0; k < InputData.p; k++) {

 offspring1[i][j][k] = 0;

 offspring2[i][j][k] = 0;

 }

274

 }

 }

 }

 public void calculate_fitness() // Evaluate the chromosomes in each

iteration (generation)

 {

 int i, j, k;

 double[] total_ordering_cost = new

double[Population.population.length];

 double[] total_holding_cost = new

double[Population.population.length];

 double[] total_purchasing_cost = new

double[Population.population.length];

 for (i = 0; i < Population.population.length; i++) {

 for (j = 0; j < InputData.c; j++) {

 for (k = 0; k < InputData.p; k++) {

 if (Population.population[i][j][k] > 0) {

 total_ordering_cost[i] = total_ordering_cost[i]

+ InputData.G[j];

 }

 if (k == 0) {

 total_holding_cost[i] = total_holding_cost[i] +

InputData.H[j] * (InputData.I[j][k] + Population.population[i][j][k] -

InputData.R[j][k] / 2);

 } else {

 if (k > 1) {

 InputData.I[j][k - 1] = InputData.I[j][k -

2] + Population.population[i][j][k - 2] - InputData.R[j][k - 2];

 }

 total_holding_cost[i] = total_holding_cost[i] +

InputData.H[j] * (InputData.I[j][k - 1] + Population.population[i][j][k

- 1] - InputData.R[j][k - 1] + Population.population[i][j][k] -

InputData.R[j][k] / 2);

 }

 int l;

 for (l = 0; l < InputData.d - 1; l++) {

 if (Population.population[i][j][k] <=

InputData.PriceBreak_upper[j][l]) {

 break;

 }

 }

 total_purchasing_cost[i] = total_purchasing_cost[i]

+ (Population.population[i][j][k] * InputData.C[j][l]);

 }

 }

 objective[i] = total_ordering_cost[i] +

total_holding_cost[i] + total_purchasing_cost[i];

 fitness[i] = 1 / objective[i];

 sum_fitness = sum_fitness + fitness[i];

275

 }

 }

 public void store_best_chromosome() // Print the best chromosome in

each iteration

 {

 int i, j, k, maxIndex = 0;

 for (i = 0; i < fitness.length; i++) {

 double newfitness = fitness[i];

 if (newfitness > fitness[maxIndex]) {

 maxIndex = i;

 }

 }

 System.out.println("Generation {" +

TerminationCriteria.GenerationCompleted + "}: Order qty:");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 System.out.format("%6d",

Population.population[maxIndex][i][j]);

store_best_chromosome[TerminationCriteria.GenerationCompleted][i][j] =

Population.population[maxIndex][i][j];

 }

 System.out.println();

 }

 store_best_fitness[TerminationCriteria.GenerationCompleted] =

fitness[maxIndex];

 store_best_objective[TerminationCriteria.GenerationCompleted] =

objective[maxIndex];

 System.out.println("Generation {" +

TerminationCriteria.GenerationCompleted + "}: Decision variable Q: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 if

(store_best_chromosome[TerminationCriteria.GenerationCompleted][i][j] ==

0) {

 System.out.format("%6d", 0);

 } else {

 System.out.format("%6d", 1);

 }

 }

 System.out.println();

 }

 System.out.println("Generation {" +

TerminationCriteria.GenerationCompleted + "}: Decision variable B: ");

 for (i = 0; i < InputData.c; i++) {

276

 for (j = 0; j < InputData.p; j++) {

 boolean OnePrinted = false;

 for (k = 0; k < InputData.d - 1; k++) {

 if

(store_best_chromosome[TerminationCriteria.GenerationCompleted][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 OnePrinted = true;

 } else {

 System.out.format("%2d", 0);

 }

 } else {

 System.out.format("%2d", 0);

 }

 }

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 System.out.print(" ");

 } else {

 System.out.format("%2d", 0);

 System.out.print(" ");

 }

 }

 System.out.println();

 }

 System.out.print("Generation {" +

TerminationCriteria.GenerationCompleted + "}: Total cost: {" +

objective[maxIndex] + "}");

 System.out.println();

 System.out.println();

 }

 public void store_worst_chromosome() // Print the worst chromosome

in each iteration

 {

 int i, j, minIndex = 0;

 for (i = 0; i < fitness.length; i++) {

 double newfitness = fitness[i];

 if (newfitness < fitness[minIndex]) {

 minIndex = i;

 }

 }

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

277

store_worst_chromosome[TerminationCriteria.GenerationCompleted][i][j] =

Population.population[minIndex][i][j];

 }

 }

 store_worst_fitness[TerminationCriteria.GenerationCompleted] =

fitness[minIndex];

 store_worst_objective[TerminationCriteria.GenerationCompleted] =

objective[minIndex];

 }

 public void selection() // Apply roulette wheel selection operation

in each iteration

 {

 double sum_of_fitness;

 int i, j;

 for (i = 0; i < Population.population.length; i++) {

 sum_of_fitness = 0;

 random_number = random.nextDouble();

 random_number = random_number * sum_fitness;

 for (j = 0; j < Population.population.length; j++) {

 sum_of_fitness = sum_of_fitness + fitness[j];

 if (sum_of_fitness > random_number) {

 parent_selection[i] = j;

 break;

 }

 }

 }

 }

 public void crossover() // Apply single point crossover operation in

each iteration

 {

 int i, j, k = 0, l;

 int[][][] parent1

 = new int[Population.population.length /

2][InputData.c][InputData.p];

 int[][][] parent2

 = new int[Population.population.length /

2][InputData.c][InputData.p];

 double crossoverProbability = 0.9;

 for (i = 0; i < Population.population.length / 2; i++) {

 for (j = 0; j < InputData.c; j++) {

 for (l = 0; l < InputData.p; l++) {

278

 parent1[i][j][l] =

Population.population[parent_selection[i]][j][l];

 }

 }

 }

 for (i = Population.population.length / 2; i <

Population.population.length; i++) {

 for (j = 0; j < InputData.c; j++) {

 for (l = 0; l < InputData.p; l++) {

 parent2[k][j][l] =

Population.population[parent_selection[i]][j][l];

 }

 }

 k = k + 1;

 }

 int sum_offspring1[] = new int[InputData.c];

 int sum_offspring2[] = new int[InputData.c];

 for (i = 0; i < Population.population.length / 2; i++) {

 random_number = random.nextDouble();

 if (random_number <= crossoverProbability) {

 int crossoverPoint = InputData.p - 1;

 for (j = 0; j < InputData.c; j++) {

 for (l = 0; l < crossoverPoint; l++) {

 offspring1[i][j][l] = parent1[i][j][l];

 offspring2[i][j][l] = parent2[i][j][l];

 sum_offspring1[j] = sum_offspring1[j] +

offspring1[i][j][l];

 sum_offspring2[j] = sum_offspring2[j] +

offspring2[i][j][l];

 }

 }

 for (j = 0; j < InputData.c; j++) {

 for (l = crossoverPoint; l < InputData.p; l++) {

 offspring1[i][j][l] = parent2[i][j][l];

 offspring2[i][j][l] = parent1[i][j][l];

 sum_offspring1[j] = sum_offspring1[j] +

offspring1[i][j][l];

 sum_offspring2[j] = sum_offspring2[j] +

offspring2[i][j][l];

 }

 int diff1 = sum_offspring1[j] -

Population.TotalRCompWise[j];

 int diff2 = sum_offspring2[j] -

Population.TotalRCompWise[j];

 if (diff1 < 0) {

279

 offspring1[i][j][InputData.p - 1] =

offspring1[i][j][InputData.p - 1] - diff1;

 } else {

 offspring1[i][j][InputData.p - 1] =

offspring1[i][j][InputData.p - 1] - diff1;

 }

 if (diff2 < 0) {

 offspring2[i][j][InputData.p - 1] =

offspring2[i][j][InputData.p - 1] - diff2;

 } else {

 offspring2[i][j][InputData.p - 1] =

offspring2[i][j][InputData.p - 1] - diff2;

 }

 }

 } else {

 for (j = 0; j < InputData.c; j++) {

 for (l = 0; l < InputData.p; l++) {

 offspring1[i][j][l] = parent1[i][j][l];

 offspring2[i][j][l] = parent2[i][j][l];

 }

 }

 }

 }

 }

 public void mutation() // Apply bit-wise mutation operation in each

iteration

 {

 int mutation_value;

 double mutation_probability = 0.4;

 int i, j, k = 0, l;

 for (i = 0; i < Population.population.length / 2; i++) {

 random_number = random.nextDouble();

 if (random_number <= mutation_probability) {

 for (j = 0; j < InputData.c; j++) {

 int selected_period = random.nextInt(InputData.p);

 if (selected_period == 0) {

 if ((offspring1[i][j][selected_period] -

InputData.R[j][selected_period] + 1) > 0) {

 mutation_value =

random.nextInt(offspring1[i][j][selected_period] -

InputData.R[j][selected_period] + 1);

 offspring1[i][j][selected_period] =

offspring1[i][j][selected_period] - mutation_value;

 offspring1[i][j][selected_period + 1] =

offspring1[i][j][selected_period + 1] + mutation_value;

 }

280

 } else if (selected_period == InputData.p - 1) {

 if ((offspring1[i][j][selected_period] + 1) > 0)

{

 mutation_value =

random.nextInt(offspring1[i][j][selected_period] + 1);

 offspring1[i][j][selected_period] =

offspring1[i][j][selected_period] - mutation_value;

 offspring1[i][j][0] = offspring1[i][j][0] +

mutation_value;

 }

 } else {

 int max = 0;

 for (int n = 0; n <= selected_period; n++) {

 max = max + offspring1[i][j][n] -

InputData.R[j][n];

 }

 if (max <= offspring1[i][j][selected_period]) {

 if ((max + 1) > 0) {

 mutation_value = random.nextInt(max +

1);

 offspring1[i][j][selected_period] =

offspring1[i][j][selected_period] - mutation_value;

 offspring1[i][j][selected_period + 1] =

offspring1[i][j][selected_period + 1] + mutation_value;

 }

 } else {

 if ((offspring1[i][j][selected_period] + 1)

> 0) {

 mutation_value =

random.nextInt(offspring1[i][j][selected_period] + 1);

 offspring1[i][j][selected_period] =

offspring1[i][j][selected_period] - mutation_value;

 offspring1[i][j][selected_period + 1] =

offspring1[i][j][selected_period + 1] + mutation_value;

 }

 }

 }

 selected_period = random.nextInt(InputData.p);

 if (selected_period == 0) {

 if ((offspring2[i][j][selected_period] -

InputData.R[j][selected_period] + 1) > 0) {

 mutation_value =

random.nextInt(offspring2[i][j][selected_period] -

InputData.R[j][selected_period] + 1);

 offspring2[i][j][selected_period] =

offspring2[i][j][selected_period] - mutation_value;

 offspring2[i][j][selected_period + 1] =

offspring2[i][j][selected_period + 1] + mutation_value;

 }

 } else if (selected_period == InputData.p - 1) {

 if ((offspring2[i][j][selected_period] + 1) > 0)

{

281

 mutation_value =

random.nextInt(offspring2[i][j][selected_period] + 1);

 offspring2[i][j][selected_period] =

offspring2[i][j][selected_period] - mutation_value;

 offspring2[i][j][0] = offspring2[i][j][0] +

mutation_value;

 }

 } else {

 int max = 0;

 for (int n = 0; n <= selected_period; n++) {

 max = max + offspring2[i][j][n] -

InputData.R[j][n];

 }

 if (max <= offspring2[i][j][selected_period]) {

 if ((max + 1) > 0) {

 mutation_value = random.nextInt(max +

1);

 offspring2[i][j][selected_period] =

offspring2[i][j][selected_period] - mutation_value;

 offspring2[i][j][selected_period + 1] =

offspring2[i][j][selected_period + 1] + mutation_value;

 }

 } else {

 if ((offspring2[i][j][selected_period] + 1)

> 0) {

 mutation_value =

random.nextInt(offspring2[i][j][selected_period] + 1);

 offspring2[i][j][selected_period] =

offspring2[i][j][selected_period] - mutation_value;

 offspring2[i][j][selected_period + 1] =

offspring2[i][j][selected_period + 1] + mutation_value;

 }

 }

 }

 }

 }

 for (j = 0; j < InputData.c; j++) {

 for (l = 0; l < InputData.p; l++) {

 Population.new_population[k][j][l] =

offspring1[i][j][l];

 }

 }

 k = k + 1;

 for (j = 0; j < InputData.c; j++) {

 for (l = 0; l < InputData.p; l++) {

 Population.new_population[k][j][l] =

offspring2[i][j][l];

 }

282

 }

 k = k + 1;

 }

 }

 public void replace() { //Replace old population by new population

in each iteration

 int h = 0;

 while (h < Population.population_size) {

 double[] TotalBudgetPerWise = new double[InputData.p];

 boolean IsValidPopulation = true;

 for (int j = 0; j < InputData.p; j++) {

 for (int i = 0; i < InputData.c; i++) {

 int k;

 for (k = 0; k < InputData.d - 1; k++) {

 if (Population.new_population[h][i][j] <=

InputData.PriceBreak_upper[i][k]);

 {

 break;

 }

 }

 TotalBudgetPerWise[j] = TotalBudgetPerWise[j] +

(Population.new_population[h][i][j] * InputData.C[i][k]);

 }

 if (TotalBudgetPerWise[j] > InputData.A[j]) {

 IsValidPopulation = false;

 break;

 }

 }

 if (IsValidPopulation == true) {

 double[] TotalAreaPerWise = new double[InputData.p];

 for (int j = 0; j < InputData.p; j++) {

 for (int i = 0; i < InputData.c; i++) {

 if (j == 0) {

 TotalAreaPerWise[j] = TotalAreaPerWise[j] +

InputData.m[i] * (InputData.I[i][j] +

Population.new_population[h][i][j]);

 } else {

 if (j > 1) {

 InputData.I[i][j - 1] = InputData.I[i][j

- 2] + Population.new_population[h][i][j - 2] - InputData.R[i][j - 2];

 }

 TotalAreaPerWise[j] = TotalAreaPerWise[j] +

InputData.m[i] * (InputData.I[i][j - 1] +

Population.new_population[h][i][j - 1] - InputData.R[i][j - 1] +

Population.new_population[h][i][j]);

 }

 }

283

 if (TotalAreaPerWise[j] > InputData.M) {

 IsValidPopulation = false;

 break;

 }

 }

 }

 if (IsValidPopulation == true) {

 for (int i = 0; i < InputData.c; i++) {

 if (Population.new_population[h][i][InputData.p - 1]

< 0) {

 IsValidPopulation = false;

 break;

 }

 }

 }

 if (IsValidPopulation == true) {

 for (int i = 0; i < InputData.c; i++) {

 for (int j = 0; j < InputData.p; j++) {

 Population.population[h][i][j] =

Population.new_population[h][i][j];

 }

 }

 }

 h++;

 }

 }

 public void print_final_chromosome() // Print the final best and

worst chromosome as a solution

 {

 int i, j, k, maxIndex = 0;

 for (i = 0; i < store_best_fitness.length; i++) {

 double newfitness = store_best_fitness[i];

 if (newfitness > store_best_fitness[maxIndex]) {

 maxIndex = i;

 }

 }

 System.out.println("Best final order qty: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 System.out.format("%6d",

store_best_chromosome[maxIndex][i][j]);

 }

 System.out.println();

 }

 System.out.println("Best final decision variable Q: ");

284

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 if (store_best_chromosome[maxIndex][i][j] == 0) {

 System.out.format("%6d", 0);

 } else {

 System.out.format("%6d", 1);

 }

 }

 System.out.println();

 }

 System.out.println("Best final decision variable B: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 boolean OnePrinted = false;

 for (k = 0; k < InputData.d - 1; k++) {

 if (store_best_chromosome[maxIndex][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 OnePrinted = true;

 } else {

 System.out.format("%2d", 0);

 }

 } else {

 System.out.format("%2d", 0);

 }

 }

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 System.out.print(" ");

 } else {

 System.out.format("%2d", 0);

 System.out.print(" ");

 }

 }

 System.out.println();

 }

 System.out.println("Best final total cost: {" +

store_best_objective[maxIndex] + "}");

 System.out.println();

 int minIndex = 0;

 for (i = 0; i < store_worst_fitness.length; i++) {

 double newfitness = store_worst_fitness[i];

 if (newfitness < store_worst_fitness[minIndex]) {

 minIndex = i;

 }

 }

285

 System.out.println("Worst final order qty: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 System.out.format("%6d",

store_worst_chromosome[minIndex][i][j]);

 }

 System.out.println();

 }

 System.out.println("Worst final decision variable Q: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 if (store_worst_chromosome[minIndex][i][j] == 0) {

 System.out.format("%6d", 0);

 } else {

 System.out.format("%6d", 1);

 }

 }

 System.out.println();

 }

 System.out.println("Worst final decision variable B: ");

 for (i = 0; i < InputData.c; i++) {

 for (j = 0; j < InputData.p; j++) {

 boolean OnePrinted = false;

 for (k = 0; k < InputData.d - 1; k++) {

 if (store_worst_chromosome[minIndex][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 OnePrinted = true;

 } else {

 System.out.format("%2d", 0);

 }

 } else {

 System.out.format("%2d", 0);

 }

 }

 if (OnePrinted == false) {

 System.out.format("%2d", 1);

 System.out.print(" ");

 } else {

 System.out.format("%2d", 0);

 System.out.print(" ");

 }

 }

 System.out.println();

 }

 System.out.println("Worst final total cost: {" +

store_worst_objective[minIndex] + "}");

 System.out.println();

286

 double diff = store_worst_objective[minIndex] -

store_best_objective[maxIndex];

 System.out.println("Total cost difference: {" + diff + "}");

 System.out.println();

 }

}

INPUT DATA

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_ga;

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

/**

 *

 * @author Parv

 */

public class InputData {

 public static int c;

 public static int p;

 public static int d;

 public static int[] O_lower;

 public static int[] O_upper;

 public static int[][] R;

 public static int[] G;

 public static int[] H;

 public static double[][] C;

 public static int[][] I;

 public static double[] A;

 public static double[] m;

 public static double M;

 public static int[][] PriceBreak_upper;

 public static void Get_InputData() {

 BufferedReader br = null;

 String line = "";

287

 String cvsSplitBy = ",";

 try {

 String csvFile = System.getProperty("user.dir") +

"/InputFiles/cpd.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 String[] cpd = line.split(cvsSplitBy);

 c = Integer.parseInt(cpd[0]);

 p = Integer.parseInt(cpd[1]);

 d = Integer.parseInt(cpd[2]);

 csvFile = System.getProperty("user.dir") +

"/InputFiles/VariableLimit.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 int[] O_lower_limit = new int[c];

 int[] O_upper_limit = new int[c];

 String[] variable_limit = line.split(cvsSplitBy);

 int l = 0, u = 0;

 for (int i = 0; i < variable_limit.length; i++) {

 if (i % 2 == 0) {

 O_lower_limit[l++] =

Integer.parseInt(variable_limit[i]);

 } else {

 O_upper_limit[u++] =

Integer.parseInt(variable_limit[i]);

 }

 }

 O_lower = O_lower_limit.clone();

 O_upper = O_upper_limit.clone();

 csvFile = System.getProperty("user.dir") +

"/InputFiles/InputData.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 String[] InputData = line.split(cvsSplitBy);

 int data = 0;

 int[][] RR = new int[c][p];

288

 for (int i = 0; i < c; i++) {

 for (int j = 0; j < p; j++) {

 RR[i][j] = Integer.parseInt(InputData[data++]);

 }

 }

 R = RR.clone();

 int[] GG = new int[c];

 for (int i = 0; i < c; i++) {

 GG[i] = Integer.parseInt(InputData[data++]);

 }

 G = GG.clone();

 int[] HH = new int[c];

 for (int i = 0; i < c; i++) {

 HH[i] = Integer.parseInt(InputData[data++]);

 }

 H = HH.clone();

 double[][] CC = new double[c][d];

 for (int i = 0; i < c; i++) {

 for (int j = 0; j < d; j++) {

 CC[i][j] = Double.parseDouble(InputData[data++]);

 }

 }

 C = CC.clone();

 int[][] II = new int[c][p];

 for (int i = 0; i < c; i++) {

 II[i][0] = Integer.parseInt(InputData[data++]);

 }

 I = II.clone();

 double[] AA = new double[p];

 for (int i = 0; i < p; i++) {

 AA[i] = Double.parseDouble(InputData[data++]);

 }

 A = AA.clone();

 double[] mm = new double[c];

 for (int i = 0; i < c; i++) {

289

 mm[i] = Double.parseDouble(InputData[data++]);

 }

 m = mm.clone();

 M = Double.parseDouble(InputData[data]);

 csvFile = System.getProperty("user.dir") +

"/InputFiles/PriceBreak.csv";

 br = new BufferedReader(new FileReader(csvFile));

 br.readLine();

 line = br.readLine();

 String[] PriceBreak = line.split(cvsSplitBy);

 data=0;

 int[][] PriceBreak_upper_limit = new int[c][d-1];

 for (int i = 0; i < c; i++) {

 for (int j = 0; j < d-1; j++) {

 PriceBreak_upper_limit[i][j] =

Integer.parseInt(PriceBreak[data++]);

 }

 }

 PriceBreak_upper = PriceBreak_upper_limit.clone();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 if (br != null) {

 try {

 br.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 System.out.println("Input data files have been successfully

read.");

 System.out.println();

 }

}

290

POPULATION

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_ga;

import java.util.Random;

/**

 *

 * @author Parv

 */

public class Population {

 public static final int population_size = 5000;

 public static int[][][] population = new

int[population_size][InputData.c][InputData.p];

 public static int[][][] new_population = new

int[population_size][InputData.c][InputData.p];

 public static int[] TotalRCompWise = new int[InputData.c];

 public static void generate_initial_population() {

 int h = 0;

 int[] TotalOrderQty = new int[InputData.c];

 for (int i = 0; i < InputData.c; i++) {

 for (int j = 0; j < InputData.p; j++) {

 TotalRCompWise[i] = TotalRCompWise[i] +

InputData.R[i][j];

 }

 }

 Random random = new Random();

 while (h < population_size) {

 for (int i = 0; i < InputData.c; i++) {

 TotalOrderQty[i] = 0;

 for (int j = 0; j < InputData.p; j++) {

291

 if (j == InputData.p - 1) {

 population[h][i][j] = TotalRCompWise[i] -

TotalOrderQty[i];

 } else {

 if (j == 0) {

 population[h][i][j] =

random.nextInt((TotalRCompWise[i] + 1) - InputData.R[i][j]) +

InputData.R[i][j];

 TotalOrderQty[i] = TotalOrderQty[i] +

population[h][i][j];

 } else {

 if(TotalRCompWise[i] - TotalOrderQty[i]

== 0)

 {

 population[h][i][j]=0;

 }

 else

 {

 int min_second_term = 0;

 for(int p=0;p<j;p++)

 {

 min_second_term =

min_second_term + (population[h][i][p]-InputData.R[i][p]);

 }

 int min = InputData.R[i][j]-

min_second_term;

 if(min<0)

 {

 min=0;

 }

 int max = TotalRCompWise[i] -

TotalOrderQty[i];

 population[h][i][j] =

random.nextInt((max + 1) - min) + min;

 TotalOrderQty[i] = TotalOrderQty[i]

+ population[h][i][j];

 }

 }

 }

 }

 }

 double[] TotalBudgetPerWise = new double[InputData.p];

 boolean IsValidPopulation = true;

 for (int j = 0; j < InputData.p; j++) {

 for (int i = 0; i < InputData.c; i++) {

 int k;

 for (k = 0; k < InputData.d - 1; k++) {

292

 if (population[h][i][j] <=

InputData.PriceBreak_upper[i][k]) {

 break;

 }

 }

 TotalBudgetPerWise[j] = TotalBudgetPerWise[j] +

(population[h][i][j] * InputData.C[i][k]);

 }

 if (TotalBudgetPerWise[j] > InputData.A[j]) {

 IsValidPopulation = false;

 break;

 }

 }

 if (IsValidPopulation == true) {

 double[] TotalAreaPerWise = new double[InputData.p];

 for (int j = 0; j < InputData.p; j++) {

 for (int i = 0; i < InputData.c; i++) {

 if (j == 0) {

 TotalAreaPerWise[j] = TotalAreaPerWise[j] +

InputData.m[i] * (InputData.I[i][j] + population[h][i][j]);

 } else {

 if (j > 1) {

 InputData.I[i][j - 1] = InputData.I[i][j

- 2] + population[h][i][j - 2] - InputData.R[i][j - 2];

 }

 TotalAreaPerWise[j] = TotalAreaPerWise[j] +

InputData.m[i] * (InputData.I[i][j - 1] + population[h][i][j - 1] -

InputData.R[i][j - 1] + population[h][i][j]);

 }

 }

 if (TotalAreaPerWise[j] > InputData.M) {

 IsValidPopulation = false;

 break;

 }

 }

 }

 if (IsValidPopulation == true) {

 h++;

 }

293

 }

 }

}

TERMINATION CRITERIA

/*

 * To change this license header, choose License Headers in Project

Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package advanced_ga;

/**

 *

 * @author Parv

 */

public class TerminationCriteria {

 public static int GenerationCompleted;

 public static final int MaxGeneration = 500;

 public static boolean TerminationCriteriaCheck() //Check whether

termination criteria met

 {

 if (GenerationCompleted == MaxGeneration) {

 return true;

 } else {

 return false;

 }

 }

 public static void Increment_Generation_Completed_Byone() {

 GenerationCompleted = GenerationCompleted + 1;

 }

}

294

List of Publications based on PhD Research Work

Sl.

No.

Title of the Paper Authors Name of the journal/

Conference/Symposium,

Vol., No., Pages

Month

& Year

of

publicat

ion

Categ

ory

1

Population based

Meta-heuristic

Algorithm approach

for Analysis of Multi

item Multi period

Procurement Lot

sizing Problem

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

Hindawi

Advances in Operations

Research

Volume 2017, Article ID

3601217.

https://doi.org/10.1155/2017/3

601217

20-12-

2017

Journal

paper

2

Solution of multi-item

multi-period inventory

control problem using

novel meta-heuristics

and hybrid method

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

Journal of Adv Research in

Dynamical & Control

Systems,ISSN 1943-023X

Vol. 9, No. 4, 2017Page

no.150-160 (Scopus Indexed)

June 2017
Journal

paper

3

Genetic algorithm

approach for analysis

of multi item multi

period procurement lot

sizing problem

Prasanna

Kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

International Journal of

Management (IJM) Volume 6,

Issue 12, Dec 2015, pp. 50-58,

Article ID:IJM_06_12_005

ISSN Print: 0976-6502 and

ISSN Online: 0976-6510

© IAEME Publication

Dec 2015
Journal

paper

4

Demand forecasting

using Artificial Neural

Network based on

different learning

methods: Comparative

Analysis

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

International Journal for

Research in Applied Science

and Engineering Technology

Vol. 2 Issue IV, April 2014

April 2014
Journal

paper

5

AI Technique

Applications in

Inventory

Management A

Review and Analysis

of Literature‖

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

International Journal of

Business and Management

Tomorrow,.vol 3, No. 5

May 2013
Journal

paper

295

Sl.

No.

Title of the Paper Authors Name of the journal/

Conference/Symposium,

Vol., No., Pages

Month

& Year

of

publicat

ion

Categ

ory

6

Solution for Supply

Chain Management

Challenges- An

Approach of

Integrated

Application of AI

techniques

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

submitted for SCI indexed

journal

Journal of Computer

Information Systems

(Under review)

Submitted

on 15

Sept. 2017

Journal

paper

Under

review

1c

Application of

Artificial Intelligence

technique for demand

forecasting

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

International Conference on

Mechanical And Production

Engineering (ICMPE) on

06thJuly, 2014 at Bangalore

Organized by Institute of

Technology & Research

06
th

July,

2014

Confer

ence

2c

Artificial Neural

Network Approach for

Industrial Demand

Forecast

Prasanna

kumar,

Dr.Mervin

Herbert,

Dr.SrikanthRao

International Conference on

Mechanical Aeronautical And

Production Engineering on 25

th April 2015 at Singapore

International Institute of

Engineers and Researchers

25
th

 April

2015

Confer

ence

296

RESUME

The author Prasanna Kumar was born on 13th March 1966 at Surathkal, Mangalore. He

obtained his primary education in Government Primary School, Katipalla, Krishnapura.

He completed his secondary and higher secondary education in Vidyadayinee High

school and Govindadas College , Surathkal, respectively. He secured his Bachelors

degree in Mechanical Engineering from Bangalore University in the year 1988 with First

Class (Distinction). He worked with M/s Harita Group of companies, sister concern of

TVS group, Hosur, Bangalore, for a brief period of one year as Graduate Engineer

Trainee and then worked as Assistant Executive Engineer with Oil and Natural Gas

Corporation for 3 years.

 He later joined Valve Chem Industires, subsidiary of Shalimar valves Ltd, Mumbai as

Project Engineer. He obtained his Masters degree in Business Management from

Mangalore University in the year 2003 securing First Class with Distinction.

The author has published a part of his research work in the form of papers in International

Conferences and four papers in an International Journal. The papers in International

Conferences have been presented at Bangalore, organized by Institute of Technology and

Research and at Singapore, organized by International Institute of Engineers and

Researchers. The author also has submitted two more papers to an International Journal

which is presently under review.

The author has been associated with supply chain management, inventory management

and control. He has expertise in the use ERP software like SAP for application in

Material Management. His research interests include Neural Network modeling of

demand forecast and application of AI technique for multi objective optimization in

Inventory management.

