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ABSTRACT 

 

Arecanut (Areca catechu L.) is one of the major profitable plantation crop grown in few 

regions of the World. Karnataka state in India produces almost half of the world’s total 

production, in that contribution from Shivamogga district and Coastal Karnataka is 

significant. The production per unit area in Karnataka is considerably less. The major reasons 

may be improper irrigation practices, poor soil maintenance, lack of technical knowledge on 

irrigation water quality, quantity, fertilizers used and frequent occurrence of diseases, small 

size and spatially scattered farms. These reasons were very typical in Chennagiri region of 

Karnataka. Farmers’ practice adding tank silt lifted from nearby tanks to their farms followed 

by drip irrigation in the form of flooding. In this region a typical disorder called crown choke 

harmed an adult plant’s life. The objective of this research is: to explore the potential of 

advanced tools for Arecanut crop monitoring and to demonstrate it on portion of Chennagiri 

region of Karnataka.  

Advanced technological tools used include GPS, Hyperspectral remote sensing data and GIS. 

Hyperspectral remote sensing is one of the fastest growing techniques in the field of remote 

sensing due to its vast applications with improved accuracy over conventional method. 

Spectral library was built separately for different age group and stressed crops using 

spectroradiometer. Care was taken to match field data with the Hyperion data acquisition 

time. Hyperion hyperspectral data was classified into stressed versus healthy and different age 

group crops using developed spectral library. Stressed versus healthy crop classification 

revealed 10% crops were under stress in patches. To find a scientific reason for crown choke 

disease affected crops inflated in study area, grid wise soil and water samples were collected, 

and subjected to standard physico-chemical analysis. 

Potential evapotranspiration (ETo) was computed using Normalized Difference Vegetation 

Index (NDVI) based crop coefficient (Kc) method due to non-availability of weather 

parameters. ETo, Integrated with Hargreaves Samani method was adopted to compute the crop 

water requirement of different age crops. 

Narrow bands in hyperspectral data facilitate computation of several spectral indices and can 

facilitate improved classification accuracy. Indices developed being Disease Index (DI) to 

identify disease severity in Arecanut crop, Age Index (AI) to segregate the Arecanut crops 

into different age groups and Arecanut Crop Water Requirement Index (ACWRI) was built to 

compute age based crop water requirement. 
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Important wavelengths were identified among the hundreds of bands to compute the crop 

water requirement using statistical techniques.  Stepwise Multi Linear Regression (SMLR), 

Partial Least Square Regression (PLSR), and Variable Importance for Projection (VIP) were 

the techniques of choice. These techniques also facilitated construction of simple models to 

predict the Arecanut crop water requirement.  

On the basis of diseased v/s healthy crop classification, it was inferred that more than 10% of 

plantation under study was affected by crown choke disease. The physico-chemical analysis 

revealed that improper soil management is the main cause for crown choke disorder. Soil 

characterization and water quality analysis infers soil is poorly graded (82% of silt content) 

with very low hydraulic conductivity of 3.2×10
-7

 cm/sec, and high bulk density of 2.12 g/cm
3
. 

This impervious nature caused water logging and lead to salinity. 

Age based classification results revealed Arecanut crop can be classified into different age 

groups; below 3 years, 5 to 7 years, 8 to 15 years and above 25 years. And within class 

classification accuracy of 72% was observed for Support Vector Machine (SVM) 

classification with linear kernel. 

Age based Arecanut crop water requirement map reveals that crop water requirement varies 

with age of the crop, below 7 years of crop it is 19 and for above 15 years it is 25 

liter/day/plant. The derived ACWRI, DI, AI indices to monitor Arecanut crop ranges from 0 

to 1 to indicate the age based crop water requirement, disease severity, and age of crop 

respectively. From the hyperspectral data significant wavelengths were identified: (i) to map 

the stressed Arecanut crops (750, 550 and 675nm), (ii) Arecanut crop age predication (540, 

680 and 780nm). (iii) And to predict the age wise crop water requirement using statistical 

models: SMLR revealed that 681 and 721nm are significant. PLSR also in agreement with 

SMLR i.e 681,721 and 548nm are important. Whereas a VIP technique revealed wavelengths 

1043, 1053, 1033, 1083, 1023, 1013, 1104, and 854nm are important. 

This study concludes that, hyperspectral remote sensing data processed with standard 

procedures with appropriate atmospheric corrections algorithms and integrated with field 

studies along with statistical models can be effectively used for Arecanut crop monitoring. 

This study also demonstrates that, how advanced technological tools can be used to address 

societal problems say crop monitoring. The output of the research is useful to the farming 

community to actively plan their agriculture water requirement, and also improves water use 

efficiency.  

 

Keywords: Age based classification, Arecanut crop monitoring, Hyperion, Indices, PLSR, 

SMLR, VIP. 
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CHAPTER 1 

INTRODUCTION 

1.1 Arecanut Plantation and Its Geographical Distribution 

Plantation crops are known as commercial crops, ensure a better return to growers, higher 

revenue to the Government, and improved income to workers. These are cultivated on an 

extensive scale in a contiguous area, owned and managed by an individual or a company. 

Arecanut (Areca catechu L.) is one of the major plantation crops in the world, 

predominantly grown in India by small and medium farm holders. Commercial crop of 

greater economic importance and plays a vital role in improving Indian economy, 

especially in view of its export potential, employment generation and poverty alleviation, 

particularly in rural sector. It is also an important cash crop in the Western Ghats, East 

Coast and North Eastern regions of India. Over seven million farmer families are directly 

dependent on Arecanut farming and more than 60 million people indirectly depend on 

Arecanut for their livelihood as labor in Arecanut gardens. 

It is grown in India, Philippines, Bangladesh, Indonesia, Malaysia, Srilanka and in some 

parts of Pacific Islands. Among all other countries, India is the largest producer and 

consumer of Arecanut in the world, accounts for about 57 percent of the world’s 

production; followed by China; Bangladesh and Myanmar. In India though the 

production of Arecanut is localized in few states, the commercial product is widely 

distributed all over the country. Particularly in South India, small and medium land 

holding farmers practice Arecanut as a plantation crop and these plantations are scattered 

in sizes varying from one to hundreds of acres. The crop serves many livelihoods because 

of its high commercial value. 
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In different regions of the world Arecanut is called by different local names; in India it is 

Arecanut or betel nut, whereas in Indonesia it is called as Pinang. Figure 1.1 shows 

geographical distribution of areca species. Yellow colour portion of the figure shows 

abundant distribution of Arecanut crop across the countries. 

 

Figure 1.1 Geographical distributions of Areca species (Furtado, 1933) 

As per Jain Irrigation Systems Ltd. A pioneering micro irrigation industry of India's 

report, (2000), India is the largest producer of Arecanut in the world. It occupies a 

prominent place among the cultivated crops in the states of Kerala, Karnataka, Assam, 

Meghalaya, Tamilnadu and West Bengal. India is also the largest consumer of Arecanut. 

The area under Arecanut is estimated to be 2.6 lakh ha yielding about 3.13 lakh tones of 

processed nuts. Karnataka accounts for nearly 40% of the total Arecanut production; 

Kerala 25% and Assam 20% and rest of the area is distributed in other states. It is 

estimated that about 85% of the area under Arecanut are owned by small and marginal 

farmers. Ramappa (2013) summarized that, India leads the league with over 5.5 lakh 

tonnes of Arecanut produce per year. Karnataka is the largest producer as well as major 

Arecanut growing state in India followed by Kerala and Assam accounting for about 39% 

of the world’s production.   
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1.2 Areca Plant Description 

Arecanut is a tropical plantation crop cultivated primarily for its kernel. This kernel is 

obtained from its fruit. The habit of chewing Arecanut is typical of the Indian 

subcontinent and its neighbourhood. Areca plant comes under the species of palm having 

scientific name of ‘areca catechu’. It is a tall stemmed erect palm, reaching varied 

heights, depending upon the environmental conditions. It is an important component of 

religious, social and cultural celebrations and economic life of people in India. Arecanut 

is also used in medicines. This crop is essentially grown in clay loamy soils. It flourishes 

well in regions with very high rainfall of 4500 mm, such as Malnad region of Karnataka 

as well as the low rainfall of 750 mm areas like the Maidan region of Karnataka. 

The crop starts yielding after 5 years and sustains for about 50 years. There are more than 

20 diseases which affect growth of the crop and decrease the yield of the crop. Even 

though the favourable temperature range for Arecanut crop is 25 to 35
0
 C and range of 

humidity is from 70 to 95%., Arecanut grows in areas with a wide range of temperature, 

from a minimum of 4°C (West Bengal) to a maximum of 40°C (Karnataka). In 

northeastern regions it is grown on the plains because at higher elevation the winter 

temperature will have adverse effect on plant growth. Areca palm is sensitive to drought; 

therefore, irrigation is essential in long dry spell areas. The palm does not withstand 

either drought or water stagnation. The traditional irrigation method follows weekly 

irrigation system; approximately 175 litres/palm was applied (Mahesha et al. 

1989).Though Arecanut crop is having commercial value, there is no proper monitoring 

and management techniques. The general problems faced by farmers in Arecanut crop 

monitoring, is discussed in section 1.3. 
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1.3 Problems in Arecanut crop Monitoring  

1. Improper irrigation: Arecanut crop is sensitive to drought. Poor monsoon and 

improper irrigation facilities generally decrease the yield of Arecanut crop. Also 

due to lack of technical knowledge on age based crop water requirement either 

excessive or deficient supplements of water takes place which adversely affect 

plant’s growth. Improving farmers’ knowledge on accurate crop water needs also 

help in optimizing crop productivity as well as water usage. Hence there is a need 

to study the exact quantity of water required for Arecanut crop based on its age. 

2. Diseases and nutritional disorders: The productivity of Arecanut palms is affected 

by number of diseases and nutritional disorders depending upon the climatic 

conditions prevailing. Of late due to a number of reasons, the yield of the crop has 

been reducing. For remedial measures and to estimate pesticides, fertilizer 

requirements knowing the stressed crop area is essential. But there are no proper 

mapping techniques to estimate these stressed crop areas over a large area. 

3. Non-scientific soil management: Non-scientific soil management not only 

decreases yield of crop but also affect the plant’s life. Improperly managed soil 

Arecanut fields leads to poor development of roots, brittle and crinkled. Studies 

(Bhat, 1978) have shown, under well drained deep soil conditions, Arecanut roots 

traverse down to about three meters and the roots confine to only about 1.40 

meters under shallow soil condition. So soil management is an important aspect in 

Arecanut crop monitoring but there are limited studies on Arecanut crop soil 

management. 

4. Limited Age-Based information: The yield of the Arecanut crop is mainly 

depends upon its age, which starts yielding from 5-7 years and continues up to 50 

years. Age information of the crop is crucial for rough estimation of yield. Small 

scale marketing agencies, one which controls the stabilization of rates and export 

are always interested in knowing the Arecanut crop health, age and thereby it 

helps in appropriate yield estimation. Computing and mapping age wise 

discrimination of Arecanut crop is an essential part of crop monitoring to know 
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spatial distribution of yielding crops and to know areas of high and low water 

requirements. But there are no such studies based on crop age.  

5. In India, most Arecanut plantations are scattered, small in size and have varying 

agricultural methods of farming. Added to this, there is lack of technical 

knowledge on Arecanut crop monitoring. Traditional methods of monitoring 

involve visual examination and are limited by the ability of the human eye to 

discriminate the health status. These methods are often complex, costly, time 

consuming and they cannot be applicable for large scale. 

Plantation crop monitoring with advanced techniques and an integrated approach may be 

the best option to address some of the problems faced in Arecanut crop monitoring. 

1.4 An Integrated Approach in Plantation Crop Monitoring 

An integrated approach in crop management system incorporates several technologies. 

They are; Global Positioning System (GPS), Geographical Information System (GIS), 

yield monitor, variable rate technology and remote sensing.  

Understanding crop phenology through analysis of spectral reflectance can help in 

discriminating crops on the basis of health, age and also water needs at different ages. 

Though multispectral imagery is useful to discriminate land surface features and 

landscape patterns, hyperspectral imagery allows identification and characterization of 

materials. Hyperspectral imaging, also known as imaging spectroscopy, collects 

information across the electromagnetic spectrum in contiguous, narrow bandwidths and 

helps in measuring surface behavior throughout the electro-magnetic spectrum. The 

recent developments in remote sensing namely, Hyperspectral remote sensing can play a 

definite role in understanding crop science there by helps in optimization in crop 

monitoring. Figure 1.2 shows the difference between multispectral remote sensing vs 

hyperspectral remote sensing. 
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Figure 1.2 Multispectral vs. Hyperspectral Remote Sensing 

(Source: http://slideplayer.com/) 

Figure 1.2 illustrates that multispectral remote sensing (MSS) wavelengths are discrete in 

nature with a wider bandwidth represent coarse spectral signature. From MSS not able to 

discern small difference between reflectance spectra has smaller data volumes with 

limited number of spectral bands. In case of Hyperspectral, due to continuous bands, with 

no gaps and narrowness, complete record of spectral responses of materials over the 

wavelengths is possible. Has a large data volume which covers visible-NIR-Thermal 

range which carries spectral information to identify and to distinguish spectrally unique 

materials. 

 

1.5 Spectral Signatures of Vegetation 

Crop leaves represent the main surfaces of plant canopies, where energy and gas are 

exchanged. Hence, knowledge of their optical properties is essential to understand the 

transport of photons within vegetation. The general shape of reflectance and 

transmittance curves for green leaves is almost similar for all species. It is controlled by 

absorption features of specific molecules and the cellular structure of the leaf tissue. 
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In the visible domain (400 - 700 nm) absorption by leaf pigments is the most important 

process leading to low reflectance and transmittance values. The main light absorbing 

pigments are chlorophyll a and b (Cab), carotenoids, xanthophylls, and polyphenols. 

Chlorophyll a is the major pigment of higher plants and together with chlorophyll b 

account for 65 percent of the total pigments. Figure 1.3 shows typical reflectance of 

vegetation curve and chlorophyll absorption.  

Chlorophyll a and b have absorption bands in the blue at around 430/450 nm and in the 

red domain at around 660/640 nm. These strong absorption bands induce a reflectance 

peak in the green domain at about 550 nm. 

In the mid-infrared domain (mid-IR: 1300-2500 nm), also called shortwave-infrared 

(SWIR), leaf optical properties are mainly affected by water and other foliar constituents. 

The major water absorption bands occur at 1450, 1940, and 2700 nm and secondary 

features at 960, 1120, 1540, 1670, and 2200 nm. Water largely influences the overall 

reflectance in the mid-IR domain and also has an indirect effect on the visible and near-

IR reflectance. 

Protein, cellulose, lignin, and starch also influence leaf reflectance in the mid-IR. In fresh 

leaves, spectral features related to organic substances are masked by the leaf water, so 

that estimation of leaf constituents is difficult. The spectral properties of live foliage set 

up the radiation field in a canopy, and these spectral properties express the presence and 

abundance of both the inputs and products of photosynthesis. 
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Figure 1.3 Typical Reflectance Curve of Vegetation (Jensen, 2009) 

To utilize these behaviors of plant foliage in order to monitor crop, hyperspectral remote 

sensing becomes an essential tool. It aids in classification between Arecanut crops of 

various age groups and to identify stressed crops with accuracy.  

1.6 Hyperspectral Remote Sensing Applications in Crop Monitoring 

The Earth Observing-l (EO-l) satellite, launched in November, 2000 by National 

Aeronautics and Space Administration (NASA), carries on board hyperspectral sensors 

(Hyperion) and is one of the freely available data source.  

Hyperspectral images have potential applications in crop monitoring which includes 

types, health, moisture status and maturity of crops. It is also used in detection and 

identification of minerals, vegetation, artificial materials and soil background. 

Hyperspectral narrow-band spectral data are emerging as practical solutions in modeling 

and mapping vegetation. Recent research has demonstrated the advances in hyperspectral 

data in a range of applications including quantifying agricultural crops (Sahoo et al., 

2015), modeling forest canopy biochemical properties (Hansen et al., 2003), detecting 



9 

 

crop stress and disease (Krishna et al.,2015), mapping leaf chlorophyll content (Panigada 

et al., 2010), identifying plants affected by contaminants such as arsenic, demonstrating 

sensitivity to plant nitrogen content, classifying vegetation species and type, 

characterizing wetlands, and mapping invasive species as it influences crop production. 

The need for significant improvements in quantifying, modeling, and mapping plant 

chemical, physical, and water properties is more critical than ever before to reduce 

uncertainties in the understanding of vegetation and to sustain it. 

Further for more accurate results and customized applications, vegetation indices are 

useful. The advantages of indices over classification are clear distinguished between soil 

and vegetation, by reducing atmospheric and topographic effects. 

 

1.7 Hyperspectral Vegetation Indices 

 

Vegetation indices are combinations of surface reflectance at two or more wavelengths 

designed to highlight a particular property of vegetation. These can be used for 

monitoring crop health and to asses change in plant vigor by classification. 

Satellite image classification is the technique of transforming a digital image of a 

geographic area into land-use land-cover maps of fewer broad classes. This employs 

image processing technique and spectrum based pixel classifying algorithms which 

assign every pixel in an image to a certain class depending on the majority features 

present in the pixel. Satellite image classification is the widely used technique for 

temporal change detection.  
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1.8 Statement of the Problem  

Realising the importance of Arecanut plantations for small and marginal farmers, few 

research issues to be addressed are listed below 

 For planning and designing of irrigation and scheduling, total area of plantations 

crop coverage. 

 To estimate yield of the crop, age based crop area estimation, 

 Nutrients deficient plantation crops area to estimate fertilizer needs. 

 New Indices for mapping and monitoring Arecanut crops. 

And few facts to be known are; 

1) The exact estimation of yield is depending upon the health of the crop and also in 

case of Arecanut crop the yield of the crop is depending upon its age. 

2) Finding out the cause for the disease, is also an important task for remedial 

measures. 

3) In sustainable agriculture for planning and scheduling of the irrigation, knowledge 

on the exact amount of crop water requirement is essential. 

4) To map the different ages of crop and stressed crop distribution also crop water 

requirement, vegetation indices plays vital role in a simplified manner. 
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1.9 Objectives of the Study 

The primary objective of research is to demonstrate an integrated approach for Arecanut 

crop monitoring using hyperspectral data and other advanced tools. As part of analysis 

framed sub objectives are; 

1) Investigate the feasibility of hyperspectral data for mapping (Classification) 

different age group and stressed versus healthy Arecanut crops. 

2) Mapping the age based Arecanut crop water requirement. 

3) Development of hyperspectral vegetation indices for stressed, different age 

groups and age based Arecanut crop water requirement 

 

1.10 Need and Benefits of the Study 

For agriculture dependent farmers in India, efficiency in farming is a serious issue. Crop 

monitoring offer several substantive benefits to get most out of available resources. It is 

particularly important for Arecanut which is more prone to variety of stress and has high 

irrigation water requirement. Using maps, farmers can pursue strategies to enhance 

farming, and the benefits include, 

 Judicial usage of available water resource – sustaining surface and ground water. 

 Age wise classification and disease identification allows better planning. 

 Increase yields by finding potentially yield limiting problems in a timely fashion. 

 Satellite based monitoring is fast, easy and accurate. 

 GIS mapping. 

Applying the right amount of inputs at the right place, at the right time benefits crops, 

soils, ground water, and thus benefits the entire crop cycle. Thus boosting sustainability 

of resources and supporting country’s growth. 
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1.11 Format of Thesis Presentation  

Chapter One presents introduction about the Arecanut plantation crop and its 

geographical distribution. Problems related to crop monitoring and feasible advanced 

solution namely hyperspectral remote sensing. Formulations of problem and study 

objectives are listed. 

Chapter Two reviews literature related to crop monitoring using hyperspectral remote 

sensing and its applications. A brief summary of literature followed by identified research 

gaps are presented.  

Chapter Three provides detailed methodology framed to solve the research objectives. 

The data sources, data processing tools and techniques used in study were discussed in 

detail.  

Chapter Four presents the description about segregation of stressed vs healthy Arecanut 

crops using an integrated approach. And also provides details of cause identification for a 

particular disorder in Arecanut crops.  

Chapter Five discusses classification of Arecanut crops into different age groups, by 

comparing popular classifying algorithms to check the feasibility in age based 

classification.  

Chapter Six presents the concepts in development of new narrow bands combination 

indices, to improve classification accuracy. For age based and healthy vs stressed crops. 

Chapter Seven focuses on computing age based crop water requirement for Arecanut 

crops in the form of an index. Also to identify the prominence wavelengths to develop 

simple predictive models to estimate age based crop water requirement. 

Chapter Eight is devoted to presentation of the conclusions drawn from the research. 

Important recommendations based on findings are listed. With limitations of the study 

and future scope are presented. 

In order to arrive at the objective of research, literatures were focused on selected themes 

and are presented in the following chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION  

This chapter presents a review of relevant literature to bring out the background of the 

study undertaken in the area of applications of hyperspectral remote sensing in crop 

monitoring. 

Remote sensing data capturing platforms include ground, airborne and Space borne 

(satellite). Since airborne data acquisitions techniques are costly, the study is carried 

out using freely available satellite data integrated with reflectance data captured in 

both field and laboratory. Ground based data capturing generally accomplished by 

spectroradiometers. 

Spectroradiometer enables to acquire the hyperspectral data either from the field 

measurements or in laboratory, whereas the Hyperion is an example of Space borne 

hyperspectral data. Several studies have been carried out using these technologies.  

Wide ranges of articles dating from 1989 to 2016 were reviewed during the course of 

work to frame a methodology. Works related to hyperspectral image processing, age 

based classification of crops, segregation of crops based on health status, correlation 

analysis, vegetation indices and crop water needs related articles were reviewed. 

In order to arrive at the objective of research, literatures reviewed were classified into 

following themes. 

 Hyperspectral Data Pre-Processing  

 Hyperspectral Remote Sensing for Identification of Stressed Crops 

 Hyperspectral Prominence Wavelengths for Crop Monitoring 

 Hyperspectral Vegetation Indices 

 Classification of crops for monitoring and management  

 Hyperspectral remote sensing for Crop water requirement 

 Statistical Techniques for Hyperspectral Data processing  
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Thenkabail et al., (2000) recommends a 12 narrow band sensor, in the 350 to 1050 nm 

range of spectrum is optimum for estimation of agricultural crop biophysical 

information. Gazala et al., (2013) analyzed spectral reflectance pattern to assess 

soybean yellow mosaic disease. Parsanna kumar et al., (2013) utilized hyperspectral 

remote sensing to detect stress in rice crop due to plant hopper. Thenkabail et al., 

(2013) identified redundant bands to overcome the high data dimensionality for 

particular application such as agricultural crop characterization, classification, 

monitoring, modelling, and mapping. Bandyopadhyay et al., (2014) derived 

regression model to predict the grain and biomass yield of wheat in advance using 

spectral indices. Krishna et al., (2014) developed a model, to trace yellow rust disease 

in winter wheat. VNIR and SWIR regions are used to assess yellow rust severity 

detection in winter wheat crop. PLS regression, ANOVA and MLR, combinations 

were tried to developed a robust model and identified significant wavelengths as 

(428nm, 672nm and 1399nm). Sahoo et al., (2015) presented comprehensive 

applications of hyperspectral remote sensing related to agriculture based on broad 

range of the literature. Applications are not limited to crop’s discrimination, moisture, 

stress, parameter retrieval, pest and diseases assessment and selection of optimum 

wavebands, to study different agricultural applications. Marshall et al., (2016) 

demonstrated the strengths of hyperspectral narrow bands and hyperspectral ratio-

based indices in modelling crop evapotranspiration and two its primary components.  

2.11 Hyperspectral Data Pre-Processing  

Khurshid et al., (2006) described the procedure for de-striping of bands, MODTRAN 

based radiometric correction to obtain surface reflectance from at-sensor reflectance 

were briefed. Removal of stripes and pixel (column) dropouts and noise reduction 

explained by the authors is followed during image processing of Hyperion image.  

Miglani et al., (2008) evaluated the satellite-based hyperspectral data available from 

Hyperion onboard EO-1 of NASA for agricultural application. Principal component 

analysis was carried out for selecting appropriate bands. The first 5 principal 

components (PCs) explained 98 percent of variability. The next five PCs only added a 

very small fraction of additional variability. The dimensionality of Hyperion data was 

found to be of the order of four. ATCOR 2 was used for the atmospheric correction. It 

has lowered the reflectance of the image in the blue and red region whereas it 
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enhanced the same in the NIR and SWIR regions, when compared with apparent 

reflectance. Atmospheric correction also increased the correlation with the observed 

reflectance. 

Singh and Dowerah (2010) briefed various hyperspectral imagery pre-processing 

methods such as radiometric correction, dimensionality reduction etc., along with 

various image classification techniques. Broad areas of application of hyperspectral 

remote sensing are also being discussed in the article. Basics of image processing 

methodology were derived from this article. 

Chakravortty et al., (2011) explained the method of data processing, removal of the 

absorption bands and bands having no information. Methods of atmospheric and 

geometric correction were explained in detail including various interpolations and 

resampling techniques. They concluded FLAASH and QUAC models for atmospheric 

correction certainly reduced haziness in the image but FLAASH correction showed 

better correction than QUAC as it incorporates more knowledge of the atmospheric 

conditions of the study area at the time of acquisition. They also mentioned geometric 

correction using Nearest Neighborhood resampling method is preferable as it does 

alter pixel brightness value during resampling even though the pixels were jagged 

relative to original un-rectified data. 

Nielsen (2011) explained the algorithm behind MNF transformation. Noise Fraction, 

Signal to Noise ratio was explained with mathematical relationship.  

2.12 Hyperspectral Remote Sensing for Identification of Stressed Crops 

A study by Laudien et al., (2004) evaluates the comparison of classification results 

from two different multi and Hyperspectral sensors and discusses the possibility of 

detecting sugar beet disease. 

To identify the stress in plants Moshou et al., (2006) used trained neural networks for 

different parameters. By QDA (Quadratic Discriminant Analysis) technique the type 

of stress in plant was identified. Where, Larsolle et al., (2007) extracted spectral 

signatures to identify the disease severity and plant density. 

Jing et al., (2007) observed that foliar Chl a (Chlorophyll-a) concentrations were 

strongly correlated with canopy spectrum in the visible region and the first-order 
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derivative spectrum in blue edge, green edge and red edge. And derivative of spectra 

in red edge and green edge have strong predication power for foliar Chl a 

concentrations of diseased winter wheat. 

Thorsten et al., (2008) studied band selection techniques for Hyperspectral data to 

identify relevant and redundant information in spectra regarding a detection of plant 

stress caused by pathogens. Anshu et al., (2008) studied the important bands for 

monitoring the agricultural crops. 

Franke et al., (2008) focused on remotely sensed detection of the fungal disease 

powdery mildew (Blumeriagraminis) in wheat. They tested the potential of 

hyperspectral data for an early detection of stress symptoms. A sophisticated 

endmember selection procedure was also used and, additionally, a linear spectral 

mixture model was applied to a pixel spectrum with known characteristics, in order to 

derive an endmember representing 100% powdery mildew-infected wheat. Regression 

analyses of matched fraction estimates of this endmember and in-field-observed 

powdery mildew severities showed promising results. 

Shafri et al., (2009) concluded from their study that the red edge based techniques 

were more effective than vegetation indices in detecting infected oil palm trees 

plantation.  

Baariegul et al., (2010) evaluated different wavelength ranges and found 400 and 

1000nm reliably detects head blight on wheat ears. P.C.A method identified four 

distinct wavelengths which ranges (500-533nm, 560-675nm, 682-733nm and 927-

931nm) respectively to differentiate between spectra of diseased and health of wheat.  

Jones et al., (2010) determined the disease severity of tomato using ultraviolet, 

visible, and near-infrared reflectance spectroscopy. They used chemometric methods 

to identify significant wavelengths and created spectral-based prediction models. 

They identified significant wavelengths through analysis of the B-matrix from partial 

least squares (PLS) regression, analysis of a correlation coefficient spectrum, and 

through the use of a stepwise multiple linear regression (SMLR) procedure. These 

analysis methods revealed several significant regions wavelengths and produced 

predictive models of disease severity based on absorbance spectra. 
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Sankaran et al., (2010) recognized the need for developing a rapid, cost-effective, and 

reliable health monitoring sensor that would facilitate advancements in agriculture. 

They described the currently used technologies that can be used for developing a 

ground-based sensor system to assist in monitoring health and diseases in plants under 

field conditions. These technologies include spectroscopic and imaging based and 

volatile profiling-based plant disease detection methods. The work compared the 

benefits and limitations of these potential methods.  

Ray et al., (2010) using ASD hand held spectroradiometer data determined the most 

optimum narrow bands and Hyperspectral indices to discriminate between different 

levels of stress in potato crop. 

Shalei et al., (2011) conducted studies to select the most sensitive hyperspectral 

wavelengths for discrimination of imperceptible spectral variations of paddy rice 

under different cultivation conditions. They cultivated paddy rice under four different 

nitrogen cultivation levels and three irrigation levels. Principal component analysis 

and band to band correlation were used to select significant wavelengths. Results 

indicated that good discrimination was achieved. They concluded that the narrow 

bands based on hyperspectral reflectance data appear to have great potential for 

discriminating rice of differing cultivation conditions and for detecting stress in rice 

vegetation.  

Hyperspectral data has been shown to be highly suitable for detection and 

discrimination of agricultural crops. However, the entire spectrum covered by 

Hyperspectral data is probably not needed for discrimination between healthy and 

stressed plants (Thorseten et al., 2011). They concluded that few phenomenon-

specific spectral features are sufficient to detect wheat stands infected with powdery 

mildew.  

Ray et al., (2011) investigated the utility of hyperspectral reflectance data for potato 

late blight disease detection. They have collected the hyperspectral data for potato 

crop at different level of disease infestation using hand-held spectroradiometer over 

the spectral range of 325–1075 nm. The data was averaged into 10-nm wide 

wavebands, resulting in 75 narrow bands. They partitioned the reflectance curve into 

five regions, viz. 400–500 nm, 520–590 nm, 620–680 nm, 770–860 nm and 920–1050 

nm and a notable difference in healthy and diseased potato plants were noticed in 
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770–860 nm and 920–1050 nm range. Shalei et al., (2011) conducted studies to select 

the most sensitive hyperspectral wavelengths for discrimination of imperceptible 

spectral variations of paddy rice under different cultivation conditions. They 

cultivated paddy rice under four different nitrogen cultivation levels and three 

irrigation levels. Principal component analysis and band to band correlation were used 

to select significant wavelengths. Results indicated that good discrimination was 

achieved. They concluded that the narrow bands based on hyperspectral reflectance 

data appear to have great potential for discriminating rice of differing cultivation 

conditions and for detecting stress in rice vegetation.  

Ray et al., (2011) investigated the utility of hyperspectral reflectance data for potato 

late blight disease detection. They have collected the hyperspectral data for potato 

crop at different level of disease infestation using hand-held spectroradiometer over 

the spectral range of 325–1075 nm. The data was averaged into 10-nm wide 

wavebands, resulting in 75 narrow bands. They partitioned the reflectance curve into 

five regions, viz. 400–500 nm, 520–590 nm, 620–680 nm, 770–860 nm and 920–1050 

nm and a notable difference in healthy and diseased potato plants were noticed in 

770–860 nm and 920–1050 nm range.  

Also various vegetation indices, namely NDVI, SR, SAVI and red edge were 

calculated using reflectance values. The differences between the vegetation indices for 

plants at different levels of disease infestation were found to be highly significant. 

They have determined the optimal hyperspectral wavebands to discriminate the 

healthy plants from disease infested plants to be 540, 610, 620, 700, 710, 730, 780 

and 1040 nm although up to 25% infestation could be discriminated using reflectance 

at 710, 720 and 750 nm. 

Kumar et al., (2012) reported that the most significant spectral bands for the aphid 

infestation in mustard are in visible (550-560nm) and near infrared regions (700-

1250nm and 1950-2450nm) respectively. 

Wang et al., (2012) Analyzed leaf spectrum of tobacco infected with disease and 

insect pests at different severity levels measured using ASD-handheld 

spectroradiometer, the wave lengths between 631nm and 328nm and 733nm as well 

as 864nm were selected out as sensitive bands region to the severity levels.  
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Studies conducted by Huang et al., (2016) determines early detection of soybean 

injury from dicamba using hyperspectral data.  

2.13 Hyperspectral data Classification 

Various classification methods are available for classifying the hyperspectral data. 

Depending upon the application and accuracy some classification methods may out 

perform for particular studies. The following literature discusses about the different 

classification methods employed for agricultural crops.  

Gualtieri et al., (1998) described the algorithm behind SVM binary classification 

technique along with optimal margin method for separable data. They demonstrated 

the application over an agricultural scene and explained the optimization problem. 

The classification is accurate (with 96%, and 87% accuracy for a 4 class problem, and 

a 16 class problem respectively) but needs the signatures of all the possible classes in 

the study area, hence making it suitable only for broad categories and not for within 

class separation. 

Gomez et al., (2003) Evaluated unsupervised and semi-supervised methods for 

classification. The semi-supervised method yielded higher accuracy of classification. 

Galvao et al., (2005) conducted studies for discrimination of five Brazilian sugarcane 

varieties. These varieties were discriminated with EO-1 Hyperion data by Multiple 

Discriminant Analysis (MDA) method using reflectance values, ratios of reflectance 

and several spectral indices sensitive to changes in chlorophyll content, leaf water and 

lignin-cellulose. Results showed that sugarcane varieties can be discriminated using 

EO-1 Hyperion data. 

Rao et al., (2007) used space borne hyperspectral imagery for the development of a 

crop specific spectral library and automatic identification and classification of rice, 

chilli, sugarcane and cotton. In their study they developed the spectral library from 

Hyperion image and in- situ hyperspectral measurements and tested the potential of 

the developed spectral library for identification and classification of crops. It was 

concluded that the integration of in-situ hyperspectral measurements with space borne 

hyperspectral imagery can provide improvement in the discrimination of various 

classes of interest. 



20 
 

Ashoori et al., (2008) examined Hyperion data of an agricultural area located in 

Tehran for discrimination of wheat and barley fields. They also studied the usefulness 

of texture quantization methods for improving the discrimination of crop types. 

Different methods like First order statistics of the Grey Level Co-occurrence Matrix, 

Geostatistics and Fourier transform were used for texture feature generation. 

Maximum likelihood classifier was then used to classify the outputs. Results showed 

that the use of texture features lead to higher accuracies and better discrimination of 

similar classes. 

Fahimnejad et al., (2008) studied the capabilities of Hyperion hyperspectral imagery 

for discrimination of wheat and barley. Atmospheric correction and other pre-

processing operations were performed on the imagery. They used two supervised 

classification approaches including Spectral Angle Mapper classification and Linear 

Spectral Unmixing and found that linear spectral unmixing algorithm gives higher 

accuracy compared to Spectral Angle Mapper classification. They also concluded that 

Hyperion data have promising capabilities for discrimination of wheat and barley. 

Govender et al., (2008) compared the classification of vegetation types using both 

hyperspectral and multispectral data. Several statistical classifiers including maximum 

likelihood, minimum distance, mahalanobis distance, spectral angle mapper and 

parallelepiped methods were used. Classification using mahalanobis distance and 

maximum likelihood produced the maximum accuracy. They also concluded that the 

use of hyperspectral data can improve the classification accuracy.  

Xing-Ping et al., (2009) described the methodology of end member extraction along 

with SAM classification method and Mixture Tuned Match Filtering (MTMF) soft 

classification method.  They also explained a classification methodology involving 

multiple classifiers with soft classification followed by hard classification which had 

increased classification accuracy. 

Joevivek et al., (2009) have carried out research work on finding the best suitable 

learning algorithm and the best kernel for hyperspectral image classification. They 

have carried out classification of the image with different methods and found that 

support vector machine outperforms other supervised algorithms and also found that 

linear kernel performs better than all other kernels.  
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Satpathy et al., (2010) described the procedure for mapping various land covers using 

Hyperion images using Spectral Angle Mapper (SAM) and Matched filtering mapping 

techniques. They also mentioned the top 10 bands in MNF contain most of the 

spectral information and they were used to determine the pure pixels in the Hyperion 

image using PPI procedure. 

Shwetank et al., (2010) reviewed that there is no spectral library for classification and 

discrimination of rice crop.  

Skowronek et al., (2016) by utilizing hyperspectral remote sensing data in 

combination with field data derived a distribution map of an invasive bryophyte 

species. 

2.14 Hyperspectral Prominence Wavelengths for Crop Monitoring  

Hamed et al., (2003) studied the contribution of different parts of the spectrum in 

describing disease severity of wheat using Independent Component Analysis (ICA) 

and Principal Component Analysis (PCA). NIR & Visible region between 550 and 

750 nm were found sensitive for discrimination and quantification of fungal disease 

severity in wheat. 

Laudien et al., (2004) concluded from their studies that red (630nm to 690nm) and 

near infrared portions of the spectra (760 to 900nm) are important for agricultural 

applications. Spectroradiometer field data was used to train the supervised 

classification. From this information, images were classified into several vitality 

classes.  

Vigier et al., (2004) used canopy reflectance of soybeans measured with a narrowband 

spectrometer. The mean reflectance in the broad band region (R675-R685) contributed 

the most for soybean plant damage estimation. 

Mozaffar et al., (2008) applied Endmember Extraction Algorithms (EEAs) on a 

Hyperion image of southern of Tehran, IRAN. They have suggested a large number of 

endmembers to enhance the classification accuracy while the seasonal variation in the 

spectral response was also taken into account in vegetation classification. They 

compared the results of Geometrical approach in vegetation endmember extraction 

assistance with vegetation indices. The objective of their study was to select optimal 
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bands in hyperspectral images those are most useful in vegetation classification, then 

to identify optimal endmember, signature spectrum that represents a certain class, for 

vegetation classification, and to test effective Endmember Extraction Algorithms for 

classification of vegetation type. Their study proved that Endmember extraction 

provides a powerful tool for analysis of highly redundant, pixel spectra and channel 

images of hyperspectral data sets. 

Yang et al., (2009) found that the wavelength from 757 to 1039nm were most 

sensitive region of the spectrum for assessing the severity of bacterial leaf blight in 

rice. 

Song et al., (2011) selected the most sensitive wavelengths for discrimination of the 

imperceptible spectral variations of paddy rice under different cultivation conditions. 

A comprehensive comparison was made to select the most influential narrow-band 

combination (552, 675, 705 and 776 nm) to discriminate rice leaves from four kinds 

of nitrogen cultivation conditions and also a 3-wavelength combination (1158, 1378 

and 1965 nm) was established this facilitates spectral discrimination of rice leaves 

grown in three kinds of irrigation conditions by using several parametric and 

nonparametric methods. The narrow bands based on hyperspectral reflectance data 

appeared to have great potential for discriminating rice of differing cultivation 

conditions and for detecting stress in rice vegetation and these selected wavelengths 

also had great potential use for the design of future sensors. 

Arafat et al., (2013) concluded NIR spectral zone was the best discriminate between 

maize and rice. Linear discrimination analysis showed to specific wavebands to 

isolate each crop from the other one. They found that wavebands (350:712, 

1451:1562, 1951:2349nm) were best to isolate wheat and waveband (730:1299nm) 

was the best to isolate maize while three wavebands could be used to isolate rice 

(350:713, 1451:1532, 1951:2344nm) 

Wilson et al., (2014) summarized, that hyperspectral reflectance data collected using a 

handheld portable spectroradiometer, with a spectral range of 400–900 nm, is well 

suited for crop discrimination. They found classification accuracies were relatively 

high throughout the entire growing season using a set of wavebands identified as 

significant for crop discrimination through stepwise discriminant analysis. The study 
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resulted in recommending a total of 23 optimal bands in the 400–900 nm range to 

discriminate soybean, canola, wheat, oat and barley in Northeastern Ontario, Canada. 

Age 

Chemura et al., (2014) concluded that there is potential in using object based image 

analysis and an empirical model to determine the age of oil palm at field scale from 

high resolution satellite imagery. They found linear function relating age to crown 

diameters to crown projection area (CPA) was useful to predict the age of oil palm per 

field with accuracy of ±1 year up to 13 years. The method uses spectral information to 

obtain spatial information that can be used for determining characteristics of target 

features.  

2.15 Hyperspectral Vegetation Indices 

Sometimes there may be overlapping between the different classes in case of 

classification due to over sighting of training sites or in reference spectral signatures 

to overcome these types of problems and to improve the classification accuracy 

deriving different indices may helpful.  

Hansen et al., (2003) studied the spectral behavior of various crops with respect to the 

laboratory measured biophysical parameters to model a narrow band equation to 

predict several plant characteristics based on its reflectance. They also explained a 

novel statistical based method to develop narrow band indices. Authors explained 

correlation analysis based method to identify peculiar bands suitable to form specific 

vegetation index. One may adopt this technique of band correlation to develop crop 

specific indices. 

Apan et al., (2003) developed different spectral vegetation Indices (SVIs) by selecting 

the sample pixels of diseased and non-diseased areas by multiple discriminant 

function analysis and they observed 96.9% classification accuracy. 

Apan et al., (2004a) evaluated several narrow band indices from EO-1 Hyperion 

imagery to discriminate sugarcane areas affected by ‘orange rust’ disease. It was 

found that 1660nm yielded increased separability of rust-affected areas.  

Apan et al., (2004b), evaluated several narrow-band indices from EO-1 Hyperion 

imagery in discriminating sugarcane areas affected by ‘orange rust’ (Pucciniakuehnii) 

disease.  
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They generated forty spectral vegetation indices (SVIs), focusing on bands related to 

leaf pigments, leaf internal structure, and leaf water content, from an image acquired 

over Mackay, Queensland, Australia. An optimum set of indices were selected using 

Discriminant function analysis based on their correlations with the discriminant 

function. The predictive ability of each index was also assessed based on the accuracy 

of classification. Their results demonstrated that Hyperion imagery can be used to 

detect orange rust disease in sugarcane crops. ‘Disease–Water Stress Indices’ (DWSI- 

1~R800/R1660; DSWI-2~R1660/R550; DWSI-5~ (R800zR550)/ (R1660zR680)) 

formulated by them produced the largest correlations, indicating their superior ability 

to discriminate sugarcane areas affected by orange rust disease. 

Zhang et al., (2005) analyzed five different indices to detect late blight disease in field 

tomatoes and concluded that there is a significant enhancement capability of 

multispectral remote sensing for disease discrimination at the field level.  

Steddom et al., (2005) compared the precision, reproducibility and sensitivity of a 

multispectral radiometer to visual disease assessments using individual wavebands 

from radiometer as well as Vegetative Indices calculated from the individual 

wavebands and there has been an improved accuracy. 

Dutta et al., (2006) demonstrated a simple approach for disease detection on mustard 

crop. They used five diseased water stress indices for the identification of diseased 

crop. From the ground truth data GPS locations of the diseased fields were obtained 

and marked in LISS IV data and overlaid on the Hyperion data. The spectral response 

of the diseased crop obtained from hyperspectral data were then compared to the 

disease scores obtained through ground truth. Significance tests were also carried out 

for separability of the spectral curves between healthy and diseased crops.  

Stephanie et al., (2007) extracted indices from spectral profiles by means of band 

reduction techniques. They concluded from leaf level measurements decrease in leaf 

chlorophyll concentration resulted due to iron deficiency. Studies suggested that 

spectral bands and narrow waveband ratio vegetation indices selected via multivariate 

logistic regression classification were able to distinguish iron untreated and iron 

treated tress. The visible part of the spectrum mostly dominated by the amount of 

pigments (e.g Chlorophyll, Carotenoids) provided the most discriminative spectral 

region (505-740nm) in their study.  
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Chavez et al., (2009) prepared a visual assessment of disease symptoms in both virus-

infected and virus free plants and compared it with spectroradiometry and 

multispectral photographic images of the plants recorded during their growth and 

development. Results showed that changes in reflectance in certain regions of the 

electromagnetic spectrum indicative of disturbances in light reflection by vascular 

tissues in infected plants measured with a spectroradiometer as well as derived 

spectral vegetation indices such as NDVI, SAVI and IPVI provided early detection of 

viral infection. They concluded remotely sensed spectoradiometry and multispectral 

imagery proved to be an effective method for an early detection of PYVV infection in 

potato plants grown under controlled conditions. They observed that inoculated plants 

presented differential reflectance from healthy ones in the blue and red regions of the 

electromagnetic spectrum are encouraging.  

Rumpf et al., (2009) attained reliable results by combining vegetation indices, which 

are usually called features in classification for the early detection of plant diseases. In 

order to identify optimal subsets of features for the different pathogens already at an 

early stage of infestation, they have found that entropy and mutual information are 

adequate concepts. Accordingly, they used the minimum redundancy – maximum 

relevance (mRMR) criterion to evaluate the features and they have found that they 

need different indices and feature subsets of different sizes for different diseases. 

They have found that by using the optimal subset of features the classification 

accuracy for Uromycesbetaewas even better than using all features. 

Rumpf et al., (2010) obtainable a procedure for the early detection and differentiation 

of sugar beet diseases based on Support Vector Machines and spectral vegetation 

indices. Hyperspectral data were recorded from healthy leaves and leaves inoculated 

with the pathogens for a period of 21 days after inoculation. Nine spectral vegetation 

indices, related to physiological parameters were used as features for an automatic 

classification. They have found that early differentiation between healthy and 

inoculated plants as well as among specific diseases can be achieved by a Support 

Vector Machine with a radial basis function as kernel. Their study has shown that 

combined VIs, together with SVMs using an appropriate radial basic function are able 

to discriminate between the foliar diseases Cercospora leaf spot, sugar beet rust, 

powdery mildew and healthy plants and as well as between the plant diseases 

themselves. 



26 
 

Shankar et al., (2010) found the most optimum narrow bands and hyperspectral 

indices to discriminate between different levels of stresses including nutrient stress, 

water stress and disease stress of potato crop. They also included discrimination of 

varieties considering it as a genetic stress. They have used band-band R
2
, principal 

component analysis and discriminant analysis respectively for the selection of 

optimum bands. It was found that the red edge indices performed the best for 

separating variety, disease intensity and nitrogen application rate. 

Prabhakar et al., (2011) characterized leafhopper stress on cotton, identified the 

sensitive bands, and derived hyperspectral vegetation indices specific to this pest. 

Broad band comparison of mean reflectance spectra between healthy and leafhopper 

infested plants showed significant decrease in blue (450 to 520 nm), red (630 to 690 

nm) regions, while reflectance significantly increased in the NIR region (760 to 900 

nm). Their analysis of hyperspectral data revealed narrow bands at 376 and 496 nm 

(blue), 691 and 715 nm (red), 761 nm (NIR) and 1124 nm (SWIR-1) as sensitive to 

leafhopper damage. 

Mirik et al., (2012) examined the spectral reflectance characteristics and changes in 

selected spectral vegetation indices to discern infested and healthy wheat. They have 

quantified the relationship between spectral vegetation indices and Russian wheat 

aphid feeding damage (hot spots). Linear regression analyses were carried out which 

showed that there were varying relationships between Russian wheat aphid density 

and spectral vegetation indices, with coefficients of determination (r
2
) ranging from 

0.91 to 0.01. These results indicated that remote sensing data have the potential to 

distinguish damage by Russian wheat aphid and quantify its abundance in wheat. 

Mahlein et al., (2013) developed specific spectral disease indices (SDIs) for the 

detection of diseases in crops. Sugar beet plants and the three leaf diseases Cercospora 

leaf spot, sugar beet rust and powdery mildew were used as model system. With a 

non-imaging spectroradiometer, hyperspectral signatures of healthy and diseased 

sugar beet leaves were assessed at different developing stages and disease severities 

of pathogens. Significant and most relevant wavelengths and two band normalized 

differences from 450 to 950 nm, describing the impact of a disease on sugar beet 

leaves were extracted from the data-set using the RELIEF-F algorithm.  
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They have exhaustively searched the best weighted combination of a single 

wavelength and a normalized wavelength difference by testing all possible 

combinations to develop hyperspectral indices for the detection of sugar beet diseases. 

The optimized disease indices were then tested for their ability to detect and to 

classify healthy and diseased sugar beet leaves. 

Lin et al., (2015) identified spectral bands of established narrow band index to detect 

soil phosphorous concentration. They used several indices to determine the best 

combination to predict chemical concentration.  

In addition to these, articles pertaining to estimation of crop water requirement were 

reviewed to gain more insights on the topic. Studies carried out with limited 

meteorological data were reviewed meticulously. Various reviewed articles, including 

Arecanut crop water requirement are summarized and criticized in the next section. 

2.16 Crop Water Requirement 

Mahesha et al., (1989) have worked on Arecanut crops, and determined the crop water 

requirement for Arecanut crops of age 12-15 years based on the evaporative demand 

of the crop. The crop water demand was evaluated using the crop coefficient and the 

potential evapotranspiration values (computed by the modified Penman method using 

monthly and weekly climatic data from 1971-85) and Balasimha et al., (1996) have 

presented age wise crop water requirement of Arecanut crops. Study was carried using 

traditional methods which were time consuming; moreover, age wise discrimination 

and spatial mapping of crop water requirement were not carried out. 

Allen et al., (1998) presented guidelines for estimating crop water needs using crop 

coefficient and reference crop evapotranspiration calculations. The manuscript 

explains the concepts of crop coefficient along with influencing factors. It also 

describes the calculations of various constants like temperature coefficients and 

extraterrestrial radiation. Even though this is an exemplary literature on crop water 

requirement, crop coefficients of many crops is not investigated by the authors, 

especially the plantation crops. In addition, the presented FAO- 56 methodology to 

calculate PET demands many measured meteorological data hindering its use in 

remote locations. 
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Jabloun and Sahli (2008) estimated reference crop evapotranspiration using 

Hargreaves and Samani equation for a location with limited meteorological data. They 

concluded Hargreaves method is a substitute to FAO methodology to determine Crop 

water requirement in the absence of elaborate meteorological data in remote locations. 

This literature served as the guideline to choose Hargreaves and Samani method as an 

alternative to FAO – 56 procedures. 

Casa et al., (2008) worked on assessing crop water demand using remote sensing for 

various crops. Hargreaves method was used to calculate potential evapotranspiration 

and spatial distribution of monthly crop coefficients was prepared by assigning Kc 

values to crop map prepared using Landsat ETM+ images. Kc values used in the 

article were obtained from FAO- 56 guideline, making this methodology only suitable 

to the crops with established Kc. Hence a remote sensing based calculation was 

necessary for other crops.  

Kamble et al., (2013) derived an equation to compute crop coefficient using remotely 

sensed data. They built relationship between NDVI and Crop coefficient based on 

study conducted on various crops and location using regression analysis. The 

relationship presented by the authors is utilized in this work to determine the crop 

coefficient which is compatible with Hargreaves and Samani equation. One can use 

the proposed equations to determine NDVI based spatial map of Kc which replaces 

traditional methods. 

2.17 Statistical Techniques for Hyperspectral Data processing  

Wang et al., (2008) used both hand held spectroradiometer and airborne hyperspectral 

image to map sericea and its invasiveness in a public grass field in Mid-Missouri. The 

maximal 1
st
-order derivative in red-near infrared region (650–800nm) was derived to 

separate sericea from fescue, the dominant grass in pastures in Missouri. They have 

applied a 1
st
-order derivative analysis to calculate maximal derivatives that 

maximized the spectral difference between sericea and fescue, the dominant grass in 

pastures. Then, a threshold approach was applied to identify sericea patches of various 

sizes in the study area. Finally, by developing an empirical regression model, the 

biophysical distribution of sericea in these patches was finally extracted from the 

hyperspectral imagery. 
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Zhang et al., (2012) analyzed disease severity using two regression models PLSR and 

MLR among this they found PLSR as the best.  

Krishna et al., (2014) studied spectral behavior of stressed wheat crop to build a 

narrow band index to assess wheat yellow rust disease. They developed an index 

based on correlation analysis. They also modeled an equation using Partial Least 

Square Regression technique to predict intensity of disease using few key spectral 

bands. This study inspires to derive the methodology for building vegetation index. 

2.2 Summary of Literature  

From review of literature it can be observed that the hyperspectral remote sensing 

applications in the field of agriculture is applied  to  only certain annual crops namely, 

Sugarcane, Soybean, Mustard, Wheat, Rice, Potato, Paddy rice, and Tobacco. Studies 

were mainly concentrated on either identification of crop health or discrimination of 

crops. This includes Chilly, Sugar cane and Cotton with Maize, wheat with rice and 

barley. Most of the studies have been carried out using hyperspectral data acquired by 

spectroradiometer and Hyperion satellite data. Spectroradiometer data was used for 

building the spectral libraries. Hyperion data is used to extract the endmembers for 

classification and deriving indices. The extracted endmembers were used for 

discrimination and to map crop health status. Most of the researchers found that red 

edge position is best for stress detection. Different statistical methods used for 

discrimination and identification of sensitive wave lengths include, PCA & ICA and 

MLR, LD, PLS, PLSR methods.  

Improved accuracy was observed with derivative of reflectance spectra using different 

atmospheric corrections methods. Supervised classification method yielded better 

accuracy in most of the cases compare to unsupervised classification. The 

classification methods used in most of the cases are Maximum likelihood, SAM and 

SVM.  

Few band combinations come out as significant for particular types of disease affected 

plants. By identifying these particular bands and using this information for deriving 

indices using algorithms leads to improved accuracy namely NDVI, SR, and SAVI.  
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Concept and calculation of crop water requirement was analyzed from various 

articles, in addition to which a suitable method to determine reference crop 

evapotranspiration was identified. On the other hand, works with regard to remote 

sensing based crop coefficient were reviewed. 

In addition to these, literatures concerning vegetation monitoring through indices were 

assessed to understand the concepts of vegetation indices and methodology to derive 

crop specific index from hyperspectral data.  

Literatures from various researchers working on hyperspectral remote sensing on 

vegetation were adapted to implement correlation analysis based methodology to 

derive the index. 

2.3 Literature Gap 

The review of literature witnesses that there are a few studies on Arecanut crop. The 

commercial crop which sustains for a long year where there is variation in reflectance 

with its age. 

There are no particular wavelengths related studies those are sensitive to age of the 

crop. There is no particular model to predict either the age of the crop or to identify 

the disease affected crop. There is no spectral library for this commercial crop. 

Where there is a variation in reflectance with respect to its age and with respect to 

healthy verses diseased affected one. The Arecanut yield increases gradually with age 

until the palms reach full maturity at 10-15 years and then continue until the palms 

stop bearing at 40-60 years of age. Also there is a decrease in yield due to crop 

subjected to number of diseases. Hence the crop age and yield are interdependent, and 

due to number of diseases the crop yield decreases, for yield estimation and better 

crop management it is necessary to know the age of the crop and the diseased affected 

crops. To fill these gaps following objectives were taken for the proposed study. 

Since traditional methods to determine crop water requirement is laborious and time 

consuming, there is a need to employ remote sensing technology. Literature review 

revealed that, number of studies is carried out on crop water requirement of various 

seasonal crops, but rarely on plantation crops such as Arecanut, leaving Arecanut 

farmers with lack of knowledge on age wise crop water requirement.  
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Age wise classification of Arecanut plantations to discriminate water requirement is 

not attempted in previous studies. Despite the advancements in remote sensing, few 

studies are carried out on Arecanut crops and on understanding variation in its crop 

coefficients or on developing a narrow band index in this regard.  

Remote sensing based crop water requirement monitoring of Arecanut is one area 

where research is essential.  

Based on the observed research gap, objectives of this work are formed to understand 

the variation of Arecanut crop water needs with crop age. Age based classification 

and segregation of diseased v/s healthy Arecanut crops. Integration of remote sensing 

and crop water needs and crop type classification are combined to derive the 

methodology of the work. Developed methodology is outlined in next chapter along 

with study area and data. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION  

This chapter includes the description of; 

 Geographical location and characteristics of the study area, 

 Overall methodology adopted to monitor Arecanut plantation crop using 

remote sensing,  

 Data products, data pre-processing methods, statistical approaches 

implemented for the study,  

 Concepts in deriving algorithms for developing hyperspectral vegetation 

indices. 

3.2 Location and Characteristics of the Study Area 

The Chennagiri taluk in Davangere district of Karnataka is locally known as the ‘land 

of arecanut’ owing to the abundance of arecanutplantations is chosen for the study. 

The study area lies between geographical extents of 13º 57 ' 00 '' and 14º 01 ' 45 '' N 

latitude and 75º 57 ' 15 '' and 75º 59 '15 '' E longitude spread over an area covering 

3,175.2 hectares (31.752 sq. km). Several major villages such as Vaddanahal, 

Pandomatti and Honnebagi are rapidly developing in thisregion.It consists of 279 

Villages and 62 Panchayats and is at a distance of 60 km from Chitradurga district, 60 

km from Davanagere district, 44 km form Shivamogga district and 32 km from 

Bhadravathi Taluk. Figure 3.1 shows location map of the acquired Hyperion imagery 

corresponding to January month of 2014; it can be observed that the continued 

existences of only irrigated plantation crops are predominant on the image.  

The average elevation of Chennagiri is 662 m above MSL with markedly flat terrain. 

The temperature ranges between 17 to about 40° C and is a relatively dry with 

humidity of around 18%. The region is considered as semi-arid though it receives an 

average annual rainfall of 808 mm. The population of the Channagiri Taluk is around 

3 lakhs with majority of population earning their livelihood from Arecanut plantation. 

Ground water is the major source of irrigation and drip irrigation is practiced 

throughout the study area.  
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The study area is covered by either black or red sandy soil. The Arecanut crop 

farming in this region currently involves addition of tank silt dredged from ponds 

followed by drip irrigation is practiced generally in the form of flooding. 

Arecanut variety grown here is called “Chennagiri local”, which is a tall variety with 

medium yield. Plants are spaced at an average distance of 8 ft. and in some plots; to 

prevent from bright sun during summer intercropping method was practiced where 

banana plants were grown in between juvenile Arecanut plants. Majority of the crop is 

harvested tender, before the fruits are ripened for production of red supari. 

 

Figure 3.1 Location map of the study area showing Arecanut plantation region 

on Hyperion image 
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3.2.1 Selection of Study Area 

India is both highest producers as well consumer of Arecanut, Karnataka State alone 

contributes about 50% of total India’s Arecanut production. In Karnataka majority of 

Arecanut is produced from Shivamogga district, Davanagere district and some parts 

of coastal zone. The coastal zone of Karnataka is locally known as traditional belt of 

Arecanut (Kundapura, Udupi and Mangaluru). Due to high commercial value farmers 

started growing this crop in Chikkamangulu and some part of Shivamogga districts, 

gradually this crop spreads to Davanagere district and also in major portions of 

Karnataka. The Chennagiri Taluk of Davanagere district is locally known as ‘Land of 

Arecanut’ because of abundance of spread out of this commercial crop. Though 

Chennagiri taluk receives less rainfall, this cash crop is grown under irrigation. Major 

portion of irrigation is from ‘Shanthisagar’ known as world’s second largest pond. 

Hence there is no strict rule for cropping pattern; due to high commercial value almost 

every farmer is growing this crop for their livelihood.  

Most of the farmers are small farm holders with less than 10 acres of land generally 

holding sizes vary from 1 to 100s of acre and each individual planter practices 

different farming practices. Farmers were adding tank silt lifted from nearby ponds 

followed by drip irrigation. There are no proper drainage systems to drain off extra 

irrigated water. The soil type is sandy or red loamy on top of this added tank silt 

which gradually settles down and forms an impermeable layer thereby reducing the 

air voids. This blocks the entry of air and also reduction in hydraulic conductivity 

which ceases the root development. In summer due to shortage of water the added 

tank slit gets dry, which damages theplant’sroot. To overcome this problem, farmers 

continuously irrigate their farm fields; this cause’s water stagnation which increases 

pH value thus soil salinity takes place which causes damage to the plants. Figure 3.2 

show the continuously irrigated water stagnated Arecanut farm. 
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Figure 3.2 Continuously irrigated water stagnated plot 

In coastal Karnataka, in spite of soil being lateritic with high K value they practice 

drainage in between two rows of Arecanut plantations. This acts as drainage gallery in 

rainy season to drain off excess rain water and the same act as drowning gallery in 

summer. The fallen Arecanut leaves were cut in to small pieces and dumped in this 

gallery which acts as organic manure also prevents water loss from the soil. This 

practice has not followed in the Chennagiri region and even there is no cultivation 

practices followed inside the Arecanut plantations. Consolidation of silt spread in the 

farms causes ‘reduction of hydraulic conductivity. Figure 3.3 shows the non-

cultivated, water stressed Arecanut plot. Due to these reasons number of diseases 

playing an adverse effect on yield of the crops.  
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Figure 3.3 Water stressed Arecanut plot  

Though Chennagiri taluk is known as land of arecanutfor its large spread of Arecanut 

gardens, the productivity is not up to the mark. If there is a proper maintenance and 

management of this crop, definitely there will be an increase in yield and good 

economic growth. It also indirectly reduces the huge amount of ground water 

exploitation.  

For monitoring Arecanut crop with advanced techniques definite methodology was 

formulated. Analyzing the abundance of cropping pattern, sampling locations were 

fixed. These samples were unique in nature, consists large quantity of Arecanut crops 

only. This Includes crop with varying age groups, diseases affected plots. Figure 3.4 

shows the field visit navigation plan map prepared using google earth. The overall 

methodology adopted is explained in the following section. 

 

Figure 3.4 Preplan of the field visit map 
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Figure.3.5 Overall methodology adopted for the study  
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3.3 Overview of Methodology 

Figure 3.5 shows the overall methodology adopted for the study to achieve the 

formulated research objectives. It describes the step wise procedures of different data 

sets collection for the study, data pre-processing techniques, image classification 

methods, statistical techniques and analysis of obtained results followed by 

conclusions.  

3.4 Data Collection  

To accomplish the present work, primarily remotely sensed satellite imagery is 

obtained from USGS website on request. For the classification of Hyperion imagery 

ground truth, data is required; this was collected during the field visit. Field data 

collection includesASD field spectroradiometer data and Global Positioning System 

(GPS) data.  

3.4.1Spectral analysis using ASD data 

Spectroradiometer is a device designed to measure the spectral power distribution of a 

source. From the spectral power distribution, the radiometric, photometric, and 

colorimetric quantities of light can be determined in order to measure, characterize, 

and calibrate light sources for various applications such as mineral or vegetation 

studies.  

For the selection of study area several preliminary field visits were carried out to 

ensure the presence of all age groups of Arecanut crop. After selecting the study area, 

Arecanut foliage reflectance data of varying age-groups were collected during 10
th

to 

14
th

 February 2014, close in time to the acquisition of Hyperion imagery to build 

spectral library. Grid-wise data collection method was adopted. The study area was 

divided into number of grids with a minimum grid size of 1000 m
2
and a representative 

spectrum was collected from each grid. Tree top reflectance measurements were 

carried out for representative plots refer Figure.3.6. Leaf samples were collected from 

inaccessible farms and in situ reflectance was captured using ASD handheld 

Spectroradiometer Field Spec® with wavelength range of 325–1075nm at resolution 

of 1 nm refer Figure.3.7. To derive the representative spectral signatures, a set of 20 

samples were compared and averaged.  
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Figure 3.6 Field data collection using spectroradiometer  

In case of laboratory measurements, the instrument was mounted on a tripod with 

15cm distance from leaf in the presence of an external halogen light source. It was 

optimized to the halogen light source and calibrated with white reference panel. Nine 

spectrometer readings were collected for each sample and it was then averaged to 

obtain the accurate spectroradiometer reading. The instrument operates with the 

software RS
3
. Figure 3.7 shows the laboratory data collection method. 

 

Figure 3.7 Laboratory data collection setup 
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The spectroradiometer data was analyzed using view spec pro. View Spec™ 

application is a program used for post-processing spectra files that were saved using 

an ASD instrument. The spectral signatures for stressed and healthy Arecanut plants 

were analyzed and used to identify specific spectral channel that distinguishes both. 

The Red Edge region was keenly analyzed since it refers to the region of rapid change 

in reflectance of vegetation in the near infrared range of electromagnetic spectrum. 

The idea behind choosing of red edge wavelength region was its high correlation with 

chlorophyll content of vegetation. 

NIR has longer wavelengths than visible light; it exhibits peculiar properties that can 

be exploited for remote sensing applications, especially in identifying the plant stress. 

Healthy vegetation always gives high NIR reflectance unlike stressed vegetation that 

result in low NIR reflectance. Collected data were grouped by observing the spectral 

seperability. To derive the representative spectral signatures a set of 20 samples were 

averaged and four different classes were noticed in the reflectance pattern, i) below 3, 

ii) 3-7, iii) 8-15 and iv) above 15 years’ age. Figure 3.8 shows the different age group 

Arecanut crops and spectroradiometer setup.  

 

 

Figure 3.8 Field data collection, i. Six months’ crop, ii.Below 3 years’ crop, iii. 

Above 5 years crop iv. 15 to 20 years’ crop.v&vi. Above 25 years’ crop. viii. 

Spectroradiometer setup.  
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3.4.2.1 Spectral library 

Spectral library includes collections of spectral reflectance curves obtained from field 

or laboratory spectroradiometer measurements. It is possible to differentiate among 

materials by their spectral reflectance signatures, whereas direct identification is 

usually not possible. Many researchers have measured the spectral reflectance of 

hundreds of materials in the lab, and have compiled a spectral library. The libraries are 

used as references for material identification in remote sensing images. From UV to 

mid-infrared 0.2-150-micronmeter region contains over 1300 spectra including mid-

infrared data as well as spectra from and additional visible and near-infrared spectra 

are some of the examples. The library includes many more minerals, organic and 

volatile compounds, vegetation, and man-made materials. But from the analysis it was 

found that there is no spectral library for Arecanut plantation crop.  

In this study, age-based Arecanut crop and disease versus healthy Arecanut crop 

spectral library were built using different age group Arecanut plantation spectra and 

representative stressed spectra collected during field visit and it is used for the 

respective classifications.  

3.4.2 Temperature data 

Temperature data of the study area was collected from Climate Forecast System 

Reanalysis (CFSR) to calculate potential evapotranspiration (ET0) of the day for 

calculating Arecanut age wise crop water requirement.  

3.4.3 GPS data 

Extensive field survey was carried out using GPS device to collect spatial data of 

Arecanut fields. Arecanut field of different age groups and crown choke affected 

fields were captured in the device as polygon shape files. Later differential correction 

was applied onto these shape files with 95% confidence level. Trimble Juno series 

GPS with 1m accuracy was used to collect field data of Arecanut plantations with 

respect to their age and health in the form of spatial polygons. About 180 farms were 

considered in GPS survey to generate vector layer of typical farms of various 

Arecanut crop age groups. These vector layer aids for the supervised classification 

using training site. Figure 3.9 shows the GPS vector layer of different age group 

Arecanut crops from the field visit.  
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Figure 3.9 GPS vector layers  

Ground truth information collected from the field visit is divided into four different 

age-wise classes along with one stressed and an additional class with mixed crops. 

The mixed crop class includes all plots where areca palm is grown along with other 

crops like banana, teak wood etc.  

3.4.4 Soil and Water Samples Data  

 To identify the cause of diseases which spread across the farm, soil and water 

samples were collected randomly from the disease affected farm fields and samples 

were collected from healthy farm fields. Also soon after the collection, samples were 

tested for different laboratory analysis using standard testing procedures.  

3.4.5 HyperionSatellite Data 

Hyperion is the hyperspectral image spectroscope aboard Earth Observing 1 (EO-1): 

an earth orbiting satellite by National Aeronautics and Space Administration NASA 

launched on November 21, 2000. EO-1 satellite is the first hyperspectral imaging 

instrument deployed on a satellite platform. The push broom type EO-1 satellite has 
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three imaging sensors: Hyperion sensor, The LEISA (Linear Etalon Imaging Spectral 

Array) Atmospheric Corrector (LAC), and the multispectral Advanced Land Imager 

(ALI). Hyperion image has the dimensions of 256 x 6925 x 242 which is a high-

spectral resolution imager which captures 242 spectral bands (from 400 nm to 2500 

nm with 10 nm sampling interval) covers visible-near infrared (VNIR) to short-wave 

infrared (SWIR) regions, with a 30m spatial resolution. The instrument images a 7.5 

km by 100 km land area per image. The EO-1 satellite has an orbital distance of 705 

km, 98.7° inclination, and sun-synchronous orbit (Dutt and Jupp, 2004).To 

accomplish the present work, primarily remotely sensed satellite imagery is obtained 

from USGS website on request(http://earthexplorer.usgs.gov/) dated 21
st
 January 

2014. 

3.4.5.1 Hyperspectral Image Pre-Processing and Image Classification 

Hyperspectral image processing involves a series of techniques to obtain required 

information from satellite data. It includes dimensionality reduction and enhancement 

of signal to noise ratio. 

Based on the review of literature on widely accepted and reliable methods for 

hyperspectral data processing was adopted for image processing and classification. 

 

Hyperion scene consisted of 242 bands. First the image was converted into absolute 

radiance and initial bad bands were removed. 

 Radiometric correction was performed to remove atmospheric attenuation. 

 Registration of the image was carried out using another geo-referenced image 

(RMS error was less than 0.5 pixels).  

 Minimum Noise Fraction (MNF) transformation was executed to determine 

the inherent dimensionality of image data, to segregate noise in the data and to 

reduce computational requirements for subsequent processing.  

 Inverse MNF transformation was performed to include only the good bands.  

  

http://earthexplorer.usgs.gov/


45 
 

3.4.6 Radiometric Correction 

Radiometric correction refers to modification of reflectance values of every pixel in 

the image data to eliminate effects of atmosphere on the reflected radiation and also to 

incorporate sensor gain and offset to obtain and platform attenuations to get hold of 

surface reflectance. Therefore, atmospheric correction is very essential for quantitative 

analysis of surface reflectance. Such data of a hyperspectral image can be used to 

detect the presence of targets by means of a reference spectral library. Efficiency of 

atmospheric correction tools depends on number of atmospheric parameters while 

calculating surface reflectance. 

The Fast Line-of-sight Atmosphere Analysis of Spectral Hypercube (FLAASH) 

method is a physics-based approach for atmospheric correction that utilizes various 

metadata with reference to time, location, and many other parameters to generate a 

radiative transfer model incorporating Moderate resolution atmospheric 

TRANsmission4(MODTRAN4).It can correct images collected both in nadir and off 

nadir geometries. FLAASH produces accurate surface reflectance results which in 

turn results in accurate classification. Table 3.1 shows the important parameters used 

for radiometric correction using FLAASH. 

Equation for spectral radiance at a sensor pixel L that applies to the solar wavelength 

range is, 

L = ( A∗r

1−S∗re
) + ( B∗re

1−S∗re
) + La       (3.1) 

Where, 

r is the pixel surface reflectance.       

re is an average surface reflectance for the pixel and a surrounding region.   

S is the spherical albedo of the atmosphere.      

La is the radiance back scattered by the atmosphere.     

A and B are coefficients that depend on atmospheric and geometric conditions  

The values of A, B, S and La are determined from MODTRAN4 calculations that use 

the viewing ,solar angles and the mean surface elevation of the measurement, they 

assume certain model atmosphere, aerosol type, and visible range.  
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Table 3.1 Important parameters used for radiometric correction using FLAASH 

Parameter Value Parameter Value 

Sensor Altitude (km): 705 Ground Elevation (km): 0.66 

Pixel size (m): 30 Flight Date: 21
st
 Jan 2104 

Number of bands: 242 Water Absorption Feature: 1390 nm 

Atmospheric Model: MODTRAN-4 Aerosol Retrieval: Rural 

Aerosol Model: 2K-T Initial Visibility (km): 40 

 

3.4.7 Spectral Resize 

Spectral resizing is a procedure for removing bands with no data and known unstable 

band. Spectral subset of radiometrically corrected image was performed to exclude 

bad bands. 145 Stable bands (10-57, 83-97, 101-119, 134-164, 183-184, and 188-220) 

were retained after spectral resizing for further processing. This is carried out to 

exclude water absorption bands mainly in the region between 1336 nm and 1488 nm, 

1790 nm and 1972 nm. Major advantages of resizing are to improve classification 

accuracy and to reduce processing time. 

3.4.8 Geometric Correction 

The images acquired by Earth observation systems cannot be transferred to maps   

because, they are geometrically distorted. These distortions are due to errors in the 

satellite’s positioning on its orbit, the fact that the Earth is rotating on its axis as the 

image is being recorded, the effects of relief, etc. They are amplified even more by the 

fact that some satellites take oblique images. Geometric correction is necessary to pre-

process remotely sensed data and to remove geometric distortion so that individual 

picture elements (pixels) are in their proper planimetric (x, y) map locations.  

This facilitates remote sensing–derived information to relate it to other thematic 

information in GIS. Geometrically corrected imagery can be used to extract accurate 

distance, polygon area, and direction (bearing) information. Internal geometric errors 

are introduced by the remote sensing system itself or in combination with Earth 

rotation or curvature characteristics.  
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These distortions are often systematic (predictable), may be identified and corrected 

using pre-launch or in-flight platform ephemeris (i.e., information about the geometric 

characteristics of sensor and the Earth at data acquisition). 

Image geometric correction was carried out by image to image registration using 

another georeferenced (L1T) image, which is called image-to-image registration. 

Image-to-image registration is the matching of one image to another so the same 

geographic area is positioned coincident with respect to the other. This type of 

geometric correction is used when it is not necessary to have each pixel assigned a 

unique x, y coordinate in a map projection.  Nearest Neighbor interpolation was 

adopted to accurately retain pixel properties. This yielded an image with proper 

orientation and each pixel was tagged with its geographic position in UTM projection 

and WGS84 as datum. Image registration was performed with a RMSE of 0.43 pixels, 

which is equivalent to 12.9 m. Later the image was subset using vector shapefile of 

the chosen study area for further processing. 

 

3.4.9 Minimum Noise Fraction Transformation 

Minimum Noise Fraction (MNF) transformation is essentially used to find the 

inherent dimensionality of data, to segregate noise in it, and to increase the 

computational efficiency of subsequent processes. Objective of MNF is to select 

components so that Signal to Noise Ratio (SNR) is maximized. This transformation is 

a modified Principal Component Analysis originally proposed by Green et al., (1988) 

and implemented in image processing. MNF transform is essentially a noise adjusted 

two cascaded PC transformations which estimates and equalizes the amount of noise 

in each image band. The first PC transformation de-correlates and rescales the noise in 

the data. Here the noise statistics are calculated based on a shift difference method. 

This first step results in transformed data in which the noise has unit variance and no 

band-to-band correlations.  

The second step is another PC transformation of the noise-whitened data. For the 

purposes of further spectral processing, the dimensionality reduction of the data is 

carried out by examination of the final Eigen values and the image bands. 
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 In order to improve the results of data processing, only the coherent bands (i.e., the 

bands with higher Eigen values) are selected by eliminating redundant band. 

As stated earlier, MNF minimizes the noise Fraction (NF) or equivalently maximizes 

the signal-to-noise ratio (SNR) of linear combinations, aT.x(r), of zeroth-mean 

original (spatial) variables x(r). Here the total x(r) is written as a sum of a signal part, 

xS(r), and a noise part, xN(r). 

x(r) = xS(r) + xN(r)                                                  (3.2) 

Since these two parts are considered to be uncorrelated, the variance-covariance 

matrix S of x may be written as a sum of the signal and noise dispersions.  

S = SN + SS                                                            (3.3) 

The noise fraction NF is here defined as the ratio of the variance of the noise and the 

variance of the total, so for a linear combination aT.x(r) of zeroth-mean x(r) we get, 

NF =
aTSNa

aTSa
                                                             (3.4) 

The signal to noise ratio, which is defined as the ratio of the variance of the signal and 

the variance of the noise, is expressed in the equations 3.5 and 3.6. 

SNR =
aTSNa

aTSa
                                                         (3.5) 

i.e.,           SNR =  
1

NF
 -1                                                        (3.6) 

In this work, 14 bands up to eigenvalue of 1.523 (88.03%) were selected in VNIR 

range in MNF transformation followed by inverse MNF transformation to obtain back 

all 44 VNIR bands ranging from 460nm to 910nm. 

3.4.10 Spectral sub set 

To match the spectral bandwidth of spectroradiometer and Hyperion data, Hyperion 

imagery was spectrally subset and spectroradiometer data was resampled to match that 

of Hyperion image. Hyperion imagery was geometrically corrected to overly GPS 

data. Extracted endmembers from pure pixel (PPI) were matched with field spectra 

collected from spectroradiometer. Figure 3.10 shows the spectral signature of a 

particular Arecanut crop from field visit. And Figure 3.11 shows the corresponding 

spectra extracted from Hyperion image pixel, from the figure it is observed that 

coefficient of determination (R
2
) 0.95 and it is a good fit. Figure 3.12a&b shows the 

scatter plot between image spectra corresponds to field spectra.  
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This infers that there is a close similarity between endmember spectra extracted from 

image with the field spectra. 

 

Figure 3.10 Sample field spectra obtained from Spectroradiometer 

 

Fig. 3.11 Extracted endmember from Hyperion image 
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Figure 3.12 (a) Scatter plot between image spectra corresponds to field spectra 

 

Fig. 3.12 (b) Spectral matching 
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3.5 Application Software 

Environment for Visualizing Images (ENVI 5
®
), Erdas Imagine and ArcGIS software 

packages were used for image processing procedures and generating thematic maps. 

MATLAB
®
 and Microsoft Excel

®
 were used for data analysis and calculations. 

ENVI and Erdas Imagine are geospatial raster data processing tools which allow users 

to process and display satellite images for mapping use in geographic information 

system (GIS). ENVI
®

 is used for hyperspectral image processing, whereas 

Erdasimagine for modelling multiband images, band math operations and post-

processing procedures. ArcGIS
®
 was essentially used for generating thematic maps.  

3.6 Image Classification 

Various classification methods are available for classifying hyperspectral imagery. 

From the review of literature, most popular supervised classification methods found 

are Spectral Angle Mapper classifier (SAM), Support Vector Machine classifier 

(SVM) and Minimum Distance classifier. These supervised classification methods 

were compared in this study to find the most suitable classifier and to 

maparecanutcrop within class (age wise) seperability.  

 

3.6.1 Spectral Angle Mapper (SAM) Classification 

Classification was aided using spectral angle mapper (SAM) algorithm with 

reflectance signatures from spectroradiometer. SAM is a spectral classification that 

uses an n-dimensional angle to match pixels to reference spectra. As depicted in 

Figure 3.13, the algorithm determines the spectral similarity between two spectra by 

calculating the angle between the spectra, treating them as vectors in a space with 

dimensionality equal to number of bands. This technique, when used on calibrated 

reflectance data, is relatively insensitive to illumination and albedo effects.  
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Figure 3.13  Principle of Spectral Angle Mapper Classifier 

End member spectra used by SAM either it may be from (American Standard Code 

for Information Interchange)ASCII files, spectral libraries, or can be extracted directly 

from the image. SAM compares the angle between end member spectrum vector and 

each pixel vector in n-dimensional space. Smaller angles represent closer matches to 

the reference spectrum. Pixels further away than the specified maximum angle 

threshold in radians are not classified. 

Spectral Angle, a = cos
-1    ∑ 𝑡𝑖∗𝑟𝑖

𝑛𝑏

𝑖=1

∑ 𝑡𝑖
2𝑛𝑏

𝑖=1
∗∑ 𝑟𝑖

2𝑛𝑏

𝑖=1

                                                    (3.7) 

Where, t = target spectra and r= reference spectra 

Classification accuracy assessment is a method to evaluate the performance of 

classification algorithm in transforming image to thematic map. This can be used to 

compare the accuracies of two classifiers.  

In this work accuracy assessment was carried out using ERDAS
®
 Imagine accuracy 

assessment tool based on error matrix analysis. Accuracy assessment involves the 

comparison of classified map and the reference test information. This information can 

be presented in an error matrix where columns represent the referenced data while 

rows represent the classified data. 
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Overall accuracy (OA) is the summed average accuracies of individual classesand is 

expressed as percentage (%). OA represents the probability that a randomly selected 

point is classified correctly on the map.  

And the kappa coefficient (k) expresses the proportionate reduction in error generated 

by a classification process compared with error of completely random classification. 

k =  
N ∑ Xii–∑(Xi+∗X+i)

N2−∑(Xi+∗ X+i)  
                                                                                    (3.8) 

Where Xii represent diagonal values of the matrix with classes as rows and columns, 

Xi+ is the row pixel sum and X+iis the column pixel sum. N is the Sum of pixels 

considered for accuracy assessment. 

3.6.2 Support Vector Machine Classification 

Support Vector Machine (SVM) is a supervised classification method derived from 

statistical learning theory that often yields good classification results from complex 

and noisy data. It separates the classes with a decision surface that maximizes the 

margin between the classes. The surface is often called the optimal hyperplane, and 

the data points closest to the hyperplane are called support vectors. The support 

vectors are the critical elements of the training set. 

Support vector machine identifies a hyper- plane between two classes that produces 

optimal separation between the classes. To classify a data of N dimensions, (N − 1) 

dimensional hyper plane is developed. There are linear and non-linear kernels for 

support vector machine. When the training data are not linearly separable, non-linear 

kernels are used. 

The mathematical representation of each kernel is listed below: 

Linear K(xi,xj) = xiTxj …………………..(3.09) 

Polynomial K(xi,xj) = (gxiTxj + r)d, g > 0 …………………. (3.10) 

RBF K(xi,xj) = exp(-g||xi - xj||2), g > 0 …………………..(3.11) 

Sigmoid K(xi,xj) = tanh(gxiTxj + r) ………..................(3.12) 

Where: 

g is the gamma term in the kernel function for all kernel types except linear. 

d is the polynomial degree term in the kernel function for the polynomial kernel. 

r is the bias term in the kernel function for the polynomial and sigmoid kernels. 
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3.6.3 Minimum distance classification 

Minimum distance classification, Minimum distance classifier uses the mean vectors 

of each reference spectra and calculates the Euclidean distance from each unknown 

pixel to the mean vector for each class 

 

Euclidean distance (d) =√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2.
   …………………………...(3.13) 

 

3.7 Vegetation Indices  

The Advantages of indices over classification are sets distinguish between soil and 

vegetation, by reducing atmospheric and topographic effects if possible. Indices can 

be customized for particular applications. Vegetation monitoring is usually 

accomplished by simple regression approach, using remote sensing data and by 

computing vegetation indices (VIs). 

Several vegetation indices have been developed by linear combination or ratios of red, 

green and near-infrared spectral bands. Vegetation indices are more sensitive than 

individual bands to vegetation parameters (Baret and Guyot, 1991; Qi et al., 1993). 

The mathematical  transformation of spectral bands accentuates the spectral properties 

of green plants so that they appear distinct from other image features. This 

combination of two or more spectral bands results in the formation of vegetation 

indices. A vegetation index can be calculated by rationing, differencing, rationing 

differences and sums and by forming linear combinations of the spectral band data 

(Huete and Jackson, 1991). 
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3.7.1 Hyperspectral Vegetation Indices 

Vegetation interacts with solar radiation in a different way than other natural 

materials. The vegetation spectrum typically absorbs in red and blue wavelengths, 

reflects in green wavelength, strongly reflects in near infrared (NIR) wavelength, and 

displays strong absorption features in wavelengths where atmospheric water is 

present. Different plant materials, water content, pigment, carbon content, nitrogen 

content, and other properties cause further variation across the spectrum. Measuring 

these variations and studying their relationship to one another can provide meaningful 

information about plant health, water content, environmental stress, and other 

important characteristics. These relationships are often described as vegetation indices 

(VIs). 

Vegetation index can be calculated by rationing, differencing, and sums and by 

forming linear combinations of the spectral band data. The mathematical combination 

or transformation of spectral bands accentuates the spectral properties of green plants 

so that they appear distinct from other image features. This combination of two or 

more spectral bands results in the formation of vegetation indices. In this study 

different indices wereattemptedfor monitoring arecanut crop, Disease index to identify 

the disease severityof arecanut plantations. To segregate Arecanut crops into different 

age group Age Index. And Crop water requirement index to estimate the age based 

arecanut crop water requirement.  
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3.8 Crop Water Requirement through NDVI based Crop Coefficient 

Several methods are available for buildingindices depending upon the data availability 

and applications considered. This study utilizes NDVI based crop coefficient (Kc) 

method to estimate crop water requirement CWR due to lack of climatic data 

availability.  

Image ratio based Normalized Difference Vegetation Index (NDVI) can be expressed 

mathematically as,  

NDVI =
NIR−RED

NIR+RED
              (3.10) 

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that 

uses the visible and near-infrared bands of electromagnetic spectrum, and is adopted 

to analyse remote sensing measurements and to assess whether the target being 

observed contains live green vegetation or not. Generally, healthy vegetation will 

absorb most of the visible light that falls on it, and reflects a large portion of the near-

infrared light. Unhealthy or sparse vegetation reflects more visible light and less near-

infrared light. Bare soils on the other hand reflect moderately in both the red and 

infrared portion of the electromagnetic spectrum. The NDVIvalue ranges between -1 

and +1. However, no green leaves give a value close to zero and in general, pixels 

with value above 0.4 indicates vegetation. Higher values of NDVI indicate higher 

degree of photosynthetic activity or in other words healthy or dense vegetation.  

Kamble et al. (2013) developed and validated equation to calculate Kc using NDVI 

based on regression analysis between NDVI derived from remotely sensed data and 

AmeriFlux measured crop coefficient under irrigated and rainfed crop condition for 

various crops. This equation can be used with Hargreaves and Samani equation 

considering computing crop water requirement. There was a strong linear correlation 

between the NDVI-estimated Kc and the measured Kc with an r
2
 of 0.91 and 0.90, 

while the root-mean-square error (RMSE) for Kc were 0.16 and 0.19, respectively for 

two different years in which experiments were carried out. Crop coefficient Kc, was 

computed based on the equation: 

 Kc = 1.457NDVI – 0.1725              (3.11) 
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Crop water requirement is the amount of water required to compensate the 

evapotranspiration loss from the cropped field, Allen et al. (1998). In other words, 

water requirement of a crop is equivalent to water loss due to soil evaporation and 

transpiration from plant canopy. But soil evaporation component is negligibly small as 

plant foliage shades the soil beneath, along with efficient drip irrigation system 

considering no irrigation loss. Hence crop water requirement (CWR in mm/day) can 

be expressed as,  

CWR = ETc = Kc * ETo           (3.12) 

Daily reference crop evapotranspiration (ETo in mm/day) is computed based on 

equations presented by Hargreaves and Samani:  

ETo = 0.0135(KT) (Ra) (TD)
1/2

(TC+17.8)            (3.13) 

Where TD is temperature difference between daily maximum and minimum 

temperature (
o
C), TC is the daily mean temperature (

o
C), Ra is extraterrestrial 

radiation (MJ m
-2

 d
-1

) which is a function of latitude of location, inverse relative 

distance from earth to sun, solar declination etc calculated with reference to FAO 56, 

and KT is an empirical coefficient which depends on temperature difference. 

KT = 0.00185(TD)
2
 - 0.0433 TD + 0.4023                      (3.14) 

 These values were calculated separately (detailed calculations are presented in 

chapter 5) for the day on which Hyperion imagery was captured. Obtained value of 

ETc in mm/day is converted to l/day/plant by considering standard uniform plant to 

plant spacing (8 ft or 2.4384 m either way i.e. 151 plants in a pixel of 30m X 30m 

size) in the study area with drip irrigation practiced throughout. 

3.9 Arecanut Crop Water Requirement Index (ACWRI) 

A vegetation index (also called a vegetative index) is a single number that quantifies 

vegetation biomass and/or plant vigor for each pixel in a remote sensing image. The 

index is computed using several spectral bands that are sensitive to plant biomass and 

vigor. In the present work, using correlation analysis on Arecanut canopy reflectance 

and corresponding value of crop water requirement, an index was built. Canopy 

reflectance data is obtained from Hyperion imagery with respect to corresponding 
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crop water requirement from the map. Values of the index indicate the magnitude of 

crop water requirement index in a pixel with Arecanut crops. This will be helpful for 

spatial comparison of crop water requirement in a rapid manner, even without spectral 

library of the crop. 

Correlation and regression are two methods used to investigate the relationship 

between variables. The main difference between correlation and regression is that, 

correlation measures the degree to which the two variables are related, whereas 

regression is a method for describing the relationship between two variables. In this 

study the correlation and regression analysis were used to identify the important 

wavebands for Arecanut crop monitoring. 

3.10 Correlation Analysis  

Correlation analysis is a technique for investigating the relationship between two 

quantitative, continuous variables. Pearson's correlation coefficient (r) is a measure of 

strength of the association between two variables. 

ρXY = Corr (X, Y) =
Cov(X,Y)

𝛔X𝛔Y
  = 

E[(X−𝛍X)(Y−𝛍Y)]

𝛔X𝛔Y
          (3.15) 

Where E is the expected value operator, cov means covariance, and corr is a widely 

used alternative notation for the correlation coefficient. 

In the present work correlation analysis is helpful in identifying specific wavelengths 

in electromagnetic spectrum having association with water requirement of Arecanut 

plants. 

3.11 Stepwise Multi Linear Regression (SMLR) 

Stepwise regression is a systematic method for adding and removing terms from a 

multi linear model based on their statistical significance in a regression. The method 

begins with an initial model and then compares the explanatory power of 

incrementally larger and smaller models. If a term is not currently in the model, the 

null hypothesis is that the term would have a zero coefficient if added to the model. If 

there is sufficient evidence to reject the null hypothesis, the term is added to the 

model. Conversely, if a term is currently in the model, the null hypothesis is that the 

term has a zero coefficient. If there is insufficient evidence to reject the null 
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hypothesis, the term is removed from the model. Depending on the terms included in 

the initial model and the order in which terms are moved in and out, the method may 

build different models from the same set of potential terms. The method terminates 

when no single step improves the model. There is no guarantee; however, different 

initial model or a different sequence of steps will not lead to a better fit. (Draper and 

Smith 1998). 

This study has employed Stepwise Multi Linear Regression to prepare a thematic map 

Of age wise Arecanut crop water requirement of the study area. This was executed in 

MATLAB
®
. 

3.12 Partial Least Square Regression (PLSR) 

PLS is a bilinear calibration method using data compression by reducing the large 

number of measured collinear spectral variables to a few non-correlated principal 

components (PCs). The PCs represents the relevant structural information, which is 

present in the reflectance measurements to predict the dependent variable (Hansen and 

Schjoerring 2003) 

PLS regression uses component projection successively to find latent structures. 

Visual inspection of score-plots and validation residual variance plots were used to 

find the optimal number of PCs, so that over-fitting was prevented. In most cases, this 

procedure can reduce the number of spectral variables to a few independent PCs. The 

final model predicting ŷi had the following form (Eq. 3.15): 

ŷi= b0+b1t1i+b2t2i+…. +bntni………………………………………………………….. (3.15) 

 

Where t1i to tni are the scores from principal component (PC) 1 to n for variable i. The 

scores were calculated on the basis of mean-centered data. By linear regression of t 

versus y in the calibration iteration process, the regression coefficient bn was obtained. 

Due to the initial centering of y, the centered mean b0 was added in order to obtain yi. 

Validation of the models was performed by comparing differences in R
2
 and root 

mean square error (RMSE).   

RMSE values were calculated according to Eq. (3.16): 

RMSE =
√∑ (�̂�𝒊−𝒚𝒊)

𝟐
𝒏

𝒊=𝟏
𝒏

………………………………………………………….(3.16) 
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Where ŷi and yi were the predicted and measured crop variables, respectively, and n 

the number of samples (n = 360). RMSE provides a direct estimate of the modelling 

Error expressed in original measurement units (Kvalheim, 1987). 

 

The flexibility of the PLS-approach, its graphical orientation and its inherent ability to 

handle incomplete and noisy data with many variables (and observations) makes PLS 

a simple but powerful approach for the analysis of data of complicated problems 

(Wold et al., 2001).  

It can also be extended in various directions as PLSR provides an approach to the 

quantitative modelling of often complicated relationships between predictors (X) and 

response (Y) with complex problems seldom more realistic than multiple linear 

regressions (MLR) including stepwise selection variants. 

Hence it is found to be appropriate to determine combination of wavelengths to build 

a model to assess Arecanut crop water demand.  

Partial Least Squares (PLS) regression is a multivariate analysis technique used in 

cases where there are a large number of independent variables or predictors and these 

independent variables are highly collinear (Wold et al. 2001). The PLS method 

reduces the entire reflectance spectra to a small number of relevant factors and 

regresses them to the dependent variable (Gomez et al. 2008).  

A number of variants of PLS exist for estimating the factor and loading matrices for 

modelling. The most common of these are Non-linear Iterative Partial Least Squares 

(NIPALS) and Statistically Inspired Modification of PLS (SIMPLS) algorithms. This 

study employed Partial Least Squares regression for modelling the Arecanut crop 

water requirement from the Hyperion reflectance spectra. The regression was 

performed in MATLAB®.  

Hence it is found to be appropriate to determine combination of wavelengths to build 

a model to assess Arecanut crop water demand. In the present study X and Y inputs 

for the PLSR model are obtained crop water requirement values and corresponding 

spectral signatures from Arecanut crop water requirement map and pre-processed 

Hyperion imagery pixels respectively. 
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3.13 Identification of significant wavelengths 

 

The spectral response of functional groups or molecules is often dispersed over 

several adjacent wavelengths, leading to strong collinearity in some regions of the 

spectra, while other regions may be corrupted by noise, or in general, may contain 

irrelevant information (Gosselin et al. 2010). Hence it is necessary that the 

wavelengths that are relevant for modelling a particular property be identified. This 

can be carried out either through projection methods, variable selection or a 

combination of both. 

3.13.1 VIP scores and β coefficients 

The optionally modified output from the PLSR algorithm can be employed to purely 

identify a subset of important variables. The Variable Importance in PLS projections 

(VIP) is such a measure to accumulate the importance of each variable j being 

reflected by w from each component. The VIP measure vj is computed as in equation 

Vj= √P ∑ [(𝑞𝑎 
2𝐴

𝑎=1 𝑡𝑎
′ 𝑡𝑎(w𝑎𝑗/||w𝑎||)2]/ ∑ (𝑞𝑎 

2𝐴
𝑎=1 𝑡𝑎

′ 𝑡𝑎)     ……………………...(3.17) 

Where (waj/‖wa‖)
2
 represents the importance of the j

th
 variable and the variance 

explained by each component is given by the expression qa
2
ta′ ta. The vj weights are a 

measure of the contribution of each variable according to the variance explained by 

each PLS component (Mehmood et al. 2012). Variable j can be eliminated if vj< u, for 

some user-defined threshold u ∈(0, ∞). It is generally accepted that a variable should 

be selected if vj> 1.  

Another Variable selection method is to use the vector of regression coefficients (β) 

which is a single measure of association between each variable and the response. Even 

in this case, variables having small absolute value of regression coefficients can be 

eliminated (Mehmood et al. 2012). 

The wavelengths that are significant for modelling the crop water requirement from 

the Hyperion reflectance spectra using PLS regression were identified by setting 

thresholds for both Variable Importance for Projection (VIP) and the PLS regression 

coefficients, β. This was implemented in MATLAB
®
. 

In the following chapter the classification of stressed Arecanut crops from Hyperion/ 

field reflectance data is presented. Also the cause for a particular disorder called 

crown choke is discussed.  
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CHAPTER 4 

 

HYPERSPECTRAL DATA: A TOOL FOR MONITORING STRESSED 

ARECANUT CROPS  

4.1 Introduction  

There are about 20 locally known diseases which cause various degrees of damage to the 

Arecanut palm. Among these; Fruit rot, (Koleroga), bud rot, crown rot, Yellow leaf disease, 

band disease, foot rot (Anaberoga), Inflorescence die back, bacterial leaf stripe and nut 

splitting cause significant decrease in yield (Sheshagiri et al, 2010). The assessment of 

diseases in Arecanut plants is necessary, as it results in yield, quality and economic loss. 

Identifying the diseased crops at its initial stage helps to take proper monitory decisions. 

These diseases are generally affected in patches of farms. 

The first objective of this study is to investigating the feasibility of hyperspectral data for 

mapping (Classification), stressed Arecanut crops. And to find out the cause for crown choke 

disease in Arecanut crops. 

From the field visit it was observed that, several acres of Arecanut plots were affected by 

crown choke disease. Crown choke (also known as band disease) is a disorder rather than a 

disease, which occurs during some stage of development of the palm. The symptoms of the 

disorder are exhibited on the leaves as well as on the stem near the crown. The leaves 

become shorter than normal size and are distinctly dark green in colour. The leaflets are 

characteristically brittle and crinkled with wavy margin. As it progresses, the other 

symptoms like reduction in intermodal length, tapering of the stem (Patel and Rao, 1958) and 

failure of production of inflorescence of normal size are expressed by the palm. Figure.4.1b 

shows the crown choke affected Arecanut palm and Figure 4.1 a shows the healthy Arecanut 

palm. Sometimes inflorescences produced are small and malformed. In the acute stage, as a 

result of failure of natural opening of the leaves, which remain tightly binding the top portion 

of the stem and the crown exhibit rosette shape. This condition prevents the normal growth 

of the bud. 
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Sometimes multiple shoots are developed or the newly formed shoots may emerge through 

the sides of the tightly folded lower leaves (Joshi and Joshi, 1949). Roots are also poorly 

developed, brittle and crinkled. But in ideal case studies have shown that, under well drained 

deep soil conditions, healthy Arecanut roots traverse down to about three meters and the 

roots confine to only about 1.40 meters under shallow soil condition (Shama Bhat and Leela, 

1969; Bhat, 1978). 

In this study, the area under investigation is adversely affected by crown choke disorder. 

From the field visit it was observed that, large quantity of tank silt is being applied to areca 

plantations haphazardly by the growers. The practice has temporarily increased the Arecanut 

yields but on long run it has led to soil compaction, hardening, poor root aeration, rotting and 

disorders like crown choke.  

Figure 4.1 shows the typical crown choke affected and healthy Arecanut plant. The present 

study makes an attempt to use EO-1 Hyperion imagery to classify the crown choke disease 

affected area with healthy Arecanut plantations. To identify the cause for crown choke 

disease, grid wise soil and water samples were collected from the disease affected plots and 

subjected for physicochemical analysis. 

  

 

Figure 4.1 (a)Healthy and (b)Crown choke disease affected Arecanut plant 

 

Methodology followed for classification of health status of the crop is shown in Fig. 4.2. 
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Figure 4.2 Methodology for classifying the diseased vs healthy Arecanut crop 

 

4.2 Spectral library of healthy Vs diseased Arecanut crops 

Signatures collected from the field, facilitates construction of spectral library (reference 

spectra). This includes stressed crop (crown choke disorder crop) and healthy crops of 2, 4 

and 20 years Arecanut crops. It serves as the endmember for Spectral Angle Mapper (SAM) 

classification. Figure 4.3 shows the endmember collection spectra used for SAM 

classification. Stressed crop shows less reflectance than the different age groups of healthy 

crops. At near infrared region reflectance is drastically reduced for diseased Arecanut crop 

but for healthy the reflectance is very high. This particular region is helpful for 

discrimination of healthy Vs stressed Arecanut crop. In this study the stressed crop represents 

the crown choke disorder. Figure 4.4 shows the SAM classified map for healthy vs stressed 

Arecanut crops with spectral angle 0.2 radiance. 
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Figure 4.3 Spectral library plots of healthy Vs Stressed Arecanut crops 

 

Figure 4.4 SAM classified image with spectral angle 0.2 radiance 
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Classification accuracy assessment is necessary for comparing the performance of various 

classification techniques (Congalton and Green, 1998). Classification accuracy assessment is 

recognized as a critical component of any mapping project. Table 4.1 shows the confusion 

matrix of SAM classification.  

Table 4.1: Confusion matrix of SAM classification  

ACCURACY TOTALS  

Class Reference Classified Number Producers Users Class 

Name Totals Totals Correct Accuracy Accuracy Kappa 

Stressed Crop 7 10 7 100.00% 70.00% 0.63 

Healthy Crop (20 Years) 8 10 7 87.50% 70.00% 0.62 

Healthy Crop (2 Years) 10 10 8 80.00% 80.00% 0.73 

Healthy Crop (4 Years) 11 10 9 81.82% 90.00% 0.86 

Totals 40 40 31    

Overall Classification Accuracy =     77.50%     

Overall Kappa Statistics = 0.7      

 

Overall classification accuracy observed is 77.5% of healthy and stressed Arecanut crops. 

Usually in remote sensing 80-85% classification accuracy is known as good and in this case, 

it is within class classification hence it is acceptable. Kappa coefficient is nearer to 1 as 

Kappa is always less than or equal to 1 and a value of 1 implies perfect agreement and values 

less than 1 imply less than perfect agreement. From the classified image it can be observed 

that more than 10 % of the total areas are affected by crown choke disease. To identify the 

cause for this particular type of disorder soil and water samples were collected from the study 

area and analysed in laboratory.  

 

4.3 Physicochemical analyses  

Characterization of surface soil (0-20 cm) for fertility status was studied by taking twenty 

representative samples from typical Arecanut gardens. The collected soil samples were air 

dried under shade. Standard laboratory procedures as per relevant IS codes were adopted for 

the analysis of nutrients.  
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Particle size analysis by soil hydro meter method, pH, electrical conductivity by 

conductometric method, organic carbon by Walkely and Black’s wet oxidation method, 

nitrogen estimation by Kjehl Tech method, phosphorus by Spectro photometry, potassium 

and sodium by flame photometry, exchangeable calcium and magnesium by Versenate 

titration and available sulphur by Turbidometry. Available Fe, Mn, Zn and Cu by absorption 

spectrophometry method. As observed from the analysis, majority of the soil samples were 

alkaline in nature. The electrical conductivity was found to be critical for half of the soil 

samples and the average organic carbon content was found be high. Figure 4.5 shows the 

actual location map of the soil and water sample points.  
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Figure 4.5 Soil and water sampling locations on the Hyperion image 
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Figure 4.6 Soil sampling 

 

Figure 4.7 Soil and Water Samples  

Figure 4.6 shows the collection of soil samples from the field, top soil was collected by 

digging a 20 cm pit and trimming side wall to ensure that sample must contains all the layers. 

Each collected soil sample consist the average of five samples collected from a radius of 5 

meters. Figure 4.7 shows the packed soil and water samples for the laboratory analysis.  

 

The measured soil pH showed in the Figure 4.8, is ranges in between 7.4 to 8.5. Most of the 

samples were alkaline in nature and one is acidic, two samples showed neutral.  
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Figure 4.8 Spatial variation of Soil pH  

The measured soil electrical conductivity showed in Figure 4.9 is varying in the range of 0.4 

to 1.6. Only 9 samples were measured under safer limit, around 10 samples in critical range 

and one sample under unsafe.  

 

Figure 4.9 Spatial variation of Soil electrical conductivity 
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The measured soil organic carbon is shown in Figure 4.10 and it ranges from 0.4 to 1. And it 

was found to be low for 3 samples and within a permissible limit for 5 and rich for 12 

samples. 

 

Figure 4.10 Spatial variation of Soil organic content 

Table 4.2 shows the statistics of available surface soil nutrients status in the Arecanut farms. 

The average Nitrogen was found to be low whereas the average phosphorus, potassium and 

sulphur status was found in the range of medium to high among twenty samples.  
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Figure 4.11 represents spatial variation of available surface soil nutrients. 

 

 

              Figure 4.11 spatial variations of available surface soil nutrients. 

 

From the available micro nutrients status in the study area it was found that except zinc, the 

iron, magnesium, and copper contents were high. Table 4.3 shows the range of micronutrient 

values and the number of soil samples in each range. Figure 4.12 represents the statistics of 

soil nutrients.  

Table 4.3 shows the statistics for available surface soil micro nutrients status of Arecanut 

farms. 

 

Table 4.3 Statistics of available surface soil micro nutrients status of Arecanut farms 
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Figure 4.13 bar chart representations of the available soil micro nutrients Fe, Mn, Zn, Cu 
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Figure 4.12 Soil micro nutrients Fe, Mn, Zn, and Cu 

From the analysis of chemical properties of soil, it may be inferred that, chemical properties 

may not be the serious cause for disease under study. 

4.4 Water quality analysis 

To analyse the irrigation water quality source of irrigation water samples collected from field 

were subjected to laboratory analysis and the following results obtained from the standard 

tests. Figure 4.13 shows the variation of irrigation water pH level. 

 

Figure 4.13 Irrigation water pH across the study area 
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Generally if pH value is less than 6.5, it should be used with amendments. Usually 6.5 to 7.5 

are considered as safe and if it is more than 7.5 it should be used after treatment. From the 

analysis it was found that the pH of irrigation water is safe and it is within the permissible 

limit.  

The permissible limit of EC should be less than 0.25. If it ranges between 0.25 to 0.75 

leaching is required and if it is 0.75 to 2.25 and above 2.25 not safe. The analysis shows that 

the irrigated water having greater EC values than the permissible limit. Hence proper care 

should be taken before irrigation. Figure 4.14 shows the irrigation water electrical 

conductivity range. 

 

 

Figure 4.14 Irrigation water electrical conductivity 
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The Ca, Mg, Ca+Mg and HCO3 are safe and within permissible limit. Figure 4.15 shows the 

variations of Ca, Mg, Ca+Mg.  

 

 

Figure 4.15 Irrigation water Ca, Mg, Ca+Mg 

 

Figure 4.16 represents variations of HCO3and it is within permissible limit as per standards.  

 

Figure 4.16 Irrigation water HCO3 
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Fifteen water samples were collected from the study area; from the water quality analysis it 

was found that, the irrigated water quality is good and it is within the permissible limit. The 

average p
H 

was found to be 7.1 and it is safe as per the standards. The average EC was found 

to be 0.5 dS/m which is slightly greater than the safer limit. And the carbonate, bicarbonate, 

magnesium ions were within the permissible limit. From the analysis of chemical properties 

of water, it may be inferred that, chemical properties of water may not be the cause of the 

disease under study. Hence the physical properties of the soil were put under investigation.  

4.5 Physical properties of the soil 

Figure 4.17 shows the traded fresh Arecanut plants substitute for the deteriorated Arecanut 

plant due to crown choke disorder. When test pit was excavated under the deteriorated plant.  

 

 

Figure 4.17 Field soil sampling picture under the crown choke affected plant  

From the observation it was noticed that top 20 cm soil was varying with the beneath soil 

Figure 4.18 shows the variation of soil type under the deteriorated plant, and this may be due 

to the addition of tank silt from the nearby ponds. Roots were not crossed beneath; instead it 

was crisscrossed at top few centimetres. 
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Figure 4.18 Excavated soil sampling duct  

From Figure 4.18 it can be clearly seen that added tank silt at the top layer. Five test plots 

were selected from the adversely "crown choke" disease affected Arecanut farms. At each 

location 4 core samples were collected to a total depth of 1 meter at 15cm intervals. Soil 

samples were tested for bulk density, grain size analysis, porosity. Figure 4.19 shows the 

sample collection for bulk density and grain size analysis at varying depth. Clockwise Figure 

shows the (a) & (b) preparation of top layer soil strata by removing vegetation, c) placing 

core cutter and (d) to (e) collection of soil samples at varying depts. 

 

Figure 4.19 Field soil sample collection to analyse physical properties 
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Figure 4.20 shows the bulk density test and initial soil moisture tests at field.  

 

Figure 4.20 Bulk density and soil moisture measurements at field. 

Figure 4.21 shows the hydrometer analysis test in the laboratory to identify the particle size 

distribution, and hydraulic conductivity. 

 

Figure 4.21 Hydrometer analyses in the laboratory 



80 
 

Table 4.4 shows range of physical properties of the soil from the test plots. Few observations 

from this table are high value of Bulk density, high % of silt content, very low value 

hydraulic conductivity and considerably less value of porosity. 

Table 4.4 Soil Physical properties 

 
Bulk Density 

(g/cm3) 

Moisture 

 (%) 

Dry Density  

(g/cm3) 

Specific 

 Gravity 

Silt  

Content 

(%) 

Hydraulic Conductivity 

(cm/sec) 

Max 2.12 28.9 1.71 2.57 82  

Avg 1.89 22.2 1.55 2.38 72 3.2×10
-7

 

Min 1.71 16.3 1.37 2.29 62  

 

By analysing the test mine shown in Figure.4.22 which was excavated below the death plant 

of crown choke affected Arecanut plant, it can be observed that the roots were distributed 

only less than 30 cm depth and below 30 cm there were no roots. From the literature it is 

found that, a healthy Arecanut plant of 20 years will have roots up to 3-meter depth. But in 

the test plot it was observed that the roots of 20-year palm have hardly reached less than 50 

cm. From the physical properties and also from field observation, one may infer that there is 

no breathing space for the roots. Primary reason is poorly graded soil stratum which ceases 

the root development. Impervious nature of the surface causes irrigated water to be simply 

drained off from the surface not reaching the roots.  

  

 

Figure 4.22 Test plots 
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4.6 Summary 

Overall classification accuracy observed was 77.5% for healthy and stressed Arecanut crops. 

From the classified Hyperion image it was found that more than 10 % of the total areas are 

affected by crown choke disease. 

The Arecanut crop is affected by crown choke disease for long years and has affected the 

yield and life span of the palm. From the investigation it may be concluded that the poor 

gradation of soil stratum ceases the root development. Impervious nature of the surface 

causes irrigated water to be simply drained off from the surface not reaching the roots. Due 

to this impervious nature, the waterlogging takes place and leads to salinity. The only way to 

manage the problem is better soil management and improved drainage system. Further 

investigation is needed on blending of the soil for new plantation and for the existing one. 

Improved drainage system has to be thought of. Soil aeration can be improved by, removing 

the hard pan of sub soil and application of organic matter. The practice of addition of tank silt 

on a large scale should be discontinued. 

The next chapter explain the feasibility of hyperspectral data for mapping (Classification) 

different age group, Arecanut crops. 
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CHAPTER 5 

HYPERSPECTRAL DATA: A TOOL FOR AGE BASED 

CLASSIFICATION OF ARECANUT CROP 

5.1 Introduction  

The present chapter objective is to investigate the feasibility of hyperspectral data for 

mapping (Classification) the distribution of different age group, Arecanut crops. To 

monitor plantation crop, age based crop mapping is one of the important input for crop 

water requirement and yield estimation. The aim of the study is to classify Arecanut crops 

into different age groups. For this, reflectance spectra were collected from different ages 

(1 to 50) of Arecanut crops. From the spectral patterns it was observed that, four distinct 

groups can be formed with clear spectral seperability. This category consists of below 3 

years, 3 to 7, and 8–15 and above 15 years of age. Figure 5.1 shows spectral reflectance 

curve of Arecanut crops of different age group forming the spectral library. Clear 

distinction can be seen between these spectra especially in the visible and NIR region 

Figure 5.1 a&b shows the enlarged portions of visible and NIR region. This region can be 

treated as an effective tool for the discrimination of Arecanut crops based on age. To 

classify Arecanut crop into different age various popular algorithms were considered and 

compared in this study.  

5.2 Classification 

Supervised classification methods viz Spectral Angle Mapper classifier (SAM), Support 

Vector Machine classifier (SVM) and Minimum Distance classifier were compared to 

find the most suitable classifier, to map within class (age wise) seperability utilizing 

hyperspectral data. 

5.2.1 Spectral Angle Mapper (SAM) Classification 

Supervised classification on Hyperion imagery was carried out by SAM classifier; SAM 

enables to classify the targets based on either spectral library or with respect to training 

sites. This study attempts classification (i) using the developed spectral library and (ii) 

training sites. 
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5.2.1.1 Spectral library of different age group Arecanut crops 

 Reflectance spectra were collected from different ages of Arecanut crops ranging 

from 1 to 50 years. From these patterns it was observed that, four distinct groups can be 

formed having clear spectral seperability. These categories are crops of below 3 years, 3-

7, 8-15, and above 15 years ‘of age. Figure 5.1 shows spectral reflectance curves of 

Arecanut crops at different age groups forming the library. There is a clear distinction 

between these spectra especially in the NIR region. Hence, this region is effective for 

discrimination of Arecanut crops based on age. Figure 5.2 a&b shows the enlarged visible 

and NIR portions of the spectral library.  

 

Figure 5.1 Spectral library plots of different age group Arecanut crops. 
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(a) Visible region. 

 

(b) NIR region. 

Figure 5.2 a& b Enlarged visible and NIR region of Spectral library. 
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5.2.2 Minimum Distance Classification 

Minimum distance classifier uses the mean vectors of each reference spectra and 

calculates the Euclidean distance from each unknown pixel to the mean vector for each 

class. Figure 5.4shows the output image of minimum distance classification using training 

sites for the Hyperion imagery. 

5.2.3. Support Vector Machine Classification 

SVM identifies a hyper- plane between two classes that produces optimal separation 

between the classes. In this study, classification was carried out using linear as well as 

non-linear kernels from the training sites. The non-linear kernels include polynomial, 

radial basis function and sigmoid kernels. Figure 5.5 shows the output of support vector 

machine-based classification using different kernels. Table 5.1 shows the comparison 

between overall classification accuracies of support vector machine classification using 

different kernels with other classification methods. It is found that SVM with linear 

kernel has the highest accuracy compared to other kernels with an overall accuracy of 

72.55%. From this one may infer that, even within class variability of crop can be 

discriminated better with SVM when compared to other classification methods. 

5.3 Classification results 

Supervised classification methods namely i) Spectral Angle Mapper classifier (SAM) ii) 

Support Vector Machine classifier (SVM) iii) Minimum Distance classifier were 

compared to find the most suitable classifier to map within class (age wise) seperability. 

Table 5.2 &5.3 shows result of accuracy assessment carried out to compare efficacy of 

each algorithms.  

5.3.1 Classification of Hyperion imagery  

Hyperion imagery was used to carry out supervised classification by SAM classifier using 

spectral library created for different ages of Arecanut crop and also from training sites. 

SAM classifies the imagery based on spectral similarity between image spectra and the 

reference spectra. The spectral similarity is determined by calculating the angle between 

the reference spectra and the satellite imagery spectra treating them as vectors in an n-

dimensional space where n equals to the number of spectral bands of the sensor. Figure 

5.3 shows the SAM classified output image using spectral library for varying spectral 

angles and Figure 5.3 a, shows using training sites.  
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a.SAM classification using training sites b. SAM classification, spectral angle 0.1 

  

c. spectral angle 0.13 d. spectral angle 0.15 

Figure5.3 SAM classifications using spectral library 
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5.3.2 Minimum distance classifier results 

The minimum distance technique uses the mean vectors of each reference spectra and 

calculates the Euclidean distance from each unknown pixel to the mean vector for each 

class. Figure 5.4 shows the output image of minimum distance classification for the 

hyperspectral imagery. 

 

Figure 5.4Minimum distance classification. 
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Table 5.1 shows the confusion matrixes of Minimum distance and SAM classification 

using spectral library and training sites with the varying spectral angle. The results were 

discussed in detail in the discussion part.  

Table: 5.1 Confusion matrixes of SAM and Minimum distance classifier 

Classes 

 (in age) 

Confusion matrix for SAM classification 

Confusion matrix for 

Minimum distance 

Classification 

Using Spectral library 
Using training 

sites 

Angle = 0.1 Angle= 0.13 Angle = 0.1 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 
PA (%) UA (%) 

Below 3 years 6.67 100 23.91 84.62 28.57 22.22 82.61 26.21 

3 to 7 years 0 0 0 0 20 16.67 20.59 9.72 

8 to 15 years 22.5 56.25 30.08 90.59 66.67 61.9 32.81 81.82 

Above 15 years 98.21 56.7 97.03 51.89 53.85 66.67 77.45 86.81 

Overall 

accuracy (%) 
51.18 57.68 50.83 55.88 

Kappa 

coefficient 
0.21 0.25 0.29 0.39 

 

5.3.3 Support Vector Machine Classifier 

 Figure 5.5 shows the output of support vector machine based classification using 

different kernels. 
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Linear kernel Polynomial kernel 

  

Radial basis function kernel Sigmoid kernel 

Figure 5.5: SVM classification using training sites with different Kernel Functions 
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Table 5.2 shows the confusion matrix of SVM classification for different kernel functions 

with the classification accuracy results for each age group Arecanut crop.  

Table 5.2 Confusion matrix of SVM classification 

 

SVM with 

linear  

SVM with 

polynomial  

SVM with 

Radial basis 

function 

SVM with 

sigmoid  

Class 
PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

Below 3 years 65.22 45.45 54.35 41.67 47.83 37.29 58.7 38.57 

3 to 7 years 12.5 22.22 23.53 29.63 23.53 29.63 11.76 17.39 

8 to 15 years 66.93 74.36 55.12 92.72 54.72 92.67 51.95 87.5 

Above 15 

years 
86.25 82.93 97.01 71.43 97.01 71.04 93.66 69.92 

Overall 

accuracy% 
72.55 71.93 71.26 68.70 

Kappa 

coefficient 
0.55 0.54 0.53 0.49 
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5.4 Optimum Wavelengths Selection and Model Building 

It was desired to find the optimum wavelengths combinations for predicting the age of 

Arecanut crops. The inputs are age of the crop and corresponding reflectance spectra 

collected from the field. A set of latent variables and scores were observed for the input 

dataset and finally optimum bands were obtained. The obtained optimum bands were 701, 

719, 756 and 1015 nm using which; the following model was developed for predicting 

age of Arecanut crops (Equation5.1).  

A simple regression equation was developed to predict age of the Arecanut crop using 

optimum wavelengths to facilitate estimation from satellite data.  

Y = 157.82 – 5.425 λ701 + 466.468 λ 719 – 21.931 λ 756 – 434.235 λ1015         (5.1) 

Where, Y – predicted age in years 

λ 701, λ 719, λ 756, λ 1015 Reflectance corresponding to 701 nm, 719 nm, 756 nm, and 1015 

nm wavelengths respectively. 

70% of data is used for calibrating model, remaining 30% of data is used to validate. The 

model gave RMSE of 3.22 years with the R
2 

of 0.86. Table 5.3 shows the comparison 

between the predicted and observed ages of Arecanut crops. 

Table 5.3 Observed Vs predicted age in years. 

Observed age Predicted age RMSE (in year) 

3 2.38 0.62 

4 1.58 2.42 

20 20.07 0.07 

50 43.9 6.1 

 

The model predicted 3 years aged crop as 2.38 years, it predicted accurately for 20 years 

crop and lower accuracy for above 50 years crops. Table 5.4 shows comparisons of 

overall accuracy and Table 5.5 shows the statistics for each age group accuracy.  
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Table 5.4 Overall classification accuracy comparisons. 

 

 

 

 

 

 

 

Table 5.5 Statistics of various age group classes area under Arecanut crop and SVM individual class classification accuracy. 

 

 

 

Spectral Angle Mapper Classifier  

Minimum 

 

 Distance 

 

 Classifier 

Support Vector Machine Classifier 

Using Spectral library Using training sites Using training sites with different kernel functions 

 Angle = 

0.1 Rad 

Angle=  

0.13 Rad 

 

Angle = 

0.1 Rad 
Linear  Polynomial  

Radial  

basis function   
Sigmoid  

Overall 

Accuracy (%) 
51.18 57.68 50.83 55.88 72.55 71.93 71.26 68.70 

Group Class 

Spectral Angle Mapper Classifier 

 

Minimum  

distance  

Classifier 

Support Vector Machine Classifier (linear kernel)  

Using Spectral library 

 

 

Using 

Training  

sites 

0.1 

Rad 

0.13 

Rad 

0.15 

Rad 

0.13 

Rad 

 

Area 

 

Individual class User’s and 

Producer’s Accuracy (PA) 

% area % area % area % area % area % area in Km
2
 PA (%) UA (%) 

Below 3 years 0.068 0.065 0.068 0.92 0.95 3.1 4.557 

13.62 

65.22 45.45 

3 to 7 years 0.0 0 0 0.88 1.42 1.38 2.0286 12.5 22.22 

8 to 15 years 3 4.6 12.9 9.78 4.39 3.44 5.0568 66.93 74.36 

Above 15 years 4.3 8 4.8 2.21 4.5 1.35 1.9845 86.25 82.93 

Others 92.632 87.335 82.232 86.21 88.74 90.73 133.3731  Overall 
72.55 %. 

Total  100 100 100 100 100 100 147  Accuracy 
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5.5 Summary 

Spectral pattern of Arecanut crops of different ages (1 to 50) has revealed that four 

distinct groups can be formed with clear spectral seperability. This category consists of 

below 3 years, 3–7, and 8–15 and above 15 years of age. SAM classification carried out 

using spectral library created for different ages of Arecanut crop and also training sites 

obtained for each age group from the field visit. For classification using spectral library, 

spectral angle is varied from 0.1 to 0.15 to check the increased accuracy in each age 

group. Increase in spectral angle did not show much difference for the crop below 3 years 

of age group, whereas the crop above 15 years age group and 8 to15 age group showed 

significant increase i.e. 4.3 to 4.8% and 3 to 12.9%, respectively.  

SAM classifier resulted in close spectral similarity between 3 to7 years age crops with 8 

to15 year’s crop, whereas the accuracy achieved by the SVM classifier with linear kernel 

yielded minimum user’s accuracy of 22.22% for 3–7 years of Arecanut crops to 

maximum of 82.93% for above 15 years of Arecanut crops. Individual age group 

classification producer’s accuracy varied minimum of 12.5% for 3–7 years age group and 

maximum of 86.25% for above 15 years age group. SVM outperformed better even for 

individual age group classification. Table 5.5 provides an area statistics in % of various 

age group classes of Arecanut crop classified with various classification methods in the 

study area. From SVM, with linear kernel classification method results, it was found that 

total area under Arecanut crop cultivation is 13.62 km
2
 among the 147 km

2
 study area. 

This includes below 3 years of 4.55 km
2
, 3–7 years of 2.02 km

2
, 8–15 years of 5.05 km

2
 

and above 15 years crops of 1.98 km
2
. The results also illustrate that classification 

accuracy of spectral library-based classification is comparable with classification using 

training samples, suggesting that; spectral library built using spectroradiometer can be 

effectively used for classification. Minimum distance classifier showed better 

classification accuracy than SAM because of close similarity of classes. Support Vector 

Machine supervised classification identifies the class associated with each pixel on image 

and provides good classification results even for complex and noisy data. In this study, 

SVM with linear kernel showed highest classification accuracy. The obtained results are 

on par with the study carried out by Joevivek et al. (2009) and Petropoulos et al. (2013). 

Lower accuracy of SAM could also be due to higher variation in reflectance values of 

pixels belonging to same class. 
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The study proved that spectral library can even be built for plantation crops which have 

long life, like50 years and it will assist crop classification based on age, avoiding the 

laborious site visits. Spectral library is developed for different age groups of Arecanut 

crops showed clear spectral seperability. They are being, below 3 years, 3–7 years, 8–15 

years and above 15 years. Based on compared classification algorithms accuracy 

assessment, it can be concluded that, SVM with linear kernel function is the most 

accurate classification method for within class seperability with an overall accuracy of 

72%. The total area under Arecanut crop cultivation was found to be 13.62 km
2
 among 

147 km
2
 of study area. Also, SVM classifier with linear kernel yielded minimum user’s 

accuracy of 22.22% for 3–7 years of Arecanut crops to maximum of 82.93% for above 15 

years Arecanut crops. Individual age group classification producer’s accuracy varied 

minimum of 12.5% for 3–7 years age group and maximum of 86.25% for above 15 years 

age group. SVM outperformed better even for individual age group classification. 

In the next chapter development of hyperspectral vegetation indices for Arecanut crop 

monitoring is presented. 
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CHAPTER 6  

HYPERSPECTRAL VEGETAION INDICESFOR ARECANUT 

CROP MONITORING 

6.1 Introduction 

Narrow bands in hyperspectral data facilitate computation of several spectral indices 

and can facilitate improved classification accuracy. The objective of this chapter is 

development of hyperspectral vegetation indices for stressed and different age groups 

Arecanut crop identification and intensity of stress. 

On time mapping of spatial spread of disease severity helps in taking decision for 

necessary remedial measures. Crown choke disorder in Arecanut crop not only 

injuries the yielding stage of plant’s life but also cause irreparable damage to farmer’s 

years of effort. 

Crown choke disease in Arecanut crop is unique in naturewith distinctly dark green in 

visibility compared to healthy one. To segregate this disease affected crop with 

healthy arecanut crop there is a need to develop a disease index for finding disease 

severity in arecanut crops. It is explored to derive an algorithm, to differentiate 

healthy versus diseased Arecanut crop. From the analysis it is observed that red edge 

region is the key feature to identify vegetation stress. In this study combination of 

visible as well red edge region combinations were tried for deriving a disease index. 

The concept used in building disease index is that, it should use easy-to–use 

mathematical algorithms, transforming multi-band data into a single band showing the 

severity of the disease. Additionally, the algorithm must have the ability to illustrate 

the healthy versus stressed Arecanut crop even with a few band combinations. 

Chlorophyll pigment is an excellent indicator of vegetation stress. A set of band 

combinations were found helpful in distinguishing stressed and healthy vegetation. 

After the spectral analysis, three key features were identified and used for band 

combinations. Also from the literature it was found that red edge region is the most 

important region in detecting vegetation variances. Sample laboratory measurements 

of healthy and stressed vegetation reflectance spectra are shown in Figure 6.1 and 6.2 

respectively.   
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The proposed Disease Index is expected to be sensitive to Arecanut crown choke 

disorder. The spectral reflectance curve of healthy green vegetation has a significant 

minimum reflectance in the visible portion of the electromagnetic spectrum resulting 

from the pigments in plant leaves. Reflectance increases dramatically in near infrared 

for healthy plants compare to stressed vegetation, this information is useful to identify 

stressed vegetation because; stressed vegetation has a significantly lower reflectance 

in the infrared. The ASD data was processed in view spec pro to find the spectral 

signatures of the available vegetation data. View spec pro is a software application 

which is used to analyze the ASD data. The reflectance data was then exported in 

excel format for further processing. The reflectance of each Arecanut vegetation 

sample was then obtained corresponding to their wavelength.  

Figure 6.3shows healthy and diseased Arecanut crop spectral signatures. Identifying 

prominence bands due to distinctiveness at 550, 675 and 750nm the Arecanut Disease 

Index is intended. 

 

Figure 6.1 Diseased Arecanut crop Spectra 
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Figure 6.2 Healthy Arecanut crop spectra  

 

Figure6.3 Stressed and healthy vegetation reflectance spectra 

6.1.1 First Order Derivative Reflectance  

 

The first order derivative shows the rate of change in the reflectance curve. The 

average first order derivative reflectance spectra of the healthy and the diseased plants 

as obtained from the processed spectroradiometer data is shown in the Figure 6.4. 
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Figure6.4 First order reflectance curves. 

It was seen that the maximum value in first order derivative reflectance curve comes 

in the red edge region, where rate of change was maximum it may be due to the 

change of reflectance from low red reflectance to high NIR reflectance. In the present 

study, the maximum first derivative occurred at approximately 700–760 nm. The 

maximum the first derivative in the green was at 520 nm and minimum at 520-580 

nm. The healthy plants have highest value in the first derivative both at red edge and 

green region compared to diseased plants. As the disease intensity increased these 

maximum values became lower. This indicates a healthy plant has sharpest change in 

reflectance value in red edge compared to diseased plants. It was clearly observed that 

as the disease intensity increases there is a shift in the wavelength towards the red 

edge portion. The maximum of healthy one is at 720nm while for the disease intense 

plot the maximum is at 700nm (red edge). The red edge position moves towards right 

with a shift of about 20nm.  

Megaha et.al (2014) have analysed correlation coefficient between the Arecanut crops 

of diseased intensity percentage and the absorbance at each wavelength which 

indicates the strength of the relationship between disease severity and leaf absorbance 

at the various wavelengths. Disease intensity and the spectral reflectance values, 

shown in the form of a curve in refer Figure6.5. There was a very high correlation 

(−0.8 to + 0.8) between disease intensity with spectral reflectance.  
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The correlation coefficient increased from 0.3 at 540 nm to 0.7 at 580 nm. There was 

a low correlation between 520–560 nm and it again increased to around 0.75 in 610–

630 nm region. Beyond 700 nm, the spectral reflectance has very high negative 

correlation with the disease intensity. This shows that, hyperspectral data are highly 

useful for disease detection and disease intensity estimation. With these backgrounds 

Arecanut crop DI is proposed.  

 

Figure 6.5 Correlation Coefficient vs. Wavelength. 

(source: Megha et al., 2014) 

6.2 Arecanut Disease Index 

The resulting Arecanut Disease Index is inspiration of the study carried out by Kuhn 

et al., (2004), they focused on Hydrocarbon Index (HI) development and testing for 

the direct detection of hydrocarbons. Figure 6.6 and 6.7 shows index points for 

healthy and stressed Arecanut crop. 

Present study tries to identify index points for the developing DI. Figure 6.8shows the 

index points those form a triangle to derive DI. The index points set for the 

wavelengths are λA= 550nm, λ= λBˈ≈675nm and λC=750nm. The disease index (DI) 

uses the vertical line DI=BBˈ, as indicator of severity of disease. The index points A, 

B and C form a triangle (DI>0). As an approximation, it can be assumed that the 

larger the DI value, the healthier the crop. If not the disease severity is high. The 

observed minimum and maximum derived DI value ranges from0.45 to 1.5 

respectively, for the region under investigation. 
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Figure 6.6 Index points for healthy Arecanut crop spectral signature 

 

Figure 6.7 Index points for stressed Arecanut crop spectral signature  
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Figure 6.8 A, B, C Index points those form a triangle to derive DI. 

 

If the disease severity is more, the DI value will be less than 0.5 and for healthy the 

range of DI is 1 to 1.5. As an approximation, it can be assumed that the larger the DI 

value, the larger the indication of healthy. If not the index points a, b and c lie almost 

a nearly smaller triangle compare to triangle A, B and C. The Disease Index can be 

calculated using these three points as follows, (equation of a straight line through two 

known points). 

(λA; RA), (λ; R) and (λC; RC) 

Where λ; R is a variable 

∵R= RBˈ 

𝑅−𝑅𝐴

𝑅𝐶−𝑅𝐴
= 

𝜆−𝜆𝐴

𝜆𝐶−𝜆𝐴
 

∵λ= λBˈ 

RBˈ =
𝜆𝐵−𝜆𝐴

𝜆𝐶−𝜆𝐴
 (RC - RA) +RA 

DI = RBˈ - RB 

DI =
𝜆𝐵−𝜆𝐴

𝜆𝐶−𝜆𝐴
 (RC - RA) +RA-RB 

DI=
675−550

750−550
 (RC - RA) +RA-RB 
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DI= 
5

8
(R750-R550) + R550 - R675 …………………………………………………. …(6.1) 

Substituting the reflectance values to corresponding wavelengths’ in equation 6.1 

forest healthy Arecanut crop DI value is 

= 
5

8
(R750-R550) + R550-R675 

= 
5

8
(0.72-0.26) + 0.26-0.52 

DI =1.39≈1.4 

Substituting for critical diseased Arecanut crop DI value is 

DI = 
5

8
(R750-R550) + R550-R675 

= 
5

8
(0.34-0.2) + 0.2- 0.18 

DI =0.46≈ 0.5 

The derived index value ranges from minimum of 0.46≈ 0.5 to maximum value of 

1.39≈1.4 hence it is difficult to understand these range of values, it should be 

normalized for better understanding  

6.2.1 Normalization of an Index 

The process of transforming the derived index from its value into a range of 0 and 1 is 

called normalization. Suppose the dissimilarity index is in the range of (d
min

, d
max

) and 

is not in the range of (0,1). If it is required to transform it into range of (0, 1). 

 Put notation ‘d’ to the original dissimilarity and ‘δ’ to the normalized dissimilarity. 

There are several ways to normalize an index. In principle, to aggregate a sequence of 

numbers into range of (0, 1) there is a need to make them positive and divide with 

something that is bigger than the nominator. Using this principle, it can make use any 

inequality to normalize the index. 

If it is know the maximum and minimum value of index, then transformation is in the 

form of equation number 6.2 

 

𝛿 =
𝒅−𝒅𝒎𝒊𝒏

𝒅𝒎𝒂𝒙−𝒅𝒎𝒊𝒏……………………………………………………………………..(6.2) 

It will change transform it into range of [0, 1]. If d= d
min

, then δ=0. If d=d
max

, then 

δ=1. A special care must be taken to avoid division by zero when d
max

is zero. If the 

value of index is always zero or positive, and the maximum value of index, then it can 

be set d
min

=0 and the equation (6.2) can be simplified into 

𝛿 =
𝒅

𝒅𝒎𝒂𝒙……………………………………………….......................................... (6.3) 
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Figure 6.9 shows the normalized disease index map, the value corresponds to less 

than 0.5 represents the crops under crown choke disorder, 0.5 to 0.75 are moderately 

healthy and above 0.75 values represents the in good health.  

 

 

Figure 6.9 Normalized Disease Index map 
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6.3 Age Index 

Chapter 5 gives the detailed description about the Arecanut crop classification based 

on different age group. The analysis concludes that it is possible to discriminate 

Arecanut crops in to different age group. The spectral library plot showed in Figure 

6.10 shows clear distinction between Arecanut each age group, more clearly at visible 

and NIR region. Taking advantages of this discrete separabality using the age index 

has been proposed.  

Index is designed by the wavelength combinations of 540, 680 and 780nm, to 

segregate Arecanut crops into different age groups. The main objective is to simplify 

the classification for a better accuracy. Three index points were identified as sensitive 

towards age of the crop and named it as points A, B and C. Figure 6.11shows the 

index points A, B and C those form a triangle to derive AI. 

 

Figure6.10 Spectral library of different age group Arecanut crops 

The idea behind selecting NIR region is to segregate the stressed vegetation, (if 

considered crop is diseased then CB’=AB’’ and the ratio become null). There is a 

clear distinction between the age groups at visible and NIR portions. Hence, these 

regions can be optimally used for deriving an age index by calculating the difference. 

Higher the difference more will be age and lower values corresponds for younger age. 

The derived age index is a ratio of differences of three index points. Equation 6.4 
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represents the age index. The range of AI values varied from minimum of 3 to 

maximum of 4.5 and the value corresponds to 4.5 is for above 15 years’ age crop, 

value corresponds to 3 belongs to below 3 years crops.  

 
 

Figure 6.11Index points A, B and C those form a triangle to derive AI 

 

AI = 
𝜆𝐶𝑅𝐶−𝜆𝐵𝑅𝐵

𝜆𝐴𝑅𝐴−𝜆𝐵𝑅𝐵
…………………………………………………………. ………...(6.4) 

Where B=Bˈ=Bˈˈ 

Substituting the reflectance values corresponding to wavelengths of 540, 680 and 

780nm, for above fifteen years crop.  

AI= 
0.64−0.12

0.24−0.12
 

AI= 4.33 

Here Age Index value for fifteen years crop is 4.33. 
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Table 6.1 shows the age wise Arecanut crop water requirement; the crop less than 5 

years consumes minimum of 19 liter and maximum of 23 liters per day for 9-15-year 

crop. 

Table 6.1 Age wise Arecanut Crop Water Requirement 

Crop Class 
Area 

(hectares) 

Avg. Kc 

Values 

Avg. CWR 

(liters/plant) 

< 5 Year 217.71 0.76 19.00 

5-8 Year 16.83 0.85 21.02 

9-15 Year 0.81 0.93 23.01 

16- 25 Year  195.48 0.90 22.37 

> 25 Year  221.04 0.79 19.69 

Stressed  132.93 0.90 22.48 

Total Crop Area = 784.80 hectares; Gross CWR = 28056.09 m
3
. 

 

The derived age index is validated with the calculated crop water requirement and it 

yielded an R
2
 of 0.56 is shown in Figure 6.12. As the crop water requirement is 

depending on age of the crop there is comparatively good correlation between these 

two. 

 

Figure 6.12 Age Index validations 
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6.4 Summary  

With regard to disease Index (DI) spectra obtained from healthy and stressed crops 

helps in choosing the best possible range, of visible, near infrared and the transition 

region also known as the red edge position of the spectral curve. The newly derived 

DI is useful for discriminating stressed Arecanut crops with healthy. And also it 

indicates that the proposed band combination has better correlation with the 

chlorophyll content than the other vegetation indices and thus proves to be best. This 

index uses only three narrow channels centered i.e. R750, R550 and R675nm. The 

derived DI values ranges from 0.45 to 1.5 respectively. 

The derived age index is a ratio of differences of three index points corresponds to 

540, 680 and 780nm, has the ability to segregate Arecanut crop into different age 

groups. The range of AI values varied from 3 to 4.5, the value corresponds to 4.5 is 

above 15 years’ age crop. And the value corresponds to 3 belongs to below 3 years 

crops. The derived age index is validated with the calculated crop water requirement 

and it yielded an R
2
 of 0.56. 

In the next chapter hyperspectral vegetation index for age based Arecanut crop water 

requirement is presented. 
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CHAPTER 7 

HYPERSPECTRAL VEGETATION INDEX FOR AGE BASED 

ARECANUT CROP WATER REQUIREMENT  

7.1 Introduction  

The objective of this chapter is to map the age based Arecanut crop water requirement. 

Irrigation water requirement of crops is defined as, "The quantity of water required by a 

crop in a given period of time for normal growth under field conditions." It includes 

evaporation and other unavoidable wastes. Usually water requirement for crop is 

expressed in water depth per unit area. 

Irrigation water requirement = Crop water need - available rain fall  

For design of water harvesting systems, it is necessary to assess the water requirement of 

the crop intended to be grown. A certain crop grown in a sunny and hot climate needs 

more water per day than the same crop grown in a cloudy and cooler climate. Apart from 

sunshine and temperature, other climatic factors which influence the crop water 

requirement are humidity and wind speed. When it is dry, crop water needs are higher 

than when it is humid. In windy climates, the crops use more water than in calm climates. 

The highest crop water needs are thus found in areas which are hot, dry, windy and 

sunny. The lowest values are found when it is cool, humid and cloudy with little or no 

wind. In other words, crop water requirement is the amount of water needed to meet 

water loss through evapotranspiration. Evapotranspiration (ET) is a term describing the 

transport of water into the atmosphere from surfaces, including soil (soil evaporation), 

and from vegetation (transpiration). The latter two are often the most important 

contributors to evapotranspiration.  

Other contributions to evapotranspiration may include evaporation from wet canopy 

surface (wet-canopy evaporation), and evaporation from vegetation-covered water surface 

in wetlands. The evaporation component of ET is comprised of the return of water back 

to the atmosphere through direct evaporative loss from the soil surface, standing water 

(depression storage), and water on surfaces (intercepted water) such as leaves and/or 

http://www.eoearth.org/article/Transpiration
http://www.eoearth.org/article/Evaporation
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roofs. Transpired water is that which is used by vegetation and subsequently lost to the 

atmosphere as vapour. The water generally enters the plant through the root zone, is used 

for various bio physiological functions including photosynthesis, and then passes back to 

the atmosphere through the leaf stomata. Transpiration will stop if the vegetation 

becomes stressed to the wilting point, which is the point in which there is insufficient 

water left in the soil for a plant to transpire. Crop water requirement depends on two 

factors first the weather parameters (Reference crop evapotranspiration) and crop 

parameter (Crop coefficient). The reference crop evapotranspiration ETo (sometimes 

called potential evapotranspiration, PET) is defined as the rate of evapotranspiration from 

a large area covered by green grass which grows actively, completely shades the ground 

and which is not short of water. The rate of evapotranspiration depends on the climate. 

The highest value of ETo is found in areas which are hot, dry, windy and sunny whereas 

the lowest values are observed in areas where it is cool, humid and cloudy with little or 

no wind. The crop factor (or "crop coefficient") depends on crop type and varies 

according to the growth stage of the crop. There are four growth stages to distinguish: 

- the initial stage: when the crop uses little water; 

- the crop development stage, when the water consumption increases; 

- the mid-season stage, when water consumption reaches a peak; 

- the late-season stage, when the maturing crop once again requires less water. 

To overcome these complications faced by the Arecanut farmer’s plantation crop 

monitoring with advanced techniques is important.  

In addition to classifying whole image to a set of classes, abundance of certain feature can 

be mapped to find its geographic presence and distribution using Hyperspectral optical 

data. 

Knowing the exact amount of irrigation water requirement is essential not only for 

sustainable water resources planning but also for increased yield, particularly in summer. 

This information is useful for Indian agricultural scenario where monsoon lasts for few 

months and rest of the year irrigation is necessary. Periodic and precise mapping of total 

area of Arecanut crop, area under different age groups and crop under stress are some of 

the inputs not only for estimating crop water requirement but also for policy and decision 

makers.  

http://www.eoearth.org/article/Photosynthesis
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Periodic and precise mapping of total area of Arecanut crop, area under different age 

groups and crop under stress are some of the inputs for estimating crop water 

requirement. Crop water requirement (CWR) is the total amount of water required to 

balance the loss of water from crop foliage due to evapotranspiration, which is a function 

of local climate and crop condition. Estimating crop water requirement by computing 

crop evapotranspiration is a widely used method. Crop evapotranspiration (ETc) is 

governed by weather and crop condition, Ray and Dadhwal (2000). 

For increased yield and sustainable water resources planning and management predicting 

exact amount of irrigation water requirement is essential, particularly in summer. Various 

methods are available to estimate the crop water requirement, but due to non-availability 

of data such as wind velocity and other parameters NDVI based crop water requirement 

method is adopted in this study.  

7.2 Crop Water Requirement through NDVI based Crop Coefficient 

Image ratio based Normalized Difference Vegetation Index (NDVI) can be expressed 

mathematically as,  

NDVI =
NIR−RED

NIR+RED
              (7.1) 

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses 

the visible and near-infrared bands of the electromagnetic spectrum, and is adopted to 

analyse remote sensing measurements and to assess whether the target being observed 

contains live green vegetation or not. Generally, healthy vegetation will absorb most of 

the visible light that falls on it, and reflects a large portion of the near-infrared light. 

Unhealthy or sparse vegetation reflects more visible light and less near-infrared light. 

Bare soils on the other hand reflect moderately in both the red and infrared portion of the 

electromagnetic spectrum.  

Values of NDVI ranges between -1 and +1. However, no green leaves give a value close 

to zero and in general, pixels with value above 0.4 indicates vegetation. Higher values of 

NDVI indicate higher degree of photosynthetic activity or in other words healthy or dense 

vegetation.  
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Kamble et al. (2013) developed and validated equation to calculate Kc using NDVI based 

on regression analysis between NDVI derived from remotely sensed data. Spectral bands 

672 nm and 855 nm were implemented to calculate NDVI values and AmeriFlux 

measured crop coefficient under irrigated and rain fed crop condition for various crops. 

This equation can be used with Hargreaves and Samani equation to compute crop water 

requirement. There was a strong linear correlation between the NDVI-estimated Kc and 

the measured Kc with an r
2
 of 0.91 and 0.90, while the root-mean-square error (RMSE) 

for Kc were 0.16 and 0.19, respectively for two different years in which experiments were 

carried out. Crop coefficient Kc, was computed based on the equation: 

 Kc = 1.457NDVI – 0.1725           (7.2) 

Crop water requirement is the amount of water required to compensate the 

evapotranspiration loss from the cropped field, Allen et al. (1998). In other words, water 

requirement of a crop is equivalent to water loss due to soil evaporation and transpiration 

from plant canopy. But soil evaporation component is negligibly small as plant foliage 

shades the soil beneath, along with efficient drip irrigation system considering no 

irrigation loss. Hence crop water requirement (CWR in mm/day) can be expressed as,  

CWR = ETc = Kc * ETo           (7.3) 

Daily reference crop evapotranspiration (ETo in mm/day) is computed based on equations 

presented by Hargreaves and Samani:  

ETo = 0.0135(KT) (Ra) (TD)
1/2

(TC+17.8)            (7.4) 

Where TD is temperature difference between daily maximum and minimum temperature 

(
o
C), TC is the daily mean temperature (

o
C), Ra is extraterrestrial radiation (MJ m

-2
 d

-1
) 

which is a function of latitude of location, inverse relative distance from earth to sun, 

solar declination etc. calculated with reference to FAO 56, and KT is an empirical 

coefficient which depends on temperature difference. 

KT = 0.00185(TD)
2
 - 0.0433 TD + 0.4023                      (7.5) 

 These values were calculated separately (detailed calculations are presented in Appendix 

page 159) for the day on which Hyperion imagery was captured.  
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Obtained value of ETc in mm/day is converted to l/day/plant by considering standard 

uniform plant to plant spacing (8 ft or 2.4384 m either way i.e. 151 plants in a pixel of 

30m X 30m size) in the study area with drip irrigation practiced throughout. 

7.3 Arecanut Crop Water Requirement Index (ACWRI) 

A vegetation index (also called a vegetative index) is a single number that quantifies 

vegetation biomass and/or plant vigor for each pixel in a remote sensing image. The index 

is computed using several spectral bands that are sensitive to plant biomass and vigor.  

In the present work, using correlation analysis on Arecanut canopy reflectance and 

corresponding value of crop water requirement, an index is built. Canopy reflectance data 

is obtained from Hyperion imagery with respect to corresponding crop water requirement 

from the map. Values of the index indicate the magnitude of crop water requirement 

index in a pixel with Arecanut crops. This will be helpful for spatial comparison of crop 

water requirement in a rapid manner, even without spectral library of the crop. 

7.4 Correlation Analysis  

Correlation analysis is a technique for investigating the relationship between two 

quantitative, continuous variables. Pearson's correlation coefficient (r) is a measure of the 

strength of the association between the two variables. 

ρXY = Corr (X, Y)  =
Cov(X,Y)

𝛔X𝛔Y
  = 

E[(X−𝛍X)(Y−𝛍Y)]

𝛔X𝛔Y
  (7.6) 

Where E is the expected value operator, cov means covariance, and corr is a widely used 

alternative notation for the correlation coefficient. 

In the present work correlation analysis was helpful in identifying specific wavelengths in 

electromagnetic spectrum having association with water requirement of Arecanut plants. 

7.5 image classification using Spectroradiometer based reflectance spectra  

Reflectance spectra of various age groups and stress levels of Arecanut crops signatures 

for all age group were derived by averaging numerous samples falling in the group and 

used for image classification through SAM classifier.  
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Figure7.1 Spectral reflectance discrimination of crop 

Various age groups and their reflectance behaviour in wavelength range from 460 nm to 

910 nm considered for classification are presented in Figure 7.1. Arecanut crops are 

divided into five different classes based on age and one class of stressed crops affected by 

crown choke disease. The classes were, < 5 years’ age: The juvenile crops, 5-8 years old 

crops: Slightly older crops in the verge of senescence, 9-15 years old crops: crops which 

start flowering and yielding. 16-25 years old crops: Adult plants which are in the peak of 

yielding, >25 years old crops: Older crops with lower yield. Stressed Arecanut crops are 

generally of age 10 years or older and fail to reflect back radiation in both NIR and 

visible region compared healthy crops.  

The reflectance spectra of Arecanut crop have clear distinction with respect to age of 

crop. Reflectance in green region (525-575 nm) has clear variation showing increase in 

greenness of the crop on aging. In the red region (620–750 nm) a decreasing trend in 

reflectance show higher the chlorophyll content, higher the absorption of light in this 

range. Major variation is observed in NIR region (750-900 nm) where young (5-9 years 

old) and mature (16-25 years old) crops have distinctly high reflectance showing higher 

level of photosynthesis compared to juvenile (<5 years old) and (>25 years old). 

< 5 Years 

16 - 25 Years 

> 25 Years 

5 - 8 Years 

9 - 15 Years 

Stressed 
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Crown choke affected crops showed least reflectance in NIR region which was due to its 

inability to reflect light in this range due to lesser chlorophyll content. 

 The Spectral Angle Mapper (SAM) technique is used to classify hyperspectral data 

Figure 7.2 shows the crop map generated by SAM classifier.  

SAM classification was performed with an overall accuracy of 73.68% and overall kappa 

statistics is 0.67. Obtained accuracy of classification is rational for a within class 

classification of vegetation. 

The study area has 784.80 hectares of land is under Arecanut crop cultivation with 132.93 

hectares of stressed plantation. Most of the crop belonged to either old (>25 year) or 

juvenile (<5 years) class. Precisely 221.04 hectares (28.16 %) of crop were old whereas 

217.17 hectares (27.74%) were juvenile. 16.83 hectares of crop were of age 5-8 years old, 

195.48 hectares of crop were of age 16- 25 years and merely 0.81 % were found to be 

healthy crops of age 9-15 years. The major reason for lower crops of middle age is the 

plant stress due to crown coke disease which was found to have affected 132.93 hectare 

(16.93%) of cropped area.  Figure 7.2 shows the SAM classified map. Figure 7.3 shows 

the NDVI value variations for Arecanut crop and Figure 7.4 the Arecanut crop coefficient 

value map.  
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Figure7.2 SAM classified Arecanut crop map 
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Figure 7.3 Arecanut crop NDVI map 



120 
 

NDVI values of Arecanut crop varied from a minimum value of 0.55 to a maximum value 

of 0.82. This ascertains the variation in crops in terms of plant vigor either due to 

variation in age or due to plant stress. 

 

Figure7.4 Arecanut crop Kc map 
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Crop coefficient map developed based on NDVI (using eqn. 4.2) reveals Kc varied 

between 0.63 to 1.03 suggesting average crop evapotranspiration lesser than potential 

evapotranspiration.  

From Table 7.1, it can be observed that daily crop water requirement is a function of crop 

age and varied from 19 liters to 23 liters. The total cropped area of 784.80 hectares had 

water demand of 28056.09 m
3
. Image classification showed 132.93 hectares (16.93%) of 

crops were affected by crown choke disease. Cumulative average water requirement is 

equal to 21.26 liters. The results are in agreement with the findings of Balasimha et al. 

(1996). Table 7.1 shows age wise Arecanut crop water requirement. 

Table 7.1 Age wise Crop Water Requirement 

Crop Class 
Area 

(hectares) 

Avg. Kc 

Values 

Avg. CWR 

(liters/plant) 

< 5 Year 217.71 0.76 19.00 ≈ 19.00 

5-8 Year 16.83 0.85 21.02 ≈ 21.00 

9-15 Year 0.81 0.93 23.01 ≈ 23.00 

16- 25 Year  195.48 0.90 22.37 ≈ 22.50 

> 25 Year  221.04 0.79 19.69 ≈ 20.00 

Stressed  132.93 0.90 22.48 ≈ 22.00 

Total Crop Area = 784.80 hectares; Gross CWR = 28056.09 m
3
. 

 

Figure 7.5 shows the Arecanut crop water requirement map. From the figure it is 

observed that ACWR differs 15 to 25 l/day/plant for below 5 years crops to 25 years crop 

respectively. 
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Figure7.5 Arecanut age wise crop water requirement map  
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7.6 Arecanut Crop Water Requirement Index 

The most common vegetation index is the normalized difference vegetation index 

(NDVI) helps identify areas of varying levels of plant biomass/vigor. Higher values 

indicate high biomass/high vigor. 

The best combination of narrow wavebands for a normalized difference type of 

vegetation index to assess Arecanut crop water requirement was investigated. Figure 7.6 

shows the reflectance plots of data used for correlation analysis and the reflectance data 

with corresponding CWR values is shown as matrix in Appendix II. The basis of crop 

variable specific waveband selection was the two-band normalized difference vegetation 

index. 

Index =
λ 2−λ1 

λ 2+ λ1
     ...........................................................................(7.7) 

75 bands between 467 nm to 1295 nm were selected for the analysis. All possible two-

pair combinations (λ2>λ1) of 75 wavelengths (2,775 combinations) were used in Equation 

7.7 and a correlation analysis was performed in order to determine the correlation 

coefficient (r). All the r values were plotted in a matrix plot and the plot revealed a 

characteristic pattern with a number of ‘‘hot spots’’ with relatively high correlation 

coefficients. Figure 7.6 shows reflectance plots of data used for correlation analysis. 

 

Figure7.6 Reflectance plots of data used for correlation analysis 
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The analysis results as shown in Figure 7.7 revealed bands λ2= 844nm and λ1 =691nm 

showed the highest correlation (r= 0.892), and were selected as key bands to build the 

index as,  

Arecanut Crop Water Requirement Index =  
λ 844−λ691 

λ 844+ λ691
   (7.8) 

 

 

Figure7.7 Coefficient of correlation plot for all band combinations of equation 7.8 

Obtained ACWRI was applied onto study area to derive a map as shown in Figure 7.8. 

All the correlation coefficient (r) values are plotted in a matrix plot and the plot revealed 

a characteristic pattern with a number of ‘‘hot spots’’ with relatively high correlation 

coefficients. Half of the plot shows a value of zero because of the rule λ2> λ1 because of 

which band combination is reduced to half the possible combinations. The other half 

would just be a mirror image if considered for computation. A hot spot with highest 

correlation is shown in dark red shade, and interestingly it can be observed that it extends 

beyond photosynthetically active region/radiation (PAR). 
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Figure 7.8 shows the variation of the Arecanut crop water requirement with an index 

value ranging from 0.3 to 0.8. 

 

Figure7.8 ACWRI map of the study area 
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7.7 Assessment of Arecanut crop water requirement using PLSR model 

In the present study using ACWR map, pixel wise Arecanut crop water requirement 

values and their corresponding spectral signatures from pre-processed Hyperion imagery 

were extracted and tabulated. In order to establish relation between thus obtained 

extracted spectral signatures and crop water requirement values, Partial least Regression 

(PLSR) technique is adopted since the method is proved to be a robust and commonly 

used statistical technique.  

The flexibility of PLS-approach, its graphical orientation and its inherent ability to handle 

incomplete and noisy data with many variables (and observations) makes PLS a simple 

but powerful approach for the analysis of data of complicated problems (Wold et al., 

2001). It can also be extended in various directions as PLSR provides an approach to 

quantitative modelling of often complicated relationships between predictors (X) and 

response (Y) that with complex problems often is more realistic than multiple linear 

regressions (MLR) including stepwise selection variants. Hence it is found to be 

appropriate to determine combination of wavelengths to build a model to assess Arecanut 

crop water demand. In the present study X and Y inputs for the PLSR model are obtained 

crop water requirement values and corresponding spectral signatures from Arecanut crop 

water requirement map and pre-processed Hyperion imagery pixels respectively.  

In order to establish the relation between thus obtained extracted spectral signatures and 

crop water requirement values, Partial least Regression (PLSR) technique is adopted. 

From this ACWR map, pixel wise Arecanut crop water requirement values and their 

corresponding spectral signatures from pre-processed Hyperion imagery were extracted 

and tabulated. In order to establish the relation between thus obtained extracted spectral 

signatures and crop water requirement values, the obtained results from the Partial Least 

Regression (PLSR) technique is as follows. The selected procedure for identifying the 

calibration and validation sets is the random selection method to ensure the PLSR model 

is unbiased. Regression coefficients were obtained from calibration set and then 

regression was carried out on validation set. The result from PLS modelling shows its 

capability of estimation of Arecanut crop water requirement (ACWR). Selection of PLSR 

factors was carried out by computing estimated mean square error prediction. Number of 

PLSR factors used for ACWR prediction is 7.9. Figure7.10 shows the ACWR prediction 

results and comparatively good prediction is observed.  
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Calibration dataset yielded an R
2
 of 0.98 with RMSE of 0.34. Validation dataset yielded 

an R
2
 of 0.97 with RMSE of 0.83. Higher RMSE may be due to high variability, spatial 

resolution of Hyperion and small sized scattered fields. Figure 7.9 a&b shows the 

graphical representation of calibration results.  

 

Figure 7.9 (a) PLSR for calibration 

 

Figure 7.9 PLSR for validation of ACWR 

7.8 Arecanut Crop Water Requirement Model (ACWR) 

Based on PLSR b-coefficients with 3 factor the important wavelengths found are 548, 

681 and 721 the combination of these wavelengths equation is as follows (Eq.7.9) 

Y= (20.26-1.89*λ548-2.32* λ681+2.36* λ721)/100 ……………………………………..(7.9) 
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Where Y is the predicated Arecanut water requirement value in terms of l/day/plant and 

λ548, λ681, λ721 are the reflectance values of corresponding wavelengths. 

In validation ACWR model with combination of only three wavelengths yielded an R
2
 of 

0.65. Figure 7.10 shows the model validation graphical representation.  

 

Figure 7.10 Results of Model validation 

7.9 Selection of Important Variables  

The output from the PLSR algorithm was employed to identify a subset of wavelengths 

that are significant in predicting the ACWR from spectral reflectance data. For this, both 

Variable Importance for Projection (VIP) scores and the PLS regression coefficient (β) 

value were taken as the selection parameters, as observed in similar studies (Mehmood et 

al. 2012, Rossel et al. 2008). This was executed in MATLAB and the codes used are 

given in the appendix at the end of this report. Wavelengths corresponding to 

significantly higher VIP scores and βcoefficient values were taken as important from the 

study undertaken. The graphs representing VIP scores and β coefficient values are 

illustrated in Figures 7.11 and 7.12. 

Selection of important variables is very important when there is collinearity in the dataset. 

This can be achieved by computing Variable Importance for Projection (VIP) and also by 

considering b-coefficients. VIP is a weighted sum of squares of the PLS weights, with 

weights calculated from the amount of Y-Variance of each PLS component (Wold et al. 
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2001). Greater than 1 rule is used as a criterion for variable selection (Chong and Jun, 

2005). Details of VIP are discussed in section 3.13.1of chapter number 3. 

 

Figure 7.11 VIP scores corresponding to wavelengths

 

Figure 7.12 β coefficients corresponding to wavelengths for ACWR 
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After comparing the VIP scores and β coefficient values, a total of eight wavelengths, 

spanning across VNIR and SWIR regions were identified as significant in modelling the 

ACWR these were 1043, 1053, 1033, 1083, 1023, 1013, 1104, and 854nm. 

7.10 Stepwise Multi Linear Regression (SMLR) 

The study employs Stepwise Multi Linear Regression, to evaluate the accuracy compare 

to PLSR, executed in MATLAB
® 

and to prepare a thematic map of age wise Arecanut 

crop water requirement of the study area using ENVI
®
.  

Stepwise regression is a systematic method for adding and removing terms from a multi 

linear model based on their statistical significance in a regression. The method begins 

with an initial model and then compares the explanatory power of incrementally larger 

and smaller models. If a term is not currently in the model, the null hypothesis is that the 

term would have a zero coefficient if added to the model. If there is sufficient evidence to 

reject the null hypothesis, the term is added to the model. Conversely, if a term is 

currently in the model, the null hypothesis is that the term has a zero coefficient. If there 

is insufficient evidence to reject the null hypothesis, the term is removed from the model. 

Depending on the terms included in the initial model and the order in which terms are 

moved in and out, the method may build different models from the same set of potential 

terms. The method terminates when no single step improves the model. There is no 

guarantee; however, different initial model or a different sequence of steps will not lead 

to a better fit. (Draper and Smith 1998). 

 

7.10.1 SMLR Results 

 

The obtained Arecanut crop water requirement map pixel values corresponding to pre-

processed Hyperion imagery spectral signatures are used for (SMLR) regression. The 

performance results for ACWR in MATLAB graphical user interface is shown in 

Figure 7.13 and 7.14. It can be observed that the high R square value and low RMSE 

values indicates model performance is good. From the results it can be interpreted that 

band combinations of 681and 721nm are prominent to predict the age based Arecanut 

crop water requirement.  



131 
 

 

Figure 7.13 SMLR performances for ACWR in MATLAB
 

 

 
Figure 7.14 SMLR performances for ACWR in MATLAB

 

 

Using obtained results from SMLR an optimum model is developed to predict the age 

based Arecanut crop water requirement. The prediction equation developed using SMLR 

and Hyperion reflectance values is presented in the equation 7.10. 

 

Y=19.72-0.0072*681+0.0014*721          ……………………………………………………………………...(7.10) 

 

Where Y is the predicted age based Arecanut crop water requirement in liters/day/plant 

and 681 and 721 are the reflectance values corresponds to 681 and 721nm wavelength. 
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The regression of the calibration data gave RMSE of 0.4 and R
2
 value of 0.97. The 

validation resulted in an RMSE of 0.4 and R
2
 value of 0.98. The graphical representations 

of validation results are presented in Figure 7.15. Results show good prediction accuracy 

of 0.98 for two band combination model. 

 

 

Figure 7.15 Model validation results of SMLR  

 

The study reveals that SMLR model performance is better compare to PLSR model. The 

developed model is mapped using ENVI band math operation and presented in Figure 

7.16. The figure represents the spatial distribution of the age wise Arecanut crop water 

requirement map. Red color represents area under more than 15 liters crop water 

requirement. Green is 10 to 15 liters and blue is of below 10 liters.  
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Figure7.16. Age wise ACWR map by SMLR 

 

7.11. SUMMARY 

 

The approach of remote sensing using Hyperion image showed it has the potential benefit 

to map Arecanut water requirement map. The study also proposes that the Hyperion 

coupled with PLSR technique provide a rapid, accurate determination of ACWR. The 

newly derived Arecanut crop water requirement model (ACWR) will be helpful in 

assessing spatial variation of Arecanut crop water needs. Bands at 548nm, 681nm and 

721nm were found to have good correlation with crop water requirement and suitable to 

form the model. The ACWR model with combination of only three wavelengths yielded 

an R
2
 of 0.65. This model helps to understand crop water need at field level. This study 

establishes a newer approach to remotely ascertain water consumption by farmers to tally 

with available water resources. This helps both farmers and policy makers in determining 

a trade-off between agricultural productivity and irrigation water consumption for better 

sustainability and also helps in better water management. 
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By comparing the VIP scores and β coefficient values, a total of eight wavelengths, 

spanning across VNIR and SWIR regions were identified as significant in modelling the 

ACWR these were 1043, 1053, 1033, 1083, 1023, 1013, 1104, and 854nm. 

The Arecanut crop water requirement model (ACWR) using SMLR will be helpful in 

assessing spatial variation of Arecanut crop water needs. Bands 681nm and 721nm were 

found to have good correlation with crop water requirement and suitable to form the 

model. The ACWR model with combination of only two wavelengths yielded an R
2
 of 

0.94. 

These studies also help policy makers to evolve a policy with respect support price, 

subsidy, and other socio economic attributes in order to ensure a sustainable agricultural 

income for farmers.  

The next chapter presents the research conclusions, contributions, limitation and future 

scope of the study. 
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CHAPTER 8 

CONCLUSIONS  

 

8.1 Introduction 

This study evaluates the feasibility of hyperspectral data integrated with field studies 

to address societal problems say Arecanut crop monitoring. Study proves that 

hyperspectral data can be effectively used for: 

 Discrimination of Arecanut crop into diseased vs. healthy. 

 Field studies combined with laboratory experiments helps in identification of 

cause for disease. 

 Arecanut crop can be categorized into different age groups. 

 Mapping age based crop water requirement with limited data. 

 Hyperspectral enables to develop Narrowband combinations indices to map 

the parameters such as Disease Index, Age Index, and Age Based Arecanut 

Crop Water Requirement Index. 

 To identify the prominence wavelengths to build simple predictive models 

such as predication of crop age and its water requirement.  

8.2 Summary  

8.2.1 Hyperspectral Data: A Tool for Monitoring Stressed Arecanut Crops 

Arecanut crop affected by crown choke disease for long years and has affected the 

yield and life span of the palm. SAM classifier is used to segregate these diseased vs 

healthy Arecanut plants using built spectral library. Overall classification accuracy 

was observed as 77.5%. From the classified Hyperion image it was found that more 

than 10 % of the total areas are affected by crown choke disease. 

From physico-chemical analysis it was observed that improper soil management is the 

main cause for crown choke disorder. On the basis of soil characterization and water 

quality it is inferred that soil is poorly graded (82% of silt content) with very low 

hydraulic conductivity of 3.2×10
-7

 cm/sec, and high bulk density of 2.12 g/cm
3
. This 

impervious nature causes water logging and leads to salinity. 
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8.2.2. Hyperspectral Data: A Tool for Age Based Classification of Arecanut Crop 

The study proved that spectral library can even be built for plantation crops which 

have long life, like 50 years and it will assist for crop classification based on age, 

avoiding the laborious site visits. Spectral library developed for different age groups 

of Arecanut crops showed clear spectral seperability.  

They are, below 3 years, 3–7 years, 8–15 years and above 15 years. Based on 

accuracy assessment, it can be concluded that, SVM with linear kernel function is the 

most accurate classification method. For within class seperability with an overall 

accuracy of 72%. The total area under Arecanut crop cultivation was found to be 

13.62 km
2
 among 147 km

2
 of study area. Also, SVM classifier with linear kernel 

yielded minimum user’s accuracy of 22.22% for 3–7 years of Arecanut crops to 

maximum of 82.93% for above 15 years Arecanut crops. Individual age group 

classification producer’s accuracy varied minimum of 12.5% for 3–7 years age group 

and maximum of 86.25% for above 15 years age group. SVM outperformed even for 

individual age group classification. 

The developed PLSR model for crop age predication provides better forecast for 20 

years age Arecanut crop and 3 years age Arecanut crop, compared to 4 and 50 years 

age Arecanut crops. The built model provided predictions with R
2 

of 0.86 and RMSE 

of 3.22 years. The optimum bands to discriminate Arecanut crops based on age were 

found to be 701, 719, 756 and 1015 nm. This proves the significance of narrow band 

combinations, which is having a great ability to characterize crops. 

On comparing the developed model and age-wise image classification, it can be 

concluded that the model based age prediction is more versatile method and can be 

used on individual plant and don’t have the limitations of image pixel resolution as in 

case of image classification. Image classification also suffers from spectral 

inseparability when higher number of classes is required, leading to inaccuracy. But 

image classification is still a good technique when large area of plantation needs to be 

classified and mapped. The two techniques are complementary to each other but not 

substitutes.  
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8.2.3Hyperspectral Vegetation Indices for Arecanut Crop Monitoring 

With regard to disease Index (DI) spectra obtained from healthy and stressed crops 

helps in choosing the best possible range, of visible, near infrared and the transition 

region also known as the red edge position of the spectral curve. The newly derived 

DI is useful for discriminating stressed Arecanut crops with healthy. Also it indicates 

that the proposed band combination has better correlation with the chlorophyll content 

than the other vegetation indices and thus proves to be best. This index uses only three 

narrow channels centered i.e. R750, R550 and R675nm. The derived DI values ranges 

from 0.45 to 1.5 respectively. To stream line the DI, normalization is carried out and 

the normalized DI ranges in-between 0 to 1.  

The derived age index is a ratio of differences of three index points corresponds to 

540, 680 and 780nm, has the ability to segregate Arecanut crop into different age 

groups. The range of AI values varied from 3 to 4.5, the value corresponds to 4.5 is 

above 15 years’ age crop. And the value corresponds to 3 belongs to below 3 years 

crops. The derived age index is validated with the calculated ager based crop water 

requirement and it yielded an R
2
 of 0.56. 

 

8.2.4Hyperspectral Vegetation Index for Age Based Arecanut Crop Water 

Requirement 

The understanding of variation in water demand from crop to crop is essential not 

only for optimizing irrigation but also to increase yield of the crops. This is an 

essential aspect of precision farming to get most out of available water resource. Like 

every other crop, daily water needs of Arecanut crops depend on crop age, health and 

local weather and varies with aging. Daily crop water needs per Arecanut plant were 

estimated to vary from 19 litres to 23 litres. Study area was estimated to have an 

irrigation demand of 28,056.09 m
3
 for Arecanut crops. 

8.2.5 Important Wavelengths and Model Building 

The approach of remote sensing using Hyperion image showed it has potential benefit 

to map Arecanut water requirement map. The newly derived ACWR model will be 

helpful in assessing spatial variation of Arecanut crop water needs. Bands at 548nm, 

681nm and 721nm were found to have good correlation with crop water requirement 
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and suitable to form the model. ACWR model with combination of only three 

wavelengths yielded an R
2
 of 0.65. This model helps to understand crop water need at 

field level. This study establishes a newer approach to remotely ascertain water 

consumption by farmers to tally with available water resources. This helps both 

farmers and policy makers in determining a trade-off between agricultural 

productivity and irrigation water consumption for better sustainability and also helps 

in better water management. The study also proposes that the Hyperion coupled with 

PLSR technique provide a rapid, accurate determination of ACWR. 

By comparing VIP scores and β coefficient values, a total of eight wavelengths, 

spanning across VNIR and SWIR regions were identified as significant in modelling 

the ACWR these were 1043, 1053, 1033, 1083, 1023, 1013, 1104, and 854nm. 

The Arecanut crop water requirement model (ACWR) using SMLR will be helpful in 

assessing spatial variation of Arecanut crop water needs. Bands 681nm and 721nm 

were found to have good correlation with crop water requirement and suitable to form 

the model. The ACWR model with combination of only two wavelengths yielded an 

R
2
 of 0.94. 

8.3Specific Conclusions 

Based on the results obtained from the study following explicit conclusions are 

drawn, 

 The stressed crops showed explicit distinction with lesser reflectance in NIR 

region owing to the fact that crown choke disease has hindered photosynthesis. 

 From the classified Hyperion image it is found that more than 10 % of the 

total areas (1.3 Km
2
) of Arecanut crop cultivation are affected by crown choke 

disease. And from physico-chemical analysis it was observed that improper 

soil management is the main cause for crown choke disorder. 

 Reflectance behaviour of Arecanut crop is observed to be a function of crop 

age. Distinction is clear throughout the spectral range, especially in the NIR 

region where mature crops (16-25 years old) had distinctly high reflectance 

compared to other classes. 

 SVM with linear kernel function is the most accurate classification method for 

within class seperability with an overall accuracy of 72%. The total area under 

Arecanut crop cultivation was found to be 13.62 km
2
 among 147 km

2
 of study 

area. 
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 The developed PLSR model for crop age predication provides better forecast 

for 20 years age Arecanut crop and 3 years age Arecanut crop, compared to 4 

and 50 years age Arecanut crops. The built model provided predictions with R
2 

of 0.86 and RMSE of 3.22 years. The optimum bands to discriminate Arecanut 

crops based on age were found to be 701, 719, 756 and 1015 nm. 

 This Disease Index uses only three narrow channels centered i.e. R750, R550 

and R675nm. And derived DI values ranges from 0.45 to 1.5 respectively. 

Normalized DI ranges in-between 0 to 1.  

 The derived age index is a ratio of differences of three index points 

corresponds to 540, 680 and 780nm, has the ability to segregate Arecanut crop 

into different age groups.  

 The range of AI values varied from 3 to 4.5, the value corresponds to 4.5 is 

above 15 years’ age crop. And the value corresponds to 3 belongs to below 3 

years crops. The derived age index is validated with the calculated ager based 

crop water requirement and it yielded an R
2
 of 0.56. 

 Image classification employing SAM yielded accurate map with 73.68% 

classification accuracy. Higher spectral separability of various classes explains 

such good accuracy. This corroborates the applicability of hyperspectral 

remote sensing in within class discrimination of Arecanut crops based on age 

and stress. 

 Crop coefficient of Arecanut crops were estimated using NDVI based 

approach.  NDVI valued of Arecanut crops varied from 0.55 to 0.82 where as 

calculated values of crop coefficient varied from 0.63 to 1.03 using which crop 

water requirement were estimated.  

 Daily crop water needs per Arecanut plant were estimated to vary from 19 

litres to 23 litres. Study area was estimated to have an irrigation demand of 

28,056.09 m
3
 for Arecanut crops. 

 From the study it is evident that water demand is associated with growth stage. 

Juvenile crops have comparatively lesser water requirement than the crops of 

age 9-15 (23.01 litres/plant) which are in yielding stage. Later the water 

requirement further decreases with increase in crop age. Crops older than 25 

years tend to show significant signs of aging and have lesser water 

requirement (19.69 litres/plant).  
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 Arecanut crops develop signs of stress (crown choke disease affected) only in 

adulthood and interestingly consume water quantity comparable with adult 

healthy crops (22.48 litres/plant). Calculations showing slightly higher amount 

of water consumption than actual in juvenile crops is because of mixed crops 

plantation as observed in the study area, to protect smaller crops from sun, 

whose water consumption is also included.  

 In addition to calculated crop water needs, the newly derived Arecanut crop 

water requirement index (ACWRI) will be helpful in assessing spatial 

variation of Arecanut crop water needs. Bands at 844nm and 691nm were 

found to have good correlation with crop water requirement and suitable to 

form an index. The index proves to be a quick solution to understand crop 

water requirement. 

 From the hyperspectral data significant wavelengths were identified: (i) to 

map the stressed Arecanut crops (750, 550 and 675nm), (ii) Arecanut crop age 

predication (540, 680 and 780nm). (iii) And to predict the age wise crop water 

requirement using statistical models: SMLR reveals that 681 and 721nm are 

significant. PLSR also in agreement with SMLR i.e 681,721 and 548nm are 

important. Whereas a VIP technique reviles wavelengths 1043, 1053, 1033, 

1083, 1023, 1013, 1104, and 854nm is prominence. 

Knowledge of accurate water need by crops helps to optimize consumption of water 

and avoid over exploitation of groundwater. This study establishes a newer approach 

to remotely ascertain water consumption by farmers to tally with available water 

resources. This helps both farmers and policy makers in determining a trade-off 

between agricultural productivity and irrigation water consumption for better 

sustainability. 
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8.7 Contributions from This Research 

The study addresses the societal problem and finds feasible solutions for monitoring 

and mapping the commercial crop say Arecanut. The study proves the potential of 

hyperspectral data combined with field data can be helpful for discrimination of the 

Arecanut crops into different age groups. This helps for estimation of exact yield to 

plan for export. Also segregation of crops in to stress versus healthy information helps 

to take the proper remedial measures in advance. Age based crop water requirement 

based on crop age to determine variation in crop water need. Helps irrigation planning 

and scheduling this avoids excessive irrigation which prevents the ground water 

exploitation and power loss. Simple predictive models help to develop application 

software’s to forecast water demand.     

8.8 Recommendations  

From the field visit it was observed that, in plain region and where large quantity of 

tank silt is being applied to areca gardens haphazardly by the growers. The practice 

has temporarily increased the Arecanut yields but on a long run it has led to soil 

compaction, hardening, poor root aeration, rotting and disorders like crown choke are 

formed.  

From the investigation it may be concluded that the poor gradation of soil stratum 

ceases the root development. Impervious nature of the surface causes irrigated water 

to be simply drained off from the surface not reaching the roots. Due to this 

impervious nature the water logging takes place and leads to salinity. The only way to 

manage the problem is better soil management and improvement of drainage. Further 

investigation is needed on blending of the soil for new plantation and for the existing 

one, improved drainage system has to be thought of. Soil aeration can be improved by, 

removing the hard pan of sub soil and application of organic matter. The practice of 

addition of tank silt on a large scale should be discontinued. 

Optimized irrigation facilitate better yield by avoiding ground water depletion. 

8.8Limitations  

 The study uses limited data sets, due to mismatch in path row of available 

satellite data with the field data and cloud coverage. 

 The study uses limited data for calculations of crop water requirement.  

 Direct canopy reflectance data collection using spectroradiometer is not 

carried out due to safety aspects. 

 The study not used evapotranspiration measurements at the field level. 
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8.9 Future scope  

 Establishment of more accurate values for Arecanut crop coefficient and 

measuring meteorological parameters, with higher spatial interval can aid 

determining more accurate values of crop water requirement helping farmers. 

 Subpixel level classification techniques and human expertize classification 

methods can improve the results.  

 Different types of atmospheric correction methods can be tried for best 

suitable method for plantation crop monitoring. 

 Integration of microwave remoted sensing data with hyperspectral data will 

provide more accurate results related to age of the crop and respective water 

requirement.  

 Arecanut crop irrigation scheduling can be effective forecastable by extending 

this study for past data sets. 

 Field based experiments for calculating ET0 for Arecanut crops adds more 

accuracy to the study. 

 Comparing different methods of evaporation estimation models can improve 

study results. 

 Usage of air borne hyperspectral data enables forecasting the crop water 

demand more accurately. 

 Addition parameters such as leaf area index, greenness index. Canopy cover 

soil moisture can improve the results.  
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APPENDIX I: Calculation of Reference Crop Evapotranspiration  
  

Daily reference crop evapotranspiration (ETo in mm/day) is computed based on 

equation 3.12 presented by Hargreaves and Samani:  

ETo = 0.0135(KT) (Ra) (TD)
 1/2

(TC+17.8) 

Where TD = Tmax-Tmin (0C), and TC is the average daily temperature (oC).  

TD = 30.40 0C - 16.31 0C = 14.09 0C 

The relationship explicitly accounts for solar radiation and temperature. Although 

relative humidity is not explicitly contained in the equation, it is implicitly present in 

the difference in maximum and minimum temperature. 

The temperature coefficient is then calculated using equation 4.4 as, 

KT = 0.00185(TD)
2

 - 0.0433 TD + 0.4023 = 0.159 

Later extraterrestrial radiation (Ra) is calculated using FAO-56 methodology 

Ra Gsc.dr) [s sin() sin() + cos() cos() sin(s)] 

where; 

Gsc = Solar constant (0.0820 Mj/m
2
/min) 

dr = Inverse relative distance from earth to sun 

dr = 1+ 0.033 cos [ ] = 1.03 

JD = Julian day of the year = 21 

s = Sunset hour angle (rad) 

s = arcos [-tan () tan ()] = 1.48 Rad 

= Solar declination (rad) = 0.409sin ( ) -1.39) = - 0.35 Rad    

= Latitude of location (rad) = 0.2426 

TC = Daily mean temperature = 23.36 0C 

Therefore, 

Ra = 30.45 MJ/m
2
/d = 12.53 mm/day 

Hence, 

Reference crop evapotranspiration, ETo = 4.169 mm/day 
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Table 1.1 Soil nutrient statuses 

Sl. No. Latitude Longitude pH EC dS/m OC (%) 

1 14°2'35'' 75°56'58'' 8.29 0.773 0.82 

2 14°2'33'' 75°56'59'' 7.789 0.473 1.05 

3 14°3'26'' 76°0'9'' 8.076 0.446 0.48 

4 13°58'60'' 75°57'35'' 6.43 1.269 0.57 

5 14°3'46'' 75°59'30'' 7.46 1.435 1.05 

6 13°59'36'' 75°57'52'' 8.072 1.684 0.48 

7 14°6'30'' 75°58'41'' 7.887 1.416 0.69 

8 14°5'27'' 75°58'5'' 7.623 1.492 0.78 

9 14°7'24'' 76°0'4'' 8.405 1.462 0.87 

10 14°1'54'' 76°0'10'' 7.996 0.743 0.93 

11 14°7'22'' 76°0'19'' 8.024 0.719 1.02 

12 13°56'41'' 75°58'11'' 7.982 0.718 1.08 

13 13°58'39'' 75°58'0'' 8.173 0.929 0.98 

14 14°3'45'' 75°56'59'' 7.736 0.546 0.87 

15 14°4'18'' 75°59'8'' 7.754 1.333 0.39 

16 14°3'51'' 75°59'58'' 8.107 1.205 0.75 

17 14°7'33'' 75°59'10'' 8.535 0.989 0.85 

18 13°59'36'' 75°57'52'' 8.185 0.84 0.81 

19 14°2'25'' 76°0'5'' 7.893 0.463 0.66 

20 13°57'36'' 75°57'23'' 7.477 0.501 0.69 

   Acidic-01 Safe- 09 Low-3 

   
Neutral-02 

 Critical -10 
Med-05 

 

   Basic-17 Unsafe -01 High-12 
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Table 1.2 Soil nutrient statuses  

 
Sl. 

No

. 

Latitude 
Longitud

e 

Avg. 

N 

kg/ha 

Avg. 

P2O5 

kg/ha 

Avg. 

 K2O 

kg/ha 

S 

kg/ha 

Fe  

(ppm) 

Mn  

(ppm) 

Zn  

(ppm) 

Cu 

(ppm) 

1 14°2'35'' 
75°56'58'

' 

257.1

5 
104.28 539.40 23.71 12.19 54.44 0.51 5.02 

2 14°2'33'' 
75°56'59'

' 

263.4

2 
40.90 292.68 24.97 17.49 66.16 0.44 4.91 

3 14°3'26'' 76°0'9'' 
219.4

2 
40.15 284.40 22.81 8.45 28.52 0.23 2.56 

4 
13°58'60

'' 

75°57'35'

' 

244.6

0 
45.82 539.40 18.50 16.83 48.84 0.76 5.25 

5 14°3'46'' 
75°59'30'

' 

257.1

5 
90.78 501.36 33.95 10.26 25.43 1.02 3.52 

6 
13°59'36

'' 

75°57'52'

' 

244.6

0 
80.01 539.40 18.14 14.42 45.81 1.00 4.87 

7 14°6'30'' 
75°58'41'

' 

244.6

0 
92.46 539.40 18.86 10.19 33.55 0.36 3.87 

8 14°5'27'' 75°58'5'' 
213.2

4 
107.23 261.96 22.81 9.85 24.21 0.39 2.19 

9 14°7'24'' 76°0'4'' 
257.1

5 
27.63 206.04 20.66 21.87 42.25 0.90 5.77 

10 14°1'54'' 76°0'10'' 
238.3

3 
102.89 539.40 21.20 20.35 46.82 0.78 5.56 

11 14°7'22'' 76°0'19'' 
225.7

9 
32.85 255.00 14.01 7.25 22.47 0.58 2.11 

12 
13°56'41

'' 

75°58'11'

' 

232.0

6 
80.70 489.36 15.63 23.24 47.07 1.06 5.92 

13 
13°58'39

'' 
75°58'0'' 

206.9

7 
17.79 419.52 20.48 11.32 27.62 0.36 4.46 

14 14°3'45'' 
75°56'59'

' 

232.0

6 
23.46 482.28 20.66 22.97 46.97 0.94 2.08 

15 14°4'18'' 75°59'8'' 
219.5

2 
92.00 297.48 27.48 15.62 37.55 0.83 2.53 

16 14°3'51'' 
75°59'58'

' 

269.3

4 
93.74 418.92 19.76 15.67 28.35 0.52 3.35 

17 14°7'33'' 
75°59'10'

' 

257.1

5 
22.30 537.72 19.22 10.22 34.95 0.30 3.13 

18 
13°59'36

'' 

75°57'52'

' 

244.6

0 
89.62 539.40 55.15 16.38 47.60 0.98 4.89 

19 14°2'25'' 76°0'5'' 
225.7

9 
123.05 507.72 19.76 15.18 26.37 0.72 3.77 

20 
13°57'36

'' 

75°57'23'

' 

206.9

7 
40.03 76.92 20.84 30.91 68.70 0.35 7.35 

           

 Avg.  
237.9

9 

67.384

7 

413.38

8 
22.930 15.53 40.18 0.651 4.154 

 Max  
269.3

4 
123.05 539.40 55.15 30.91 68.70 1.06 7.35 

 Min  
206.9

7 
17.79 76.92 14.01 7.25 22.47 0.23 2.08 

   
Low-

20 

Low-

02 

Low-

01 

Low-

00 

Low-

00 

Low- 

00 

Low-

10 
Low-00 

   
Med-

00 

Med-

07 

Med-

06 

Med-

08 

High-

20 

High- 

20 

High-

10 
High-20 

   
High-

00 

High-

11 

High-

13 

High-

12 
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Table 1.3 Prescribed range of soil nutrient status 

 

pH    EC     OC 

<6.5 –Acidic   <0.8-Safe   <0.5-Low 

6.5-7.5- Neutral  0.8-1.6 –Critical   0.5-0.75- Med 

>7.5- Basic   >1.6 –Unsafe    >0.75- High 

Av. N    Av. P2O5     Av. K2O     S 
<280-Low  <22.9-Low  <141-Low  <10-Low 

280-560-Med  22.9-56.6-Med 141-336-Med  10-20-Med 

>560-High  >56.6-High  >336-High  >20 –High 

Micro nutrients Fe  Mn  Zn  Cu 

Deficiency  <2.0  <2.0  >0.6  <2.0 

Sufficiency  >2.0  >2.0  >0.6  >2.0 
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Table 1.4 Water Quality Analyses  

Water sample   (Meq/l)   (meq/100g)  

Sl. 

No. 
Latitude Longitude pH 

EC 

(dS/m) 
CO3 HCO3 Ca Mg Ca+Mg 

1 14°7'33'' 75°59'10'' 7.31 0.235 NIL 11.40 0.8723 0.56 1.43 

2 14°7'22'' 76°0'19'' 7.6 0.505 NIL 5.80  -- - - --  

3 14°3'46'' 75°59'30'' 7.15 0.449 NIL 5.00 1.1098 0.68 1.79 

4 14°4'18'' 75°59'8'' 7 0.977 NIL 2.20 1.4656 0.82 2.29 

5 14°3'51'' 75°59'58'' 7.28 0.734 NIL 3.80 1.3797 0.81 2.19 

6 14°3'26'' 76°0'9'' 6.89 0.663 NIL 11.20 0.8308 0.51 1.34 

7 13°59'36'' 75°57'52'' 6.76 0.719 NIL 10.20 0.9954 0.58 1.58 

8 14°2'35'' 75°56'58'' 6.74 0.437 NIL 9.20 0.8128 0.46 1.27 

9 13°58'39'' 75°58'0'' 7.5 0.312 NIL 8.20 0.6955 0.37 1.07 

10 14°5'27'' 75°58'5'' 7.08 0.467 NIL 3.60 0.6649 0.43 1.09 

11 14°3'45'' 75°56'59'' 7.05 0.271 NIL 4.80 0.2852 0.17 0.46 

12 14°6'30'' 75°58'41'' 6.81 0.69 NIL 7.00 0.5733 0.34 0.91 

13 14°2'25'' 76°0'5'' 7.39 0.447 NIL 8.00 0.7296 0.41 1.14 

14 13°56'41'' 75°58'11'' 7.51 0.325 NIL 6.80 0.416 0.23 0.65 

15 14°7'24'' 76°0'4'' 7.48 0.589 NIL 10.80 0.520 0.28 0.80 

 

pH EC 

<6.5- use with amendments 

6.5-7.5-Safe 

>7.5-use after treatment  

<0.25- Safe 

0.25-0.75-Leaching required 

0.75-2.25-Not safe 

>2.25 –Not safe 

 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CDEQFjAC&url=http%3A%2F%2Fwww.elmhurst.edu%2F~chm%2Fvchembook%2F184ph.html&ei=dG8gVNCZLdiVuASosoDgDg&usg=AFQjCNGaSx0BSqRCbBC9gGVFz6TDiFH9Cg&sig2=BSqXoWO4_ZojgYvYWCkSCg&bvm=bv.75775273,d.c2E
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Table 1.5 Soil Physical properties 

 

Sl. No. Bulk Density g/cm3 Moisture (%) Dry Density g/cm3 Specific Gravity 

1A 1.92 24.2 1.55 2.36 

1B 1.73 26.0 1.37 2.48 

1C 1.94 21.2 1.60 2.42 

1D 2.01 18.2 1.70 2.42 

2A 1.79 17.5 1.52 2.45 

2B 1.75 20.7 1.45 2.37 

2C 1.86 22.1 1.52 2.32 

2D 1.87 20.7 1.55 2.29 

3A 1.87 23.0 1.52 2.57 

3B 1.73 19.6 1.44 2.34 

3C 1.92 23.6 1.56 2.33 

3D 1.92 23.1 1.56 2.32 

4A 1.77 22.9 1.44 2.36 

4B 1.71 20.9 1.42 2.36 

4C 1.73 17.1 1.48 2.50 

4D 1.90 16.3 1.64 2.38 

5A 1.97 28.9 1.53 2.32 

5B 2.12 28.7 1.65 2.37 

5C 2.12 24.5 1.70 2.32 

5D 2.12 24.2 1.71 2.36 

Avg 1.89 22.2 1.55 2.38 

Max 2.12 28.9 1.71 2.57 

Min 1.71 16.3 1.37 2.29 
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MATLAB codes used in the study: 

 

Sorting of samples 

t=To_sort; 

% permutation of 130 samples 

k=randperm(130); 

% Stores 60 samples to a data set and rest to another data set 

mnew=t(k(1:85),:); 

restm=t(k(86:end),:); 

Partial Least Squares Regression 

%Part 1- Choosing no. of PLS components 

X =zscore(calibx); 

y = caliby; 

% Cross validation method to find optimum no. of components to be used in model 

[Xl,Yl,Xs,Ys,beta1,pctVar,PLSmsep] = plsregress(X,y,10,'CV',10); 

figure,plot(0:10,PLSmsep(2,:),'b-o'); 

xlabel('Number of components'); 

ylabel('Estimated Mean Squared Prediction Error'); 

% Plotting percentage variance explained to find optimum no. of components 
 

[Xloading,Yloading,Xscore,Yscore,beta2,PLSpctvar] = plsregress(X,y,10); 

figure,plot(1:10,cumsum(100*PLSpctvar(2,:)),'-bo'); 

xlabel('Number of PLS components'); 

ylabel('Percent Variance Explained in Y'); 

%Part 2- Finding weights of PLS components 

[Xl,Yl,Xs,Ys,beta3,pctvar,mse,stats] = plsregress(X,y,6); 

plot(1:124,stats.W,'-'); 

xlabel('Variable'); 

ylabel('PLS Weight'); 

%Part 3- Calibration 

[Xloadings,Yloadings,Xscores,Yscores,beta] = plsregress(X,y,6); 

y_modelled = [ones(62,1) X]*beta; 

SST = sum((y-mean(y)).^2); 

SSR= sum((y- y_modelled).^2); 

rsquared_c = 1 - SSR/SST; 

rmse = sqrt(sum((y(:)- y_modelled (:)).^2)/numel(y)) 

display(rsquared_c) 

%Part-4 Validation 

z = zscore(validx); 

c = validy; 

y_predicted = [ones(26,1) z]*beta; 

SST= sum((c-mean(c)).^2); 

SSR = sum((c- y_predicted).^2); 

rsquared_v= 1 - SSR/SST; 

rmse = sqrt(sum((c(:)-y_predicted (:)).^2)/numel(c)) 

display(rsquared_v) 
 

Outlier identification 

xsuby = xdata-ydata; % xdata is actual value, ydata is predicted value 

mean=mean(xsuby); 
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std=std(xsuby); 

outlier =(xsuby-mean) > std; 

data2=xsuby; 

data2(outlier)=NaN; 

outlier1=(xsuby-mean) < (-1*std); 

data3=data2; 

data3(outlier1)=NaN; 

VIP score estimation 

X=X; % X is calibx, y is caliby 

Y=y; 

A=6; 

varX=sum(sum(X.^2)); 

varY=sum(sum(Y.^2)); 

for i=1:A 

error=1; 

u=Y(:,1); 

niter=0; 

while (error>1e-8 &&niter<1000) % for convergence test 
64 

w=X'*u/(u'*u); 

w=w/norm(w); 

t=X*w; 

q=Y'*t/(t'*t); % regress Y against t; 

u1=Y*q/(q'*q); 

error=norm(u1-u)/norm(u); 

u=u1; 

niter=niter+1; 

end 

p=X'*t/(t'*t); 

X=X-t*p'; 

Y=Y-t*q'; 

%+++ store 

W(:,i)=w; 

T(:,i)=t; 

P(:,i)=p; 

Q(:,i)=q; 

end 

%+++ calculate explained variance 

R2X=diag(T'*T*P'*P)/varX; 

R2Y=diag(T'*T*Q'*Q)/varY; 
 
Wstar=W*(P'*W)^(-1); 

B=Wstar*Q'; % b coefficient 

Q=Q'; 

%+++ 

s=diag(T'*T*Q*Q'); 

[m,p]=size(X); 

[m,h]=size(T); 

%+++ calculate VIP; 

VIP=[]; 
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for i=1:p 

weight=[]; 

for j=1:h 

weight(j,1)= (W(i,j)/norm(W(:,j)))^2; 

end 

q=s'*weight; % explained variance by variable i 

VIP(i)=sqrt(p*q/sum(s)); 

end 

%+++ 

SMLR regression 

A= stepwise (X, y); 
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