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ABSTRACT

Image compression techniques are broadly classified into two categories. One is loss-

less or reversible compression and another is lossy or irreversible compression. Lossless

or reversible compression techniques are more preferred by medical professionals as ev-

ery detail that can be perceived by a medical expert is very significant in the diagnosis of

any pathological condition. However, lossless methods for compression of medical im-

ages don’t promise good compression efficiency. On the other hand, a number of lossy

methods have been proposed that provide high compression, but at the cost of quality

degradation, which is unacceptable by the medical experts. In summary, medical image

compression demands for high visual quality, close to that of lossless methods and good

compression efficiency close to that of lossy methods. To achieve high visual quality

with good compression performance, it is very important to utilize the Human Visual

System (HVS) characteristics. Exploiting HVS characteristics guarantees the removal

of visually insignificant data without altering any diagnostically significant data. Most

of the medical images exhibit bilateral symmetry inherent in the human body. Addi-

tional compression can be achieved by exploiting the symmetry if present in images.

Further compression can be achieved by means of Volume of Interest (VOI) based hy-

brid coding. In this method diagnostically important regions in all slices are losslessly

coded while the rest of the image is coded using lossy methods. This could be beneficial

in the area of tele-medicine with bandwidth limitations.

This thesis proposes five visually lossless compression methods (VLIC-1 to VLIC-

5) for 3-D Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) im-

ages that embeds Just Noticeable Distortion (JND) profile to remove visually redundant

information. The first three algorithms are developed in spatial domain in which back-

ground luminance and texture based JND models are used to eliminate perceptually

redundant information. The first algorithm is based on predictor and block matching
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technique, while second and third algorithms are based on block matching technique.

Symmetry nature of human anatomy reflected in medical images is exploited in all

the three algorithms. The fourth algorithm is developed in transform domain using

wavelets. Along with this, wavelet based vision model is utilized to remove visual re-

dundancies. Final algorithm is a hybrid VOI based method, where in wavelet based

visually lossless method is used in diagnostically important regions/volumes and Dis-

crete Cosine Transform (DCT) based lossy technique is used in other regions.

Algorithms are tested on several sets of MRI, CT, x-ray angio images obtained from

various sources. Results obtained with 3157 slices of CT images, 886 slices of MR

images, 608 slices of x-ray angio slices and 587 slices of MRI brain images with tu-

mor are documented to compare the performance. Compression Ratio (CR) and quality

of the encoded images are compared with lossless and lossy algorithms.FEBRAURY

HVS based quality metrics are also computed for the above algorithms. The obtained

results show better bit per pixel against lossless compression techniques, without any

degradation in visual quality. In case of Differential Pulse Code Modulation (DPCM)

and symmetry based visually lossless compression technique (VLIC-1), average % re-

duction in bit per pixel is 11.8 compared to 3D context based Embedded coding of

Zerotrees of Wavelet coefficients method (Bilgin et al. 1998). In case of symmetry

based visually lossless compression technique (VLIC-3) average % reduction in bit per

pixel is 6.29 compared to medical image lossless compression method (Ait Aoudia et al.

2006). Wavelet based visually lossless coder (VLIC-4) reduces the bit rate by 20.66%

compared with DPCM, 28.24% compared with high efficiency video coding (Sanchez

and Bartrina-Rapesta 2014), 14.60% compared with Joint Photographic Experts Group

(JPEG)-2K, 13.28% compared with JPEG-LS, and 46.85% compared with JPEG-3D

(Bruylants et al. 2015). The maximum variation in Structural SIMilarity index value

for reconstructed images is from 1 to 0.99, indicating they are visually lossless. CR

is found to be within the acceptable compression range as suggested by Royal College

of Radiologists and European Society of Radiology. The subjective quality of the VOI

scheme is validated by radiologist.
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CHAPTER 1

INTRODUCTION

Medical imaging is the non-invasive process of generating the visual picture of inner

parts of the human body. Innovations by physicists in the field of medical imaging

modalities have made lots of revolution in health care around the world. Advancements

in digital signal processing have made it possible to generate digital filmless medical

images for diagnosis and surgical planning. Also, evolution in integrated circuit tech-

nology and information technology has facilitated improvement in the quality and ef-

ficiency of health care systems. Medical imaging represents an increasingly important

and indispensable component of modern medical practice, because early and accurate

diagnosis can substantially influence patient treatment strategies.

Non-invasive medical imaging technologies such as ultrasound, Magnetic Reso-

nance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography

(PET) and Single Photon Emission Computed Tomography (SPECT) are capable of

producing multiple cross-sectional slices of a body with axial, sagittal and coronal views

(Ammari 2008). They generate a large volume of digital image data. Such medical im-

ages with different resolutions up to 16 bit give the detailed information of the health

condition. Moreover, digital images are durable and portable. They can be stored longer

time without losing the information since they are immune to external effects such as

moisture or heat.

1.1 MOTIVATION

The number of MRI and CT scans performed is continuously increasing year after year

throughout the world. The growth in the number of MRI and CT tests carried out per



1,000 population, in selected member countries associated with Organization for Eco-

nomic Co-operation and Development (OECD), is shown respectively in Figure 1.1 and

Figure 1.2 (OECD 2016). So it is apparant that the growing demand for medical image

acquisition systems creates the need for efficient storage, archival and transmission of

images across health care centers. Therefore compression of medical images is essen-

tial.

Advantages of compression of medical image data are two-fold. First one is reduc-

tion in image file size, thus accommodating more files in given memory. The second

one is the decrease in the time required for transmission of the image file. If one could

reduce the file size by 50 %, the transmission time is also theoretically reduced by 50%.

Thus compression will save both additional costs for memory and time for transmission.

Figure 1.1: Number of MRI tests per 1,000 population in selected OECD countries. The

graph is obtained from OECD Health Data, 2016 (OECD 2016).

1.2 BACKGROUND

Image compression techniques are broadly classified into two categories. One is loss-

less or reversible compression and another is lossy or irreversible compression. Re-
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Figure 1.2: Number of CT scans per 1,000 population in selected OECD countries. The

graph is obtained from OECD Health Data, 2016 (OECD 2016).

versible compression schemes are more acceptable in the medical field as information

is not lost during encoding and decoding operation. But, the available lossless com-

pression techniques can achieve compression ratios only in the range 2:1 to 4:1. This

makes the lossless compression techniques unsuitable when data volume is large. In

lossy compression, information lost during encoding cannot be recovered. Lossy com-

pression techniques have reported higher compression ratios up to 1:20 without losing

diagnostic information. Visible distortions can be minimized by accurately monitoring

and controlling the information integrity.

Many compression techniques have been proposed by researchers to compress vol-

umetric medical images. Digital medical imaging techniques became common in the

late 1980s, and data compression techniques were also extensively used to compress

medical images. Compression algorithms in the early 1990s, assumed that there is no

correlation among adjacent image slices and each image slice was compressed indepen-

dently. In other words, the correlation among adjacent slices (inter-slice correlation),

was not exploited. Later compression algorithms used for still images were modified,

or new algorithms were developed to exploit inter-slice correlation (Nosratinia et al.

1996; Klappenecker et al. 1998; Dajun and Chong 2000) to improve the compression

ratio.
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Lee et al. (Lee et al. 1993) developed a coding technique for three-dimensional med-

ical image data sets using displacement estimated inter-frame and block based Discrete

Cosine Transform (DCT). In this approach, slice redundancy is exploited, by taking the

difference between successive sequences of two-dimensional image slices as there is a

small variation between adjacent slices in human body anatomy. Resulting displace-

ment compensated residual image is coded with a block DCT. The performance of the

coder is improved, by modeling the distributions of coefficients in difference image to

design the quantizer which is optimal for the DCT coefficients. The difference image

coefficients are modeled, by Gaussian, Laplacian, and generalized Gaussian probability

density function. The improvement in Compression Ratio (CR) with this algorithm is

about 5% compared to two-dimensional DCT when slice thickness is 5 mm, and CR is

improved by 10% when slice thickness is decreased to 3 mm.

In general, transform coding employs only one transform. Ramaswamy and Mikhael

reported that (Ramaswamy and Mikhael 1996) it is possible to improve the performance

of the compression algorithm with a mixed transform approach with the fact that all

spectral features in an image cannot be represented efficiently with a single transform.

In their lossless and lossy compression implementation, the image is resolved first into

sub-images such that each sub-image is represented effectively by the dominant com-

ponents in a certain transform domain. This procedure is followed by representing the

entire image with superimposition of different subsets from various domains, which

are non-orthogonal to each other. They demonstrated that the combination of Walsh

and DCT mixed transform representation is likely to provide higher CR compared to

Walsh or DCT alone. By adding residual error (the difference between original signal

and reconstructed signal) to quantized and coded coefficients, they extended the lossy

technique to a lossless one.

Context-based Adaptive Lossless Image Coder (CALIC) use Gradient Adjusted Pre-

dictor (GAP) which is a nonlinear prediction scheme. In GAP, prediction coefficients

based on local gradients. By proper modeling of prediction errors and feedback of ex-

pected errors, the prediction is made context sensitive and adaptive (Wu and Memon

1996).
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Embedded Zerotree Wavelet (EZW) coding was introduced by Shapiro (Shapiro

1993). This algorithm is based on the observation that if the magnitude of a coeffi-

cient is smaller than a threshold, then all its descendants are likely to be small. The

method of ordering of bits of the wavelet coefficients is efficient for transmission. The

extension of EZW method is 3D EZW (Bilgin et al. 1998). The performance of 3D

EZW is improved to develop context-based EZW (CB EZW) by using context-based

adaptive arithmetic coding to exploit dependencies between symbols. Integer Wavelet

Transform (IWT) based algorithm presented by Bilgin et al. (Bilgin et al. 1998) for 3D

medical image compression, use EZW scheme with context-based arithmetic coding.

Average CR obtained for 8 bit MRI is 3.81 and that for CT image is 5.81. Ait-Aoudia

et al. (Ait Aoudia et al. 2006) employed the prediction technique used in lossless com-

pression of video sequences to compress 3D medical image. In this case, CR was found

to be better. 4.20 and 6.77 for MRI and CT respectively.

Menegaz et al. (Menegaz and Thiran 2002) developed, a fully 3D object based

coding technique to independently decode different objects based on diagnostic rele-

vance in volumetric data. They decorrelated the input data with 3D Discrete Wavelet

Transform (DWT), providing a provision for lossless coding. In the coding procedure,

different objects are encoded with disjoint segments of the bit stream to independently

access and reconstruct the objects up to lossless quality. EZW and multidimensional

layered zero coding are used to encode the objects independently. Border artifacts are

avoided by encoding additional coefficients.

Tzannes et al. (Tzannes 2003) used Part-2 of Joint Photographic Experts Group

(JPEG) 2000 to compress volumetric medical image data sets by exploiting the correla-

tion between adjacent images to achieve better compression than when the images were

compressed independently. For lossless compression of 3D data sets, they applied 1D

reversible 5/3 wavelet transform across the sequence of 2D image slices in a medical

image volume followed by application of JPEG 2000 on resulting transformed slices

to improve the compression ratio by 15-18%. For lossy compression of volumetric

medical data set they used irreversible 9/7 wavelet transform instead of reversible 5/3

wavelet transform.
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Lossy to lossless compression technique provides the option of lossless image de-

coding or lossy image decoding for quick browsing of the volumetric database. In the

case of lossy image decoding, embedded bitstream is truncated. Zixiang Xiong et al.

(Xiong et al. 2003) applied wavelet transform technique for lossy to lossless compres-

sion of 3D medical data. They selected transforms that are unitary to achieve good lossy

coding performance. Demonstrated system used a general 3D integer wavelet transform

(IWT) frame to approximate a 3D unitary transformation, so that bit plane coding leads

to good rate-distortion performance. At the back end, two entropy coding techniques

namely, 3D Set Partitioning in Hierarchical Trees (SPIHT) and 3D embedded subband

coding with optimal truncation are applied to compress medical volumetric data.

Menegaz et al. (Menegaz and Thiran 2003) focused on the development of a fully

3D wavelet based coding method to enable 3D encoding and 2D decoding functional-

ity. Since fast decoding is of prime importance in medical application for the efficient

access to the data, they adopted 2D decoding by encoding every 2D subband image in-

dependently. This module allows fast access to 2D image sequences by decoding only

the corresponding information, thus avoiding the reconstruction of the entire volume.

T. Vijayaraghavan and K. Rajan also developed an algorithm for fast access to any

2D image (Thirumalai and Kanhirodan 2006). They have used daub4 filter along x

(row) and y (column) directions and Haar filter along the z (slice) direction to exploit

inter-slice and intra-slice correlations respectively while using 3D wavelet transform for

compression. For easier recognition of coefficients from each subband, they included

additional preprocessing stage before wavelet transform.

Schelkens et al. (Schelkens et al. 2003) proposed a new compression method which

exploits quadtree and block-based coding concepts, layered zero coding principles and

context-based arithmetic coding to meet quality and resolution scalability.

Srikanth and Ramakrishnan (Srikanth and Ramakrishnan 2005) considered lossless

mesh based inter-frame coding scheme for 3D MRI of brain images. In this scheme,

they eliminated clinically insignificant background by meshing only the brain part in

the medical image. With the help of spatial edges and optical flow between two consec-
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utive slices, they achieved content based (adaptive) mesh generation to avoid multiple

motions within each element. Also, they applied context-based entropy coding after

motion compensation to exploit the intra-frame and inter-frame correlations. In terms

of performance, adaptive mesh based schemes performed marginally better than the

uniform mesh-based methods, at the expense of increased complexity.

Although 3D JPEG 2000 exploits the redundancies present in 3D image space, it

fails to efficiently recognize the correlation in fourth dimension (time) of 4D data sets.

Sanchez et al. (Sanchez et al. 2006) proposed an algorithm to compress sequences of

three-dimensional medical images captured in time. In the proposed method, standard

H.264/AVC video coding based two encoding schemes namely H.264-VOL and H.264-

TIME developed for the lossless compression of 4D medical image. Here H.264-VOL

is used to exploit the redundancy present among image slices within image volume,

whereas H.264-TIME to exploit the redundancies among the sequence of image slices

in the time dimension. In H.264-VOL, H.264 is applied along the slice direction to

compress each set of volumes of 4D medical image. In H.264-TIME, H.264 is applied

along the time direction after selecting all similar image slices across all image volumes.

Among the two methods, with H.264-TIME they could achieve 70% improvement in

CR.

In Yodchanan (2008), inter-slice correlation is exploited by applying reversible

Karhunen Loeve Transform (KLT) to all MRI slices. Spatial redundancy in each KLT

slice is removed, with Joint Photographic Experts Group Lossless (JPEG-LS) image

coder. Even though inter-slice redundancy can be exploited using 3D context based

prediction methods and 3D wavelet transform, they are expensive in terms of computa-

tional complexity. Suboptimal approximation of the reversible KLT instead of ordinary

reversible KLT is used to reduce the computational complexity involved in calculating

the KLT matrices when a large number of slices are present.

Since most of the medical image slices are relatively symmetrical, V. Sanchez et al.

(Sanchez et al. 2009b) implemented a compression algorithm which exploits the anatom-

ical symmetry present in the structure of medical images. They used 2D IWT to decor-
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relate the data, an intraband prediction method to reduce the energy of the subbands

exploiting the inherent symmetry of the medical image and an embedded block coder

to achieve high lossless compression gain, resolution and quality scalability. This

algorithm was modified by adding an inter-slice Differential Pulse Code Modulation

(DPCM) scheme to identify the correlation between slices (Sanchez et al. 2009a).

Amraee et al.(Amraee et al. 2011) eliminate both intra-slice and inter-slice corre-

lations with block matching routines considering symmetrical characteristics of these

images. To eliminate inter-slice correlation, the authors have first predicted the pixels

in one-half of the image, using the corresponding pixels in the other half and symmetric

nature of the medical image. Successive slices are paired to exploit inter-slice correla-

tions, and the above same method is applied.

Coding scheme presented by Yann Gaudeau et al. (Gaudeau and Moureaux 2009) is

based on 3D dyadic wavelet transform and entropy coded code book with lattice vector

quantization. The main contribution of their work is the design of a new codebook

which takes care of correlations between neighbor voxels. At high compression ratios,

it outperforms other methods regarding rate-distortion trade-off.

A novel scalable 3D medical image compression method with Volume of Inter-

est (VOI) coding is proposed by Sanchez et al. (Sanchez et al. 2010) for interactive

telemedicine applications. This particular compression technique provides random ac-

cess of VOI as well as resolution and quality scalability to the compressed 3D medical

image data with the ability to decode any section of the compressed image without de-

coding entire data set. They generated a scalable layered bit stream with 3D IWT and

Embedded Block Coding with Optimized Truncation (EBCOT).

Sanchez et al. (Sanchez and Nasiopoulos 2011) have extended the above work

with channel protection for transmission over error-prone wireless networks to support

Picture Archiving and Communication Systems (PACS). PACS used for storage and

distribution of 3D medical images, allow quick diagnosis at any time and any place.

Resolution scalability is a desired feature in compression of the medical image.

3D DCT fails to offer lossless coding with quality and resolution scalability. Jonathan
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Taquet et al. (Taquet and Labit 2012) proposed a new hierarchical approach to res-

olution scalable lossless and near lossless compression. Here they combined DPCM

schemes with hierarchical oriented predictors to provide resolution scalability.

Pizzolante et al. (Pizzolante and Carpentieri 2013) developed low-complexity com-

pression algorithms for 3D medical images that exploit redundancies present in 3D

space using 3D linear prediction and arithmetic coding. In this Medical Images Loss-

less Compression (MILC) algorithm, for each pixel 3D prediction context is determined

to predict the current pixel value. Here CR for MRI is 2.85, and that for CT is 4.48.

Sanchez et al. (Sanchez and Bartrina-Rapesta 2014) proposed High Efficiency Video

Coding (HEVC) based intra coding for reversible compression of 3-dimensional med-

ical images. Algorithms tested on volume of 8 bit MRI images and 12 bit CT images.

CR in the case of MRI is 3.16. CR obtained with CT is 2.38. In 2015, Bruylants et al.

(Bruylants et al. 2015) presented wavelet based volumetric medical image compres-

sion algorithm which supports the volumetric extension of JPEG 2000 standard. CR

obtained for both 12 bit MRI, and CT images was 2.69.

An alternative to lossless and lossy compression schemes is visually lossless image

coding. The visually lossless compression algorithm gives higher compression gain

through the removal of visually redundant information without inducing any perceiv-

able distortions. David Wu et al. (Wu et al. 2006) proposed a simple perceptual based

compression algorithm to compress MRI, CT and Computed Radiography medical im-

age data sets. They developed an innovative scheme for visual pruning function based

on the JPEG 2000 coding structure. The vision model is merged with an improved

model of the Human Visual System (HVS) to identify and to remove visually insignifi-

cant information.

1.3 OBJECTIVES OF THE THESIS

The majority of the compression algorithms available for medical image data are either

lossless or lossy which do not completely fulfill the quality-compression requirement.
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Hence there is a need to have an intermediate system with compression efficiency close

to that of lossy and quality close to that of the lossless compression system. This can

be achieved easily by exploiting HVS characteristics to remove visually insignificant

data without loosing any diagnostically significant data. But vision based compression

of medical images, is still a major challenge and this thesis attempts to develop image

compression algorithms for 3D medical images considering the unique characteristics

of medical images and human vision.

Secondly, most of the medical image compression technologies have not explored

the spatial redundancies due to symmetry across or within the slices. It has been ob-

served that better compression can be achieved without any loss by exploiting the in-

herent anatomical bilateral symmetry in the medical images.

Thirdly, most of the medical image compression algorithms do not have an au-

tomatic segmentation block to search for ROI/VOI. In medical images diagnostically

pertinent area is small. Better compression can be achieved for compression algorithms

with ROI/VOI.

With this background, objectives of the thesis can be framed as:

1. To propose and analyze the performance of novel compression algorithm in spa-

tial domain for volumetric medical images, exploiting bilateral symmetric nature

of human anatomy retained in the medical images and features of human vision.

2. To propose and analyze the performance of novel compression algorithm in wavelet

domain for volumetric medical images, exploiting features of human vision.

3. To develop VOI based compression algorithm for MRI brain images.

1.4 ORGANIZATION OF THE THESIS

In this thesis, five Visually Lossless Image Compression (VLIC) algorithms for vol-

umetric medical images are implemented, and their performance analyzed. Thesis is

organized into six chapters.

Chapter 2, provides a brief overview of medical imaging and medical image coding.
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Initially, a few of the medical image acquisition techniques used in PACS and Digital

Imaging and Communications in Medicine (DICOM) standard are discussed. Further

brief review of compression techniques for medical images is given. Also conventional

and perceptual based image quality metrics are discussed and the medical image test

data sets used to evaluate the algorithms are tabulated.

Chapter 3, presents implementation and analysis of visually lossless coder in the

spatial domain. Three distinct algorithms are developed, and in all the three algorithms

spatial domain vision model is embedded. In the first algorithm, DPCM and block

matching techniques are used, while second and third algorithms are based on block

matching technique. A modified vision model is used in the third algorithm. Symmet-

ric nature of human anatomy reflected in medical images is exploited in all the three

algorithms. The performance of all the three algorithms is analyzed and compared.

In chapter 4, wavelet based visually lossless coder is presented, and the performance

of this algorithm is compared with pixel-based algorithms.

In chapter 5, VOI based coder is presented. Symmetry-based tumor detection tech-

nique is used to identify the volume, which is diagnostically important. This volume is

coded with wavelet based visually lossless scheme, and the remaining volume in the 3D

image is coded with DCT based lossy technique. Objective and subjective evaluations

are considered to evaluate the algorithm.

Chapter 6 concludes with the contribution of the thesis. This chapter also presents

possible extensions and further work.
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CHAPTER 2

MEDICAL IMAGING AND CODING

Evolution in integrated circuit technology and information technology has brought in

tremendous improvement in the quality and efficiency of health care systems. In ad-

dition to this, digital signal processing has contributed towards the development of

medical imaging modalities like MRI, CT, and PET etc., that have a great impact on

diagnosis and treatment of various diseases. Early detection and accurate diagnosis of

a medical condition calls for improved quality and increase in image resolution, data

volume and improved inter-slice distance results in an enormous volume of image data.

Analysis and diagnosis requires storage of data. For applications such as tele-medicine

and tele-radiology, it is often required to transmit the data over long distance communi-

cation channel in shortest possible time. Thus, it is very crucial to compress these huge

volume of medical image data for storage and/or transmission.

2.1 INTRODUCTION TO IMAGE COMPRESSION

Image compression, in general, is a process of minimizing the digital image data volume

to attain required low bit rate (bit per pixel) for a given image quality. This is generally

achieved by eliminating the redundancies in digital image data. Redundancy is the

resemblance of symbols or pixel values when they are scanned one after another or

close to one another. Most of the image or video compression algorithms are based

on the removal of various kinds of redundancies like spatial, temporal and statistical

redundancies.

Spatial redundancy represents the similarity between the adjacent pixel values within

the image. Natural images have spatial redundancy due to slow variations in the lumi-

nance intensity except at the edges. Temporal or slice redundancy is the statistical



interrelation among adjacent pixels of consecutive frames or slices. Statistical redun-

dancy is related to the representation of information. It depends on the entropy of the

source (Cover and Thomas 2012) which indicates the minimum number of bits required

to represent information.

Image compression algorithms are classified broadly into two groups, information

lossless (reversible) and information lossy (irreversible) compression. In reversible

compression, information is not lost during encoding and decoding operation. This is

an essential requirement in the case of non-invasive medical diagnostic techniques for

the detection of abnormalities in a standard clinical procedure. Lossy compression of-

fers higher CR compared to lossless scheme due to quantization of pixel values. Lossy

compression is not usually preferred by radiologists and healthcare technology group

due to the distortion of clinically critical information.

A general lossy compression algorithm has three functional blocks namely, redun-

dancy reduction, quantization, and coding as shown in Figure 2.1. The base for the

quantization of information is to reduce data entropy. Reducing entropy allows more

compression. Quantization stage converts a wide range of input values into a limited

number of output values. Since it is a many to one mapping, original data cannot be re-

trieved accurately. Therefore the design of quantizer is critical, and it should selectively

quantize the coefficients to preserve the image quality. Quantized values are normally

converted into a fixed length binary code. Entropy coding stage reduces the number of

bits assigned to each quantized value compared to the number of bits used to represent

the original digital information.

A substitute for lossless and lossy coding techniques is VLIC. VLIC provides higher

CR compared to lossless algorithms at the same time ensures the visual quality in de-

coded images. That is, it permits greater compression through the removal of visually

redundant information without inducing any perceivable distortion. Here information is

quantized in such a way that the observer doesnot perceive distortion introduced in the

process of quantization since the human eye is not a perfect sensor. Since visually loss-

less scheme has higher compression performance and also guarantees the visual quality
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in decoded image, this scheme can be an intermediate solution for digital medical image

data compression.

 Redundancy
 reduction

 Quantization  Entropy
encoding

 Original
 information

 Decorrelated
 information

 Quantized
 information

 Bit stream

 Pixels  Transformed
 coefficients

 Quantized
 coefficients

Figure 2.1: General lossy compression scheme

2.2 MEDICAL IMAGING

There have been enormous technological developments in the field of medical imag-

ing after the discovery of x-rays by Roentgen (Rontgen 1896) in 1895. This has made

tremendous changes in clinical diagnosis to get critical clinical information without the

need for surgery. Also medical imaging-based diagnosis is fast. Modern medical image

acquisition systems produce a stack of digital images of different anatomical cross sec-

tions for detecting the diseases more accurately throughout the body. Combined with

the inventions in digital technology, medical images carrying clinical data can be saved

indefinitely, without losing information and can be transmitted or shared in applications

like telemedicine and teleradiology. This stimulated the need for a universal standard

for the interchange of clinical information.

2.2.1 Medical Image Acquisition Systems

Medical imaging includes the techniques and procedures involved in the generation of

images of human body/parts for clinical diagnosis. Even though x-rays were invented a

century ago, they are still being used in hospitals. x-ray tests are normally made for the

diagnosis of broken bone, dislocation of bone, to examine joint, bone or chest condition

and to detect foreign objects. An x-ray source emits a small amount of radiation and is
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passed through the organ/bone being examined. An imaging device or x-ray detector

captures the x-rays transmitted through the organ/bone. The imaging device may be

a photographic plate to generate analog 2D images or detectors that directly capture

digital 2D images. A sample of chest x-ray image is shown in Figure 2.2. Among many

Figure 2.2: An x-ray medical image of the chest (A.J. Chandrasekhar 2016)

modern medical image acquisition systems (Acharya et al. 1995), few of the important

ones are:

� Computed Tomography

� Magnetic Resonance Imaging

� Ultrasound

� Mammography

� Computed Radiography

� Nuclear Medicine

� Positron Emission Tomography (PET)

� Single Photon Emission Computed Tomography (SPECT)

Among these imaging modalities, x-ray angio, MRI and CT images are used to test

the algorithms developed in this thesis.

Computed Tomography (CT):- A basic CT image acquisition system comprises of

x-ray source and an image data acquisition system (Acharya et al. 1995). Pictorial
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representation of a CT scanning unit is shown in Figure 2.3. x-ray source rotates around

the patient producing a narrow beam of x-rays. As it passes through a section of the

patient body, they are absorbed or attenuated. Detectors present on the opposite side of

the x-ray source, register the x-rays exiting the patient body being irradiated as an x-ray

snapshot. In one complete rotation of x-ray unit around the patient, many snapshots are

taken at different angles. From each rotation of x-ray unit, a cross section image slice

of the internal organ is reconstructed with the data collected from each snapshot. Such

one cross-sectional image slice is shown in Figure 2.4.

Figure 2.3: CT scanning system (Acharya et al. 1995)

Figure 2.4: CT medical image slice from the medical image database (Bruylants et al.

2015)

17



Magnetic Resonance Imaging (MRI): MRI generates image slices of body struc-

ture, giving details that help in diagnosis and interpretation of the behavior of the tumor

(Hanson 2009). MRI scanner has a powerful main magnet. Electromagnetic waves with

a precise resonate frequency, polarizes and excites hydrogen nuclei of water molecules

present in human tissue. The resonate frequency is proportionate to the magnetic field

enforced (In most of the scanners it is 1.5 Tesla). Another gradient magnet placed within

the main magnet is turned ON and OFF to change the main magnetic field. Radio fre-

quency pulses which are perpendicular to the main magnetic field, directed towards

tissues under diagnosis, making protons within the hydrogen atoms spin in various di-

rections. When radio frequency pulse is withdrawn, hydrogen atoms come back to their

original alignment, emitting energy in the form of radio waves. These radio waves are

received by radio frequency antenna and then converted into an image slice.

Figure 2.5: Axial, coronal and sagittal view of MRI brain

Figure 2.6: T1 and T2 weighted MRI brain images

Axial, coronal and sagittal view of MRI brain images is shown in Figure 2.5. In T1
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weighted MRI, white matter is brighter than gray matter, whereas in T2 weighted MRI

white matter is darker than gray matter. In MRI, hydrogen protons are signal source.

T1 relaxation and T2 relaxation properties contribute to image contrast. The T1 and T2

relaxation times denote the way the protons come back to their original state. T1 and T2

weighted MRI brain image slices are shown in Figure 2.6. In MRI scanning, the patient

is not exposed to unsafe radiation. Table 2.1 summarizes different imaging modalities

giving details about their imaging features, advantages, and risks. The development

from analog film based process to digital multi-slice imaging techniques kindled the

need for faster and durable network structure, efficient storage and image management

system resulting in the development PACS and DICOM.

2.2.2 PACS and DICOM standard

PACS (Hecht 2008) and teleradiology are two major applications of image compres-

sion. PACS is the part of the health-care system to acquire, store, examine and share

all types digital images. The major components of PACS system are image acquisition

systems, a fast network for distribution of diagnostically critical images, mobile instru-

ments for viewing and processing of the images and efficient storage and retrieving of

image systems. This resulted in a need for an universal standard for the exchange of

information between different systems involved in health-care management.

DICOM standard: Since noninvasive medical imaging systems have become part

of the health-care system, there are many medical image acquisition system manufac-

turers. A standard format is required for exchange of images produced by different

imaging equipment of different manufacturers across and within hospitals. DICOM

standard enables easy exchange of medical images independent of imaging equipment

manufacturer (Mustra et al. 2008). DICOM standard committee develops and main-

tains an international standard for the exchange of digital medical data generated by

different imaging equipment and file formats. A DICOM image file holds image data

and a header giving information such as patient name, age, position, dimensions and
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Table 2.1: Comparison of imaging modalities (NPS MedicineWise 2016)

Modality
Characteristic

Advantages Disadvantages
Main features Radiation

x-rays Imaging of bones,

dense matter

x-rays (ion-

izing)

Quick Can not pass

through bone

PET Injecting or swal-

lowing a radioac-

tive tracer

Positron

(ionizing)

Can distinguish be-

tween benign and

malignant lesions;

can check areas of

cancer spread and

progress in treat-

ment

Involves exposure

to ionizing radia-

tion; radioactive el-

ement can be used

for limited times

SPECT Uses a radioactive

substance and a

special camera to

create 3D pictures

Photons

(ionizing)

Images free of

background,

confirm neurode-

generative diseases

(Alzheimers,

Parkinsons)

Blurring effect is

produced

MRI Uses electro-

magnetic signals to

generate images

Electric &

Magnetic

fields (Non-

ionizing)

Variable thickness;

any plane

Lengthy and noisy

procedure; Slight

movement can ruin

the image, requir-

ing retesting

CT Multiple x-rays

to produce cross-

sectional layers

x-rays (ion-

izing)

Can detect pres-

ence of more seri-

ous problems

Small increased

risk of cancer in

future

US High frequency

sound waves to

produce moving

images

Sound

waves (Non-

ionizing)

Does not require

injection of a con-

trast medium

Quality and inter-

pretation of the im-

age highly depends

on the skill of the

person doing the

scan

type of image. The volume of DICOM images generated per patient per test is huge

and are stored in the uncompressed raw data format increasing the storage size. The

typical image file features available in DICOM format is given in Table 2.2. Details of

image slice size, number of slices per test obtained with different imaging modalities

for different organs is tabulated in Table 2.3.
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Table 2.2: Typical DICOM image file properties (DICOM Library 2016)

Image modality Image resolution bits per pixel

Color flow Doppler 768 � 576 8

Computed Radiography 3520 � 4280 12

Digital Radiography 2048 � 2048 12

Digital Subtraction angiography 512 � 512 8

CT 512 � 512 16

MRI 256 � 256 16

Mammography 4608 � 5200 14

Ultrasound 512 � 512 8

X-Ray angiography 512 � 512 16

Table 2.3: Typical properties of image files obtained with different methods for various

organs (Nait-Ali and Cavaro-Menard 2008).

Image modality Organ Image resolution bits per pixel Number of slices File size

Radiography Thorax 2060� 2060 16 —- 8 MB

PET

Whole body 128� 128 16 350 10 MB

Heart 128� 128 16 47� 16 slices � 24 MB

Brain 256� 256 16 47 6 MB

MRI

Brain 512� 512 16 20� 6 sets � 60 MB

Abdomen 512� 512 16 30 15 MB

Abdomen 3D 512� 512 16 104 50 MB

Heart 256� 256 16 20� 20 slices � 50 MB

CT

Brain 512� 512 16 300 150 MB

Abdomen 512� 512 16 500 250 MB

Heart 512� 512 16 126� 16 slices � 1 GB

US
Standard 512� 512 8 50 images/sec 12.5MB/sec

Doppler 512� 512 (RGB) 3� 8 50 images/sec 37.5MB/sec

� In the case of heart images, 15-30 slices are taken in one second.
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2.3 VOLUMETRIC MEDICAL IMAGE COMPRES-

SION TECHNIQUES

Medical imaging devices produce numerous image slices in a single medical investiga-

tion. Each slice generated represents the separate cross section of the human body being

imaged. Hence the increase in image data volume reveal the need for compression tech-

niques with higher CR so that the there is a reduction in storage cost and improvement

in transmission rate across low bandwidth channels (e.g. teleradiology applications).

Also, fast encoding and decoding algorithms are beneficial to minimize the waiting

time of radiologists. This has initiated the development of effective image compression

methods.

Any medical image compression technique should have following beneficial prop-

erties:

� High lossless CR

� Quality scalability i.e. the capability to construct the compressed image at differ-

ent image quality

� Resolution scalability i.e. the capability to construct the compressed image data

at different resolutions

Compressing image volume with numerous image slices is essential in radiology.

One image slice normally represents a cross section of the human body part. Consec-

utive image slices are also cross sections, which are parallel to the image slice under

consideration. Such multiple images generated, normally have structural similarity be-

tween one another. It is possible to improve the CR by considering the correlation even

between slices instead of compressing images independently.

Coding redundancy is more pertinent to the representation of information. Claude

Shannon defined the term entropy (Cover and Thomas, 2006) of the source as the min-

imum number of bits required to represent information. Efficiently representing infor-

mation within the limit of entropy corresponds to lossless compression. Although this

retains the quality, the amount of compression attained is marginal.
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Image coding algorithms achieve compression by exploiting the correlation between

neighbouring pixels in 3D space. In most of the techniques, pixel values are initially

decorrelated followed by the lossless encoding of resulting data with variable length

coders such as arithmetic or Huffman coding. Broadly, decorrelating methods for med-

ical images can be categorized into two classes: intraframe decorrelation and interframe

decorrelating methods. Some of the decorrelation techniques are

� Predictive techniques

� Transform methods

� Multiresolution decorrelating methods

� Block match routines

Among various schemes available for lossless compression, predictive methods are

simpler and efficient.

2.3.1 Predictive compression techniques

One of the ways to improve the compression performance is by changing the probabil-

ity spread of the information. Predictive coding is based on this principle. Predictive

coding considers the local features of the image. Usually, a predictive coder scans the

image in raster scan sequence. Here a pixel value is predicted from the pixels that are

already encoded, especially from pixels that are spatially adjacent to the current pixel. If

prediction scheme is reasonably accurate, then prediction error generates a probability

distribution function which is efficient for entropy coding, thus providing good lossless

CR. Let p(x; y) be the selected pixel value and p̂(x; y) is the corresponding predicted

pixel value. Then prediction error defined as e(x; y) = p(x; y)� p̂(x; y) is encoded.

Lossless JPEG (JPEG-LS) compression:- Lossless JPEG is an international stan-

dard for lossless still image compression (Weinherger et al. 2000). Eight different pre-

dictor modes are used in lossless JPEG as listed in Table 2.4. In these eight predictor

modes, N , W , and NW the causal neighboring pixels of the current pixel p(x; y) as
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labelled in Figure 2.7 are used to predict the pixel value. Modes 1, 2 and 3 are one

dimensional predictors and modes 4, 5, 6, and 7 are two dimensional predictors.

 NW  N

 W  p(x,y)

Figure 2.7: Labelling of neighboring pixels

Table 2.4: JPEG predictors for lossless coding

Mode p̂(x; y)

0 0 (No prediction)

1 N

2 W

3 NW

4 N +W �NW

5 N + (N �NW )=2

6 N + (W �NW )=2

7 (N +W )=2

To predict the pixel values accurately, each pixel is assigned a context. The con-

text value represents the local gradient, thus representing the type of texture such as

smooth region or edge region around the current pixel. Residual values are encoded

with Golomb code.
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2.3.2 Transform based compression

Components of transform-based encoder and decoder are shown in Figure 2.8. In this,

information is transformed from one domain to another, mostly spatial domain to an-

other form of representation to exploit interpixel correlation. Then the decorrelated

coefficients are encoded. For the compression of medical images, orthogonal trans-

forms are used so that there is one to one relation between the two domains, and the

process is reversible, i.e. entire image can be retrieved by the inverse transform. It

facilitates decorrelating the information in the transformed domain, where most of the

information is packed in a few coefficients. The rest of the coefficients with very low

information can be discarded after quantization.

Various types of transformations used for the compression of medical images are

� Karhunen-Loeve Transform

� Walsh-Hadamard Transform

� Discrete Cosine Transform (DCT)

� Discrete Wavelet Transform (DWT)

Among them, DCT and DWT techniques are discussed in detail.

 Linear
 Transform

 P0=T(p0)

 Quantization

 Pq=Q(P0)

 Entropy
 Encoder
 b=E(Pq)

 Compressed

 bit Stream

 Entropy
 Decoder
 Pq=E-1(b)

 Dequantization

 Pr=Q-1(Pq)

 Inverse
 Transform
 xr=T-1(Pr)

 Encoder

 Decoder

 Input
 image

 p0

 Reconstructed
 image

 xr

Figure 2.8: Block diagram of transform-based encoder and decoder
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Discrete Cosine Transform:- Energy compaction of DCT is better than any other or-

thogonal transform. DCT transforms the information in spatial domain into frequency

domain and is an orthogonal transform. In the case of an image, DCT of the image rep-

resents the sum of sinusoids of varying magnitudes and frequencies. Usually, visually

relevant information is characterized by a few coefficients of DCT.

2D DCT of an N �N image is given by

P (k; l) = �

k

�

l

N�1

X

x=0
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X

y=0
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(2x+ 1)k�

2N

�


os

�

(2y + 1)l�

2N

�

(2.1)

where k; l = 0; 1; :::::(N � 1)

Inverse 2D DCT of an N �N image is given by
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 2

 2

 2
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 HL

 HH

 HPF
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 HPF
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 HPF

 Rows

 Columns
 Down sample
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 Down sample
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 Original
 data
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 p(x,y)

 Wϕ(l0,[m,n])
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 WHL
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 WHH
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Figure 2.9: Block diagram of 2D DWT with l
0

as a starting scale

Discrete Wavelet Transform:- DWT is also a linear transform that segregates data

into different frequency bands. DWT is computed with the set of low pass and high
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pass filters followed by subsampling. As DWT has inherent multiresolution quality,

they are suitable for medical applications where resolution and quality scalability are

necessary. Block diagram of 2D DWT is shown in Figure 2.9. # 2 indicates down

sampling. Filter bank method is used to split the image into several frequency bands.

Analysis and synthesis bank are the two components of filter bank structure. Analysis

bank has low and high pass filters. When the image is passed through the low and high

pass filters and down-sampled by a factor of 2, it decomposes into LL, HL, LH and

HH bands. L and H denote low pass and high pass filtering respectively. Low pass

filter gives approximate coefficient, and high pass filter gives detail coefficient.

DWT of 2D image p(x; y) with resolution of N �N is given by

W
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where i = HL;LH and HH are directional bands. l
0

is starting scale. ' and  are

expansion functions. N � N is the number of rows and columns in the 2D image.

Equation 2.3 defines the approximated signal, and Equation 2.4 defines the signals with

horizontal, vertical and diagonal details for i = HL;LH and HH respectively.

JPEG2000 standard uses DWT. Using DWT, an image can be decomposed into

subbands by passing the rows and column of the image through low and high pass filters.

The generated structure with one level of decomposition of transform coefficients has

four subbands indicated as LL, HL, LH and HH . This procedure is repeated for LL

subband to generate multi levels of decomposition. Let l denote the number of DWT

decomposition levels, where first levels of decomposition gives four subbands namely

LL

1

, HL
1

, LH
1

and HH
1

. The second level decomposition of LL
1

subband generates

four more subbands LL
2

, HL
2

, LH
2

and HH
2

so on as shown in Figure 2.10.

Block diagram of inverse 2D DWT is shown in Figure 2.11. " 2 indicates upsam-

pling. The process of analysis filtering is lossless. It is therefore possible to have a
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Figure 2.10: First and second level of DWT

perfect reconstruction of the original 2D image by a reverse process of synthesis filter-

ing, as shown in Figure 2.11, which is just the mirror of Figure 2.9. The synthesis filter

banks along the rows and columns are associated with upsampling by a factor of two

so that the reconstructed image is at the original resolution. The synthesis filter banks

therefore perform the IDWT, which is also lossless, like the DWT. 2D image p(x; y)

with resolution of N �N is reconstructed through inverse 2D DWT and is given by
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Figure 2.11: Block diagram of 2D inverse DWT with l
0

as a starting scale
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Figure 2.12: Block match algorithm

2.3.3 Block matching algorithm

In the basic temporal prediction technique, previous image slice (reference frame) is

used as the predictor for current image slice. A lot of energy is still left out in the

residual slice due to the presence of structural correlation between the two slices. Better

prediction and hence compression is possible if the similarity between the two slices can

be estimated. This technique is called the block matching algorithm.

The current slice is subdivided into nonoverlapping blocks called the macro blocks,

and the best match for this block in the reference frame is found as shown in Fig-

ure 2.12. Displacement vectors for these blocks are determined after finding the best

match in reference image slice defined within the search window. The best match for

the macroblock is evaluated based on the matching criteria.

Among the various matching criteria, Mean Squared Error (MSE), Mean Absolute

Difference (MAD) and Sum of Absolute Difference (SAD) are the most commonly

used. Consider an N � N macroblock, where I
k

(x; y) represent the pixels of the mac-

roblock of current frame and I

(k�1)

(x; y) represent the pixels of the macroblock of
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reference frame. MSE is given by

MSE =
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MAD is given by
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SAD is given by
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The macroblock size and the search region size decides the complexity and com-

putational intensity of the process. With smaller block size, approximation is more

accurate and hence more will be the displacement vectors that need to be coded. This

increases the computation, at the same time increasing the information that has to be

delivered to the decoder thus reducing compression. Once the best match for the cur-

rent macroblock is found in the reference slice, the difference between the two locations

gives the displacement vectors. The matching block is identified with this displacement

vectors to obtain the predicted block. Now the residual energy between the macroblock

and the predicted block is low. This process of block matching routine is simple but

computationally intensive.

2.3.4 Region of interest (ROI) based coding

Medical imaging devices produce a large volume of image data per patient for diagnosis

and surgical planning which are to be stored for a long time and transmitted within the

hospital or across hospitals. The majority of compression techniques available in the

literature, compress the entire 2D image. Most of the medical image slices contain

large background which are not considered in the diagnosis. Usually, the diagnostically

pertinent area is small and need to be compressed losslessly. The remaining area of the
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image can be coded with lossy techniques to improve the overall performance of the

coding scheme.

Based on this logic ROI based compression approaches were applied on medical

images. A medical image with ROI and remaining area is shown in Figure 2.13. In ROI

based coding, a medical image slice is segmented into two regions based on clinical

importance. They are a region in the image representing the body part or organ and the

remaining image region is usually a background with no diagnostic information. The

image segmentation process to identify ROI can be manual or automatic. Segmentation

can be carried out by identifying regions with different gray level characteristics or

texture.

(a) (b)

Figure 2.13: A medical image with ROI and remaining area

ROI based techniques are irreversible. Cosman (Strom and Cosman 1997) devel-

oped ROI based coder in which different quality levels were used for different seg-

mented regions through subband compression scheme. Also, more DCT coefficients

are used to encode diagnostically important region. In a codebook based technique

developed by Andrew (Czihó et al. 1998), a large codebook was designed for regions

of higher importance, and a smaller codebook was used for lesser important regions.

ROI based encoding is also tried by scaling only diagnostically lesser important regions

by Skodras (Anastassopoulos and Skodras 2002). Such hybrid techniques give better

CR compared to lossless methods. However ROI based techniques are not preferred

by radiologists because of complexity, loss of information and problem in correctly

recognizing the ROI.
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2.3.5 Recommended CR for diagnostic imaging

Compression ratio (CR) is defined as

CR =

Bits per pixel of the original image

Bits per pixel of the 
ompressed image

(2.9)

As of now the accepted algorithms for the lossless compression of medical images are

DICOM JPEG (ISO 10918-1) and DICOM JPEG-2000 part 1 (ISO/IEC 15444-1). DI-

COM JPEG is applied for the compression of 8 and 12 bit medical images. DICOM

JPEG-2000 Part 1 supports progressive transmission and bit depth compared to DICOM

JPEG. At present, this algorithm is considered as a standard for medical applications

(Canadian Association of Radiologists June 2008). Clinical evaluation studies on the

impact of DICOM JPEG and DICOM JPEG-2000 irreversible compression on med-

ical images generated by various modalities demonstrated that the appropriate use of

irreversible CR has no effect on diagnostic accuracy (Canadian Association of Radiolo-

gists June 2008), (Koff et al. 2009). The recommended CR by Canadian Association of

Radiologists for medical imaging modalities such as Computed Radiography / Digital

Radiography, CT, US, MRI and Nuclear Medicine after applying irreversible DICOM

JPEG and DICOM JPEG-2000 compression are given in Table 2.5 and Table 2.6 re-

spectively.

Recommendations on the use of lossy compression by Royal College of Radiol-

ogists (UK) and German Rontgen Society (Germany) for various medical imaging

modalities are given in Table 2.7 (Royal College of Radiologists 2016; Loose et al.

2009; European Society of Radiology (ESR and others) 2011).

2.3.6 Human vision models for image compression

The physiology of human vision includes eyes, retina, visual pathways and visual cor-

tex. The vision is initiated in eyes. Retina encodes the visual information before trans-

mitting through optical nerve as this channel has a limited capacity. As the number

of receptors in the retina and the number of fibers in the optical channel are not same,
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Table 2.5: CR for medical imaging modalities with DICOM JPEG compression (Cana-

dian Association of Radiologists June 2008)

Modality angio- Breast Body Chest Skeletal Neuro- Pediatric

graphy imaging imaging imaging imaging radiology imaging

Computed Radiography/
— 25:1 30:1 30:1 30:1 — 30:1

Digital Radiography

CT; slice
15:1 — 15:1 15:1 15:1 12:1 15:1

thickness >5mm

CT; slice
— — 12:1 12:1 12:1 12:1 —

thickness <5mm

US — 12:1 12:1 — 12:1 — 12:1

MRI 24:1 24:1 24:1 24:1 24:1 24:1 24:1

Nuclear Medicine 11:1 11:1 11:1 11:1 11:1 11:1 11:1

Table 2.6: CR for medical imaging modalities with DICOM JPEG-2000 compression

(Canadian Association of Radiologists June 2008)

Modality angio- Breast Body Chest Skeletal Neuro- Pediatric

graphy imaging imaging imaging imaging radiology imaging

Computed Radiography/
— 25:1 30:1 30:1 20:1 — 30:1

Digital Radiography

CT; slice
15:1 — 10:1 15:1 15:1 8:1 15:1

thickness >5mm

CT; slice
— — 12:1 12:1 12:1 12:1 —

thickness <5mm

US — 12:1 12:1 — 12:1 — 12:1

MRI 24:1 24:1 24:1 24:1 24:1 24:1 24:1

Nuclear Medicine 11:1 11:1 11:1 11:1 11:1 11:1 11:1

there is compression of information. This is possible because retina can adapt their sen-

sitivity to the input signal. So a wide range of light intensities with some quantization

levels can be handled. Hence HVS models developed based on human vision should

be incorporated to improve the CR. Vision models identify and measure the redundant

perceptual information either in the spatial domain or the transform domain. Vision
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Table 2.7: Medically acceptable compression ratios (Royal College of Radiologists

2016; Loose et al. 2009; European Society of Radiology (ESR and others)

2011)

Modality UK Germany

Radiography - chest 10:1 10:1

Radiography - skeletal 10:1 10:1

Radiography - body 10:1 10:1

Radiography - mammo 20:1 15:1

CT - head 5:1 5:1

CT skeleton/chest/lung 5:1 8:1

MRI 5:1 7:1

models used in our work are discussed in detail in chapter 3 and chapter 4.

2.3.7 Metrics for evaluating compression algorithms

To evaluate lossy compression algorithms objective and subjective metrics are used (Lin

and Kuo 2011; Ebrahimi Moghadam and Mohammadi 2015; Engelke and Zepernick

2007). Most of the lossy compression algorithms are evaluated by objective metrics

such as Root Mean Square Error (RMSE) (Wang and Bovik 2009) or Normalized Mean

Square Error (NMSE) and Peak Signal to Noise Ratio (PSNR), even though many a

time they do not correlate well with subjective quality sensed by the HVS. They are

defined as:

RMSE =

v

u

u

u

u

t

N�1

X

x=0

N�1

X

y=0

[p(x; y)� g(x; y)℄

2

NXN

(2.10)

NMSE =

N�1

X

x=0

N�1

X

y=0

[p(x; y)� g(x; y)℄

2

N�1

X

x=0

N�1

X

y=0

[p(x; y)℄

2

(2.11)
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where p(x; y) is the original image pixel, and g(x; y) is the corresponding processed or

distorted image pixel.

Subjective measures include Receiver Operating Characteristic (ROC) (Wong et al.

1995) analysis. ROC provides a measure of the difference in perceived quality between

the original and compressed images. In this analysis, the radiologist reviews a series

of compressed diagnostically important images with predetermined CR. For each im-

age, the radiologist gives the confidence rating based on the information provided by

the compressed image from their diagnosis on the possibility of the presence of dis-

ease. These ratings are compared with the diagnosis made with the original image. A

smaller difference in the ratings between the original and the reconstructed image can

denote an acceptable level of CR for the image with specified disease. Normally ROC

analysis procedure needs several images and many radiologists as observers. Although

this procedure is time-consuming and tedious, it is a trusted and accepted method in the

medical field to certify the image quality.

Visual Signal to Noise Ratio (VSNR), Visual Information Fidelity (VIF) and Struc-

tural SIMilarity index (SSIM) are some of the HVS based quantitative performance

metrics available in the literature to assess the quality of the reconstructed medical im-

ages (Razaak et al. 2014; Kowalik-Urbaniak et al. 2015; Al-Ameen and Sulong 2015).

The proposed VLIC use VSNR, VIF, SSIM along with PSNR to evaluate the quality of

the reconstructed image.

PSNR: Most of the lossy compression codecs use PSNR metric to measure the quality

of the reconstructed image. This quality metric is an approximation to visual perception.

Therefore in some instances, the reconstructed image with lower PSNR value may look

closer to the original than another image with higher PSNR value. The high value of

PSNR indicates that there is less difference between the original and processed image.

PSNR is defined via the MSE.

For two monochrome images with a resolution of N � N where g(x; y) is the

noisy approximation (or processed image in lossy compression) of original image pixel

p(x; y), MSE is given by:
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MSE =

1

N

2

N�1

X

x=0

N�1

X

y=0

[(p(x; y)� g(x; y)℄

2

(2.12)

PSNR is determined as:

PSNR = 10log

10

�

MAX

2

p

MSE

�

(2.13)

where MAX

p

is the maximum possible pixel value in the image.

VSNR: VSNR is a simpler method. VSNR (Chandler and Hemami 2007) calculation

involves two stages. In the first stage, image distortion is computed. For this contrast

detection threshold is computed with visual masking and visual summation to check for

the visibility of distortion in the reconstructed image. If the distortions are below the

threshold of detection, the reconstructed image is of perfect visual quality. If the distor-

tions are above the threshold, perceived contrast of the distortions d
p


and disruption of

global precedence d
gp

are computed to determine VSNR.

VSNR is defined as:

V SNR(p; g) = 20log

10

 

C(p)

�d

p


+ (1� �)

d

gp

p

2

!

(2.14)

where C(p) is the contrast of the original image p, d
p


= C(E) is the perceived contrast

of the distortions,E = p�g is the distortion, d
gp

is the global precedence and � 2 [0; 1℄

determines the relative contribution of d
p


and d
gp

.

SSIM: Bovik and Wang introduced SSIM index (Wang et al. 2004). This quality

index is based on the assumption that HVS is sensitive to structural information and

there is structural dependency among neighbouring pixels in the image. SSIM metric

estimates the similarity/difference between two images by combining three components

of HVS such as brightness, contrast, and structure. SSIM index between two N � N

images p and g is given by the following expressions (Wang et al. 2004):

SSIM(p; g) = I(p; g)
(p; g)s(p; g) (2.15)
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where I(p; g) is luminance component, 
(p; g) is the contrast component and s(p; g) is

the structural component. So
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where � is the average intensity, �2 is the variance and �
pg

is the covariance.

Average intensity �
p

of 2D image p(x; y) is given by
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Variance �2

p
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Covariance �
pg

is given by
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SSIM yields the best performance indicator of image quality, and it gives the closest

match to the subjective quality (Kowalik-Urbaniak et al. 2014). If images p and g are

identical, the value of SSIM(p; g) = 1 and if the images are similar to each other, the

value of SSIM(p; g) � 1.

VIF: VIF index is based on nonstructural distortions, unlike SSIM metric. Compo-

nents considered in the calculation of VIF (Sheikh and Bovik 2006) quality metric are

correlation distortion, luminance distortion, and contrast distortion. In this quality es-

timation, information that can be extracted from the original image is computed. Later

loss of same information in the processed (distorted) image is measured.

VIF between two images p(x; y) and g(x; y) is given by

V IF (p; g) =

Distorted image information

Referen
e image information

(2.20)
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VIF value calculated between the original image and its copy is exactly one. For

contrast-enhanced images, VIF value is more than one. For blurred or compressed

images VIF value lies between 1 and 0.

Range of quality metric: Range of quality metrics discussed are tabulated as shown

in Table 2.8.

Table 2.8: Range of quality metrics

Quality
Range

Value for

index perfect quality

PSNR (dB) 0 to 1 1

VSNR (dB) 0 to 1 1

SSIM 0 to 1 1

VIF 0 to 1 1

2.4 MEDICAL IMAGE TEST DATA SETS

In this section, details of medical image test data sets used to evaluate the performance

of the algorithms developed in this thesis are given. Table 2.9 lists 176, 8 bit MR image

slices and 557, 8 bit CT image slices from Mallinckrodt Institute of Radiology, Image

Processing Laboratory (Bilgin et al. 1998).

Table 2.9: Details of medical image data set 1 used in the thesis (Bilgin et al. 1998)

Volume
Image History

Number of Image

Number slices data size

1. CT Skull Tripod fracture 192 256�256�8

2. CT Wrist Healing scaphoid dissection 176 256�256�8

3. CT Carotid Internal carotid dissection 64 256�256�8

4. CT Aperts Aperts syndrome 96 256�256�8

5. MRI Liver T1 Normal 48 256�256�8

6. MRI Liver T2 Normal 48 256�256�8

7. MRI Sag head Left exophthalmos 16 256�256�8

8. MRI Ped chest Congenital heart disease 64 256�256�8
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Table 2.10: Details of medical image data set 2 used in the thesis (Sanchez and Bartrina-

Rapesta 2014)

Volume Number Image Number of slices Image data size

1. x-ray angio-1 151 512�512�12

2. x-ray angio-2 271 512�512�12

3. x-ray angio-3 186 512�512�12

4. CT-1 Human Thorax 596 512�512�12

5. CT-2 Human Thorax 637 512�512�12

6. CT-3 Human Thorax 82 512�512�12

7. MRI Brain 100 256�256�8

8. MRI Cord 10 512�512�8

9. MRI Knee 50 512�512�8

Table 2.11: Details of medical image data set 3 used in the thesis (Bruylants et al. 2015)

Volume Number Image Number of slices Image data size

1. CT-1 Lung scan 201 512�512�12

2. CT-2 Lung scan 242 512�512�12

3. CT-3 Spiral Arterial scan 75 512�512�12

4. CT-4 Female cadaver 100 512�512�12

5. CT-5 Human cadaver 672 512�512�12

6. CT-6 Chest 44 512�512�12

7. MRI Brain 250 432�432�12

8. MRI Brain 200 256�256�12

9. MRI Brain 100 256�256�12

The second data set used to evaluate the algorithms is listed in Table 2.10 and con-

sists of 608 slices of 12 bit x-ray angio images, 1315 slices of 12 bit CT images and 8 bit

160 slices of MRI (Sanchez and Bartrina-Rapesta 2014). Volumes 1-3 are x-ray images

of a vascular study of a human heart. Volumes 4-6 are axial view CT scan images of

the human thorax. Volume 7 is axial view MRI scan of human brain and volumes 8-9

is the sagittal view of MRI scan of human spinal cord and knee.
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Table 2.12: Details of MRI brain images used in the study

Volume
Image

Number of Image

Number slices data size

1. Volume-1 100 256 � 176� 12

2. Volume-2 18 512 � 304� 12

3. Volume-3 18 256 � 180� 12

4. Volume-4 47 256 � 192� 12

5. Volume-5 100 256 � 168� 12

6. Volume-6 18 512 � 304� 12

7. Volume-7 18 512 � 304� 12

8. Volume-8 18 384 � 210� 12

9. Volume-9 18 256 � 180� 12

10. Volume-10 19 256 � 232� 12

11. Volume-11 54 256 � 168� 12

12. Volume-12 30 512 � 336� 12

13. Volume-13 18 512 � 304� 12

14. Volume-14 18 384 � 210� 12

15. Volume-15 18 512 � 280� 12

16. Volume-16 18 512 � 304� 12

17. Volume-17 18 512 � 360� 12

18. Volume-18 19 512 � 376� 12

19. Volume-19 20 384 � 282� 12

20. Volume-20 18 256 � 256� 12

The third medical image data set is listed in Table 2.11 and consists of 12 bit images

generated with CT and MRI scanners (Bruylants et al. 2015). This data set has 1334

CT image slices and 550 MRI slices.

Fourth test data set consists of 12 bit T1 and T2 weighted volumetric MRI brain

images with tumor obtained from 1.5 Tesla MRI scanner from Hubli scanning center,

Hubli, India. Details of these image data sets are summarized in Table 2.12.
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2.5 SUMMARY

In this chapter, an overview of medical imaging techniques, in particular, working of

CT and MRI are provided. Also, PACS and DICOM standards were included. They

facilitate ease saving and transmission of medical images and providing a structure for

the exchange of clinical information through images generated from various modali-

ties. Such images generated in health-care systems can be large in volume, demanding

the need for image compression. Also, few of the image compression techniques em-

ployed in medical image compression are discussed. Various redundancies available in

volumetric medical images and the possible way to exploit them to improve the CR of

medical images are also discussed. Since the measurement of quality of reconstructed

images related to clinical information is very crucial, few of the HVS based image qual-

ity metrics is reviewed. Details of medical test data sets used to evaluate the algorithms

are listed.
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CHAPTER 3

VISUALLY LOSSLESS CODER FOR 3D MEDICAL

IMAGES IN PIXEL DOMAIN

A large number of lossless and lossy compression techniques for volumetric medical

images have been reported in the literature. They exploit the correlation among adjacent

slices and adjacent pixels through prediction techniques, DCT, DWT or block matching

techniques. But most of the techniques do not completely utilize the basic symmetry

present in medical images. Almost all medical images retain inherent symmetric nature

of human anatomy. Sanchez et al. (2009a); Amraee et al. (2011) developed volumetric

lossless compression methods based on structural symmetry present in medical images.

In this chapter, three VLIC techniques developed in the spatial domain, for volu-

metric medical images are discussed. All the algorithms remove visually redundant

information present in each image slice. Statistical, as well as structural redundancy

present within and across image slices, are also considered to improve the performance.

The VLIC algorithm discussed in section 3.1, eliminates redundant visual information

through Just Noticeable Distortion (JND) dependent quantizer embedded into DPCM

technique. In other two VLIC algorithms discussed in section 3.2, JND dependent

quantizer is combined with block match algorithm. All the three approaches discussed

in this chapter exploit inherent symmetry feature of medical images.

3.1 DPCM AND SYMMETRY BASED VISUALLY

LOSSLESS COMPRESSION

In this section visually lossless compression technique VLIC-1 is proposed for volumet-

ric MRI and CT data. In the proposed method, spatial redundancy present in the image,



symmetric nature of human anatomy and human visual characteristics are considered

to compress the volumetric image data. JND profile is also combined with lossless

symmetry based medical image compression. DPCM prediction is used to decorre-

late the adjacent image pixels. Proposed method uses block matching techniques to

reveal inter-slice and intra-slice symmetry based correlations. A simple pixel based

JND estimation model is incorporated with DPCM to further improve the compres-

sion efficiency. Quantizer in DPCM is dependent on JND value and removes visually

insignificant information.

Figure 3.1 shows the block diagram of the proposed method. The important compo-

nents of the compression system are JND profile estimator, symmetry detector, DPCM

predictor, symmetry based inter-slice and intra-slice block matching methods and arith-

metic encoding. A detailed explanation of each of these blocks is given in the following

subsections.

 Compressed slice

 Arithmetic
 Coding

 Intra slice
 Block matching

 Splitting

 Inter slice
 Block matching

 Symmetry
 Detector

 Quantizer

 Predictor

 JND profile
 estimator

 Input image

 If symmetry exists

 No symmetry

 p(x,y)
 pe(x,y)  pq(x,y)

  p2(x,y)  p1(x,y)

Figure 3.1: Block diagram of the proposed method
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3.1.1 DPCM Based predictor

DPCM coding concept is based on the fact that the majority of source signals exhibit

significant correlation among adjacent samples. While realizing this basic concept,

the current pixel value is predicted based on the previous pixel values to eliminate the

redundant information. The difference between actual pixel value and predicted value

are encoded to reduce the bit rate. Block diagram of DPCM based encoder is shown in

Figure 3.2, where

p(x; y) is the input pixel,

p

2

(x; y) is the predicted pixel,

p

1

(x; y) is the reconstructed pixel,

p

e

(x; y) is the prediction residual,

p

q

(x; y) is the quantized prediction residual.

 +
 -

 Quantizer  Encoder

 Predictor

 p(x,y)
 pe(x,y)

 pq(x,y) 

 p1(x,y) p2(x,y)

Figure 3.2: Block diagram of DPCM method

DPCM block exploits the spatial correlation. Predicted residual is quantized based

on the value of perceptual redundancy present which is provided by JND profile estima-

tor block. Since there is a high magnitude of correlation among adjacent pixels, GAP

(Wu and Memon 1996) is applied to each slice of the medical image to decorrelate

them. In GAP current pixel value p(x; y) is approximated by the linear combination of
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seven neighboring pixels as labelled in Figure 3.3.

Gradient of the intensity function is defined as (Wu and Memon 1996):

8

>

<

>

:

d

h

(x; y) = jW �WW j+ jN �NW j+ jNE �N j

d

v

(x; y) = jW �NW j+ jN �NN j + jNE �NNEj

(3.1)

A prediction is made by the following procedure (Wu and Memon 1996):

Procedure for prediction:

IF (d

v

(x; y)� d

h

(x; y) > 80) (sharp horizontal edge)

p(x; y) =W ;

ELSE IF (d

v
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;

ELSE IF (d

v
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p(x; y) =

3p(x;y)+W

4

;

ELSE IF (d

v

(x; y)� d

h

(x; y) < �32) (vertical edge)
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p(x;y)+N
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;

ELSE IF (d

v

(x; y)� d

h

(x; y) < �8) (weak vertical edge)

p(x; y) =

3p(x;y)+N

4

;

g

A sample of original and prediction residual image are shown in Figure 3.4, and the

symmetry present in the original image is clearly visible in the residual image.
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 NN  NNE

 NW  N

 WW  W  p(x,y)

 NE

Figure 3.3: Labelling of neighboring pixels

(a) (b)

Figure 3.4: An example of CT skull image:(a) Original image, (b) Predictor residual

image

3.1.2 Pixel based JND model

Image compression algorithm should eliminate both spatial redundancies and visually

insignificant information from the image data to reconstruct an image of high visual

quality with good CR. JND profile is employed to assess the perceptual redundancy

by considering features of HVS, and it provides a visibility threshold of distortion for

each pixel in an image below which reconstruction errors are unnoticeable. Among the

available spatial domain and transform domain JND models in the literature (Nadenau

et al. 2000), two spatial domain JND models are used in algorithms proposed. Visi-

bility threshold in the first model (JND model-1) is dependent on average background

luminance around the pixel and spatial gradient in the background luminance. Visibil-

ity threshold in the second model (JND model-2) is dependent on average background

luminance, spatial luminance gradient, and texture masking.
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JND Model-1

Perceptual redundancies present in images are primarily due to the disparity in sensitiv-

ity of the HVS to the differing levels of contrast and luminance variation in the spatial

domain. While applying the characteristics of HVS to image coding, the visibility

threshold is the most important measure for expressing perceptual redundancy. Visibil-

ity threshold of coding deformity is the magnitude of the stimulus at which degradation

becomes just visible or just unnoticeable.

The visibility threshold for the grayscale image depends on many factors. Two

main factors are average background luminance around the pixel to be encoded and

the spatial variations in the background luminance. Regarding the first factor, human

visual perception is more sensitive to luminance contrast than the absolute luminance

value (Jain 1989). Due to the presence of ambient illumination surrounding the display

the distortion in very dark regions tend to be less visible than that present in regions of

better luminance.

According to Weber’s law, with lower background luminance, the Weber fraction

(the ratio of just noticeable luminance difference to stimulus luminance) increases as

the background luminance decreases or if the background luminance is high, the Weber

fraction remains constant as the background luminance is increased. So high percepti-

bility threshold are assigned to either very bright or dark areas and low values in regions

of medium gray values (Safranek and Johnston 1989). The second factor indicates that

the increase in the spatial heterogeneity in the background luminance reduces the visi-

bility of stimuli which is referred as spatial masking. It is computed for every pixel.

In VLIC-1, pixel based perceptual model (Chou and Li 1995) has been selected to

measure the perceptual redundancy. This JND model is dependent on two important

properties of HVS as specified previously and it evaluates JND value coupled with

every pixel of the image from the information in the spatial domain.

Average background luminance bl(x; y) and maximum weighted gradient of average

background luminance w
g

(x; y) surrounding the pixel p(x; y) are defined as follows:
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bl(x; y) =

1

32
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grad

k

(x; y) =

1

16

5

X

a=1

5

X

b=1

p(x� 3 + a; y � 3 + b)G

k

(a; b) (3.3)

w

g

(x; y) = max(jgrad

k

(x; y)j); k = 1; 2; 3; 4 (3.4)

for 1 6 x < M and 1 6 y < N where M and N are respectively height and width of

the image.

1 1 1 1 1

1 2 2 2 1

1 2 0 2 1

1 2 2 2 1

1 1 1 1 1

Figure 3.5: Operator L for calculating average background luminance

0 0 0 0 0

1 3 8 3 1

0 0 0 0 0

-1 -3 -8 -3 -1

0 0 0 0 0

(a) Operator G
1

0 0 1 0 0

0 8 3 0 0

1 3 0 -3 -1

0 0 -3 -8 0

0 0 -1 0 0

(b) Operator G
2

0 0 1 0 0

0 0 3 8 0

-1 -3 0 3 1

0 -8 -3 0 0

0 0 -1 0 0

(c) Operator G
3

0 1 0 -1 0

0 3 0 -3 0

0 8 0 -8 0

0 3 0 -3 0

0 1 0 -1 0

(d) Operator G
4

Figure 3.6: Operator for calculating the weighted gradient w
g

(x; y) in four directions

A weighted low pass operator L(a; b), a; b = 1; :::5; as given in Figure 3.5 is used

to evaluate average background luminance in 5 � 5 window. The maximum weighted

gradient of background luminance w
g

(x; y) around the pixel in four directions is found

in the same 5� 5 window using operator G
k

(a; b) as shown in Figure 3.6 for k = 1; ::4

and a; b = 1; :::5
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Visual model developed from bl(x; y) and w
g

(x; y) for the calculation of JND profile is

summarized by the following equations (Chou and Li 1995):

s
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v

th

(bl(x; y)) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

T

0

(1� (bl(x; y)=127)

0:5

)) + 3

for bl(x; y) � 127


(bl(x; y)� 127) + 3

for bl(x; y) > 127

(3.8)

JND

1

(x; y) = max(s

m

(bl(x; y); w

g

(x; y)); v

th

(bl(x; y)))

(3.9)

where �(bl(x; y)) and �(bl(x; y)) are background luminance dependent functions. s
m

in equation (3.5) calculates the spatial masking effect. v
th

in equation (3.8) calculates

the visibility threshold due to the background luminance. Maximum value of s
m

and v
th

gives the distortion threshold value JND
1

(x; y) in JND model-1 for the pixel at (x; y)

position. The constants T
0

, 
 and � are taken as 17, 3

128

and 0:5 respectively (Chou and

Li 1995).

3.1.3 Symmetry detection

Symmetry being an inseparable quality of anatomical structure of human body is re-

tained in most of the image slices. Symmetry detector block finds the dominant axis of

symmetry if it exists in the image plane. It is carried out by comparing the symmetric

pair of feature points (Loy and Eklundh 2006) present in medical image slice. Using

scale invariant feature transform (Lowe 2004), a set of feature points a
i

are determined,

where a
i

= (x

i

; y

i

; �

i

) describes its location and orientation. First, a descriptor d
i

is

generated for each feature point and later set of reflected descriptors r
i

corresponding

to d
i

are generated. It is achieved by reflecting the image about x (or y) axis.
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Every reflected feature point has equivalent feature point in the current image, and

hence r
i

is the reflected version of d
i

. The best matching points p
j

and p
k

in the de-

scriptor d
i

and the reflected descriptor r
i

respectively are then grouped together to form

a set of potentially symmetric points. Each pair of matching point p
j

and p
k

decides

a possible symmetry axis. This axis of symmetry passes perpendicularly through the

midpoint of the line joining those pair of matching points. If there are many such po-

tential axes of symmetry, one common axis of symmetry is selected as the predominant

axis of symmetry. In Figure 3.7 the major axis of symmetry present in one slice of a

medical image is illustrated.

(a) (b)

Figure 3.7: Symmetry detection: (a) Original image, (b) Image with predominant axis

of symmetry

3.1.4 Block matching:

Two distinct block matching stages are used in the proposed compression scheme and

are discussed below.

Inter-slice block matching

There is a structural correlation between the neighbouring medical image slices because

each slice generated is usually a cross section of the human body and is parallel to

adjacent slices. CR can be improved by exploring the correlation in the slice direction.

The inter-slice block matching is used to estimate the predicted residual image R
i

of

the current slice using the previous predicted residual image R
i�1

.
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The predicted residual image of current slice R
i

is split into non-overlapped blocks

of size 8x8. Search window of size 16x16 is defined in the previous predicted residual

image R
i�1

. Since there is a resemblance between the two residual images, there must

be the best match for each block in previous predicted residual image. For blocks with

all sample values zero, block matching algorithm is not applied. A unique displacement

vector is chosen to indicate to the decoder about this particular case while reconstructing

the image. Here the blocks with zero values are saved instead of block matching error

image.

(a) (b)

Figure 3.8: An example of CT skull image: (a) Original CT skull image, (b) Inter-slice

block matching error image

A block with minimum SAD is selected as the best match and the corresponding

displacement vector, and the block matching error is taken for further processing. A

sample of original and inter-slice block matching error image are shown in Figure 3.8.

Intra-slice block matching

If the symmetry detector predicts symmetry in the current image plane, inter-slice block

matching error is split along the axis of symmetry. Intra-slice block matching routine is

applied on inter-slice block matching error else this step is bypassed. Intra-slice block

matching process is performed in the current image plane similar to inter-slice block

matching.
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3.1.5 Entropy Coding

Arithmetic coding is one of the entropy coding methods used in lossless data compres-

sion. In entropy coding, frequently occurring symbols are encoded with fewer bits and

not so frequently occurring symbols are encoded with more bits. Huffman code trans-

lates each symbol of the message into a series of bits, while arithmetic code overcomes

this disadvantage by encoding the entire message into one number. Arithmetic coding

tries to evaluate the probability with which certain characters appear and optimizes the

length of the code. Another advantage of arithmetic coding over other entropy coders is

the convenience of adaptation, i.e. update of probability tables as the data is processed.

Hence, context adaptive binary arithmetic coding is used to encode image residuals

obtained after applying block matching algorithm.

3.1.6 DPCM based quantizer

DPCM block exploits the spatial correlation. Predicted residual is quantized based on

the value of perceptual redundancy present, which is provided by JND profile estimator

block. Referring to the block diagram in Fig. 3.1,

p

e

(x; y) = p(x; y)� p

2

(x; y) (3.10)

p

q

(x; y) = Q[p

e

(x; y)℄ = p

e

(x; y)� q(x; y) (3.11)

where q(x; y) is the quantization error.

p

1

(x; y) = p

2

(x; y) + p

q

(x; y) (3.12)

and reconstruction error

r

e

(x; y) = p(x; y)� p

1

(x; y) (3.13)

The reconstruction error should be within the JND value.
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The following procedure is used to quantize the prediction residual value. The

JND

1

(x; y) value is multiplied by a factor. If the absolute value of prediction residual

value p
e

(x; y) is lesser than w
1

� JND

1

(x; y), p
e

(x; y) is multiplied by a factor of q
1

.

Otherwise it is multiplied another factor q
2

. This procedure is repeated for various value

of w
1

, q
1

, and q
2

to get the best possible CR. A JND dependent scheme is developed to

quantize the prediction residual by removing visually irrelevant information as:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

if j p
e

(x; y) j� w

1

� JND

1

(x; y)

p

q

(x; y) = q

1

� p

e

(x; y)

else

p

q

(x; y) = q

2

� p

e

(x; y)

(3.14)

where w
1

, q
1

and q
2

are optimally chosen weighting factors.

As mentioned in Equation 3.14, for different weighting factors of w
1

, q
1

and q
2

, CR

and corresponding VIF values are determined. Using different values for the weighting

factors of the quantizer w
1

in the range 30 to 60, q
1

in range 0.2 to 0.8 and q
2

in range

0.25 to 0.85. The achieved compression ratio and corresponding VIF was computed for

six sets of 3D medical image data. The relationship between CR and VIF for different

weighting factors in the case of 3 medical image data sets is shown in Figure 3.9. The

value of w
1

, q
1

and q

2

for each point Q
n

in Figure 3.9 is given in Table 3.1. It can

be observed that the optimum set to achieve maximum CR was Q
4

where w
1

= 50,

q

1

= 0:6 and q
2

= 0:65

Table 3.1: Range of quantization weighting factors

w

1

q

1

q

2

Q

1

50 0.2 0.25

Q

2

50 0.2 0.45

Q

3

50 0.5 0.55

Q

4

50 0.6 0.65

Q

5

50 0.7 0.75

Q

6

50 0.8 0.85
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Figure 3.9: Selection of optimum value of quantizer

3.1.7 Simulation results

In this section, simulation result for perceptually lossless CR is compared with the re-

sults obtained with lossless methods. Developed algorithm is simulated using Matlab R

8.2

on an Intel R

 i7 Core processor. The proposed method is tested on four 3D CT data sets

and four 3D MRI data sets maintained by Image Processing Lab, Mallinckrodt Insti-

tute of Radiology Bilgin et al. (1998). The details of these 3D test images are given in

Table 2.9 (Medical image data set 1). Information about presence or absence of sym-

metry in each image has to be supplied to the receiver along with compressed data to

reconstruct the compressed image. So CR is calculated as

CR =

Bits per pixel of the original image

S

o

+Bits per pixel of the 
ompressed image

(3.15)

where S
o

is the side information in bits per pixel. Side information is encoded as 8

bits per slice. Also additional six bytes of overhead is required as side information for

arithmetic coding.

MSE and PSNR are widely used to evaluate the quality of the reconstructed image,

even though they are poor at predicting image quality. Along with PSNR, we have used

other two metrics, VSNR (Chandler and Hemami 2007) and VIF (Sheikh and Bovik

2006) which takes into account the properties of HVS to measure the quality of the

reconstructed image.
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Table 3.2: Comparison of bit per pixel (bpp) of proposed coder VLIC-1 with other loss-

less compression methods

Image CALIC 3D EZW 3D CB EZW VLIC-1

CT Skull 2.725 2.357 2.200 2.028

CT Wrist 1.691 1.394 1.272 1.131

CT Carotid 1.654 1.601 1.527 1.406

CT Aperts 1.047 1.060 0.987 0.903

MRI Liver T1 3.047 2.545 2.398 1.921

MRI Liver T2 2.243 1.944 1.822 1.766

MRI Sag head 2.585 2.322 2.227 1.669

MRI Ped chest 2.810 2.176 2.022 1.742

Table 3.3: Evaluation quality metrics of VLIC-1 with corresponding bit rate

Image PSNR (dB) VSNR (dB) VIF bit rate

CT Skull 39.10 39.18 0.770 2.028

CT Wrist 47.05 51.69 0.915 1.131

CT Carotid 42.90 45.11 0.853 1.406

CT Aperts 47.45 52.49 0.908 0.903

MRI Liver T1 44.26 45.38 0.875 1.921

MRI Liver T2 39.93 43.80 0.817 1.766

MRI Sag head 40.94 44.22 0.769 1.669

MRI Ped chest 44.02 49.01 0.867 1.742

The obtained bit rates for eight sets of 3D medical images are shown in Table 3.2,

and the corresponding evaluation metrics such as PSNR, VSNR, and VIF are given

in Table 3.3. Obtained bit rate with VLIC-1 for all image volumes in data set-1 is

compared with lossless compression algorithms such as CALIC (Wu and Memon 1996),

EZW (Bilgin et al. 1998), and CB EZW (Bilgin et al. 1998). In the case of lossless

technique, reconstructed images will have quality metric PSNR=1, VSNR=1, VIF=1,

and SSIM=1. As the human eye is not a perfect sensor slight deviation from these ideal

values will not be perceived.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: Original Image and reconstructed image: (a) CT Skull, (b) CT Wrist, (c)

CT Carotid, (d) CT Aperts, (e) MRI Liver T1, (f) MRI Liver T2, (g) MRI

Sag head, (h) MRI Ped chest

As these results confirm, the proposed VLIC-1 coder gives improved performance

for all eight data sets without any perceivable visual distortion. The average reduction

in bit per pixel is 11.8 % with VLIC-1 compared to 3D CB EZW method. A sample of

original medical image slice from each of the data sets and corresponding reconstructed

image are shown in Figure 3.10.
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3.2 SYMMETRY BASED VISUALLY LOSSLESS COM-

PRESSION

In the proposed symmetry based algorithm, slice redundancy present in the image, sym-

metric nature of human anatomy and human visual characteristics are considered to

compress the volumetric image data. Block diagram of the proposed symmetry based

method is illustrated in Figure 3.11. With the symmetry based structure, two different

types of visually lossless compression algorithms (VLIC-2 and VLIC-3) are presented

in this section. Referring to Figure 3.11, in VLIC-2 algorithm, basic spatial based vi-

sion model (JND model-1) is used whereas in the case of VLIC-3, a modified vision

model (JND Model-2) is used to measure the visibility threshold. Visibility threshold

value is calculated first using spatial domain based JND model for all image slices.

Presence of symmetry in each image slice is also determined. Based on the visibility

threshold value, perceptually redundant information is removed using quantizer. Block

matching is performed on the resulting image slices to remove inter-slice and intra-slice

redundancies.

 Compressed slice

 Arithmetic
 Coding

 Intra slice
 Block matching

 Splitting Inter slice
 Block matching

 Symmetry
 Detector

 Quantizer

 JND profile
 estimator

 Input image

 Quality
 Measurement

 Image
 Reconstruction

 

 Symmetry exists

 No symmetry

 p(x,y)  pq(x,y)

Figure 3.11: Block diagram of the proposed method

3.2.1 JND Model-2

The perceptual model discussed in section 3.1.2 considered only the luminance part

in an image to determine JND profile. In this perceptual model, along with effects

of luminance adaptation, edge accommodative texture masking in the spatial domain
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is also added to better model the HVS characteristic (Yang et al. 2005). An increase

in the texture heterogeneity in the background will reduce the visibility of distortion

and is referred as texture masking. Accordingly, the textured area can mask more de-

formity than smooth regions. Also, error inserted in edge regions is more prominent

compared to non-edge areas since edge texture drags more attention in a classic HVS.

So this modified model explores both edge and non-edge regions along with luminance

masking and texture masking.

Perceptual model reflecting the above stated factors is expressed as:

JND

2

(x; y) = v

th

(bl(x; y)) + t

m

(x; y)� C

g

�min(v

th

(bl(x; y)); t

m

(x; y))

(3.16)

where JND
2

(x; y) is the distortion threshold value in JND model-2 at pixel position

(x; y), v
th

(bl(x; y)) is visibility threshold due to background luminance as defined ear-

lier, t
m

(x; y) is texture masking and C
g

is the gain reduction component due to overlap-

ping effect in masking of two basic masking factors for the gray level image. The value

of C
g

is set to 0.3.

Texture masking which considers edge information is defined as:

t

m

(x; y) = "w

g

(x; y)W (x; y) (3.17)

where w
g

(x; y) denotes maximum weighted average of background luminance gradient

around the pixel at position (x; y). " is a control parameter and is set as 0.117 (Yang

et al. 2005). W (x; y) is the edge related weight of the pixel at position (x; y) and it is

computed by Canny edge detector followed by a Gaussian low-pass filter as:

W (x; y) = E(x; y) � g; (3.18)

E(x; y) is edge map of image p(x; y) and is obtained with Canny detector with a thresh-

old of 0.5. g is a 7� 7 kernel size Gaussian low pass filter with a standard deviation of

0.8 to remove noise (Canny 1986).

59



Intra-slice block matching is done on residual data of each slice to improve com-

pression if symmetry is detected in the image slice. The residual image generated by

the block matching algorithm and displacement vectors are encoded using arithmetic

coding.

3.2.2 Quantizer

Initially, perceptually redundant information is eliminated from the image through JND

profile dependent quantizer. Referring to block diagram in Figure 3.11, p(x; y) is the

pixel value of input image at position (x; y) and p

q

(x; y) the corresponding recon-

structed pixel value is given by:

p

q

(x; y) = q

o

� JND(x; y)� r(x; y) (3.19)

r(x; y) = round

�

p(x; y)

q

o

� JND(x; y)

�

(3.20)

q

o

is quantization weighting factor 0 < q

0

< 1. JND(x; y) is either JND
1

(x; y) or

JND

2

(x; y). For the first few slices in a data volume, the image slices are reconstructed

and the quality of the decoded image slice is measured using VIF to determine the

quantization weighting factor q
o

as discussed in section 3.3.3.

3.2.3 Implementation

The proposed method has been simulated using Matlab R

8.2 on an Intel R


 i7 Core. Sim-

ulation results for the two JND models discussed in section 3.1.2 and section 3.2.1 are

evaluated. The algorithm using JND Model-1 is named VLIC-2 and the algorithm us-

ing JND Model-2 is named VLIC-3. The MRI and CT data sets have dimensions of

256 � 256 with 8 bits per pixel. Table 2.9 (Medical image data set 1) gives the details

of MRI and CT test image database selected from Mallinckrodt Institute of Radiology,

Image processing lab (Bilgin et al. 1998).
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3.3 RESULTS AND DISCUSSIONS

3.3.1 Compression Efficiency with Modifications in Block Match-

ing Algorithm

Block matching algorithm mentioned in section 3.1.4 is modified to improve the perfor-

mance of the compression algorithm. Current image slice I
i

is split into nonoverlapped

blocks of 8�8 and a 16�16 search window is defined in the previous image slice I
i�1

.

Most of the medical images have clinically irrelevant background with pixel values of

zero. This particular case is considered to improve the efficiency of the compression al-

gorithm by checking values in 8� 8 block. If there is no symmetry in the current image

plane and all values within 8� 8 block are zero, block match routine is not applied. A

unique displacement vector is assigned to inform the decoder about this particular case

while reconstructing the image. If all pixel values are not zero in 8 � 8 blocks, block

match routine is applied to search for the best match in the search window.

Minimum SAD value is used to locate the best match. In the case of minimum SAD

value is greater than the sum of all pixel values in the current 8� 8 block, pixel values

in the 8 � 8 block are saved instead of saving the difference between pixel values in

reference window and search window. This particular case is represented by a differ-

ent displacement vector to assist decoder while reconstructing the image. The same

procedure is repeated in the case of intra-slice block matching also.

Simulation results for the lossless compression of all eight test data sets of medical

images without including perceptual JND model and quantizer in Figure 3.11 is given

in Table 3.4. Column 2 and 4 in Table 3.4 gives the average bit rate after applying

only inter-slice block match algorithm without and with modifications in the conven-

tional method. There is a reduction of 10.92% in average bit rate with only inter-slice

block matching algorithm. Column 3 and 5 in Table 3.4 gives the average bit rate after

applying inter-slice and intra-slice block match without and with modifications in the

conventional method. There is an average reduction of 12.18% in average bit rate in

lossless compression with modifications in block match routine.
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Table 3.4: Bit rates (bpp) of lossless compression algorithm with and without modifi-

cations in block match routine

Image

Without modification in block match With modification in block match

Inter-slice Inter-slice & Intra-slice Inter-slice Inter-slice & Intra-slice

block match block match block match block match

CT Skull 2.020 1.983 1.783 1.766

CT Wrist 1.370 1.360 1.163 1.152

CT Carotid 2.158 2.112 1.683 1.654

CT Aperts 1.228 1.207 1.035 0.989

MRI Liver T1 2.402 2.391 2.383 2.353

MRI Liver T2 1.946 1.916 1.795 1.794

MRI Sag head 1.894 1.884 1.868 1.775

MRI Ped chest 1.628 1.618 1.645 1.592

3.3.2 Comparison of performance of VLIC-2 and VLIC-3

The efficiency of the VLIC-2 and VLIC-3 coding schemes has been examined by com-

paring bit rate with that of other 3D lossless compression techniques available in the

literature- namely CALIC (Wu and Memon 1996), 3D JPEG (Ait Aoudia et al. 2006),

3D EZW (Bilgin et al. 1998), 3D CB EZW (Bilgin et al. 1998), MILC (Pizzolante and

Carpentieri 2013) and VLIC-1. Table 3.5 lists the bit rates of the 8 compression tech-

niques. Comparison of CR of spatial-based VLIC algorithms with lossless techniques

is given in Table 3.6. Obtained CR of all the three spatial based VLIC are within the

acceptable compression ratios as suggested by Royal College of Radiologists and Eu-

ropean Society of Radiology (Table 2.7) for almost all the data volumes. Figure 3.12

shows the percentage reduction in bit rate of the reference method compared to the

algorithm yielding the minimum bit rate for each of the test data sets.

The results show that elimination of perceptual redundancy and slice redundancy

significantly improves the performance. The proposed methods show better perfor-

mance than CALIC, EZW, CB EZW, 3D JPEG and MILC for most of the test data sets.

The performance of algorithms VLIC-1 to VLIC-3 are dependent on presence of sym-
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Table 3.5: Comparison of bit rates (bpp) of VLICs with other lossless compression

methods

Image CALIC 3D EZW 3D CB EZW 3D JPEG MILC VLIC-1 VL1C-2 VLIC-3

CT Skull 2.725 2.357 2.200 3.112 2.030 2.028 1.767 1.652

CT Wrist 1.691 1.394 1.272 1.652 1.066 1.131 1.150 1.137

CT Carotid 1.654 1.601 1.527 1.965 1.358 1.406 1.544 1.508

CT Aperts 1.047 1.060 0.987 1.238 0.819 0.903 0.783 0.777

MRI Liver T1 3.047 2.545 2.398 3.125 2.196 1.921 2.286 2.282

MRI Liver T2 2.243 1.944 1.822 2.622 1.759 1.766 1.841 1.791

MRI Sag head 2.585 2.322 2.227 2.758 2.097 1.669 1.572 1.558

MRI Ped chest 2.810 2.176 2.022 2.768 1.655 1.742 1.336 1.336

Table 3.6: Comparison of CR of VLICs with other lossless compression methods

Image CALIC 3D EZW 3D CB EZW 3D JPEG MILC VLIC-1 VL1C-2 VLIC-3

CT Skull 2.935 3.394 3.636 2.570 3.940 3.944 4.527 4.842

CT Wrist 4.730 5.738 6.289 4.842 7.504 7.073 6.956 7.036

CT Carotid 4.836 4.996 5.239 4.071 5.891 5.689 5.181 5.305

CT Aperts 7.640 7.547 8.105 6.462 9.768 8.859 10.217 10.296

MRI Liver T1 2.625 3.143 3.336 2.56 3.642 4.164 3.499 3.505

MRI Liver T2 3.566 4.115 4.390 3.051 4.548 4.530 4.345 4.466

MRI Sag head 3.094 3.445 3.592 2.900 3.814 4.793 5.089 5.134

MRI Ped chest 2.846 3.676 3.956 2.890 4.833 4.592 5.988 5.988

metry in the medical images. The details of slices with structural symmetry in medical

data set-1 is given in Table 3.7. It can be observed that VLIC 1 to 3 outperform the

other methods for data sets with higher percentage of slices that are symmetric. The bit

rate is decreased by 46.44% and 49.06% on average in the case of VLIC-2 and VLIC-3

respectively compared to 2D based CALIC. If one takes the VLIC-2 as the reference for

average reduction in percentage bit rate, VLIC-1 yields an almost similar result, since

the difference between the two is 2.25%. VLIC-3 and MILC coder provide results with

an average difference in the bit rate of 8.12%. The average difference increases up to

19.83% and 63.47% for 3D CB EZW and 3D JPEG coder. Percentage reduction in bit

rate with VLIC-3 compared to VLIC-2 is 2.15.
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Table 3.7: Slices with bilateral symmetry in data set-1

Volume
Image

Number of slices Number of % of slices

number with symmetry slices with symmetry

1 CT Skull 188 192 97.71

2 CT Wrist 21 176 11.93

3 CT Carotid 7 64 10.93

4 CT Aperts 37 96 38.54

5 MRI Liver T1 14 48 29.16

6 MRI Liver T2 8 48 16.66

7 MRI Sag head 6 16 37.5

8 MRI Ped chest 24 64 37.5

VLIC-3
VLIC-2

VLIC-1
MILC

3D CB EZW
3D EZW

CALIC
3D JPEG

CT Skull
CT Wrist
CT Carotid

CT Aperts
MRI Live T1

MRI Liver T2
MRI Sag head

MRI Ped chest
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Figure 3.12: Percentage decrease in bit rate with reference method against the algorithm

yielding the best bit-rate for each test data set

3.3.3 Quality Metric Based Performances

The algorithm is evaluated for different values of quantization weighting factor q
o

rang-

ing from 0.2 to 1 with steps of 0.1. It demonstrates that as the value of q
o

increases,
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quality of reconstructed image decreases and compression gain increases. Correspond-

ing maximum and minimum value of bit rate and VIF are tabulated in Table 3.8. By

measuring the quality of the reconstructed image, value of q
o

can be adjusted. Normal-

ized Compression Ratio (CR) and VIF are plotted for a range of q
o

values from 0.2 to

1 is shown in Figure 3.13, where normalization/rescaling of CR or VIF is carried out

with the equation:

x

new

=

x� x

min

x

max

� x

min

(3.21)

Table 3.8: Bit rate and VIF for minimum and maximum value of q
o

(q
o

= 0:2 and

q

o

= 1)

Image set
VLIC-2 VLIC-3

bpp

max

bpp

min

V IF

max

V IF

min

bpp

max

bpp

min

V IF

max

V IF

min

CT Skull 1.8131 1.7311 0.9750 0.8498 1.7652 1.6121 0.9811 0.8824

CT Wrist 1.2294 1.1339 0.9598 0.8192 1.1586 1.1112 0.9600 0.7986

CT Carotid 1.7382 1.3294 0.9881 0.8776 1.7362 1.2973 0.9900 0.8903

CT Aperts 0.8810 0.8056 0.9757 0.8719 0.8777 0.7984 0.9770 0.8771

MRI Liver T1 2.3992 2.2752 0.9537 0.7789 2.4006 2.2658 0.9539 0.7825

MRI Liver T2 1.9894 1.7907 0.9800 0.8679 1.9483 1.7625 0.9866 0.8852

MRI Sag head 1.6166 1.5339 0.9281 0.7331 1.6223 1.5414 0.9287 0.7137

MRI Ped chest 1.5076 1.1476 0.9540 0.6350 1.5110 1.1431 0.9540 0.6365

As the value of q
o

increases, CR increases and VIF decreases. Nearest value of q
o

where CR and VIF curves meet is considered as the best value to get both good bit rate

and visual quality. The optimal value of q
o

is found to be 0.5 for all data sets except for

MRI Ped chest, to have good bit rate and visual quality as shown in Figure 3.13. For

MRI Ped chest which is a more noisy image the optimal value of q
o

is 0:4 as shown

in Figure 3.13. Hence while compressing the medical images, optimal quantization

weighting factor of q
o

= 0:5 is chosen, in the case of noisy images q
o

= 0:4 is used.

Quality of reconstructed image is measured with PSNR, VSNR, VIF and SSIM

metrics. The evaluation metrics for the reconstruction quality such as PSNR, VSNR,

VIF and SSIM with corresponding bit rate are given in Table 3.9. SSIM yields the best

performance indicator of image quality, and it gives the closest match to the subjective
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Figure 3.13: Selection of q
o

: (a) VLIC-2 compression technique (b) VLIC-3 compres-

sion technique
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Table 3.9: Quality metrics of reconstructed image for optimal q
o

Image set

VLIC-2 VLIC-3

PSNR VSNR
VIF SSIM bit rate

PSNR VSNR
VIF SSIM bit rate

(dB) (dB) (dB) (dB)

CT Skull 50.15 46.29 0.9426 1 1.767 51.42 47.94 0.9565 1 1.652

CT Wrist 48.98 53.53 0.9145 1 1.150 49.05 53.56 0.9169 1 1.137

CT Carotid 52.89 50.88 0.9700 1 1.544 53.46 50.89 0.9710 1 1.508

CT Aperts 52.14 56.37 0.9481 0.9994 0.783 52.28 56.42 0.9503 0.9994 0.777

MRI Liver T1 42.64 46.69 0.8927 0.9947 2.286 42.67 46.69 0.8937 0.9947 2.282

MRI Liver T2 50.53 46.98 0.9508 1 1.841 51.20 47.04 0.9597 1 1.791

MRI Sag head 46.39 55.32 0.8543 1 1.572 46.42 55.35 0.8550 1 1.575

MRI Ped chest 43.30 54.29 0.8334 0.9914 1.336 43.32 54.28 0.8337 0.9914 1.336

Table 3.10: Comparison of PSNR obtained with JPEG-2K Part 1, JPEG-2K Part 2,

VLIC-2 and VLIC-3

Image set
J2K-P1 J2K-P2 VLIC-2 VLIC-3

bpp PSNR (dB) bpp PSNR (dB) bpp PSNR (dB) bpp PSNR (dB)

CT Skull 1.664 49.17 1.684 49.17 1.654 50.87 1.648 50.59

CT Wrist 1.261 53.78 1.281 52.89 1.229 52.93 1.224 53.01

CT Carotid 1.702 55.99 1.707 55.97 1.7384 58.23 1.736 59.24

CT Aperts 0.914 56.85 0.901 56.97 0.881 56.50 0.877 56.62

MRI Liver T1 1.957 49.20 1.977 49.30 2.399 47.23 2.400 47.28

MRI Liver T2 2.240 55.96 2.260 55.84 1.790 55.12 1.762 55.89

MRI Sag head 1.590 48.23 1.592 48.86 1.616 50.13 1.622 50.15

MRI Ped chest 1.559 48.46 1.579 48.52 1.507 48.66 1.511 48.68

quality (Kowalik-Urbaniak et al. 2014). As these results confirm, the proposed method

gives the improved performance on most of the data sets without any perceivable visual

distortion.

Also, the performance of the algorithms is compared with lossy state-of-the-art

coders like JPEG2000 Part 1 and JPEG2000 Part 2. Kakadu 7.4 version software is

used for the implementation of JPEG-2KP1 and JPEG-2KP2 (KAKADU 2016). The

rate-distortion values for each of the dataset and the methods is given in Table 3.10,

Table 3.11 and Table 3.12. From the values in the table, it is clearly seen that VLIC-2
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Table 3.11: Comparison of SSIM obtained with JPEG-2K Part 1, JPEG-2K Part 2,

VLIC-2 and VLIC-3

Image set
J2K-P1 J2K-P2 VLIC-2 VLIC-3

bpp SSIM bpp SSIM bpp SSIM bpp SSIM

CT Skull 1.664 0.99001 1.684 0.99002 1.654 1 1.648 1

CT Wrist 1.261 0.9977 1.281 0.9976 1.229 1 1.224 1

CT Carotid 1.702 0.9976 1.707 0.9986 1.7384 1 1.736 1

CT Aperts 0.914 0.9963 0.901 0.9970 0.881 1 0.877 1

MRI Liver T1 1.957 0.9926 1.977 0.9937 2.399 1 2.400 1

MRI Liver T2 2.240 0.9988 2.260 0.9979 1.790 1 1.762 1

MRI Sag head 1.590 0.9967 1.592 0.9983 1.616 1 1.622 1

MRI Ped chest 1.559 0.9918 1.579 0.9918 1.507 1 1.511 1

Table 3.12: Comparison of VIF obtained with JPEG-2K Part 1, JPEG-2K Part 2, VLIC-

2 and VLIC-3

Image set
J2K-P1 J2K-P2 VLIC-2 VLIC-3

bpp VIF bpp VIF bpp VIF bpp VIF

CT Skull 1.664 0.9151 1.684 0.9151 1.654 0.9405 1.648 0.9489

CT Wrist 1.261 0.9704 1.281 0.99703 1.229 0.9767 1.224 0.9825

CT Carotid 1.702 0.9780 1.707 0.9784 1.7384 0.9881 1.736 0.99

CT Aperts 0.914 0.9784 0.901 0.9792 0.881 0.9757 0.877 0.9770

MRI Liver T1 1.957 0.9528 1.977 0.9535 2.399 0.9537 2.400 0.9539

MRI Liver T2 2.240 0.9863 2.260 0.9841 1.790 0.98 1.762 0.9866

MRI Sag head 1.590 0.9199 1.592 0.9207 1.616 0.9281 1.622 0.9287

MRI Ped chest 1.559 0.9170 1.579 0.9170 1.507 0.954 1.511 0.9540

and VLIC-3 give a better quality either at nearly same or lower bit rates. Table 3.11

and Table 3.12 show that the quality of the reconstructed image of our coder has better

quality in terms of HVS metrics without any perceivable visual distortion.

A sample of original medical image slice from each data sets and corresponding

reconstructed image with VLIC-2 and VLIC-3 compression techniques are shown in

Figure 3.14 and Figure 3.15 respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.14: Visual clip of original and reconstructed images with VLIC-

2 compression technique (Slice number of image is 12).

(a) CT Skull: original; Reconstructed image (PSNR=49.20 dB)

(b) CT Wrist: original; Reconstructed image (PSNR=48.90 dB)

(c) CT Carotid: original; Reconstructed image (PSNR=53.14 dB)

(d) CT Aperts: original; Reconstructed image (PSNR=53.82 dB)

(e) MRI Liver T1: original; Reconstructed image (PSNR=42.66 dB)

(f) MRI Liver T2: original; Reconstructed image (PSNR=50.65 dB)

(g) MRI Sag head: original; Reconstructed image (PSNR=46.39 dB)

(h) MRI Ped chest: original; Reconstructed image (PSNR=43.33 dB)

3.3.4 Analysis of impact of adding various blocks in VLIC-3 coder

Block diagram of lossless and visually lossless compression technique without sym-

metry and with symmetry are shown in Figure 3.16, Figure 3.17, Figure 3.18 and Fig-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: Visual clip of original and reconstructed images with VLIC-

3 compression technique (Slice number of image is 12).

(a) CT Skull: original; Reconstructed image (PSNR=51.12 dB)

(b) CT Wrist: original; Reconstructed image (PSNR=48.99 dB)

(c) CT Carotid: original; Reconstructed image (PSNR=53.81 dB)

(d) CT Aperts: original; Reconstructed image (PSNR=53.97 dB)

(e) MRI Liver T1: original; Reconstructed image (PSNR=42.69 dB)

(f) MRI Liver T2: original; Reconstructed image (PSNR=51.31 dB)

(g) MRI Sag head: original; Reconstructed image (PSNR=46.41 dB)

(h) MRI Ped chest: original; Reconstructed image (PSNR=43.54 dB)

ure 3.19. JND model-2 is used to identify the redundant visual information.

Basic lossless coding system shown in Figure 3.16 removes inter-slice redundancy
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Figure 3.16: Block diagram of lossless image coder (Coder-1).
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Figure 3.17: Block diagram of visually lossless image coder (Coder-2).
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Figure 3.18: Block diagram of lossless image coder with symmetry (Coder-3).
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Figure 3.19: Block diagram of visually lossless image coder with symmetry (Coder-4).

using block matching routine. To remove the redundancy within the image slice due

to the symmetric structural feature of medical images symmetry detector and intra-

slice block matching blocks are added as shown in Figure 3.18. JND model-2 block

is added to basic compression system to implement basic VLIC technique as shown
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in Figure 3.17. Figure 3.19 is the basic VLIC technique with symmetry detector and

intra-slice block matching blocks.

Table 3.13 tabulates the bit rates obtained for each of the coders as shown in Fig-

ure 3.16, Figure 3.18, Figure 3.17 and Figure 3.19. Basic lossless compression method

(Coder-1) removes only the redundancy between slices of volumetric medical data. The

achieved lower bit rate in the case of symmetry based lossless compression (Coder-2)

compared to basic lossless technique is due to the removal of intra-slice redundancy.

Table 3.13: Bit per pixel (bpp) of volumetric image compression algorithms

Image Coder-1 Coder-3 Coder-2 Coder-4

Figure 3.16 Figure 3.18 Figure 3.17 Figure 3.19

CT Skull 1.783 1.766 1.728 1.652

CT Carotid 1.683 1.654 1.601 1.508

MRI Liver T1 2.383 2.353 2.310 2.282

MRI Liver T2 1.795 1.794 1.792 1.791

MRI Ped chest 1.645 1.592 1.386 1.336

Even though symmetry property of medical images is not considered in the case of

Coder-2, compression efficiency is better than lossless methods (Coder-1 and Coder-

3) due to improved quantization of pixel values. Degradation in the perceivable visual

quality is avoided by using a JND dependent quantizer, instead of the uniform quantizer.

JND model decides the amount of distortion that can be introduced at each pixel posi-

tion of each image slice. Symmetry-based visually lossless algorithm (Coder-4) gives

the best performance among all the four techniques since it considers symmetry based

redundancy, redundancy between slices and perceptual redundancy. Results obtained

are compared among different cases as follows:

Case-1: Lossless compression without and with symmetry:- Bit rate is reduced by

1.76% on an average in the case of lossless compression with symmetry compared to

lossless compression without symmetry.
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Case-2: Visually lossless compression without and with symmetry:- Obtained per-

centage reduction in bit per pixel is 2.88% on an average in the case of visually lossless

compression with symmetry compared to visually lossless compression without sym-

metry.

Case-3: Lossless and visually lossless compression without symmetry:- An average

7.37% reduction in bit rate is observed in the case of visually lossless compression

without symmetry compared to lossless compression without symmetry.

Case-4: Lossless and visually lossless compression with symmetry:- Maximum re-

duction in bit rate is obtained as symmetry based visually lossless compression method

exploits static, symmetry and perceptual redundancies. The bit rate is reduced by 8.47%

on an average in the case of visually lossless compression with symmetry compared to

lossless compression with symmetry.

3.4 SUMMARY

This chapter, introduced three types of VLC (VLIC-1, VLIC-2, VLIC-3) exploiting

symmetry characteristic present in medical images and characteristics of human vision

system. The compression methods developed use pixel based visual model. JND model

is embedded into symmetry based lossless compression technique to identify, measure

and eliminate the visually redundant information. JND model-1 is dependent on back-

ground luminance, and JND model-2 is dependent on background luminance and edge

accommodative texture masking. VLIC-1 is based on DPCM and symmetry based al-

gorithm. JND model-1 is embedded in DPCM. In VLIC-2, JND model-1 is used to

identify the redundant visual information and JND model-2 is used in VLIC-3 algo-

rithm. VLIC-3 algorithm proves to be efficient compared to VLIC-2. Proposed visually

lossless coders are tested on standard medical data sets and compression performance

is compared with lossless compression techniques.

The proposed methods show better performance when compared to CALIC, EZW,

CB EZW, 3D JPEG and MILC for most of the test data sets. The bit rate is decreased
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by 46.44% and 49.06% on average in the case of VLIC-2 and VLIC-3 respectively

compared to 2D based CALIC. The performance of VLIC-1 and VLIC-2 is almost

similar. VLIC-3 and MILC coder provide results with an average difference in the bit

rate of 8.12%. The average difference increases up to 19.83% and 63.47% for 3D CB

EZW and 3D JPEG coder. Percentage reduction in bit rate with VLIC-3 compared to

VLIC-2 is 2.15. The reduction in bit rate is 8.47% on an average in the case of visually

lossless compression with symmetry compared to lossless compression with symmetry.

HVS based quality metrics are used to measure the quality of the reconstructed image.

All the three algorithms discussed in chapter 3, are developed in the spatial do-

main. The spatial domain based vision models are used to remove visually irrelevant

information. Spatial based compression techniques fail to decorrelate and identify high

frequency contents present in the image. Hence, a wavelet based compression algorithm

is proposed in chapter 4 to improve the performance.
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CHAPTER 4

WAVELET BASED VISUALLY LOSSLESS

COMPRESSION OF MEDICAL IMAGES

The wavelet transform is a novel computational based multi-resolution analysis tool

used to decompose complex signals. It is capable of conveying detailed spatial and

temporal information. DICOM standard which is used in the field of medical imaging

supports wavelet based JPEG 2000. Wavelet based compression techniques provide

superior rate-distortion performance for three-dimensional medical data sets. Also, it

supports resolution scalability and lossy to lossless coding. In this chapter, wavelet

based visually lossless coder for volumetric medical data is discussed. Wavelet based

vision model calculates JND value to eliminate redundant visual information and block

matching routine to eliminate slice redundancy.

4.1 WAVELET BASED VISUALLY LOSSLESS CODER

The block diagram of the proposed wavelet based visually lossless compression tech-

nique VLIC-4 for volumetric medical data is illustrated in Figure 4.1. The slice re-

dundancy and human visual characteristics are considered to compress the volumetric

image data. Each image is first decomposed with 2D DWT for l scales. A wavelet

based vision model is used to measure the JND followed by a JND dependent quan-

tizer to remove visually irrelevant information. On the resulting image slices, block

matching algorithm is applied to remove inter-slice redundancy. The image residue

generated by the block matching algorithm and displacement vectors are compressed

using arithmetic coding.
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Figure 4.1: Block diagram of Wavelet based visually lossless coder

4.1.1 2D Discrete Wavelet Transform

The basic principle of the 2D DWT is to represent a 2D signal as a superposition of

a wavelet basis. The coefficients of the basis can then be utilized to reconstruct the

original information. The 2D DWT gives frequency and spatial representation of 2D

signals. Each scale of the transform decomposes its input into four spatial frequency

subbands denoted as LL, LH, HL and HH. The orientations are indexed as 1, 2, 3, 4 cor-

responding to the LL, HL, HH and LH subbands, respectively. The approximation low

pass subband LL, is a coarser version of the original signal, while the other subbands

represent the high frequency details in the horizontal, vertical and diagonal directions,

respectively. The decomposition is usually iterated on the approximation low pass sub-

band, which for natural images contains most of the energy. The wavelet transform

has many features that make it suitable for our application, such as the representation

of an image at different resolutions and packing of most of the energy in few wavelet

coefficients.

4.1.2 JND thresholds for wavelet coefficients

The perceptual redundancy present in an image is measured through JND profile. The

visual model uses one JND threshold, v
JND

(l; �; [m;n℄) for every DWT coefficient

at location [m;n℄ in subband (l; �), where l is the scale and � is the orientation. In

this work, three important visual characteristics namely contrast sensitivity, luminance

masking or light adaption and contrast masking are modeled to determine the JND

thresholds (Liu et al. 2006). The JND threshold v
JND

(l; �; [m;n℄) is thus computed as:
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v

JND

(l; �; [m;n℄) = JND

(l;�)

a

l

(l; �; [m;n℄)a




(l; �; [m;n℄) (4.1)

where JND
(l;�)

is the base detection threshold of a subband (l; �), a
l

(l; �; [m;n℄) is the

light adaptation adjustment and a



(l; �; [m;n℄) is the contrast masking adjustment.

The base detection threshold JND
(l;�)

for each subband (l; �) provides the relative

variation in the visible signal over a background with uniform intensity. Contrast is

an essential theory in vision science because the response of the HVS depends on the

variation of the signal relative to the surrounding background instead of the absolute

luminance value.

A mathematical representation of JND threshold is given by (Liu et al. 2006)

JND

(l;�)

=

a10

k

�

log

�

g

�

f2

l

r

��

2

A

l;�

(4.2)

where a, k, f, r, and g
�

are constants. Values of these constants are listed in Table 4.1.

A

l;�

is the amplitude of the DWT 9/7 kernel basis function. Its value depends on fre-

quency level l, orientation � and visual resolution of the display in pixels/degree r.

Table 4.2 lists the A
l;�

values for a 5-level 9/7 DWT decomposition (Liu et al. 2006).

Table 4.1: Parameters for the DWT threshold model (Liu et al. 2006)

a k f g

LL

g

HL;LH

g

HH

r

(pixels/degree)

0.495 0.466 0.401 1.501 1.0 0.534 35

The base detection threshold value change with the background intensity levels. Hence

mean luminance of the local image region needs to be considered when calculating de-

tection threshold. Therefore to account for this variation, a luminance masking correc-

tion factor must be applied to the contrast sensitivity function. The luminance masking

adjustment is approximated as:

a

l

(l; �; [m;n℄) =

�


(l

max

; LL; [m

0

; n

0

℄)




mean

�

a

T

(4.3)
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Table 4.2: Basis function amplitude A
l;�

for a 6 level 9/7 DWT (Liu et al. 2006)

Orientation
DWT

1 2 3 4 5 6

LL 0.62171 0.34537 0.18004 0.09140 0.045943 0.023013

LH,HL 0.67234 0.413177 0.22727 0.11792 0.059758 0.030018

HH 0.72709 0.49428 0.28688 0.15214 0.077727 0.039156

where 
(l
max

; LL; [m

0

; n

0

℄) is the value of the DWT coefficient, in the LL subband,

that spatially corresponds to the position (l; �; [m;n℄). In this case, m0 and n0 can be

calculated as m0

= b

m

2

l

max

�l


 and n0 = b

n

2

l

max

�l


. The parameter a
T

controls luminance

masking, a value of 0.649 was used (Liu et al. 2006).

Contrast masking is another factor that will affect the detection threshold. It is due to

the fact that the visibility of one image component changes with the presence of another

image component (Chou and Li 1995). Contrast masking estimates the variation of the

detection threshold in a target signal as a function of the contrast of the masker. The

contrast masking effect can be framed as:

a




(l; �; [m;n℄) = a




�

self

(l; �; [m;n℄)a




�

neigh

(l; �; [m;n℄) (4.4)

where a




�

self

(l; �; [m;n℄) is the self contrast masking adjustment factor and

a




�

neigh

(l; �; [m;n℄) is the neighborhood contrast masking adjustment factor.

A sufficiently large coefficient at the location (l; �; [m;n℄) increases the detection

threshold. This variation in detection threshold is incorporated through self contrast

masking adjustment factor a



�

self

(l; �; [m;n℄). For the DWT coefficients, it is expressed

as:

a




�

self

(l; �; [m;n℄) = max

�

1;

�

j
(l; �; [m;n℄)j

JND

(l;�)

a

l

(l; �; [m;n℄)

�

"

�

(4.5)

where 
(l; �; [m;n℄) is the DWT coefficient value at location (l; �; [m;n℄). For the LL

subband, contrast masking is not applied (" = 0). For other subbands, " is 0.6.

In DWT based reconstructed images, the signal formed by DWT coefficient
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(l; �; [m;n℄) is superimposed on other signals formed by the neighboring wavelet co-

efficients. This phenomenon is taken into account through neighborhood contrast ad-

justment factor a



�

neigh

(l; �; [m;n℄). So there is some masking effect contributed from

spatially neighboring signals in the wavelet domain. It is expressed as (Liu et al. 2006):

a




�

neigh

(l; �; [m;n℄) = max

8

>

<

>

:

1;

X

k2 neighbors of (l;�;[m;n℄)

�

�

�




k

JND

(l;�)

a

l

(l;�;[m;n℄)

�

�

�

�

N

[m;n℄

9

>

=

>

;

(4.6)

where the neighborhood contains the coefficients in the same subband that lies within a

window centered at the location [m;n℄. N
[m;n℄

represents the number of coefficients in

that neighborhood. 

k

are the neighboring wavelet transform coefficient values. � = 0:5

is a constant that controls the influence of the amplitude of each neighboring coefficient.

4.1.3 JND dependent quantizer

This section explains the approach to eliminate the perceptual redundancies. The sim-

plest approach of eliminating the visually redundant information from DWT coefficients

is to quantize the DWT coefficients in such a way that absolute value of quantization

error is below the JND value. After evaluating the image dependent JND value, each

reference or original DWT coefficient 
(l; �; [m;n℄) is quantized to get 
d(l; �; [m;n℄)

through truncation of 
(l; �; [m;n℄). So


d

k

(l; �; [m;n℄) = b


(l; �; [m;n℄)

k


 � k (4.7)

where b 
 is the truncation function and k is an integer. Finally, if the quantized DWT

coefficient 
d
k

(l; �; [m;n℄) is below the JND threshold v
JND

(l; �; [m;n℄), the reference

DWT coefficient 
(l; �; [m;n℄) at location [m;n℄ is replaced by the corresponding quan-

tized DWT coefficient 
d
k

(l; �; [m;n℄). The pseudo code of this procedure is shown in

Figure 4.2, where 
v(l; �; [m;n℄) is visually lossless DWT coefficient.
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Procedure for eliminating visual redundancy:


v(l; �; [m;n℄) = 
(l; �; [m;n℄);

for k=4:2


d

k

(l; �; [m;n℄) = b


(l; �; [m;n℄)

k


 � k;

if j 
(l; �; [m;n℄)� 
d

k

(l; �; [m;n℄) j6 v

JND

(l; �; [m;n℄) then


v(l; �; [m;n℄) = 
d

k

(l; �; [m;n℄);

break

end if

end for

Figure 4.2: Pseudo code for eliminating visual redundancy

4.1.4 Inter-slice block matching:

A structural correlation exists between the stack of medical image slices because each

slice generated is usually a cross section of the human body and is parallel to adjacent

slices. In this stage, CR is improved by exploring the correlation in the slice direction.

The inter-slice block matching is used to estimate current slice of a residual image using

the previous image. This procedure is same as explained in section 3.1.4. The residual

image after block matching is encoded using adaptive arithmetic coding.

4.2 IMPLEMENTATION

The proposed method has been simulated using Matlab R

8.2 on an Intel R


 i7 Core. The

performance of the wavelet based and pixel based Visually Lossless Coder (VLC) for

volumetric medical image sets are compared with a few of the standard image compres-

sion codecs. The coder is developed for a viewing distance of 24 inches (approximately
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arm’s length) and for a display with around 35 pixels/degree display visual resolution.

DWT is implemented with 9/7 wavelet filter with scale of 5. The value of parame-

ters a, k, f, r and g
�

used in the JND model are based on the experiment carried with

various models to express the threshold for gray scale DWT noise as a function of spa-

tial frequency and orientation � (Watson et al. 1997). The performance of the VLIC-4

algorithm is tested on several sets of MRI, CT, and X-ray Angiography image data-

JPEG 2000 encoding with perceptual distortion control (Bilgin et al. 1998; Sanchez

and Bartrina-Rapesta 2014; Bruylants et al. 2015). Details of these test image data sets

are summarized in Table 2.9, Table 2.10 and Table 2.11. Results obtained with 3157

slices of CT images, 886 slices of MR images and 608 slices of X-ray Angio slices are

documented.

4.3 RESULTS AND DISCUSSIONS

4.3.1 Performance of coder with and without neighborhood mask-

ing

The influence of neighborhood contrast adjustment along with self contrast adjustment

with different bit rates as discussed in section 4.1.2 is shown in Figure 4.3. Table 4.3

compares quality metrics such as PSNR and VIF against the bit rate for VLC consid-

ering only self masking and VLC considering both self and neighborhood masking.

For almost same quality, VLC with both maskings gives reduced bit rate. An overall

improvement of 7.89 % in bit rate is obtained. VLC with neighborhood contrast ad-

justment increases the computation complexity, as a



�

neigh

(l; �; [m;n℄) value has to be

computed (Equation 4.6) in 5 � 5 neighborhood, but there is an improvement in CR.

Both self and neighborhood masking factors are considered in the implementation of

coder.

Simulations were carried out for 9=7 wavelet filter and five levels of frequency de-

composition. Biorthogonal 9=7 wavelet filter set is used as it gives good compres-
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sion and has been used extensively in image compression applications (Villasenor et al.

1995). In general, as the number of decomposition levels is increased, the coding ef-

ficiency improves upto an optimum point and then levels off. It has been shown that

most of the coding efficiency is contributed by the first three to five decomposition

levels (Adams and Ward 2001), hence five levels of decomposition was chosen.
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Figure 4.3: Comparison of the bit rate for the medical image data sets with and without

neighborhood masking.

4.3.2 Effect of scales in DWT

It is important to check the effect of decomposition levels in DWT on visually lossless

CR. Simulations were carried out for six levels of frequency decomposition. As men-

tioned in section 4.1.2, basis function amplitudeA
l;�

is not same for different frequency

levels of DWT and hence the JND values. The pseudo code for quantizing the DWT

coefficients to get the undistorted image is given in Figure 4.2. In this case, the image

is decomposed using 9=7 wavelet filter bank. It is possible to represent the data in more

redundant form by increasing the number of levels of frequency decomposition in DWT.

So higher levels of decomposition should provide better CR. Figure 4.4, reconfirms this

fact.
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Table 4.3: Bit rate and quality metrics of the reconstructed image with and without

neighborhood masking (Medical image data set 1, Table 2.9)

Label

Self masking Self and neighborhood masking

bpp
PSNR VSNR

VIF bpp
PSNR VSNR

VIF
(dB) (dB) (dB) (dB)

CT Skull 1.540 50.85 45.51 0.945 1.420 50.76 45.69 0.943

CT Wrist 0.807 52.59 52.72 0.941 0.737 52.53 52.75 0.941

CT Carotid 1.160 52.35 49.94 0.95 1.123 52.33 49.94 0.95

CT Aperts 0.715 54.94 56.30 0.959 0.660 54.91 56.33 0.959

MRI Liver T1 1.389 49.66 45.38 0.94 1.290 49.62 45.39 0.939

MRI Liver T2 1.208 51.82 46.34 0.958 1.178 51.81 46.34 0.958

MRI Sag head 1.440 51.16 52.72 0.93 1.284 51.10 52.74 0.928

MRI Ped chest 1.123 50.03 55.60 0.913 0.957 49.94 55.68 0.911

Table 4.4: Comparison of Visually lossless bit rate (bpp) and VIF of reconstructed im-

age for Wavelet decomposition levels 1 to 6 (Medical image data set 1, Ta-

ble 2.9)

Label

Wavelet based (Daub 9/7) VLC

Level-1 Level-2 Level-3 Level-4 Level-5 Level-6

(bpp/VIF) (bpp/VIF) (bpp/VIF) (bpp/VIF) (bpp/VIF) (bpp/VIF)

CT Skull 2.156/0.958 2.064/0.951 1.928/0.949 1.747/0.947 1.540/0.945 1.52/0.943

CT Wrist 1.290/0.967 1.231/0.950 1.040/0.947 0.914/ 0.943 0.807/ 0.941 0.803/ 0.940

CT Carotid 1.744/ 0.97 1.656/ 0.958 1.427/ 0.95 1.218/0.95 1.160/0.95 1.158/0.95

CT Aperts 1.173/0.978 1.190/0.970 1.032/0.966 0.833/0.960 0.715/0.959 0.708/0.957

MRI Liver T1 2.324/0.96 2.293/0.95 1.981/ 0.945 1.657/ 0.94 1.389/ 0.94 1.277/ 0.939

MRI Liver T2 1.744/0.965 1.585/0.96 1.4/0.958 1.27/ 0.958 1.208/ 0.958 1.199/ 0.958

MRI Sag head 2.187/0.95 2.259/0.944 2.092/0.94 1.829/ 0.93 1.44/ 0.93 1.435/ 0.93

MRI Ped chest 1.873/0.949 1.887/0.938 1.677/0.928 1.411/0.919 1.123/0.913 1.117/0.908

Considering all 4 sets of CT and 4 sets of MR images, the average reduction in bit

rate from level 1 to level 5 is 35.46 %. Table 4.4 compares the bit rate (bpp) and VIF

across the different levels. For different frequency levels, bit rate (bpp) and PSNR (dB)

comparison is given in Table 4.5. Similarly, bpp and VSNR (dB) for various levels
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Figure 4.4: Comparison of VLC bit rate for scales from 1 to 5 with all test data sets.

are listed in Table 4.6. The maximum decrease in VIF, PSNR, and VSNR value from

level-1 to level-5 across all images in the data set-1 are 3.71 %, 4.33 % and 1.06 %

respectively. Tabulated PSNR, VIF, and VSNR values for levels 1 to 5 demonstrate

that there is no perceivable distortion by increasing the scale since there is not much

difference in quality metric values from scale 1 to 5. Since the improvement in the CR

from level-5 to level-6 was only 0.671%, five levels of decomposition was chosen.

4.3.3 Effect of type of wavelet filter

The impact of wavelet filters on bit rate and visual quality of the reconstructed image is

tested. Table 4.7 compares the performance of visually lossless coder with 9/7 wavelet
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Table 4.5: Comparison of Visually lossless bit rate (bpp) and PSNR (in dB) of recon-

structed image for Wavelet decomposition levels 1 to 6 (Medical image data

set 1, Table 2.9)

Label

Wavelet based (Daub 9/7) VLC

Level-1 Level-2 Level-3 Level-4 Level-5 Level-6

(bpp/PSNR) (bpp/PSNR) (bpp/PSNR) (bpp/PSNR) (bpp/PSNR) (bpp/PSNR)

CT Skull 2.156/52.07 2.064/ 51.39 1.928/ 51.28 1.747/ 51.11 1.54/50.85 1.52/50.63

CT Wrist 1.29/54.85 1.231/53.23 1.040/52.90 0.914/ 52.70 0.807/ 52.59 0.803/ 52.35

CT Carotid 1.744/54.16 1.656/ 52.96 1.427/ 52.60 1.218/52.39 1.160/52.35 1.158/52.24

CT Aperts 1.173/57.43 1.190/56.30 1.032/55.70 0.833/55.13 0.715/54.94 0.708/54.77

MRI Liver T1 2.324/51.63 2.293/50.57 1.981/50.12 1.657/ 49.82 1.389/49.66 1.277/49.54

MRI Liver T2 1.744/52.83 1.585/52.15 1.400/51.95 1.270/51.86 1.208/51.82 1.199/51.66

MRI Sag head 2.187/52.59 2.259/52.21 2.092/51.85 1.829/51.48 1.440/ 51.16 1.435/ 51.02

MRI Ped chest 1.873/52.12 1.887/51.13 1.677/50.74 1.411/50.33 1.123/50.03 1.117/49.98

Table 4.6: Comparison of Visually lossless bit rate (bpp) and VSNR (in dB) of recon-

structed image for Wavelet decomposition levels 1 to 6 (Medical image data

set 1, Table 2.9)

Label

Wavelet based (Daub 9/7) VLC

Level-1 Level-2 Level-3 Level-4 Level-5 Level-6

(bpp/VSNR) (bpp/VSNR) (bpp/VSNR) (bpp/VSNR) (bpp/VSNR) (bpp/VSNR)

CT Skull 2.156/45.37 2.064/45.52 1.928/45.33 1.747/45.37 1.540/45.51 1.52/45.29

CT Wrist 1.290/53.29 1.231/52.72 1.040/52.67 0.914/52.68 0.807/52.72 0.803/52.61

CT Carotid 1.744/50.24 1.656/50.06 1.427/49.96 1.218/49.94 1.160/49.94 1.158/49.92

CT Aperts 1.173/56.57 1.190/56.39 1.032/56.13 0.833/56.11 0.715/56.30 0.708/56.05

MRI Liver T1 2.324/45.90 2.293/45.59 1.981/45.42 1.657/45.37 1.389/45.38 1.277/45.38

MRI Liver T2 1.744/46.73 1.585/46.58 1.400/46.36 1.270/46.37 1.208/46.34 1.199/46.29

MRI Sag head 2.187/52.41 2.259/52.54 2.092/52.43 1.829/52.59 1.440/52.72 1.435/52.25

MRI Ped chest 1.873/55.45 1.887/55.55 1.677/55.42 1.411/55.44 1.123/55.60 1.117/55.28

kernel and 5/3 wavelet kernels. For the lossy compression, 9/7 wavelet kernel performs

better than 5/3 wavelet kernel. For the same image quality 9/7 wavelet kernel improves

the compression by 35.16%.
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Table 4.7: Comparison of visually lossless bit rate (bpp) and PSNR (dB) with 9/7 and

5/3 kernels (Medical image data set 1, Table 2.9)

Label With wavelet 9/7 kernel With wavelet 5/3 kernel

CT Skull 0.99 / 40.88 1.42 / 39.95

CT Wrist 0.54 / 44.05 0.84 / 41.66

CT Carotid 0.62 / 42.99 0.968 / 41.29

CT Aperts 0.64 / 44.42 1.06 / 44.42

MRI Liver T1 0.8 / 41.84 1.36 / 39.19

MRI Liver T2 0.75 / 40.81 1.02 / 40.52

MRI Sag head 0.92 / 41.66 1.29 /41.07

MRI Ped chest 0.73 / 42.32 1.29 / 40.33

4.3.4 Effect of pixel based and wavelet based JND model on VLC

The performance of visually lossless coders with pixel based visual model explained in

section 3.2.1 and the wavelet based visual model of section 4.1.2 are compared. Pixel

based visual model is dependent on average background luminance, spatial luminance

gradient, and texture masking. It does not decompose the image into different frequency

levels to represent in more redundant form like wavelet based approach. So wavelet

based VLC performs better than the pixel based coder. Table 4.8 demonstrates this fact,

and there is a reduction in bit rate by 30.01 % in the case of wavelet based vision model

against pixel based VLC.

4.3.5 Comparison of performance of VLC and lossless codecs

Wavelet based VLC (VLIC-4) is compared with state of the art codecs, such as JPEG-

LS (HP-LABS 2016), JPEG2000 (OPEN-JPEG 2016), JPEG3D (OPEN-JPEG-3D 2016),

H.264/MPEG-4 AVC (Karsten 2016), DPCM (Ait Aoudia et al. 2006), HEVC video

coding (Sanchez and Bartrina-Rapesta 2014), MILC (Pizzolante and Carpentieri 2013)

and wavelet based (Bruylants et al. 2015) lossless compression algorithms.
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JPEG-LS is a near-lossless/lossless compression standard for natural images and

is based on prediction, residual modeling and context-based coding of the residuals.

JPEG2000 (J2K) is the compression standard available for natural images and is used

in DICOM standard. JPEG2000 employs 2D integer wavelet transform. HEVC is a

standard codec for the compression of video. It employs multi-frame motion compen-

sation and estimation.

Table 4.8: Comparison of visually lossless bit rate (bpp) and PSNR (dB) corresponding

to pixel based and wavelet based visual model (Medical image data set 1,

Table 2.9)

Image
Pixel based model Wavelet based model

VLIC-3 VLIC-4

CT Skull 1.6529 / 50.42 1.51 / 50.79

CT Wrist 1.1377 / 49.05 0.65 / 49.46

CT Carotid 1.5087 / 52.46 1.15 / 52.31

CT Aperts 0.7777 / 50.28 0.77 / 50.51

MRI Liver T1 2.2828 / 42.67 0.81 / 42.65

MRI Liver T2 1.7918 / 51.20 1.2 / 51.79

MRI Sag head 1.5588 / 46.42 1.18 / 47.60

MRI Ped chest 1.3363 / 43.32 0.75 / 43.52

DWT coefficients are truncated for various integer values for the truncation factor

k (equation 4.7). The performance of VLC VLIC-4, standard codecs and lossless com-

pression algorithms for the test medical image data base is given in Table 4.9, Table 4.11

and Table 4.12. Comparison of CR of wavelet based VLIC-4 algorithm with lossless

techniques is given in Table 4.10. It can be observed that for all the data sets mean

SSIM � 1, indicating VLIC-4 is visually lossless. CR of VLIC-4 is within the accept-

able compression range as suggested by Royal College of Radiologists and European

Society of Radiology for almost all data volumes Table 2.7. Visually lossless bit rates

given in Table 4.9 are obtained by setting value of k to 3 in the process of eliminating

the visual redundancy. On 8 bit MR and CT images, wavelet based VLC improves com-
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Table 4.9: Comparison of visually lossless bit rates with bit rates of lossless JPEG-2K,

JPEG-LS, JPEG3D, H.264/MPEG-4 AVC, DPCM and MILC coders (Medi-

cal image data set 1, Table 2.9)

Label VLIC-4� JPEG2000 JPEG-LS JPEG-3D H.264/ DPCM MILC

MPEG-4 AVC

CT Skull 1.42 / 1 2.955 2.728 2.120 1.967 2.119 2.030

CT Wrist 0.73 / 1 1.897 1.607 1.258 1.150 1.029 1.066

CT Carotid 1.12 / 1 2.366 1.756 1.567 1.539 1.471 1.358

CT Aperts 0.715 / 0.999 1.245 1.044 0.969 0.819 0.867 0.819

MRI Liver T1 1.29 / 0.994 3.254 3.167 2.379 2.319 2.390 2.196

MRI Liver T2 1.17 / 1 2.541 2.388 1.778 1.769 2.025 1.759

MRI Sag head 1.44 /1 3.952 2.551 2.188 2.015 2.127 2.097

MRI Ped chest 1.12 / 0.991 2.985 2.901 2.131 1.762 1.689 1.655

� bit rate (bpp) / mean SSIM

pression by 60.07% compared to JPEG2000; 48.17% compared to JPEG-LS; 36.41%

compared to JPEG-3D, 30.92% compared to H.264/MPEG-4 AVC, 32.20% compared

to DPCM and 28.76% compared to MILC.

Visually lossless bit rates given in Table 4.11 are obtained by setting the value of k

to 3 and 7 to eliminate visual redundancy. Wavelet based VLC with k = 3 reduces the

bit rate by 20.66% compared to DPCM, 28.24% compared to HEVC, 14.60% compared

to J2K and 13.28% compared to JPEG-LS. Wavelet based VLC with k = 7 reduces the

bit rate by 61.54% compared to DPCM, 72.56% compared to HEVC, 53.85% compared

to J2K and 52.1% compared to JPEG-LS. The proposed coder achieves VIF of 0.98 out

of 1 and SSIM of 0.99 out of 1 which proves that the coder is indeed visually lossless

at lower bit rates. Performance of VLIC-4 for the data set 3 (Bruylants et al. 2015)

given in Table 2.11 is tabulated in Table 4.12. VLIC-4 with k=3 reduce the bit rate by

46.85%.
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Table 4.10: Comparison of visually lossless CR with CR of lossless JPEG-2K, JPEG-

LS, JPEG3D, H.264/MPEG-4 AVC, DPCM and MILC coders (Medical

image data set 1, Table 2.9)

Label VLIC-4� JPEG2000 JPEG-LS JPEG-3D H.264/ DPCM MILC

MPEG-4 AVC

CT Skull 5.633 / 1 2.707 2.932 3.773 4.067 3.775 3.940

CT Wrist 10.958 / 1 4.217 4.978 6.359 6.956 7.774 7.504

CT Carotid 7.142 / 1 3.381 4.555 5.105 5.198 5.438 5.891

CT Aperts 11.188 / 0.999 6.425 7.662 8.255 9.768 9.227 9.768

MRI Liver T1 6.201 / 0.994 2.458 2.526 3.362 3.449 3.347 3.642

MRI Liver T2 6.837 / 1 3.148 3.350 4.499 4.522 3.950 4.548

MRI Sag head 5.555 /1 2.024 3.136 3.656 3.970 3.761 3.814

MRI Ped chest 7.142 / 0.991 2.680 2.757 3.754 4.540 4.736 4.833

� bit rate (bpp) / mean SSIM

4.3.6 Rate-distortion performance

Simulation is performed to get the quality of reconstructed image at various bit rates.

Here visually lossless bit rates are computed considering only one value of k at a time

(Figure 4.2). PSNR in dB, VIF values were determined as a function of bit rate. Since

SSIM provides the best performance indicator and it gives the closest match to the

subjective quality (Kowalik-Urbaniak et al. 2014), SSIM quality measure is computed.

Obtained rate-distortion performance is compared with JPEG-2K Part 1 and JPEG-

2K Part 2. Kakadu 7.4 version software is used for the implementation of JPEG-2KP1

and JPEG-2KP2 (KAKADU 2016). Figure 4.5 and Figure 4.6 shows reconstructed im-

ages with the proposed VLIC for the selected image slices at different bit rates. The

plot of quality metrics PSNR, SSIM, and VIF obtained with the VLIC-4 algorithm at

various bit rates are shown respectively in Figure 4.7, Figure 4.12 and Figure 4.13. Fig-

ure 4.7, Figure 4.12 and Figure 4.13, show that proposed coder achieves higher quality
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Table 4.11: Comparison of visually lossless bit rates (bpp) and visual quality ob-

tained with bit rates of lossless coders- DPCM, HEVC, J2K, and JPEG-

LS (Sanchez and Bartrina-Rapesta 2014). (Medical image data set 2, Ta-

ble 2.10).

Image

VLIC-4 Lossless compression

(Sanchez and Bartrina-Rapesta 2014)

Performance with k = 3 Performance with k = 7 DPCM HEVC J2K JPEG-LS

bpp PSNR VIF SSIM bpp PSNR VIF SSIM bpp bpp bpp bpp

(dB) (dB)

X-ray Angio-1
4.17 72.90 0.98 0.99 3.83 59.72 0.83 0.97 5.10 5.30 4.78 4.74

X-ray Angio-2
4.66 72.92 0.98 0.99 4.02 59.65 0.82 0.97 5.17 5.38 4.81 4.78

X-ray Angio-3
4.27 72.60 0.98 0.99 3.77 58.83 0.82 0.96 5.55 5.60 5.12 5.08

CT-1 Human Thorax
3.96 73.05 0.98 0.99 3.10 60.15 0.82 0.97 4.95 5.28 4.66 4.65

CT-2 Human Thorax
3.92 73.10 0.98 0.99 3.21 60.69 0.83 0.98 4.93 5.38 4.42 4.52

CT-3 Human Thorax
3.89 73.07 0.98 0.99 3.54 61.26 0.82 0.96 4.18 4.51 3.98 4.00

MRI Brain
2.75 50.00 0.97 0.99 1.34 39.38 0.75 0.95 3.29 3.44 3.46 3.30

MRI Cord
2.55 50.02 0.97 0.99 1.29 41.27 0.76 0.97 3.11 3.58 2.78 2.84

MRI Knee
1.26 53.9 0.98 0.99 1.22 41.55 0.76 0.97 1.55 1.62 1.59 1.48

measures for a reasonable range of bit rates. Visual clip of medical images for the re-

gion of acceptance are shown in Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11.

(a) CT Skull (b) CT Skull (c) MRI Liver T1 (d) MRI Liver T1

Figure 4.5: Visual clip of CT Skull (Slice number 60) and MRI Liver T1 (Slice number

20); Images are from test data set (Bilgin et al. 1998): (a) CT Skull at bpp

of 1.89 and PSNR=51.22 dB (b) CT Skull at bpp of 1.06 and PSNR=42.47

dB (c) MRI Liver T1 at bpp of 2.06 and PSNR=49.52 dB (d) MRI Liver T1

at bpp of 0.84 and PSNR=43.63 dB.
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Table 4.12: Comparison of visually lossless bit rates obtained with bit rates of lossless

coders JPEG-LS, HEVC, J2K-P1, J2K-P2, and JPEG3D (Bruylants et al.

2015). (Medical image data set 3, Table 2.11)

Image
VLIC-4

JPEG-LS HEVC J2K-P1 J2K-P2 JPEG-3D
bit rate/PSNR

CT-1 Lung scan 3.16 / 75.52 dB 5.42 5.55 5.52 4.93 4.80

CT-2 Lung scan 5.86 / 76.7 dB 7.83 7.93 7.93 7.65 7.45

CT-3 Spiral Arterial scan 4.40 / 77.01 dB 5.89 6.14 5.87 5.46 5.20

CT-4 Female cadaver 2.25 / 77.48 dB 4.01 4.28 4.09 3.88 3.85

CT-5 Human cadaver 1.70 / 76.04 dB 2.99 3.07 3.20 2.87 2.84

CT-6 Chest 3.58 / 73.79 dB 4.91 5.12 5.17 5.05 5.00

MRI Brain 2.00 / 72.58 dB 3.73 3.71 3.89 3.55 3.56

MRI Brain 3.73 / 72.45 dB 4.58 4.68 4.72 4.14 4.12

MRI Brain 4.19 / 73.03 dB 6.53 6.50 6.69 6.62 6.63

(a) CT-3 image (b) CT-3 image (c) MRI Cord image (d) MRI Cord image

Figure 4.6: Visual clip of CT-3 image (Slice number 50) and MRI Cord image (Slice

number 5); Images are from test data set (Sanchez and Bartrina-Rapesta

2014): (a) CT-3 image at bpp of 3.89 and PSNR=73.07 dB (b) CT-3 image

at bpp of 3.54 and PSNR=61.26 dB (c) MRI Cord image at bpp of 2.55 and

PSNR=50.02 dB (d) MRI Cord image at bpp of 1.29 and PSNR=41.29 dB.

In addition to objective assessment, subjective evaluation was performed to confirm

the visual quality of the reconstructed data. Six observers were from the medical field

which included radiologists and radiographers. A questionnaire was prepared for all

the datasets. The objective quality and the subjective score at the specified average bit
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Figure 4.7: Comparison of PSNR (in dB) as a function of bit rate (bpp) for VLIC-4 with

JPEG 2000 Part 1 (JP-2KP1) and JPEG 2000 Part 2 (JP-2KP2).

(a) CT Skull (b) CT Skull (c) CT Skull

Figure 4.8: Visual clip of CT Skull (Slice number 40); Images are from test data set 1

(Bilgin et al. 1998): (a) Original image (b)Image clip at bpp of 1.89 with

PSNR=51.22 dB, SSIM=0.9955 and VIF=0.97 (c) Image clip at bpp of 1.06

with PSNR=42.47 dB, SSIM=0.9702 and VIF=0.76.
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(a) CT Wrist (b) CT Wrist (c) CT Wrist

Figure 4.9: Visual clip of CT Wrist (Slice number 40); Images are from test data set 1

(Bilgin et al. 1998): (a) Original image (b)Image clip at bpp of 1.22 with

PSNR=52.40 dB, SSIM=0.9963 and VIF=0.9623 (c) Image clip at bpp of

0.548 with PSNR=44.05 dB, SSIM=0.9774 and VIF=0.752.

(a) MRI Liver T1 (b) MRI Liver T1 (c) MRI Liver T1

Figure 4.10: Visual clip of MRI Liver T1 (Slice number 20); Images are from test data

set 1 (Bilgin et al. 1998): (a) Original image (b) Image clip at bpp of 2.061

with PSNR=49.52 dB, SSIM=0.9932 and VIF=0.9638 (c) Image clip at

bpp of 0.806 with PSNR=41.16 dB, SSIM=0.9665 and VIF=0.748

(a) MRI Ped chest (b) MRI Ped chest (c) MRI Ped chest

Figure 4.11: Visual clip of MRI Ped chest (Slice number 40); Images are from test data

set 1 (Bilgin et al. 1998): (a) Original image (b) Image clip at bpp of 1.796

with PSNR=49.99 dB, SSIM=0.9914 and VIF=0.9697 (c) Image clip at

bpp of 0.7379 with PSNR=42.32 dB, SSIM=0.9619 and VIF=0.675.
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Figure 4.12: Comparison of VIF as a function of bit rate (bpp) for VLIC-4 with JPEG

2000 Part 1 (JP-2KP1) and JPEG 2000 Part 2 (JP-2KP2).

rate for the data sets is listed in Table 4.13. The observers were shown the original

and reconstructed image and were asked to rate the quality on a scale of 1 to 5. A

score of 1 represents poor and 5 represents excellent. All the six radiologists have rated

the reconstructed images with a score of 5 and assessed that the coder preserved all

diagnostically significant information in the brain MRI images used.

4.4 SUMMARY

In this section, a novel wavelet based VLC (VLIC-4) is introduced. A vision model

characterizing contrast sensitivity, luminance masking and light adaptation features of
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Figure 4.13: Comparison of SSIM as a function of bit rate (bpp) for VLIC-4 with JPEG

2000 Part 1 (JP-2KP1) and JPEG 2000 Part 2 (JP-2KP2).

human vision represented in wavelet domain is incorporated to identify and measure vi-

sually irrelevant information. DWT coefficients are quantized based on visual threshold

value to maintain visual quality in the reconstructed image. Lossless block matching

algorithm is used to remove slice redundancy. Proposed VLIC-4 was tested on 12 bit

and 8 bit CT and MRI standard medical test data set.

Compression performance was compared with state of the art codecs such as JPEG-

LS, JPEG2000, JPEG3D image coding standard, H.264/MPEG-4 AVC video coding,

DPCM, HEVC video coding, MILC and wavelet based lossless compression algorithms

and found to be higher for all data sets. CR performance of VLIC-4 is within the accept-

able compression range as suggested by Royal College of Radiologists and European
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Table 4.13: Objective and subjective evaluation of VLIC-4 technique; Score allotted:

Excellent-5; Very good-4; Good-3; Average-2; Poor-1

Image
Average Objective measure Score

bpp PSNR(dB) VIF SSIM Radiologist Radiographer

CT Skull 1.42 50 0.945 0.997 5 5

CT Wrist 0.73 49.98 0.941 0.993 5 5

MRI Liver T1 1.29 49.66 0.94 0.989 5 5

X-ray angio-1 4.17 72.90 0.98 0.99 5 5

CT-1 3.96 73.05 0.98 0.991 5 5

MRI Cord 2.55 50.02 0.97 0.99 5 5

Society of Radiology. HVS based quality metrics such as SSIM and VIF along with

PSNR are used to measure the quality of the reconstructed image. Also, quality of

VLIC-4 is compared with the JPEG-2K baseline at various bit rates. Rate-distortion

performance is found to be better.

The assumption made in all the four algorithms discussed in chapter 3 and chapter 4

is that the entire image is diagnostically important. But the entire region of the image

may not be required for the diagnosis in many cases. Hence, ROI/VOI based compres-

sion algorithm is proposed in chapter 5 to improve the performance of compression

algorithm.
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CHAPTER 5

VOI BASED MRI BRAIN IMAGE COMPRESSION

Visually lossless algorithms discussed in chapter 3 and chapter 4 are applied to the en-

tire image. But usually, all the image slices acquired, and the whole region of images

may not be required in the diagnosis. So diagnostically critical parts like tumor and le-

sions in each slice are to be compressed without loss of information, and other regions

can be compressed with loss. A hybrid compression algorithm for 3D medical images

involving both visually lossless and lossy techniques not only maintains the quality

in VOI but also provides overall improvement in CR. However, before applying this

method, there is a need to use an automatic tumor or abnormality detection algorithm to

determine ROI/VOI. This chapter presents VOI based MRI image compression. After

taking ROI/VOI using score function determined by Bhattacharya coefficient (Fuku-

naga 2013), VLIC-4 algorithm is applied. To rest of the image DCT lossy compression

is applied to increase the CR.

5.1 PROPOSED VOI CODER

In this section, VOI based compression technique for MRI brain images is proposed.

This algorithm identifies the ROI and applies visually lossless compression technique

to this region, while rest of them are compressed with lossy technique. Symmetry based

tumor segmentation algorithm is used to detect the diagnostically important region in

each image slice and hence VOI is determined across all image slices. Wavelet based

VLIC-4 is applied on the segmented VOI, and DCT based lossy compression technique

is applied to the residual image.

Proposed VOI based coder is shown in Figure 5.1. This hybrid compression algo-

rithm includes a segmentation algorithm to detect the region of abnormality, a wavelet



 Symmetry based 
 segmentation of

 each slice

 Identification
 of ROI

 Apply wavelet 
 based visually 
 lossless coder

 for ROI

 Apply DCT

 based coder

 for non ROI

 Bit stream

 Original MRI brain
 image slices

Figure 5.1: VOI based coder

based visually lossless compression algorithm and a DCT based lossy compression

technique. Segmentation is carried out in the spatial domain, while the image is com-

pressed in the transform domain.

5.2 SYMMETRY BASED BOUNDING BOX SEGMEN-

TATION FOR TUMOR DETECTION

Segmentation is a procedure that split an image into regions. This step is necessary to

identify the ROI in the image. Usually, automatic segmentation technique is used when

the image has to be compressed based on the region of importance. In this section,

symmetry based bounding box segmentation algorithm (Saha et al. 2012) used for the

detection of tumor region in MRI brain images is discussed.

Many tumor segmentation methods found in literature are not fully automatic as

they need user interaction to place a seed inside the tumor or edema region (Ashton

et al. 2003; Fletcher-Heath et al. 2001). Region growing (Kaus et al. 2001) based

tumor detection techniques computationally complex.

Most of the fuzzy models (Fletcher-Heath et al. 2001) work well only for hyper

intensity (fully enhanced) tumors and exhibits poor performance in the case of non-
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enhanced tumors. So an automatic and fast segmentation technique (Saha et al. 2012)

is used to locate a bounding box around the tumor or edema on an MR slice.

Each MRI brain image slice is split along with the line of symmetry into two halves.

One-half of the image is considered as reference image R and another half as the test

image T . Thus the assumption made is that abnormality is located either in reference

or test image. Next, the image T is compared with image R to locate the diseased area.

Pointwise subtraction is the straightforward method used to compare two images. But

many times pointwise subtraction of images jT � Rj fails to recognize the region of

abnormality, since even in a healthy brain without abnormality, two halves of the brain

do not match exactly (Radke et al. 2005). So region-based method is used.

In this segmentation technique, a score function interpreted by Bhattacharya coef-

ficient is used (Fukunaga 2013). Image intensity histograms of T and R are used to

detect the abnormality. First, line of symmetry is obtained by computing a gradient

vector flow snake to find the skull boundary (Xu and Prince 1998). The vertical line

passing through the centroid of the snake is considered as the axis of symmetry. Left of

the axis of symmetry in the medical image is considered as test image and image right

of the axis of symmetry after taking reflection is considered as the reference image.

5.2.1 Theory of detection of abnormality in medical images

In this section abnormality detection (change detection) algorithm is discussed. To

explain the change detection algorithm consider two frames shown in Figure 5.2. Two

rectangle regions A(d) and B(d) are defined in reference image R and test image T .

These rectangular regions are defined as A(d) = [0;W ℄ � [0; d℄ and B(d) = [0;W ℄�

[d;H℄, where W and H are width and height of the image respectively and d is the

distance from the top of the images. A(d) and B(d) denote the image domain above

and below the horizontal line drawn at a distance d from the top of the image.

The score function E(d) is defined as:
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Figure 5.2: (a) Finding the region of abnormality in test image using the reference im-

age. (b) A typical score function plot.
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where

P

A(d)

T

is the normalized gray level intensity histogram of image T within region A(d),

P

B(d)

T

is the normalized gray level intensity histogram of image T within region B(d),

P

A(d)

R

is the normalized gray level intensity histogram of image R within region A(d),

P

B(d)

R

is the normalized gray level intensity histogram of image R within region B(d).

h i is the inner product of two vectors.

Thus, the score function is the difference of Bhattacharya coefficient between the

reference and test images above and below the reference line at distance of d from

the top of the image. Bhattacharya coefficient is a number between 0 and 1. When

normalized gray level intensity histograms are exactly equal, Bhattacharya coefficient

is 1, and normalized gray level intensity histograms are very different Bhattacharya

coefficient is close to 0. Thus this score metric measures how alike are the two upper
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regions and how dissimilar are the two lower regions in images T and R.

For the test image and reference image shown in Figure 5.2, score function should

increase first, later decrease and then increase as d increases from 0 toH . The increasing

and decreasing path meet at d = v and d = u, the upper and lower edges of the bounding

box (ROI). In a similar way left and right edges of bounding box can be obtained by

rotating test image and the reference image by 90 degrees.

The same procedure is applied on the MRI brain images after finding the axis of

symmetry. Axis of symmetry obtained after computing a gradient vector flow snake to

find the skull boundary (Xu and Prince 1998) is shown in Figure 5.3(a). Score function

plots obtained in vertical and horizontal directions for the MRI brain images are shown

respectively in Figure 5.3(c) and Figure 5.3(d). Original MRI image with bounding

box obtained using score functions for vertical and horizontal directions is shown in

Figure 5.3(b).

5.3 WAVELET BASED VISUALLY LOSSLESS COM-

PRESSION

The diagnostically important region in each image slice is obtained with symmetry

based bounding box segmentation algorithm. Thus VOI is obtained, after deciding the

ROI in each of the slices present in one medical image data set. Wavelet based VLIC

explained in Chapter 4 is used to compress image within ROI.

5.4 DCT BASED LOSSY COMPRESSION

Medical image outside the VOI is compressed using the lossy technique. DCT based

compression technique is used. Image outside the ROI is divided into non-overlapping

spatial blocks of size 8 � 8. Every block is transformed from pixel domain to the

frequency domain using two dimensional DCT given by equation (2.1). The DCT co-
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(a) (b)

(c) (d)

Figure 5.3: (a)MRI image with axis of symmetry, (b) MRI image with bounding box,

(c) Score function plot in vertical direction, (d) Score function plot in hori-

zontal direction

efficient will have information concentrated in few coefficients and hence can be easily

compressed.

Quantization

The DCT coefficients are quantized before encoding. For the entire block, JPEG like

scalar quantization (Wallace 1992) is used. Each of the DCT coefficients is divided by

its corresponding quantizer followed by rounding to its nearest integer. This is given by

I

q

(k; l) = IntegerRound

�

I(k; l)

Q(k; l)

�

(5.2)
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where k; l = 0; 1; 2; :::N�1, I(k; l) represents the transformed coefficient, I
q

(k; l) rep-

resents the quantized coefficient, Q(k; l) represents the quantizer value. The quantizer

value is chosen from a standard quantization table which needs to be specified by the

user. In principle, these values can be specified and fine-tuned by the user for maxi-

mum compression or quality. The approach as per the JPEG standard (Salomon 2007)

is used.

After applying wavelet based VLIC (VLIC-4) for images within VOI and DCT

based lossy technique to images outside VOI, a simple prediction method is applied

to exploit slice (temporal) redundancy. The following prediction mode obtains the pre-

dicted quantized transform domain coefficients.

I

qkr

= I

qk

� I

q(k�1)

(5.3)

where I
qkr

is the predicted quantized transform domain coefficient in kth slice, I
qk

is

the quantized transform domain coefficient in k

th slice and I

q(k�1)

is the quantized

transform domain coefficient in (k � 1)

th slice.

Zig Zag Scan

The predicted quantized DCT domain coefficients of each block are arranged in 1-D

order through zig zag scan shown in Figure 5.4. Finally predicted quantized trans-

Figure 5.4: Zig-Zag Scan Order

form domain coefficients are encoded using adaptive arithmetic coder to get encoded

bit stream.
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5.5 SIMULATION RESULTS

VOI based compression technique with wavelet based VLIC and DCT based lossy com-

pression is tested on 12 bit T1 and T2 weighted volumetric MRI brain images obtained

with 1.5 Tesla MRI scanner from Hubli scanning center, Hubli, India. Details of these

image data sets are given in Table 2.12. The performance of wavelet based compres-

sion algorithm VLIC-4 for the test medical data set 4 (Table 2.12) is given in Table 5.1.

Also, simulation results of VOI based coder for the same data set are Tabulated in Ta-

ble 5.2. SSIM quality metrics tabulated in Table 5.1 and Table 5.2 are almost same.

Since, SSIM index value is above 0.94, there is no risk that the reconstructed image

will be marked as unacceptable (Kowalik-Urbaniak et al. 2014). Also, SSIM is one of

the best performance indicators and it gives the closest match to the subjective quality

(Kowalik-Urbaniak et al. 2014), it can be concluded that there is no deterioration in the

visual quality of image. A sample of original medical image slice from each data set

and corresponding reconstructed image with VOI based coder are shown in Figure 5.5

and Figure 5.6.

In addition to objective assessment, subjective assessment is carried out with the

help of radiologists asking their opinion about the presence of diagnostic information

in the reconstructed image compared to the corresponding original image. The radiol-

ogists have evaluated that the coder preserved all diagnostically significant information

in the brain MRI images used. Radiologists feedback report is given in Figure 5.7.
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Table 5.1: Bit rate and quality metrics of reconstructed image with VLIC-4

Image bit rate
PSNR

VIF SSIM
VSNR

(dB) (dB)

Volume-1 4.312 74.57 0.9945 0.9997 59.68

Volume-2 4.671 73.12 0.9943 0.9998 60.45

Volume-3 5.467 74.64 0.9931 0.9998 63.79

Volume-4 4.159 74.92 0.9954 0.9995 51.48

Volume-5 4.904 74.35 0.9969 0.9997 60.33

Volume-6 4.082 74.06 0.9942 0.9997 56.69

Volume-7 3.837 74.16 0.9969 0.9996 56.41

Volume-8 4.484 74.49 0.9967 0.9995 57.29

Volume-9 5.078 74.40 0.9925 0.9998 63.04

Volume-10 5.309 74.18 0.9938 0.9997 61.85

Volume-11 4.755 74.15 0.9985 0.9995 54.90

Volume-12 3.589 74.33 0.9975 0.9995 62.53

Volume-13 3.763 74.19 0.9982 0.9995 57.98

Volume-14 4.610 74.19 0.9982 0.9995 57.98

Volume-15 3.340 74.65 0.9957 0.9994 60.08

Volume-16 4.049 74.08 0.9943 0.9997 58.76

Volume-17 4.241 73.95 0.9924 0.9998 60.04

Volume-18 3.865 74.09 0.9955 0.9997 57.68

Volume-19 3.589 74.33 0.9935 0.9996 62.51

Volume-20 4.072 74.01 0.9943 0.9998 56.67
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Table 5.2: Bit rate and quality metrics of reconstructed image with VOI based algo-

rithm; Region A is VOI, Region B is Non-VOI

Image

VOI based algorithm

bpp
PSNR for region VIF for region SSIM for region VSNR for region

% VOI
A B A B A B A B

Volume-1 2.974 75.25 52.82 0.9998 0.9438 0.9963 0.7575 61.79 42.87 15.62

Volume-2 2.466 75.26 59.95 0.9997 0.9584 0.9961 0.7729 55.88 41.26 13.24

Volume-3 3.611 83.43 51.73 1 0.9629 0.9973 0.7847 59.72 49.17 15

Volume-4 2.387 75.84 58.49 0.9990 0.9332 0.9938 0.708 65.84 49.00 17.18

Volume-5 3.142 82.34 52.59 0.9999 0.9364 0.9970 0.7589 52.59 45.64 19.64

Volume-6 2.261 75.26 59.14 0.9995 0.9533 0.9955 0.7664 62.37 42.82 9.78

Volume-7 1.973 75.27 59.96 0.9996 0.9424 0.9957 0.7537 64.56 44.26 6.94

Volume-8 2.341 86.72 54.35 0.9999 0.9202 0.9967 0.7300 56.06 41.99 7.14

Volume-9 4.450 75.38 55.16 0.9997 0.9847 0.9959 0.7848 55.16 47.74 35.41

Volume-10 3.013 75.27 53.48 0.9997 0.9610 0.9959 0.7529 57.23 47.43 29.09

Volume-11 2.438 85.02 54.45 0.9999 0.8653 0.9953 0.7027 51.86 43.63 10.71

Volume-12 2.022 75.27 60.88 0.9995 0.9519 0.9960 0.7739 65.43 48.81 8.92

Volume-13 2.575 75.26 61.07 0.9995 0.9443 0.9958 0.7501 62.32 45.54 17.96

Volume-14 2.941 75.27 54.76 0.9998 0.9264 0.9965 0.7370 51.49 43.86 15.55

Volume-15 1.911 75.26 61.45 0.9991 0.9543 0.9951 0.7613 58.00 46.84 8.75

Volume-16 2.322 75.26 59.42 0.9994 0.9548 0.9955 0.7723 57.09 44.038 8.63

Volume-17 2.284 75.26 58.32 0.9996 0.9684 0.9958 0.7908 55.85 46.53 7.29

Volume-18 2.030 75.25 59.82 0.9994 0.9482 0.9954 0.7635 55.94 43.40 9.77

Volume-19 3.003 75.28 54.24 0.9998 0.9189 0.9965 0.7563 59.03 47.55 16.84

Volume-20 2.428 85.23 56.86 0.9996 0.9237 0.9935 0.7045 53.78 45.05 12.89
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Visual clip of MRI brain images given in Table 2.12: Original and recon-

structed images with axial view (reconstructed with VOI based coder)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Visual clip of MRI brain images given in Table 2.12: Original and recon-

structed images with coronal view (reconstructed with VOI based coder)

5.6 SUMMARY

In this chapter, VOI based compression algorithm (VLIC-5) for MRI brain images is

proposed. A fast automatic symmetry based bounding box MRI brain tumor detection

algorithm is used to segment the brain image. Based on the identification of the presence

of an abnormality in each slice, VOI is determined for a volumetric medical image.

108



Figure 5.7: Radiologist feedback
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Wavelet based visually lossless algorithm is applied on the image within VOI region.

Rest of the image is compressed with lossy DCT based technique.

The performance of VLIC-5 and wavelet based algorithm VLIC-4 were compared.

For almost same SSIM quality, CR performance of VLIC-5 was found to be better.

CR performance of VLIC-4 and VLIC-5 is within the acceptable compression range as

suggested by Royal College of Radiologists and European Society of Radiology.

HVS based quality metrics such as SSIM, VSNR, and VIF along with PSNR are

used to measure the quality of the reconstructed image. Both subjective and objec-

tive evaluations are done and are found to be good. Subjective assessment is carried

out with the help of radiologists asking their opinion about the presence of diagnostic

information in the reconstructed image compared to the corresponding original image.
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CHAPTER 6

CONCLUSIONS

Medical image compression is a process of encoding the original medical image with

minimum possible bits per pixel without losing any information. It is possible by elim-

inating the redundant information present in the image. Image compression techniques

are essential when a large volume of image data has to be stored or transmitted. Loss-

less compression techniques are preferred in the medical field, as there is no loss of

information in spite of lower compression efficiency as compared to lossy compression

techniques. VLIC techniques achieve better compression without any loss in diagnosti-

cally important information.

Visually lossless coding of volumetric medical images is a novel technique that ex-

ploits visual redundancies along with statistical and temporal redundancies to improve

the performance of the coding system. The fundamental principle of visually lossless

image coding is to identify and measure visually irrelevant information present in the

image using vision model. Vision models are used to emulate the behavior of HVS. The

function of vision model is to measure the JND threshold. In most of the VLIC, JND

dependent quantizer is used to remove visually irrelevant information.

This thesis explains and implements a novel visually lossless image coder in spatial

and wavelet transform domain. JND threshold is determined by incorporating vision

model in the coder. Symmetric nature of human anatomy present in medical images is

exploited by removing redundancy. Another hybrid coder is also implemented, where

diagnostically important VOI region is coded using the visually lossless method and

other regions are coded by DCT based lossy method. Compression efficiency of the

proposed coders is compared with lossless coders. Also, rate-distortion performance

of the proposed coders is compared with that of state of the art lossy coders. HVS

based quality metrics like VSNR, VIF, and SSIM are used to evaluate the quality of



the reconstructed images. In addition to objective assessment, subjective assessment is

carried out with the help of radiologist.

6.1 PRIMARY CONTRIBUTIONS

In this research, five visually lossless compression algorithms for volumetric medical

images are proposed. Algorithms utilize unique characteristics of human vision and

medical images. Algorithms are tested on several sets of MRI, CT, X-ray Angio images.

Results obtained with 3157 slices of CT images, 886 slices of MR images, 608 slices

of X-ray Angio slices and 587 slices of MRI brain images with tumor are documented

to compare the performance.

First three algorithms are implemented in the spatial domain while fourth and fifth

algorithms are developed in the transform domain. In the first four algorithms, block

match routine is used to remove inter-slice correlation. A JND dependent quantizer

is embedded into the system to convert lossless compression algorithm into visually

lossless compression algorithm by removing perceptually redundant information. In

VOI based compression technique, automatic brain tumor segmentation procedure is

included.

In the first algorithm, symmetry detector technique for automatic detection of sym-

metry in each image slice is used. Block match based lossless compression scheme is

added to exploit slice redundancy. Intra-slice block matching routine also is included in

the system to improve the CR if there is symmetry in image slice. Further improvements

in the compression ratio are achieved by making lossless algorithm into visually loss-

less by adding a DPCM block in which quantizer, quantizes the pixel values based on

the visual threshold value. Background luminance dependent vision model integrated

into DPCM block determines the threshold value. In the case of DPCM and symmetry

based visually lossless compression technique (VLIC-1), average % reduction in bit per

pixel is 11.8 compared to 3D CB EZW method (Bilgin et al. 1998). Complexity of the

first algorithm is reduced by eliminating DPCM block from first technique to imple-
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ment second technique (VLIC-2), and background luminance dependent vision model

is embedded into symmetry based block matching lossless coder.

The performance of the algorithm is further improved in third algorithm (VLIC-3)

by embedding an improved vision model. This vision model considers both luminance

part of image and texture heterogeneity that reduces the visibility of distortion. Perfor-

mance analysis is carried out to measure the improvement in CR in different cases such

as:

� Lossless algorithm with symmetry and without symmetry.

� Visually lossless algorithm with symmetry and without symmetry.

� Visually lossless algorithm with symmetry and lossless algorithm without sym-

metry.

Bit rate is improved by 8.47 % on an average in the case of visually lossless com-

pression algorithm (VLIC-3) with symmetry compared to lossless compression without

symmetry. Also in the case of VLIC-3, average % reduction in bit per pixel is 6.29

compared to MILC method (Ait Aoudia et al. 2006).

In the fourth algorithm (VLIC-4), inter-slice, perceptual and statistical redundancies

are identified and eliminated in wavelet transform domain. Wavelet based vision model

suited for five levels of subband decomposition measures the perceptual redundancies

and determines JND value. The performance of this wavelet based coder is compared

with first three spatial based implementations. Wavelet based coder is found to perform

better as it represents the image in more redundant form by decomposing image into

different frequency levels. Wavelet based visually lossless coder (VLIC-4) reduces the

bit rate by 20.66% compared with DPCM, 28.24% compared with HEVC (Sanchez

and Bartrina-Rapesta 2014), 14.60% compared with JPEG2K, 13.28% compared with

JPEG-LS and 46.85 % compared with JPEG3D (Bruylants et al. 2015). In all the above

cases, both objective and subjective evaluations are found to be good.

The fifth implementation is VOI based medical image compression algorithm (VLIC-

5). In this case, an automatic MRI brain tumor detection block is incorporated in the
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compression algorithm. Fast symmetry based bounding box brain tumor segmentation

technique is used to detect the region of a brain tumor in each image slice, considered

as ROI. Wavelet based visually lossless algorithm is applied to ROI, and the remaining

area is compressed with DCT based lossy compression technique. Here too, both sub-

jective and objective evaluations are done. Based on radiologists opinion, it has been

confirmed that there is no loss of diagnostically important information in the recon-

structed image.

Developed all the five compression algorithms are compared in Table 6.1

Table 6.1: Comparison of developed medical image compression algorithms

Compression Symmetric nature of Domain of HVS model Performance of

algorithm medical image Compression is based on algorithm (CR)

VLIC-1 Used Spatial Luminance adaptation Low

VLIC-2 Used Spatial Luminance adaptation High

VLIC-3 Used Spatial
Luminance adaptation

High
Texture masking

VLIC-4 Not used Wavelet

Contrast sensitivity

HigherLuminance masking

Contrast masking

VLIC-5 Not used Wavelet and Cosine

Contrast sensitivity

HighestLuminance masking

Contrast masking

6.2 FUTURE WORK

In the case of wavelet based visually lossless coder, only temporal and perceptual redun-

dancies are considered. Symmetric nature retained in image slices are not considered.

Study on the impact of symmetry present in medical images on the performance of

wavelet based visually lossless compression algorithm can be carried out since it im-

proves the performance of the compression algorithm. Also in wavelet based visually

lossless coder, 2D DWT is used. Further analysis on the performance of coder with 3D

DWT or hybrid wavelet transform can be explored.
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