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ABSTRACT 

The main objective of this thesis is to enhance the scope and response estimation 

ability of routine one dimensional (1D) seismic response analysis in frequency 

domain using equivalent linear (EQL) method. This is the popularly used method of 

analysis in engineering practice. For this purpose a computer program is developed 

incorporating the scheme to accommodate the objectives of this research work.  

In order to meet the solution procedure employed in the routine analysis, the soil 

deposits exhibiting continuous inhomogeneity are also being idealised as layered 

systems. The analytical results obtained for continuously inhomogeneous soil deposits 

have demonstrated that the layered idealisation of such soil deposits would result in 

contradictory response quantities. Secondly, the major limitation of the EQL method 

is inconsistent estimation of response at high frequency and in the resonant frequency 

region. This may be attributed to the use of single valued strain in all the frequency 

ranges during the iterations of EQL scheme of analysis. Both these drawbacks of the 

popularly used computer programs have been addressed and modifications are 

implemented in the computer program developed as part of this research work.   

The numerical procedure developed and implemented in the computer program is 

capable of handling all possible cases of idealisation of soil deposit. Two 

modifications have been proposed to routine EQL analysis scheme; one with respect 

to computation of effective strain in the iterative process and secondly, frequency 

dependent damping model is formulated to overcome inconsistencies in predicted 

response at certain frequency ranges. The results are compared with both analytical 

solutions and observed data of geotechnical downhole array sites of Japan and USA. 

Finally an alternative method is proposed to estimate the fundamental period of the 

layered deposit by approximating it with linearly varying shear wave velocity profile.   

The outcome of this research work is expected to enhance the predictive capabilities 

of the most commonly used site response analysis procedure and contribute in the 

direction of improving the seismic site response analysis in engineering practice.  

Keywords: Seismic site response, Equivalent linear analysis, Frequency dependent 

analysis, Fundamental period of layered deposits.    
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

It is well established that earthquake waves will amplify near the surface as they 

propagate through the earth mantle and crust after originating from the deep faults. 

The evaluation of amplification characteristics of the waves is a very important field 

of study in earthquake geotechnical engineering. Free-field response of the earth 

surface due to earthquakes is an important parameter to be established in ascertaining 

the dynamic loads for earthquake resistant design of structures. Thus seismic site 

response analysis is primarily performed in order to estimate the seismic motion at the 

free surface of the soil deposit for a given input seismic motion within the deposit or 

to transfer the free surface motion of soil deposit to the surface of the outcropping 

bedrock.  

Many aftermath survey reports of damages during mild to severe seismic events have 

revealed that the type of structure, the type of material used and construction practices 

are vital factors influencing the severity of damage [Borcherdt and Gibbs (1976); 

Berrill (1977); Bertero (1989) and others]. Nevertheless the dynamic response of the 

structure is primarily controlled by the closeness of its natural frequency to the 

predominant frequency of the input earthquake motion. In turn, the predominant 

frequency of earthquake wave near the surface depends on the characteristics of soil 

deposit above the bed rock and the level of strain experienced by ground during the 

earthquake because the seismic wave characteristics are affected as the wave 

propagates through soil deposit.  

Thus, it is important to assess the local site effects on the seismic response of built 

environment, particularly in urban areas. Hence, microzonation of the urban areas 

becomes imperative for mitigation of earthquake risks. The reliable evaluation of 

response of the near surface soil deposit under expected earthquake input motion at 



 2 

bedrock level is the key problem in seismic microzonation. Well documented fallout 

studies of data pertaining to strong earthquakes have clearly revealed that the main 

reason for high intensity site specific seismic motion is the soft soil condition. 1985 

Michoacan earthquake of Mexico, 1989 Loma Prieta earthquake, 1994 Northridge 

earthquake of USA, 1995 Kobe earthquake of Japan, 1999 Kocaeli earthquake of 

Turkey, 2001 Bhuj earthquake of India and many other events in the recent past are 

glaring examples of site amplification causing catastrophic damage to structures 

during earthquakes.  

1.2 BACKGROUND AND MOTIVATION 

There are several methods available for evaluating seismic response of soil deposits 

essentially differing in use of numerical techniques and modeling of soil stress-strain 

behavior. Principally they may be classified as linear, equivalent linear (EQL) and 

nonlinear methods. Further, the analysis can be one, two or three dimensional. Among 

these, EQL method based on the solution of wave equation using multiple reflection 

theory with one or two dimensional idealization is the most popular method. The 

reason for its popularity is its simplicity, particularly in evaluation of soil parameters 

used in the analysis. On the other hand, nonlinear method is based on lumped mass 

idealization of layered soil deposit with equation of motion being integrated in time 

domain unlike the EQL approach which is based on continuous solution of wave 

equation in frequency domain. Although in time domain approach the nonlinear 

behaviour of the soil can be considered more realistically, the main problem is that, it 

requires several input parameters that are tedious to evaluate. The solution of wave 

equation using multiple reflection theory in frequency domain has distinct advantages 

such as deconvolution that is, the bed rock acceleration time history can be computed 

using the input motion at the surface or at any other intermediate layer. 

The most widely used computer program based on equivalent linear method is 

SHAKE [Schanbel et al. (1972)] and its subsequent versions e.g., SHAKE91 [Idriss 

and Sun (1992)]. In the recent past, several other computer programs similar to 

SHAKE are available such as EERA [Bardet et al. (2000)], DYNEQ [Yoshida et al. 

(2002)], DEEPSOIL [Hashash (2011)], STRATA [Kottke and Rajthe (2008)] etc., 
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These programs can compute the dynamic response of horizontally layered soil 

deposit due to vertically propagating and horizontally polarized (SH-wave) shear 

waves. These programs are developed based on multiple reflection theory of waves in 

frequency domain. The nonlinearity is modeled by defining the curves of strain 

dependent shear modulus and damping. The stiffness degradation of the soil due to 

the increase in strain is accomplished by comparing the computed strains with 

generalized strain dependent modulus reduction curves.  

Time domain approaches are capable of directly incorporating nonlinear and time 

varying behavior of the soil. Also, while the analysis is carried out, they preserve the 

time history of dynamic response quantities which are transient in nature rather than 

harmonic as it is treated in the frequency domain. On the other hand, in the time 

domain approach it is impossible to implement the concept of multiple reflection 

theory which is an exact solution of the wave equation. Using the multiple reflection 

theory approach, the incident and reflected waves can be separated, input wave can be 

specified at any point in the half space and incident and reflected wave components 

can be extracted at any desired location. Most often this aspect is an important 

requirement in engineering practice. Even though time domain approach is 

recommended for truly nonlinear analysis, EQL approach based on multiple reflection 

theory continues to sustain its importance and popularity in the geotechnical 

earthquake engineering practice. Recently, appreciable research advancements have 

been achieved in numerical procedures, computational methods, constitutive 

modeling and measurement of soil properties (both in field and laboratory) that are 

appropriate for seismic site characterisation procedures. In spite of these 

developments, according to a survey conducted and reported by Kramer and Paulsen 

(2004) for large number of practicing engineers throughout the globe, equivalent 

linear one-dimensional analysis is still the most popular choice for analysis because of 

its simplicity, convenience in providing input data and easy interpretation of results. 

In some instances non-homogeneity of the surface deposit may be due to continuous 

variation of stiffness and density rather than distinctly layered formation. Recognizing 

this fact, many investigators have attempted to treat the prevailing condition of non-

homogeneity and computed the dynamic response of the deposit subjected to 
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harmonic base excitation. Among these, important contributions are from Gazetas 

(1982), Davis (1995), Towhata (1996), Roviths et al. (2011), Vrettos (2013) etc. From 

the review of these studies it can be concluded that, there is scope and need for 

improving the routine SHAKE method of analysis for predicting seismic ground 

response. These analytical studies are dealt to give amplification for the limited cases 

without considering nonlinear behavior and variation of density along the depth of the 

soil deposit. Also these analytical studies assume that inhomogeneous surface deposit 

is overlying a homogeneous elastic half-space or rigid base rock. However, in reality 

these assumptions are seldom valid.  

The analytical and numerical studies, reported in literature, have pointed out that main 

drawback of the routine one-dimensional modeling of the ground arises out of the 

assumption of perfectly horizontal layers of varying depths. This assumption leads to 

unrealistic and contrasting impedance ratio between adjacent layers. In turn, this may 

result in poor simulation of ground response. Hence, there is a need for overcoming 

this lacuna by modeling the ground profile with continuous variation of soil properties, 

particularly shear wave velocity, which introduces a smooth transition zone at layer 

interfaces instead of abrupt variation.    

Although many of the researchers disagree with the effect of loading frequency on the 

dynamic soil properties, in the recent past, some studies have observed that effect of 

loading frequency on the soil stiffness and damping is significant. Consequential 

effect of loading frequency / strain rate on damping ratio is yet to be ascertained 

clearly. Rix (2004), through experimental study, reaffirmed the general trend of effect 

of frequency on damping suggested by Shibuya et al. (1995). Even though effect 

loading frequency on soil properties is debatable, in order to improve the accuracy of 

response prediction of EQL method, especially in the high frequency range, it may be 

appropriate to incorporate frequency effects into the analysis procedure. 

Equivalent linear method utilizes effective strain (
eff

γ ) to update soil properties after 

every iteration and these updated shear moduli and damping values are employed in 

the next iteration. Throughout a particular iteration, these values remain constant. 

There is no technically rational procedure available to convert the resulting maximum 
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strain (
max

γ ) to effective strain ( )eff
γ . In their computer program SHAKE91, Idriss 

and Sun (1992) computed effective strain as 
eff max

Rγ γ= where R is an empirical 

parameter which depends on magnitude of the earthquake (M) as ( 1) /10R M= − , 

while Schnabel et al. (1972) recommended a value of 0.55 to 0.65 for R in their 

program SHAKE.  It is observed that single value of parameter R is not capable of 

reproducing the entire response history at complete range of frequencies. Several 

other methods for computing R have been proposed. However, they are aimed at 

altering R depending on excitation frequency instead of acceleration or strain 

amplitude [Sugito et al. (1994), Yoshida et al. (2002), Kausel and Assimaki (2002) 

etc.]. Hence, evolving a rational procedure to compute effective strain based on 

acceleration or strain amplitudes of the corresponding iteration is imperative.   

Several post earthquake geotechnical studies have clearly demonstrated that intensity 

of structural damages and its distribution are closely dependent on dynamic 

characteristics of the underlying soil deposit i.e., its modal characteristics. Hence, 

reliable assessment of fundamental period of the soil deposit is an important 

requirement in seismic site characterisation particularly in the process of 

microzonation of urban areas. Since shear wave velocity and fundamental period are 

directly interrelated, many empirical relationships have been proposed to compute 

average shear wave velocity as an equivalent substitute to complex shear wave 

velocity profile of inhomogeneous layered deposit. Summary and relative comparison 

of all empirical methods available till then is given in the paper by Dobry et al. (1976). 

The order of error in fundamental period computed from these empirical methods 

could be significantly large in some cases where large velocity gradient exists 

between layers of the deposit. Hence, evolving an alternative method for evaluation of 

fundamental period of the deposit, as accurately as possible, is extremely important. 

1.3 SCOPE AND OBJECTIVES OF THE WORK 

The focus of this study is to improve the prediction capabilities of total stress one 

dimensional seismic site response analysis using frequency domain equivalent linear 

approach. The improvements suggested in order to achieve this broad objective are 
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based on documented limitations of this approach in the literature. Although some 

modifications are suggested previously, addressing issues related to discrepancies in 

predicted and observed responses at certain frequency ranges, very few attempts have 

been made to deal with some of the uncertainties and ambiguities in one dimensional 

frequency domain site response analysis using equivalent linear approach. The 

improvements and modifications suggested in this study are believed to enhance the 

scope of application of equivalent linear one dimensional site response analysis in 

frequency domain in engineering practice. In the first phase of this study, a computer 

program SRISD (Seismic Response of Inhomogeneous Soil Deposits) is developed 

and tested to obtain one dimensional seismic response of inhomogeneous soil deposit 

with continuous variation in soil properties along the depth. In the next phase, 

modified method to compute effective strain and consideration of frequency effect are 

incorporated in equivalent linear analysis. Lastly, an alternative method for estimating 

fundamental period of layered soil deposit is proposed. For this purpose, variability in 

shear wave velocity profile along the depth is approximated with continuous variation.  

The objectives of the present research work are as follows:  

� To develop an algorithm and computer program based on the numerical procedure 

adopted to solve one-dimensional wave equation in frequency domain with 

nonlinearity of the soil being modeled using equivalent linear approach.  

� To introduce an option in the computer program to consider continuous variation 

in soil properties along the depth of the one-dimensional soil profile with different 

types of inhomogeneity functions.  

� To provide a refined method to compute effective strain for updating strain 

dependent shear modulus and damping properties of the soil deposit in successive 

iterations 

� To incorporate an option for considering frequency dependent soil properties in 

equivalent linear approach. 

� To test and validate computer program by comparing its results, for benchmark 

problems cited in literature, with results of existing computer programs and closed 

form solutions 
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� To validate the efficiency of the procedure adopted by comparing the results with 

response quantities measured during actual earthquakes. 

� To identify the effects of plasticity index and characteristics of input motion on 

the dynamic response of soil deposit by performing parametric study 

� To propose an alternative method to estimate fundamental period of layered soil 

deposits by idealizing the deposit with an equivalent continuous shear wave 

velocity profile  

1.4 METHODOLOGY 

Based on the objectives listed above, following methodology is adopted  

• Transform governing equation of motion for one dimensional vertical propagation 

of waves in continuously inhomogeneous soil deposit into a set of ordinary 

differential equations. 

• Numerically integrate the equations obtained previously using fourth order 

Runge-Kutta scheme. 

• Employ EQL approach incorporating an alternative method to compute effective 

strain based on intensity of maximum acceleration computed in the preceding 

iteration and carry out iterations till convergence of shear strain at all nodal points. 

Implement these procedures in a computer program coded in FORTRAN  

• Incorporate different input provisions in the computer program which include 

details of soil profile with different options for prescribing the shear wave velocity 

or shear modulus and density as continuous function of depth apart from routine 

layered configuration. 

• Prescribe strain dependent shear modulus and damping properties choosing 

appropriate curve from a suite of curves available in the built in library or site 

specific data. 

• In order to overcome frequency response discrepancies of equivalent linear 

analysis, additional damping shall be introduced near the fundamental frequency 

and damping will be decreased in the high frequency range beyond the first few 
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modes of response. This scheme is envisaged to reduce and enhance the response 

respectively near resonant frequency and high frequency ranges. Additional 

damping is attributed to radiation damping due to the energy dissipation in the 

underlying half-space of the deposit. For this purpose, approximate expression 

relating radiation damping with modal frequencies shall be used. 

• Prescribe input motion at any depth in the form of acceleration time history. The 

strain, stress, acceleration time histories and amplification ratio between any two 

depths can be obtained as output at desired depths of the deposit. The variation of 

peak acceleration, maximum shear strain and maximum shear stress along the 

depth of the deposit are the default outputs.  

• Validate the computer program with the results of the analytical studies reported 

in literature [for e.g., Gazetas (1982), Towhata (1996), Davis (2004), Rovithis et 

al. (2011), etc.] and measured field data of vertical geotechnical arrays. The shear 

wave velocity profile and earthquake data recorded and documented at California 

Strong Motion Instrumentation Program (CSMIP) and Kiban-Kyoshin network 

(KiK-net) websites are utilized for this purpose.  

• Estimate the fundamental period of the layered soil deposit by approximating the 

layered shear wave velocity profile with an equivalent linear variation. For this 

purpose closed form exact analytical solution shall be used to compute the 

fundamental period of linearly varying shear wave velocity profile.  

• Efficiency of the proposed vis-à-vis other available methods to estimate 

fundamental period shall be verified by comparing their results with values 

computed from recorded earthquake accelerograms of instrumented geotechnical 

downhole arrays.  

1.5 SCHEME OF PRESENTATION 

The entire work is presented in seven chapters. Brief introduction is presented in the 

first chapter. This includes the importance of the present work, problem statement and 

list of objectives of the present work. The second chapter describes the seismic 

response analysis of horizontally layered soil deposit. Various numerical techniques 
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available for seismic ground response are discussed. Results obtained from frequency 

domain equivalent linear and time domain nonlinear methods of analyses are 

compared. Parametric studies carried out to investigate the effect of characteristics of 

input motion and soil properties on the computed response are presented. The 

limitations of equivalent linear analysis in frequency domain are highlighted.  

In chapter three, significance of idealizing the soil deposit with continuous variation 

in soil properties is brought out. The uncertainties associated with characterisation of 

soil deposit as layered deposit and its effects on the computed response are 

demonstrated through example analysis. The analytical solutions obtained for 

different kinds of inhomogeneity functions have been reviewed and scope of some of 

these solutions is extended for additional boundary conditions. Results of the 

parametric study carried out with regard to effect of inhomogeneity parameters on 

amplification characteristics are presented. This chapter is concluded with example 

analyses wherein the improvement in response prediction by approximating the 

layered profile by means of a continuously varying shear wave velocity profile is 

demonstrated.  

The fourth chapter focuses on the development of numerical scheme for seismic 

response analysis of continuously inhomogeneous ground. The general features of the 

computer program SRISD developed as part of this study have been discussed. The 

results of the analysis using SRISD are validated by comparing with that of 

SHAKE91 analysis and those from closed form analytical solutions presented in the 

previous chapter.  

The fifth chapter gives the details of two newly proposed improvements to routine 

equivalent linear analysis. Firstly, a rational method to compute effective strain 

required to update soil properties in equivalent linear approach is presented. Besides, 

a new method for frequency dependent equivalent linear analysis is developed. The 

implementation of these proposals in the framework of SRISD is discussed. Finally, a 

case study is presented to validate the salient features of the present research work.  
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An alternate approach for estimating the fundamental period of layered soil deposit is 

proposed in chapter six. For this purpose layered shear wave velocity profile is 

approximated with a linearly varying continuous shear wave velocity profile. 

Efficiency and accuracy of the proposed method is established by comparing its 

results with other simplified methods, exact solutions and those computed using 

observed field data.  Conclusions and scope for future work are presented in the last 

chapter. The computer programs used for analytical results of chapters two and three 

are coded in MATLAB
®

. These programs are listed in Appendix-I. In Appendix-II 

details about the computer program SRISD is presented. The description and 

preparation of input data file along with output of the program is explained using an 

example analysis.    



CHAPTER 2 

ANALYSIS OF INHOMOGENEOUS SOIL DEPOSITS – 

HORIZONTALLY LAYERED PROFILE 

2.1 INTRODUCTION 

In this chapter the importance of evaluating the dynamic response of the ground 

during earthquakes and the aspects of seismic wave propagation through layered soil 

deposit are discussed. Validating facts related to simplification of complex wave 

phenomena into one dimensional idealisation are elaborated. Theory for one 

dimensional wave equation and well established solution using the concept of 

multiple reflection theory applied to one dimensional wave propagation in layered soil 

deposit is discussed. Various numerical techniques that are available in the literature 

for the purpose of evaluating the seismic ground response using one dimensional 

wave equation are reviewed. Finally, some of the deficiencies of equivalent linear 

analyses in frequency domain against nonlinear analysis in time domain are 

highlighted using an example. In this preliminary comparative study shear wave 

velocity profile idealisation, frequency and amplitude characteristics of the input 

motion are considered as parameters.  

The theory of wave propagation deals with the problem of defining the transmission 

of energy that is released and spreading due to localized disturbance (source) in a 

medium. The seismic wave propagation through the earth medium is basically a three 

dimensional problem. Seismic waves originating from the focus propagate in all 

directions and characteristics of these waves are altered with respect to time and space. 

The variations in wave characteristics as the wave propagates in the medium are 

significantly influenced by source geometry, type of disturbance, path of its 

propagation, geology of the ground, etc. Basically the seismic waves are classified 

into body waves and surface waves. The surface waves are generated due to total 

reflection of the body waves at the free ground surface.  
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The body waves are classified into primary or longitudinal wave (P-wave) and 

secondary or transverse wave (S-wave). P-wave propagates generating vibrations 

parallel to the direction of propagation and S-wave propagates generating vibration 

normal to the direction of propagation. S-wave component contributing to horizontal 

oscillations is called SH-wave while that contributing to vertical oscillations is called 

SV-wave. As a result of complex discontinuities in the earth media the body waves 

are phenomenally modified due to reflection, refraction, scattering, diffraction, 

attenuation, amplification, and other propagation related mechanisms [Newmark 

(1968); Newmark and Rosenblueth (1971); Okamoto (1984)].  

2.2 SEISMIC GROUND RESPONSE ANALYSIS 

2.2.1 General 

The evaluation of ground surface motion due to an earthquake is associated with the 

solution of the problem of wave propagation. The solution procedure can be clearly 

distinguished into two fields of study. Firstly, modeling of surface ground motion that 

includes complete process of wave propagation from mechanism of fault rupture to 

generation of surface waves dealing with large geometrical domain, basically 

concerned with the field of study of seismology. The other is related to soil dynamics 

or earthquake geotechnical engineering in which the response of the subsoil above the 

bedrock due to propagation of waves are studied to evaluate the surface motion for an 

input motion prescribed at bedrock. The latter case is justified by the assumption that 

the earthquake motion at the assumed bedrock level can be defined as a function of 

distance from the source of disturbance and source mechanism; thereby complexity of 

the problem is greatly reduced.   

From the engineer’s point of view, it is essential to obtain accurate and complete site 

specific ground motion response quantities for reliable soil-structure interaction 

analysis and designing the structures for future earthquakes. Both engineers and 

seismologists have accepted that site specific ground motion, due to strong motion 

seismic events, is greatly affected by the response of the surface soil deposit above the 

bedrock [Seed and Idriss (1969), Chin and Aki (1991), Beresnev and Wen (1996) and 
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Field et al. (1997)]. In general, the problem of seismic ground response analysis may 

be defined as determination of temporal and spatial variation in all response quantities 

of a soil deposit due to observed or estimated input motion prescribed at a control 

point within the soil deposit [Lysmer (1978)].  

2.2.2  Factors Affecting Ground Response Analysis 

In reality, the procedure for exact characterization of strong earthquake motion 

involves considering all the factors which greatly influence the surface ground motion. 

According to Ferritto et al. (1999), these factors include seismological factors 

comprising intensity, frequency characteristics and duration of input motion (Bedrock 

motion); Geological factors such as soil type, profile of the soil deposit, underlying 

bedrock type, geologic structure and its profile (topography, basin effects etc.); 

Geotechnical factors consisting of low strain elastic properties of the soil, damping 

characteristics of the soil, stiffness degradation behavior of the soils due to cyclic load, 

natural period of the soil deposit, impedance ratio between the bedrock and overlying 

soil stratum and stress-strain relationship for soil and finally regarding analytical and 

numerical procedure which appropriately considers the dimensionality of the problem, 

soil nonlinearity and continuous or discrete modeling. 

It is essential to recognize the fact that seismological factors affecting ground 

response analysis include large spatial domain compared to geotechnical factors 

which are usually confined to a relatively small scale. Generally, the outcome of 

seismicity estimation of a site is presented as the peak acceleration expected for a 

given return period that usually corresponds to the shaking at a rock outcrop. This 

site-specific data, typically comprising of anticipated acceleration time history of the 

rock outcrop, is used as input motion at the bedrock and propagation of waves 

through soil media is modeled. Then site effects have to be evaluated considering 

geotechnical parameters such as soil type, deposit thickness, stiffness and damping 

properties as a function of intensity of the bedrock motion. There are many empirical, 

simple and complex procedures available to compute site-specific dynamic soil 

response. The site-specific seismic ground response analysis is primarily aimed at 

characterisation of modification in the frequency and amplitude of the seismic wave 
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as it propagates through surface soil deposit.  More elaborative three dimensional 

models using methods based on finite element, finite difference, boundary element, 

etc. are available for seismic ground response analysis [Frankel and Vidale (1992), 

Frankel (1993), Zeng and Anderson (1996)]. Joyner and Boore (1988) have given 

extensive review of the works related to site amplification studies.   

2.3 JUSTIFICATION FOR ONE DIMENSIONAL ANALYSIS 

Usually, considering the limitations and complexities involved, the three dimensional 

seismic wave propagation problems are often idealized as two or one dimensional 

problems. The limitations and complexities in three dimensional analysis are; defining 

the seismic bedrock motion considering all seismological factors including source 

mechanism and path effects, modeling anisotropic and inelastic stress-strain behavior 

of soil (constitutive modeling), ascertaining the parameters of the constitutive model 

through in-situ or laboratory procedures and implementing all these with a numerical 

procedure which is computationally economical and accurate. Research is still going 

on to address many aspects of these issues decisively, hence engineers are yet to be 

satisfied with capabilities and accuracy of the procedure involved in three 

dimensional modeling.  

For any seismic event the distance of wave propagation is often great compared with 

the dimensions of the source. Therefore, according to Newmark and Rosenblueth 

(1971), at points sufficiently distant from the source of a disturbance the waves may 

be regarded as plane waves. Also by modeling the source of fault rupture as a line of 

relatively large length, it can be assumed that all the waves are propagating parallel to 

a plane. Thus, according to Roësset (1977), for the situations stated above, the seismic 

wave propagation problems may be treated as two dimensional. In two dimensional 

analysis, lateral extent of the soil deposit can be taken into account as finite [Joyner 

(1975), Marsh (1992)]. 

The investigation of many acceleration records of earthquakes suggests that wave 

refraction from edge boundaries, focusing and scattering of waves, alteration to type 

of waves, etc. that are associated with two and three dimensional effects are important 
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[Tucker and King (1984), Bard and Bouchon (1985) and others]. Where these effects 

are significant, calculations assuming one-dimensional wave propagation models fail 

to simulate the observed results [King and Tucker (1984)]. In spite of employing 2D 

or 3D analysis, according to Boore (2004), in some cases discrepancy between 

predicted and observed spectral ratios is not negligible, although the results from two 

and three dimensional analysis can predict the overall trend of the observed response 

spectra. Despite tremendous additional effort put into spatial modeling, modeling the 

constitutive behavior and computational procedures, these kinds of differences exists. 

Even with refinement of geotechnical model to better match the observed 

characteristics of ground motion the predictions were systematically different than the 

observations over a wide range of frequencies [Scherbaum et al. (1994)].  

 

Figure 2.1: Waves propagate almost vertically near the surface due to refraction 

at horizontal layer boundaries [Modified from Kramer (1996)] 

There are many studies available in the literature comparing the ground response 

estimates using 1D, 2D and 3D analyses [Joyner and Boore (1988), Boore (2004) 

Bielak et al. (2000), Semblat (2011)]. On the other hand Dickenson et al. (1991), Seed 

et al. (1994) and Dobry et al. (1994) have shown that the one-dimensional model 

provided a good approximation to the observed site response in the Loma Prieta 

earthquake, especially for the case of soft clay sites. 

As a further simplification with respect to dimensionality of the problem, the problem 

is reduced to one dimension by assuming that the seismic surface motion of the soil 
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deposit is primarily due to the upward propagation of shear waves from underlying 

bedrock. Observational studies carried out using seismograms obtained at several 

stations in Japan and elsewhere have confirmed that the angle of incidence is less than 

five degrees near the surface of the deposit [Salt (1974)]. Also these studies have 

indicated that incident angle of shear wave at the surface layer becomes almost 

vertical irrespective of epicentral distance. Thus, as a consequence of Snell’s law, use 

of vertically incident waves as the excitation can be justified because, body waves 

tend to become vertical as they travel upwards as shown in Figure 2.1. This is true if 

the ground surface, the rock surface and the boundaries between different soil 

surfaces are nearly horizontal. Otherwise, two/three dimensional analysis is 

indispensable [Idriss and Seed (1968)]. 

2.4 GOVERNING EQUATION OF MOTION FOR WAVE PROPAGATION  

Consider homogeneous soil deposit overlying rigid bedrock subjected to an input 

seismic motion at its base. The balance of forces on an infinitesimal soil element of 

depth dz is shown in the Figure 2.2. Here τ is the shear stress, ρ is the density, u is 

the displacement in the horizontal direction (x-axis) and u��  is the resulting horizontal 

acceleration due to change in shear stress in that direction. The wave propagation is 

considered in the z-direction alone.  

Considering the inertia force of the element, equilibrium in the horizontal direction 

can be stated as 

0udz dz
z

τ
ρ τ τ

∂ 
− − + + = 

∂ 
��       (2.1) 

That is, 

2

2

u
u

zt

τ
ρ ρ

∂ ∂
= =

∂∂
��         (2.2) 

Eq. (2.2) is the equation for one dimensional ground response analysis. If the soil 

stress-strain behaviour is assumed to be represented by Kelvin-Voigt model [Tsai and 
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Housner (1970); Kramer (1996)], then the shear stress τ  is related to shear strain and 

rate of shear strain as,  

Gτ γ ηγ= + �          (2.3) 

Here, strain is
( , )u z t

z
γ

∂
=

∂
 strain rate is 

2 ( , )u z t

z t
γ

∂
=

∂ ∂
� , G  is the shear modulus and η  

is the viscosity coefficient.  Substituting for τ  in Eq. (2.2), 

2 2 3

2 2 2

u u u
G

zt z z t

τ
ρ η

∂ ∂ ∂ ∂
= = +

∂∂ ∂ ∂ ∂
      (2.4) 

x

z

Bedrock

u dzρ ��

d
dz

dz

τ
τ +

τ

dz

SH wave

Input motion at 

bedrock level

 

Figure 2.2: Equilibrium of forces acting on an infinitesimal element 

Introducing complex shear modulus, *
G  as ( )* 1 2G i Gζ= +  where, ζ  is the 

frequency dependent viscous damping ratio and 1i = − .ζ  is related toη as 
2G

ωη
ζ =  

[Kramer (1996)], where ω  is the loading frequency. Thus the stress-strain relation 

may be expressed as 

( )* 1 2G i Gτ γ ζ γ= = +        (2.5) 

By substituting Eq. (2.5) to Eq. (2.2), 
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2 2
* *

2 2

u u
G G

zt z

γ
ρ

∂ ∂ ∂
= =

∂∂ ∂

        
(2.6) 

Since ( ),u z t  is a function of both space and time, by separation of variables the 

horizontal displacement ( ),u z t   can be expressed as, 

( ) ( ) ( ) ( )1 2, i t
u z t u z u t U z e

ω= =                            (2.7) 

Expressing the complex wave number k, as 
( )

2 2
2

*1 2
k

i G G

ω ρ ω ρ

ζ
= =

+
 and substituting 

Eq. (2.7) into Eq. (2.6) yields an ordinary differential equation as 

2
2

2

( )
( ) 0

d U z
k U z

dz
+ =         (2.8) 

The solution of the equation may be expressed as  

( ) ikz ikzU z Ee Fe−= +           (2.9)  

Hence the horizontal displacement is given by Eq. (2.7) as, 

( ) ( )( ) i t i kz t i kz tu z Ue Ee Feω ω ω+ − −= = +       (2.10)  

Here E and F are complex constant, which can be determined by boundary conditions. 

Physically E represents the transmitted wave (upwards) and F represents reflected 

wave (downwards) at each of the layer interfaces. 

2.5 OVERVIEW OF MATHEMATICAL METHODS   

2.5.1 Theory of multiple reflections – Frequency domain analysis 

The analytical solution to the general problem of transmission of elastic waves 

through distinctly stratified horizontal layers of linearly elastic material was dealt by 

Thomson (1935) and Haskel (1953). Later this approach, well known as theory of 

multiple reflections of waves, is extended to geophysical problem associated with 
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transmission of seismic waves in stratified geologic medium by Haskel (1960). For 

the problems related to wave propagation in soil deposits consisting of multiple 

horizontal homogeneous layers, the solution given in the previous section for single 

layer can be extended using multi-reflection theory [Roёsset and Whitman (1969), 

Tsai and Housner (1970), Schnabel et al. (1972), Cherry (1974), Roёsset (1977), 

Erdik (1987) and others]. Figure 2.3 shows the model for a horizontally multi-layered 

soil deposit. The coordinate z is defined independently for each layer measuring from 

the top. That is, for the i
th

 layer, zi ranges from 0 to Hi  which is the thickness of the i
th

 

layer. The density ρi, maximum shear modulus (low strain) 
i

G  or maximum shear 

wave velocity 
si

v and damping factor ζi are assumed to be constant within each layer. 

By accounting for boundary conditions, the theory of multiple reflections gives the 

total response at all layers by summing the closed form solution of each layer. The 

boundary conditions are 

i. The shear stress at ground surface is zero 1 0( 0, ) 0z tτ τ⇒ = = =   

ii. The displacement is continuous at the interface of boundary layers 

1 1( , ) ( 0, )
m m m m m

u z H t u z t+ +⇒ = = =  

iii. The shear stress is continuous at the interface of boundary layers 

1 1( , ) ( 0, )
m m m m m

z H t z tτ τ + +⇒ = = =
 

These boundary conditions will yield 2n-1 equations to evaluate 2n unknowns those 

are corresponding to 1 2 3, , ,........
n

E E E E and 1 2 3, , ............
n

F F F F which are the amplitudes 

of the upward and downward wave components in each of the layers respectively. 

Hence we can obtain all the wave amplitudes when one of the amplitude is given at an 

arbitrary layer as an input motion.  

The displacement in the m
th

 layer is obtained using Eq. (2.10) as, 

( , ) ( )m m m mik z ik z i t

m m m m
u z t E e F e e

ω−= +       (2.11) 
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Figure 2.3: Model ground representing layered soil deposit 

The shear stress in the layer is,  

* *( , ) ( )m m m mik z ik z i t

m m m m m m m m
G z t iG k E e F e e

ωτ γ −= = −     (2.12) 

If the displacement and shear stress at the top and bottom of the m
th

 layer are 

( ) ( )(0, ),  (0, )t t

m m
u t tτ and ( ) ( )( , ),  ( , )b b

m m m m
u H t H tτ respectively, then from Eq. (2.11) and 

Eq. (2.12) we have, 

( )

( ) *

( )

( )

t i t

m m m

t i t

m m m m m

u E F e

iG k E F e

ω

ωτ

= +

= −
       (2.13) 

( )

( ) *

( )

( )

m m m m

m m m m

ik H ik Hb i t

m m m

ik H ik Hb i t

m m m m m

u E e F e e

iG k E e F e e

ω

ωτ

−

−

= +

= −
      (2.14) 

i.e., 

( )

* *( )

1 1t

m i tm

t

m m m m mm

Eu
e

iG k iG k F

ω

τ

     
=    −    

      (2.15) 
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( )

( ) * *

m m m m

m m m m

ik H ik Hb
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e

FiG k e iG k e

ω
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−

−
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−     
    (2.16) 

Eliminating 
m

E and
m

F from the above equation yields, 

( ) ( )
*

( ) ( )

*

sin( )
cos( )

sin( ) cos( )

m mb t
m mm m

m mb t

m m

m m m m m m

k H
k Hu u

G k

G k k H k H
τ τ

 
    =    
   −  

    (2.17) 

Based on the boundary condition, continuity of displacement and shear stresses at the 

layer boundary interfaces, we get the following results for m and m+1 layer 

( ) ( )

1

( ) ( )

1

b t

m m

b t

m m

u u

τ τ
+

+

   
=   

   
        (2.18) 

Combining, Eq. (2.17) and Eq. (2.18), displacement and shear stresses at the top of 

successive layers are related as following 

( ) ( )
*1

( ) ( )

*1

sin( )
cos( )

sin( ) cos( )

m mt t
m mm m

m mt t

m m

m m m m m m

k H
k Hu u

G k

G k k H k H
τ τ

+

+

 
    =    
   −  

    (2.19) 

The Haskel-Thomson transfer matrix
m

A for the m
th

 layer relating the displacements 

and stresses of successive layers in terms of layer properties may be defined as,  

*

*

sin( )
cos( )

sin( ) cos( )

m m

m m

m mm

m m m m m m

k H
k H

G kA

G k k H k H

 
   =   
−  

  (2.20) 

By recursively applying the relation to other layers from layer (m+1) to the top of the 

surface layer, we obtain, 

1 0

1 2 2 1

1 0

...............
m

m m m

m

u u
A A A A A

τ τ
+

− −

+

   
         =            

   
   (2.21) 
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For a deposit of total thickness H and consisting of n layers, the displacement and 

stresses at the base and surface of the deposit can be established as, 

0

1 2 3 2 1

0

...............
H

n n n

H

uu
A A A A A

ττ − − −

  
         =            

   
    

  

i.e., 
011 12

021 22

H

H

uu A A

A A ττ

    
=    

    
 (2.22) 

where,  

11 12

1 2 3 2 1

21 22

...............n n n

A A
A A A A A A

A A
− − −

 
           = =             

 
 (2.23) 

A     is the transformation matrix between layers 1 and n. By using the Eq. (2.22), we 

can obtain the displacement for all layers, when amplitude at base or at an arbitrary 

layer is given. The most useful aspect of multiple reflection theory is that 

deconvolution is possible, that is from the observed acceleration record at the surface 

we can obtain corresponding bedrock acceleration time history. For this purpose we 

use the boundary condition that the shear stress at the ground surface is zero, 

i.e. 0 0τ =  in Eq. (2.22). Most of the computer programs such as, SHAKE [Schnabel et 

al. (1972)], EERA [Bardet et al. (2000)] etc., for site response analysis based on 

theory multiple reflections of waves have been developed using an alternative form of 

amplification transfer function. Haskel-Thomson transformation matrix is derived by 

incorporating reflected and transmitted wave amplitudes in successive layer interfaces 

[Cherry (1974); Roёsset (1977)].  Using the boundary conditions of continuity of 

stress and displacement at the interface of m and m+1 layers, the transformation 

matrix is given by,  

1

1

1 1
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1 1
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2 2
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−+

 
+ −    

=     
    − +

  

i i

i i

 (2.24) 
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where
m

α  is called impedance ratio. It is defined as
*

*

1 1

m m

m

m m

G k

G k
α

+ +

= . Thus, in this case, 

Haskel-Thomson transfer matrix
m

A�  relating the amplitudes of successive layers in 

terms of layer properties may be defined as,  

1 1
(1 ) (1 )
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1 1
(1 ) (1 )
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m m m m
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m m
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−

 
+ − 

=  
 − +
  

i i

i i

�  (2.25)  

The transfer matrix relates the amplitudes of upward and downward propagating 

waves between layer m and layer (m+1). By recursively applying the relation to other 

layers from layer n to the surface layer, we obtain, 
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1 2 3 2 1
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n

n n n

n

E E
A A A A A

F F
− − −

   
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� �
�

� �
 (2.26) 

where, A  
�  is the transformation matrix between layers 1 and n. By using the Eq. 

(2.26), along with the stress free boundary condition at the surface, we can obtain the 

amplitude of displacement for all layers when amplitude at base or at an arbitrary 

layer is given. Let 
i

u and uj be the displacements at the top of the th
i  and thj layers 

respectively. From Eq. (2.10) we have,  

( 0, ) ( ) i t

i i i i
u z t E F e

ω= = +         (2.27) 

( 0, ) ( ) i t

j j j ju z t E F e
ω= = +        (2.28) 

Therefore displacement ratio between th
i and thj layers is, 

( 0, ) ( ) ( )
( )

( 0, ) ( )( )

i t

i i i i i i

i ji t

j j j jj j

u z t E F e E F

u z t E FE F e

ω

ω
ω

= + +
= = = Τ

= ++
 (2.29) 
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where ( )
i j

ωΤ  is the transfer function (function of frequency) between i
th

 and j
th

 

layers. The transfer function ( )
i j

T ω  defined in Eq. (2.29) for displacements is valid 

as well for velocity and acceleration. The absolute value of the transfer function 

( )( )
i j

ωΤ  is defined as the amplification ratio between the corresponding layers. 

Since the transfer function does not contain the amplitude 1F  at the ground surface, by 

assuming 1E , we can calculate E  and F  at all the other layers from Eq. (2.26). Then 

the transfer function between any two arbitrary layers may be calculated. When the 

amplitude of a response quantity is given at i
th

 layer, the corresponding response 

quantity at the
 
j
th

 layer is calculated from Eq. (2.29) using ( )( )
i j

ωΤ . Since the 

transfer function is a function of frequency, the frequency of the harmonic wave 

influences the magnitude of the transfer function.  

However the input motion, such as earthquake accelerogram, is a random function of 

time. It consists of several harmonic components of different frequencies. Therefore, 

it is essential to decompose the given wave form into harmonic waves in order to 

extend this method in seismic analysis. Usually Fast Fourier Transform (FFT) is used 

to divide the random accelerogram into its harmonic components. The response 

quantities thus obtained using this frequency domain approach, are recomposed into 

time histories using inverse Fourier transform (IFFT). Schnabel et al. (1972) used this 

procedure of evaluating the ground response in their most popular computer program 

SHAKE. SHAKE91 [Idriss and Sun (1992)] is the later version of SHAKE.  

Recently, many other computer programs are developed implementing this procedure. 

EERA [Bardet et al. (2000)] which is spread sheet version of SHAKE91, STRATA 

[Kottke and Rajthe (2008)], DEEPSOIL [Hashash (2011)] are some of them which 

are available as freeware programs and are very much popular equally among 

researchers and practicing engineers. In this work either EERA and/or DEEPSOIL are 

used for various parametric analyses in frequency domain as well as for the purpose 

of comparative studies. The frequency domain equivalent linear analyses carried out 

using other programs are synonymously referred to as SHAKE analysis throughout 

this thesis.  
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2.5.2  Time domain analysis - Lumped parameters idealisation 

When nonlinear effect is significant and the problem is essentially two or three 

dimensional, a discrete model of the soil profile (finite differences or finite elements) 

and true nonlinear analysis in time domain is the recommended procedure. For such 

models, the resulting wave propagation equations are solved numerically in the time 

domain using direct integration schemes. Equation of motion is integrated using 

explicit or implicit direct integration scheme.  

Elastic Bedrock

m1

mn

mi

m2

H1 G1 ζ1 ρ1

Hi-1 Gi-1 ζ i-1 ρi-1

H2 G2 ζ2 ρ2

Hi Gi ζi ρi

Hn-1 Gn-1ζn−1 ρn−1

Hn Gn ζn ρn

k1,c1

ki,ci

k2,c2

ki-1,ci-1

kn-1,cn-1

Kn,cn

mb

cE=ρbVsb

 
 

 

Figure 2.4: Lumped parameters model of the soil deposit [Modified from 

Hashash and Park (2001)] 

The main advantage of time domain analysis is that the cyclic stress-strain behavior of 

soil can be incorporated conveniently by using an appropriate constitutive law. Also 

the analysis can be carried out both in terms of total stresses and in terms of effective 
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stresses. In case of effective stress analysis, the pore pressure generation and 

dissipation during the earthquake is directly taken into account in the formulation.  

When a soil deposit is assumed to be made up of horizontal layers with distinctly 

different mechanical properties and subjected to vertically propagating shear waves, it 

may be analyzed by modeling it as one dimensional as in the theory of multiple 

reflections of waves. However in time domain approach, soil deposit is spatially 

discretised either using continuum model or using discrete lumped mass approach. In 

the latter approach, each layer of the soil deposit is replaced by a lumped mass 

connected with spring and dashpot to represent its elastic and energy dissipating 

properties. One dimensional analysis in time domain using lumped mass approach is 

employed for the purpose of comparison and validation of results of the present 

research work.  

A simple mechanical model of the soil deposit as shown in Figure 2.4 is representing 

a semi-infinite medium with a unit width and an infinite length for which the equation 

of motion of multi-degrees of freedom may be formulated using basic theory of 

vibration [Clough and Penzien (1993); Chopra (1995)].  

The mass of each soil layer is assumed to be concentrated at a point due to equal 

contribution from the adjacent layers. That is, the lumped mass corresponding to any 

layer is obtained by lumping half the mass of each of the two consecutive layers at 

their common boundary with lumped mass corresponding to first layer being, 

1 1 1 2m Hρ= . In general, lumped mass of th
i  soil layer is, 

1 1 , 2,3,..........
2

i i i i
i

H H
m i n

ρ ρ− − +
= =      (2.30) 

Here 
i

ρ  and 
i

H  are mass density and thickness of the th
i  layer respectively. The 

stiffness coefficients for linear elastic material may be expressed for th
i  soil layer may 

be expressed as /
i i i

k G H= , where 
i

G  is the average shear modulus of the soil of th
i  

layer. The viscous damping coefficient 
i

c is similarly expressed for each of the layer 

based on appropriate viscous damping coefficient at small strain level [Hashash and 
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Park (2002)]. Thus the equation of motion for discrete model can be expressed in 

terms of assembled matrices as [Clough and Penzien (1993)], 

[ ]{ } [ ]{ } [ ]{ } [ ][ ] bM u C u K u M I u+ + = −�� � ��       (2.31) 

Here, [ ]M  is the assembled mass matrix, [ ]K  is the assembled stiffness matrix and 

[ ]C  is the assembled viscous damping matrix. Displacement, velocity and 

acceleration vectors relatively with respect to bedrock in the horizontal direction are 

respectively represented by{ } { } { }, &u u u� �� . The acceleration time history ( )
b

u t�� , is the 

prescribed input motion at the base of the deposit. The order of mass, stiffness and 

damping matrices depend on number of layers employed to model the soil deposit. 

The mass matrix is diagonal while stiffness and damping matrices are symmetric tri-

diagonal. The equation of motion (Eq. 2.31) can be solved by using direct numerical 

integration techniques such as Newmark-β or Wilson-θ or any other unconditionally 

stable methods [Bathe and Wilson (1987)]. The absolute response quantities of any 

soil layer may be computed, for example absolute acceleration of the th
i layer 

is
i b

u u+�� �� . At every time step the computed strains are used along with the material 

constitutive model to compute shear stress and to update the stiffness matrix.  

This approach has been employed by many researchers and among them the earliest 

attempt was by Idriss and Seed (1967, 1968). They used lumped parameters to 

represent inertia, stiffness and damping properties of the continuously inhomogeneous 

deposit.  In their study the deposit is assumed to be overlying rigid bedrock. Later 

many computer codes have been developed, e.g., MASH [Martin and Seed (1978)], 

DMOD [Matsovic (1993)], TESS [Pyke (2000)], DEEPSOIL [Hashash and Park 

(2001); Hashas et al. (2011)], DESRA [Finn et al. (1977)], etc., with several 

modifications and improvements in this approach of discrete lumped parameter 

idealisation to estimate the response the surface soil deposit. Particularly these 

improvements are aimed at modeling nonlinear stress strain behavior of soil. Also to 

prescribe input motion at the base of the deposit with appropriately modeling the soil 

and rock interface to account for underlying elastic half-space characteristics.  
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Apart from modeling the inertia, stiffness and damping properties of the soil deposit 

with discrete lumped parameters, continuum discretization is also employed in site 

response analysis. Usually, finite difference, finite element method, boundary element 

method, etc. are the numerical procedures which have been used in the solution 

formulation. The details of these methods and their implementation in site response 

analysis are elaborated elsewhere [Kramer (1996), Bardet and Tobita (2001), Stewart 

and Kwok (2008), Hashash et al. (2010), Semblat  (2011), etc.]. 

The main concern in use of all the methods of analyses discussed above is about 

modeling the damping characteristics of the soil deposit. Frequency independent 

hysteretic damping model employed in frequency domain equivalent linear analysis is 

deficient of physical explanation [Ching and Glaser (2001)].  On the other hand, many 

studies have concluded that Rayleigh damping formulation used in time domain 

analysis is ambiguous because it is based on principle of orthogonality of mode 

shapes [Chang et al. (2000); Park and Hashash (2004)]. Even though efficient 

methods for modeling the energy dissipation characteristics of soil have been 

proposed, they are not popular because their implementation is rather mathematically 

complex [Inaudi and Kelly (1995); Inaudi and Markis (1996)]. 

2.6 AMPLIFICATION OF SURFACE RESPONSE  

2.6.1 Amplification functions 

In solving the problem of site response for prescribed motion at the base of the soil 

column, it is essential to satisfy the appropriate boundary conditions particularly at the 

interfacial boundary of bedrock and soil column. Contrasting rigidity across the soil-

bedrock boundary controls the magnitude of energy dissipation within the soil 

column. 

Hence it is important to consider the finite rigidity of the underlying medium. Joyner 

and Chen (1975) formulated a solution procedure by considering the bedrock as 

elastic. There are two practical situations, causing main difference in how the input 

motion is prescribed. In the first case the input motion is prescribed as control motion 
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at the rock outcropping (2 )
r

E and compute free soil surface 1(2 )E and/or within 

(bedrock) 
r r

E F+ response of the deposit, referred to as deconvolution. Secondly, 

input motion is prescribed as control motion within the deposit often at the interface 

of soil base and top of bedrock. In the latter case, the responses are computed at 

surface and/or at any point within the deposit. Most often the recorded motions are 

available at the outcropping rock surface and are used to estimate the bedrock motion 

r r
E F+  in a nearby site.  

D

Free surface motion
Rock outcrop motion

Bedrock motion

Incoming wave field

2E1

Er+Fr

2Er

 

Figure 2.5: Terminology related to amplification of surface motion with respect 

to input bedrock motion 

The modification to amplitude and frequency characteristics of the wave as it 

propagates through the soil deposit is often represented by amplification function 

defined as the ratio of frequency response at the surface of the deposit to input motion 

at its base. Amplification function is dependent on the elastic property of the bedrock 

on which the soil deposit is based. Often the expression for amplification function is 

obtained for two situations depicted in Figure 2.5. Firstly for the case in which 

bedrock is assumed to be rigid that is amplification function ( 1Amp ) is obtained 

disregarding the elastic and damping properties of the bedrock. Thus 1Amp is the ratio 

of response at the free surface (at 0z = ) of the deposit to input motion at the soil and 
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bedrock interface (at z D= ), that corresponds to absolute value of the transfer 

function between surface and base of the deposit, i.e.,   

0
1 /( ) surface base

H

u
Amp T

u
ω = =        (2.32) 

In terms of Eq. (2.26) noting that because of stress free ( )0 0τ =  boundary condition 

at the surface 1 1(i.e., )F E= and using the elements of the transformation matrix for 

displacement amplitudes between surface and base we get,  

1
1

11 21

2 2
( )

n n

E
Amp

E F A A
ω = =

+ +� �
      (2.33) 

The other terminology for amplification function is 2Amp , associated with the case in 

which the bedrock is considered to be elastic. This also corresponds to ratio of free 

surface motion at the top of the soil deposit to rock outcrop motion, therefore 

2Amp may expressed as, 

1 1
2

1 11

2 2 1

2 2
r n

E E
Amp

E E A+

= = =
�

      (2.34)  

The amplification ratio, 2Amp represents the ratio of the amplitude of free surface 

motion to that of outcropping motion which is representing surface motion in the 

absence of soil deposit [Roësset (1977); Towhata (2008)]. The maximum value of 

these amplification functions for the case of homogeneous soil deposit of depth ,H  

damping ratioζ and shear velocity 
s

v  is given by Roësset (1977) as,  

( )

( )

1

2

s

max
i

s

max
s i

v
Amp

H

v
Amp

v H

ω ζ

α ω ζ


= 



=
+ 

      (2.35) 
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In the above equation impedance ratio /
s s sr r

v vα ρ ρ= , where  and 
s sr

v v are the shear 

wave velocities in soil and rock respectively while  and 
s r

ρ ρ are their respective 

densities. Natural frequency corresponding to th
i mode is given by, 

( )2 1

2

s

i

i v

H

π
ω

−
= . 

Relationships for the amplification functions 1Amp and 2Amp derived using the 

transformation matrix involving displacement and shear stresses is as follows.  

Using the boundary condition, zero shear stress at the surface ( )0 0τ = in Eq. (2.22) 

we get following results, 

11 0

21 0

H

H

u A u

A uτ

= 


= 
         (2.36)  

Therefore, from Eq. (2.32) and Eq. (2.36) we get, 

0
1

11

1
( )

H

u
Amp

u A
ω = =        (2.37) 

The displacement and shear stress at the top of elastic bedrock is obtained using Eq. 

(2.11) and Eq. (2.12) as, 

*

(0, ) ( )

(0, ) ( )

i t

r r r

i t

r r r r r

u t E F e

t iG k E F e

ω

ωτ

= + 


= − 
       (2.38) 

r
E and

r
F are transmitted and reflected wave amplitudes in the rock. *

r
G and 

r
k are 

complex shear modulus and wave number of the elastic half-space respectively.  

Eliminating
r

F from Eq. (2.38) and satisfying the condition of continuity of 

displacement and stresses at the soil-bedrock interface i.e.,  and 
H r H r

u u τ τ= = by 

using Eq. (2.36) yields the following relationship, 

* *2 i t

r r H H r r r
iG k u iG k E e

ωτ+ =        (2.39) 
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Substituting Eq. (2.36) in Eq. (2.39) and noting that the shear stress vanishes at the 

free surface, surface displacement is given as 0 12 i t
u E e

ω= . Therefore we get 2Amp as, 

*

1
2 *

11 21

2

2

r r

r r r

E iG k
Amp

E iG k A A
= =

+
      (2.40) 

It can be verified that for the rigid bedrock condition, wherein *

r
G tends to infinity, 

then Eq. (2.40) reduces to case of amplification function 1Amp given in Eq. (2.37). 

2.6.2 Effect of soil and bedrock impedances  

In order to emphasize the effect of impedance ratio at the soil and bedrock interface 

on the amplification of response, parametric analysis is carried out using a 

hypothetical soil deposit of total thickness 50.0m and constant unit weight equal 

to18.5 kN/m
3
. Shear modulus of the deposit is considered to be linearly proportional 

to depth, which results in shear wave velocity to be proportional to square root of 

depth. The depth dependent shear wave velocity ( )( )sv z has the form, 

0.5

0( ) (1 )s sv z v az= + in which 0sv  shear wave value at the free surface and a is the 

inhomogeneity parameter which controls the rate of variation of ( )sv z . 

Firstly, the deposit is assumed as homogeneous with shear wave velocity 200 m/s 

which is the average value of the inhomogeneous shear wave velocity profile. The 

deposit is divided into 25 layers, each of 2.0m thick that result in layer fundamental 

frequency of 25 Hz. In the second case the deposit is divided into 30 non-uniform 

layers to approximate actual continuous velocity variation. The layer discretization 

conforms to minimum fundamental frequency of each of the layer is 25 Hz, except 

bottom most layer. The resulting impedance ratio of between successive layers varies 

between 0.85 and 1.0. Figure 2.6 shows the shear wave velocity profiles of both cases 

considered in this parametric study along with variation of impedance ratio between 

the layers. The amplification of input motion at bedrock level to free-surface motion 

is computed for both rigid and elastic bedrock cases. For the latter case, the 

amplification is computed by varying the impedance ratio ( )1/α between base of the 
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deposit and elastic bedrock. The values of ( )1/ /sr r s sv vα ρ ρ= considered in this 

analysis are 1, 2, 4 and 16.  

The amplification ratios for rigid and flexible bedrock cases, respectively 

1Amp and 2Amp , are computed from Eq. (2.37 and 2.40). Figure 2.7a shows surface to 

bedrock frequency dependent amplification for the case of homogeneous deposit. In 

Figure 2.7b the peak amplification values of Figure 2.7a and corresponding 

frequencies are plotted. Figures 2.8a and 2.8b respectively show amplification and 

peak values of the amplification plots for the case of inhomogeneous soil deposit.  
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Figure 2.6: Shear wave velocity profiles considered for the parametric study on 

free-surface to bedrock amplification. Grey and red lines represent the velocity 

profile of the equivalent homogeneous and layered inhomogeneous deposits. 
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Figure 2.7: Amplification of motion between free-surface and bedrock for the 

case of a homogeneous deposit (a) frequency dependent amplification (b) 

variation of maximum amplification at modal frequencies 
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Figure 2.8: Amplification of motion between free-surface and bedrock for the 

case of an inhomogeneous deposit (a) frequency dependent amplification (b) 

variation of amplification at modal frequencies 

Figures 2.7a and 2.8a demonstrate that amplification tends to its maximum value at 

the frequencies corresponding to modal frequencies of the deposit. In addition, these 

figures reveal the well established facts of wave propagation in layered soil deposit 
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such as, rigid bedrock idealisation leads to larger amplification than for the deposit 

overlying a flexible base; impedance ratio at the soil and bedrock interface has 

significant influence of the amplification characteristics; the peaks of amplification 

ratio reduce with frequencies and almost converge to same value at high frequencies 

for different impedance ratios. The average fundamental period of both the deposits 

considered here is 1.0 sec (natural frequency = 1 Hz) and damping ratio of 2.5% is 

used for the both the deposits. 

As it can seen in Figure 2.6 the inhomogeneous deposit is relatively soft near the 

surface and stiff towards the base compared to homogeneous deposit. Effect of this 

velocity gradient on the amplification trends is evident from Figure 2.7b and 2.8b. 

The modal frequencies almost unaltered, particularly after first mode, due to 

contrasting impedance ratio. Whereas, there is a clear shift in the fundamental 

frequency to lower value when 1/ 1α = compared to that for 1/ 1α > in case of 

homogeneous deposit. 

On the other hand, in case of inhomogeneous deposit there is an increase in 

fundamental frequency when1/ 1α = compared to higher values of1/α . In both the 

deposits fundamental and higher frequencies do not alter with increase in 1/α . 

Though the natural frequencies of individual layers is same (i.e. 25 Hz) in both the 

cases, higher frequency responses are filtered more effectively in case of 

homogeneous deposit than in inhomogeneous deposit. This phenomenon, probably, 

can be attributed to comparatively stiff layers near the base of the inhomogeneous 

deposit. In case of the homogeneous deposit, for 1α = , the peaks of the amplification 

ratio are less than one for all frequencies above fundamental frequency and appears to 

be much flatter compared to that of inhomogeneous deposit. Whereas in case of 

inhomogeneous deposit the amplification is greater than one up to about 15 Hz which 

corresponds to well above fundamental frequency of the deposit.  

The above study necessitates the need for clear understanding that is required in 

specifying the point of control for input motion and prescribing bedrock properties. In 

frequency domain analysis this is not an issue of concern because input motion can be 

specified at any point inside the deposit (often termed as within motion) or at free 
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surface (outcropping motion). On the other hand in time domain approach always 

there is ambiguity associated with specifying input motion and prescribing the 

properties of the bedrock. Whenever the input motion is specified as within motion, it 

is prescribed at the base of the deposit with bedrock being considered as rigid. For 

specifying the motion at outcropping rock surface the elastic properties of the rock is 

considered. However, many still opt to convert outcrop motion to within motion using 

linear frequency domain approach and specify that converted motion at the base of the 

deposit with rigid bedrock idealisation. For e.g., Visone et al. (2010) employed this 

procedure to analyze one dimensional soil deposit using time domain finite element 

approach in their comparative study. This kind of unsophisticated practice is still in 

vogue among many practicing engineers in spite of clear guidelines set out in this 

regard by others [e.g. Kowk et al. (2007), Hashash et al. (2010), etc.]. In general, 

boundary condition at the base of the deposit can be modeled to accommodate 

transmission waves back into half-space by considering elastic properties of the 

bedrock or can be idealised as totally reflecting boundary by considering the bedrock 

as rigid. Both these have large implication on the predicted surface response for an 

input motion at the base of the deposit. Hence, it is important to give primary 

attention to appropriately model the soil deposit and accordingly specify the input 

motion. In this regard, Kowk et al. (2007) proposed following guidelines based on 

detailed parametric investigation. If the input motion is an outcrop motion, then this 

motion is applied at the base of the deposit with elastic bedrock boundary condition. 

If the input motion required to be used is a within motion, usually vertical array 

record at some depth, then the base motion is applied using rigid bedrock boundary 

condition.    

2.7  METHODS OF MODELING STRAIN DEPENDENT SOIL 

PROPERTIES  

Apart from modeling of wave propagation model used in seismic site response 

analyses, amplitude and frequency content of computed motions are primarily 

controlled by the dynamic properties such as shear modulus and material damping of 

the soil deposit. Laboratory tests on soils have revealed that pronounced nonlinear 
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behaviour under shear loading conditions is manifested depending upon the type of 

soil, initial confining pressure, rate and magnitude of loading, etc. If nonlinear 

behaviour of earth materials observed in laboratory is applicable to in-situ soil 

properties subject to earthquake loading, then site response calculations must 

accommodate these strain dependencies as nonlinear constitutive relations. Seed and 

Idriss (1970) and Hardin and Drnevich (1972a) are some of the earliest research 

efforts to give the trend of this observable fact through the curves depicting decrease 

in shear modulus and increase in material damping with increasing shear strain.  

Subsequently many developments have taken place in characterizing the soil 

behaviour for dynamic analysis. In general nonlinear and equivalent-linear are the two 

approaches used to model strain dependent soil response.  

2.7.1  Equivalent linear Method   

Seed and Idriss (1970) formulated and proposed an equivalent linear characterization 

of dynamic soil properties to model nonlinear behavior of soil and implemented in the 

most widely used computer program SHAKE [Schnabel et al. (1972)]. In equivalent-

linear method, the nonlinear variation of soil shear moduli and damping are modeled 

as a function of shear strain. The hysteretic stress-strain behavior of soils under 

symmetrical cyclic loading is represented by an equivalent modulus and equivalent 

damping ratio. The equivalent modulus is corresponding to the secant modulus 

through the endpoints of the hysteresis loop and equivalent-linear damping ratio is 

proportional to the energy loss from a single cycle of shear deformation. An iterative 

procedure, based on linear dynamic analysis, is performed to find the shear modulii 

and damping ratios corresponding to the computed shear strains.  

The equivalent linear analysis procedure is depicted in Figure 2.9 and flowchart to 

implement it in seismic site response analysis is shown in Figure 2.10. As shown in 

these figures, initial estimates of the dynamic shear modulus, corresponding to low 

strain shear modulii ( maxG ), and damping ratios are assigned to each of the layer for 

the first iteration. For the second and subsequent iterations, shear modulus and 

damping ratio values corresponding to an effective strain ( effγ ) are determined. 
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Effective strains for all the layers are calculated as a fraction of the maximum strain 

obtained from the previous iteration. These effective shear strains are assumed to be 

constant within each of the soil sub-layers for the entire duration of the excitation. 
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Figure 2.9: Iterative procedure for equivalent linear analysis 

 

The ratio of equivalent effective shear strain to the calculated maximum strain is 

specified as an input data (R) and the same value of R is used for all sub-layers. Idriss 

and Sun (1992) proposed an empirical formula to compute the ratio, 

as ( 1) /10R M= −  where M is the magnitude of the earthquake corresponding to input 

motion. The effective strains thus computed at the mid-depth of each of the soil layer 

from the previous iteration are used to obtain new values of strain-dependent modulus 

and damping ratio for the subsequent iteration as shown in Figures 2.9 and 2.10. The 

linear response calculation is repeated, new effective strains evaluated, and iterations 

performed until the changes in properties are below some tolerable limit (i.e., γ∆  is 

negligible). Generally five to eight iterations are sufficient to achieve convergence. 

For the purpose of illustration, a set of strain dependent shear modulus ( )/ maxG G and 

damping ( ) in %ζ curves for sand proposed by Seed and Idriss (1970) is shown in 

Figure 2.11.   
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Figure 2.10: Flowchart for equivalent linear method implementation to account 

for strain dependency of shear modulus and damping in seismic response 

analysis in frequency domain. 
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Figure 2.11: Strain dependent shear modulii and damping curves for sand [Seed 

and Idriss (1970)] 
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The equivalent linear method of analysis has been found to provide acceptable results 

for many engineering applications. However, a number of limitations of equivalent 

linear method have been noted in the literature [Yu et al. (1993), Sugito (1995), 

Kausel and Assimaki (2002), Yoshida et al. (2002), etc.]. The inherent limitations of 

this formulation is that, the effective uniform shear strain compatible frequency 

independent soil properties for each of the layer are assumed to be same for entire 

duration of shaking i.e., all hysteresis loops are symmetric about origin of the stress-

strain plot. Hence permanent plastic deformations are not modeled. Any site response 

analysis program which employs equivalent linear approach, is capable of total stress 

analysis only. Hence it does not perform analysis wherein the stiffness of the soil is 

modified at each iteration to account for generated excess pore water pressures i.e., 

progressive loss of strength and large displacements resulting as a consequence of 

excess pore water pressure are neglected. Equivalent linear approach does not 

consider the maximum shear strength of the soil as one of the parameters. Hence there 

is a possibility that, the computed shear stresses may exceed the dynamic shear 

strength of the soil particularly when soft soil deposit is subjected to bedrock input 

motion of high level acceleration. This aspect can result in over prediction of peak 

ground acceleration, particularly the high frequency components.   

 In spite of these limitations, numerous validation studies have demonstrated the 

accuracy of the one dimensional equivalent linear method to model the dynamic 

response of various soil profiles for which ground surface and representative rock 

input motions are available [Seed et al. (1994); Dobry et al. (1994)]. 

2.7.2  Nonlinear method 

The seismic site response analysis using nonlinear models is accomplished in time 

domain using explicit or implicit direct integration of equation of motion at desirable 

time steps. Usually, if the methods track the exact form of stress-strain relationship, 

then they are referred to as nonlinear methods. A variety of nonlinear soil models are 

used, they have been primarily developed from laboratory test results. They range 

from relatively simple cyclic stress-strain relationships such as Ramberg-Osgood 

model [Streeter et al. (1974)], elasto-plastic model [Richart (1975)], Iwan-type model 
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[Joyner and Chen (1975); Taylor and Larkin (1978); Bardet and Tobita (2001)], the 

hyperbolic model [Hardin and Drnevich (1972b)], Martin-Devidenkov model [Martin 

and Seed (1978, 1982)] etc. to advanced constitutive models incorporating yield 

surfaces, hardening laws, and flow rules. Critical assessment of these models may be 

found in Finn (1988).  

Much attention has been given to plasticity theory for development of constitutive 

models of soil response to cyclic loading. Elastic-plastic models of soil behaviour 

under cyclic loading based on multi-yield or boundary surface kinematic hardening 

plasticity theory are accepted as suitable means of obtaining plastic modulus 

progressively. Pande and Zienkiewicz (1982) give general description of the 

developments made in elastic-plastic constitutive modeling. Available elastic-plastic 

constitutive models are complex and incorporate many calibrating parameters which 

are impossible to directly measure in field or laboratory. Nonlinear methods can be 

formulated in terms of effective stresses to allow modeling of the generation and 

dissipation of excess pore pressure during and after earthquake shaking. In case of 

nonlinear effective stress models coupled equations are used to treat two phase soil 

system (soil and water phases). Studies on validation of the elastic-plastic models 

suggest that the accuracy of predicted response is strongly path dependent [Finn 

(1999)]. Hence use of data from static tests for calibrating the elastic-plastic model 

parameters may not be adequate for reliable seismic response analysis i.e., these 

parameters must be evolved from appropriate cyclic shear tests. As it is very difficult 

to obtain undisturbed samples of loose sand in the field, parameters evaluated from 

laboratory tests on these samples are unreliable. Hence it is difficult to characterize 

the volume change characteristics which controls pore-water pressure development in 

saturated loose sands.         

Nonlinear models of cyclic behaviour essentially consist of a backbone curve and 

rules that describe unloading and reloading behavior, pore-pressure generation, and 

shear modulus degradation. Modulus reduction curves coupled with the small strain 

modulus ( maxG ) can be used to construct backbone curves. Unload-reload rules are 

usually simulated using Masing’s rule [Hardin and Drnevich (1972b)]. This rule is 
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empirically devised in the sense it is based on geometrical manipulation of stress-

strain plot by translation of origin and expansion of vertical and horizontal axes to 

model the unloading and reloading curves, starting from every reversal point of a 

hysteresis loop.  

Above mentioned nonlinear models have certain limitations and advantages in 

describing the response of soils to the cyclic loads produced due to earthquakes. 

When the advantages provided by the fully nonlinear soil response programs is 

weighed against the cost of laboratory testing programs required to obtain modeling 

parameters of the constitutive relation, the conclusion is not encouraging to use these 

methods for practice. In their review study pertaining to computer programs for 

seismic site response analysis, Dickenson et al. (1998) noted that, one dimensional 

nonlinear analysis program DESRA-2C [Lee and Finn (1991)] is capable of 

conducting effective stress analysis with redistribution and dissipation of pore water 

pressure, but the constitutive relationships utilized in DESRA-2C require 18 material 

constants for each soil layer. Similarly, another popular program SUMDES 

[Arulanandan et al. (2000)] which incorporates plasticity model based on critical state 

soil mechanics requires as many as twenty soil parameters for each layer. Hence it 

becomes very difficult and expensive to scrutiny the performance of these 

sophisticated models through parametric studies, which is an essential exercise to be 

performed before using it for practical field problems. With the advent of significant 

development in laboratory testing facilities, sophisticated constitutive relationships 

can be developed merely by curve fitting process as mentioned by Ishihara (1996), 

“……there is no nonlinear model of any kind established on a sound physical basis”.      

In the recent years, researchers are strongly advocating nonlinear method of analysis 

for predicting seismic site response. Their concern basically originated from observed 

laboratory test data which consistently show that stress-strain relationship of soils is 

nonlinear and hysteretic. The nonlinear soil response during strong earthquakes is also 

observed from field data [Beresnev and Wen (1996)]. The characteristic of the 

nonlinearity of site effects is to cause the difference in the amplification factor 

between rock and soil site to decrease as the excitation strength increases. However, 

the question of how far laboratory studies reflect the field behaviour remains to be 
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answered. Main reason for this is attributed to sample disturbance and stress relief, 

which are inevitable to some degree when sampler is inserted into the ground and 

sample is extracted from the sampler.  

2.8  OVERVIEW OF COMPUTER PROGRAMS FOR SITE RESPONSE 

ANALYSIS  

Circumstances under which geotechnical engineers have to work particularly, in the 

field of soil dynamics, are changing rapidly since last five decades. This is primarily 

because of development in the field of computer technology and duly cost of 

computing has been reduced drastically. Research that has taken place in 

understanding the behaviour of soils under cyclic loading, though not without 

ambiguities and uncertainties, has resulted in the development of several constitutive 

models. As a consequence of these, considerable number of computer programs has 

been developed particularly for estimating ground response under seismic loading. 

Basically what differentiates these programs are, the numerical schemes used in the 

solution of wave equation, the dimensionality of the problem that can be handled,  the 

constitutive models for stress-strain behaviour and finally type of analysis i.e., total or 

effective stress analysis. The requirements of the practicing engineers are also 

changing in terms of simplicity in preparation of input files, intended use of these 

programs, more reliable outputs for variety of applications, etc. 

Varieties of computer programs that can be used to predict the dynamic response of 

soil deposits are available. The level of sophistication of numerical and analytical 

methods used in these programs varies considerably. Some of the simple programs 

require just strain dependent modulus and damping curves whereas more complex 

programs require multitude of soil parameters for each soil layer in the model [Lade 

(2005)]. In addition, the computer programs that have been developed for modeling 

dynamic soil response rely on various simplifications and assumptions in order to 

solve equations for wave propagation through soils. The variety of analysis 

procedures for dynamic soil response ranges from relatively simple linear-elastic total 

stress soil models to sophisticate and fully nonlinear effective stress techniques.  
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It is more than four decades since the first computer program SHAKE [Schnabel et al. 

(1972)] was published and is sustaining its popularity even today in some or the other 

form. This computer program uses theory of multiple reflections of waves with 

equivalent-linear modeling of soil behaviour to compute the response of a one-

dimensional, horizontally layered visco-elastic system subjected to vertically 

propagating shear waves. Exact continuum solution to the wave equation is adopted 

with Fast Fourier Transform (FFT) algorithm to transform the transient motions of 

earthquake into harmonic waves. The success of SHAKE in explaining the response 

of horizontal layered ground during earthquakes led to the computer programs 

QUAD-4 [Idriss et al. (1973)], LUSH [Lysmer et al. (1974)] and FLUSH [Lysmer et 

al. (1975)] which are generalized extensions of one dimensional equivalent linear 

model to two and three dimensions. 

In the recent past several computer programs similar to SHAKE are available such as 

EERA [Bardet et al. (2000)], WESHAKE [US Army Corps of Engineers], ProShake 

[EduPro Civil Systems, Inc.] etc. Essentially all these programs enhance the 

computing features particularly with respect to input and output of the program 

otherwise the technical qualifications are same as SHAKE. Equivalent linear 

approach with multiple reflection theory is coded for site response analysis 

considering frequency effects in DYNEQ [Yoshida et al. (2002)] details of which are 

discussed in chapter six. Silva and Lee (1987) and Schneider et al. (1993) developed 

an alternative solution procedure in which, control motions are represented with 

power spectral density functions instead of time histories. The bedrock power 

spectrum is propagated through a one-dimensional soil profile as explained in Silva 

(1976) and probabilistic estimates of peak time-domain values of shear strain or 

acceleration from the power spectrum is obtained using random vibration theory. The 

computer program RASCAL [Silva and Lee (1987)] is developed using this procedure 

such that the error resulting from transformation of time domain to frequency domain 

and vice versa as opted in SHAKE is eliminated. Kottke and Rathje (2008) developed 

the computer program STRATA to compute seismic response of one dimensional  soil 

deposit using equivalent linear approach similar to SHAKE. In addition, STRATA 
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has an option to carry out analysis based on random vibration theory (RVT) in which 

input motion can be provided in terms of Fourier amplitude spectra.  

CHARSOIL [Streeter et al. (1974)] is one of the earliest computer programs which 

implemented the truly nonlinear approach for evaluation of ground motion. Ramberg-

Osgood representation of the stress-strain behaviour of soil is incorporated into the 

equation of motion and solved the equations by method of characteristics [Papadakis 

et al. (1974); Streeter et al. (1998); Douglas et al. (2003)]. Freeware NERA [Bardet 

and Tobita (2001)] is the code available for nonlinear seismic response analysis of 

layered ground. This program is based on finite difference approach for solution of 

equation motion and utilizes Iwan – Mroz model [Joyner and Chen (1975)] to 

represent soil behaviour. DESRA-2 [Lee and Finn (1978)] and its later version 

DESRA-2C [Lee and Finn (1991)] is the computer program developed for nonlinear 

ground response analysis including effective stress formulation. This program is 

developed based on lumped mass MDOF system idealization of the soil deposit. The 

equation motion is integrated directly using Newmark- β algorithm [Bathe and Wilson 

(1987)]. The stress-strain behaviour of the soil is represented by the hyperbolic 

skeleton curve and Masing criterion is used to define loading and unloading behaviour. 

Procedure for modeling nonlinear cyclic behavior of soil, effective stress formulation 

and their implementation in ground response analysis is detailed in Ishihara and 

Towhata (1982). Summary about subsequent developments in the generations of 

computer programs and comparative study with regard to these programs can be 

found in Liao et al. (2002), Suwal et al. (2014), Bolisetti et al. (2014), etc. Detailed 

technical evaluation and review about most popularly used site response analysis 

computer programs with regard to merits and demerits, limitations, along with modus 

operandi of their usage are given by Kwok et al. (2007), Stewart and Kwok (2008) 

and Matasovic and Hashash (2012). 

An interesting survey report about usage of computer programs in ground response 

analyses is prepared by Kramer and Paulsen (2004). This survey report is an attempt 

to access the popularity of site response analysis methods and computer codes used in 

geotechnical engineering practice. This report clearly indicates that one dimensional 

equivalent method of analysis is the most popular among practicing engineers and 
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consultants over the other methods used for ground response analyses. The difficulty 

in reliable estimation of the calibrating parameters of nonlinear material models and 

effort involved in obtaining other physical characteristics of the soil required for these 

methods have made the professionals to abstain from using these techniques in routine 

site response analysis. Hence computer programs developed using equivalent linear 

analysis in frequency domain continue to be popular among researchers and 

practicing engineers for general purpose seismic site characterisation applications 

such as validation of advanced method of analysis and large scale microzonation 

studies [e.g., Ansal et al. (2001); Pitilakis (2004); Sitharam and Anbazhagan (2008), 

Ansal et al. (2010) and others].  

2.9  COMPARISON BETWEEN EQUIVALENT LINEAR AND 

NONLINEAR METHODS  

In the literature, number studies have been conducted to compare the response of the 

soil deposits using both equivalent linear and truly nonlinear methods. Among them 

the most important studies reported by Constantopoulos et al. (1973), Joyner and 

Chen (1975), Finn et al. (1977), Finn (1978), Yu et al. (1993) etc. are frequently cited 

in the literature for the purpose of comparison. Yu et al. (1993) recognized the 

existence of specific ranges where nonlinear and linear responses will differ and 

predicted these ranges from simple qualitative reasoning as well as from quantitative 

analysis.  In the low frequency range difference is hardly noticeable because the 

wavelength is long; waves are not greatly affected by the subsurface strata. As most 

of the energy is concentrated in the intermediate frequency range, the attenuation of 

strong motion by hysteretic damping reduces the amplitude relative to weak motion. 

Hence they observed that there is a decrease in spectral amplitudes in case of 

nonlinear method compared to linear analysis. They have concluded that, transition 

from low frequency to intermediate frequency range occurs well below the spectral 

corner frequency and also depends on thickness of soil deposit. 

Finn et al. (1977) have investigated the validity of the equivalent linear method for 

determining the effect of stress-strain nonlinearity of soil deposit on its dynamic 

response by analyzing the response of level site of dry sand deposit of 61 m thickness. 
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Sinusoidal base motion of wide range of frequencies of acceleration amplitude of 

0.065g is considered as an input motion. The results are very similar except around 

frequency of 1 Hz, where equivalent linear method using SHAKE shows a tendency 

toward higher resonant peak.        

Finn et al. (1978) compared the acceleration response spectra (5% damping) of 

ground motions, for a shallow cohesionless soil deposit of about 15 m thickness, 

obtained using SHAKE, DESRA and CHARSOIL. The soil profile used for the 

response analyses is shown in Figure 2.12a. The soil is a uniform deposit of saturated 

sand with water table being located at a depth of 1.5 m. The distribution of the low 

strain shear modulus along the depth of the deposit is shown. The input motion at the 

base of the deposit used was derived from first 10 seconds record of N-S acceleration 

component of the 1940 El Centro earthquake scaled to 0.1g. Stress-strain curves were 

set almost identical between the hyperbolic model used in DESRA and the Ramberg-

Osgood model used in CHARSOIL which correspond to strain dependent modulus 

and damping curves employed in the equivalent linear approach of SHAKE.  The 

acceleration response spectra thus computed is compared in Figure 2.12c. All the 

methods show strong response around a period of 0.5 sec, but SHAKE shows much 

stronger response.  

It may be noted that, in case of SHAKE, there is an increase of about 40% in the 

maximum amplification of the pseudo-acceleration above the values computed by 

CHARSOIL and DESRA. It should be noted that the predominant period of input 

motion and the fundamental period of the soil deposit considered for the analysis 

almost match. This stronger response is also reflected in the magnitudes of computed 

maximum shear stresses at various depths in the sand deposit as shown in Figure 

2.12b. 

Several comparative studies have reported this tendency of increased response around 

resonance in the analysis based on equivalent linear method. If the fundamental 

period of the site, as determined by the strain compatible elastic stiffness after the 

final iteration, is close to the predominant period of the input motion then resonance 

occurs. This tendency is often termed as pseudo-resonance because it is primarily the 
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function of the method adopted i.e., equivalent linear analysis in which analysis is 

carried out with constant set of soil properties throughout the duration of motion. 

Hence there is time for resonant response to buildup. In case of nonlinear approach, as 

the soil stiffness properties are altered at every time step according to the current state 

of strain, there is no scope for pseudo-resonance to buildup. The equivalent linear 

method overestimates the dynamic response quantities due to pseudo-resonance as 

shown in Figures 2.12.   

However Yoshida et al. (2002), while proposing frequency dependent equivalent 

linear approach, has ruled out pseudo-resonance effect as the cause for overestimated 

response quantities rather with an altogether different argument which is explained in 

chapter five of this report. Apart from the problem of pseudo-resonance, it has been 

observed that the equivalent linear approach underestimates the amplification at high 

frequencies. This shortcoming of equivalent linear method has been confirmed by 

many comparative studies involving field data as well as theoretical studies based on 

nonlinear approaches [Beresnev and Wen (1996); Yu et al. (1993)].  

Very recently more rigorous comparative analysis between equivalent linear and truly 

nonlinear analysis is carried out and reported by Yoshida (2014). In his study, 

different soil profile configurations from more than 200 sites and about 11 strong 

motion earthquake data were employed for relative evaluation of site response 

analysis procedures. The main conclusions drawn in this elaborate comparative study 

quantitatively confirmed many of the earlier reported limitations of the equivalent 

linear approach. The response quantities that were used for comparisons include peak 

values of acceleration (PGA), velocity (PGV) and displacement (PGD) apart from 

their respective response time histories. Also response spectra and Fourier spectra of 

surface responses were used for further assessment. Yoshida (2014) finally concluded 

that the PGA is overestimated on an average by about 41% while PGV and PGD are 

underestimated by about 6% and 20% respectively by EQL approach compared to 

nonlinear total stress analysis. However, averages of different spectral quantities 

obtained using EQL approach satisfactorily agree with that of truly nonlinear time 

domain analysis.    
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Figure 2.12: Comparison between responses computed using equivalent linear 

and nonlinear analysis [Finn et al. (1978)]. (a) Shear modulus profile of the soil 

deposit used in comparative study (b) Maximum shear stress variation along the 

depth computed using total stress analyses of SHAKE, DESRA and CHARSOIL 

(c) Acceleration response spectra computed using total stress analyses of SHAKE, 

DESRA and CHARSOIL 
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2.10 COMPARATIVE STUDY OF FREQUENCY AND TIME DOMAIN 

ANALYSIS  

In this study an example analysis is carried out to verify the conclusions reported with 

regard to deficiencies of equivalent linear method of analysis as against nonlinear 

time domain analysis. For this purpose inhomogeneous and equivalent homogeneous 

soil deposits shown in Figure 2.6 is considered here again.  

2.10.1 Input motions 

In order to study the influence of frequency characteristics input acceleration time 

history on the computed response, two accelerograms with distinctly different 

frequency characteristics are selected. These accelerograms correspond to recorded 

data of Loma-Prieta earthquake of 1989 and Northridge earthquake of 1994. Details 

of these records are shown in Table 2.1 and acceleration time histories are shown in 

Figure 2.13. The Fourier amplitude spectra and spectral acceleration plot of these two 

input motions EQ1 and EQ2 are shown in Figure 2.14a and 2.14b respectively. Apart 

from studying effect of frequency characteristics of input motion, to study effect of 

intensity of shaking on the predicted response, the EQ1 and EQ2 are scaled to 0.1g 

and 0.4g respectively. Form these figures it is evident that the input motion EQ1 has 

energy concentrated over wide range of frequencies compared to that of input motion 

EQ2. On the other hand, significant duration of intensive shaking in EQ2 is 

comparatively larger than that in EQ1. 

Table 2.1: Details of the input motions used for the comparative analyses 

Eq. 

ID 
Event Station (Code) 

Maximum 

acceleration 

Predominant 

period
*
 (s) 

Significant 

duration*(s) 

EQ1 
Loma-Prieta 

(1989) 

Gilroy #1– 

Gavilan College 

(CSMIP 47006) 

0.357g 0.40 5.00 

EQ2 
Northridge 

(1994) 

Lake Hughes 

#12A (CSMIP 

24607) 

0.257g 0.22 9.80 

EQ3 Kobe (1995) 

Port Island (PI) 

array recorded at 

the depth -83m 

0.665 0.36 8.01 

* - Ground motion parameters are obtained from SeismoSignal (Ver. 4.0) 
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Figure 2.13: Input ground motions used for the analysis (a) EQ1 and (b) EQ2 
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Figure 2.14: Spectral characteristics of input ground motions EQ1 and EQ2 

Smoothened Fourier spectra (b) Acceleration response spectra (Damping = 5%) 

Equivalent linear analysis is carried out using EERA program and for nonlinear 

analysis in time domain DEEPSOIL is employed. DEEPSOIL has option for both 

equivalent linear analysis and time domain nonlinear analysis. Hence, for the sake of 

convenience, in this study, for some of the analyses DEEPSOIL is used even for 

equivalent linear analysis. For equivalent linear analysis the shear strain dependent 

modulus and damping properties is modeled using the mean curves proposed for sand 

by Seed and Idriss (1970). These curves are shown in Figure 2.11. The comparative 

study is carried out only for the case of input motion specified at the base of the 

deposit overlying rigid bedrock.   
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2.10.2 Linear analysis  

In order to assess the efficiency of multiple reflection theory of waves implemented in 

frequency domain analysis against time domain analysis, linear analysis is carried out 

keeping the shear modulus and damping constant. The constant damping ratio used in 

this analysis is 2.5% and unit weight of the soil is taken to be 18.50 kN/m
3
. Linear 

analysis in frequency domain is carried out using EERA code and for time domain 

analysis DEEPSOIL soil is employed. The analysis is performed for homogeneous 

deposit having constant shear wave velocity of 200 m/sec. As explained earlier, the 

50m thick homogeneous deposit is discretised into 25 uniform layers such that 

fundamental frequency of these individual layers is set to 25 Hz. For the purpose of 

comparing linear frequency and time domain results, the results from the linear 

analyses are presented in terms of variation in computed peak acceleration along the 

depth, acceleration time history response at the surface of the deposit and response 

spectra of the surface acceleration response. However, the amplification result is 

already presented in Figure 2.7 for the rigid bedrock case which clearly depicts the 

modal frequencies of the deposit.  
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Figure 2.15: Comparison of maximum acceleration profile along the depth 

computed from frequency and time domain analysis. (a) Input motion EQ1 

(Scaled to amax=0.1g); (b) Input motion EQ1 (Scaled to amax=0.4g); (c) Input 

motion EQ2 (Scaled to amax=0.1g); (d) Input motion EQ2 (Scaled to amax = 0.4g) 
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The maximum acceleration profile obtained from both, frequency domain and time 

domain analyses, are presented in Figure 2.15. The comparisons are shown for the 

cases of EQ1 and EQ2 input motions scaled to 0.1g and 0.4g respectively in Figures 

2.15 (a), (b), (c) and (d) respectively. The maximum accelerations computed along the 

depth from these two analyses for all the cases considered are in good agreement with 

negligibly small differences.  
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Figure 2.16: Comparison of surface acceleration response from frequency and 

time domain analysis. (a) Input motion EQ1 (Scaled to amax=0.4g); (b) Input 

motion EQ2 (Scaled to amax=0.4g) 

In Figures 2.16 (a) and (b) acceleration time history responses computed for the cases 

of EQ1 and EQ2 input motions respectively are presented for strong motion portion 

time window. The result presented Figure 2.16 corresponds to input motions EQ1 and 

EQ2 that are scaled to maximum of 0.4g. Figures 2.17 (a), (b), (c) and (d) compare 

response spectra of estimated surface acceleration time histories under input motion 

cases EQ1 (amax =0.1g), EQ1 (amax =0.4g), EQ2 (amax =0.1g) and EQ2 ( amax = 0.4g) 

respectively. The time history responses and their response spectra results are 

satisfactorily comparable in both the cases of analyses under moderate to high 

intensity input motions with different frequency characteristics. Both these figures 

confirm the adequacy of frequency domain analysis as compared to time domain 

analysis for linear site response analysis of layered soil deposits.  
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Figure 2.17: Comparison of acceleration response spectrum (5% damping) of surface acceleration records computed 

from frequency and time domain analysis. (a) Input motion EQ1 (amax=0.1g); (b) Input motion EQ1 (amax=0.4g); 

(c) Input motion EQ2 (amax=0.1g); (d) Input motion EQ2 (amax = 0.4g). 
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Nevertheless, it is should be noted that there are small differences in the results of 

frequency domain and time domain methods of analysis. The reasons for differences, 

though negligibly small, may be attributed to inherent deficiencies of frequency domain 

analysis. Primarily, the error associated with transform of input time history signal to sum 

of harmonic signals of distinct amplitudes and frequencies having phase differences using 

Fourier transformation.  

These harmonic signals with distinct frequencies are used as input motions to get steady 

response of the deposit. The steady state responses to these harmonic excitations are also 

of the same frequency as that of input signal with obvious phase difference depending on 

damping. That is, the computed response is free of transient components of the response 

associated with other modal frequencies of the deposit. In time domain analysis the 

computed response includes the contribution of transient response components of other 

modes [Sarma (1994)] which may contribute to the small difference in computed 

responses from these methods of analyses. 

The predominant periods of the input motions are 0.4 sec and 0.16 sec for EQ1 and EQ2 

motions respectively (Table 2.1). The response spectrum of computed surface motion in 

both the cases clearly demonstrates that, the response of the deposit reaches its peak at 

predominant periods of the input motions.  Apart from this the response spectrum has 

another distinct peak at the fundamental period of the soil deposit (1.0 sec) in all the 

cases presented in Figure 2.17. Also over all shape of the response spectrum in case of 

linear response appears to be scaled up drift of the input motion spectrum except at the 

fundamental period of the soil deposit.  

The ratio of computed surface peak ground acceleration (PGA) to maximum ( )maxa of 

EQ1 and EQ2 input motions is found to be about 2 and 1.7 respectively for both the cases 

of 0.1maxa g= and 0.4maxa g= . That is the soil deposit has comparatively higher 

amplified response under EQ1 than due to input motion EQ2. However it is interesting to 
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note that response spectrum for EQ2 input motion has larger peak values than that for 

EQ1 input motion though computed PGA of the surface response is the other way.  

Most important observation of the linear response analysis is that, there are no visible 

peaks in the response spectrum of the computed response surface motion under EQ1 

excitation between predominant period of the input motion and the fundamental period of 

the soil deposit. Whereas in case of EQ2 excitation there are two small peaks in the 

response spectrum trends within this range of periods. These intermediate peaks which 

are distinct characteristics of the spectrum for EQ2 case coincide with the third (1/5 sec) 

and second (1/3 sec) modal periods of the deposit. This observation holds good for both 

frequency domain and time domain analyses. In conclusion it may be stated that 

characteristics of the input motion will greatly influence the response of the deposit 

particularly at resonant frequencies.  

2.10.3 Equivalent linear and nonlinear analysis 

Equivalent linear (EQL) approach is used in frequency domain analysis to approximate 

nonlinear cyclic behavior of soil. On the other hand in time domain analysis it is possible 

to exactly simulate the experimentally observed dynamic behavior of soil. The direct 

integration scheme employed to solve uncoupled equation of motion in time domain 

analysis can track strain dependent modulus degradation and hysteretic damping of the 

soil response under cyclic loading at every step of time increment. The comparative 

analysis carried out here aims to reaffirm adverse implications of EQL analysis on the 

computed results of seismic site response analysis which are reported in the literature to 

advocate true nonlinear analysis. Here too, the homogeneous and inhomogeneous soil 

deposit configurations (Figure 2.6) used in the previous section are considered. The strain 

dependent shear modulus and damping properties of the soil corresponding to average 

curves of sand proposed by Seed and Idriss (1970), shown in Figure 2.11, is adopted for 

both EQL and nonlinear analysis. In this comparative study DEEPSOIL program is 

employed to carry out analyses. The R value equal to 0.5 is used to calculate effective 

strain in the iterations of equivalent linear analysis. 
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Figure 2.18: Comparison of acceleration response spectrum (5% damping) of surface acceleration records computed 

using EQL and nonlinear analysis (Homogeneous deposit) (a) Input motion EQ1 (amax=0.1g); (b) Input motion EQ1 

(amax=0.4g); (c) Input motion EQ2 (amax=0.1g); (d) Input motion EQ2 (amax = 0.4g). 
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Figure 2.19: Comparison of acceleration response spectrum (5% damping) of surface acceleration records computed 

using EQL and nonlinear analysis (Inhomogeneous deposit) (a) Input motion EQ1 (amax=0.1g); (b) Input motion EQ1 

(amax=0.4g); (c) Input motion EQ2 (amax=0.1g); (d) Input motion EQ2 (amax = 0.4g). 
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Figure 2.20: Comparison of Fourier spectrum of surface acceleration records computed using EQL and nonlinear 

analysis (Homogeneous deposit) (a) Input motion EQ1 (amax=0.1g); (b) Input motion EQ1 (amax=0.4g); (c) Input motion 

EQ2 (amax=0.1g); (d) Input motion EQ2 (amax = 0.4g). 
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Figure 2.21: Comparison of Fourier spectrum of surface acceleration records computed using EQL and nonlinear 

analysis (Inhomogeneous deposit) (a) Input motion EQ1 (amax=0.1g); (b) Input motion EQ1 (amax=0.4g); (c) Input 

motion EQ2 (amax=0.1g); (d) Input motion EQ2 (amax = 0.4g).
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2.10.3.1  Homogeneous soil deposit 

Figures 2.18a and 2.18b present the comparison of results of surface acceleration 

response spectra for EQL and nonlinear analysis for EQ1 input motion scaled to 0.1g 

and 0.4g respectively. Figures 2.18c and 2.18d present these results for the case of 

EQ2 input motion scaled to 0.1g and 0.4g respectively. All the observations made in 

case of linear analysis of homogeneous deposit with respect to general trends of the 

response spectrum of computed surface motion are equally valid for EQL and 

nonlinear analyses. In general, it should be noted that the nonlinearity of the soil has 

resulted in attenuation of input motion as the waves propagate to surface in all the 

cases shown in Figure 2.18 except for the case of EQ2 input motion of 0.1maxa g= . 

Also, attenuation is observed to be large for 0.4maxa g= compared to 0.1maxa g= , it 

can be concluded that the nonlinear response will result in decreased peak response 

with increase in intensity of input motion. The EQL approach has overestimated 

spectral accelerations at all frequencies including and above fundamental frequency of 

the soil deposit compared to nonlinear approach. The spectral values of the surface 

response of the homogeneous deposit under EQ2 excitation having 

0.1maxa g= obtained using EQL method closely agrees with that of nonlinear method.  

Apart from decreased amplitudes, shift in modal periods to higher values is evident in 

all the cases signifying stiffness degradation due to strain softening behaviour of the 

deposit. Comparing shift in modal periods for input motions with 0.1maxa g=  and 

0.4maxa g= it can be concluded that modal periods get longer as the intensity of input 

motion increases. At frequencies above predominant frequency of the input motion, 

EQL method has yielded suppressed response compared to nonlinear approach. As 

mentioned earlier, this aspect of under prediction of response at higher frequencies by 

EQL approach has been reported by many studies [e.g., Finn (1977, 1978); Yu et al. 

(1993) etc.]. Compared to linear analysis, EQL analysis shows up with almost same 

trend but nonlinear analysis does not have dominant peaks at frequencies other than 

fundamental frequency.  
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In all the cases there appears to be a unique frequency range at which the spectral 

values computed for the response obtained by EQL analysis are lower than that for 

nonlinear analysis. The frequency at which the response spectrum of EQL analysis 

crosses response spectrum of nonlinear analysis is close to about 7 Hz (at 

period 0.14 sec≈ ) for all the four cases considered in Figure 2.18.  Above this 

frequency limit the response spectrum becomes horizontal, that represents constant 

spectral values almost independent of period. This observation leads to the conclusion 

that the response computed at higher frequencies using EQL analysis is independent 

of characteristics of the input motion. That is it mainly depends on the mechanical and 

geometrical properties of the soil deposit and the model used to represent strain 

dependent behaviour of the soil.   

2.10.3.2 Inhomogeneous soil deposit 

In Figure 2.19 the comparison between the response spectra of computed surface 

acceleration response using EQL and nonlinear analyses are presented. The shear 

wave velocity profile of the soil deposit considered in this analysis is shown in Figure 

2.6. The average shear velocity of the deposit is equal to 200 m/sec which is equal to 

shear wave velocity of the homogeneous deposit considered previously. All the four 

cases presented in Figure 2.19 have higher spectral values when compared to 

respective response spectra of homogeneous deposit. Obviously this is due to 

presence of relatively soft layers close to surface of the deposit than that of 

homogeneous soil deposit. Though higher response is evident, it should be noted that 

the shape of response spectra have not been altered much in case of inhomogeneous 

deposit compared to response spectra of the homogeneous deposit. In this case also 

the response spectra in the almost same short period region has constant trend as in 

the homogeneous deposit case. However it is interesting to note that the spectral 

values in the short period range less than about 0.1 sec pertaining to EQL analysis is 

over estimated compared to nonlinear analysis. That is generalized conclusions from 

some of the earlier studies (for e.g. Figure 2.12) regarding under estimation of spectral 

values in high frequency range may not be valid for all cases.   
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To understand this discrepancy in high frequency spectral values for homogeneous 

and inhomogeneous deposit, Fourier amplitude spectrum of the estimated surface 

acceleration response using EQL and nonlinear analysis are compared. Figure 2.20 

and Figure 2.21 show the smoothened Fourier spectra of the responses obtained for 

homogeneous and inhomogeneous deposits respectively. Notably, in these figures the 

EQL analysis shows lower high frequency response than that of nonlinear analysis in 

a consistent manner for both homogeneous and inhomogeneous soil deposits when 

compared to nonlinear analysis. The frequency range at which this deviating trend of 

EQL approach is observed is uniquely consistent for given input motion irrespective 

of its scaled peak acceleration magnitude of 0.1maxa g=  and 0.4maxa g= . However, 

for EQ1 motion the frequency corresponding to lower EQL response is about 5 Hz, 

while for EQ2 it is about 10 Hz. 

Amplification ratio of the responses between surface and input motions are plotted for 

homogeneous and inhomogeneous deposit cases in Figure 2.22 and Figure 2.23 

respectively. The amplification of surface motion is independent of input motion 

characteristics in case of linear response. However, equivalent linear analyses results 

evidently show the effect of shear modulus and damping properties on amplification 

transfer function. 
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Figure 2.22: Amplification ratio for homogeneous deposit computed for the 

response obtained using equivalent linear analysis 
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Figure 2.23: Amplification ratio for inhomogeneous deposit computed for the 

response obtained using equivalent linear analysis 

For all the four cases of input motions the amplification of motion at the surface 

clearly signifies the effect of input motion characteristics. The amplification decreases 

with increase in intensity of input motion. The amplification ratio in case of EQ2 

input motion is significantly higher compared to the case of EQ1. This brings out the 

effect of frequency characteristics of the input motion on amplification as it was 

evident in response spectrum representation also. It is also interesting to note that, the 

amplification of deposit under EQ2 input motion with 0.4maxa g=  almost follow the 

amplification under EQ1 with 0.1maxa g= . Since the strain dependent properties 

incorporated in EQL analysis are same for both input motion cases, EQ1 must have 

resulted in stronger strain response in near surface layers compared to EQ2 motion. 

Shift of peaks to lower frequencies with increased intensity of motion indicate that the 

modal frequencies of the deposit decrease as input motion is stronger. Also, the high 

frequency response diminishes with increase in intensity of input motion.  

The diminishing high frequency response in EQL analysis in frequency domain 

compared to nonlinear analysis in time domain can be attributed mainly to use of 

constant values of damping and shear modulus throughout a particular iteration for all 

frequencies. High frequency response is associated with small strain magnitude and 
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strain level associated with low frequency response is significantly high. However, in 

case EQL analysis constant values of modulus and damping corresponding to 

effective strain is used; this in turn overestimates low frequency range response and 

underestimates high frequency response. Also, there are reasons inherent to nonlinear 

analysis in time domain that can significantly contribute to high frequency response 

[Sarma (1994); Joyner and Chen (1975)]. 

2.11  EFFECT OF STRAIN DEPENDENT SHEAR MODULUS AND 

DAMPING ON SITE RESPONSE  

This study is primarily intended to illustrate the effect of plasticity index, one of the 

many soil properties which are of concern to prepare input data for EQL analysis. The 

objective of considering the change in plasticity index values is to show the effect of 

change in shape of shear modulus and damping curves with strain level on the site 

response. There are several soil models available to simulate strain dependent soil 

properties, particularly shear modulus and damping. These soil models are typically 

expressed in terms of strain versus / maxG G and ζ curves depending on type of soil 

(for ex. clay, sand, gravel etc.) and in-situ state of soil (confining pressure, relative 

density, OCR, age, etc.). Hence making an ideal choice regarding representation of 

strain dependent soil properties for EQL analysis is important and at the same time a 

difficult decision one has to make. This parametric study is an attempt to understand 

the consequential effect of improper representation of strain dependent soil properties 

on the computed response. 

The computed site response using EQL approach significantly depends on shear 

modulus and damping ratio properties employed in the analysis. In order to 

comprehend this, as an exemplar study, the effect of plasticity on the response of the 

soil deposit under seismic excitation is considered. For this purpose, a 60 m deep 

homogeneous clay deposit is considered. The constant shear wave velocity of the 

deposit is considered to be 200 m/s while its unit weight is assumed to19 kN/m
3
. The 

shear wave velocity and unit weight of the bedrock are taken as 1500 m/s and 22 

kN/m
3 

respectively.
 
The plasticity of the soil deposit is varied with the same values as 

that of Vucetic and Dobry (1991) curves, shown in Figure 2.24 and Figure 2.25, such 
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that actual values of shear modulus and damping are taken without interpolation. The 

equivalent linear analysis is carried out using computer program STRATA [Kottke 

and Rathje (2008)]. 
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Figure 2.24: Strain dependent G/Gmax curves [Vucetic and Dobry (1991)] 
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Figure 2.25: Strain dependent Damping curves [Vucetic and Dobry (1991)] 

Apart from studying the effect of plasticity index on the response, the other objective 

of this parametric study is to understand the effect of characteristics of input 

earthquake motion on the nonlinear response of the soil deposit. It is well established 
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that the stiffness degradation with respect to induced shear strain is primarily 

controlled by its magnitude. However, strain level induced under cyclic loading is a 

function of several other factors apart from intensity of shaking. Influences of some of 

these additional factors are not yet quantified conclusively. Among these, influence of 

frequency and number of cycles of excitation are not well understood. In case of 

seismic excitation wherein frequency and number cycles of loading scenario are very 

much complex compared to nature of loading usually employed in a laboratory test. 

Hence there are several studies which made efforts to simulate strain dependent shear 

modulus and damping properties of soil directly from downhole array records of 

strong and weak earthquake events in order to verify and/or validate observations 

made in controlled laboratory tests [Kokusho et. al. (1992), Elgamal et. al. (1995), 

Zeghal et. al. (1995), Davis and Berrill (1998), etc.]. In the process, possible 

refinements were proposed to improve the soil constitutive models to simulate 

stiffness degradation upon cyclic loading [Zhou and Gong (2001); Li and Assimaki 

(2010); Drosos et al. (2012)]. Nevertheless, directly incorporating these 

recommendations in EQL method of analysis is impossible because the soil 

nonlinearity under cyclic loading is approximated by secant modulus corresponding to 

effective (or average) strain. However, new generation of strain dependent shear 

modulus and damping curves have been proposed incorporating influence of number 

of cycles and frequency of loading which can be used conveniently in equivalent 

linear analysis procedure, for example, Darendeli (2001). The details of such 

empirical relations particularly of those which are used in this research work to model 

strain dependent shear modulus degradation and damping ratio are detailed in chapter 

four of this thesis.   

Two earthquake motions are considered as input motions at bedrock level; outcrop 

motion recorded at Gilroy site during 1989 Loma Prieta earthquake, i.e. the same 

input motion one (EQ1) used in the earlier analysis (Figure 2.13a) and the other one, 

designated as EQ3, corresponds to within motion accelerogram recorded at the depth 

of 83.0m of Port Island downhole array during 1995 Kobe earthquake is shown in 

Figure 2.26. Predominant period, maximum acceleration and significant duration of 

the EQ3 record are also tabulated in Table 2.1 along with respective details of EQ1. 
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Figure 2.26: Input motions used in the analyses; (a) EQ1; (b) EQ3 
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Figure 2.27: Response spectra of the input motions EQ3 and EQ1 used in the 

analysis; Kobe earthquake record ( )EQ3 - 0.665maxa g=  and Loma- Prieta 

earthquake record ( )EQ1 - 0.357maxa g= . 
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In order to compare their spectral characteristics, the response spectra of these two 

motions are shown in Figure 2.27. The two input motions considered for the analysis 

were recorded in different geological conditions and their characteristics are distinctly 

different as can be observed from their accelerograms. The peak accelerations 

recorded in the above mentioned cases are about 0.36g and 0.66g respectively for 

Loma Prieta (EQ1) and Kobe (EQ3) earthquakes. The response spectrum presented in 

Figure 2.27 clearly shows the difference in frequency characteristics of these two 

earthquakes. The EQ3 motion exhibits high spectral amplitudes in the low frequency 

range while EQ1 record has relatively large spectral amplitudes in the high frequency 

ranges. However, the predominant period of these earthquakes motions are relatively 

very close and is about 0.4s .  

Apart from analyzing the deposit under recorded acceleration levels, analyses are also 

carried out for the case of input motion corresponding to low level of shaking.  For 

this purpose both the accelerograms were normalized to give same peaks of about 

0.007g. This particular parametric analysis may be helpful in capturing the effect of 

frequency and predominant period of the input earthquake motion. Since intensity of 

shaking is low, the induced strain level should be moderately low. Hence influence of 

frequency content and predominant period of the input motion may dominantly 

influence the building up of strain which in turn can influence shear modulus and 

damping ratio depending upon the duration of shaking. Significant duration of 

shaking of EQ1 and EQ3 motions are 5 and 8 seconds respectively and they are 

markedly different. In order to ascertain effect of level of shaking and plasticity 

indices of the soil on the computed response, both strong and weak motions are 

considered as input motions assuming different values of PI for the deposit soil.  

Figure 2.28 shows the computed peak acceleration profile for the cases of scaled 

down input motions with varying plasticity indices of the deposit. For low level of 

shaking there is always amplification of surface motion irrespective of plasticity index 

of the deposit. Also in case of low level of shaking there is localized amplification at 

36 m depth in case of Loma Prieta input motion for all values of plasticity indices. 

Overall trend of the computed peak acceleration profiles for the cases of input 

motions EQ1 and EQ3 are distinctly different.  
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Figure 2.28: Peak acceleration profile computed for input motions EQ1 and EQ3 

scaled to 0.007maxa g= for different plasticity index values  

60

50

40

30

20

10

0

0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75

K
o
b
e
 (

P
o
rt

 I
sl

a
n
d
) 

- 
a

m
a

x =
 0

.6
6
 g

L
o
m

a
 P

ri
e
ta

 (
G

ilr
o
y
) 

- 
- 

a
m

a
x =

 0
.3

6
 g

PGA (g)

D
e
p
th

 (
m

)

60

50

40

30

20

10

0

0.0 0.3 0.6 0.9

0.0 0.3 0.6 0.9

 PI = 0

 PI = 15

 PI = 30

 PI = 50

 PI = 100

 PI = 200

PGA (g)  
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EQ1 ( )0.36maxa g= and EQ3 ( )0.66maxa g=  for different plasticity index values 
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For all values of PI, the peak acceleration profile due to EQ1 input motion exhibits 

almost similar variation along the depth including for the case of  PI = 0 which 

corresponds to cohesionless soil. While for EQ3 input motion the peak acceleration 

profiles clearly exhibit their dependency on PI value used for the soil. For plasticity 

index ranging from 0 to 15 %, the amplification at 36 m depth is relatively low in case 

of Kobe earthquake input motion.  This aspect evidently demonstrates that, the 

frequency characteristics of earthquake input motion and plasticity index of the 

deposit both have direct influence on the amplification and deamplification of waves 

at different depths of the deposit.  

Figure 2.29 shows computed maximum acceleration profiles under excitation of EQ1 

and EQ3 input motions with different maximum levels of acceleration. The maximum 

acceleration of EQ1 input motion is 0.36g while that of EQ3 is 0.66g. Under the 

excitation of these higher level of shaking there is significantly more deamplification 

in peak acceleration response in case of Kobe earthquake (EQ3) compared to Loma 

Prieta earthquake (EQ1). This tendency vanishes as the plasticity index of the soil 

increases beyond PI = 50% for the case of EQ1 input motion and this trend of 

deamplification of input motion at the surface persists for all values plasticity indices 

used in this analysis with an exception for PI = 200 % in case of EQ3 input motion. 

Apart from comparison of maximum accelerations computed at the surface, it is 

interesting to note that the predicted maximum acceleration response along the depth 

of the soil deposit is entirely different for the strong input motion compared to that of 

weak input motion.  For PI < 50%, the motion is attenuated at all the depths of the soil 

deposit. When PI > 50%, maximum accelerations are more than peak ( 0.36maxa g= ) 

of the Loma Prieta (EQ1) input motion throughout the entire depth. But in case of 

Kobe (EQ3) input motion the waves are attenuated at all depths for all cases of 

plasticity indices except for the case of PI equal to 200 %. The ratio of peak values of 

surface to bedrock acceleration is about 2.5 and 1.2 for Loma Prieta and Kobe input 

motions respectively for the case of PI = 200%.  
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Figure 2.30: Comparison of response spectrum of computed surface motion of a 

homogeneous deposit using EQL analysis for different values of plasticity index. 

The response spectra of the computed surface acceleration time histories are shown in 

Figure 2.30 for all the cases of plasticity indices under both EQ1 and EQ3 input 

motions with and without scaling down acceleration time histories.  Spectral 

acceleration values of the predicted surface motions for weak input motions are 
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almost identical irrespective of plasticity of the soil. However, EQ1 input motion has 

yielded marginally higher spectral accelerations compared to EQ3 input motion. This 

difference is noticeably higher for PI=0. While in case of strong input motion the 

effect of plasticity index on the computed surface response is evident particularly 

when plasticity index increases in the range of 0 to 50%. Response spectra of the 

surface motion for PI = 100% and PI = 200% is almost indistinguishable. With the 

exception of PI = 0%, for all other cases the difference in spectral values in the period 

range less than about 1.0s is negligible for EQ1 and EQ3 input motions though the 

characteristics of these input motions are distinctly different. But for the period range 

greater than 1.0s the response due to EQ3 input motion has resulted in higher spectral 

values than that of EQ1 motion for all values of plasticity indices. Obviously, higher 

response at lower frequency ranges may be attributed to larger amplitudes of EQ3 

accelerogram compared to EQ1 input motion. It should be noted that, though the 

predominant period of both the input motions are less than 1s (Figure 2.27), the 

spectral accelerations of EQ3 input motion in the low frequency range (< 1Hz) is 

significantly larger than that of EQ1 motion.  

Figure 2.31 shows amplification of input motion as waves traverse from bedrock to 

surface. The amplification transfer functions between surface and bedrock 

demonstrate that the frequencies corresponding to peaks are almost coinciding for 

both the cases of normalized (0.007g) Loma Prieta and Kobe input motions. However 

under the excitation of strong input motion, there is significant difference in 

amplification values also in shifting of modal frequencies towards lower values. 

These plots of amplification transfer functions clearly indicate that as the intensity of 

shaking increases generally amplification decreases. Also, shifting of modal 

frequencies towards lower values with increase in intensity of shaking is evident from 

these figures. It is interesting to note that as the plasticity index increases there is 

increase in amplification ratio. This increase in amplification is more pronounced as 

intensity of shaking deceases. More interestingly, as plasticity index increases again 

we can observe the shifting of modal frequencies towards higher values and 

convergence to frequencies that corresponding to low intensity shaking.  
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Figure 2.31: Comparison of amplification transfer function between surface and 

base of the homogeneous deposit for weak and strong input motions using EQL 

analysis for different values of plasticity index. 
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2.12 SUMMARY 

In this chapter various methods available to estimate seismic site response are 

reviewed with the main objective of appraising their relative merits and demerits 

particularly for general purpose applications in engineering practice. In order to 

capture nature of deviations in predicted responses using frequency domain linear and 

equivalent linear analyses relative to time domain linear and nonlinear analyses, 

comparative study is carried out by using input motions of varying amplitude and 

frequency content. In order to recognize the importance of accurate characterization 

of shear wave velocity both inhomogeneous and equivalent homogeneous deposits are 

considered for the parametric studies. Finally, a parametric study is performed in 

which the effect of selection of curves used to model strain dependent stiffness 

degradation and damping properties of the soil deposit on computed response is 

established by considering plasticity index as a parameter. Outcome of these review 

and parametric studies are summarized as follows,  

In view of nature of geological process leading to formation of soil deposit and 

physics of wave propagation, one-dimensional formulation is justifiable. One-

dimensional analysis is dominantly popular among engineers because of its 

simplicity. Moreover, the result of one dimensional analysis particularly using 

multiple reflection theory is successfully validated with field observations by many 

researchers. However, under many circumstances the computed responses, even using 

complex numerical procedures and two or three dimensional modeling, fail to 

simulate the observed behaviour.  

Numerical procedures enumerated in this chapter have their own advantages and 

disadvantages particularly with respect to accuracy and computational effort involved. 

Therefore more than numerical procedure used, the important aspects which probably 

can improve results are precise evaluation of geometrical and mechanical 

characteristics particularly proper idealization of inherent inhomogeneity soil deposit 

along its depth.  



 77 

Equivalent linear technique is used in order to account for nonlinear behaviour of soil 

deposit under strong seismic excitation. Equivalent linear analysis makes use of strain 

dependent shear modulus and damping curves to update these properties in an 

iterative manner. In most of the situations, seismic site response analysis is 

accomplished by employing generic curves developed for such purposes and readily 

available in literature. However, experience and engineering judgment are key factors 

for making appropriate selection of such average curves depending upon site 

conditions, most often, assessed based on fewer and routine geotechnical 

investigations.  

Popularity of computer programs implementing equivalent linear method is evident 

primarily because of its ease in implementation and interpretation of results as 

compared to true non-linear analysis. Obviously non-linear time domain method has 

ability to simulate dynamic response of ground because at every time step mechanical 

properties of soil are updated. However complexities involved in obtaining the 

realistic parameters of non-linear models makes it unpopular in routine engineering 

practice. Hence there is always scope for improvement of equivalent linear method 

with clear understanding of its inefficiencies and lacunae.  

The comparative study is carried out using one dimensional frequency domain and 

time domain linear analyses for low amplitude input motions with distinctly different 

frequency characteristics. The results obtained from both these methods of analyses 

are in good agreement. The response spectra of the computed surface accelerogram 

clearly revealed the effect of frequency content of the input motion on the estimated 

peak response. The input motion with wide range of frequency content (EQ2 motion) 

tends to excite soil deposit significantly at the frequencies corresponding to its higher 

modes. Thus it is important to consider frequency content of the input motion as well 

as modal frequencies of the soil deposit in frequency dependent damping formulation 

to control discrepancies in the response at resonant frequencies.   

The comparative study carried out with respect to equivalent linear and nonlinear 

approaches for relative high amplitude input motions has brought out some of the 

limitations of equivalent linear analysis. Primarily, the outcome of this study confirms 
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well established limitations of equivalent linear analysis, i.e., it underestimates high 

frequency response compared to nonlinear analysis and also it results in 

overestimation of response at fundamental frequency of the deposit. Both these 

discrepancies are probably related to the main drawback of the equivalent linear 

analysis: the use of constant values of shear modulus and damping throughout a 

particular iteration at all frequencies. Results presented herein indicate that the 

frequency range at which underestimation of response sets off appears to be 

consistently associated with the frequency content of the input motion and modal 

characteristics of the soil deposit.  

Based on the parametric study reported here, broadly following observations can be 

made. The response of the soil deposit excited by means of two input motions with 

distinctly different frequency characteristics but normalized to same relatively low 

maximum acceleration is equally sensitive to spectral characteristics of the input 

motion and plasticity index of the soil. However, the maximum acceleration profile 

appears to be having almost identical kind of variation with different magnitudes of 

maximum accelerations depending on plasticity index. Though large difference is 

observed in computed peak surface acceleration for different PI values, the response 

spectra of these surface motions appears to be having negligible difference in spectral 

amplitudes of the response spectrum.  

Another important issue of concern with respect to equivalent linear analysis is 

computation of effective strain which is required to allocate strain dependent soil 

properties compatible with induced strain level for the succeeding iteration. The 

procedure which is implemented for this purpose in popular site response analysis 

computer programs is indistinct because the effective strain is calculated as the 

product of maximum strain and constant value (R) which remains same throughout 

the analysis at all layers of the soil deposit irrespective of intensity of shaking induced 

at that layer. The guideline recommended to obtain R value, based on magnitude of 

the earthquake, is ambiguous. Hence, an alternative rational procedure is proposed in 

Chapter 5.   

 



CHAPTER 3 

ANALYSIS OF CONTINUOUSLY INHOMOGENEOUS SOIL 

DEPOSITS – ANALYTICAL STUDIES 

3.1  INTRODUCTION 

The earthquake waves originating from source of disturbance located inside the 

earth’s crust propagate through geological medium before reaching the surface. The 

geometrical and mechanical characteristics of soil deposit near the surface have 

greater influence on wave characteristics than other factors associated with an 

earthquake. Recognizing this fact, particularly geotechnical engineers have considered 

the problem of predicting the surface motion due to input motion at the bedrock level 

as one of the major tasks in the field of study of soil dynamics. As has been discussed 

in the previous chapter, most popular method of modeling the ground is 

approximating it as stack of uniform visco-elastic layers of infinite lateral extent. 

Then seismic response analysis of the soil deposit is carried out due to incident shear 

wave at the bedrock level and propagating vertically through the surface layers. Thus 

the problem of site response analysis is essentially treated as one-dimensional. In this 

chapter some of the analytical studies in which the soil deposit is modeled as 

continuously inhomogeneous instead of discrete layers of uniform properties are 

reviewed. Basically all these studies consider shear modulus and/or shear wave 

velocity to vary continuously assuming all other properties (for e.g. density, damping, 

etc.) to remain constant with depth.     

In order to meet the requirement of the popular methods of ground response analysis 

procedures, it is essential to model the inhomogeneous surface deposit as a layered 

system. Hence, whatever be the method of geophysical investigation adopted, finally 

the data has to be interpreted so as to yield appropriate layered system. In many 

instances even though the soil deposit exhibits almost continuous variation of 

stiffness/shear wave velocity along the depth, it is customarily interpreted as layered 

deposit for the sake of accommodating it in the analysis procedure. This tendency to 
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idealize surface deposit as layered system in spite of deposit exhibiting continuous 

variation of stiffness and density properties may have serious shortcoming on the 

accuracy of results of ground response analysis. Hence, this chapter attempts to study 

the appropriateness of approximating the deposit with continuous variation of shear 

modulus compared to layered idealisation. Modeling the surface deposit with 

continuous variation in soil properties may overcome the problem of pseudo 

resonance conditions that prevail due to trapping of waves and the reverberations 

inside the layers with contrasting impedances at their boundaries. The comparison is 

made between the computed responses of the deposit with both, layered and its 

approximated continuous idealizations.  

Natural soil deposits are inherently inhomogeneous and anisotropic. Therefore the soil 

properties significantly vary in all the directions at every point along the depth. The 

distribution of these soil properties at a site depends on heterogeneity of constituent 

materials, geological history and its incessant alteration by nature. Among several 

other reasons, most importantly, the inhomogeneity of soil is the consequence of 

variation of its mechanical and physical properties [Lambe and Whitman (1979); 

Wood (2004); Schevenels et al. (2007)]. Inhomogeneity of the soil deposit is the 

outcome of several causes; its genesis, mode of sedimentation process, stress history 

and in-situ state of stress, microstructures and mineral composition, etc. Usually the 

soil properties vary gradually along the depth of sedimentary soil deposits and these 

variations are primarily influenced by the mode, material type and rate of sediment 

deposition. Inhomogeneity in case of residual soil deposits can be manifested due to 

gradual process of weathering, fluctuations in ground water table, temperature 

variation, and other environmental conditions. Ageing is also an important time factor 

for inducing significant alterations to engineering properties of the soil [Schmertmann 

(1991)]. Thus, it is clear that, irrespective of the method of formation both natural and 

man made soil deposits usually tend to exhibit continuous variation of soil properties 

and deformation characteristics with depth.  

Inherent variability of soil properties along the depth is evident in most of the natural 

soil deposits. Attempts have been made to satisfactorily model this inherent variability 

through statistical analysis. Primarily, these studies are intended to model both 
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variability of properties due to heterogeneity and inconsistency in testing procedures 

adopted to measure respective soil properties [Terzaghi (1955), Krahn and Fredlund 

(1983), Phoon and Kulhawy (1999), Sojka et al. (2001)]. It is well established that 

shear modulus at any depth of natural soil deposit is dependent on in-situ confining 

stress and over consolidation ratio which are functions of depth [Gibson (1974), 

Hardin and Richart (1963), Gazetas (1981) and others]. Residual soil is also found to 

exhibit continuous variation with regard to its shear modulus and damping properties 

along the depth. Macari and Hoyos (1996) have reported that the variation of these 

properties for a particular residual soil deposit considered in their study can be 

approximated by an equation of linear trend. They found that at any depth z, in terms 

of their magnitudes at the surface ( )0 ,z =  the shear modulus and damping may be 

represented by ( ) ( ) ( )0
1 0.15

z
G z G z

=
= + and by ( ) ( ) ( )0

1 0.2
z

z zζ ζ
=

= − respectively. 

Even in case of soil deposits apparently exhibiting layered profile, in some instances, 

the properties are observed to be varying gradually at the layer interfaces signifying 

presence of smooth transition zone between the layers [Davis (1994, 1995); Pyke et al. 

(2007)]. 

3.2  DISCREPANCIES IN LAYERED DEPOSIT CHARACTERISATION 

As earthquake waves propagate through soil media, their amplification or attenuation 

is mainly dependent on shear wave velocity and geometrical characteristics of soil 

deposit overlying the bedrock. Many kinds of field tests are available in practice to 

quantify these characteristics. Some of these procedures can directly measure the 

shear wave velocities at different depths of the soil profile, while in other cases it is 

obtained employing empirical methods in an indirect manner. Also there are 

sophisticated methods of field tests available such as, SASW, Suspension P-S logging, 

downhole methods etc., in which continuous profiling of shear wave velocities across 

the depth of the soil deposit is possible. However these methods seem to be expensive 

and they aren’t considered as part of routine geotechnical investigation. In this regard, 

the results of penetration tests such as SPT, SCPT, etc., are more popularly employed 

to assess shear wave characteristics of soil deposits using well established empirical 

relationships [Ohta and Goto (1978); Mayne and Rix (1995); Kokusho and Yoshida 
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(1997); Vijayendra and Prasad (2001); Andrus et al. (2007); Wair et al (2012) and 

others] 

Geophysical field tests for determination of shear wave velocity of soil deposit are 

classified into invasive and non-invasive methods. Boreholes are necessary in the 

former method and test is carried out on the surface without making boreholes in the 

latter case. These methods are essentially associated with propagation of body and 

surface waves respectively. Cross hole, down hole and suspension P-S logging 

methods of investigations are the techniques for which boreholes are necessary. Most 

popular method among the non-invasive methods is Spectral Analysis of Surface 

waves (SASW) wherein test is conducted from the top surface of the soil deposit. 

Good account of these methods with respect to their advantages, limitations and latest 

developments are given by Lo Presti, et al. (2004), Boore (2006) and references cited 

therein.  

Results of invasive method of field tests like down hole or cross hole or suspension 

logging procedures, are obtained in terms of depth versus travel-time curves for the 

arrival of shear waves at the receiver of the borehole. These are then used in 

conjunction with bore log details which consists of information about layered 

structure of the soil deposit to interpret average shear wave velocity of each of these 

layers.  

Towhata (1996), with an example, clearly demonstrated this aspect of interpreting the 

down hole survey test data to yield layered velocity structure though the soil deposit 

exhibits continuous variation of stiffness properties. To substantiate his argument, he 

considered travel time-depth data of a downhole survey at Shin-Ohta site in Japan. If 

layered structure exists then travel time versus depth plot must consist of as many 

piecewise linear segments as the number of layers with distinct shear wave velocity 

present in the deposit. The slope of these linear segments would yield shear wave 

velocity of each of these layers. Even though travel time-depth plot exhibits nonlinear 

continuous variation indicating the continuous variation of shear wave velocity with 

depth, as is done routinely, it is approximated with piecewise linear segments to get 

approximate average shear wave velocity of idealized layered deposit.   



  83 

Thus giving an accurate description of velocity structure (P and S waves) of the soil 

deposit formation overlying bedrock is inherently difficult because of peculiarities 

associated with wave motion in complex geological media. The procedure involved in 

interpretation of data obtained from any of these field tests requires expertise and 

thorough experience in analyzing the data. Many times it appears that these 

interpretations are subjective [Boore (2003); Brown et al. (2002)]. Also it is 

interesting to note that, results interpreted for a particular site from data obtained 

using different field tests often do not agree and some times differ to a large extent. In 

order to illustrate this aspect, data reported by Boore et al. (2003) is employed.  They 

have reported the data pertaining to shear wave velocity profile for La Cienega site, 

USA using surface to borehole and suspension P-S logging methods.  Suspension P-S 

logging data have been interpreted to fit complex layering system using the results of 

surface to borehole velocity logging results as a guideline. Interpreted shear wave 

velocity structure thus obtained from these analyses are shown in Figure 3.1 along 

with actual field data of suspension logging method. This figure clearly demonstrates 

the inconsistency of final result or judgment involved in interpretations of the results.  
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Figure 3.1: Comparison of shear wave velocity profiles interpreted from data 

obtained from different field tests at La Cienega site USA [Boore et al. (2003)]. 
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3.3  PHYSICAL IMPLICATIONS OF LAYERED IDEALIZATIONS 

The product of shear wave velocity, density of a layer and the cosine of the angle of 

incidence is termed as impedance of that layer. In case of horizontally layered soil 

deposits subjected to disturbance of vertically propagating body waves the incidence 

angle is considered to be zero.  

If 1s
v and 2s

v are the shear velocities of two successive layers with 1ρ and 2ρ as their 

corresponding densities, then the impedance contrast between these layers is 

quantified by the ratio of their impedances as, 1 1 2 2/
s s

v vρ ρ . Impedance contrast is 

mainly responsible for phenomenon of trapping of seismic waves within the layer 

leading to change in wave characteristics including magnitude of amplification of 

ground motions.  

1 1 11 ( , , )
s

Soil G vρ−

2 2 22 ( , , )sSoil G vρ−
 

Figure 3.2: Phenomenon of wave propagation at the layer interface 

Figure 3.2 shows soil deposit of two layers with distinct shear wave velocity and 

density properties. As waves propagating in the upward direction reach the interface 

of these two layers, part of the wave energy is transmitted and the remaining is 

reflected back as indicated the Figure 3.2.  The amplitudes of incident, transmitted 

and reflected waves are respectively represented by TI AA ,  and RA  [Kramer (1996)]. 

These are related to one another in case of vertically propagating wave as,  
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=
+

−
=

+

         (3.1) 

Here 1 1 2 2/
s s

v vα ρ ρ=  is the impedance ratio between the two the layers. From Eq. 

(3.1) it is clear that, amplitude of incident wave is partially transmitted to overlying 

layer depending upon impedance contrast of the adjacent layers.  

The energy transmitted across the boundary is also dependent on the impedance ratio 

between the layers at that boundary interface. Transmitted and reflected energy 

components across a boundary are proportional to square of the corresponding wave 

amplitudes [Towhata (2008)]. Thus the transmitted and reflected wave energies 

expressed as their ratio with respect to incident wave energy are given by,  

2

2

2

4

(1 )

(1 )

(1 )

T I

R I

E E

E E

α

α

α

α

=
+

−
=

+

        (3.2) 

In the above equations ,
I T

E E and 
R

E respectively represent incident, transmitted and 

reflected wave energy components. In the field of study of laminated composites the 

reflected component of the energy is also termed as impedance mismatch and is 

considered to be effective means to represent mismatch in impedance across the layer 

boundaries [for e.g. Chen and Chandra (2004)]. Similarly, the transmitted and 

reflected stress amplitudes across the interfaces of layers with contrasting impedances 

are represented using following relationships [Kramer (1996)]. 
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1

1

T I

R I

α
σ σ

α
α

σ σ
α

=
+

−
=

+

         (3.3) 

In order to understand the effect of contrasting impedances of layers on wave 

amplitudes, the ratio of amplitudes of reflected waves to that of transmitted waves at 
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an interface of two layers is plotted against impedance ratio in Figure 3.3. Also ratio 

of reflected to transmitted magnitudes of energy and stress are plotted in the same 

figure. This figure clearly indicates that, the nature and magnitude of amplitudes of 

transmitted and reflected waves at an interface is affected by impedance ratio. When 

1<α ,  displacement amplitude of the reflected wave is less than one and approaches 

0.5 as impedance ratio approaches zero which corresponds to absence of top layer. 

Therefore when waves arrive at a free surface, the amplitude of transmitted wave 

becomes twice that of incident wave. For the case of impedance ratio far greater than 

one, wave reflection is dominant compared to its transmitted counterpart and no wave 

is transmitted if the overlying layer is infinitely rigid (i.e., 0→TA as, ∞→α ). Hence 

incident wave will be reflected back completely. For 1<α , almost all incident wave 

energy has to be dissipated in the top layer while significantly large magnitude of 

energy is reflected as the top layer is relatively stiffer than the bottom layer. 

Consequential effect of these features of energy transmission across the boundary of 

layers with contrasting impedances is reproduced in magnitude of stress transmitted to 

top layer.  In case of ratio of reflected and transmitted stress amplitudes, as the 

impedance ratio decreases, the stress response transmitted to top layer decreases and 

tends to zero as the wave reaches free surface. 

0.1 0.25 0.5 0.75 1 2.5 5 7.5 10
1E-3

0.01

0.1

1

10

100

0.1 0.25 0.5 0.75 1 2.5 5 7.5 10

1E-3

0.01

0.1

1

10

100

Stiff top layerSoft top layer

| 
R

e
fl

e
c
te

d
 /

 T
ra

n
sm

it
te

d
 |

Impedance Ratio (α  = ρ
1
v

s1
 / ρ

2
v

s2
)

 Amplitude ratio

 Energy ratio

 Stress ratio

 

Figure 3.3: Influence of impedance ratio on transmitted and reflected waves 
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More importantly, it should be noted that all the wave energy is transmitted 

completely without any reflection as the impedance ratio tends one ( 1α → ), that is, 

ratio of reflected to transmitted wave amplitude tends to zero. The impedance ratio at 

any location of the deposit tends to one when the shear wave velocity and density 

properties of the soil exhibit continuous variation along its entire depth. If the ground 

which is continuously heterogeneous in reality is approximated with an equivalent 

layered idealisation, then superficially contrasting impedances between the layers is 

induced in the analysis. This kind of layered approximation of continuously 

inhomogeneous soil deposit may in turn affect the computed responses significantly.  

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Im
p
e
d
a
n
c
e
 r

a
ti
o
 (

α
)

Dimensionless parameter (aH)

Number of Layers

 i = 2

 i = 4

 i = 6

 i = 8

 i = 10

 i = 12

 

Figure 3.4: Effect of equivalent layered idealisation of continuously 

inhomogeneous soil deposit on impedance ratio. 

Figure 3.4 demonstrates the effect of idealizing a linearly distributed shear wave 

velocity profile into an equivalent layered deposit. The linearly varying shear wave 

velocity profile as a function of depth ( z ), may be expressed in terms of surface shear 

wave velocity, 0s
v and inhomogeneity parameter, a as ( )0( ) 1 .s sv z v az= + Thus 

0a = corresponds to homogeneous layer and as a increases shear wave velocity 

variation  becomes steeper. In Figure 3.4, the resulting impedance ratio between the 

layers of the idealised layered profile is plotted against dimensionless parameter 

aH where H is the total depth of the profile. The layer depths are calculated to yield 
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constant impedance ratio across all the intended number of layer boundaries. For a 

given value of ,a as the number of layers employed to approximate the actual profile 

decreases the impedance ratio between the layers will shift further away from one 

indicating more contrasting impedances between the layers. Whatever may be the 

number of layers used in approximation of continuously inhomogeneous deposit , 

there always exist some difference in the impedances across adjacent layers. By 

comparing the trends of the curves of 8, 10 and 12 layers, it is evident that there is no 

appreciable advantage by simply increasing the number of layers beyond certain limit 

because reduction of difference in impedances between layers is not substantial for 

any degree of inhomogeneity.  

As a consequence of modeling the ground as a layered medium, apart from changes in 

the amplitude of transmitted and reflected waves, there is also a possibility of trapping 

transmitted waves inside a layer when there is sharp change in impedance ratio 

between the layers of relatively greater depths. That is along with difference in layer 

impedances, depth of the layers also matters in wave propagation. When wave length 

is longer or shorter than the depth of the layer, then the pseudo resonance state may 

prevail in that layer. This kind of situation leads to localized resonance condition due 

to the reverberation of trapped waves. This may result in, depending on magnitude of 

damping associated with that layer, high amplification of ground motions in a certain 

frequency range. Hence, apart from impedance ratio, other mechanical and 

geometrical properties of the layered system will greatly affect wave transmission 

mechanism.  

Thus the effect of layered idealisation on the ground response is evident. Hence, 

seismic ground response analysis may yield erroneous results in case the surface 

deposit is modeled as layered ground when its stiffness and density characteristics are 

being continuously varying with depth. Usually in practice, this kind of factitious 

method of modeling the deposit is followed in order to meet the requirement of the 

popularly adopted method of analysis like one employed in computer program 

SHAKE.  While using such methods of analysis, uniform shear wave velocity values 

for each of the layer must be judiciously assigned in order to avoid fictitious 

amplification of waves transmitted through those layers leading to trapping of waves 
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resulting in prevalence of pseudo resonance conditions. In such instances, where 

surface deposit shows continuous variation of soil stiffness and density properties, it 

is important to model it appropriately with closely stacked thin layers or more 

preferable develop the physical and mathematical model to account for prevailing 

actual continuous variation of deposit characteristics.   

Recognizing the fact that, in some instances inhomogeneity of the surface deposit 

may be due to continuous variation of stiffness and density rather than distinctly 

layered formation, many investigators have attempted to treat the prevailing condition 

of inhomogeneity and computed the dynamic response of the deposit subjected  to 

harmonic base excitation [Ambraseys (1959), Idriss and Seed (1968), Schreyer (1977), 

Dobry et al. (1976), etc.]. Some of these analytical studies considered vanishing shear 

modulus or shear wave velocity near the surface. However more often non-zero 

stiffness at the surface is evident in reality. Some of these studies have attempted to 

address this problem with rigorous analytical solutions by modeling the variation of 

stiffness and/or shear wave velocity with different inhomogeneity parameters. Among 

these, foremost contributions in the recent past include Gazetas (1982), Dakoulas and 

Gazetas (1985), Towhata (1996), Zhao (1996), Travasarou and Gazetas (2004), 

Rovithis et al (2011), Vrettos (2013) and many others.  

3.4  SOIL DEPOSIT WITH CONTINUOUS VARIATION OF STIFFNESS 

ALONG THE DEPTH 

The wave equation for one-dimensional transverse vibration due to shear wave 

propagation in a soil deposit with constant density, ρ and shear modulus, ( )G z  

varying continuously along the depth is given by  

2

2

1
( )

u u
G z

t z zρ

∂ ∂ ∂ 
=  

∂ ∂ ∂ 
       (3.4) 

Here, ( , )u z t  represent the horizontal displacement at depth z and time t . Noting that, 

2 /
s

v G ρ= , in terms of shear wave velocity, the above equation may be expressed as,  
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2
( )

s

u u
v z

t z z
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=  

∂ ∂ ∂ 
       (3.5) 

Many researchers have treated the problem of computing amplification of ground 

motion in a soil deposit with shear wave velocity increasing with depth. The general 

trend of depth dependent function defining continuous variation of shear wave 

velocity profile is given by  

( )0( ) 1
n

s s
v z v az= +         (3.6) 

Here, 0s
v is shear wave velocity at 0=z (surface), a is positive constant representing 

rate of heterogeneity and n is a positive power in the range 0 1n< ≤ .  Correspondingly, 

linear variation of shear wave velocity is obtained by setting 1n = . In fact, the above 

equation is a general form of the particular cases considered earlier by several 

researchers. For the case of constant density, either of the two forms of equation of 

motion i.e., Eq. (3.4) or Eq. (3.5) can be employed to model the continuously 

inhomogeneous trend in terms shear modulus or shear wave velocity respectively. In 

case of geotechnical investigation surveys to profile small strain shear modulus using 

seismic refraction or cross-hole techniques, propagation path of the signal is generally 

assumed to be a straight line in order to calculate travel time of the signal. This may 

result in discrepancies in computed results [Woods (1978)]. In recognition of this 

tendency, geophysicists use different forms of depth dependent velocity functions as 

prerequisite in geophysical investigations to apply correction to computed travel time 

data. Some of these popularly employed body wave velocity functions, including the 

trend given in Eq. (3.6), representing continuous inhomogeneity of the earth are 

presented in Kaufman (1953), Hŕyeiw (1989) and others. One of the earliest studies 

with regard to dynamic response analysis of continuously inhomogeneous soil 

deposits is by Ambraseys (1959). He considered the case in which the shear modulus 

is assumed to be linearly varying with depth. This corresponds to the case 0.5n = in 

Eq. (3.6). Later Toki and Cherry (1972 and 1974) considered a more general case of 

depth dependent shear modulus variation of the form 0( ) ( )m
G z G z= Λ + in which Λ is 

the proportionality constant, 0G  is the shear modulus at 0=z (surface) and for 1m < . 
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They studied the effect of degree of inhomogeneity on the variations of acceleration 

and strain responses along the depth of continuously inhomogeneous deposits. 

Schreyer (1977) obtained the solution for the free vibration response characteristics of 

the deposit having shear wave velocity profile varying according to Eq. (3.6) for the 

case of 2n =  and for various values of (include both 0 & 0a a< > ) heterogeneity 

factors. Forced vibration response study carried out for the case of exponentially 

decaying forcing function applied at the surface of the deposit, Schreyer (1977) has 

shown that the soil layer response along its depth is sensitive to both a and the rate of 

exponential decay of the forcing function. Compiling the results of the above study, 

expressions to compute natural frequencies and corresponding mode shapes are 

presented by Gazetas (1982). For this purpose, soil deposits having continuous 

variation of shear wave velocity profile as given by Eq. (3.6) with various values of 

n (=0.25, 0.5, 2/3 and 1.0) are considered. 

3.4.1  Soil deposit with linearly varying shear wave velocity profile ( )n = 1  

If shear wave velocity is assumed to be varying linearly as shown in Fig. 3.5, then 

 0( )
s s

v z v az= +  (3.7) 

0s
v is the non-zero shear wave velocity at surface ( 0z = ) and a  is the constant 

defining rate of change of 
s

v with depth. Comparing Eq. (3.6) and Eq. (3.7), it is 

evident that the parameter a of Eq. (3.7) is represented by 0s
a av= . Substituting Eq. 

(3.7) in Eq. (3.5) and noting that ρ is assumed to be constant, results in, 

2
2

02
( )

s

u u
v az

t z z

∂ ∂ ∂ 
= + ∂ ∂ ∂ 

 (3.8) 

Assuming the solution of the wave equation as, ( , ) ( ) exp( )u z t U z i tω= and 

substituting in Eq. (3.8) we get, 

2 2

2 2

0 0

2
0

( ) ( )
s s

d U a dU
U

dz v az dz v az

ω
+ + =

+ +
 (3.9) 
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Consider a transformation of 0ln( )
s

x v az
a

ω
= + and substituting in Eq. (3.9) yields an 

equation with constant coefficients as,  

2

2
0

d U a dU
U

dx dxω

 
+ + = 
 

 (3.10) 

0( ) (1 )s sv z v az= +

0( ) (1 )s sv z H v aH= = +

0( 0)
s s

v z v= =

( )shear wave velocity ,density = sr rv ρ=

Uniform density = ρ

( , ) ( )
i t

u z U z e
ωω =

 

Figure 3.5: Soil deposit with linearly varying shear wave velocity profile 

Thus the solution of Eq. (3.10) is obtained as,  

2 2

1 1
2 2 2 2

1 2( )

a a a a
x x

U x A e A e
ω ω ω ω

   
      − + − − − −         

   = +      (3.11) 

Substituting back for ,x as 0ln( )
s

x v az
a

ω
= + and further simplification yields the 

solution of Eq. (3.9), 

( ) ( )
2 2

2 2
0 0(0.5) ln( ) (0.5) ln( )

1 2

0

1
( )

( )

s si v az i v az
a a

s

U z A e A e
v az

ω ω− + − − +  
= + 

+   
 (3.12) 

The expression for shear stress amplitude is obtained by noting 

that,
( )

( ) ( )
U z

z G z
z

τ
∂

=
∂

 i.e,  
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( ){ ( ) }ln( ) ln( )

1 2( ) 0.5 0.5
i v i vs s

s
z a v A i e A i e

κ κτ ρ κ κ −= − − +    (3.13) 

0.5
2

1 2

1
where, , 1,  and  are constants.

4
i A A

a

ω
κ

  
= − = −  
   

 Using the boundary 

condition, shear stress vanishes at the surface in Eq. (3.13), we get, 

[ ]2 1 0

0.5
exp 2 ln( )

0.5
s

i
A A i v

i

κ
κ

κ

−
=

+
      (3.14) 

Therefore, response at the surface, (0) ( 0)U U z= =  may be expressed as, 

0

2
(0)

s

i
U C

v

κ
=         (3.15) 

1 0exp[ ln( )]
where,   is a new constant, =

0.5

s
A i v

C C
i

κ

κ +
. The response at the base 

( ) ( )U H U z H= = of the deposit is given by 

[ ]( ) sin( ln ) 2 cos( ln )
sH

iC
U H

v
κ µ κ κ µ= +      (3.16) 

where, the ratio of shear wave velocity at the base to that at the surface 

is ( )0/sH sv vµ = . Also at the base the shear stress is given by,  

2

( ) ( ) [2 sin( ln )]
sH

z H H Ca v i
a

ω
τ τ ρ κ µ

 
= = = −  

 
    (3.17) 

If z′ is the depth coordinate measured downwards from the top of bedrock then the 

displacement and shear stress for 0.0z′ ≥ is given by, 

( ) / /

1 2
sr sri z v i z v

U z A e A e
ω ω′ ′−′ ′ ′= +        (3.18) 

( )
( ) { }/ /2

1 2
sr sri z v i z v

r sr r sr

U z
z v i v A e A e

z

ω ωτ ρ ρ ω ′ ′−
′∂

′ ′ ′= = −
′∂

   (3.19) 
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where,  and 
sr r

v ρ are shear wave velocity and density of the bedrock. 1A′ and 2A′ are 

constants. In case of elastic bedrock, compatibility of displacements and stresses at 

the soil and bedrock interface yields, 

( )
2

1 2( ) ( 0) 2 [2sin( ln )]t

sH r sr
z H z Ca v v A A

a

ω
τ τ ρ κ µ ρ ω

 
′ ′ ′= = = ⇒ = − 

 
 (3.20a) 

[ ] 1 2( ) ( 0) sin( ln ) 2 cos( ln )
sH

iC
U z H U z A A

v
κ µ κ κ µ′ ′ ′ ′= = = ⇒ + = +  (3.20b) 

These boundary conditions imply, 

2
2 sin( ln ) 1 2 cos( ln )b

sH

iC i
A

av

ω
κ µ α κ κ µ

  
′ = + +  

  
   (3.21)  

where /b sH r srv vα ρ ρ= is the impedance ratio at the base of the soil deposit with 

respect to underlying bedrock. Amplification ratio between input motion and surface 

motion for rigid bedrock condition (within motion) is obtained by using Eq. (3.15) 

and Eq. (3.16) as,  
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( ) [ ]

0

(1)

0 2

sin( ln ) 2 cos( ln )
H

U z
Amp

U z H

κ µ

κ µ κ κ µ

=
= =

= +
   (3.22) 

While amplification of surface response with respect to outcrop motion (elastic 

bedrock) is obtained from Eq. (3.15) and Eq. (3.21)  

( )
(2)

1

0 2

2 2
sin( ln ) 1 2 cos( ln )b

U z
Amp

A i

a

κ µ

ω
κ µ α κ κ µ

=
= =

′   
+ +  

  

  (3.23) 

Here (1)Amp and (2)Amp are used to represent same terminologies of amplification 

ratio as used in the previous chapter. These results are also obtained in slightly 

different form by Gazetas (1982), Lojelo and Sano (1988) and Zhao (1996). The 

results obtained above are corresponding to the undamped case. To include viscous 

damping into analysis, the shear wave velocity 
s

v  in the equation may simply be 
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replaced with 1 2
s s

v v iζ= + where ζ is the damping ratio corresponding to viscous 

damping. .   

For the purpose of demonstrating the effect of surface shear wave velocity on 

amplification in ground motion for the case of continuously inhomogeneous deposit, 

amplification results for a 40 m thick deposit of constant density and linearly varying 

shear wave velocity profile i.e., ( )0( ) 1
s s

v z v az= +  is considered. Figure 3.6 shows 

the amplifications computed from Eq. 3.22 ( (1)Amp ) for two deposits with identical 

rate of heterogeneity ( 0.2a = ) but with different 0s
v values. That is, in both the cases 

the shear wave velocity ratio ( )0/ 7sH sv vµ = =  between base and surface of the 

deposit is kept the same. The underlying bedrock is considered to be rigid. Hence, 

irrespective of shear wave velocity distribution, for given values of µ and a the 

magnitude of peak amplification is same. However, modal natural frequencies are 

affected, because average shear wave velocity corresponding to 0 40 /
s

v m s= and 

80 /m s cases considered are 160 m/s and 320 m/s respectively. The results presented 

above are obtained for damping value, 2.5%ζ = .   
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Figure 3.6: Amplification characteristics for the deposit of linearly increasing 

shear wave velocity profile with different surface shear wave velocities. 

For the same deposit shown in Figure 3.6, with 0 80 / sec
s

v m=  but varying a  values, 

results in a change in surface deposit/bedrock impedance ratio. For the values of 
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0.1, 0.2, 0.5 & 0.75a =  the amplification computed from Eq. (3.22) is plotted in 

Figure 3.7. This figure clearly demonstrates the effect of rate of heterogeneity on 

amplification characteristics. Obviously, the mean shear velocity of the deposit 

increases with increase in value of a  for the given magnitude of shear wave velocity 

at the surface. Hence, the fundamental frequency of the deposit increases with 

increase in the value of a .  
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Figure 3.7: Amplification characteristics for the deposit of linearly increasing 

shear wave velocity profile with different rates of heterogeneities. 
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Figure 3.8: Amplification characteristics for the deposit of linearly increasing 

shear wave velocity profile overlying elastic bedrock with different impedances. 

In order to study the effect of impedance ratio between base of the deposit and elastic 

bedrock, the amplification of surface motion is computed for 30 m thick deposit of 
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0 40 /
s

v m s= and 280 /
sH

v m s= . The bedrock shear wave velocity is varied to give 

impedance ratio of 1/ 1, 1.5, 2.0 and 4.0
b

α = between base of the soil deposit and 

bedrock.  
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Figure 3.9: Amplification characteristics for the deposit of linearly increasing 

shear wave velocity profile and approximated layered profile. 
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Figure 3.8 presents these results obtained using Eq. (3.23), from which it can be 

concluded that, as the impedance ratio decreases (i.e., as the bedrock become stiffer) 

the peak amplification increases, also troughs get shifted upwards. Hence the 

flexibility of the bedrock results in increase in radiation damping. These results are 

obtained for the damping ratio of 2.5%ζ = . Effect of impedance ratio on modal 

frequencies of the deposit is almost negligible. However there is noticeable increase 

in fundamental frequency of the deposit as bedrock becomes more flexible which is 

significant for the case of 1
b

α = . More important observation to be noted is that the 

attenuation at troughs of the amplification function decrease at high frequencies with 

decrease in 
b

α value.   

Figure 3.9 demonstrates the effect of idealizing an inhomogeneous deposit with an 

equivalent layered profile. For this purpose various configurations of layered profiles 

are considered as substitutes for the linearly distributed shear wave velocity profile. 

The thickness of layers for each of these different configurations is calculated keeping 

the impedance ratio constant between successive layers. Therefore as the number of 

discrete layers employed to approximate continuous variation of shear wave velocity 

increases the impedance ratio between layers approach one. However, as 

demonstrated earlier impedance ratio never becomes one irrespective any number of 

layers that are used. From this figure it is clear that when 10 layers are used to 

represent actual profile the amplification almost converges to exact analytical solution, 

however this is valid for the type and degree of inhomogeneity considered here. Also 

as the number of layers decreases the impedance contrast is increased between the 

layers which in turn significantly affect the high frequency response with 

underestimation of peak values. 

3.4.2 Continuous variation of shear wave velocity with 1 and 1n n< >  ( )n 1≠  

In the study presented above only the case of soil deposits with shear wave velocity 

varying linearly along the depth is considered. In order to study the effect of variation 

of shear wave velocity as a nonlinear function of depth of the deposit on amplification 

characteristics of the surface motion, some of the recent literature in this regard has 
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been reviewed. These studies mainly differ in type and kind of depth dependent 

function, defining the variation of shear wave velocity or shear modulus of the soil 

deposit, considered for the analysis. These studies cover most of the real situations of 

continuously inhomogeneous ground encountered in practice. Most important among 

these studies include Towhata (1996), Hadid and Afra (2000), Afra and Pecker (2002), 

Davis and Hunt (1994), Davis (1995), Rovithis et al. (2011) and Vrettos (2013). 

These analytical studies may be considered as general in the sense; the results are 

presented for arbitrary values of the parameters that define the degree of 

inhomogeneity unlike the study presented in the previous section wherein the 

solutions were obtained for particular case of inhomogeneity parameters.   

Towhata (1996) observed that routine analysis with treatment of inhomogeneity of the 

soil deposit using approximated layered idealisation with distinct uniform layer 

properties resulted in contradictory response values. That is, the peak ground 

acceleration values computed from routine analysis yielded lower values for relatively 

soft deposits when compared with that obtained for stiffer soil deposits. Hence, 

Towhata (1996) dealt the case of continuous variation of shear modulus property in a 

manner described by the following relation, 

0( ) ( )m
G z z z= Λ +         (3.24) 

 Here Λ is a constant parameter which controls the magnitude of the shear modulus 

of ( )G z , while the parameter 0z governs the rate of inhomogeneity and the power m 

stands for type of inhomogeneity which is a function physical and mechanical 

characteristics of the soil deposit.  

In fact one can establish equivalence between Eq. (3.6) and Eq. (3.24) by virtue of the 

relationship ( )
0.5

( ) ( ) /
s

v z G z ρ= where ρ is assumed to be constant. The relationship 

between the parameters of Equations (3.6) and (3.24) are 0 0

m

sv z ρ= Λ , 2n m=  and 

1

0a z
−= . However, most importantly, the limitation of Eq. (3.6) is 0 0sv ≠ . Hence it is 

convenient to use Eq. (3.24) whenever it is required to consider 0 0sv = or low shear 

wave velocity value near the surface. Towhata (1996) presented the relationship for 
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displacement as a function of depth and results presented are limited to amplification 

of surface motion with respect to outcropping rock motion for undamped case. The 

amplification functions derived based on the procedure of Towhata (1996) are 

presented below. Herein, this particular study is extended to include amplification 

with respect to rigid bedrock motion and damped response. Relationships for both the 

amplification functions, (1)Amp and (2) ,Amp are derived and presented. Figure 3.10 

shows the inhomogeneous soil deposit considered in the analysis. 

0 0s
v G ρ=

sH Hv G ρ=

( )0( )
m

G z z z= Λ +

 

Figure 3.10: Details of the continuously inhomogeneous soil deposit considered in 

the analysis 

Substituting Eq. (3.24) in Eq. (3.4) and assuming mass density of the soil deposit as 

constant we get, 

2

02
( )mu u
z z

t z z
ρ

∂ ∂ ∂ 
= Λ + 

∂ ∂ ∂ 
   (3.25) 

Seeking harmonic solution of the equation, the displacement and shear stress in 

horizontal direction may be expressed as 
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( , ) ( ) i tu z t U z e ω=         (3.26) 

( , ) ( ) i tz t z e ωτ = Τ          (3.27) 

Amplitudes of displacement and shear stress ( )U z and ( )zΤ respectively are related as, 

( )
( ) ( )

U z
z G z

z

∂
Τ =

∂
        (3.28) 

Finally, Equations (3.25), (3.26), (3.27) and (3.28) yields [Towhata (1996)], 

( )
2 2

0 2
0

m d
z z

dz A

ρωΤ
+ + Τ =        (3.29) 

The solution of this equation in terms Bessel’s functions is given by Towhata (1996) 

for the cases 0 2m< < , 2m = and 2m > . However, for 2m =  that corresponds to the 

shear wave velocity profile with linear variation, the amplification results have been 

presented earlier (Section 3.4.1). In the analysis carried out by Towhata (1996) the 

bedrock underlying the soil deposit is considered to be elastic and the amplification 

results presented therein was limited to sr sHv v= . Also the results presented by 

Towhata (1996) were limited to undamped response of the deposit. For the purpose of 

carrying out more general parametric study including effect of variation of impedance 

at the interface of soil and bedrock the essential amplification functions have been 

derived including effect of damping in the following sections.  

3.4.2.1 Case 1: 0 < m < 2  

The solution of Eq. (3.29) for shear stress and displacement are, 

( ) ( ) ( ){ }

( )
( ) ( ){ } ( ) ( ){ }

0.5

0 1 2

0.5

0

1 2 1 1 2 12

( )

2
( )

2

z z z A J A Y

z z m
U z A J A Y A J A Y

ν ν

ν ν ν ν

ξ ξ

ξ ξ ξ ξ ξ
ρω

−

+ +




Τ = + + 




− + − = + − +  

(3.30) 
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Here 1A  and 2A are constants. Bessel functions of first and second kinds of order ν are 

respectively represented by ( )vJ • and ( )Yν • . The order of the Bessel function,ν  and 

transformed depth coordinate, ξ are given by the following 

( )
12

2
0

1 (2 )

=2
m

m

z z

ν

ξ ν ρω
 

− 
 

= − 


Λ + 

       (3.31) 

Using the boundary condition, at 0z = shear stress is zero in Eq. (3.30), the 

expression for displacement amplitude is obtained as, 

( )
( ) ( ) ( )

( ) ( ) ( )

0.5

3 0

0 12

0 1

2
( )

2

2

2

A z z m
U z Y J J

m
J Y Y

ν ν ν

ν ν ν

ξ ξ ξ ξ
ρω

ξ ξ ξ ξ

−

+

+

+  − 
= × − 

 

− 
− − 

 
                                       

  (3.32) 

Here 3A is a new constant given by 2
3

0( )

A
A

Jν ξ
= and 0ξ is the value of ξ  at 0z = . 

Therefore displacement amplitude at 0z = and at z H= are obtained using Eq. (3.32) 

3

2

0

( 2)
(0)

A m
U

zπρω

−
=         (3.33)  

( )
( ) ( ) ( )

( ) ( ) ( )

0.5

3 0

0 12

0 1

2
( )

2

2
                                        

2

H H H

H H H

A z H m
U H Y J J

m
J Y Y

ν ν ν

ν ν ν

ξ ξ ξ ξ
ρω

ξ ξ ξ ξ

−

+

+

+  − 
= − 

 

− 
− − 

 

  (3.34) 

The shear stress amplitude at z H= obtained from Eq. (3.30) is, 

( ) ( ) ( ) ( ) ( ){ }0.5

3 0 0 0( )
H H

H A z H Y J J Yν ν ν νξ ξ ξ ξΤ = + − +    (3.35) 

H
ξ  is the value of ξ  at z H= . Assuming bedrock underlying the soil deposit as rigid 

(within motion) the amplification of input motion with respect to ground surface 

motion is given by ratio of 0U and
H

U  i.e., 
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( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

0 0

(1)

0

0 1

1

0 1

0 2

2
                                             

2

2
                                           

2

H

H H H

H H H

U z z H m
Amp

U z H z

m
Y J J

m
J Y Y

ν ν ν

ν ν ν

π

ξ ξ ξ ξ

ξ ξ ξ ξ

+

−

+

= + −
= = ×

=

 − 
− 

 

− 
− − 

 

 (3.36) 

For the case of elastic bedrock (outcrop motion), if the z′ is the depth coordinate 

measured from the top of bedrock (Figure 3.10) then the displacement and shear stress 

for 0.0z′ ≥ is given by Eq. (3.18) and Eq. (3.19) respectively. Satisfying the boundary 

condition with respect to continuity of displacement and shear stress at soil and 

bedrock interface, we get, 

( ) ( ) ( )

( ) ( ) ( )

0
(2) 2

1 0

0 12

0

0 1

2

2

1 2
                                    

2

2
                                       

2

                            

H H H

H H H

U m
Amp

A z

m
Y J J

z H

m
J Y Y

ν ν ν

ν ν ν

πρω

ξ ξ ξ ξ
ρω

ξ ξ ξ ξ

+

+

−
= = ×

′

  − 
−   +  

− 
− − 

 

( ) ( ) ( ) ( )
1

0

0 0         
H H

r sr

z H
Y J Y J

i v
ν ν ν νξ ξ ξ ξ

ωρ

−
+

 + −   


(3.37)  

Gazetas (1982) dealt this case ( 0 2m< < ) adopting the depth dependent shear wave 

velocity function in the form given by Eq. (3.6) and presented results for limited cases 

of n values. While Rovithis et al. (2011) presented the results for the more general 

case in the sense that for 0 1n< ≤ . However they extended their study to deposit 

consisting of two layers with continuously inhomogeneous top layer being overlying a 

homogeneous deposit. This particular case will be discussed later in this chapter. The 

amplification function given by them is limited to ratio between motions at surface 

and rigid bedrock at the base.  
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3.4.2.2 Case 2: m >2  

Following the same procedure as dealt above the displacement amplitude along the 

depth of the deposit is obtained for 2m > as, 

( )
( ) ( ) ( ) ( )3

0 1 0 10.5( 1)

0

( )
m

A
U z Y J J Y

z z
ν ν ν νξ ξ ξ ξ

ρω
− − − −−

 = − − − − − 
Λ +

 (3.38) 

Above equation is used to compute surface ( 0z = ) and base ( z H= ) displacement as 

3

2

0

( 2)
(0)

A m
U

zπρω

−
=         (3.39)  

( ) ( ) ( ) ( )3
0 1 0 10.5( 1)

0

( ) ( ) H Hm

A
U H U z Y J J Y

z
ν ν ν νξ ξ ξ ξ

ρω
− − − −−

 = = − − − − − 
Λ

(3.40) 

Amplification ratio for the case 2m > can be obtained for input motion prescribed at 

the top of rigid bedrock as  

( )
( ) ( ) ( ) ( )

1
10

(1) 0 1 0 1

0

2
m

H H

z Hm
Amp Y J J Y

z
ν ν ν νξ ξ ξ ξ

πω ρ

−
−

− − − −

Λ +−
 = − − − − −  (3.41) 

The amplification of input motion prescribed at the top of outcropping rock surface 

with respect to surface motion of the soil deposit is given by 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

(2) 2

0

0 1 0 1
12

0

1

0

0 0

2

1
               

               

                      

H H
m

H H

r sr

m
Amp

z

Y J J Y

z H

z H
J Y Y J

i v

ν ν ν ν

ν ν ν ν

πρω

ξ ξ ξ ξ
ω ρ

ξ ξ ξ ξ
ωρ

− − − −−

−

− − − −

−
= ×


  − − − − −  Λ +

+
 + − − − − −  


(3.42) 
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The amplification functions presented above are limited to undamped response only. 

As explained earlier in section 3.4.1, in order to account for equivalent viscous 

damping of the soil the complex shear modulus ( G
∗ ) or complex shear wave velocity 

(
s

v
∗ ) can be substituted for G and vs respectively [Kramer (1996)]. That is, for the case 

of viscous damping, ( )1 2G G iζ∗ = + or 1 2
s s

v v iζ∗ = + where ζ is equivalent viscous 

damping ratio. 

3.4.3 Mode shapes  

3.4.3.1 Case 1: 0 < m < 2  

Natural frequencies of the continuously inhomogeneous deposit having shear modulus 

distribution given by Eq. (3.24), for the case of0 < m < 2 , can be extracted using Eq. 

3.34. Imposing the condition of zero displacement at the base under the state of free 

vibration we get the characteristic equation, 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1

2 2
0

2 2
H H H H H H

m m
Y J J J Y Yν ν ν ν ν νξ ξ ξ ξ ξ ξ ξ ξ+ +

− −   
− − − =   

   
 (3.43) 

Solving the above equation we get the 
th

i root 
( )i

H
ξ which in turn yields corresponding 

natural frequency 
i

ω  of the soil deposit as,  

( )

( )

0

(2 )

2

i

H
i sH

m
v

z H

ξ
ω

−
=

+
        (3.44) 

The corresponding free vibration displacement function ( )( ) ( )iU z along the depth is 

obtained by substituting Eq. 3.44 in Eq. 3.32. Normalizing this depth dependent 

displacement with respect to surface displacement results in dimensionless mode 

shape, ( ) ( )i zΦ as follows, 

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0
0 1

0

( ) ( ) ( ) ( )

0 1

2
( )

2 2

2

2

i i i i i

i i i i

z m
z Y J J

m z z

m
J Y Y

ν ν ν

ν ν ν

π
ξ ξ ξ ξ

ξ ξ ξ ξ

+

+

 − 
Φ = × − − +  

− 
− − 

 
                                         

 (3.45) 
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3.4.3.2 Case 2: m >2  

The characteristic equation for the case of m > 2 , is obtained using Eq. 3.40, as 

( ) ( ) ( ) ( )0 1 0 1 0H HY J J Yν ν ν νξ ξ ξ ξ− − − −− − − − − =     (3.46) 

After solving the above equation for ( )i

H
ξ , the corresponding frequencies can be 

calculated using Eq. (3.44). Finally the mode shape corresponding to that particular 

modal frequency is obtained using Eq. (3.44) and Eq. (3.38) as follows,  

( )

( ) ( ) ( ) ( )

( ) 0

1

0

( ) ( ) ( ) ( )

0 1 0 1

( )
2

                           

i

m

i i i i

z
z

m z H

Y J J Yν ν ν ν

ρπω

ξ ξ ξ ξ

−

− − − −

Φ = ×
− Λ +

 − − − − − 

  (3.47) 

3.4.4 Parametric study on effect of inhomogeneity parameters 

To compute amplification for different degrees of inhomogeneities of the soil deposit 

with respect to both rigid and elastic bedrock cases using Equations (3.36, 3.37, 3.41 

and 3.42) MATLAB
® 

code is developed. Using this program some of the the 

examples of the parametric study presented in Towhata (1996) are reproduced. In the 

first case the deposit 30.0 m thick with surface shear wave velocity 0s
v , equal to 100 

m/s is considered. For this relatively stiff deposit overlying elastic base, the 

amplification function ( (2)Amp ) is obtained for 1m = and 4m = with impedance ratio 

of one between base of the deposit and bedrock (i.e. 300 /
sr sH

v v m s= = ). While in 

the second case, 0 10 /
s

v m s= with 300 /
sr sH

v v m s= = are used to represent the 

deposit which is relatively soft near the surface. The results presented in Figure 3.11 

are for undamped case with base to bedrock impedance ratio of one. The shear wave 

velocity profiles corresponding to all the four cases considered here are also shown. 

This figure clearly demonstrates the effect of type and degree of inhomogeneity on 

the stiffness of the deposit near the surface. As the value of exponent of the shear 

wave velocity or shear modulus variation function increases, the profile characterizes 
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reduction in stiffness near surface, hence greatly affects the surface amplification of 

base input motion.  
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Figure 3.11: Amplification of inhomogeneous soil deposit for different values of 

m and vs0. Results reproduced for the examples taken from Towhata (1996) 

In the first case ( 0 100 /
s

v m s= ) the effect of variation in the value of m is almost 

insignificant. Particularly at high frequencies the amplification converges to a 

constant value of about 1.7 irrespective of type of inhomogeneity. In case of relatively 

soft deposit ( 0 10 /
s

v m s= ) there appears to be significant effect of type of 

inhomogeneity. In case of 4m = the surface motion is amplified manifold in the lower 

frequency range compared to 1m = and in the high frequency range the amplification 

converges to constant value of about 5.5. Hence it can be concluded that in the lower 

frequency range the amplification depends on type of inhomogeneity.  

It is interesting to note that, the amplification is almost converging to a unique value 

for both the cases with different values of  m in the high frequency range. In fact it 

can be shown that both Eq. (3.37) and Eq. (3.42) converge to 0sH sv v for all values 
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of m and for large values of ω . In the first case 0 3sH sv v = and in the second case 

0 30sH sv v = which are close to the values in the Figure 3.11 at high frequency 

ranges. In order investigate this aspect the amplification at surface are computed for 

different values of m. 
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Figure 3.12: Amplification of inhomogeneous soil deposit for 0 30
sH s

v v = and 

different values of m 

Figure 3.12(a) and 3.12(b) show the effect of m on amplification function for 

2m ≤ and 2m ≥ respectively. All the curves shown in these figures are obtained for 

0 10 /
s

v m s= and 300 /
sr sH

v v m s= = . As stated above, it is evident that high 

frequency range amplification is almost same (of about 0sH sv v ) for all values of m. 

However for the case of 2m ≤ the convergence to this unique value is at much higher 

values of frequencies compared to 2m ≥ . Also for the case of 2m ≥ , right from first 

peak the amplification function is oscillating about the value equal to 0sH sv v while 

for 2m < this happens at higher mode peaks. Further, Figure 3.13(a) presents the 
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amplification trends for different values of ratio of base to surface shear wave 

velocities ( )0sH sv v µ with 1m = and 30H m= . 

Table 3.1: Fundamental frequencies of the soil deposit considered for parametric 

study presented in Figure 3.13. 

Case (a) 0 10 /
s

v m s=  Case (b) 0 100 /
s

v m s=  

( )
0sH s

v v

µ
 

sH
v  Frequency (Hz) sH

v  Frequency (Hz) 

30 300 1.916 3000 19.16 

20 200 1.278 2000 12.78 

15 150 0.960 1500 9.60 

10 100 0.643 1000 6.43 

5 50 0.328 500 3.28 

2 20 0.143 200 1.43 
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Figure 3.13: Amplification of inhomogeneous soil deposit for 1m = and different 

values of ( )0sH sv vµ ; (a) 0 10 /
s

v m s= (b) 0 100 /
s

v m s= . 
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Two cases of surface shear wave velocities 0 10 /
s

v m s= and 0 100 /
s

v m s= have been 

considered for this parametric study. Figure 3.13(a) presents the results for 

0 10 /
s

v m s=  while Figure 3.13(b) presents the results for 0 100 /
s

v m s= . The 

fundamental frequencies of the soil deposit with different inhomogeneity parameters 

considered here are calculated using the characteristic Eq. (3.43). These frequencies 

are presented in Table 3.1. For given values of µ and m the frequency is directly 

proportional to 0s
v or

sH
v . Thus increase in 0s

v or
sH

v proportionately increases the 

fundamental frequency. Thus, ten folds increase in both 0s
v and

sH
v in Case (b) 

compared to Case (a) has resulted in proportionate increase in fundamental frequency 

of the respective soil deposit. Obviously, frequencies corresponding to higher modes 

are also shifted in the same manner.  

For the results presented above the analyses are carried out to obtain amplification 

function assuming impedance ratio between base of the deposit and bedrock as one. In 

the following sections results are presented for the cases of varying impedance ratio 

and also for the case of soil deposit overlying rigid bedrock. The shear wave velocity 

ratio between base and surface of the soil deposit ( 0/
sH s

v v ) and exponent value m (or 

n) control the trend of the continuous variation of shear modulus (or shear wave 

velocity) profile. As 0/
sH s

v v increases the deposit represent larger inhomogeneity, 

lower value of m combined with relatively large 0/
sH s

v v values will result in sharp 

transition of shear wave velocity near the surface.  

In order to study the effect of surface shear wave velocity on the response of 

continuously inhomogeneous deposit overlying rigid bed rock, the analysis is carried 

out for constant values of 0 5
sH s

v v = and ( )0.4 0.20m n= = with 5% of damping ratio 

and varying surface shear wave velocity ( )0sv of the profile. The four different values 

of surface shear wave velocities considered are 50 m/s, 100 m/s, 200 m/s and 400 m/s.  

The shear wave velocity profiles considered in this parametric study are shown in 

Figure 3.14a. The amplification transfer function obtained for these cases is shown in 

Figure 3.14b. 
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Figure 3.14a: Profiles with continuous variation of shear wave velocity, 
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Figure 3.14b: Effect of surface velocity on amplification of inhomogeneous 

deposit overlying rigid bedrock 

It can be observed that for constant values of inhomogeneity parameters i.e., surface 

to base shear wave velocity ratio and exponent value ( 0/ 5.0
sH s

v v = & 0.40m = ) the 

amplification at all modes remains same irrespective of surface shear wave velocity 

( 0s
v ) value. However, the variation in periods corresponding to these peak values of 

amplification transfer function is considerable for different surface shear wave 
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velocities. That is, the modal frequency characteristic of the deposit is sensitive to 

surface shear wave velocity of the deposit with all other factors of the inhomogeneous 

deposit being constant. As 0s
v  increases, the modal frequencies increase while 

amplifications with respect to these frequencies remain almost unaffected. Also, ratio 

between successive modal frequencies increase as the soil becomes stiffer as 

0s
v increase. Thus it can be concluded that the amplification characteristics are depend 

on 0/
sH s

v v , m  and 0s
v  in case of an inhomogeneous deposit.   

An analysis is also carried out for the values of m = 0.02, 0.40, 1.20, 2.0 and 4.0 (i.e. n 

= 0.01, 0.20, 0.60, 1.0 and 2.0). The values of 0/
sH s

v v considered in this analysis are 

1.25, 2.0, 4.0 and 20 with 0s
v equal to 200 m/s. Figure 3.15 shows the effect of 

inhomogeneity parameters on the amplification of surface motion due to input motion 

prescribed at the top of rigid bedrock.  

The effect of exponent value, m , of the inhomogeneity function on the amplification 

peaks is almost insignificant when the velocity ratio is close to one i.e., which 

correspond to more or less homogeneous deposit. But the amplification peaks are well 

separated and shifted to higher frequencies as velocity ratio increases because the 

modal frequencies increase with increase in 0sH s
v v value. Thus it can be concluded 

that, modal characteristics of the deposit is very much sensitive to shear wave velocity 

ratio 0/
sH s

v v  particularly for larger values compared to small values of 0/
sH s

v v .  

For 1m < the difference in peak amplification corresponding to fundamental 

frequency is noticeable for all cases of 0/
sH s

v v considered. On the other hand 

for 1m > amplification peaks corresponding to fundamental frequency is almost same 

except for very large value of 0/
sH s

v v  in which case the peak amplification is 

marginally enhanced for 1m = . For all the results presented in this figure damping 

ratio of 5% is used. For the soil deposit on rigid bedrock the effect of inhomogeneity 

appears to be relatively inconsequential as shown in both Figure 3.14b and Figure 

3.15 when compared to deposit on elastic base as evident from Figures 3.11, 3.12 and 

3.13. 
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Figure 3.15: Effect of inhomogeneity parameters on amplification of 

inhomogeneous deposit overlying rigid bedrock. 
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Figure 3.16: Effect of impedance ratio between base of the soil deposit and 

bedrock on amplification of inhomogeneous deposit overlying elastic bedrock for 

different damping ratios of the soil ( 0 100 / , 4 & 0.4
s

v m s mµ= = = ). 
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Figure 3.16 shows the effect of contrasting impedances of soil and the elastic bedrock 

on the amplification characteristics. For an undamped case, the amplification 

increases with frequency for all values of impedance ratios, 
b

α  at the base with 

respect to bedrock, as observed earlier. The rate of increase in amplification peak 

values decreases with increase in frequency and this decrease in rate of increase in 

peak values appears to be considerable with increase in impedance ratio. On the other 

hand as the damping ratio increases the peaks of the amplification function 

monotonically decreases. The decrease in amplification is apparently considerable 

with increase in impedance ratio.   

3.4.5 Effect of inhomogeneity parameters on mode shapes 

In an attempt to understand overall effect of inhomogeneity parameters on the 

response, particularly consequence of low surface shear wave velocity deposits 

combined with higher degree of inhomogeneity, mode shapes are computed for soil 

deposits with different inhomogeneity parameters. For this purpose, for two different 

cases of surface to base shear wave velocity ratios mode shapes are computed using 

Eq. (3.45) and Eq. (3.47) respectively for the different values of m  in the ranges 

2m < and 2m > . The values of m used in this analysis are 0.5, 1.5, 2.5 and 4.0. The 

natural frequencies corresponding to first four modes for all the cases considered in 

this study are computed using the respective characteristic equations of Eq. (3.43) and 

Eq. (3.46). These modal frequencies are presented in Table 3.2.  

Table 3.2: First four modal frequencies of the soil deposits with different 

inhomogeneity parameters 

 ( )0 2sH sv vµ =  ( )0 20sH sv vµ =  

m →  0.5 1.5 2.5 4.0 0.5 1.5 2.5 4.0 

1ω ( /rad s ) 2.84 2.63 2.57 2.54 28.00 20.04 14.49 11.25 

2ω ( /rad s ) 7.75 7.01 6.87 6.79 74.82 40.90 29.02 23.67 

3ω ( /rad s ) 12.75 11.56 11.31 11.18 121.86 63.82 45.36 36.91 

4ω ( /rad s ) 17.77 16.13 15.79 15.60 168.95 87.49 62.26 50.51 
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Figure 3.17: Mode shapes for the soil deposit with ( )0 2sH sv vµ = for different 

values of m. 
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Figure 3.18: Mode shapes for the soil deposit with ( )0 20sH sv vµ = for different 

values of m. 
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Figure 3.17 and Figure 3.18 show the mode shapes of the soil deposit with 

( )0 2sH sv vµ =  and ( )0 20sH sv vµ = respectively. First case ( 2.0µ = ) represents a 

soil deposit which is close to homogeneous deposit while latter one ( 20.0µ = ) 

represents a case of higher degree of inhomogeneity particularly low surface shear 

wave velocity. Interestingly, mode shapes of soil deposit with 2µ = are almost 

tangential to the vertical near the surface. While for the soil deposit with 20µ = the 

mode shapes become tangential to the horizontal in case of all modes. It is clear from 

these figures that, the mode shapes are almost comparable to homogeneous deposit 

for a soil deposit with moderate inhomogeneity and also satisfy zero shear stress 

boundary condition at the surface [Rovithis et al. (2011)].  

The contradictory trend in mode shape near the surface in case of higher degree of 

inhomogeneity is of particular interest in view of large near surface amplification. As 

the soil deposit is relatively weaker near the surface more is the deviation from the 

assumed boundary condition of zero shear strain at the surface. This aspect is well 

demonstrated by Towhata (1996) with paradoxical results obtained in case of routine 

layered deposit idealisation. In fact, Travasarou and Gazetas (2004) have shown that 

the assumption of zero shear strain at the surface for the case of vanishing near 

surface stiffness will result in underestimation of response quantities when the soil 

deposit is discretised into homogeneous layers.   

3.5 INHOMOGENEOUS DEPOSIT OVERLYING A HOMOGENEOUS 

LAYER OF FINITE THICKNESS 

In the previous sections the analytical solutions presented was limited to a single 

continuously inhomogeneous layer overlying rigid or elastic bedrock. In this section 

some of the analytical solutions available in the literature with regard to a 

continuously inhomogeneous layer overlying a homogeneous layer are discussed. 

Results presented in Figures 3.11 and 3.12 of previous section are, in fact, pertaining 

to the configuration of inhomogeneous layer overlying a homogeneous half-space. 

This configuration is a consequence of assuming impedance ratio one between base of 

inhomogeneous soil deposit and underlying soil stratum. Afra and Pecker (2002) 
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considered an inhomogeneous layer at the top of homogeneous half-space. In their 

study, the shear modulus of the top layer is characterised by continuous function of 

depth analogous to Eq. (3.24) in which the exponent value was limited to 0 2m≤ < . 

Later this solution is extended to include the case of finite thickness homogeneous 

layer underlying continuously inhomogeneous top layer.  

Rovithis et al (2011) and Mylonakis et al. (2013) considered a two layer system in 

which top layer is characterised as inhomogeneous shear wave velocity profile 

overlying a homogeneous layer of finite thickness. The inhomogeneity function 

defining shear wave velocity profile of the top layer is similar to Eq. (3.6). The depth 

dependent shear wave velocity function considered in their study is given by,  

1
( )

n

s sH

b
v z v b z

H

 − 
= +   

  
        (3.48) 

i.e, it is similar to Eq. (3.6) except that ( )1a b bH= − . Here the parameter b  is related 

to µ  (ratio of base to surface shear wave velocities) as ( )
1/

1/
n

b µ= .  

3.5.1  Amplification of surface motion  

Two-layer soil deposit consisting of homogeneous layer underlying an 

inhomogeneous top layer is shown in Figure 3.19. Total depth of the top layer is 

1H and 2H is the depth of homogeneous bottom layer. The depth coordinate for the top 

layer is 1z ( 1 10 z H≤ ≤ ) and that for bottom layer is 2z ( 2 20 z H≤ ≤ ). The mass 

densities of these two layers are 1ρ and 2ρ respectively. The shear wave velocity 

profile of the top layer 1 1( ),
s

v z is defined by the Eq. (3.6) wherein exponent n is 

limited to less than one ( 0 1n< < ); while for bottom homogeneous layer, overlying 

rigid bedrock, it is 2s
v . The amplification function for single inhomogeneous layer 

having shear wave velocity profile as defined in Eq. (3.6) overlying rigid bedrock has 

been obtained by Rovithis et al. (2011). Substituting Eq. (3.6) in Eq. (3.5) and 

following the same procedure that has been presented in the previous sections, the 
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displacement at any depth 1z due to input motion at the base of the top 

inhomogeneous layer is obtained in terms of Bessel functions as,  

[ ]
( )

( ) ( ){ ( ) ( )}
(1 )

1 1 (1) (1) (1) (1)

1 0 1 0(1)

1 1 0

1
( )

1

n
A az

u z J Y Y J
aH Y

ν

ν ν ν ν

ν

ξ ξ ξ ξ
µ ξ

− −

+ +

+

+
= −

+
  (3.49) 

Here (1)ξ is the transformed depth coordinate,  

( )
1(1)

1

0

1
(1 )

n

s

az
av n

ω
ξ

−
= +

−
    (3.50) 
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Figure 3.19: Two-layer deposit comprising of an inhomogeneous surface layer 

followed by a homogeneous layer over a rigid base 
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The response at the top of the homogeneous layer due to harmonic excitation at it 

base is given by [Kramer (1996)], 

2 2
2 1 1 2 2 1 1

2 2

(  or ) sin cos
s s

z z
u z H z H B B

v v

ω ω   
= = = +   

   
   (3.51) 

Input motion at the bedrock level is, 2 1 2 2(  or 0)
H

u z H H z u= + = = is the boundary 

condition to be used along with other boundary conditions such as, the displacement 

is continuous i.e., 2 2 2 1 1 1( ) ( )u z H u z H= = =  and 2 2 2 1 1 1( ) ( )z H z Hτ τ= = = i.e., shear 

stress is continuous at the layer interface. Employing these boundary conditions along 

with the boundary conditions at the free surface (i.e., at 1 0z = enforcing stress free 

condition) of the deposit the integration constants are evaluated. Finally, amplification 

at the surface with respect to input motion prescribed at rigid bedrock level is,  

[ ]
2

(1)

1 21

2(1 ) 1

( ) ( )1

n a
Amp

aH

ρ

ψ ω ψ ωπ

 −
=  

−+  
     (3.52) 

Here, 

( ) ( ) ( ) ( )(1) (1) (1) (1)2 2
1 1 0 1 0

2

( ) cosv H v H

sH s

H
J Y J Y

v v
ν ν

ωρ ω
ψ ω ξ ξ ξ ξ+ +

   
 = × −    

   
   

( ) ( ) ( ) ( )(1) (1) (1) (1)1 2
2 1 1 0 1 0 1

2 2

( ) sinv H v H

s s

H
J Y J Y

v v
ν ν

ωρ ω
ψ ω ξ ξ ξ ξ+ + + +

   
 = × −    

   
  

Using Eq. (3.52) we can get the surface amplification of base motion as a function of 

excitation frequency for the case of soil deposit whose shear wave velocity profile 

varies as given by Eq. (3.6) and overlies homogeneous layer of constant shear wave 

velocity. However, as in the previous case, the amplification response is obtained 

disregarding nonlinear behaviour of soil and density of the soil deposit remains 

constant with depth. In case bottom layer is inhomogeneous then the above given 

equations cannot be used. To include viscous damping (damping ratio, ζ ) in the 

analysis, shear wave velocity ( )sv of the layers is replaced with 1 2
s s

v v iζ∗ = + .   
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3.5.2 Parametric study on amplification of two-layer soil deposit  

This section deals with the study of amplification characteristics of inhomogeneous 

layer overlying a homogeneous layer of constant shear wave velocity. The analytical 

solution to this problem is obtained in the form of amplification transfer function 

between surface motion and input motion at the top of rigid bedrock underlying the 

bottom homogeneous layer, and given by Eq. (3.52).  
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Figure 3.20: Soil Deposit with continuous variation of shear wave velocity, 

overlying a homogeneous soil deposit of shear wave velocity of different depths. 

In order to study the effect of depth and stiffness of the homogeneous layer on 

amplification of base input motion at the surface of the deposit, these properties of the 

bottom layer is varied as indicated in Figure 3.20. The inhomogeneity parameters 

considered are velocity ratio associated with top layer, 0/ 2.0
sH s

v v =  and exponent 

0.20n = of the velocity function. The densities of top and bottom layers are kept 
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constant at
3

1 2 2000 /kg mρ ρ= = . The depth of the bottom layer (homogeneous 

layer) is considered to vary with three cases i.e., 2 50,H = 100 and 200 m and four 

shear wave velocity cases i.e.,  2 400, 500, 600 and 800 /
s

v m s=  are considered.  
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Figure 3.21: Effect of depth and shear wave velocity of homogeneous layer 

underlying an inhomogeneous layer on amplification ratio and modal 

frequencies. 

The results of this parametric study are shown in Figure 3.21. The frequency 

dependent amplification characteristics of the inhomogeneous deposit overlying a 

homogeneous deposit of depths 50 m, 100 m and 200 m for different 2s
v  values are 
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shown in Figures 3.21a, 3.21b and 3.21c respectively. As it can be observed from 

these figures, the peak amplifications corresponding to modal frequencies is 

maximum for the case of 2 800 /
s

v m s=  when compared to other cases. Hence, it can 

be concluded that the amplification increases as the stiffness of the bottom layer 

increases and this increase is significant for impedance ratio ( )2 /s sHv v  greater than 

about 2. At lesser values of impedance ratio the increase in amplification is 

comparatively insignificant particularly as the depth of the bottom layer increase.  

It is interesting to note that the effect of depth of homogeneous layer on amplification 

characteristics appears to be complex phenomenon than the effect of velocity ratio 

2 /
s sH

v v . Also, comparing the results of depth, 2H equal to 100 m and 200 m to that of 

50 m, particularly at higher frequencies (after two or three modes) the trend of 

amplification is considerably affected at higher frequencies particularly for stiffer 

bottom layer i.e., 2 800 /
s

v m s= . Also, amplification is marginally greater in case of 

2 100H m=  compared to 2 200H m=  deposit for all values of 2s
v .  

3.6 AMPLIFICATION OF MULTI-LAYERED SOIL DEPOSIT WITH 

CONTINUOUSLY INHOMOGENEOUS LAYER PROPERTIES 

All the above mentioned studies consider the case of inhomogeneous elastic layer 

with shear modulus or shear wave velocity varying continuously as a function of 

depth. The work presented by Davis and Hunt (1994), Davis (1995) and Davis (1994) 

considered multiple layers with linear variation of shear modulus in each of the layers.  

Site response under seismic excitation studies usually employ idealised site models in 

which homogeneous soil layers are separated by distinctly defined horizontal layer 

interfaces. The impedance mismatches at these interfaces give rise to wave reflections 

which strongly affect the calculated free surface response. In order to avoid this 

inconsistency Davis (1995) extended the concept proposed in the work of Davis and 

Hunt (1994) to incorporate smoothly varying interfaces between the layers. This was 

justified by the argument that the interfaces are made up of weathered soil [Macari 
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and Hoyos (1996)]. The variation is assumed to be linear, thus avoiding superficial 

impedances at the interface of adjacent layers.    

3.6.1  Amplification function for inhomogeneous multiple layers 

Employing the Haskell-Thomson transfer matrix approach Davis and Hunt (1994) 

obtained an analytical solution for SH wave amplification by multiple layers of 

Gibson soil shown in Figure 3.22. Gibson soil represent elastic or viscoelastic layers 

with linearly varying shear modulus [Gibson (1974)].  

 

Figure 3.22: Multiple layers of Gibson soil above homogeneous elastic bedrock 

[Reproduced from Davis (1995)] 

 

 

Figure 3.23: Linear variation shear modulus along the depth of individual layer 

[Reproduced from Davis (1995)] 

  



  126 

Consider a single layer of Gibson soil of thickness H shown in Figure 3.23 subjected 

to vertically propagating SH waves. Let z be the local depth coordinate within the 

layer and ),( tzu denote horizontal displacement and ),( tzτ denote shear stress. 

Subscripts 1 and 2 refer to conditions at the upper and lower surfaces of the layer, 

respectively. Let ω denote the excitation frequency; ρ  the mass density; 

*( ) ( )(1 ),G z G z iζ= + complex shear modulus and ,ζ is the hysteretic damping ratio. 

Suppose 
*

G is a linear function of z, such that *G a bzρ = + �� , where a� and b� are 

complex constants given by 
2

1(1 )
s

a v iζ= +�  and 
2 2

2 1 (1 )s s
v v

b i
H

ζ
−

= +�  with 1s
v  and 2s

v  

being the corresponding shear wave velocities at top and bottom of the layer.  

A transfer matrix is derived for the response at the top of a Gibson soil layer in terms 

of the response at the base. Multiplying the transfer matrices for each soil layer leads 

to relations between the free surface response and the bedrock incident wave form. 

This relation yields the free surface amplification function. This procedure is similar 

to that which is used in the program SHAKE except that the transfer matrix for each 

layer is derived assuming it as Gibson layer instead of homogeneous layer idealisation.  

Following the same procedure as described in Chapter 2 (Eq. 2.22) the transfer matrix 

for the 
th

i Gibson layer in terms of particle velocity and shear stress is expressed as,  

( ) ( )
2 111 12

( ) ( )
2 121 22

i i

i i

u uA A

A Aτ τ

    
=     

    

� �

      (3.53) 

where,  
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πω
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
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

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   (3.54) 
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Here ( ) ( )&J Yν ν• • denote Bessel functions of the first and second kind of orderν , 

and 1

2 a

b

ω
ξ =

�

�
and 2

2 a bh

b

ω
ξ

+
=

��

�
. The matrix A  is the Haskell-Thomson matrix 

for the layer with linear shear modulus variation. It can be used recursively to find the 

response of multiple layer deposit. Consider the case with )1( −n layers illustrated in 

Figure 3.22. The free surface response, 0 0( , ),u τ� is related to the response at the 

bedrock interface, ),,( nnu τ� by 

 
0 0( 1) ( ) (2) (1) 11 12

0 021 22

... ..
n n i

n

u u uA A
A A A A

A Aτ τ τ
−

      
       = =              

      

� � �
 (3.55) 

In Equation (3.55), each of the matrices (1) (2), ,.....A A is the appropriate transfer matrix 

to each of the layer 1, 2, ........i = and A  is the product of all the ( )iA matrices. 

Considering harmonic input motion at the top of the bedrock along with appropriate 

boundary conditions at the free surface and at the elastic bedrock-soil layer interface, 

amplification function between surface/bedrock is obtained as,  

0
(2)

21 112

r sr

n r sr

u v
Amp

u A v A

ρ

ρ
= =

+

�

�
      (3.56) 

In the above equation, 
r

ρ and 
sr

v  denote bedrock density and shear wave velocity 

respectively.  

Here an attempt is made to verify the possibility of idealizing the continuously 

inhomogeneous soil profile with an equivalent layered profile consisting of Gibson 

layers (i.e., linear variation of shear modulus). For this purpose soil profile of Figure 

3.11 is discretised into 10 layers with linear distribution of shear modulus and 

amplification is computed using Eq. (3.55) and Eq. (3.56). The results obtained from 

both the analyses are compared in Figure 3.24. The amplification function computed 

using 10-layer equivalent profile almost exactly compares with that of exact solution. 

Thus it can be concluded that soil profile exhibiting continuous variation of soil 

properties can be modeled with an equivalent layered profile consisting of Gibson 
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layers instead of idealizing it as a homogeneous layered profile as is being made in 

routine analysis procedure.  
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Figure 3.24: Comparison of amplification function computed for an equivalent 

layered profile consisting of Gibson layers with that of exact solution. 

3.6.2 Parametric study on transition Gibson layer at layer interfaces   

The effect of contrasting impedances between the adjacent layers at their interfaces is 

evident. Also natural soil deposits seldom exhibits perfectly layered profile. Despite 

this fact usually the soil deposit is idealised as layered profile in routine one-

dimensional site response analysis. Thus it may be appropriate to introduce a 

transition layer at the interface in order to achieve smooth transition of impedance 

between the adjacent layers. This may also help in overcoming pseudo-resonance 

conditions resulting in spurious high frequency responses. Here a parametric analysis 

is performed to study the effect of depth of transition layer on the surface motion 

amplification.   

A 30 m depth deposit made up of two layers is considered for the analysis. The depth 

of each layer is 15 m, the shear wave velocity of the top layer is assumed to be 100 



  129 

m/s and that of bottom layer is 300 m/s. A transition layer at the interface of these two 

layers is considered. The depth d, of this transition layer is varied from 0 to 15 m. The 

effect of introducing transition layer on the amplification of surface motion is 

presented in Figure 3.25. In this figure, the frequency is normalized with respect to 

fundamental frequency of the deposit and amplification is presented in terms of its 

peak values at first five modes. From this figure it can be observed that introducing 

transition layer at the interface greatly improves the high frequency response without 

affecting the amplification at the fundamental frequency significantly. 
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Figure 3.25: Effect of transition layer depth on the amplification of surface 

motion. 

3.7  COMPARISON BETWEEN CONTINUOUSLY INHOMOGENEOUS 

SOIL DEPOSIT AND ITS LAYERED APPROXIMATION 

In Figure 3.9 the amplification result of exact solution obtained for the deposit with 

linear variation of shear wave velocity along the depth is compared with that obtained 

for different layered configurations. Obviously, from this figure, it was evident that as 

number of layers is increased to closely represent the actual velocity profile the 

amplification seems to approach the exact solution. However it is interesting note that, 

though the convergence is evident for sufficiently large number layers in the first peak 
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(i.e. corresponding to first mode of vibration), there are substantial differences in the 

frequencies and amplification of the higher mode of vibration.   

In order to study the effect of arbitrariness and inconsistency in prescribing layered 

idealisation for a surface deposit which possesses nearly continuous variation of shear 

wave velocity distribution and uniform density throughout its depth, the deposit of 

40m thickness with linear distribution of shear wave velocity is considered here. The 

shear wave velocity is varying from 80 m/s at the surface to 720 m/s at the base and it 

is overlying an elastic bedrock having 720 /
sr

v m s= . Thus the shear wave velocity 

function defining the profile is given by ( ) 80(1 0.2 )
s

v z z= + . Inconsistency in decision 

making about depth of each layer is incorporated by varying the thicknesses of each 

of the layer of equivalent two layer and three layer models to represent 40m thick 

continuously inhomogeneous deposit. Based on its depth from the surface and its 

thickness, the average shear wave velocity of each layer is assigned. In equivalent 

layer system the layer thicknesses 1H and 2H are varied resulting in variation of 

impedance ratios between the top two layers as well as bottom layer and bedrock. 

Density being constant, the impedance ratio between any two layers is simply the  

ratio of their shear wave velocities.  

Two layer equivalent model of the actual continuous variation is shown in Figure 3.26. 

The variation of impedance ratio as 1H and 2H are varied is plotted with respect to 

ratio of 1H and 2H . There seem to be consistency in the trend of variation of 

impedance ratio at both interfaces i.e., between the top two layers as well as bottom 

layer and bedrock but obviously no particular relation exists between them. The 

maximum amplification computed for the ratios of 1 2/H H  is shown along with 

corresponding impedance ratio. Though maximum amplification computed for 

equivalent layered idealisation closely agrees with that of exact value for a particular 

configuration of two layer thicknesses, it is important to note that frequency at which 

this amplification is obtained does not match with that of exact solution. Close 

agreement of maximum amplification of equivalent two layer deposit with that of 

exact value is incidentally at 0.4/ 21 =HH .  
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Figure 3.26: Effect of contrasting impedance ratio on amplification 

characteristics of idealized equivalent two layer system 

Further, to demonstrate the implications of inconsistency in layered approximation the 

same deposit considered in the previous example is approximated with three layers 

with variation in their depths. In the three layers approximation, depths of top and 

bottom layers are considered to be of same thickness (i.e., 31 HH = ) while middle 

layer thickness 2H  is varied such that total thickness of the deposit is 40m i.e., 

2 140 2H H= − . Three layer equivalent model of the actual continuous variation is 

shown in Figure 3.27. The variation of impedance ratio as 2H  and 1H (or 3H ) are 

varied is plotted with respect to ratio of 2H  and 1H (or 3H ). As in the previous case 

(two layer approximation), there is no particular relation existing with contrasting 

impedance ratios between any of the two layers and amplification. The maximum 

amplification computed for ratio of 2 1/H H  (or 2 3/H H ) is shown along with 

resulting impedance ratios between top and middle layers, middle and bottom layers 
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and bottom layer and bedrock. Close agreement of maximum amplification of 

equivalent two layer deposit is incidentally found to be at ( ) 0.3// 3212 =HHorHH .  

20 13 0.1

12

14

16

 

16.66 (exact value)

Amplification ratio (Maximum) 
corresponding to first mode
between surface and bedrock

Damping = 5 %

A
m

p
li
fi

ca
ti

o
n

(m
ax

im
um

)

1.0

1.2

 

Impedance ratio between 
Bedrock and bottom layer

1.4

1.6

1.8

 

 

Impedance ratio between 
Middle layer and bottom layer

2

3

4

 

Impedance ratio between 
Middle layer and top layer

H
2
 / H

3
 , H

2
 / H

1

[Ratio of depths of middle and bottom (or top) layers]

v S
3 /

 v
S

2
v b /

 v
S

3
v s2

 /
 v

s1

 

H
  =
 4
0
 m

H
1

H
2

H
3
 

)2.01(80)( zzVs +=

 

Figure 3.27: Effect of contrasting impedance ratio in idealized three layer system 

on amplification 

Finally, comparison of results pertaining to ground response analysis of continuously 

inhomogeneous deposit and its layered approximation is made in respect of seismic 

input motion at the bedrock level. The 40m depth deposit considered previously is 

analysed by idealizing it as 40 layers of 1.0m thick and 2 uniform layers of 20m thick 

(Figure 3.28a). For the purpose of comparing effect of layered idealisation of actual 

continuous variation on the computed response due to input earthquake motion at the 

base of the deposit. An earthquake motion recorded at Diamond Heights (USA) 

during 1989 Loma Prieta earthquake is normalized to 0.1g peak acceleration and used 

as input motion.  

In both cases of layered deposit idealizations, both linear and equivalent linear 

analyses were carried out using the program EERA. In order to implement equivalent 
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linear approach arbitrarily selected average strain dependent shear modulus and 

damping curves are used in the analysis,. In case of linear analysis, computation is 

carried out using initial values of shear modulus and damping. The response of the 

deposit is compared in terms of maximum acceleration computed along the depth of 

the profile. Figure 3.28b shows the variation of the acceleration response in terms of 

its maximum values along the depth. Results obtained from equivalent linear analysis 

(EQL) and linear analysis (L) for ideal 40 layers deposit is compared with those of 

approximated 2 layers deposit. 

 

 

 

Figure 3.28: (a) 2-layers and 40-layers idealisation (b) Comparison of maximum 

accelerations computed along the depth 

In case of linear analysis both idealisations yield almost similar values of maximum 

acceleration at the surface. However, for the depths in the range of about 5m and 30m 

the maximum accelerations are higher for approximated 2 layer deposit when 

compared to 40 layers deposit. On the other hand, in case of equivalent linear analysis 

the surface acceleration computed for 2 layer system is grossly underestimated by 
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about 33 percent when compared to that of 40 layers deposit case. Also, incidentally, 

in case of 40 layers deposit the difference in variation of maximum accelerations 

along the depth computed from linear and EQL analyses is not much below 10m from 

the surface. Surprisingly, in contrast to this observation, this kind of phenomenon is 

not observed in case of linear and EQL analysis of two layered model though same 

strain dependent stiffness and damping properties are used in the analysis. This needs 

to be investigated further, with rigorous parametric study, to conclude on effects of 

contrasting impedance properties on the results of linear and EQL analysis. However, 

this clearly indicates that inappropriate layered idealisation will have profound effect 

on the response than the kind of nonlinear model (strain dependent stiffness and 

damping model) employed.  
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Figure 3.29: Comparison of computed acceleration time histories at the surface 

for 2-layers and 40-layers models, (a) linear analysis, (b) Equivalent linear 

analysis and (c) Input ground motion at the bedrock level. 

Figure 3.29 compares the acceleration time histories computed at the surface for the 

cases under consideration i.e., both ideal 40 layer and approximated 2 layer models. 

These responses are obtained for the same input motion shown at the bottom (Figure 

3.29c), which is given at the bedrock level. In case of both linear (Figure 3.29a) and 

equivalent linear analysis (Figure 3.29b), there are noticeable differences in the 
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characteristics of the response. Particularly, in case of linear analysis the peak value 

surface accelerations are almost comparable (0.463g and 0.455g respectively for 40 

and 2 layer cases) but their time history characteristics are different. While in EQL 

analysis the underestimation of maximum response (0.532g and 0.359g respectively 

for 40 and 2 layer cases) in case of two layered deposit compared to that of 

continuation variation idealisation is observed. Hence it can be concluded that 

contrasting layer impedances may result in underestimation of high frequency 

response.  

3.8  COMPARISON USING OBSERVED EARTHQUAKE DATA 

As discussed earlier, there are discerning issues with respect to geotechnical 

investigations and subsequent interpretation of soil profile for the purpose of ground 

response analysis. These issues result in inconsistent predicted response quantities. In 

order to overcome these inherent deficiencies in the current practices, which are 

difficult to quantify, this study proposes to approximate the surface deposit with 

continuous variation soil properties. In the advent of this conceptually abstract 

alternative, the approximation of shear wave velocity profile of surface deposit with 

best fit continuous variation is considered as an initial option. The approximated 

continuous variation is replicated by closely stacked layers and assigned with 

appropriate shear wave velocity values and routine analysis of layered deposit used in 

programs like SHAKE is carried out.    

For the purpose of demonstrating the efficacy of the proposed method, data recorded 

at an instrumented geotechnical array during an earthquake event is considered. For 

this purpose, geotechnical downhole array established at La-Cienega site of USA is 

considered. This particular array was installed by the California Strong Motion 

Instrumentation Program (CSMIP) with the support of California Department of 

Transportation (Caltrans). La-Cienega downhole array consists of four accelerometers 

installed at depths 0.0 m, 18.3 m, 100.60 m and 252.0 m. La-Cienega array has 

recorded many events of different magnitudes and peak accelerations. Among these 

event recorded on 4
th

 April, 1997 is considered in this study.  Shear wave velocity 

profile of this particular array as interpreted from the data obtained from different 
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geotechnical investigations is shown in Figure 3.1. Here same data pertaining to PS-

logging is reproduced in Figure 3.30. Continuous variation approximation of 

continuous PS-logging data using power law and corresponding 3-layer 

approximation is also shown in Figure 3.30. The continuous variation approximation 

of shear wave velocity along the depth ( )z is represented by the 

equation 0( )
c

s s
v z v bz= + . Nonlinear regression method is used for curve fitting 

process by setting constraint on non-zero shear wave velocity at surface 0s
v (=120m/s). 

The best fit for scattered PS-logging data is obtained with parameters 88.87b =  and 

0.32c =  resulting in correlation coefficient of 
2

0.75.r =  Shear wave velocities of 

120 m/s at the surface and 640 m/s at the bedrock level are kept same for the layered 

and continuous variation idealisations.  
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Figure 3.30: PS-logging data of La-Cienega array and corresponding layered 

and continuous approximation. 

The 4
th

 April, 1997 seismic event recorded by this array is one of the of low 

magnitude ( )3.3LM =  earthquake at an epicentral distance of 6.7km and focal depth 

of 4.2km. The acceleration time histories recorded during this event, at surface and 
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100m depth in 360
o
 and 90

o
 component directions, are shown in Figure 3.31.  These 

data are available at California Strong Motion Instrumentation Program (CSMIP) 

website. The recorded peak accelerations are 0.059g and 0.013g respectively at 

surface and 100 m depth for 360
o
 component, while corresponding values for 90

o
 

component are 0.078g and 0.022g respectively.  
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Figure 3.31: Acceleration time history data of 4
th

 April 1997 earthquake 

recorded at La-Cienega geotechnical array. 

The computer program EERA is used to perform ground response analysis. The 

analysis is carried out to compute response at the top (ground surface) of the idealized 

surface deposit due to an input motion at the base of the deposit. In order to ascertain 

the effectiveness of the proposed continuous variation idealisation of shear wave 

velocity profile of an inhomogeneous deposit, predicted ground surface motions from 

the analysis is compared with the observed response of the deposit. Also efficiency of 

the proposed method is verified by comparing its results with that of idealized 3-layer 

deposit in terms of surface response quantities. For the purpose of preparing the 

deposit profile data of La-Cienega geotechnical array for EERA program, the 

continuous variation shown in Figure 3.30 is approximated using 40 layers in order to 

closely represent the variation trend without significant contrasting impedance ratio 

between any two adjacent layers. However, the three layer deposit is represented in 

the input data in the manner as shown in Figure 3.30. Henceforth, in this study, La-
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Cienega deposit idealized as 40 layers deposit to closely represent continuous 

variation of shear wave velocity shall be referred to as LCC and that with 3-layer 

idealisation as LC3L. 

Considering the low magnitude of the earthquake and lower level of peak 

accelerations of input motion (Figure 3.31) the influence of nonlinear response may 

be considered to be insignificant. However, nonlinear analysis is carried out using 

equivalent linear approach of EERA. For this purpose, the nonlinearity of the soil 

deposit is modeled with strain dependent shear modulus and damping curves shown in 

Figure 3.32a and 3.32b respectively. Since the La-Cienega deposit is predominantly a 

clayey soil deposit a typical strain dependent shear modulus [Sun et al. (1988)] and 

damping [Idriss (1990)] curves of cohesive soil are used. The density of the soil is 

considered to be constant ( ρ = 2.055 t/m
3
) throughout the depth of the deposit.  
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Figure 3.32: Strain dependent shear modulus and damping curves used in the 

analysis 

In previous sections it was demonstrated that, the ground surface response due to 

excitation at the base of the deposit is greatly affected by shear wave velocity values 

at the surface ( 0s
v ) and at the base (

sH
v ) of the deposit. Hence, these shear wave 

velocity values ( 0s
v and

sH
v ) in both the cases (LCC and LC3L) are prescribed with 

identical values of 0 120 /
s

v m s=  and 640 /
sH

v m s=  respectively. Thus two idealized 

cases LCC and LC3L synonymously represent the important geotechnical 

characteristics of the deposit except for geometrical characteristics in terms of depths 

of the layers considered. This factor influences the impedance characteristics of the 
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deposit as a consequence of variation in average shear wave velocities of these 

idealized layers.  
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Figure 3.33: Comparison of computed surface acceleration time history in 

different time windows with corresponding observed record of 360
o
 component.  

The earthquake ground response analysis for both (LCC and LC3L) the cases is 

carried out to predict the surface responses due to prescribed input motion at 100m 

depth. The analysis is performed for both 360
o
 and 90

o
 components of the recorded 

earthquake shown in Figure 3.31. Results of these analyses are shown in Figure 3.33 

and Figure 3.34 in terms of acceleration time histories at the surface of the deposit. 

Figure 3.33 gives acceleration time history computed at ground surface for the both 
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LCC and LC3L cases of soil deposit idealisations due to 360
�

component input 

motion. For the purpose of clarity the results are presented in different time windows.  
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Figure 3.34: Comparison of computed surface acceleration time history in 

different time windows with corresponding observed record of 90
o
 component. 

It is clear from this Figure 3.33 that, the predicted surface response using LCC-

deposit has a trend which closely matches with trend of the observed motion in the 

region of peak acceleration (5.2s–6.0s) when compared to LC3L deposit case. 

However, in the region between 6.2 and 9.0 seconds both LCC and LC3L cases over 

predicts the responses compared to observed record with LCC prediction being closer 
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to measured record than LC3L prediction. More importantly, after 9.0s the LC3L 

shows wayward trend with unusual amplification of motion than the recorded data, 

whereas LCC closely follows the recorded response. These kinds of similar 

observations can be made with respect to response due to input motion of 90
o
 

component as shown in Figure 3.34.  

The peak ground accelerations predicted and recorded for various cases are tabulated 

in Table 3.3. From this table it can be seen that the predicted peak surface 

accelerations with the deposit of LCC case is more closer to recorded data than the 

LC3L case for the 360
o
 component input motion. In case of 90

o
 component input 

motion, LCC deposit yielded exactly the same peak acceleration as that of observed 

data. In case of LC3L deposit even though the predicted peak values are within the 

acceptable limits there exists phase difference in the occurrence of peak response. 

Table 3.3: Comparison peak acceleration computed using LCC and LC3L 

idealised deposits with measured data for both the components of the earthquake. 

Input motion component of the earthquake Peak Surface 

accelerations 

obtained from 360
o
 – Component 90

o
 – Component 

Recorded data 0.059g 0.078g 

Computed using 

LCC-Deposit case 
0.055g 0.078g 

Computed using 

LC3L -Deposit case 
0.067g 0.083g 

In order to verify the objectives of this study further, surface responses computed 

from both idealisations (LCC and LC3L) are compared using their corresponding 

response spectra. Response spectra for 5% damping are obtained for computed 

surface acceleration responses of both the cases of idealisations of the deposit. These 

response spectra are plotted in Figure 3.35 along with that of acceleration recorded at 

the surface. Peak spectral accelerations obtained for the surface response of 

approximated continuous variation coincide well with that of measured response 

compared to 3-layer idealisation of the deposit.  Particularly in case of 360
o
 

component input motion, shown in Figure 3.35a, response spectrum of the surface 
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acceleration predicted from LCC deposit case almost coincides with that of measured 

record. Whereas, in case of LC3L deposit idealisation, response spectrum show 

considerably over estimated spectral acceleration ordinates. It is pertinent to note that, 

despite peak values of predicted surface accelerations mentioned in Table 3.3 have 

shown appreciable difference with measured values, comparison of spectral values is 

found to be satisfactory.  
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Figure 3.35: Comparison of acceleration response spectra of predicted and 

observed ground motions at the surface of the deposit for the input motion cases 

of (a) 360
o
-component and (b) 90

o
-component. 

In case of 90
o
-component input motion, shown in Figure 3.35b, there is a marginal 

difference between spectral values of predicted and measured acceleration reponses. 

However, comparatively LCC deposit has yielded better results than LC3L deposit 

when compared with actually measured data. In spite of good agreement with peak 

value of acceleration in this case (Table 3.3), there are considerable differences in 

spectral values, particularly in period range of 0.5s to 1.0s. This observation is 

apparent for the case of LC3L idealisation in particular.   
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3.9 FREQUENCY CHARACTERISTICS OF ESTIMATED SURFACE      

RESPONSE 

In the previous chapter, it has been observed that, equivalent linear analysis fails to 

simulate the measured ground motions at high frequencies and in general the analysis 

doesn’t yield consistent results under weak and strong ground shaking. Many of the 

researchers have attributed this particular deficiency of equivalent linear approach to 

frequency dependency of soil properties, i.e., strain rate dependency of shear modulus 

and damping. The parametric study presented here is an attempt to address the 

problem by examining the possibility of layer impedances as the cause for poor 

response simulation at higher frequency ranges.  
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Figure 3.36: Shear wave velocity profiles considered for Case-1, Case-2 and 

Case-3 analyses 
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In order to compare the efficiency of the different cases of layer interpretations in 

simulating the high frequency responses at the surface of the soil deposit, an 

instrumented geotechnical downhole array at El-Centro Meloland (USA) is 

considered. This geotechnical array was installed by the California Strong Motion 

Instrumentation Program (CSMIP) near USA-Mexico border.   

The details of El-Centro Meloland geotechnical array are available at the website of 

Calibration Sites for Validation of Non-Linear Geotechnical Models [Stewart (2002)] 

sponsored by PEER Lifeline Programs. The information available includes continuous 

PS logging data and its layered idealisation. Based on these data three distinctly 

different layered profiles referred to as Case-1, Case-2 and Case-3 are considered. The 

shear wave velocity profiles corresponding to these cases are shown in Figure 3.36. 

Site specific strain dependent damping and modulus reduction curves corresponding 

to soil types S1, S2 and S3 are as shown in Figure 3.37.   

Basis for three cases of layer interpretations are as follows,  

Case-1: Layered idealisation interpreted in routine manner as usually obtained by 

engineering judgment based on PS-logging data of the site as available in program 

website. Totally 15 layers used to define the velocity profile. 

Case-2: Layered deposit considered in Case (1) is modified by elimination of sudden 

velocity gradients at the layer interfaces. This is obtained by assuming smooth linear 

velocity gradient at layer interfaces extending over an appropriate depth in both of the 

adjacent layers. Thus 48 layers are employed to model this case.  

Case-3: Interpreted layered deposit to match idealised continuous variation of shear 

wave velocity. Best fit for the PS-logging data is obtained using simple power law 

equation 0( )
c

s s
V z V bz= +  where, b and c are constants, ( )

s
V z is the shear wave velocity 

at depth z measured from surface and 0s
V is the non-zero surface shear wave velocity. 

Curve fitting process to approximate the PS-logging data using the above equation 

results in ( ) 0.63140 11.18sv z z= + with regression coefficient, 
2

0.72r = . Using this 
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trend, 35 layers are used to model the shear wave velocity variation across the depth 

of the soil profile.  

0

4

8

12

16

20

24

28

1E-4 1E-3 0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0

G
/G

m
ax

Strain (%)

γ  vs.  G / G
max

 Soil type-S1

 Soil type-S2

 Soil type-S3

γ  vs. ζ
 Soil type-S1

 Soil type-S2

 Soil type-S3

 D
am

p
in

g 
(%

)

 

Figure 3.37: Strain dependent soil properties used in the analyses 
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Figure 3.38: Variation of impedance ratio across depth in different cases of layer 

idealisations. 

Figure 3.38 shows the variation of resulting impedance ratios between the layers as a 

consequence of different cases of layered idealisation of the soil deposit. It must be 

noted here that impedance contrast is significantly large in Case-1 compared to other 

two cases. Unlike Case-2, in Case-3 the impedance ratio is almost equal to unity 

between most of layers except for few layers around mid depth of the deposit.  
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3.9.1 Earthquake data 

El-Centro Meloland geotechnical array is instrumented with accelerometers at depths 

0 m , 30 m , 100 m  and 195 m . This array recorded an earthquake event namely Baja 

California event of Mexico on April 04, 2010. The magnitude of this event is reported 

to be Mw=7.2 at an epicentral distance of about 70km (Origin: 64km south of Mexico-

USA border at a shallow depth of about 10km). The 270
o
 component of this event 

recoded maximum acceleration of 0.099g at 100m depth and 0.191g at the surface of 

this array [Center for Engineering Strong Motion Data (CESMD)]. The recorded data 

is shown in Figure 3.39.  
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Figure 3.39: Recorded accelerograms at the surface and at 100 m depth of El-

Centro Meloland geotechnical array during April 04, 2010 earthquake. 

3.9.2 Analysis and results 

Using EERA equivalent linear analyses is carried out to predict surface motion for all 

the above cases.  Acceleration time history recorded at the depth of 100 m  (Figure 

3.39) is used as input motion at the base of the soil profiles (Figure 3.36) representing 

3 cases of layer idealisations considered herein.  
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Figure 3.40: Comparison of computed surface responses for the cases considered 

with recorded accelerogram at the surface 

The computed acceleration time histories for all the three cases of analyses are 

compared with that of measured. The results of these analyses along with measured 

acceleration record at the surface are presented in Figure 3.40 in the time window of 

48 to 53 seconds which represent strong motion phase of the record (time window 

includes presence of negative and positive maximum accelerations). Computed 

acceleration time histories of the surface motion are in good agreement with the trend 

of measured record particularly in the initial phase and attenuating phase (low 

amplitude signals). However, in the strong motion phase there are noticeable 

differences in the results of all the three cases of analyses.  

The computed maximum accelerations are -0.216g (at time, t = 50.43s), -0.205g (at, t 

= 50.44s) and -0.189g (at, t = 50.44s) for cases 1, 2 and 3 respectively, while 

corresponding recorded data is -0.192g (at t = 50.45s).  Hence from Figure 3.40., it 

may be noted that, better prediction of peak acceleration in Case-3 compared to that 

of Case-1 is evident, though the trend of accelerograms are almost identical for all the 

cases. Also, many of the peaks of recorded data are better simulated in Case-3 

compared to other two cases.  
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In order to comparatively study the discrepancies in the prediction of responses with 

different layered idealisations, smoothened Fourier spectra of the responses obtain for 

each case are plotted. These are compared with that of measured response as 

illustrated in Figure 3.41. 
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Figure 3.41: Comparison of Fourier spectra of computed surface responses from 

different cases of shear wave velocity profiles with that of recorded accelerogram 

at the surface 

For the purpose of comparison all the spectra are normalized with respect to peak 

Fourier amplitude of measured record resulting in unit maximum for the Fourier 

spectra of recorded data. In the lower frequency ranges (less than 1 Hz), spectra of the 

predicted responses under all the cases are more or less same within acceptable range 

of differences with respect to spectral values of recorded motion. In this frequency 

range it is interesting to note that frequency distribution of Fourier amplitudes of 

Case-2 closely follows the trend of measured data compared to other two cases.  

In the intermediate range of frequencies (1 to 10 Hz.), Fourier spectra of computed 

responses for all the three cases are waywardly deviating from spectra of recorded 

data. Fourier amplitudes are higher in the range of about 1 to 2.5Hz, lower in the 

range of about 2.5 to 5.5 Hz and thereafter following closely the spectra of recorded 
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motion up to 10 Hz. In these ranges again we may notice that Case-2 and Case-3 

hardly have any noticeable difference between them and show better comparison than 

Case-1 with the recorded data.  
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Figure 3.42: Comparison of Fourier spectra of computed surface responses for 

different cases of shear wave velocity profiles in the frequency range 10 to 30 Hz. 

As observed in many of the earlier studies, for e.g., Yoshida et al. (2002), Kausel and 

Assimaki (2002) etc., in the higher frequency range (>10 Hz) all the three cases 

monotonically underestimate the responses than the actual. Hence an attempt has been 

made to closely look at the effect of variation in layer impedances on the computed 

high frequency responses using equivalent linear analysis. In order to understand the 

clear variations in the results of responses at high frequency range, normalized 
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Fourier spectra between 10 to 30 Hz are plotted separately for all the three cases 

considered in Figure 3.42 along with spectra of recorded motion.  

In Figure 3.42 the comparison clearly indicates that, all layer idealisations considered 

yield lower amplitude responses in the high frequency region. Even though response 

computed using Case-2 idealisation observed to be more promising in lower 

frequency ranges than Case-1, it fails to show better comparison than Case-1 in higher 

frequency ranges. However, Case-3 idealisation shows remarkably better simulation 

of high frequency spectral values of observed record. For the purpose of quantitative 

comparison of predictions alternative plot is presented in Figure 3.43 by taking the 

ratio of Fourier amplitudes of recorded surface motion to that of each of the cases 

considered. In this figure horizontal line at unit value is the reference line representing 

perfect simulation (ratio of recorded motion spectral amplitudes to itself). 
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Figure 3.43: Comparison of normalized Fourier amplitude ratio of computed 

surface responses in the frequency range 1 to 30 Hz.  

Spectral ratios of Case-1 and Case-2 clearly indicate that between 15 Hz and 30 Hz, 

they are underestimated by the magnitude of 2 to 7 times while correspondingly it is 

only 1 to 3.5 times in Case-3 idealisation. Up to 15 Hz all cases show acceptably good 

simulations and this favorable trend continues up to 20 Hz for Case-3. Thus it can be 

concluded that underestimation of response using equivalent linear analysis in the 

high frequency region arises mainly due to contrasting impedance ratios between the 
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adjacent layers. Also different layer idealisations of soil deposit indicate that avoiding 

sudden velocity gradients at the layer interfaces greatly improve the high frequency 

simulations. One possible and effective way of achieving this is by idealising the soil 

deposit using continuously varying shear wave velocity profile (case-3).  

3.10 SUMMARY 

In this chapter the importance of idealizing the soil deposit as continuously 

inhomogeneous deposit is highlighted. In view of the process involved with its 

genesis, influence of environmental, mechanical and other actions are primary reasons 

for the natural soil deposit to exhibit continuous inhomogeneity. This aspect is well 

recognized and many studies have attempted to address the problem by seeking 

analytical solution to response of continuously inhomogeneous deposit and identified 

the factors which considerably affect the response of such deposits. Also categorically 

these studies have recognized the fact that eventually the response obtained by 

modeling such continuously inhomogeneous soil deposits by approximated layered 

profiles may give inconsistent results. Some of the case studies involving actual 

observed data have revealed that analysis carried out with routine layered idealisation 

may result in contradictory response. Literature available in this regard has been 

reviewed and important results are presented. Also, in this study, an attempt is made 

to extend the solutions obtained in some of these earlier studies with further 

derivation to address more general cases. However these analytical studies are limited 

to linear elastic analysis and only inhomogeneity with respect to variation of shear 

modulus/shear wave velocity of the soil deposit is considered. The depth 

inhomogeneity of other soil properties particularly density of the soil deposit is 

disregarded. Comparative and parametric studies are carried out to identity the effects 

of approximating the continuously inhomogeneous soil deposits with layered profile 

idealization on the computed response. Summary of important observations made 

from these studies is presented below.  

The amplification transfer function between surface and base of the deposit is 

presented for different inhomogeneity functions defining the variation of shear 

modulus or shear wave velocity along the depth. Starting with a simple case of linear 
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variation of shear wave velocity along the depth, higher degree inhomogeneity 

functions representing the continuous variation of stiffness property have been dealt. 

Analytical results with regard to amplification transfer functions and mode shapes of 

such inhomogeneous deposits are presented for different inhomogeneity parameters.  

Theoretically, the effect of impedance ratio between successive layers on the 

transmitted and reflected magnitudes of wave amplitude, stress amplitude and wave 

energy are discussed. As the impedance of the layer decreases wave energy dissipated 

in that layer increases. Thus wave energy at the surface of a relatively soft layer turns 

out to be smaller. However, the wave amplitude increases as the impedance of a layer 

is lower relative to base layer. Since amplification of wave amplitude is sensitive to 

layer impedances, the importance of appropriate idealization the shear wave velocity 

profile of the soil deposit is emphasized. For this purpose, variation in impedance 

ratio across the layers as a consequence of approximating a continuously 

inhomogeneous deposit with layered profile is parametrically studied. Study carried 

out for a particular case of inhomogeneity function indicates that the decrease in 

contrasting impedance ratio tends to be insignificant after certain limiting number of 

layers used to approximate the continuously varying shear wave velocity profile.  

It is observed that as the impedance ratio between inhomogeneous soil deposit and 

underlying bedrock decreases the maximum amplification increases. More 

importantly, in case of relatively flexible bedrock, troughs of the amplification 

transfer function is shifted upwards indicating increase in radiation damping as much 

of energy is reflected back into flexible half-space. Also it is noted that in case of 

rigid bedrock underlying an inhomogeneous deposit, irrespective of the degree of 

inhomogeneity the maximum amplification is unaltered. However, in this instance, 

the modal frequencies of the deposit are dependent on degree of inhomogeneity. Also 

shifting of modal frequencies to higher values is evident with increase in shear wave 

velocity near the surface of the deposit. Both these observations are important in view 

of the current practice of modeling the bedrock as rigid when input motion is 

prescribed at the base of the deposit (within motion). This assumption not only leads 

to overestimation of the responses at resonant frequencies but also affects the spectral 

characteristics of the computed response. 
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The analytical study carried out in this chapter also brings about the following 

important observations, 

−−−− As the damping increases the amplification peaks decreases with increase in 

frequency and rate of decrease is dependent on the impedance ratio between 

surface layer and bedrock at the base of the deposit.  

−−−− The response of continuously inhomogeneous deposits is sensitive to impedance 

ratio between surface layer and bedrock, inhomogeneity parameters such as ratio 

of shear wave velocity at the base to that at the surface ( )0 0/  or /sH s Hv v G G  

and degree of inhomogeneity defined by power (  or )m n of the inhomogeneity 

function.  

−−−− As the ratio 0/
sH s

v v increases (refers to decrease in 0s
v , i.e., large shear wave 

velocity gradient near the surface) the modal characteristics are very much 

sensitive compared to small values of 0/
sH s

v v .  

−−−− Similarly, for the values of 1m <  the response characteristics are significantly 

affected compared to large values of m for all values of velocity ratios.  

−−−− Trends of the mode shapes corresponding to all the natural modes of vibration of 

the deposit are significantly different for low and high values of 

0/
sH s

v v particularly near the surface of the deposit signifying deviation from the 

assumptions made regarding surface boundary condition.  

Amplification characteristics of waves at the free surface of an inhomogeneous layer 

overlying a homogeneous layer of finite thickness (instead of half-space) are studied. 

In particular, the effect of depth of homogeneous bottom layer on amplification at the 

free surface. As the shear wave velocity of the bottom layer increases the 

amplification increases because of decrease in impedance ratio between the two layers. 

Increase in depth of the bottom layer decreases the resonant frequencies but maximum 

amplification depends on the ratio of depths of top and bottom layer. More 

importantly, all resonant amplitudes are considerably higher than that obtained for 

single layer for all values of impedance ratio between base of the deposit and bedrock. 
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The solution obtained for stack of multiple Gibson layers is used to study the scope 

for incorporating a transition layer at the interfaces of homogeneous layered system in 

order to achieve gradual variation in layer impedances at their interfaces. Thereby it is 

intended to overcome unrealistic effects of contrasting impedances on the 

amplification characteristics of layered deposits. The parametric study carried out by 

varying the depth of transition zone with respect to layer thickness indicates that 

prediction of high frequency response can be improved without affecting much the 

lower mode responses. Also it is shown that appropriate configuration of Gibson 

layers can be used effectively to represent continuously inhomogeneous soil deposits 

instead of approximating them with stack of homogeneous layers.  

In order to verify the observations made above, two independent studies are carried 

out using the profile data of two instrumented geotechnical downhole arrays. The 

earthquake data recorded at these sites are used to compare the computed response 

from different shear wave velocity profile idealisations with an objective to 

investigate the implications of idealizing the deposit with continuous and layered 

profiles. Firstly, calculated responses for three different layered idealisations were 

compared with the measured response (La-Cienega site, USA). Results of idealisation 

with more number of layers indicating continuous variation in soil properties is found 

to be closer to reality than those with less number of layers.  

In the second case study an attempt is made to address the issue of underestimation of 

high frequency response in equivalent linear analysis. For this propose, analyses are 

carried out considering three cases of layered idealisations, with distinctly different 

impedance characteristics, representing the shear wave velocity profile of a soil 

deposit of El-Centro Meloland geotechnical array site. The computed surface 

responses are compared with those of actually measured data. The results clearly 

demonstrate that the high frequency response characteristics are very much sensitive 

to layer configuration particularly for contrasting impedance ratios between the layers. 



CHAPTER 4 

ANALYSIS OF CONTINUOUSLY INHOMOGENEOUS SOIL 

DEPOSITS - COMPUTER PROGRAM SRISD 

4.1  INTRODUCTION 

Characterisation of local site effects for earthquake ground motion is usually 

performed using one dimensional earthquake ground response analysis. These classes 

of analyses procedures are often based on the assumption that perfectly horizontally 

layered soil profile is excited by vertically propagating and horizontally polarized 

shear waves. In fact, in some instances non-homogeneity of the surface deposit may 

be due to continuous variation of stiffness and density rather than distinctly layered 

formation. Review of analytical studies pertaining to amplification characteristics of 

continuously inhomogeneous soil deposits and outcome of these studies have been 

presented in the previous chapter. Also, comparative study carried out with regard to 

modeling continuous inhomogeneity with an equivalent layered profile consisting of 

sufficiently large number of layers closely representing the trend of continuous 

variation has revealed distinct advantages in improving the results. Particularly, 

improvement in high frequency response simulation using equivalent linear procedure 

was evident compared to routine layered analysis. In view of these studies it can be 

concluded that, there is scope for improving the standard equivalent linear method of 

predicting seismic ground response. As these analytical studies have pointed out, 

main drawback of the routine one-dimensional modeling of the ground arises out of 

the assumption of uniform horizontal layers of varying depths. This kind of modeling 

the ground leads to unrealistic and contrasting impedance ratio between adjacent 

layers. In turn this results in poor simulation of ground response. Hence there is need 

for overcoming this lacuna by modeling the ground profile with continuous variation 

of soil properties thus resulting in smooth transition instead of abrupt variation. 

In the previous chapter, fallout of performing the analysis based on obscurely 

modeled layered idealisation when the ground essentially exhibits continuous 
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variation of soil properties has been brought out. In this chapter numerical analysis 

and the associated computer program developed for seismic response analysis of 1-D 

continuously inhomogeneous ground is presented. The details about the computer 

code SRISD (Seismic Response of Inhomogeneous Soil Deposits) along with 

example analyses for validation and testing of the program are presented.  

4.2  NUMERICAL PROCEDURE TO SOLVE 1-D WAVE EQUATION 

The procedure described here is similar to the one implemented by Prasad (1996). 

This procedure was developed essentially for limited application, primarily, to verify 

experimental data pertaining to model ground prepared using a laminar box. The main 

objective of the test was to study the deformation characteristics of the homogeneous 

model ground under harmonic excitation. Thus, in his study the computer code 

developed was limited to carrying out linear analysis under harmonic excitation. In 

the present study, the numerical procedure is further modified and extended to 

develop a general purpose site response analysis computer program which will have 

all the features and capabilities of any other available computer program based on 

equivalent linear response analysis. Apart from this broad objective, the envisaged 

computer program shall include some additional attributes to accommodate the 

refinements based on the outcome of this research work.  

4.2.1 Governing equations 

For a soil deposit with continuous variation in shear modulus along the depth ( z ), 

wave equation for the upward propagation of shear waves given by Equation (3.4) of 

previous chapter may be expressed using the usual notations as,  

2
*

2
( )

u u
G z

z zt

∂
ρ

∂ ∂ 
=  ∂ ∂∂  

                             (4.1) 

where *
G  is the complex shear modulus, given by, 

* (1 2 )G G i G iGζ= + = +        (4.2) 
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Here G ( )2

s
G vρ= is the shear modulus, i = -1 , ζ  is the equivalent viscous 

damping coefficient which is considered to be independent of frequency of excitation 

and 2G iGζ= . If the excitation is considered to be harmonic, then displacement and 

shear stress are expressed as functions of space and time as given by Equations (3.26) 

and (3.27) respectively (Chapter 3). Combining these with Eq. (4.1) yields, 

2
* 2

2
0G

z

∂
ρω

∂

Τ
+ Τ =         (4.3) 

Since shear modulus is complex, the shear stress amplitude, Τ  is also complex. If 1τ  

and 2τ are real and imaginary parts respectively of shear stress amplitude, we have,     

1 2iτ τΤ = +          (4.4) 

Therefore, it follows 

1 2
1 2

2 22

1 2
1 22 2 2

         

d dd
i i

dz dz dz

d dd T
i i

dz dz dz

τ τ
τ τ

τ τ
τ τ

Τ
′ ′= + = + 





′′ ′′ = + = +


     (4.5) 

Substituting in (4.3) yields, 

2 2

1 2 1 1 2 2( ) 0G G i G Gτ τ ρω τ τ τ ρω τ′′ ′′ ′′ ′′− + + + + =         (4.6) 

Making both real and imaginary parts equal to zero, 

2

1 2 1 0G Gτ τ ρω τ′′ ′′− + =                                 (4.7) 

2

1 2 2 0G Gτ τ ρω τ′′ ′′+ + =                                    (4.8) 

Combining the above equations (4.7) and (4.8), we have, 
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1

1 12

2 2

G G

G G

τ τ
ρω

τ τ

−
′′  −   

= −    ′′    
      (4.9) 

This yields, 

2

1 2
1 2 2

( )G G

G G

ρω τ τ
τ

− +
′′=

+
             (4.10) 

2

1 2
2 2 2

( )G G

G G

ρω τ τ
τ

−
′′ =

+
       (4.11) 

From Eq. (4.5), we have 1
1 ;

z

∂τ
τ

∂
′ = 2

2 ;
z

∂τ
τ

∂
′ = 1

1
z

∂τ
τ

∂

′
′′= and 2

2 .
z

∂τ
τ

∂

′
′′ =  

Taking 1 1 2 2 3 1; ;κ τ κ τ κ τ ′= = =  and 4 2κ τ ′= , we have, 

1 1
1 3 3 1;  i.e, 

d

dz z

κ ∂τ
κ κ κ τ

∂
′ ′= = = =                                          (4.12) 

2 2
2 4 4 2;  i.e, 

d

dz z

κ ∂τ
κ κ κ τ

∂
′ ′= = = =                                           (4.13) 

2

3 1 2
3 2 2

( )d G G

dz G G

κ ρω κ κ
κ

− +
′= =

+
                                      (4.14) 

2

4 1 2
4 2 2

( )d G G

dz G G

κ ρω κ κ
κ

−
′= =

+
                                        (4.15) 

Therefore simultaneous equations (4.12) to (4.15) represent a set of four first order 

ordinary differential equations. Numerical solution of these differential equations is 

obtained using the Fourth order Runge-Kutta method to give 1 2 3, ,κ κ κ  and 4κ . Then, 

shear stress amplitude is given by Eq. 4.4, 

1 2iκ κΤ = +                    (4.16) 

Displacement, shear strain and acceleration amplitudes are obtained using the 

following,  
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Displacement; 3 42 2

1 1
( ) ( )U z i

z
κ κ

ρω ρω

∂Τ
= − = − +

∂
                                      (4.17) 

Shear strain; 1 2

*

iU

z G G G

κ κ∂

∂

+Τ
= =

+
      (4.18) 

Acceleration; 3 4

1
( ) ( )u z iκ κ

ρ
= +��       (4.19) 

 

Figure 4.1: One-dimensional soil deposit with continuous variation in soil 

properties and its discrete idealisation in space 

The above set of ordinary differential equations (4.12, 4.13, 4.14 and 4.15) may be 

expressed in the general form as,  

1
1 1 2 3 4

2
2 1 2 3 4

3
3 1 2 3 4

4
4 1 2 3 4

( , , , , )              

( , , , , )

( , , , , )

( , , , , )

d
f z

dz

d
f z

dz

d
f z

dz

d
f z

dz

κ
κ κ κ κ

κ
κ κ κ κ

κ
κ κ κ κ

κ
κ κ κ κ


= 


=


=


=


                            (4.20) 
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Here 1 2 3, ,f f f  and 4f  are the functions of dependent and independent variables 

representing the derivatives of  1 2 3, ,κ κ κ  and 4κ  respectively. Assuming that the soil 

properties such as shear modulus ( )( )G z  or shear wave velocity ( )( ) ,sv z density 

( )( )zρ and damping ratio ( )( )zζ  of the deposit is defined at n  data points including 

bed rock at the depths 1 2 3 1, , ,......... ............ ,
i n n

Z Z Z Z Z Z−  measured from the surface 

1( 0),Z = then between any two data points 
i

Z  and 1i
Z +  the soil properties may be 

interpolated for any desired variation.  

Suppose, the step size for numerical differentiation is z∆ , the soil properties are 

determined for all the nodes ( )/nZ z∆  using corresponding interpolation function. 

The discrete idealisation of the deposit for the purpose of implementing numerical 

procedure is shown schematically in Figure 4.1. Procedure described above can 

accommodate continuous variation in shear modulus or shear wave velocity, density 

and damping ratio of the deposit along the depth. The system of first order total 

differential equations (Equations 4.12 to 4.15) are solved for the values of  1 2 3, ,κ κ κ  

and 4κ . 

4.2.2  Fourth order Runge - Kutta scheme  

The computer program SRISD is developed to obtain responses using Equations 

(4.17), (4.18) and (4.19). In order to solve the simultaneous Equations (4.12), (4.13), 

(4.14) and (4.15) fourth order Runge-Kutta numerical differentiation scheme is used. 

In this method the truncation error is 5( )z∆  [Atkinson (1984)] and it is worth noting 

that the gain in accuracy achieved using higher order method is not much vis-à-vis 

fourth order scheme, particularly, in view of added computational effort and 

complexity involved [Ralston and Rabinowitz (1978)]. The following steps illustrate 

the method of implementation of fourth order Runge-Kutta scheme to solve for 

1 2 3, ,κ κ κ  and 4κ  of Eq. (4.20) at any depth 
i

z  with an interval of z∆ (Figure 4.1). In 

general form, using the values of 1 2 3, ,κ κ κ  and 4κ at 
i

z , that is ( )i

jκ  where 1 to 4j =   

at 
i

z , ( 1)i

jκ +  may be computed using fourth order Runge-Kutta scheme as, 
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( 1) ( ) ( ) ( ) ( ) ( )

1 2 3 4

1
( 2 2 )( )

6

i i j j j j

j j
q q q q zκ κ+ = + + + + ∆     (4.21) 

where the coefficients ( ) ( ) ( )

1 2 3, ,j j j
q q q  are ( )

4

j
q represented by the following relationships, 

( )( ) ( ) ( ) ( ) ( )

1 1 2 3 4

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 1 1 1
2 1 2 3 4

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )2 2 2 2
3 1 2 3 4

( )

4

, , , ,

, , , ,
2 2 2 2 2

, , , ,
2 2 2 2 2

j i i i i

j i

j j j j
j i i i i

j i

j j j j
j i i i i

j i

j

q f z

zq zq zq zqz
q f z

zq zq zq zqz
q f z

q

κ κ κ κ

κ κ κ κ

κ κ κ κ

=

 ∆ ∆ ∆ ∆∆
= + + + + + 

 

 ∆ ∆ ∆ ∆∆
= + + + + + 

 

= ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 3 2 3 3 3 4 3, , , ,i j i j i j i j

j if z z zq zq zq zqκ κ κ κ

 
 
 
 
 
 
 
 
 
 + ∆ + ∆ + ∆ + ∆ + ∆ 

 (4.22) 

The coefficients ( ) ( ) ( )

1 2 3, ,j j j
q q q  and ( )

4

j
q are computed for all values of j successively at 

the depth 
i

z  knowing  ( ) ( ) ( )

1 2 3, ,i i iκ κ κ  and ( )

4

iκ  either from the boundary condition (that 

is at 0z = ) or from the computations of previous iteration. Then using equation 

(4.21) ( ) ( ) ( )

1 2 3, ,i i iκ κ κ  and ( )

4

iκ are updated to ( 1) ( 1) ( 1)

1 2 3, ,i i iκ κ κ+ + + and ( 1)

4

iκ + respectively. 

This procedure may be continued for all the nodes that are equally spaced at z∆ . 

4.2.3  Boundary conditions 

In Eq. 4.21, ( 1)i

jκ +  for 0i = may be computed using the values of (0)

jκ  which may be 

established with the boundary condition at the surface i.e., shear stress ( 0) 0
z

τ = = . As a 

result, from Eq. 4.16 we have ( 0) 0
z=Τ = . Therefore at 0z = we get 1 2 0iκ κ+ = . Hence, 

(0)

1 0κ = and (0)

2 0κ = . Assuming that the acceleration is known at the surface, we have 

( 0) 3 4( ) /
z

u iκ κ ρ= = +�� for all time increments. Input acceleration being a real quantity, 

we get (0)

3 ( 0, )u z tκ ρ= =�� and (0)

4 0κ = . Thus at 0z = satisfying the boundary condition 

of zero shear stress and known acceleration yields, 

(0) (0) (0)

1 2 4

(0)

3

0

( 0, )u z t

κ κ κ

κ ρ

= = =




= = ��

        (4.23) 
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4.2.4  Frequency domain analysis 

The theory and equations developed in the above section are capable of analyzing the 

ground response due to input steady state harmonic acceleration record. However, 

general seismic accelerogram is usually transient and defined in time domain at 

discrete time intervals. Therefore it is necessary to decompose this time history data 

into its harmonic components and corresponding amplitudes. To accomplish this fast 

Fourier transformation (FFT) may be adopted. Among several FFT techniques that are 

available, Cooley and Tukey algorithm is popular. In the present study Sande-Tukey 

algorithm based on decimation in frequency process is used. Although these two 

methods differ in type of process they will produce identical final results [Remirez 

(1985)].  

Consider the accelerogram ( )a t defined at discrete intervals of time which typically 

represents the data of an earthquake event of total duration T  as follows, 

( ) 0
( )

0

a t for t T
a t

for t T

< < 
=  

> 
       (4.24) 

The Fourier transform ( )A ω  of this function is defined as, 

0

( ) ( )

T

i t
A a t e dt

ωω −= ∫         (4.25) 

Since the given data is in discrete form the above integral may be replaced by the 

summation over the time axis of N  equal intervals, which correspond to the 1N +  

time coordinates , 0,1,2,..........
n

t n N= , such that 1n n
t t t+ − = ∆  for all values 

of 0,1, 2,............. 1n N= − , so that, 

21

0

( ) ( ) , 0
N i nk

N

n

A k a n e k N

π − −  
 

=

= ≤ <∑      (4.26) 

Depending on whether the value of k  is odd or even the above equation can be 

expressed as, 
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1
2

(2 )

0

(2 ) ( )
2

N

n k

n

N
A k a n a n W

−

=

  
= + +  

  
∑      (4.27) 

for even values of k  and when k  is odd, we have 

1
2

(2 1)

0

(2 1) ( )
2

N

n k

n

N
A k a n a n W

−

+

=

  
+ = − +  

  
∑      (4.28) 

where 

2
i

NW e

π 
−  
 =  is complex valued weighting function. From Eq. (4.27) and Eq. 

(4.28) we get the two sided frequency domain record at discrete frequencies 
k

ω  for 

0,1,2,......... 1
2

N
k = −  at 

2

T

π
ω∆ =  from N data points of time domain record. Fourier 

transform has an inverse that has an almost identical structure to recover discrete time 

record from its frequency domain data as, 

21

0

1
( ) ( ) , 0

N i nk
N

k

a n A k e n N
N

π −
 
 

=

= ≤ <∑      (4.29) 

the above equation yield the equations, 

1
2

(2 )

0

1
(2 ) ( )

2

N

k n

k

N
a n A k A k W

N

−

−

=

  
= + +  

  
∑      (4.30) 

1
2

(2 1)

0

1
(2 1) ( )

2

N

k n

k

N
a n A k A k W

N

−

− +

=

  
+ = − +  

  
∑     (4.31) 

Equations (4.30) and (4.31) are the inverse Fourier transforms of ( )A ω , in which apart 

from scaling factor 1/ N  the inverse Fourier transform is just as Eq. (4.27) and Eq. 

(4.28) with W being replaced by its complex conjugate. Hence, algorithm that 

computes the Fourier transform can be used, with minor modification, to compute the 

inverse discrete Fourier transform. It is evident from the equations that, the even and 

odd parts of the ( )A ω  or ( )a t  can be computed separately using discrete points of 
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length / 2N  and this decomposition can be applied recursively thereby reducing the 

computational effort to enormous extent [Schilling and Harris (2002)]. Thus FFT 

algorithm requires the condition 2M
N =  to be satisfied. In order to meet this 

condition actual record is appended with required number of zeros at the same time 

interval. This, adding quiet zone to accelerogram, in fact has got additional advantage 

because it improves the frequency resolution. In the SRISD computer program, the 

FFT pseudo-code given by Chapra and Canale (1998) is implemented with 

modification. 

4.3 SOIL PROFILE DATA 

Soil profile data consist of geometrical data and material properties. The geometrical 

data depends on how the soil profile is modeled with respect to soil properties. The 

soil properties associated with an inhomogeneous deposit in turn depends upon the 

type of inhomogeneity. The inhomogeneity of the soil deposit is usually modeled 

using layered idealisation. However, more often available field and laboratory data 

will generally provide information about the soil properties and its distribution along 

the depth at discrete points, often at constant interval, to appropriately model as one-

dimensional soil deposit. In general the soil deposit can be modeled as continuous 

profile or discrete data points or layered profile depending on analysis model 

employed. The numerical procedure described above is modified in spatial 

discretization of the soil deposit to provide flexibility in modeling as explained in the 

following sections. Usually, low strain shear modulus or shear wave velocity, density 

and initial damping ratio of the soil deposit are the essential soil properties for the 

seismic site response analysis. 

4.3.1 Continuous profile  

If the soil properties are continuously varying along the depth the data is required to 

be given in the form of an appropriate function of depth. Most popular power law 

functions which can be used to model continuous distribution of shear modulus or 

shear wave velocity along with analytical solutions for the amplification response are 

discussed in the previous chapter.  
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For continuously inhomogeneous soil deposits the data is in the form of associated 

parameters of the function defining its variation. The numerical procedure described 

above is also compliant for modeling continuous variation of damping and density of 

the soil deposit. Along with these parameters of the depth function defining the trend 

of soil properties distribution, appropriate uniform step size for spatial discretization 

is to be selected ( z∆ in Figure 4.2a) with due consideration to rate of change of soil 

properties along the depth in order to ensure accuracy. 
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Figure 4.2: Different options for soil profile data and corresponding input data 

to control step size depending upon the profile configuration; (a) Continuous 

profile data, (b) Profile data at discrete points and (c) Layered profile data  

4.3.2  Profile data at discrete points  

In case of continuous profiling techniques such as continuous P-S logging technique, 

shear wave velocity distribution along the depth is obtained often at equally spaced 
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discrete points. Usually such information is interpreted to arrive at layered shear wave 

velocity profile. In the numerical procedure explained above, it is possible to use this 

raw data of discrete shear wave velocity distribution along the depth for response 

analysis. For this purpose the values of shear wave velocities or shear modulus and 

corresponding depths are used as profile input data. That is, ( )s i
v  or 

i
G  is prescribed at 

corresponding depths 
i

z for 1,2,....i n= . In general all the soil properties between these 

data points are assumed to be linearly distributed and can be obtained by interpolation. 

The procedure is illustrated in Figure 4.2b. 

4.3.3 Layered profile 

The numerical procedure using Runge-Kutta method developed for seismic response 

of continuously inhomogeneous soil deposits can be generalized to carry out analysis 

of layered profiles. For this purpose, the variable step size for spatial discretization is 

used. In the procedure developed 
i

z∆ is constant, whereas in case of layered profile 

i
z∆ between two successive layers is the difference in mid-depths of these two layers 

as shown in Figure 4.2c. At these points the data pertaining to soil properties (shear 

wave velocity or shear modulus, density and damping ratio) of those layers are to be 

prescribed. These data are considered to be uniform throughout the depth of that layer.  

In classical numerical analysis, the methods which can implement variable step size 

are called adaptive methods and they are often preferred to improve the speed 

depending on the solution trend. Here the objective is to accommodate analysis of 

layered profile within the frame work of the numerical algorithm developed for 

continuously inhomogeneous profiles. The procedure for numerical implementation 

of this variable step size discretization along with its effect on stability and accuracy 

is detailed elsewhere [Schilling and Harris (2002)]. However, the procedure can be 

easily programmed to adjust step size depending upon thicknesses of adjacent layers 

such that the process is advanced to mid-reach of every layer. In order to enhance the 

accuracy of the solution, intermediate data points with appropriate spacing may be 

considered.  
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4.4 INPUT MOTION SPECIFICATION 

4.4.1 Surface motion 

The surface boundary condition used to obtain the initial values of 1 2 3, ,κ κ κ  and 4κ at 

0z = can be directly used in the response analysis for the case of input motion 

prescribed at the surface of the soil deposit. Eq. (4.23) gives the values as 

0 0 0

1 2 4 0κ κ κ= = = and 0

3 ( 0, )u z tκ ρ= =�� . Here, ( )u t�� is the acceleration time history for 

which the responses are calculated at any desired depths.   

4.4.2 Base motion  

For the case of input motion is to be prescribed at the base of the soil deposit the 

initial values of 1 2 3, ,κ κ κ  and 4κ given in Eq. (4.23) alone is not sufficient. However, 

the procedure used here is similar to deconvolution of surface motion to obtain base 

motion but with modification. Almost all popular computer programs developed for 

equivalent linear analysis of layered deposits the response at surface due to base input 

motion is obtained using the relative amplification between surface and base and vice 

versa as detailed earlier (Chapter 2). Herein, instead of using amplification function, 

shooting method [Schilling and Harris (2002)] is introduced for estimating the surface 

motion. For any arbitrary surface motion given at the surface, the base motion is 

estimated and adjusted accordingly to obtained target accelerogram in an iterative 

manner. For this purpose, the iterative scheme employed to implement equivalent 

linear method is also simultaneously used for estimation and updating of input 

accelerogram at the base of the soil deposit ( z H= ). If the input motion is to be given 

at any intermediate depth ( 0
i

z H< < ) other than surface ( 0z = ) or base ( z H= ) the 

same procedure is used.  

4.5 EQUIVALENT LINEAR ANALYSIS 

In equivalent-linear method, the nonlinear behaviour of soil is modeled by 

considering shear modulus and damping as a function of shear strain. The hysteretic 

stress-strain behavior of soils under cyclic loading is represented by an equivalent 
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modulus and damping ratio. The equivalent modulus is corresponding to the secant 

modulus through the endpoints of the hysteresis loop and equivalent-linear damping 

ratio is proportional to the energy loss from a single cycle of shear deformation. An 

iterative procedure, based on linear dynamic analysis, is performed to find the shear 

modulus and damping ratios corresponding to the computed shear strains. The 

iterative procedure of equivalent linear method (EQL) to update shear modulus and 

damping consistent with computed effective strain in a particular iteration is 

previously described in Chapter 2 (Section 2.7.1).  As shown in the Figures 2.9 and 

2.10, initial estimates of the dynamic shear modulus, corresponding to low strain 

shear modulus ( )
max

G and damping ratios ( )ζ  are assigned to each of the nodes for 

the first iteration. 

Thus equivalent linear analysis essentially requires input of shear modulus ratio 

( / )
max

G G  and damping ratio (ζ ) curves expressed as function of strain (
eff

γ ). In case 

of routine large scale ground response studies usually readily available information 

with respect to different types of soil are used. Many of the computer codes for e.g., 

SHAKE [Schnabel et al. (1972)], SHAKE91 [Idriss and Sun (1992)], DEEPSOIL 

[Hashash (2011)], STRATA [Kottke and Rathje (2008)], EERA [Bardet et al (2000)], 

etc. have incorporated some of the popular generic curves and they are readily 

available for the user. For example, such typical data pertaining to clay and sand are 

presented in Table 4.1. In fact the data given in this table is taken from the computer 

program STRATA. If the site specific information is available, then /
max

G G and 

ζ values at discrete strain data are to be provided by the user. In both the cases linear 

interpolation is carried out to compute /
max

G G and ζ at any intermediate strain level. 

In the following sections data required to be provided in this regard for the computer 

program SRISD is discussed.   

4.5.1 Modeling strain dependent shear modulus and damping properties 

In the computer program SRISD the /
max

G G and ζ versus
eff

γ curves are approximated 

by a polynomial function and data is given in the form of coefficients of the 

polynomial function. This procedure is implemented to overcome linear interpolation 
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between data points and thereby associated interpolation error is avoided. Firstly, it is 

demonstrated that many of the generic data curves can be satisfactorily represented by 

a seventh degree polynomial. Thus /
max

G G and ζ can be conveniently expressed as a 

continuous function of effective strain. For some of the popularly used generic strain 

dependent /
max

G G and ζ curves, the polynomial coefficients are incorporated in the 

subroutine. The seventh degree polynomial to represent strain dependent shear 

modulus and damping ratio is given by,   

( )

( )

7

max
0

i

i eff
i

G

G B
γ

γ

ζ γ
=




= ∑



        (4.32) 

Here effγ is the effective strain computed based on computed maximum strain ( maxγ ) 

in the previous iteration. Coefficients of Eq. (4.32) iB ( )0,1,2,...7i = are distinctly 

different curve fitting constants for shear modulus and damping. The procedure of 

expressing strain dependent modulus degradation and damping in the form Eq. (4.32) 

is verified for two popularly used curves for clayey soils of different plasticity indices 

(PI) proposed by EPRI (1993) and Vucetic and Dobry (1991). The results of the curve 

fitting process are tabulated in Tables 4.2 and 4.3. Figures 4.3a and 4.3b show the 

curves of strain dependent / maxG G and ζ respectively obtained using the curve fitting 

coefficients tabulated in Table 4.2 for the data of EPRI (1993), while Figures 4.4a and 

4.4b present these results respectively for the curves proposed by Vucetic and Dobry 

(1991). In these figures actual data points of respective curves are also plotted. It is 

clear from these figures that the Eq. (4.32) exactly represents the experimental data. 

Further this procedure is also validated for the confining pressure dependent curves 

proposed for cohesionless soil proposed by EPRI (1993). The curve fitting results are 

tabulated in Table 4.4. Figures 4.5a and 4.5b show the comparison of the actual data 

and curve fitted to these data using Eq. 4.32. As in the previous case, here too the 

curves fitted using polynomial function exactly represents the actual data. 

Hence it can be concluded that, the polynomial function of appropriate degree can be 

used to represent the strain dependent shear modulus and damping ratio of the soil. As 
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stated previously, in the computer program SRISD this method of modeling strain 

dependent soil properties is adopted in the EQL process. Hence user is required to 

give the polynomial coefficients of the curve fitted for any specific data. Currently, 

the program has incorporated many of the popular strain dependent modulus and 

damping curves which can be selected by specifying appropriate soil type.   

Table 4.1: Typical strain dependent shear modulus and damping ratio data used 

in equivalent linear analysis programs 

 

 

 

Table 4.2: Curve fitting constants for EPRI (1993) data for strain dependent 

shear modulus and damping ratio as function of plasticity index 
PI 

(%) 
10 30 50 70 

 max/G G  ζ (%) 
max/G G  ζ  (%) 

max/G G  ζ  (%) 
max/G G  ζ  (%) 

B0 0.0311 19.9173 0.0736 18.9623 0.1529 17.4294 0.2993 13.6964 

B1 -0.1146 -7.0103 -0.1638 -2.7322 -0.2339 4.1378 -0.3395 7.8039 

B2 -0.1827 -22.351 -0.0477 -24.616 0.1747 -16.0703 0.4468 -6.8748 

B3 -0.5027 -9.2886 -0.527 -18.2789 -0.2501 -15.8412 0.3778 -10.1341 

B4 -0.2664 0.3865 -0.4247 -5.9456 -0.3417 -6.6096 0.0663 -4.8517 

B5 -0.0507 1.0999 -0.1376 -0.9258 -0.14 -1.4526 -0.0178 -1.1233 

B6 -0.0022 0.2604 -0.0206 -0.0558 -0.0249 -0.1655 -0.0073 -0.1243 

B7 0.0002 0.0197 -0.0012 1.23E-04 -0.0017 -0.0077 -0.00067 -0.005 

 

Clay (PI = 30 %) 

Vucetic and Dobry (1991) 

Sand (depth 50 ft – 120 ft) 

EPRI (1993) 

Strain 

(%) 
/ maxG G  

Damping 

(%) 

Strain 

(%) 
/ maxG G  

Damping 

(%) 

1.00E-04 1 1 1.00E-04 1 0.57 

3.16E-04 1 1 3.16E-04 0.99 0.86 

1.00E-03 1 1 1.00E-03 0.96 1.7 

3.16E-03 0.98 2.1 3.16E-03 0.88 3.1 

1.00E-02 0.9 3.8 1.00E-02 0.74 5.5 

3.16E-02 0.75 5.9 3.16E-02 0.52 9.5 

1.00E-01 0.53 8.8 1.00E-01 0.29 15.5 

3.16E-01 0.35 12.5 3.16E-01 0.15 21.1 

1.00E+00 0.17 16.9 1.00E+00 0.06 24.6 
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Table 4.3: Curve fitting constants for Vucetic and Dorby (1991) data for strain dependent shear modulus and damping ratio as 

function of plasticity index 
PI (%) 0 15 30 50 100 200 

 max/G G  ζ (%) 
max/G G  ζ (%) 

max/G G  ζ (%) 
max/G G  ζ (%) 

max/G G  ζ (%) 
max/G G  ζ (%) 

B0 0.03 24.0028 0.1001 20.001 0.1701 16.8998 0.25 13.5005 0.37 9.8008 0.5299 8.1001 

B1 0.0075 8.5138 -0.2162 10.9906 -0.6246 9.9717 -0.4538 6.4271 -0.5848 9.9304 -0.5148 8.4099 

B2 0.5836 9.8422 -0.1256 14.8948 -1.1145 3.9827 -0.0234 -7.5504 -0.0826 7.5563 -0.1091 3.7345 

B3 0.7477 23.321 -0.5119 26.4607 -1.6152 5.1277 0.0192 -11.5965 0.1435 5.613 0.1254 -0.1051 

B4 0.6138 19.1844 -0.4135 20.8089 -1.0575 4.7096 0.0259 -6.4102 0.1181 3.2993 0.1149 -0.8093 

B5 0.2597 7.3975 -0.1474 8.0266 -0.3463 2.1107 0.0226 -1.7072 0.045 1.2034 0.0446 -0.3369 

B6 0.052 1.3832 -0.0255 1.5128 -0.0564 0.4497 0.0068 -0.2112 0.0086 0.2308 0.0086 -0.0593 

B7 0.004 0.1011 -0.0018 0.1113 -0.0037 0.0365 0.000659 -0.0091 0.000654 0.0176 0.000649 -0.004 

Table 4.4: Curve fitting constants for EPRI (1993) data for strain dependent shear modulus and damping ratio as a function of 

confining pressure 

0 ( )kPaσ  0 – 20 20 – 50 50 – 120 120 - 250 250 – 500 500 – 1000 

 max/G G  ζ (%) 
max/G G  ζ (%) 

max/G G  ζ (%) 
max/G G  ζ (%) 

max/G G  ζ (%) 
max/G G  ζ (%) 

B0 0.0424 27.2203 0.0654 24.6988 0.0914 22.5769 0.1176 20.8966 0.148 19.0629 0.2004 16.46 

B1 -0.1308 11.4236 -0.1815 9.8169 -0.2018 10.1673 -0.2373 11.0627 -0.3043 11.4558 -0.3294 10.3354 

B2 -0.0596 5.1472 -0.1015 -3.2211 0.0121 -4.5242 0.0419 -3.9918 0.0321 -4.1865 0.2104 -8.3465 

B3 -0.2661 12.6187 -0.452 1.5603 -0.3544 -1.404 -0.3413 -2.4417 -0.3261 -4.6421 0.004 -12.488 

B4 -0.1019 10.0609 -0.302 3.7854 -0.295 2.0344 -0.3294 1.1986 -0.3471 -0.5919 -0.1358 -6.299 

B5 0.0044 3.5033 -0.0801 1.6684 -0.0925 1.204 -0.1168 0.9726 -0.1339 0.3695 -0.0683 -1.6288 

B6 0.0068 0.5768 -0.0092 0.3025 -0.0129 0.2438 -0.0187 0.2176 -0.0232 0.1237 -0.0131 -0.2172 

B7 0.000776 0.0370 -0.000344 0.0203 -0.000673 0.0174 -0.0011 0.0165 -0.0015 0.0109 -0.000914 -0.01.19 



 172 

1E-4 1E-3 0.01 0.1 1
0

4

8

12

16

20

24

Effective strain, γ
eff

 (%)

(b) EPRI (1993) - Damping ratio, ζ  v/s γ
eff

EPRI (1993) data

 PI = 10 %

 PI = 30 %

 PI = 50 %

 PI = 70 %

ζ 
 (

%
)

Effective strain, γ
eff

 (%)

1E-4 1E-3 0.01 0.1 1
0.0

0.2

0.4

0.6

0.8

1.0

1.2
(a) EPRI (1993) - G/G

max
 v/s γ

eff

Polynomial fit

  PI = 10 %

  PI = 30 %

  PI = 50 %

  PI = 70 %

G
 /

 G
m

a
x

 

Figure 4.3: Curve fitting for EPRI (1993) data for strain dependent shear 

modulus and damping ratio as a function of Plasticity Index 
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Figure 4.4: Curve fitting for Vuocetic and Dorby (1991) data for strain 

dependent shear modulus and damping ratio as a function of Plasticity Index 
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Figure 4.5: Curve fitting for EPRI (1993) data for strain dependent shear 

modulus and damping ratio as a function of confining pressure 
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4.5.2 Empirical shear modulus and damping curves 

As discussed previously the important input in seismic site response analysis is the 

dynamic soil properties assigned to each layer. Both, equivalent linear analysis in 

frequency domain and true nonlinear analysis in time domain, require strain 

dependent shear modulus reduction curve and damping curve as input assigned to 

each layer depending on its soil characteristics. Some of the routinely used data to 

model strain dependent shear modulus and damping are reported in the form of curves 

and have limitation with respect to general application. However, reliability of 

computed response has direct bearing on the choice of these curves in the analysis. 

Basically, these curves have been obtained for the soil from particular region and it is 

impossible to explicitly include all the other factors which considerably influence 

shear modulus and damping properties in an experimental setup. It has been 

categorically reported that shear modulus and damping curves are dependent on 

several characteristics most importantly soil type, effective confining stress and soil 

plasticity. To a lesser extent these curves are also found to be sensitive to grain size, 

number of loading cycles, frequency of loading, degree of saturation, over 

consolidation ratio ( ) ,OCR aging, etc [Hardin and Drnevich (1972a, 1972b); 

Darendeli (2001)]. The relative importance of these factors as reported and tabulated 

by Darendeli (2001) is shown in Table 4.5. 

But effects of some of these factors are yet to be ascertained conclusively. Therefore 

use of such generic curves proposed for particular type of soil disregarding all other 

significantly influencing factors, have posed uncertainty with respect to reliability of 

computed response because some of these factors may be vital for the problem at 

hand.  Recognizing these many have attempted to incorporate these factors through 

statistical analysis by considering relatively large data that comprise many of these 

influential factors. Also, having these curves expressed analytically has added 

advantage with respect to convenience in computer implementation because 

interpolation process between experimental strain data points for intermediate strain 

values can be eliminated. Hardin and Drnevich (1972a) extensively studied the soil 

parameters that directly affect the strain dependent shear modulus and damping 
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curves and proposed hyperbolic model [Hardin and Drnevich (1972b)]. Several 

rigorous attempts have been made in the past, for example Ishibashi and Zhang (1993), 

Darendeli (2001), Zhang et al. (2005) etc, to express effγ  versus / maxG G andζ  curves 

in the equation form. Usually these empirical equations are developed by statistical 

analysis of experimental curves. There are several such curves reported in the 

literature and a good account of such curves is given in Darendeli (2001).  

Table 4.5: Relative importance of soil parameters e influencing strain dependent 

Shear modulus and Damping curves [Darendeli (2001)] 

Parameter 
Effect on normalized 

strain dependent 

G/Gmax curve 

Effect on normalized 

strain dependent 

Damping curve 

Strain Amplitude ��� ��� 

Mean Effective Confining Pressure ��� ��� 

Soil Type and Plasticity ��� ��� 

Number of Loading Cycles � ��� 

Frequency of Loading (above 1 Hz) � �� 

Over consolidation Ratio � � 

Void Ratio � � 

Degree of Saturation � � 

Grain Characteristics, Size, 

Shape, Gradation, Mineralogy, soil 

structure, 

� � 

��� - Very important, �� - Important, �- Less important 

Among these empirical relationships SRISD program has included the models 

proposed by Ishibashi and Zhang (1993), Darendeli (2001) and Zhang et al, (2005), 

along with other options, in its subroutine which updates soil properties for the next 

iteration of EQL process. The equations pertaining to these models are presented in 

the following sections.  

4.5.2.1 Ishibashi and Zhang (1993) equations 

Ishibashi and Zhang (1993) developed set of empirical equations incorporating effect 

of overburden pressure for sands and extended these equations to clays by modifying 

the associated constants to take account of plasticity index. The strain dependent shear 

modulus and damping properties are given by,  
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( ) ( ) ( ),
, ,

m PI

m

max

G
PI K PI

G

γγ γ σ ′=       (4.33) 

( )
( )1.30.0145( ) 20.333 1

, 0.586 1.547 1
2

PI

max max

e G G
PI

G G
ζ γ

−+     
 = − +   
     

 (4.34) 

The plasticity index ( )PI dependent functions ( ),K PIγ and ( ),m PIγ are, 

( )

1.30.0145( )0.000556
( , ) 0.272 1 tanh 0.4 ln    

0.000102 ( )
, 0.5 1 tanh 0.492ln

PI
m PI e

n PI
K PI

γ
γ

γ
γ

−
   

= −    
     


   + 

= −    
     

  (4.35) 

Here, 

( )

( )

( )

1.4046

1.9767

1.1155

0.0                            for   0

3.37 10   for   0< 15
( )        

7.0 10     for   15< 70

2.7 10     for   70

PI

PI PI
n PI

PI PI

PI PI

−

−

−

=


× ≤
= 

× ≤


× >

     

4.5.2.2 Darendeli (2001) equations 

The modulus degradation and damping equations presented by Darendeli (2001) 

include, apart from effect of plasticity index and confining pressure, many additional 

parameters such as significant number of loading cycles, frequency of loading 

and OCR . The modulus and damping relationships as function of these parameters 

were obtained by employing statistical analysis on a wide range of experimental data.  

The shear modulus is given by,  

( ) 0.919

1

1
max

r

G

G
γ

γ

γ

=
 

+  
 

       (4.36) 

Here reference strain 
r

γ is, 
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( )
0.3483

0.32460.0352 0.001m
r

PI OCR
p

σ
γ

′   = + ×   
 

    (4.37) 

Damping is expressed as a function of max/G G ,   

( ) ( )
0.1

0.6329 0.0057 lnmas min

max

G
N

G
ζ γ ζ ζ

   
= − +  

   

   (4.38) 

Here, 

( ) ( )
0.2889

0.10690.8005 0.0129 1 0.2919lnm
min PI OCR f

p

σ
ζ

−

−′ 
 = + × × +   

 
 (4.39) 

2 5 3

1 1 11.0215 0.594 6.152 10mas mas mas masζ ζ ζ ζ−= + + ×     (4.40)  

In Eq. (4.39) f is the loading frequency in .Hz and 1masζ of Eq. (4.40) is damping ratio 

corresponding to Masing hysteretic behaviour and is related to reference strain as, 

1 2

ln
4

0.5

r
r

r

mas

r

γ γ
γ γ

γ
ζ

π γ

γ γ

  +
−  

  = −
  
  

+   

      (4.41) 

4.5.2.3 Zhang et al. (2005) equations 

Zhang et al (2005) presented ( )max/G G γ and ( )ζ γ equations which incorporated 

geological age of the soil deposit. The equation for ( )max/G G γ is same as Eq. (4.36) 

but the values of curvature parameter β and reference strain ( )rγ are considered to be 

function of geological age of the soil. 

 ( )
1

1
max

r

G

G
β

γ
γ

γ

=
 

+  
 

        (4.42) 
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The damping is given by, 

( )
2

10.6 31.6 21
min

max max

G G

G G
ζ γ ζ

   
= − + +   
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    (4.43) 

where, 

( )( )
2

0.008 0.82
100

m
min PI

λ

σ
ζ

−
′ 

= + × 
 

                 (4.44) 

Values of , rα γ and λ are given in Table 4.6 along with corresponding regression 

coefficients representing fitness of each of the parameter as obtained by Zhang et al 

(2005, 2008).  

Table 4.6: Curve fitting parameters , rβ γ and λ of Eq. (4.43) and Eq. (4.44) for 

different geological groups [Zhang et al (2005, 2008)] 

Age β  
rγ  λ  

Quaternary soil 
2

0.021 0.834

( 0.505)

PI

r

+

=
 

2

0.0011 0.0749

( 0.508)

PI

r

+

=
 

( 0.0142 )

2

0.316

( 0.323)

PI
e

r

−

=
 

Tertiary and 

older soil 2

0.0009 1.026

( 0.015)

PI

r

+

=
 

2

0.0004 0.0311

( 0.143)

PI

r

+

=
 

( 0.0110 )

2

0.316

( 0.232)

PI
e

r

−

=
 

Residual / 

Saprolite soil 2

0.043 0.794

( 0.053)

PI

r

+

=
 

2

0.0009 0.0385

( 0.107)

PI

r

+

=
 

( 0.0456 )

2

0.420

( 0.486)

PI
e

r

−

=
 

4.5.2.4 Comparison of Empirical Equations 

Figures 4.6a and 4.6b present comparisons between the strain dependent shear 

modulus degradation curves as function of plasticity index proposed by Vucetic and 

Dobry (1991) with that estimated using empirical equations proposed by Zhang et al. 

(2005) and Darendeli (2001) respectively. Figures 4.7a and 4.7b compare strain 

dependent damping curves proposed by Vucetic and Dobry (1991) with Zhang et al 

(2005) and Darendeli (2001) curves respectively. The analytical curves closely 

simulate the experimental curves within strain limit of about 0.1% while beyond this, 

differences are significant. Moreover, as the plasticity index increases the difference 
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increases appreciably with Vucetic and Dobry (1991) curves displaying more stiffer 

behaviour. In case of damping curves the analytical curves of both Zhang et al. (2005) 

and Darendeli (2001) tend to show higher damping compared to Vucetic and Dobry 

(1991) curves with increase in plasticity index particularly beyond the strain level of 

0.1%. Zhang et al (2005) shear modulus and damping curves almost converges to 

unique value at high strain range.    
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Figure 4.6: Strain dependent shear modulus degradation curves as a function of 

plasticity index (for mσ ′ = 100 kPa). Comparison of  vs maxGγ curves proposed by 

Vucetic and Dobry (1991) with (a) Curves proposed by Zhang et al (2005), (b) 

Darendeli (2001). 
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Figure 4.7: Strain dependent damping ratio curves as a function of plasticity 

index (for mσ ′ = 100 kPa). Comparison of  vs maxGγ curves proposed by Vucetic 

and Dobry (1991) with (a) Curves proposed by Zhang et al (2005), (b) Darendeli 

(2001). 
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4.6 GENERAL DESCRIPTION OF COMPUTER PROGRAM SRISD 

The computer program SRISD, coded in FORTRAN, is capable of analyzing for 

response of inhomogeneous soil deposits under seismic excitation. The program is 

having same features as that of popular program SHAKE91 with regard to input and 

output features. However, several additional features have been incorporated into the 

program in order to fulfill the objectives of this research work. The main part of the 

program implements the numerical solution of the wave equation obtained using 

Runge-Kutta scheme.   

4.6.1 Outline of the program 

The input to program SRISD is dependent on the type of modeling adopted to 

characterize the soil profile as discussed earlier in Section 4.3. Input motion data 

consists of time history of the acceleration record along with depth at which it is to be 

prescribed. Fourier transform of this input motion is obtained and is used to get the 

response of the deposit at all the desired depths of the deposit using the solution 

procedure explained earlier in Section 4.2. The time histories of strain at all the nodes 

of the deposits are computed and effective strains at these nodes are calculated to 

update soil properties using the respective shear modulus and damping curves. 

Updated soil properties are employed in the successive iteration of the equivalent 

linear procedure as explained in Section 4.5. Finally, after convergence of strain is 

achieved at all the nodes the control exits from the main body of the program to 

prepare required results as output.  

4.6.2 Input soil profile data 

Three options given for defining the shear wave velocity or shear modulus profile of 

the inhomogeneous soil deposit are as follows, 

4.6.2.1 Layered profile 

This is the option which is used in most of the popular programs (SHAKE, SHAKE91, 

DEEPSOIL, EERA, STRATA, etc.) for seismic site response analysis, in which layer 
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information such as thickness, unit weight, low strain shear wave velocity or shear 

modulus and initial value of soil damping are to be provided. For the case of 

equivalent linear analysis, the input data regarding type of strain dependent shear 

modulus and damping curves are to be specified for each of the layers.  

4.6.2.2 Continuously inhomogeneous deposit  

In this case the shear wave velocity or shear modulus profile of deposit is defined 

using depth dependent function. For this purpose currently SRISD includes several 

options to choose from. These options comprise of all the forms of depth dependent 

G and sv functions discussed in the previous chapter. Depending on the type of 

inhomogeneity function selected to model the profile, related parameters are to be 

given as input. Even the damping and density properties of the soil deposit can be 

considered to continuously varying along the depth. As in the previous case, the type 

of shear modulus and damping model need to be specified. Also, currently SRISD is 

provided with the option of modelling soil deposits consisting of two continuously 

inhomogeneous layers with different degree of inhomogeneities.    

4.6.2.3 Soil profile defined using discrete data points  

If the shear wave velocity data along the depth of the deposit is obtained using 

continuous PS logging field test then using this option such raw data can be used to 

compute response of the deposit. Again, as in the previous case, data pertaining to 

density, initial damping and type of soil are required to be specified at each of the 

shear wave velocity data points. The shear wave velocity, density and damping are 

assumed to vary linearly at all the nodes between the data points. In this case, as in 

layered profile case the shear modulus and damping properties of the soil are updated 

only at these discrete data points and linear interpolation is carried out to obtain 

updated soil properties at nodes between primary nodes.  

4.6.3 Earthquake data  

The data required with regard to input motion are time history of the input 

acceleration record, the time interval between acceleration data points and total 
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number of acceleration data points. Additionally, maximum cut-off frequency to filter 

out high frequency components of the input motion may be given. Also, depth at 

which the input motion is prescribed shall be specified. 

4.6.4 Equivalent linear analysis data  

The data pertaining to strain dependent shear modulus and damping curve for each of 

the soil modeling may be selected from the suite of curves for which pertinent data is 

built into SRISD material library. These include several generic curves such as those 

proposed by EPRI (1993), Vucetic and Dobry (1991), Seed and Idriss (1970) and 

others. The data of these curves are expressed in equation form using polynomial 

function (Eq. 4.32) and coefficients of this function are used as data to specify the 

curve (for ex., Tables 4.3, 4.4 & 4.5). Also, the equations (in Section 4.6.2) proposed 

by Ishibashi and Zhang (1993), Darendeli (2001) and Zhang et al. (2005) have been 

incorporated into the material library of the program SRISD. The ratio of effective 

strain to maximum strain ( )R is to be specified to carry out EQL process. However 

supplementary options with regard to selection of R value are provided and more 

discussion about these improvements to routine EQL approach is detailed in the next 

chapter (Chapter 5). The additional feature which is unique to SRISD compared to 

other available programs is that the damping and shear modulus curves can be 

selected independent of each other and keep either of these soil properties constant 

with the other being iteratively updated. This option has been accommodated for the 

purpose of making parametric study on effect of these properties individually on the 

response of continuously inhomogeneous soil deposits.  

4.7 TESTING OF PROGRAM 

The computer program SRISD is coded to perform equivalent linear site response 

analysis in the frequency domain with acceleration time history as input motion. 

Primary difference between other programs available for this purpose and SRISD is 

that, it can model the soil deposit properties as continuously varying with depth. 

However it can also perform analysis with regular layer idealisation as it is being 

treated in other programs. Herein program is tested for reliability of its output by 
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comparing it with that of other programs. As an example of this testing process one of 

the analyses carried out is presented here. The output for the problem under 

consideration is compared with results obtained using SHAKE91 program [Idriss and 

Sun (1992)]. Also, results obtained from SRISD are compared with exact analytical 

solutions presented in the previous chapter. 

4.7.1 Problem statement 

For the purpose of testing SRISD program, the soil deposit considered here is the one 

which is used as demonstration example in the manuals of the computer programs 

SHAKE91 and EERA. The analysis is carried out for validating SRISD output with 

respect to that of SHAKE analysis. The soil deposit considered for this study is shown 

in Figure 4.8. The soil deposit considered is of 45.7 m depth and consisting of sand 

and clay layers overlying bedrock of shear wave velocity 1219.2 m/s. The soil deposit 

is discretised into 17 layers. The shear wave velocities of these layers vary in the 

range of 275 m/s to 550 m/s. The unit weight is of constant value of 19.66 kN/m
3
 up to 

a depth of about 20 m and 20.45 kN/m
3
 for the remaining depth up to bedrock (which 

has a unit weight of 22.02 kN/m
3
).  

The curves proposed by Sun et al., (1988) and Seed and Idriss (1970) are used to 

model strain dependent modulus reduction property of clay and sand respectively. The 

strain dependent damping for both sand and clay are represented by lower range curve 

recommended for sand by Seed and Idriss (1970). The curves representing strain 

dependent soil and bedrock properties that are adopted in the analysis are shown in 

Figure 4.9.  Following the procedure described in Section 4.5.1, the input data for 

these curves were obtained for EQL analysis using SRISD.    

The input data file for SRISD essentially consists of soil profile data and input 

earthquake motion. For sake of convenience soil profile input data is almost kept in 

the same format as that of SHAKE91. However, the input fields are format free unlike 

formatted fields of SHAKE program.  

The input motion for SRISD is to be given in a separate file. The input acceleration 

time history considered in the example analysis is the one corresponding to Loma-
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Prieta (USA) earthquake of 1989 recorded at Diamond Heights. The peak acceleration 

of the record is 0.1129 g. The remaining part of the input file for SRISD consists of 

various options for output specification. These options include acceleration, strain and 

stress time histories at different depths, amplification ratio as a function of frequency 

between any two layers, maximum response quantities etc.  All these desired output 

options are instructed to the program through format free fields. For equivalent linear 

analysis, the value of R used in SRISD and SHAKE91 analyses is 0.5. The 

convergence of maximum strain in all the 17 layers was achieved after 8 iterations. In 

case of SRISD analysis variable step sizes are used for discretization along the depth 

of the deposit as explained earlier to simulate SHAKE91 analysis. When layered 

analysis option is selected in SRISD the program computes distance between mid-

depth of successive layers and assigns these step sizes ( )iz∆ at corresponding depths.  
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Figure 4.8: The shear wave velocity and unit weight profiles of layered soil 

deposit considered for example problem to validate SRISD output. 
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Figure 4.9: Stain dependent soil and bedrock properties used in the example 

analysis. 
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Figure 4.10: Comparison of amplification ratio between surface layer and 

bedrock motions computed from SHAKE91 and SRISD for the example profile 

shown in Figure 4.8. 
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Figure 4.11: Comparison of acceleration time history responses at different 

depths between SHAKE91 and SRISD for the example profile (Figure 4.8). 

Response computed for the input motion given at bedrock.   
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Figure 4.12: Comparison of acceleration time history responses at different 

depths between SHAKE91 and SRISD for the example profile (Figure 4.8). 

Response computed for the input motion given at surface.  
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4.7.2 Results and comparison 

For example problem considered, the output obtained from SHAKE91 and SRISD 

were compiled and compared with respect to amplification between surface and 

bedrock motions. This comparative study clearly demonstrates the good agreement 

between the results obtained from SHAKE91 and SRISD with almost negligible 

differences. Amplification ratio between surface layer and bedrock motions is shown 

in Figure 4.10. It can be observed that the first mode amplitude and frequency are 

very much comparable. However, in higher modes negligible differences have 

resulted in values of modal frequencies but the amplification ratio is almost identical. 

This negligible difference may be attributed to different frequency resolutions used 

for computation of amplification function.   
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Figure 4.13: Computed maximum acceleration response along the depth of the 

soil deposit for input motion at the base (Comparison between SHAKE91 and 

SRISD for the example profile in Figure 4.8). 

Most importantly in SHAKE91 the amplification function is computed using the 

analytical expression for layered profile using the damping and shear modulus 
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corresponding to converged values of strains obtained after last iteration while in case 

of SRISD the amplification is computed directly from the computed acceleration time 

history at the surface and the input motion at the bedrock.   

Apart from comparison of amplification results, comparisons made with respect to 

acceleration time history responses at different depths are shown in Figure 4.11 and 

Figure 4.12. For the case of input motion at top of the bed rock level, comparison of 

acceleration time histories between SHAKE91 and SRISD at top of the surface layer, 

4
th

 layer, 8
th

 layer and 13
th

 layer along with input motion at the top of bedrock are 

shown in Figure 4.11, while Figure 4.12 presents the comparison of the responses 

computed at the top of these layers for the case of input motion being prescribed at 

surface layer. Finally, SRISD output is satisfactorily validated by comparing the 

maximum acceleration response as obtained from SRISD and SHAKE91 in Figure 

4.13. From the results presented here with regard to computed responses using 

SHAKE91 and SRISD computer programs it can be concluded that testing of the 

program SRISD is successful in reproducing the results of SHAKE91.  

4.7.3 Comparison with analytical results  

Finally, for the purpose of verifying the output of the computer program SRISD, the 

analytical results obtained in the previous chapter are compared with the SRISD 

output. Amplification results pertaining to a continuously inhomogeneous soil deposit 

of 50 m thickness overlying rigid bedrock is taken for the purpose of comparison. The 

analytical results used here are those obtained for parametric study in the previous 

chapter. The inhomogeneity function defining the continuous variation of shear 

modulus along the depth is as given by Eq. 3.24 ( ) ( )0

m
G z z z = Λ +
 

of the 

preceding chapter. The comparison is shown in Figure 4.14. In Figure 4.14a the exact 

solution is obtained for the case of 4m =  with 0 / 0.50s sHv v = which corresponds to 

43.3912 10−Λ = × and 0 120.71z = . In Figure 4.14b and 4.14c, same value of 0.4m = is 

used while the velocity ratios of 0 / 0.20s sHv v = and 0 / 0.50s sHv v = are used 

respectively. In all the cases the density 31800 /kg mρ = and damping ratio 
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5%ζ = are employed. As it can be observed from these figures, the amplification 

transfer functions computed using the program SRISD exactly simulate the trends of 

the amplification transfer functions obtained analytically (Eq. 3.36 and 3.41). 
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Figure 4.14: Comparison of amplification results between analytical solution and 

SRISD – Soil deposit overlying rigid bed rock; Damping ratio 5%ζ = ; 

(a) 0 / 0.50 & 4.0,s sHv v m= =  (b) 0 / 0.20 & 0.4s sHv v m= = and (c) 

0 / 0.50 & 0.4s sHv v m= =  
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Figure 4.15: Comparison of amplification results for two layer soil profile 

between analytical solution and SRISD. The inhomogeneity factors of top layer 

are 0 / 0.50 & 0.20s sHv v n= =  ( 0 200 /sv m s= ). Shear wave velocity and depth of 

homogeneous layer considered are 2 2800 /  and 100sv m s H m= =  respectively. 

Finally in order to ascertain the computational ability of SRISD, the results obtained 

using this computer program are compared with analytical solution of complex two 

layered soil deposit. Figure 4.15 compares the result obtained for the case of soil 

deposit with top layer of thickness 1 50H m= and having inhomogeneity factors 

0 / 0.50s sHv v = and ( )0.20 0.4n m= = with 0 200 /sv m s=  overlying homogeneous 

deposit with 2 800 /sv m s=  and 2 100H m= with usual notations (Figure 3.20). The 

analytical solution of deposit considered is obtained using Eq. (3.52) and reproduced 

from Figure 3.21b. As in the case of single layer, it can be observed from this figure 

that the amplification transfer function computed using the program SRISD exactly 

simulates the trend of the amplification transfer function obtained analytically. For the 

purpose of comparative study the soil deposit is discretised at an interval of 0.10 m 

while using the computer program SRISD. This spatial discrete interval appears to be 

good enough to ensure stability and accuracy of the results at all frequencies of the 

input motion.   
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4.8 PARAMETRIC STUDIES ON AMPLIFICATION USING COMPUTER 

PROGRAM SRISD  

The analytical results presented in the previous chapter are capable of giving 

amplification for limited cases.  While formulating the solution it is assumed that the 

layer densities and shear wave velocity for the underlying deposit are constant for the 

case of two layered soil deposit. However, in reality these assumptions are seldom 

valid. This aspect has been discussed in detail in the preceding chapter along with 

relevant literature available in this regard.  

Along with continuous variation of shear wave velocity the density of the bottom 

layer is also considered to vary linearly keeping mean density same as in the earlier 

analyses. The bottom layer is modeled as inhomogeneous layer with shear wave 

velocity varying linearly and having mean value equal to constant shear wave velocity 

used for the homogeneous deposit in the earlier analyses. These two cases of density 

and shear wave velocity variations along the depth have been treated independently.  
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Figure 4.16: Comparison of amplification results for two layer soil profile having 

continuous variation of density in the top layer and continuous linear variation 

of shear wave velocity in the bottom layer using SRISD. 
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Figure 4.17: Comparison of variation of peak acceleration response along the 

depth of the profile for two layer soil profile having continuous variation of 

density in the top layer and continuous linear variation of shear wave velocity in 

the bottom layer using SRISD. 

The results of this study are presented in Figure 4.16 and Figure 4.17 respectively for 

amplification characteristics and peak acceleration response along the depth. The 

input motion used for the analysis is Diamond Heights record of 1989 Loma-Prieta 

(USA) earthquake (Figure 4.11). From these figures it is evident that variation of 

density along the depth has significant effect on the amplification as well as 

acceleration response of the computed motion. In all the analytical studies discussed 

earlier only the variation of stiffness along the depth is considered and density of the 

deposit is assumed to be constant. The modal frequencies are significantly altered 

with the variation of density compared to those obtained from the analysis carried out 

keeping the density constant. Though the study is carried out for a limited case of 

linear variation of density, SRISD can handle any type of inhomogeneity with respect 

to density of the soil deposit. The other option included in the program SRISD is the 

variation of damping along the depth of the soil deposit.  



 196 

4.9 COMPARISON OF EQUIVALENT LINEAR ANALYSIS RESPONSE 

COMPUTED USING DIFFERENT SOIL  MODELS  

In the previous chapter amplification characteristics of soil deposit with continuous 

distribution of stiffness properties is discussed. However, the results presented there 

was limited to linear analysis disregarding strain dependency of stiffness and damping 

properties. In this section, effect of nonlinearity on the estimated response quantities 

is presented. The results presented here are obtained using SRISD program. Main 

purpose of this study is to examine the effect of strain dependent / maxG G and 

ζ curves on the predicted response. The results of the analyses carried out using three 

different soil models namely Vucetic and Dobry (1991), Darendeli (2001) and Zhang 

et al. (2005) are compared. For the purpose of comparison amplification of surface 

motion with respect to bedrock motion and variation of maximum acceleration along 

the depth are considered.  

Soil deposit of thickness 30m with continuous variation of shear wave velocity 

defined by 0 100 /sv m s= , 300 /sHv m s= and 0.35n = is considered, which 

corresponds to ( ) ( )
0.35

100 1 0.736sv z z= + in terms of Eq. 3.6 or its equivalence to Eq. 

3.24 may be expressed in terms of shear modulus as ( ) ( )
0.7

14521.75 1.359G z z= + . 

The density of the soil is 31.8 /t mρ = which is considered to be constant throughout 

the depth. The analysis with Darendeli (2001) and Zhang et al. (2005) are carried out 

including the effect of mean confining stress but effect of loading frequency is 

ignored. While Darendeli (2001) curves were obtained for constant value of frequency 

of 1f Hz=  Initial low strain damping is taken as 1.5% while using Vucetic and Dobry 

(1991) curves while it is calculated using corresponding equations of the other two 

models.  

The equivalent homogeneous deposit having uniform distribution as a substitute to 

inhomogeneous deposit is also used in this comparative study. The equivalent 

homogeneous deposit is represented by average shear wave velocity ( ),s avev of the 

continuous velocity distribution. Among several options [Rovithis et al. (2011); 
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Mylonakis et al. (2011, 2013)] to calculate representative uniform velocity of proxy 

homogeneous deposit, the following equation is used 

( ),
0

1 H

s ave s
v v z dz

H
= ∫         (4.45)  

Using above equation the average shear wave velocity of an equivalent homogeneous 

deposit is calculated as 228.93 m/s. Input motion used in the analysis is EQ3 

accelerogram scaled to give 0.2
max

a g= . Details pertaining to this earthquake record 

are given in Chapter 2.   
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Figure 4.18: Comparison of surface motion amplification computed using 

different strain dependent shear modulus and damping models (Maximum 

acceleration = 0.20 g and PI = 100 %) 

Figure 4.18 presents the amplification ratio of surface to bedrock motions for all three 

cases of soil models with 100%PI = from EQL analysis using SRISD program with 

continuous profile option. The amplification at different resonant frequencies obtained 

using Darendeli (2001) and Zhang et al. (2005) are almost same with marginal 

difference in frequencies corresponding to peak amplification. While Vucetic and 

Dobry (1991) curves yielded significantly lower amplification with resonant 
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frequencies almost identical to Zhang et al. (2005) results. The equivalent 

homogeneous deposit exhibits much more stiffness degradation behaviour, despite its 

shear wave velocity ( )228.93 /sv m s= value is much larger than inhomogeneous 

deposit ( )0 100 /sv m s=  near the surface. This is contradictory to what has been 

observed earlier in the previous chapter using linear analysis. In case of homogeneous 

deposit the EQL analysis is carried out using Vucetic and Dobry (1991) curves. Also, 

the maximum amplification in case homogeneous deposit at fundamental frequency 

(first peak) is more or less equal to corresponding result obtained for inhomogeneous 

deposit using Vucetic and Dobry (1991) curves.  

Figures 4.19a and 4.19b show the maximum acceleration variation obtained using 

EQL analysis with different strain dependent shear modulus and damping models 

respectively for 30%PI = and 100%PI = . The results presented here are obtained 

under the EQ3 input motion scaled to give 0.05
max

a g= , i.e. relatively weak excitation. 

The computed peak surface accelerations for 30%PI = and 100%PI = is almost 

same using Zhang et al. (2005) model while in case of other two models the peak 

response for 30%PI = is lesser than that for 100%PI = . Obviously, the homogeneous 

deposit has significantly less peak acceleration at the surface than continuously 

inhomogeneous deposit. The maximum acceleration response below 15 m is almost 

identical irrespective of soil model and profile configuration.  

Figures 4.20a and 4.20b show the maximum acceleration response through the depth 

of the deposit. The results presented are obtained for the case of relatively strong 

input motion with EQ3 accelerogram being scaled to give 0.2
max

a g= . To some extent 

the observations made in the previous case are valid in this case too.  However, the 

difference in response estimated using three different soil models is noticeable clearly 

for the case of 100%PI = (Figure 4.20b). Equivalent homogeneous deposit and 

continuously inhomogeneous deposit cases analysed using strain dependent soil 

properties proposed by Vucetic and Dobry (1991) have resulted in similar kind of 

maximum acceleration response throughout the depth of the deposit for the case 

of 100%PI = . But, in case of 30%PI = the results are distinctly different for all cases 

particularly nearer to surface.   
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Figure 4.19: Comparison of variation of maximum acceleration along the depth 

of the soil deposit computed using different models of strain dependent shear 

modulus and damping properties of soil (Input motion: maximum acceleration = 

0.05 g) (a) PI = 30 % and (b) PI = 100 % 
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Figure 4.20: Comparison of variation of maximum acceleration along the depth 

of the soil deposit computed using different models of strain dependent shear 

modulus and damping properties of soil (Input motion: maximum acceleration = 

0.20 g) (a) PI = 30 % and (b) PI = 100 % 



 201 

30

25

20

15

10

5

0

0.2 0.3 0.4 0.5 0.6 0.7

0.2 0.3 0.4 0.5 0.6 0.7

Maximum acceleration (g)

D
e
p
th

  
(m

)

Input motion - Loma Prieta Eq. (1989), 

a
max

 = 0.20 g, PI = 50% ;  

v
s0

 = 100 m/s;  v
sH

 = 300 m/s.

 m = 5.0               m = 4.0

 m = 2.0               m = 1.0

 m = 0.7               m = 0.5

 m = 0.2

 

Figure 4.21: Comparison of variation of maximum shear stress along the depth 

of the soil deposit computed for different values of inhomogeneity parameter m; 

Input motion: maximum acceleration = 0.20 g and PI = 50 % 
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Figure 4.22: Comparison of surface amplification of input motion at bedrock 

level soil deposit computed for different values of inhomogeneity parameter m; 

Input motion: maximum acceleration = 0.20 g and PI = 50 % 
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Finally, the parametric study is carried out to recognize the effect of degree of 

inhomogeneity on computed response using EQL analysis. For this purpose, the same 

soil deposit considered in the previous analysis is used here with different degrees of 

inhomogeneity defined by the value of m  which is varied between 0.2 and 5.0. Input 

motion EQ1 scaled to 0.2
max

a g=  is used in this parametric study. The plasticity 

index of the soil deposit is taken to be 50%. Surface and base shear wave velocities of 

the deposit are kept constant with 0 100 /
s

v m s=  and 300 /
sH

v m s= respectively. 

Figure 4.21 shows variation of maximum acceleration computed for different values 

of m. The increase in maximum acceleration along the depth is significant as m 

decreases, particularly when 1.0m < . For the values of 1m > the difference in peak 

acceleration response is barely noticeable and interestingly for 4m > even these minor 

differences vanishes at all depths. In Figure 4.22 the amplification between surface 

and bedrock is presented for various values of m. As in case of linear analysis results, 

the equivalent linear analysis carried out for a particular soil type also shows shift in 

amplification peaks to lower frequencies. However, for any two values of m, the 

difference in corresponding frequencies appears to be lesser than that under linear 

analysis indicating that the stiffness degradation with respect to strains depends on 

type and degree of inhomogeneity.    

4.10  EFFECT OF STEP SIZE USED FOR SPATIAL DISCRETIZATION -    

STABILITY AND ACCURACY 

It is important to ensure stability and accuracy of numerical scheme used to compute 

response. Establishing reliable and consistent criteria to get accurate and bounded 

solution for the problem of wave propagation through soil deposit having complex 

velocity profile combined with nonlinearity is difficult. However, the essential 

conditions specified for the case of linear response analysis would serve as general 

guideline. Simplest condition to be satisfied in this regard is minimum step size that 

should be adopted is governed by minimum shear wave velocity in the soil deposit 

and maximum frequency of interest. These two factors are related by minimum wave 

length that should propagate through the medium.       
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Figure 4.23: Amplification between surface and bedrock motions computed for 

different step sizes ( )z∆ used for discretization of the soil deposit; Input motion: 

Kobe Earthquake (EQ3) normalized to amax = 0.05g 
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Figure 4.24: Variation of maximum acceleration along the depth computed for 

different step sizes ( )z∆ used for discretization of the soil deposit; Input motion: 

Kobe Earthquake (EQ3) normalized to amax = 0.05g 
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Figure 4.25: Amplification between surface and bedrock motions computed for 

different step sizes ( )z∆ used for discretization of the soil deposit; Input motion: 

Kobe Earthquake (EQ3) normalized to 0.5g 
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Figure 4.26: Variation of maximum acceleration along the depth computed for 

different step sizes ( )z∆ used for discretization of the soil deposit; Input motion: 

Kobe Earthquake (EQ3) normalized to 0.5g 
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Thus step size that is required to satisfy the above requirement is given by, 

 
,

4

s min

max

v
z

f
∆ =          (4.46) 

Many of the computer programs, for example DEEPSOIL use this criterion to 

introduce additional sub-layers to ensure layer thickness is sufficiently small to 

sample frequencies up to maxf . However, an example analysis is carried out to study 

the effect of step size used for discretization of continuously inhomogeneous soil 

deposit on the computed response. The soil deposit with ( ) ( )
0.25

100 1 0.5sv z z= +  is 

employed in this study. EQ3 accelerogram scaled to 0.05maxa g= and 0.5maxa g= are 

used as input motion at the base of the deposit. The 30 m soil deposit discretised with 

different step sizes ranging from 0.1m to 2.0m that correspond to maximum frequency 

range of 250 to 12.5 Hz. The results of the analysis carried out with input motion of 

0.05maxa g= are presented for amplification and maximum acceleration in Figures 

4.23 and 4.24 respectively. The degradation of stiffness has resulted in the response to 

grow out of bounds for the case of 2.0z m∆ = in the frequency range beyond 

10Hz≈ and for the case of 1.0z m∆ = frequency response shows deviation at about 15 

Hz even though induced strains are small. The maximum acceleration does not 

indicate these observations clearly. For the case of input motion with 0.5maxa g= , the 

equivalent linear analysis response has attenuated significantly beyond about 6 Hz as 

shown in Figure 4.25. However, for  2.0z m∆ =  wayward deviation in computed 

response compared to other cases can be noticed. The amplification results presented 

here are after 10 iterations of EQL analysis. Figure 4.26 shows maximum acceleration 

response profiles for different .z∆ values. The out of bound peak response for the case 

of 2.0z m∆ =  is evident in the first iteration. From these results it is obvious that the 

criterion to ensure accuracy is governed by the reduction in stiffness with increase in 

induced strain level. It is not sufficient to satisfy the maximum frequency criterion at 

beginning of the EQL process. It is essential to keep track of stiffness degradation and 

accordingly vary the step size after successive iterations particularly under strong 

shaking.     
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4.11 EXAMPLE ANALYSIS: LA-OBREGON PARK GEOTECHNICAL 

ARRAY 

An example problem is considered to illustrate features of the program SRISD. In this 

example analysis data pertaining to a geotechnical downhole array of La-Obregon 

Park site, USA is considered. The soil deposit considered is instrumented at surface 

and at 70 m depth. The data recorded at this downhole array site during Chino Hills 

earthquake of 29
th

 July, 2008 are used. The analysis is carried out for all the three 

cases of shear wave velocity profile idealisations, i.e., layered, discrete data points 

and continuous variation. These are the three options made available in SRISD 

program. The main objective of this investigation is to study the feasibility of 

representing layered profile with a continuously distributed shear wave velocity 

profile. Considering the extent of reliable soil profile data available for La-Obregon 

site, it is chosen for this case study. The details of La-Obregon site, its shear wave 

velocity profile and earthquake data are given in the Appendix II. For the different 

cases of analysis, the SRISD input data files and the corresponding results of all these 

analyses cases are comparatively presented in the Appendix II.  

These results demonstrate that, for the case of layered deposit analysis with routine 

method of computing effective strain in EQL iteration process, the results of EERA 

and SRISD are almost identical. Though approximated continuously varying shear 

wave velocity profile has low value of regression coefficient ( 2 0.338r = ), it could 

estimate all the responses as accurately as that obtained for layered deposit. Moreover, 

the analysis carried with continuous shear wave velocity profile has better agreement 

with the recorded response particularly in the high frequency range beyond 

fundamental resonant frequency. When the analysis carried out using the raw data of 

shear wave velocity distribution along the depth as inferred from PS-logging survey, 

the estimated responses are very well in agreement with results of layered analysis.   

4.12 SUMMARY 

One of the objectives this research study is to develop a computer program to address 

some of the lacunae of the routine EQL analysis as explained in the previous chapters. 
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One dimensional site response analysis based on equivalent linear approach as 

employed in SHAKE considers the soil deposit as finite number of homogeneous 

layers. However, in reality often soil deposits exhibit continuous inhomogeneity. 

Also, as observed in the previous chapter, interpretation of field data to arrive at 

layered configuration is subjective and always associated with uncertainty. In such 

situations the concerned soil properties may be approximated with continuously 

varying trend instead of layered idealisation. Thus it avoids the errors involved in 

manipulation of bore-log data to arrive at layered configuration and also due to 

contrasting impedance ratio between layers. Moreover, it has been noticed by 

observation of field data of some of the instrumented sites, that the site cannot be 

considered as a deposit consisting of homogeneous layers in order to obtain reliable 

estimation of response quantities. In view of this drawback and also due to the 

aforementioned necessity it is imperative to develop a seismic site response analysis 

computer program which is able to model and analyze the soil deposit with 

continuous variation of soil properties.  

The details of the computer program SRISD (Seismic Response of Inhomogeneous 

Soil Deposits) are presented in this chapter. The numerical scheme employed in 

developing the program is presented. Various options provided to model the shear 

wave velocity of the deposit are discussed. For an example problem, the SRISD 

results are validated with the results obtained using the program SHAKE91. Also the 

amplification results computed using SRISD is validated successfully with respect to 

that obtained from exact analytical solutions. The main features of the program 

discussed in this chapter include framework of the program, different options to input 

soil profile data, procedure to prescribe strain dependent shear modulus and damping 

curves apart from details of the curves provided as built-in data, input specifications 

for control motion and output options. Finally, general criteria required to satisfy 

stability and accuracy of the solution is highlighted.  

SRISD provides three options to input profile data of the soil deposit. In the first 

option the profile data can be specified as layered profile as in case of many other 

currently available (for e.g., SHAKE91, EERA, DEEPSOIL, etc.). The input data for 

each layer include its thickness, low strain shear modulus or shear wave velocity, 
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density or unit weight, initial damping, plasticity index, coefficient of earth pressure 

at rest, geological age and OCR. However, last four data are required only when the 

strain dependent / maxG G and ζ curves used are functions of these factors, otherwise 

they are treated as redundant data. The second option is capable of taking the data at 

discrete points at specified depths which include the same set of data as mentioned 

above except layer thickness. This option is useful from practical point of  view where 

in raw data pertaining to shear wave velocity profile, often obtained from continuous 

profiling procedures (PS logging, SASW, SPT, SCPT, etc.), may directly be used. 

Thus uncertainties associated with layer interpretation can be avoided. In the third 

case shear wave velocity or shear modulus, damping and density of the deposit soil 

deposit may be given in the form of inhomogeneity parameters of any appropriate 

function which may be chosen from the built-in functions provided to model 

continuously inhomogeneous soil deposits. These built-in functions defining the 

continuous variation physical properties of the soil deposit consist of linear, general 

power law and exponential distributions along the depth. Using these additional 

options, the capabilities of the SRISD program are illustrated. For example the 

analytical solutions discussed in the previous chapter are limited to linear elastic 

analysis and only stiffness of the soil deposit is considered to vary continuously.  

In this chapter, results of a parametric study is reported in which apart from low strain 

stiffness, density of the soil is also considered to vary continuously and consequential 

effect of constant and continuous variation in density is brought out. Also, employing 

strain dependent soil property curve options of SRISD equivalent linear analysis is 

performed to compute the response of a soil deposit with continuous variation of 

shear wave velocity and its equivalent constant velocity (homogeneous deposit) 

profiles. The results of these analyses are compared to ascertain the effect of 

considering average properties of the soil deposit as a proxy to actual continuously 

distributed properties. Also the effect of choice of strain dependent curves on the 

computed response is discussed.  

The additional features of the computer program which are incorporated based on the 

proposed improvements to EQL analysis are discussed in Chapter 5. 



CHAPTER 5 

EQUIVALENT LINEAR ANALYSIS  

 - PROPOSED REFINEMENTS 

5.1 INTRODUCTION   

One dimensional seismic ground response analysis is carried out popularly by 

modeling the soil deposit as layered system. The important inputs for the analysis 

consist of layer configurations and dynamic soil properties assigned to each of these 

layers. The ground response is observed to be nonlinear, particularly when input 

bedrock motion is due to strong earthquake shaking with high acceleration level. In 

such cases, analysis requires information about the model to represent nonlinear 

stress-strain behaviour of soil. Both, equivalent linear analysis in frequency domain 

and true nonlinear analysis in time domain, require strain dependent shear modulus 

reduction curve and damping curve as input assigned to each layer depending on its 

soil characteristics.  

In equivalent linear analysis the concept of effective strain is used to update shear 

modulus and damping that is compatible with current level of strain. Majority of the 

computer programs that are developed for ground response analysis using equivalent 

linear approach uses a constant value to convert maximum strain to effective strain in 

an ambiguous manner. This process is iteratively carried out till convergence in 

maximum strain is achieved. As explained in chapter two of this dissertation, 

inherently equivalent linear approach has several limitations which directly influence 

the computed response to diverge from response quantities that are observed during 

an earthquake or computed using true nonlinear analysis. These discrepancies of 

equivalent linear approach have been clearly identified by several studies as detailed 

in chapter two. Also in that chapter, some of these issues were demonstrated by 

comparative study carried out with regard to time domain nonlinear and frequency 

domain equivalent linear analysis. Two major issues of primary concern are over 

prediction of response at frequency range close to fundamental frequency and under 
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prediction of response at high frequency ranges compared to time domain nonlinear 

analysis. Apart from these disagreements, strategic issue related to equivalent linear 

approach which is required to be resolved is ambiguity in computation of effective 

strain.  

The focus of this chapter is to deal with these two issues. An attempt is made to 

propose alternative strategies to improve capabilities of equivalent linear analysis 

procedure. Firstly, in order to understand the effect of soil properties on the computed 

response a parametric analysis is carried out. A rational method for computation of 

effective strain is proposed based on intensity of shaking. Finally, frequency 

dependent equivalent linear analysis schemes are proposed which accounts for 

frequency dependent radiation (geometrical) damping. These proposed improvements 

to routine equivalent linear analyses have been verified to satisfactorily improve the 

computed frequency response.   

5.2 LIMITATIONS OF EQUIVALENT LINEAR APPROACH 

Though equivalent linear method is deficient with regard to accuracy of results 

compared to truly nonlinear time domain method, it is more often preferred method of 

analysis. Equivalent linear method (EQL) as implemented in most of the popularly 

used ground response analysis computer codes was outlined in section 2.7.1 of 

chapter two. The implementation procedure is depicted in Figures 2.9 and associated 

flowchart is shown in Figure 2.10. The key parameter in EQL method analysis is the 

effective strain employed to obtain strain dependent mechanical properties of the soil 

to use in subsequent iteration. On the other hand in time domain nonlinear analysis 

properties of the soil deposit are updated based on actual current strain level at the 

beginning of each time increment. Hence nonlinear analysis in time domain is more 

appropriate to accurately simulate the ground motion than equivalent linear method 

provided nonlinearity parameters are accurately evaluated in laboratory and used in 

the analysis. However dilemmas persist among practicing engineers about the 

reliability of the constitutive soil model and obtaining the parameters required to 

define the model apart from stability and error issues associated with numerical 

integration schemes adopted for solving the equation of motion.  
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Among other studies, Yoshida et al. (2002) have discussed major deficiencies of 

equivalent linear method compared to nonlinear methods. Equivalent linear method 

utilizes effective strain ( )
eff

γ to update soil properties after each of the iterations and 

these updated shear modulus and damping values are employed in the next iteration. 

Throughout particular iteration these values remain constant. There is no technically 

rational procedure available to convert the computed maximum strain ( )maxγ  to 

equivalent effective strain. Schnabel et al. (1972) and Idriss and Sun (1992) have 

proposed an empirical relationship to compute effective strain as given by 

eff maxRγ γ= where R is an empirical parameter which depends on magnitude of the 

earthquake ( )M as ( 1) /10.R M= −  However, initially when equivalent linear approach 

was proposed, Seed and Idriss (1969) recommended a value for effective strain which 

is equal to two-third of maximum strain. Later, Schnabel et al. (1972) in their manual 

for SHAKE program they recommended the effective strain value related to 

magnitude of the earthquake that is used as input motion in the analysis. Obviously, 

the choice of value of R in the analysis is intended to roughly represent intensity of 

shaking. This relationship used to establish value of R has no rational reasoning and it 

is obtained by trial and error process to match the computed response with that of 

observed record. It is observed that single value of parameter R is not capable of 

reproducing the entire response history at all the ranges of frequencies i.e., from low 

to high frequency ranges. As indicated earlier, equivalent linear method (computer 

code SHAKE) over estimates the responses around fundamental resonant frequency 

range and underestimates in the high frequency range. Researchers have attributed 

pseudo resonance as the primary cause for the observed discrepancy.  

However, Yoshida et al. (2002) point out that, employing constant value of R always 

overestimates the maximum strain and this overestimation is larger at high strain 

levels as it is depicted schematically in Figure 5.1. Curve OC represents the stress-

strain model in EQL analysis which corresponds to maximum shear stress versus 

maximum shear strain relation. On the other hand, curve OBA represents true stress-

strain curve. Hence stress is always overestimated in EQL analysis by a magnitude 

equal to AC i.e., the difference in stress ( )EQL actual
AC τ τ= − between these two curves.  
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Figure 5.1: Schematic diagram depicting the reason for overestimation of shear 

stress by the equivalent linear method [reproduced from Yoshida et al. (2002)] 

In addition to the above, the concept of evaluating effective strain based on R value 

and eventually using it in computation of modulus and damping for next iteration 

yields larger damping and smaller modulus particularly at high frequencies. Hence 

amplification computed from equivalent linear method is always much less than 

observed. As an example for this deficiency in computation, Yoshida et al. (2002) 

presented amplification results computed using EQL analysis for a site in Tokyo Bay, 

Japan, wherein equivalent linear analysis yields amplification much less than 

amplification computed from actual records. This major shortcoming of EQL analysis 

was also demonstrated earlier in chapter two of this dissertation. One advantage of the 

equivalent linear analysis is that we can perform deconvolution i.e., surface motion is 

transformed to bedrock motion; however bedrock peak acceleration is overestimated 

for the reason explained above.  

5.3 EFFECT OF R-VALUE ON COMPUTED RESPONSE USING 

EQUIVALENT LINEAR ANALYSIS 

To study the effect of ratio of effective to maximum strain (R-value) on the overall 

response of the soil deposit, a soil deposit of 30.0 m thick with continuous variation of 

stiffness given by 0( ) ( )m
G z A z z= +  with shear modulus varying from 18000 kPa at 
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the surface 0( )
z

G = to 162000 kPa at the base 30( )
z

G = and 4m = is considered. For the 

case of layered analysis the deposit is divided into 30 layers of 1.0 m thickness.  
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Figure 5.2: Effect of R value on Amplification between surface and bedrock 

(After eight iterations) 
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Figure 5.3: Effect of R value on variation of maximum acceleration along the 

depth (After eight iterations) 

Initially, the effect of R-value on the predicted response of the deposit is studied with 

respect to surface to base amplification and peak acceleration response profile along 

the depth of the soil deposit. Many studies have recommended an arbitrary value of R 

equal to 0.65 [Bolisetti et al (2014), Kaklamanos et al (2013), etc.]. However, as 

mentioned earlier it is recommended to set the value of R based on magnitude of 
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earthquake as ( 1) /10R M= − . For the earthquake magnitude ranging between 4 and 

9, according to above relationship R value would vary from 0.3 to 0.8. 
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Figure 5.4: Effect of R value on frequency characteristics of computed surface 

acceleration time history 

Figure 5.2 shows the amplification transfer function between surface and base of the 

deposit considered above. The shear modulus degradation and increase in damping 

with increase in R is clearly seen in the trends of amplification results. With increase 

in ,R the resonant frequencies are significantly shifted to lower values and 

amplification peaks are decreased. Figure 5.3 shows variation in maximum 

acceleration along the depth for various values of R. Thus it can be concluded that, the 

value of ratio of effective strain to maximum strain has considerable effect on the 

computed response quantities at all the depths of the deposit. Figure 5.4 shows 

Fourier spectra of the predicted surface acceleration time history from equivalent 

linear analysis using different R values for computation of effective strain. This figure 

evidently brings out effect of R value adopted in EQL analysis on the frequency 

characteristics of the computed response. As R value increases the high frequency 

amplitudes are noticeably attenuated. This is because as R value increases the 

effective strain increases resulting in overestimation of damping from strain 

dependent damping curves. In chapter two comparative study carried out to relatively 

evaluate time and frequency domain analyses confirmed the under prediction of high 
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frequency response by EQL analysis compared to nonlinear time domain analysis. 

Hence, apart from well understood reasons stated earlier, inappropriate R value may 

also induce discrepancies in high frequency responses estimated using EQL analysis. 

Therefore, it is imperative to develop an alternative method to obtain an appropriate R 

value which is unambiguous and rational. The currently adopted method of computing 

R value based on the magnitude of the earthquake of input motion has ambiguity 

associated with it; particularly under following situations,   

� Input motions derived from the two earthquakes, such as small magnitude near 

source (small epicentral distance) earthquake and relatively large magnitude far 

source (large epicentral distance) earthquake may have to be assigned with 

contradictory low and high values of R despite near source low magnitude 

earthquake may cause high intensity of shaking compared to high magnitude 

far-off event.  

� In case of routine parametric studies, in which any particular accelerogram is 

scaled to lower or higher maximum values depending on the requirement of 

intensity of shaking or when an artificial accelerogram is used as input motion, 

for such requirements the magnitude of the earthquake associated with input 

motion is difficult to assign. Conceivably, uncertainty associated with the 

computed responses using arbitrary value of R is difficult to quantify.    

5.4 PROPOSED ALTERNATIVE METHODS TO COMPUTE EFFECTIVE 

STRAIN  

5.4.1 Method based on maximum acceleration  

In this study a new method is proposed which is based on the level of shaking a 

particular layer experiences in each of the iteration. The intensity of shaking soil 

deposit undergoes depends on the intensity of bedrock motion. As discussed 

previously, in equivalent linear approach it is customary to assume value of R based 

on intensity of shaking. However intensity of shaking at the bed rock level for given 

magnitude depend many factors such as fault source mechanism, distance from the 

site, path effects, etc. Hence traditionally employed empirical method of assigning a 



 216 

value for R based on magnitude of earthquake is inappropriate. Recognizing this fact 

some of the studies have suggested a particular value for R based on experience. 

These suggested values vary from 0.5 to 0.7 without any rational reasons supporting 

these recommendations.  

In the past several popular relationships relating Peak Ground Acceleration (PGA) 

and Modified Mercalli Intensity ( )MMI have been developed. Some of these are site 

specific while others can be used universally. Compilation of such relationships 

between PGA and MMI are given by Linkimer (2008). These prediction equations are 

reproduced and given in Table 5.1.  

Table 5.1: Correlations between PGA and MMI [Compiled by Linkimer (2008)] 

Eq. 

No. 
Correlations Validity range Region Reference 

T5.1a 
3.0log 1.50
ave

MMI PGA= −  - Western USA 

Richter 

(1958); 

Guttenberg 

and Richter 

(1956) 

T5.1b 
2.33log 1.50
ave

MMI PGA= +  - Western USA 
Hershberger 

(1956) 

T5.1c 
3.33log 0.47
ave

MMI PGA= −  IV MMI X< <  Western USA 

Trifunac and 

Bardy 

(1975) 

T5.1d 
4.0log 1.0
max

MMI PGA= −  IV MMI VIII< <  

Western USA, 

Japan and 

Southern 

Europe 

Murphy and 

O’Brian 

(1977) 

T5.1e 
2.86log 1.24
ave

MMI PGA= +  IV MMI X< <  

Western USA, 

Japan and 

Southern 

Europe 

Murphy and 

O’Brian 

(1977) 

T5.1f 
2.20log 1.0
max

MMI PGA= +  MMI V<  

T5.1g 
3.66log 1.66
max

MMI PGA= −  V MMI VIII< <  

California, 

USA 

Wald et al 

(1999) 

T5.1h 
2.30log 0.92
max

MMI PGA= +  II MMI V< <  

T5.1i 
3.82log 1.78
max

MMI PGA= −  V MMI VII< <  

T51j 
2.33log 0.76
ave

MMI PGA= +  II MMI V< <  

T5.1k 
4.60log 3.38
ave

MMI PGA= −  V MMI VII< <  

Costa Rica 

 

Linkimer 

(2008) 

ave
PGA is the average PGA and 

max
PGA is the maximum PGA of the two horizontal 

components 

These equations are plotted in Figure 5.5 and its mean trend is shown in Figure 5.6. It 

can be observed in Figure 5.6 that mean trend of the above equations almost exactly 
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match with the most popular equation proposed by Trifunac and Bardy (1975). Hence, 

the intensity of shaking at any depth of soil deposit may approximately be related to 

corresponding peak acceleration by the following (same as Eq. T5.1c in Table 5.1), 

3.33 log( ) 0.47MMI PGA= × −       (5.1a) 

( 1) /10R MMI= −         (5.1b) 

Knowing peak acceleration at a layer during any iteration we can estimate MMI from 

Eq. (5.1a) which in turn can be used to arrive at the value R from Eq. (5.1b). 

5 10 50 100 500 1000
2

4

6

8

10

M
M

I

Acceleration (cm/s
2
)

Correlations

 T5.1a

 T5.1b

 T5.1c

 T5.1d

 T5.1e

 T5.1f

 T5.1g

 T5.1h

 T5.1i

 T5.1j

 T5.1k

 Mean trend

 

Figure 5.5: Peak Ground Acceleration ( )PGA and Modified Mercalli 

Intensity ( )MMI  correlations 

The method proposed here is more realistic in the sense that the R value to be used is 

computed automatically based on the intensity of shaking characterised by maximum 

acceleration. Thus different values of R are computed for each of the iterations in 

equivalent linear analysis. Also the value of R is uniquely assigned to each of the 

layer or node based on computed maximum acceleration at that layer or node in the 

previous iteration. Hence effective strain corresponding to a layer or node of the soil 

deposit is computed using allocated R value in order to update shear modulus and 

damping properties of that particular soil layer or node.  
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Figure 5.6: Comparison of mean trend of empirical correlations and Trifunac 

and Bardy (1975) correlation. 

5.4.2. Method based on average strain 

The other option which was suggested by Roësset (1977) to compute effective strain 

in equivalent linear analysis is based on average strain calculated from the strain time 

history. For this purpose Roësset (1977) suggested that average of the largest ten peak 

strain values may be used. However, the efficiency of this approach has not been 

investigated. Again, in this approach too it is difficult to assign number of peak values 

that need to be considered in computing the average strain to yield effective strain. 

However, option to compute effective strain based on average strain is also provided 

in SRISD computer program. For this purpose the option is provided in the program 

to select number of peak values to be considered in strain time history.  

5.4.3 Implementation in SRISD program 

The proposed alternative method to compute effective strain in the iterative equivalent 

linear analysis is implemented in SRISD code. The RMS values of acceleration and 

strain time histories are computed for iteration at all discrete nodes in case of 
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continuously inhomogeneous profile and at mid-depths of layered profile. The 

flowchart to compute effective strain using different options is shown in Figure 5.7. 

The options include the methods based on maximum acceleration and average strain 

apart from routine method using input value of R which is based on the procedure as 

adopted in SHAKE program. The number of peak strain values, STNSUM used to 

compute 
ave

γ is an input data. However, as recommended in Roësset (1977), default 

value of ten is used in the absence of this information.  

eff maxRγ γ=

ave

max

R
γ

γ
=

( )

3.33 log ( ) 0.47

1 /10

MMI PGA

R MMI

= × −

= −

 

Figure 5.7: Flowchart for computation of effective strain using different options 

in the computer program SRISD 
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The three options for computation of R are shown in flowchart: Option1- Routine 

analysis option based on magnitude of the earthquake (SHAKE) which remain same 

for all layer during all iterations of EQL analysis; Option2- this is pertaining to newly 

proposed method in which calculation is based intensity of shaking, different values 

are assigned to each of the layers and they are updated after every iteration of EQL 

analysis (Section 5.4.1); Option3- this is based on average strain calculated from sum 

of STNSUM peak strains of the strain time history of each of the layers after every 

iteration (Section 5.4.2).  

5.4.4 Comparative study between proposed method and routine analysis.  

The equivalent linear analysis is carried using the proposed method for computation 

of ratio of effective to maximum strain at each layer of the deposit. The continuously 

inhomogeneous 30 m  thick soil deposit considered previously (section 5.3) is used in 

this comparative study.  
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Figure 5.8: Variation of R value over each of the eight iterations and thick line 

represents the constant R value used in routine equivalent linear method 
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The nonlinear soil properties are modeled using strain dependent G/Gmax and damping 

curves for sand proposed by Seed and Idriss (1970). The analysis carried out for three 

cases namely, layered analysis with constant value of R = 0.50, continuous analysis 

with constant value of R = 0.50 and continuous profile analysis by computing R value 

using the proposed method. That is, the value of R is updated after completing 

particular iteration for every layer unlike traditional method wherein R value remains 

constant during all iterations for all the layers. These analyses results are presented in 

Figures 5.8, 5.9, 5.10 and 5.11. Furthermore, the comparative study results are also 

presented in the Appendix-B for a case of La-Obregon geotechnical array.   
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Figure 5.9 Comparison of amplification between surface and base for all the 

three cases of analysis. 
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Figure 5.10 Comparison of variation peak acceleration profile along the depth of 

the deposit for all three cases of analysis (After eight iterations) 
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Figure 5.11: Convergence of strain over eight iterations for all the three cases of 

analysis. 

5.5 FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS  

It has been observed that equivalent linear analysis fails to simulate the measured 

ground motions and in general the analysis doesn’t yield consistent results under weak 

and strong ground shaking. As discussed in Chapter 2. Generally, the response 

obtained from EQL analysis is overestimated in the vicinity of fundamental resonant 

frequencies and attenuated response at higher frequencies. Equivalent linear analysis 

is iteratively employed with the help of strain dependent modulus degradation and 

damping curves. These curves for particular type of soil are essentially obtained from 

laboratory tests. Earlier methods of laboratory procedures had several limitations 

which lead to disputable understanding of frequency dependence of dynamic soil 

properties. In recent times some researchers have succeeded in recognizing the effect 

of loading frequency on dynamic soil properties. However, many issues are yet to be 
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addressed in this regard; particularly, range of frequency and its quantitative effect on 

energy dissipation characteristics of soil.  

5.5.1 Frequency dependency of dynamic soil properties 

The routine laboratory methods of determining dynamic soil properties have indicated 

that dynamic deformation characteristics were observed to be almost insensitive to 

loading frequency within the frequency range that is vital in seismic response 

analysis. Determination of dynamic soil properties in the laboratory usually conducted 

using sinusoidal excitation of soil specimen. Hence, very often the investigator has 

limited scope to simulate the actual field conditions, particularly the seismic event. In 

case of earthquake loading soil is excited by multiple frequencies which are very 

much difficult to reproduce in routine laboratory setups.  

Among others, resonant column and cyclic triaxial tests are the most popular means of 

determining dynamic soil properties in the laboratory. These tests are performed at 

contrastingly different strain amplitudes and frequencies [Woods (1978)]. Thus, the 

comparison between the results from resonant column and cyclic triaxial tests should 

be done at similar frequencies. In resonant column tests the resonant frequency of the 

specimen is used to evaluate its dynamic properties. Also, conventionally, in case of 

resonant column test the analysis of test results is carried out by assuming the test 

specimen is an undamped elastic system to evaluate shear modulus. Then, 

independently using shear modulus, damping ratio is computed from free vibration or 

half-power bandwidth method or transfer function method. Hence it is impossible to 

evaluate frequency dependent dynamic properties using conventional resonance tests.  

Owing to reasons cited above with regard to routine laboratory testing procedures, 

results presented by many researchers indicated that loading frequency in the range of 

0.1 – 250 Hz had no significant effect on the shear modulus of both clayey and sandy 

soils [Hardin and Drenvich (1972a)]. On the other hand, some have [e.g., Richart 

(1978)] concluded that strain rate or loading frequency significantly affects the 

dynamic properties of clays but its effect is potentially insignificant in case of sandy 

soils. An important contribution concerning frequency dependent dynamic soil 

properties published by Isenhower and Stokoe (1981) questioned the internal 
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consistency of resonant column tests results under variable strain rates used to 

measure the stiffness of the soil at prescribed strain level. Their results obtained using 

cyclic torsional shear tests clearly indicated that, for medium plasticity silty clay, 

measured shear modulus increases with increase in strain rates.  

Several researchers, through experimental evidences, discuss the effect of 

frequency/strain rate on the dynamic properties of the soil [Dobry and Vucetic (1987); 

Vucetic and Dobry (1991); Zovoral and campanella (1994); Shibuya et al.,(1995); 

Malagnini (1996); Lin and Huang (1996); Vucetic et al., (1998); Bray et al.,(1999); 

Vankov and Sassa (1999); Matesic and Vucetic (2003) and others]. According to 

Shibuya et al. (1995), the damping ratio decreases in the low frequency range, 

increases in the high frequency range and it is almost constant in the medium range of 

frequency as conceptually represented in Figure 5.12. Zovoral and Campanella 

(1994), using the results of limited number of tests with resonant column and torsional 

cyclic tests, indicated that the increase in stiffness with strain rate/frequency is 

significant in case of plastic soils, while in sands it is much smaller. They concluded 

that frequency dependence of damping property is negligible for both cohesive and 

cohesionless soils. 

 

Figure 5.12: Frequency dependence of energy dissipated within a soil mass 

[Shibuya et al. (1995)] 

Laboratory investigation regarding effect rate of strain on dynamic soil properties by 

Matesic and Vucetic (2003) corroborated the results of Zovoral and Campanella 

(1994) through more detailed and systematic study. They reported that stiffness at 
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very small strains does not seem to be affected by the strain rate in low-plasticity 

soils. However, in case of medium to high plastic soils an increase of the stiffness at 

very small strain with increasing strain-rate is observed. Also their results clearly 

indicated that, at higher strain levels, the stiffness reduction curves are affected by the 

strain rate, soil stiffness generally increases with increasing strain rate. It is important 

to note that all these tests were conducted at relatively small strain levels in the order 

of less than 0.1% / s . Their main objective was to evaluate shear strain modulus 

factor, 
G

α defined as ratio of increase in shear modulus and increase in logarithm of 

rate of strain (γ� ) that is, ( ) / ( log )
G

Gα γ= ∆ ∆ � as discussed in Isenhower and Stokoe 

(1981).   

Effect of loading frequency or strain rate on damping ratio is yet to be ascertained 

clearly. However, as mentioned earlier, Shibuya et al. (1995) have confirmed that 

effect of loading frequency on damping ratio is evident. But, the researchers are still 

debating about general trend that can model dependency of damping property with 

respect to loading frequency. Rix (2004), through experimental study and followed by 

analytical verification, reaffirmed the general trend of effect of frequency on damping 

suggested by Shibuya et al. (1995) which is shown Figure 5.12. Results presented by 

Rix (2004) with respect to shear modulus agree well with that of other published 

results, that is shear modulus increases with frequency of loading at all strain levels.  

According to Bray et al. (1999) and Gookin et al. (1999) the damping ratio 

systematically decreases with increasing frequency. On the other hand, the data from 

a series of cyclic torsional shear tests on Ottawa sand conducted by Lin and Huang 

(1996), the internal damping of the soil at various strain levels were increased linearly 

between 2.5 and 8% in the frequency range of 0.1 to 20 Hz. Khan (2008) reported that 

there is increase in damping in low frequency range ( 60 )Hz< , while it decreases in 

frequency range of 60 150Hz− and it becomes independent for frequencies greater 

than 150 Hz. Hence, in the studies reported in literature, the trend of dependency of 

damping on frequency is put up with contradictory results.   

Finally, to substantiate frequency effect on dynamic properties of soil, Carvajal et al. 

(2002) described a procedure of estimating the error between measured and computed 
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ground response using system identification procedure. The error thus estimated is 

attributed to frequency dependence of shear modulus and damping. Accordingly these 

properties are adjusted as frequency dependent properties so as to match the measured 

response. The trend is shear modulus increases with increase in frequency and no such 

particular trend is observed for damping but it is observed that, damping ratio 

generally has a decreasing trend with increase in frequency. 

5.5.2 Frequency dependency of observed ground motions 

In order to show that both nonlinear and frequency effects are significant in ground 

motion prediction, Idriss (1991) considered the difference in site amplification of soft 

soil profile subjected to ground motions of different magnitude ( 5.5M = and 7)M =  

earthquakes scaled to same peak ground accelerations. The difference in ground 

response for the input motions of same PGA but derived from earthquakes of different 

magnitude, is mainly attributed to frequency content of the ground motions.   

Cameron and Green (2004) studied the effect of near field and far field earthquakes at 

the same location on site amplification. Using the data available they separated the 

sites into groups namely, near field and far field based on hypocentral distances of 

less than and greater than 50 km respectively. The near field motions are considerably 

more erratic and richer in high frequencies than far field motions. From their study 

Cameron and Green (2004) observed that, in case of near-field sites site amplification 

is considerably less than site amplification in case of far field sites. Hence they 

concluded that frequency effect on site amplification is significant.  

In equivalent linear method of analysis, damping is kept independent of frequency of 

excitation. This has serious consequence on the computed results, even though 

computed response closely matches with that of observed data in case of convolution 

process (case of input motion being prescribed at base of the soil deposit), the high 

frequency response at the free surface results in unrealistically low spectral values. In 

case of de-convolution process (i.e. case of prescribing input motion at the surface) 

the response solutions of equivalent linear model diverges when the input motion is of 

high amplitude or rich in high frequencies [Kausel and Assimaki (2002)] 
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5.5.3 Available methods for frequency dependent analysis 

5.5.3.1 Sugito et al. (1994) 

Earliest attempt to consider the frequency effect in ground response analysis is Sugito 

et al. (1994) and Sugito (1995). In their method, the effect of frequency on the ground 

response is attributed to spectral characteristics of ground motion. The constant, R 

used to calculate effective strain ( maxeff
Rγ γ= ) in SHAKE is modified in Sugito’s 

method. In this method the effective strain is considered to be function of Fourier 

strain spectrum and it is defined as,  

max

max

( )
eff

F
R

F

γ

γ

ω
γ γ=          (5.2) 

Here ( )Fγ ω  is Fourier spectrum of shear strain time history and
max max

( )F Fγ γ ω =   . 

Rest of the algorithm is same as in SHAKE except for that the convergence of strain 

is checked separately for low ( 1 ),Hz<  medium (1 to 5 )Hz and high ( 5 )Hz> frequency 

ranges. For an example case study, Sugito et al. (1994) illustrated the improvement 

achieved in the computation of amplification ratio using this method particularly at 

high frequencies. Furumoto et al., (1999), Furumoto et al., (2000), Yashima et al., 

(2000) and Ueshima (2000) are some of the additional references related to 

implementation of this method. To implement this algorithm, Fourier strain spectrum 

requires smoothening to avoid spurious peaks in Fourier strain amplitudes. This 

method doesn’t take into account the frequency dependency of soil stiffness and 

damping properties directly.  

5.5.3.2 Yoshida et al. (2002) 

This study is particularly directed towards overcoming the inherent drawbacks of 

SHAKE with respect to underestimation of high frequency responses and 

accommodating rational method of effective strain calculation. Unlike previously 

explained method [Sugito (1995)] herein the effective strain for the current iteration is 

calculated as,  
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max
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          ( )

log log
1          ( )

log log

0              ( )
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m

p

eff p

e p

eff p

γ γ ω ω

ω ω
γ γ ω ω

ω ω

γ ω ω

= > 


   −  
= − <    −    


= > 

  (5.3) 

where 
p

ω  is frequency corresponding to maximum shear strain,
e

ω  is the frequency 

above which nonlinear behavior need not be considered. Thus effective strain is 

expressed as the m
th 

order polynomial equation (no experimental evidence) of logω  

between 
p

ω  and
e

ω , and 
eff

γ  is constant outside this frequency range. It is suggested 

that 2m = and 95 /
e

rad sω = ( )15Hz≅ results in good prediction of ground response. 

All these relationships and parametric values are based on experience gained through 

comparison with measured ground responses. The comments made for sugito`s 

method is valid for this method too. 

In order to verify the efficacy of their method, Yoshida et al. (2002) conducted ground 

response analyses for three different sites using their modified frequency dependent 

equivalent linear method. The results obtained from frequency dependent analysis 

computer codes DYNEQ [Yoshida et al (2002)], FDEL [Sugito (1995)] with routine 

equivalent linear analysis using SHAKE were compared. Finally, Yoshida et al. 

(2002) concluded that in case of convolution analysis DYNEQ yields much closer to 

observed peak acceleration value compared to FDEL and SHAKE. Peak stress and 

peak strain profiles estimated along the depth of the deposit from all these codes are 

almost identical. Predictions of deconvolution analyses using frequency dependent 

analyses computer codes (both DYNEQ and FDEL) are much more realistic 

compared to observed values and results from both the codes are almost identical. 

However, results from SHAKE analysis deviates from observed record, that is peak 

acceleration values are unacceptably overestimated.  

5.5.3.3 Kausel and Assimaki (2002) 

In this study Kausel and Assimaki (2002) gave different reasoning in support of 

incorporating frequency parameter in calculation of effective strain. They analysed 
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normalized Fourier strain amplitude spectra of five different earthquakes and 

observed that a unique relationship could be established between Fourier strain 

amplitude and frequency for all the earthquakes under consideration. Deriving Fourier 

spectra of strain time histories from velocity time histories, they observed that the 

spectral strain values follow a similar trend in which they decrease with frequency. A 

smoothened strain spectrum corresponding to this observed trend is represented by,    

2

1

0

0 0

0

0 0

exp

( ) ( )

( )                            ( )

for

for

λ

ω
λ

ω
γ ω γ ω ω

ω

ω

γ ω γ ω ω

  
 − 
  = >  
  
  

   
= ≤ 

     (5.4) 

wherein mean frequency 0ω of the strain spectrum as well as the least-squares best-fit 

parameters 1λ  and 2λ  are obtained. An elaborate algorithm is proposed based on Eq. 

(5.4) to incorporate frequency dependent analysis. The procedure involves finding 

values of 0 ,ω 1λ and 2λ from spectrum of strain time history for each layer and in 

successive iterations. Then using Eq. (5.4) smoothened strain spectrum is obtained 

from which frequency dependent modulus and damping properties are extracted to 

use in next iteration.    

Kausel and Assimaki (2002) implemented their frequency dependent model for 

ground response analysis of two hypothetical sites representing shallow and deep 

profiles. Their objective was to test the efficiency of their proposed method which not 

only model the frequency dependency but also pressure dependency of soil 

characteristics as the depth of the soil deposit overlying the bedrock increases. Since 

the main objective of the present research is to study frequency dependent 

characteristics, here the results of the study pertaining to shallow deposit are 

highlighted. The shallow deposit considered is of 25 m thick with constant mass 

density and shear wave velocity of 2000 kg/m
3
 and 200 m/s respectively. The 

fundamental frequency of the deposit considered works out to be 2.0 Hz. Pressure 

dependent modulus reduction and damping curves proposed by Assimaki et al (2000) 
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were employed. The prescribed input motion  at the base is the record of 1995 Kobe 

earthquake scaled to maximum of 0.5 g and its mean frequency is about 1.7 Hz. The 

surface acceleration responses predicted using both the frequency-dependent and the 

true nonlinear models were compared and observed that frequency dependent analysis 

proposed by Kausel and Assimaki (2002) compares very well with true nonlinear 

analysis particularly with respect to phase of peak values. However, magnitude of 

acceleration in the strong motion portion it comparatively over predicted while peak 

acceleration values at the later part is marginally smaller than nonlinear analysis.   

5.5.3.4 Darendeli (2001) 

In the previous chapter expressions for strain dependent shear modulus and damping 

proposed by Darendeli (2001) was presented (Eq. 4.36 to 4.41).These generalized 

expressions are incorporated in SRISD soil properties database. Based on limited 

experimental data Darendeli (2001) concluded that the effect of loading frequency is 

insignificant on shear modulus but its effect on the small strain damping property is 

significant particularly at high frequency. The expression for small strain damping as 

a function of loading frequency, mean effective confining stress ( )mσ ′ , OCR and PI is 

obtained by normalizing its value with respect to frequency of 1 Hz as given below 

(Eq. 4.39, Chapter 4), 

( ) ( )
0.2889

0.10690.8005 0.0129 1 0.2919lnm
min PI OCR f

p

σ
ζ

−

−′ 
 = + × × +   

 
 (4.39) 

The option for using this expression is provided in SRISD in which minζ is calculated 

at every increment of loading frequency and added to strain dependent material 

damping obtained after successive iteration of the analysis. Provision is also made to 

use this value of minζ with any other strain dependent material damping curve that is 

employed in the analysis.  

Based on Eq. 4.39, Figures 5.13 and 5.14 summarize the effect of two important 

parameters, plasticity index and effective confining pressure on frequency dependent 

small strain damping property of the soil.  



 231 

1 5 10 50

0

1

2

3

4

5

(a) PI = 0 %

D
a
m

p
in

g
 r

a
ri

o
 (

 ζ
 m

in
 )

Mean confining stress

  100 kPa

  200 kPa

  300 kPa

1 5 10 50

0

1

2

3

4

5

(b) PI = 15 %

1 5 10 50

0

1

2

3

4

5

D
a
m

p
in

g
 r

a
ri

o
 (

 ζ
 m

in
 ) (c) PI = 30 %

1 5 10 50

0

1

2

3

4

5

(d) PI = 50 %

1 5 10 50

0

1

2

3

4

5

(e) PI = 70 %

D
a
m

p
in

g
 r

a
ri

o
 (

 ζ
 m

in
 )

Frequency  (Hz)

1 5 10 50

0

1

2

3

4

5

(f) PI = 100 %

Frequency  (Hz)
 

Figure 5.13: Effect of effective confining stress on frequency dependent small 

strain damping property of soil for different values of plasticity index.  

From these figures it can be observed that, small strain damping increases almost by 

twofold over the frequency range of 1 to 60 Hz for all values 0PI > . With increase in 

loading frequency the rate of increase in material damping is almost same particularly 

for plastic soils. However, highly plastic soils exhibit larger frequency effect 

compared to low plastic soils. The minimum damping ratio at 1 Hz frequency is also 
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higher for a soil with large PI. Also, in range of frequency considered the damping 

decreases with increase in confining stress. This is in confirmation with the variation 

of damping along the depth of the deposit [Park and Hashash (2005)]. This model is 

employed in the computer program DEEPSOIL of Hashash (2011).   
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 Figure 5.14: Effect of effective plasticity index on frequency dependent small 

strain damping property of soil for different values of confining pressure. 
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Although, frequency dependent expression of damping proposed by Darendeli (2001) 

can be conveniently implemented in EQL analysis scheme, it may not be helpful to 

overcome major discrepancy in high frequency response of EQL result. Obviously 

increase in damping with frequency will further dampen out high frequency response 

but it will aid in reducing the resonant frequency response to some extent provided 

fundamental frequency of the deposit is well above 1 Hz. 

5.5.3.5 Park and Hashash (2008); Jeong et al. (2008) 

All the methods, except Darendeli (2001), discussed above are formulated without 

considering effect of frequency on shear modulus and damping properties of soil. 

Park and Hashash (2008) and Jeong et al. (2008) proposed a method in which the 

effect of loading frequency on soil properties is incorporated. In order to model strain 

rate dependent damping, three well documented damping models proposed by Rix 

and Meng (2005) [also Rix (2004)], Kim et al. (1991) and Darendeli (2001) are 

employed by Park and Hashash (2008) and Jeong et al. (2008). The procedure 

developed by them to implement strain rate dependent shear modulus is as follows,  

• Determine the maximum shear modulus at the reference frequency, Gmax[Ref. freq.] 

,calculated using the equation,  

Ref. Freq.

max[Ref. Freq.] max[f(V )]

f(V )

[ / (0.5 )]

[ / (0.5 )] s

s

G G Hz
G G

G G Hz
= ×     (5.5) 

in which, max[ ( )]sf vG is the shear modulus determined from the shear wave velocity 

measured at frequency ( )sf v  and [ / (0.5 )]G G Hz  represents the relationship 

between the normalized shear modulus i.e., rate dependent shear modulus 

normalized to the modulus obtained at a frequency of 0.5 Hz.  

• Based on modulus reduction reference curve at a particular reference frequency, the 

shear modulus reduction curve at a given loading frequency is calculated. The 

reference shear modulus reduction curve represents the ratio of G obtained at the 

reference frequency ( )Ref .Freq.G to the maxG also measured at the reference frequency 
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[ ]( )max Ref .freq.
G . By using the normalized rate-dependent function, the shear modulus 

( )fG  at a given loading frequency f can be calculated from the Ref .Freq.G using the 

equation: 

 
Ref. Freq.f f

max[Ref. Freq.] Ref. Freq. max[Ref. Freq.]

[ ] ( )( ) [ / (0.5 )]

[ / (0.5 )]

GG G G Hz

G G G Hz G

γγ
= ×     (5.6) 

Here, 
Ref. Freq.

max[Ref. Freq.]

[ ] ( )G

G

γ
is the strain dependent reference shear modulus reduction curve. 

• Combining Eq. (5.5) and Eq. (5.6), the following equation is obtained 

Ref. Freq.f
f max[f(V )]

f(V ) max[Ref. Freq.]

[ ] ( )[ / (0.5 )]
( )

[ / (0.5 )] s

s

GG G Hz
G G

G G Hz G

γ
γ = × ×    (5.7) 

Above equation represents the frequency dependent shear modulus which is not 

affected by the reference frequency. Its effect cancels out because successive 

multiplication of the results of earlier steps. Thus shear modulus is influenced only by 

the frequency at which the shear wave velocity is measured i.e., ( )sf v  and the loading 

frequency of the input ground motion.  

 

Figure 5.15: Three frequency depending damping models used in frequency 

dependent equivalent linear analysis of Park and Hashash (2008) and Jeong et al. 

(2008) 
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The above algorithm was incorporated in their equivalent linear analysis computer 

program DEEPSOIL. Park and Hashash (2008) and Jeong et al. (2008) carried out a 

parametric study using the method explained above along with three different 

frequency dependent damping models. These three models are represented in Figure 

5.15. These frequency dependent damping models referred to as D1, D2 and D3 

represent the models proposed by Rix and Meng (2005), Kim et al. (1991) and 

Darendeli (2001) respectively.  

From their study they concluded that, when reference frequency is considered to be 

0.5 Hz, small strain damping in all the cases of damping models considered is larger 

than that of frequency independent analysis. Hence, the response spectrum obtained 

using these damping models show decreased amplification. If the reference frequency 

is fixed at 25 Hz, small strain damping in all the cases is smaller than that of 

frequency independent analysis. Therefore in this case, the response spectrum 

obtained using strain rate dependent damping models yield increased amplification 

ratio. Since strain rate effect on damping is larger in case of model D3 compared to 

D1 and D2 models, the influence of D3 model on the response is observed to be more 

significant than other two models particularly in case of reference frequency of 0.5 

Hz. However, this difference is comparatively small when reference frequency 25 Hz.  

5.5.4 Comparison of methods of frequency dependent ground response analysis  

The procedures which deal with the frequency dependent equivalent linear analysis 

are presented above. Among these procedures, schemes proposed by Yoshida et al. 

(2002) and Kausel and Assimaki (2002) have been relatively compared and assessed 

for their efficiency by Kwak et al. (2008). The method proposed by Yoshida et al. 

(2002), compared to routine equivalent linear analysis, resulted in lower peak ground 

acceleration at higher frequencies. Whereas, the method proposed by Kausel and 

Assimaki (2002) is aimed at reducing damping at high frequencies, hence it resulted 

in better comparison with the nonlinear analysis.  

The acceleration response spectra of the predicted surface acceleration time histories 

for recorded and synthetic input motions are shown in Figure 5.16. In case of 

synthetic record, which is predominantly high frequency motion, response computed 
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using the procedure of Yoshida et al. (2002) is grossly overestimated particularly in 

the 0.01 to 0.4 seconds period range when compared to frequency independent 

equivalent linear analysis and nonlinear analysis. But in case Park field earthquake 

record, the results are similar to that of routine equivalent linear analysis. It is clear 

from the Figure 5.16 that, the frequency dependent analysis of Kausel and Assimaki 

(2002) significantly overestimates the response in both cases of input motions 

particularly at high frequency range.  
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Figure 5.16: Comparison of response spectrums of computed surface motions 

using frequency dependent analysis procedures with that from equivalent linear 

and nonlinear analyses [Kwok et al. (2008)]. 

5.6 PROPOSED METHOD FOR FREQUENCY DEPENDENT ANALYSIS 

5.6.1 Preamble to proposed model 

In chapter 2, the inconsistencies associated with responses at different frequency 

ranges computed using routine EQL analysis are discussed. In the previous section, 

studies with respect to different methods proposed to overcome this intrinsic 
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discrepancy of EQL approach are reviewed. The literature survey about frequency 

dependency of soil properties indicates that the experimental data available with 

regard to strain rate dependent damping is scattered and obscure. Besides, other 

parameters required to characterize the strain rate dependency of shear modulus and 

damping ratio are difficult to incorporate because these parameters are yet to be well 

established. Hence, except Jeong et al. (2008) and Park and Hashash (2008), in all the 

other methods cited above frequency dependent equivalent linear analyses is 

formulated without giving due consideration to the effect of loading frequency on soil 

dynamic properties. Essentially, these methods attempted to model the response in 

such a way that overestimation of response in low frequency range and 

underestimation in high frequency range are circumvented. The procedures proposed 

by Jeong et al. (2008) accounts for frequency dependent characteristics of damping 

and shear modulus, while procedure proposed by Kausel and Assimaki (2002) is 

based on field observations. However, both these methods appear to be complex and 

needs to be provided with additional input data.     

The reasons for unrealistic frequency response of EQL analysis is mainly attributed to 

employing constant values of shear modulus and damping throughout a particular 

iteration for all frequency ranges. Since the amplitudes of strain associated with low 

and high frequency responses are distinctly different, apparently far from actual 

values of G andζ are assigned when they are obtained for single value of effective 

strain. Following reasons elucidate the cause for these discrepancies, 

� The maximum acceleration response is the contribution of high frequency 

response hence the displacement and thus strain at these frequencies is smaller.  

� The effective strain computed using constant R value is lower than the strains 

resulting from low frequency response and higher than the strain level 

corresponding to high frequency oscillations. Hence higher value of G and small 

value of ζ are assigned to compute response at low frequency range. 

� In the high frequency range the strains are smaller than effective strain used to 

obtain updated soil properties from their reference curves, obviously G is 

underestimated and ζ is overestimated.  
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� Although, high value of G is expected to result in stiff response of low magnitudes 

of strain and vice versa is anticipated in high frequency range, the effect of 

damping in frequency response is significant to give enhanced and attenuated 

responses at low and high frequency ranges respectively. 

Therefore, in order to obtain more realistic responses at different ranges of 

frequencies, the damping values must be altered pragmatically. Incorporating 

frequency dependent damping and shear modulus may not resolve the problem at 

hand because, the studies reviewed in this aspect have clearly indicated that the 

damping increases in the frequency region of concern. Though studies have indicated 

that there is significant effect of loading frequency on these properties, the database is 

too limited to accommodate it in routine EQL analysis. Hence, in this study an 

attempt has been made to evolve a semi-rational approach wherein damping values 

are computed and assigned as a function of frequency of excitation. The entire 

procedure is accommodated in the same framework of EQL analysis with few 

modifications.  

5.6.2 Effect of damping on soil amplification characteristics  

In order to bring out the effects of variation in damping and stiffness properties on the 

amplification response at different modal frequencies, a parametric study is carried 

out. A homogeneous deposit of 30 m is considered for this purpose. The shear 

velocity of the deposit is varied to alter the fundamental resonant frequency of the 

deposit. The amplification transfer function between surface and rigid base is 

computed using expression obtained in Chapter 2 (Eq.2.33). Figure 5.17 shows the 

result of this parametric study. The maximum amplification at first four modes 

(correspond to first four peaks of amplification transfer function) obtained for 

different values of damping is normalized with respect to corresponding values for 

undamped case. The fundamental frequencies ( )1nf  of the deposit considered are, 0.5, 

1.0, 2.0, 4.0 and 10 Hz. which correspond to shear wave velocities of 60, 120, 240, 

480 and 1200 m/s.  
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From this study following conclusions can be drawn. Decrease in amplification at 

higher modes with increase in fundamental frequency is evident for all values of 

damping ratios. Also, the higher mode responses are almost insignificant for damping 

values of about 16% and 10% respectively for Mode-III and Mode-IV irrespective of 

fundamental frequency of the deposit. The rate of decrease in amplification with 

increase in fundamental period is dependent on mode of oscillation. The decrease is 

significantly higher for higher modes particularly for damping ratio less than 2%. The 

effect of fundamental frequency i.e., the shear wave velocity of the deposit, on 

amplification characteristics is dominant in relatively long period deposits compared 

to stiffer deposits. Also effect of stiffness becomes almost consistent after second 

mode without much difference in maximum amplification at higher modes. Therefore, 

it is evident that, the effect of damping on amplification characteristics is significant 

at all modes compared to effect of shear modulus.  
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Figure 5.17: Effect of damping on maximum amplification at different modes 
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5.6.3 Effect of damping on spectral characteristics of the response  

In view of significant effect of damping on the response at different frequency ranges, 

equivalent linear analysis is carried out to confirm these observations. The shear wave 

velocity profile shown in Figure 4.8 (Chapter 4) is considered for this purpose. The 

input motion used for this analysis is same as the one used in the analysis carried out 

to test SRISD program i.e., earthquake motion recorded at Diamond Heights during 

Loma-Prieta earthquake of 1989. The input motion is prescribed at the base of the 

deposit. In order to study the effect of damping on the predicted response, the analysis 

is carried out keeping damping value constant through out the analysis while 

degradation of shear modulus has been considered. Shear modulus degradation curve 

of Vucetic and Dobry (1991) recommended for PI=30% is used. As discussed in the 

previous chapter, this option is unique to SRISD and by opting for this provision 

analysis can be performed by varying either damping or shear modulus or both. 

Primarily this option is helpful in assessing the quantitative effect of these two 

properties independently. 
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Figure 5.18: Amplification between surface and bedrock computed from EQL 

analysis carried out using SRISD program.  
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Figure 5.19: Response spectrum of surface motion computed from EQL analysis 

carried out using SRISD program.  
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Figure 5.20: Fourier spectrum of surface motion computed from EQL analysis 

carried out using SRISD program.  
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 The results of this analysis are represented in terms of amplification of surface 

motion with respect to base motion and response spectrum of predicted surface 

acceleration time history. The analysis is performed by varying the damping ratio 

from 1.5% to 25%. The amplification results of these analyses are shown in Figure 

5.18, also shown is the result of the analysis in which shear modulus is maintained 

constant while damping is updated depending on strain level using same reference 

curve [Vucetic and Dobry (1991)]. Figure 5.19 and Figure 5.20 show the response 

spectrum for 5% damping and Fourier spectrum of the computed surface 

accelerograms respectively.  

All the three figures clearly exhibit the effect of magnitude of damping on the 

responses at different frequency ranges. From amplification plot (Figure 5.18) it can 

be observed that, in the low frequency range the effect of damping is relatively less 

significant compared to its effect in the high frequency ranges. This aspect is even 

more obvious for higher values of damping compared to its variation in the lower 

range. Spectral acceleration values are almost unaffected in the low frequency (long 

period) range. Nevertheless, spectral accelerations (Figure 5.19) as well as Fourier 

amplitudes (Figure 5.20) are significantly affected at frequencies beyond first 

resonant frequency ( ( )2Hz≅ . The analysis carried out ignoring degradation of shear 

modulus will obviously enhance the high frequency response because stiffer response 

will induce relatively small strain which result in assignment of low damping value. 

Therefore, even in this case probably damping is responsible for enhanced high 

frequency response.  

 5.6.4 Proposed method for frequency dependent equivalent linear analysis 

Earlier in this chapter one of the basic issues related to computation of effective strain 

was addressed i.e., estimating R value which establishes relation between effective 

and maximum strains. However, this R value is constant throughout the iteration; 

consequentially the stiffness and damping properties also remain constant. In this 

study a new method is proposed in which directly the material damping values are 

updated in each of the frequency increments of the frequency domain solution 
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scheme. This procedure is unlike previously proposed procedures [Sugito (1994); 

Yoshida et al. (2002)] wherein R-value is modified in certain frequency ranges.   

The main objective of this proposed method is to resolve the issue related to 

inconsistencies in the response of EQL analysis. As observed, over amplified 

response near the fundamental frequency of the deposit and attenuated response in 

higher frequency ranges are the major contradictions in the results of EQL analysis 

compared to observed data particularly recorded during a strong motion earthquake 

event. As explained in the previous sections, the probable reasons for these 

shortcomings are inherent to equivalent linear analysis. In order to overcome these 

two shortcomings of EQL analysis, development of an appropriate frequency 

dependent damping formulation can be considered as the remedial strategy.  

The proposed method is devised to increase the damping in the vicinity of 

fundamental mode and decrease the damping at higher frequencies beyond certain 

target frequency ( )Tf . The strain dependent material damping used in the iterative 

EQL analysis procedure is an approximation to actual damping present in the soil, 

particularly when it is used to solve wave propagation problems. In case of damping 

associated with wave propagation problems, it consists of two parts; material damping 

and radiation or geometrical damping [Dobry (2013; 2014), Sarma (1994)]. The strain 

dependent damping reference curves developed from routine laboratory tests is based 

on the assumption that energy dissipation is only due to material damping present in 

the soil and completely ignores frequency dependent radiation damping. The radiation 

damping is a function of frequency of oscillation. When the soil layer is oscillating in 

the fundamental mode the contribution of radiation damping ( )RADζ can be 

approximated as [Roësset (1977)], 

(1) 2
RAD

α
ζ

π
=          (5.8) 

 Here, ( )1α ≤  as defined in Chapter 2, is the impedance ratio between soil layer and 

relatively stiff underlying elastic half-space.  



 244 

In order account for contribution of radiation damping in the higher modes of 

oscillations, Zhao (1997) proposed the relationship to estimate ( )k

RAD
ζ , of th

k  mode 

using that of first mode (fundamental mode), (1)

RAD
ζ  as follows, 

( ) (1) 1k n
RAD RAD

nk

f

f
ζ ζ=         (5.9) 

Therefore, the total damping ,ζ ′ at the frequency corresponding to th
k mode, 

including material damping may be expressed as,  

( ) ( )( ) kk

RAD
fζ ζ ζ′ = +         (5.10) 

The above expression may be used to compute damping, which results in increased 

damping value at the mode of vibration under consideration. It is important note that 

the contribution of radiation damping to total damping decreases with increase in 

frequency. In the higher modes of vibration its effects almost vanishes. Hence in the 

computer program SRISD, this equation is used to compute contribution of radiation 

damping beyond fundamental mode at all the frequencies including intermediate 

frequencies between the modal frequencies.  
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Figure 5.21: Frequency dependent radiation damping implemented in SRISD 

program and proposed by Zhao (1997)] 
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In order to illustrate the contribution of radiation damping 30m thick homogeneous 

deposit of shear wave velocity, 120 /
s

v m s= overlying elastic bedrock of 

1800 /
sr

v m s= is considered. The undamped natural frequencies of the deposit are 

given by ( )2 1 / 4nk sf k v H= − (i.e., 1,3,5..... )
nk

f Hz= for the th
k mode. The radiation 

damping corresponding to these frequencies are computed from Eq. (5.9). Also using 

the same expression radiation damping in the intermediate frequencies as 

implemented SRISD program are computed. The impedance ratio, ( )/s srv vα = for 

this deposit is equal to 1/15. Figure 5.21 shows the decrease in radiation damping with 

increase in frequency.  

In Chapter 2, the example analysis considered to compare nonlinear and EQL 

methods of analyses, it was noticed that the over estimation of spectral acceleration to 

some extent persists even in higher modes of vibration. Therefore, the target 

frequency ( )Tf  up to which the effect of radiation damping is significant may be 

ascertained based on the fundamental frequency of the deposit and predominant 

frequency range of the input motion. As stated earlier, the large value of effective 

strain ratio is responsible for increase in damping. For the frequencies greater than 

target modal frequency ( )Tf the damping value needs to be reduced to increase the 

response. In case of viscous damping, the damping ratio is logarithmically related to 

harmonic amplitudes. Hence to increase the displacement amplitude in the high 

frequency range damping is assumed to reduce in logarithmic trend. Therefore, the 

reduced damping ( )f
ζ  at any given frequency f beyond target frequency ( )Tf , is 

calculated by reducing the material damping ( )newζ obtained based on effective strain 

level as,  

1 log        for,  T
f new T

f
f f

f
ζ ζ

 
= + × ≤ 
 

     (5.11) 

In the above equation, 
new

ζ  obtained at end of the previous iteration is used to 

compute frequency dependent damping in the current iteration.  
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Figure 5.22: Flowchart for equivalent linear analysis with proposed frequency 

dependent damping formulation as implemented in the computer program 

SRISD 
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As explained earlier, for the frequencies less than target frequency ( )Tf but greater 

than fundamental frequency ( )1nf  the damping ratio is computed by combining Eq. 

(5.9) and Eq. (5.10) as,  

1
1

1

2
1        for,  

                                   for,  

n
f new n T

new

f new n

f
f f f

f

f f

α
ζ ζ

π ζ

ζ ζ

 
= + × ≤ <  

 
= < 

    (5.12) 

Figure 5.22 shows the flowchart for the proposed procedure as implemented in 

program SRISD to carry out equivalent linear analysis using frequency dependent 

damping scheme explained above.   

As shown in the flowchart the impedance ratio of the deposit is calculated based on 

the reduced average shear wave velocity of the deposit after successive iterations. 

Also fundamental period of the deposit is calculated using this reduced shear 

modulus. Thus, impedance ratio and fundamental frequency (as well as higher mode 

natural frequencies) both are altered after each of the successive iterations. Therefore, 

the proposed method is not only modeling frequency dependent damping but also 

considering strain dependent stiffness degradation of the deposit in damping 

calculation. In any case, material damping computation based on strain dependent soil 

properties reference curves is also taking account of this aspect. Apart from the 

proposed method, as indicated in the flowchart, Darendeli (2001) expression for 

computing frequency dependent small strain damping is also included to choose as an 

option to implement along with any strain dependent damping curve.   

5.6.5 Comparative study 

In order to ascertain the efficacy of the proposed method a comparative study is 

carried out. The detail of the soil deposit and input motion considered in this 

comparative study is same as those considered in Section 5.6.3 (The shear wave 

velocity profile of Figure 4.8 and input motion is the record of Diamond Heights 

during Loma-Prieta earthquake of 1989). Using SRISD program the equivalent linear 

analysis is carried out with and without considering frequency dependent damping 



 248 

option using SRISD program. The results obtained are compared with corresponding 

output of nonlinear time domain analysis using DEEPSOIL program. 
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Figure 5.23: Comparison of amplification between surface and base of the soil 

deposit as computed from routine EQL analysis and proposed method for 

frequency dependent analysis. Frequency dependent analysis for two cases of 

target frequencies, i.e., 1T n
f f= and 4T n

f f=  corresponding to first and fourth 

mode natural frequencies. 
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Figure 5.24: Comparison of response spectra of the estimated surface motions 

from routine EQL analysis, frequency dependent EQL analysis 4( )
T n

f f= and 

time domain nonlinear analysis.  
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Figure 5.23 compares the results of amplification ratios between surface and base of 

the soil deposit obtained from routine EQL analysis and frequency dependent 

analysis. For frequency dependent analysis two cases of target frequencies are 

considered; one corresponding to first natural frequency and the other corresponding 

to fourth mode natural frequency. Below these frequencies radiation damping 

contribution resulting from contrasting impedances of soil and bedrock is added to 

effective strain dependent material damping. The peaks of the amplification ratio are 

higher for frequency dependent analysis than those from routine analysis.  
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Figure 5.25: Comparison of Fourier spectra of the estimated surface motions 

from routine EQL analysis, frequency dependent EQL analysis and time domain 

nonlinear analysis.  

Figure 5.24 compares the pseudo spectral acceleration of computed surface motion 

from routine EQL analysis, frequency dependent EQL analysis and nonlinear time 

domain analysis. Evidently, the effect of introducing frequency dependent radiation 
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damping in the EQL analysis has yielded improved resonant response which is 

abnormally overestimated in the routine EQL analysis when compared to true 

nonlinear analysis in time domain. Also frequency dependent analysis shows 

improvement in estimation of low period (high frequency) response that is as good as 

time domain analysis. Frequency dependent analysis results presented here are 

obtained by setting the target frequency to fourth mode natural frequency. However, it 

was noticed that the effect of target frequency on the computed results is almost 

negligible beyond fourth mode natural frequency which is approximately equal to 15 

Hz in the first iteration. 

In Figure 5.25 the comparison is made with respect to Fourier spectra of the surface 

motion. For the purpose of clarity the Fourier spectrum is plotted in separate 

frequency windows. Up to 12 Hz frequency dependent EQL analysis compares 

favorably with time domain analysis relative to routine EQL analysis. However 

beyond 12 Hz the spectrum of frequency dependent analysis matches very well at 

certain frequencies but deviates significantly in 14 to 19 Hz range. It is important note 

that the target frequency
T

f of frequency dependent EQL analysis is reduced to less 

than 12 Hz after eight iterations due to degradation in shear modulus. However, 

overall performance of the proposed method of EQL analysis based on frequency 

dependent damping model is satisfactory particularly with respect to its ability in 

simulating the response at resonant frequency when compared to routine equivalent 

linear analysis.  

5.7 CASE STUDY – TKCH08 

5.7.1 Details of TKCH08 Geotechnical array 

In order to verify and validate the efficiency of the proposed refinements to equivalent 

linear method of analysis a case study is presented. Also, the suitability of idealizing 

the soil deposit with continuous variation of shear wave velocity is investigated. The 

case study is concerned with evaluation of site response estimated by means of 

proposed alternative methods with respect to routine method of analysis and 

comparing with observed field data. For this purpose data pertaining to a geotechnical 
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array site of Kiban-Kyoshin network (KiK-net) is selected. The TKCH08 downhole 

array site of KiK-net in Hokkaido of Japan recorded the magnitude 8.0 Tokachi-Oki 

earthquake of 26
th

 September, 2003. The geotechnical data provided at KiK-net as 

well as additional information available in Kaklamanos et al. (2011) are used for 

further interpretation. The details of the TKCH08 downhole array site and of the 

earthquake considered are given in Table 5.2. The soil deposit consist of 78 m deep 

quaternary sandy gravel deposit of average shear wave velocity of top 30 m equal to 

(30 ) 353.0 /
s m

v m s= overlying sandstone bedrock of shear wave velocity 2800 m/s. 

Table 5.2: Details of TKCH08 site; Geotechnical and Earthquake data used in 

the case study 

Geotechnical data Earthquake data 

Location 
Taiki (Hokkaido Prfecture 

– Japan) 
Event name Tokachi-Oki 

Site code TKCH08 Date 
26

th
 September, 

2003 

Latitude 42.49N Magnitude 8.0 

Longitude 143.15E Latitude 4.78N 

Instrumentation Depths 0.0 m and 100 m Longitude 144.08E 

Soil deposit 

78 m Quaternary sandy 

gravel (Q)overlying 

Cretaceous sandstone 

bedrock (K) 

Epicentral distance 109.44 km 

Average shear wave 

velocity 
(30 ) 353.0 /

s m
v m s=  

Kaklamanos (2012) 
Focal depth 42.0 km 

Depth (m) 

[Density 

(t/m
3
)] 

s
v  (m/s) p

v  

 (m/s) 

0 – 4 

[ ]1.93ρ =  130  300 

( )maxa EW - surface 0.5094g 

4 – 36  

[ ]2.0ρ =  480  1850 ( )maxa NS  - surface 0.4241g 

36 – 78  

[ ]2.0ρ =  590 1850 ( )maxa EW - 100m 0.130g 

Shear wave velocity 

profile 

(78 , ) 521.28 /s m avev m s=  

(78 , ) 1770.52 /p m avev m s=

78 – 100 

[ ]2.6ρ =   2800 5000 ( )maxa NS  - 100m 0.1056g 
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5.7.2 Shear wave velocity profile 

The shear wave velocity for the site taken from KiK-net web site is shown in Figure 

5.26. Kaklamanos et al. (2011) have reported the shear wave velocity profiles 

obtained using SASW survey at the sites located adjacent to TKCH08 site. The shear 

wave velocity profiles these adjacent sites, along with TKCH08 data are shown in 

Figure 5.26. 

 

Figure 5.26: Shear wave velocity profiles interpreted from SASW survey 

adjacent to TKCH08 site [Kaklamanos et al. (2011)] 

As can be observed from these shear wave velocity profiles of deposit in the vicinity 

of TKCH08 site, the profile shows gradually varying trend up to about 40 m depth and 

approaches a constant value of 590 m/s beyond 40 m and remains constant up to 78 m. 

The bedrock of shear wave velocity 2800 m/s is encountered at 78 m. Based on these 

profiles a best fit continuously distributed proxy shear wave velocity profile is 

obtained as an alternative to TKCH08 layered idealization. For this purpose 

exponential function is considered to obtain best fit rather than power law functions 

because in which case the velocity increases with depth instead of converging to 

constant value as required in the present case. For such situations, wherein the rigidity 

of the soil attains constant value at larger depth, Vrettos (2013) has recommended an 

inhomogeneity function of the form ( ) ( )0 0

mz
G z G G G e

−
∞= + − where G∞ is defining 

the rigidity at infinite depth. Using the above mentioned exponential form of equation, 
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that is, ( ) ( )0 0 ,mz

s s s sv z v v v e
−

∞= + − curve fitting parameter ( )0.0826m =  is obtained 

for best fit to represent the variation of shear wave velocity for TKCH08 site. For the 

soil deposit under consideration 0s
v and 

s
v ∞ are set to 130 m/s and 590 m/s 

respectively. Therefore continuous function of shear wave velocity profile which 

approximates the layered profile is given by ( ) 0.0826560 460 z

sv z e
−= − . The layered 

profile and its approximate continuous profile are shown in Figure 5.27.   
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Figure 5.27: Layered shear wave velocity profile (KiK-net) and its approximated 

continuous profile idealisation. 

5.7.3 Earthquake data 

The records of Tokachi-Oki earthquake considered in this case study consist of NS 

and EW horizontal components of the event recorded at the surface and at depth of 

100 m of the soil deposit. These accelerograms are shown in Figure 5.28. Pseudo 

acceleration response spectra (5% damping) of these accelerograms are shown in 

Figure 5.29. The downhole records at 100m depth are used as input motions to predict 

surface response from SRISD program. The peak accelerations corresponding to input 

motions are 0.13g and 0.1056g respectively for EW and NS horizontal components. 

The predominant periods of EW and NS components of input motions as obtained 

from SeismoSignal-V4.0 (SEISMOSOFT) are 0.16s and 0.24s respectively. The EW 
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components of the earthquake show an additional peak at around 4 s period compared 

to NS component. Apart from this observation both the horizontal components of the 

earthquake exhibit almost similar spectral characteristics. The acceleration time 

histories computed at the surface (0.0 m) using different options of SRISD program 

are compared with that of recorded data. 
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Figure 5.28: Horizontal components of accelerograms recorded at base and 

surface of the soil deposit of TKCH08 site during 2003 Tokachi-Oki earthquake.   
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Figure 5.29: Response spectrum of the horizontal components of accelerograms 

recorded at base and surface of the soil deposit of TKCH08 site during 2003 

Tokachi-Oki earthquake.   

5.7.4 Different options considered for the case study 

The analyses using the program SRISD are carried out with the following options, 

� Analysis of layered profile by employing routine option to compute effective 

strain, which is based on magnitude of the earthquake of the input motion as 

suggested in SHAKE program  

� Analysis of layered profile by incorporating proposed method for computation 

of effective strain, which is based on maximum acceleration obtained after 

successive iteration at every node in the soil profile  

� Analysis using shear wave velocity profile idealized as continuously varying 

along the depth with effective strain in consecutive iterations being computed 

using proposed method 
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� All the above analyses are carried out with and without proposed frequency 

dependent EQL analysis.  

Considering the bore-log information of TKCH08 soil deposit provided in KiK-net 

website, the strain dependent shear modulus and damping curves proposed by Zhang 

et al. (2005) are used to model nonlinear response of the soil deposit. The details of 

this model and the equations are presented in Chapter 4. In this model the strain 

dependent stiffness and damping properties are defined as function of mean confining 

pressure, OCR, geological age and plasticity index of the soil. Mean effective 

confining stress ( )mσ ′ is calculated at required depth from the computed vertical 

effective stress ( )zσ ′ as,  

01 2

3
m z

K
σ σ

+ 
′ ′=  

 
        (5.13) 

Here coefficient of lateral pressure at rest ( )0K is obtained from the following 

equation,   

0
1

K
ν

ν
=

−
         (5.14) 

Poisson’s ratio, ν is calculated using longitudinal and transverse wave velocity 

(
p

v and
s

v ) profile data of the soil deposit,     

( )

2 2

2 2

2

2

p s

p s

v v

v v
ν

−
=

−
        (5.15) 

For the purpose of calculating Poisson’s ratio average values computed from the 

available TKCH08 site velocity profile data is used. The average values of 

pv and sv calculated for top 78 m of the soil deposit are 1770.52 /p m sν = and 

521.28 /s m sν =  respectively as shown in Table 5.1. Using these values in Eq. (5.15) 

the Poisson’s ratio is obtained as 0.45ν = , therefore from Eq. (5.14) 0K is calculated 

as 0.82. For all the analyses carried out here 0 0.80K = is used to compute mean 

confining stress at desired depths using the EFFSTS subroutine of SRISD program. 
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5.7.5 Validation of proposed method for effective strain computation 

SRISD analyses are carried out for two options of effective strain computation 

independently. Firstly using the R-value based on magnitude of input earthquake 

motion as suggested in SHAKE which is incorporated in most of the site response 

analysis programs. The other option provided in SRISD is the newly proposed method 

based on intensity of shaking as detailed in earlier section of this chapter. Results of 

these two separate analyses are compared to assess the reliability of the proposed 

method.  In the traditional method based on magnitude of the input earthquake motion 

the constant R-value used in the analysis is 0.7 for 8M = . While for the proposed 

method R-value need not be assigned because the program itself will assign 

appropriate R-value depending on intensity of shaking characterised by resulting 

maximum acceleration in the previous iteration. That is R-value is calculated using 

Eq. (5.1a and 5.1b) and updated for each of the successive iterations at every node (or 

layer) of the soil deposit. The comparison of results are made with respect to 

amplification between surface and base motions, acceleration time histories at the 

surface, variation of maximum acceleration along the depth and response spectra 

obtained for the surface acceleration time histories. The analysis is carried out for 

both, EW and NS components of horizontal motions recorded at TKCH08 site (Figure 

5.28). The layered configuration shown in Figure 5.26 is used to model shear wave 

velocity profile of the soil deposit in both the cases of analyses.  

Figure  5.30 conceptually shows the difference in the analysis procedures as a 

consequence of employing routine and proposed methods for computation of R-value 

and subsequently used to obtain effective strain after successive iterations. In the 

routine method the value of R remains constant while it is altered after the completion 

of particular iteration all along the depth of the soil deposit in case of proposed 

method. For the purpose of illustration only the variation in R-value that is used for 

2
nd

 and final (11
th

) iterations are shown in the figure. Thus it can be concluded that the 

R-value used in both the cases are distinctly different. Hence it is interesting to 

compare the responses that are computed using these two distinctly different methods.  
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Figure 5.30: Variation of R – value along the depth used for calculation of 

effective strain in each of the successive iterations of EQL analysis  
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Figure 5.31: Computed variation of maximum acceleration along the depth of 

the soil deposit using proposed method and routine method for calculation of 

effective strain in successive iterations of EQL analysis (SRISD) 
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Figure 5.32: Amplification of surface motion with respect to base motion 

computed using routine and proposed methods for calculation of effective strain 

in each of the successive iterations of EQL analysis (SRISD) – (a) NS component 

(b) EW component 
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Figure 5.33: Acceleration time histories at the surface of the soil deposit 

computed using routine and proposed methods for calculation of effective strain 

in each of the successive iterations of EQL analysis (SRISD) – (a) NS component 

(b) EW component 
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Figure 5.34: Response spectra of predicted acceleration time histories at the 

surface of the soil deposit using routine and proposed method for calculation of 

effective strain in each of the successive iterations of EQL analysis (SRISD) – (a) 

NS component (b) EW component 

Figure 5.31 compares variation of maximum acceleration response computed along 

the depth of the soil deposit from these two methods. Amplification ratio between 

surface and base of the deposit as obtained from these two options are compared in 

Figure 5.32. The surface acceleration time histories and their corresponding response 

spectra are compared in Figures 5.33 and 5.34 respectively. From all these figures it 

can be concluded that, despite conceptually different methods are used to compute 

effective strains after each iteration, the converged strain magnitude after their final 

iterations is same.  All the response quantities used in the comparative study 

establishes that the proposed method is capable of reproducing the results that are 

obtained from routine method of analysis.  
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5.7.6 Comparison of results of layered and continuous shear wave velocity 

profile idealizations – Frequency independent EQL analysis (SRISD) 

Apart from proposing an unambiguous procedure to compute effective strain during 

iterative process of EQL approach, the other main objective addressed in this research 

study is concerned with overcoming the ambiguities associated with idealizing the 

soil deposit as layered profile. For this purpose, the variation in shear wave velocity 

profile data is approximated as continuously inhomogeneous profile. Here the results 

of the comparative analysis performed using frequency independent EQL analysis are 

presented. Primarily the study presented here focuses on evaluation of idealizing the 

deposit with continuous variation of shear wave velocity against layered profile 

idealisation without opting for frequency dependent EQL analysis. As it was shown in 

the previous section, that the proposed and routine methods of computation of 

effective strain will result in almost identical response, the proposed method for 

computation of effective strain is opted to update soil properties in the successive 

iterations of EQL analysis.  

The layered and approximated continuous shear wave velocity profiles considered to 

model the soil deposit are shown in Figure 5.28. Soil deposit is discretised into 24 

layers such that the natural frequency of the layers is within 20 Hz.  The continuous 

approximation of layered shear wave velocity profile significantly decreases the 

contrasting impedance (1/ 3.7)α =  between 4m deep near surface layer of shear wave 

velocity, 130 /sv m s= and 32 m deep underlying layer of 480 /sv m s= .   

The comparison of results obtained for layered and continuous shear wave velocity 

profile data is made with respect to amplification ratio between surface motion and 

base input motion, surface acceleration time histories and their corresponding Fourier 

spectra and response spectra. All the results presented for the case of layered profile is 

same as that obtained in the comparative study made in the previous section 

pertaining to analysis carried out with effective strain computed using the method 

proposed in this research study. Figure 5.35 compares the amplification ratio for both 

cases of horizontal components of input motions. The peaks corresponding to first 
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two modes of the amplification transfer functions obtained for both the idealizations 

of shear wave velocity profiles are more or less same. For the higher modes up to 

about fifth mode continuous profile shows marginally higher peaks than that for 

layered profile. Further layered profile exhibits significant increase in the 

amplification while that obtained for continuous profile gradually decreases. Most 

importantly, the troughs of the amplification ratio are lifted upwards for the case of 

continuous profile compared to that of layered profile. This aspect signifies the effect 

of relatively rigid bedrock on the response of the surface deposit which is poorly 

reflected in case of layered shear wave velocity profile. All the observations compiled 

here are valid for the cases of horizontal earthquake components. Beyond 20 Hz 

frequency, the layered profile exhibits poor simulation demonstrating degradation of 

soil stiffness to such an extent wherein the depth of the layer is large enough to trap 

high frequency waves leading to building up of wave amplitudes.  
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Figure 5.35: Comparison of computed amplification ratio between surface and 

base motions for the cases of layered and continuous shear wave velocity profiles 

of TKCH08 site using frequency independent EQL analysis (SRISD). (a) EW 

component; (b) NS component 
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Figure 5.36: Comparison of computed acceleration time history response for the 

cases of layered and continuous shear wave velocity profiles of TKCH08 site 

using frequency independent EQL analysis (SRISD) with observed surface 

motion during  2003 Tokachi-Oki earthquake; (a) Layered profile EW 

component; (b) Continuous profile EW component; (c) Layered profile NS 

component and (d) Continuous profile NS component. 
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Figure 5.37: Comparison of Fourier spectra and response spectra of the 

computed acceleration time histories at the surface of the deposit (Figure 5.36); 

(a and b) EW component; (c and d) NS component  
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Figures 5.36a and 5.36b compare the surface acceleration time histories 

corresponding to EW component obtained for layered and continuous idealizations of 

shear wave velocity profiles respectively, while Figures 5.36c and 5.36d compare 

those of NW component responses. For the purpose of clarity the time window is 

selected to represent strong motion region in the neighborhood of maximum 

acceleration. It can be observed that the peak acceleration response is satisfactorily 

estimated in both the cases of layered and continuous shear wave velocity profile 

idealizations. However, continuous idealization has been able to show overall better 

agreement with the observed record compared to layered deposit though the 

difference is negligible.     

In order to assess relative efficiency of these two idealizations the Fourier amplitude 

spectra and response spectra of the predicted surface accelerograms corresponding to 

these two cases are compared. Figures 5.37a and 5.37b respectively present these 

results for EW component while Figures 5.37c and 5.37d for NS component input 

motions respectively. The frequency content of the response obtained for continuous 

shear wave velocity profile has marginally enhanced concurrence with that of 

observed motion compared to response obtained for layered profile. Nevertheless, the 

response obtained for both these cases have shown poor agreement with the observed 

record particularly in the vicinity of lower resonant frequencies. For both EW and NS 

components the response is overestimated in the frequency range less than about 2 Hz. 

This observation is evident in response spectrum representation also. In the 4 Hz to 10 

Hz frequency range the response is underestimated in case of EW component 

response. In this range of frequencies the predicted response for the NS component 

has distinctly different characteristics. Though the response spectra of NS component 

responses have shown good agreement with that of corresponding recorded motion in 

the high frequency range (low period), the differences in the Fourier amplitudes in 

this frequency range is evident. However, it can be noted that overall trend of the 

response predicted by employing continuous shear wave velocity profile is 

comparatively better than that corresponding to response obtained using layered 

profile. The overestimation and underestimation of response respectively at low and 

high frequency ranges are in accordance with the observations made in the Chapter 2.  
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5.7.7 Comparison of results of layered and continuous shear wave velocity 

profile idealizations – Frequency dependent EQL analysis (SRISD) 

In order to improve the observed discrepancies with respect to predicted responses for 

the cases considered in the previous section, proposed frequency dependent EQL 

analysis is carried out. The proposed method described in Section-5.6.4 and 

implemented in the program SRISD is opted with all the other data being same. The 

target frequency required for this analysis is fixed based on the observations made in 

the frequency independent EQL analysis carried out in the previous section. For the 

cases of EW and NS component input motions target frequency Tf , up to which 

additional geometrical damping is to be considered, is set to 12 f and 13 f respectively 

where 1f is the fundamental frequency of the deposit.  
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Figure 5.38: Comparison of computed amplification ratio between surface and 

base motions for the cases of layered and continuous shear wave velocity profiles 

of TKCH08 site using frequency dependent EQL analysis (SRISD); (a) EW 

component; (b) NS component 
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In the proposed method for frequency dependent EQL analysis, the fundamental 

frequency of the deposit is updated after successive iterations based on updated 

average shear modulus of the soil deposit. Thus both 1f and therefore Tf are updated 

for subsequent iteration.  
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Figure 5.39: Comparison of computed acceleration time history responses for the 

cases of layered and continuous shear wave velocity profiles of TKCH08 site 

using frequency dependent EQL analysis (SRISD) with observed surface motion 

during  2003 Tokachi-Oki earthquake. (a) Layered profile EW component; (b) 

Continuous profile EW component; (c) Layered profile NS component; and (d) 

Continuous profile NS component 
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Figure 5.40: Comparison of Fourier spectra and response spectra of the 

computed acceleration time histories at the surface of the deposit (Figure 5.39); 

(a and b) EW component; (c and d) NS component  
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Figures 5.38a and 5.38b present the amplification ratio between computed surface 

motion and input base motion respectively for EW and NS components of the input 

earthquake motion. Compared to frequency independent analysis there is increase in 

maximum amplification in all the modes. Also, the maximum values obtained for 

layered and continuous profile closely agrees with each other though there is 

noticeable difference in corresponding modal frequencies.  

Acceleration time histories of the predicted surface responses corresponding to EW 

component motion are presented in Figures 5.39a, and 5.39b respectively for layered 

and continuous idealization of shear wave velocity profile, while that of NS 

component are presented in Figures 5.39c and 5.39d. Relative comparison of 

responses obtained for layered and continuous idealizations can be clearly seen in the 

Figures 5.40. Figures 5.40a and 5.40c present the Fourier spectra of the predicted 

surface accelerogram of EW and NS component motions respectively for layered and 

continuous shear wave velocity profile cases. In both the cases the improvement in 

predicted motions is evident compared to frequency independent EQL analysis results 

presented in the previous section. Also analysis carried out for the case of shear wave 

velocity profile idealized with continuous variation has resulted in comparatively 

better agreement with the measured data than the results obtained for the case of 

layered idealization.   

5.7.8 Results and discussion 

In this section the results obtained for the case study presented above is analysed 

statistically. In order to ascertain the efficiency of the proposed refinements of this 

research study relative to routine analysis procedure three statistical parameters are 

used to obtain goodness of fit between predicted and observed data. Though 

customarily the peak accelerations of the predicted and observed responses are 

compared in most of the cases to asses the efficiency of the prediction, it may not be 

complete evaluation of the predicted response in view of complex nature of variation 

in acceleration time history and its frequency components. To overcome this 

inadequacy, Kaklamanos et al. (2011) suggested following statistical measures for the 

purpose of quantitative validation. 
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� Pearson’s correlation coefficient: 

The goodness of fit is quantified using the correlation coefficient ,r given by 

( )( )

( ) ( )

1

2 2

1 1

n
i i i

n n
i ii i

O O P P
r

O O P P

=

= =

− −∑
=

− −∑ ∑

      (5.16) 

Here, iO and iP  respectively represent observed and predicted response quantities 

at the th
i instant, while O and P represent corresponding arithmetic mean values. 

� Efficiency coefficient: 

Nash-Sutcliffe model efficiency coefficient E , is given by 

( )

( )

2

1

2

1

1

n
i i i

n
i i

O P
E

O O

=

=

−∑
= −

−∑
        (5.17) 

This method, commonly used in the analysis of hydrological data, is explained in 

Legates and McCabe (1999). Higher the efficiency coefficient implies better 

agreement between predicted ( )iP  and observed ( )iO responses. This assessment is 

considered to be superior because E is sensitive to differences in means and variances 

of observed and predicted responses [Legates and McCabe (1999)]. 

� Root mean square error: 

The root mean square of the error ( )errorRMS in predicted values with respect to 

observed values is expressed as  

( )
2

1( )

1 n
ierror i iRMS O P

n
== −∑       (5.18) 

The units (g) of the acceleration response is retained in ( )errorRMS  

Using all the above three statistical parameters, the responses computed from different 

analyses cases are evaluated with respect to observed acceleration data. For the 

acceleration time histories shown in Figures 5.36 and 5.39, Pearson’s correlation 

coefficient, efficiency coefficient and root mean square error are computed and 



 271 

tabulated in Table 5.3. Also these coefficients for the respective response spectra are 

tabulated in Table 5.4.  

Table 5.3: Results of the statistical analyses for goodness-of fit of the acceleration 

response at the surface computed from SRISD with respect to observed record 

Earthquake component 

considered for the analysis  Type of 

analysis 

Shear wave 

velocity 

profile 

Statistical 

parameters NS 

component  

EW 

component  

r  0.623 0.594 

E  0.453 0.466 Layered 

profile 
( )errorRMS  0.050 0.059 

r  0.629 0.588 

E  0.426 0.438 

Frequency 

independent 

EQL analysis 

(SRISD) Continuous 

profile  
( )errorRMS  0.052 0.058 

r  0.578 0.585 

E  0.403 0.491 Layered 

profile 
( )errorRMS  0.053 0.056 

r  0.637 0.643 

E  0.472 0.512 

Frequency 

dependent 

EQL analysis 

(SRISD) 

 
Continuous 

profile  
( )errorRMS  0.050 0.055 

Table 5.4: Results of the statistical analyses for goodness-of fit of the response 

spectra of computed surface response with respect to that of observed record 

Earthquake component 

considered for the analysis  Type of 

analysis 

Shear wave 

velocity 

profile 

Statistical 

parameters NS 

component  

EW 

component  

r  0.948 0.868 

E  0.888 0.724 Layered 

profile 
( )errorRMS  0.016 0.030 

r  0.956 0.866 

E  0.900 0.705 

Frequency 

independent 

EQL analysis 

(SRISD) Continuous 

profile  
( )errorRMS  0.015 0.031 

r  0.928 0.902 

E  0.859 0.808 Layered 

profile 
( )errorRMS  0.018 0.025 

r  0.950 0.955 

E  0.900 0.906 

Frequency 

dependent 

EQL analysis 

(SRISD) 

 
Continuous 

profile  
( )errorRMS  0.015 0.017 
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Figure 5.41: Comparison of goodness-fit parameters obtained for computed 

acceleration responses at the surface of the TKCH08 soil deposit with different 

cases of analysis. NS – component (top row) and EW – component (bottom row) 

The statistical quantities representing goodness-of-fit of computed responses with 

respect to observed response tabulated in Table 5.3 are presented with separate bar 

charts for each of the different cases of analyses in Figure 5.41.  The error associated 

with predicted response is quantified by errorRMS and is observed to be least for the 

response computed using frequency dependent analysis with soil deposit is modeled 

by means of continuous shear wave velocity profile, while, same kind of analysis 

carried out with layered shear wave velocity profile under NS-component input 

motion has resulted in response with relatively large errorRMS value compared to 
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results of other analysis cases. In fact errorRMS associated with EW and NS horizontal 

components of earthquake input motions show different trends particularly with 

respect to frequency dependent analysis of layered deposit. On the other hand, 

errorRMS associated with EW-component motion is least for the frequency dependent 

analysis compared to frequency independent analysis and for continuous soil profile 

compared to layered profile.   
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Figure 5.42: Comparison of goodness-fit parameters obtained for response 

spectra of computed acceleration responses at the surface of the TKCH08 soil 

deposit with different cases of analysis. NS – component (top row) and EW – 

component (bottom row) 
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From Figure 5.41 it can be observed that both, Pearson’s correlation coefficient 

( )r and efficiency coefficient ( )E are higher for frequency dependent analysis with 

continuous variation of shear wave velocity profile compared to response obtained 

under the case of layered profile and frequency independent analysis. However, 

frequency independent analysis with continuous velocity profile has resulted in 

marginally poor agreement with observed record compared to that for layered profile. 

All these observation are also in confirmation with the bar charts presented in Figure 

5.42 which are obtained for response spectra of computed acceleration time histories 

and corresponding observed records. In conclusion, responses computed using 

frequency dependent analysis proposed in this study has shown better agreement with 

observed response compared to routine frequency independent analysis. Also, 

approximating the layered deposit of contrasting layer impedances with continuous 

variation of shear wave velocity will favorably improve predictability of response 

using EQL analysis, particularly at resonant frequencies.   

5.8 SUMMARY 

In the previous chapter, details about the computer program developed for the purpose 

seismic site response analysis was presented. The main feature of this program is that 

it can accommodate different idealisations of soil profile including continuous 

distribution of soil properties along the depth. Apart from fulfilling this main purpose 

of the present study, it is intended to look into other limitations of routine one-

dimensional equivalent linear analysis to improve its response prediction capabilities. 

The two major issues of concern identified in Chapter 2 of this thesis and well 

recognized in the literature are addressed. The major issue is related to ambiguity in 

the method used for calculation of effective strain during the EQL iterations. The 

other issue of concern in frequency domain EQL analysis is its inconsistency in 

simulation of response in the regions of fundamental resonant frequency and at high 

frequency regime. Proposed alternative methods that are reported in the literature to 

circumvent these two lacunae of routine site response analysis procedure are reviewed 

and alternative methods are proposed to overcome these deficiencies. Finally a case 

study is presented in detail, in which the responses computed with and without using 
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all these proposed options are compared with the well documented observed data 

during an earthquake. For this purpose data pertaining to a geotechnical downhole 

array site of Japan is selected. The results of this comparative study are presented and 

analysed using statistical tools. 

Almost all the programs currently available for equivalent linear analysis in frequency 

domain recommend constant value for effective to maximum strain ratio (R-value) 

which is calculated based on magnitude of the earthquake input motion used for the 

analysis. Also this ratio remains unaltered for all iterations and at all depths of the soil 

deposit though temporal and spatial variation of computed strain time history in 

successive iterations is obvious. Currently employed method for computing effective 

strain was initially proposed in the SHAKE91 program manual and it has been 

verified to give satisfactory results. However, in this chapter, the circumstances in 

which it is impossible to assign this value without ambiguity are emphasized. Two 

options are incorporated in SRISD as alternative methods to compute unique value of 

effective strain for each of the successive iterations.   

The first method is based on peak acceleration obtained in the previous iteration is 

used to calculate Modified Mercalli Intensity (MMI) and same kind of well 

established relationship is used to calculate R-value [ ( 1) /10]R MMI= − except that 

MMI is used instead of magnitude. For this purpose well established empirical 

relationship between peak acceleration and MMI is used. The advantage of this 

method is that user intervention is completely avoided in the calculation of effective 

strain because program itself updates the value of R by assigning appropriate value at 

every node in each of the successive iterations based on corresponding maximum 

acceleration computed in the previous iteration. In the second method the average 

strain is calculated and used as effective strain. However this option is kept open 

ended because user can give the value of number of peaks that should be considered 

to calculate average strain.  

In order to improve the response prediction capability of EQL analysis at resonant 

frequencies, based on the observation made, a semi empirical scheme is proposed. 

Usually the response is overestimated at resonant frequencies, particularly at lower 
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modes; and high frequency responses are underestimated. To enhance the response at 

lower resonant frequencies, in addition to material damping energy dissipation due to 

radiation of wave energy in the elastic half-space is considered. Also the material 

damping is reduced logarithmically to amplify the response in higher frequency range 

beyond target frequency Tf .  

As mentioned earlier, owing to indistinct approach of computing effective strain, most 

often selection of R-value is biased. Widely accepted choice of R-value ranges from 

0.5 to 0.7. For an example problem with arbitrarily selected earthquake input motion 

and analyses are carried out for different R-values. It has been shown that, the 

maximum acceleration response, amplification transfer function and Fourier 

amplitude spectra of the computed surface accelerogram are sensitive to chosen value 

of R. This illustrative example evidently emphasizes the need for an alternative 

rational approach to compute R-value in order to overcome inconsistencies in 

frequency domain EQL analysis. Also it has been verified, the proposed alternative 

method for computation of R-value is as reliable as present method in satisfying the 

convergence criteria of the EQL analysis. The proposed method, as illustrated in 

accompanying flowchart, can be easily accommodated within the framework of 

frequency domain equivalent linear analysis computer programs. 

The response computed using frequency dependent EQL analysis proposed in the 

present study is compared with the results of routine EQL analysis and time domain 

nonlinear analysis. This comparative study clearly establishes the efficacy of the 

proposed method in improving spectral characteristics of the predicted response. It 

has been observed that, accounting for the effect of radiation damping has 

considerably enhanced the quality of the predicted response at the fundamental 

resonant frequency of the deposit in agreement with that of time domain nonlinear 

response. 

Finally, a case study is presented to verify all the proposed improvements to 

frequency domain equivalent linear analysis. The downhole geotechnical array 

TKCH08 (KIK-net) of Japan is selected for this purpose. This array site is selected 

because, as reported in the cited literature, it perfectly qualifies for one dimensional 
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analysis. Also additional shear velocity profile data obtained independently in the 

vicinity of this site and well documented in the literature enabled to idealize the 

profile quantitatively with continuous variation of shear wave velocity along the 

depth. Among the earthquakes recorded at this site, 2003 Tokachi-Oki event of 

magnitude 8.0 is recognized to have resulted in nonlinear response of the soil deposit. 

Thus TKCH08 is considered as an ideal site for validation of all the proposed 

alternatives of this research study.  

Various options of SRISD program that are exercised in this case study include, 

layered and its equivalent continuous shear wave velocity profiles, frequency 

independent and frequency dependent EQL analyses and analyses are performed for 

input motions consisting of both NS and EW horizontal components. The response 

quantities obtained from SRISD analyses are compared with the corresponding 

observed data. Results of the statistical analysis are presented to compare predicted 

and observed responses quantitatively. 

The three statistical parameters, such as Pearson’s correlation coefficient ( ) ,r  

Efficiency coefficient ( )E and Root mean square of the error ( )errorRMS are used to 

compare the responses predicted using different options of SRISD with the observed 

response quantities. All the analyses pertaining to this case study are carried out by 

using the option of proposed method for computing effective strain in the iterations of 

EQL analysis.  

For both the case of input motions the proposed frequency dependent equivalent 

analysis with approximated continuous shear wave profile predicted the response 

which closely matched with observed response compared to that of routine EQL 

analysis with layered profile. The comparisons are presented with respect to surface 

acceleration responses as well as their response spectra. The abstract of these results 

are tabulated in the Table shown below. From the results presented in the table it is 

evident that both correlation coefficient ( )r and efficiency coefficient ( )E are more for 

frequency dependent EQL analysis with shear wave velocity profile being idealised 

with a continuous function compared to results obtained for routine EQL analysis 
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with layered shear wave velocity profile. Root mean square of the error of the 

predicted response with respect to observed response also supports this observation. 

Hence it can be concluded that, proposed recommendations of this study can 

effectively improve the predictability of frequency domain equivalent linear analysis.  

Acceleration time history response at the surface of the soil deposit 

Input motion NS – horizontal component EW – horizontal component 

Analysis r  E  errorRMS  r  E  errorRMS  

Layered profile – 

Frequency 

independent routine 

EQL analysis 

0.623 0.453 0.050 0.594 0.466 0.059 

Continuous  profile – 

Frequency 

dependent EQL 

analysis 

0.637 0.472 0.050 0.643 0.512 0.055 

Response spectra of acceleration time history response  

Layered profile – 

Frequency 

independent routine 

EQL analysis 

0.948 0.888 0.016 0.868 0.724 0.030 

Continuous  profile – 

Frequency 

dependent EQL 

analysis 

0.950 0.900 0.015 0.955 0.906 0.017 

 

 

 



CHAPTER 6 

AN ALTERNATIVE METHOD FOR ESTIMATION OF 

FUNDAMENTAL PERIOD OF LAYERED SOIL DEPOSITS 

6.1  INTRODUCTION 

It has been well established that the damage caused during an earthquake is directly 

related to local geological conditions of the site. During an earthquake, seismic waves 

propagate through heterogeneous soil deposit above engineering bedrock. This alters 

wave characteristics usually resulting in amplification or attenuation of wave 

amplitudes in addition to change in its frequency characteristics. This phenomenon is 

primarily dependent on modal characteristics of the soil deposit overlying engineering 

bedrock. Particularly, amplification is dominant in the vicinity of the fundamental 

frequency of the soil deposit. Through several post earthquake geotechnical studies 

[for e.g., Seed et al. (1972)], it has long been recognized that the intensity of structural 

damage and its distribution are closely dependent on dynamic characteristics of the 

underlying soil deposit, particularly the depth, stiffness and amplification 

characteristics. 1985 Mexico earthquake [Seed et al. (1988); Singh et al. (1988)], 2001 

Bhuj (Gujarat) earthquake [Prasad et al. (2001); Sitharam and Govindaraju (2004); 

Kumar (2006)], 1989 Loma Prieta and 1994 Northridge earthquakes [Seed et al. 

(1990); Benuska (1990); Borcherdt and Glassmoyer (1992); Holzer (1994) and others] 

and other earthquakes elsewhere have clearly demonstrated the importance of 

considering local site effects in the design of earthquake resistant structures, 

particularly to avoid their eventual resonant state.  

The current state of research in the field of earthquake engineering mainly focuses on 

modeling the seismic site effects in an appropriate and simplest possible manner. 

Hence in the recent past, evolving reliable method of assessing site effects has been 

the primary task of earthquake geotechnical engineering research throughout the 

world. One of the simplest analytical methods of assessing the site effects, in terms of 

amplification corresponding to fundamental frequency of the soil deposit overlying 
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bedrock, is to consider the heterogeneous layered soil deposit overlying the bedrock 

as one dimensional homogeneous layer having equivalent constant shear wave 

velocity.  

As discussed in Chapter 2, very often in practice, one dimensional seismic response 

analysis of inhomogeneous soil deposit is carried out for the case of vertically 

incident shear waves propagating through horizontally layered soil deposit. Through 

several studies on free vibration characteristics of two dimensional soil deposits, it has 

been recognized that the fundamental period computed from one dimensional analysis 

fairly represents the fundamental period of wide and shallow sediment filled valleys 

of low shape factor (ratio of depth of the valley to its half width, is about less than 

0.3) [Paolucci (1999)]. Moreover it has been established by Bard and Bouchon (1985) 

that the fundamental period of two dimensional soil deposit may be approximately 

related to one dimensional fundamental period of the deposit at the valley center and 

its shape factor.  

Most of the international code of practices prescribe average shear wave velocity of 

top 30 m of soil deposit ( 30s
v ) as parameter for site classification [Eurocode-EC8 

(2004); FEMA-P-749 (2010)]. On the other hand, some of the seismic design codes 

such as, building laws of Japan adopt natural period of soil deposit as the criteria for 

seismic site classification [Marino et al. (2005)]. Essentially, based on these site 

classification data, codes will provide soil amplification or attenuation factors (scaling 

factors) to arrive at scaled elastic design response spectra which are compatible with 

local soil conditions. In this regard, some related studies have indicated that 

fundamental natural period of the surface layer above the bedrock is more appropriate 

parameter to predict amplification ratios than 30s
v criteria particularly for long period 

deposits [Zhao (2011) and McVerry ((2011)]. Apart from its application in general 

site classification based on amplification ratio, fundamental natural period is also an 

essential input parameter in the analysis of underground structures [Sawada (2004)]. It 

may be pointed out that such a rational method of computing design forces by 

appropriately accounting for local soil condition is absent in Indian code of practice 

IS-1893 (2002). Currently, Indian code classifies foundation soil into three categories 
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namely soft, medium and hard (rock) soils depending on range of SPT-N values. 

There is immediate need for updating Indian seismic design codes commensurate with 

other national codes by incorporating local site effects in computation of design forces 

[Khose et al. (2010)]. For this purpose, fundamental natural period of the soil deposit 

may be used as key parameter because it accounts for both stiffness and depth of the 

surface soil deposit above the bed rock. Hence reliable assessment of fundamental 

period of the soil deposit is an important primary step in seismic site characterisation 

particularly in the process of microzonation of urban area. 

Perceiving its importance in seismic site characterisation tasks, many methods have 

been formulated and proposed to estimate reliably the fundamental period of one 

dimensional horizontally layered soil deposit. Some of these methods are briefly 

described. While implementing these methods, it is essential to idealize the soil 

deposit as a layered profile as far as possible closely representing the actual shear 

wave velocity distribution.  

Uncertainty is evident in idealizing the actual profile into an equivalent layered 

system because of complex variability of soil properties along the depth. As pointed 

out in Chapter 3, the soil deposit may exhibit distinct continuous variation of soil 

properties depending upon its genesis, stress history and other related process. 

However, questionably, even such deposits displaying distinct continuous variation 

soil properties are approximated as layered system. In such situations, employing the 

methods derived for layered profiles may be inappropriate for estimation of 

fundamental period.  

Firstly, methods available for the estimation of fundamental period of layered soil 

deposits are reviewed. Methods based on weighted average of shear wave velocities 

of the layered soil profile are most widely employed in practice. There are methods 

which are accurate and more reliable than weighted average methods, but they are 

iterative in procedure and hence tedious. Consequently, they are unpopular for quick 

estimation of fundamental period of soil deposits. A new method, which is simple and 

comparatively reliable, for computing fundamental period is proposed and presented 

in this chapter. The proposed method primarily involves approximating the layered 
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shear wave velocity profile with an equivalent linearly varying shear wave velocity 

profile. The closed form exact analytical solution is used to compute the fundamental 

period of the deposit of linearly varying shear wave velocity profile. The efficiency of 

the proposed method and other available methods is verified by comparing their 

results with values computed from recorded earthquake accelerograms of 

instrumented geotechnical downhole arrays.  

6.2  FUNDAMENTAL PERIOD OF INHOMOGENEOUS SOIL DEPOSIT  

Since shear wave velocity and fundamental period are directly interrelated, many 

empirical relationships have been proposed to compute average shear wave velocity 

as an equivalent substitute to complex shear wave velocity profile of inhomogeneous 

layered deposit. Summary and relative comparison of all empirical methods available 

till then are given in the paper by Dobry et al. (1976).  In addition to these empirical 

methods, Dobry et al. (1976) have discussed about other comparatively accurate 

methods based on closed form solutions like successive application of exact solution 

for two layer system proposed by Madera (1971) and method based on linear 

approximation of fundamental mode shape. Procedure to implement Madera’s two 

layer solution to multiple layers deposit is discussed later in this chapter.  

Among the analytical methods available to compute fundamental period of the 

layered deposit Rayleigh’s method is most accurate. The general iterative procedure 

to implement Rayleigh’s method in case of horizontally layered soil deposits is 

detailed in Dobry et al. (1976). Period corresponding to first peak of amplification 

transfer function computed using the theory of multiple reflections of waves is an 

alternative reliable and accurate method for computing fundamental period of layered 

deposits. For this purpose, one can use the expression derived in Chapter 2 (Eq. 2.33) 

or computer program such as SHAKE which directly computes the amplification 

transfer function from Haskell-Thompson transformation matrix. Dobry et al. (1976) 

compared fundamental period computed from both exact Rayleigh’s iterative method 

and transfer function of SHAKE program for several profiles of different velocity 

structures and concluded that they yield almost same result. Hence, fundamental 

period computed from amplification transfer function can be considered as exact 
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value. In case of almost all approximate methods for computation of fundamental 

period of the horizontally layered soil deposit, it is assumed that the soil deposit is 

overlying the rigid bedrock. However, Sawada (2004) derived an approximate 

relationship for fundamental period of layered soil deposit overlying elastic bedrock. 

But, in the presence of any intermediate relatively stiff layer, this method yields 

imaginary value for natural period. In such cases the method becomes cumbersome as 

it ceases to be a closed form equation and involves further trial and error process. 

Therefore, it may be appropriate to compute the fundamental period considering the 

total depth of soil deposit above the bedrock and ignore the relatively large shear 

wave velocity associated with the underlying bed rock. Rigid bedrock assumption is 

justified when the objective of the analysis is estimation of fundamental period of the 

deposit, not the associated amplification, because effect of rigidity of bedrock on the 

fundamental period is negligible [Jiang and Kuribayashi (1988)].  

6.2.1  Method-1: Weighted average of shear wave velocity ( )(1)
T  

For a homogeneous soil deposit of total thickness H  and constant shear velocity
s

v , 

the fundamental period (T ) is given by,   

4

s

H
T

v
=   (6.1)  

In case of layered soil deposit, average shear wave velocity,
s

v is obtained to compute 

fundamental period. Usually, for a soil deposit of N layers with shear wave 

velocities
si

v , and corresponding layer thicknesses
i

H , 
s

v is calculated as weighted 

average of the layer shear wave velocities from,   

 
1

1 N

s si i

i

v v H
H =

= ∑  (6.2a) 

Then fundamental period is computed from Eq. (6.1) using 
s

v instead of
s

v . Thus, 
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2
(1)

1

4
N

si i

i

H
T T

v H
=

= =

∑
  (6.2b) 

6.2.2  Method-2: Sum of layer periods ( )(2)
T  

Alternatively, if weighted average velocity of the layered deposit is computed using,    

1

1 1 N

i

is si

H

v H v=

= ∑  (6.3a) 

then, substituting (6.3a) in (6.1), the fundamental period is given by, 

(2)

1 1

4N N

i

i

i isi

H
T T T

v= =

= = =∑ ∑   (6.3b) 

( 1, 2,...... )
i

T i N=  are natural periods of each of the individual layers in the deposit. 

Hence, fundamental period of the layered deposit is nothing but sum of the 

fundamental periods of its individual layers [Zeevaert (1972)]. According to Dobry et 

al. (1976), the order of error in fundamental period computed from these two methods 

is about 20% and it could be as large as 50% in some cases where large velocity 

gradient exists between any two layers of the deposit. 

6.2.3  Method-3: Simplified Rayleigh’s Method ( )(3)
T  

Dobry et al. (1976) have proposed a non-iterative alternative approach basically 

derived from exact Rayleigh’s procedure. For the profiles considered in their study 

they noted that Rayleigh’s iterative procedure usually converges, within acceptable 

error range (within ±3 %), to fundamental period in the first iteration itself. Based on 

this observation, a set of closed form equations was formulated for computation of the 

fundamental period as obtained in the first iteration of Rayleigh’s equation. The 

fundamental period using this method is computed from the following equations,  
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1 2
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i i i
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H z
X X H

v
+

−
= +  (6.4a) 

2

1
(3) 1

2
21

1
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i i
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X X H
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X X

v
H

π
+

=

+

=

+
= =

−

∑

∑
 (6.4b) 

i
X  and 1i

X +  are the estimated fundamental mode shapes at the bottom and top of the 

i
th

 layer. At the lower boundary of the bottommost layer, 
i

X  is taken as zero i.e., 

1 0
i

X X= =  and Eq. (6.4a) is used to estimate 
i

X  at all other layer boundaries. 
mi

z , is 

the depth of midpoint measured from top of the deposit. Thus ( )miH z− represents 

depth of midpoint of th
i layer measured from bottom of the deposit. All other 

quantities of Eq. (6.4a & 6.4b) are same as defined earlier. It may be noted that the 

computations are carried out considering layers starting from the bottommost layer 

( 1i = ) to surface layer at the top (i.e., i N= ). 

6.2.4  Method-4: Linear fundamental mode shape ( )(4)
T  

Another modification to Rayleigh’s method as proposed by Dobry et al. (1976) is 

based on the assumption of linear fundamental mode shape. Assuming 1X to
N

X  to 

vary linearly from 0 to1 over the total depth of the soil deposit and accordingly 

substituting in Eq. (6.4b) for
i

X and 1i
X + we get closed form relationship as given in 

Eq. (6.5) 

 
3

(4)

2

1

2

3
N

si i

i

H
T T

v H

π

=

= =

∑
       (6.5) 

6.2.5  Method-5: Successive application of two layer solution ( (5)
T )   

Madera (1971) proposed an alternative method in which fundamental period solution 

obtained for two-layered system overlying bedrock is used repeatedly to analyse 
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multilayered soil deposit. Though this procedure is reliable, it is tedious compared to 

simple average shear wave velocity method.  

Figure 6.1 shows two adjacent homogeneous layers of thicknesses
a

H and
b

H ; 

densities 
a

ρ and
b

ρ ; and having individual fundamental periods 
a

T and 
b

T respectively. 

The combined fundamental period of set of these two layers ,
a b

T − is obtained by 

satisfying the boundary conditions such as, shear stress is zero at the top of the first 

layer, relative displacement at the of bottom of second layer with respect to 

underlying rigid bedrock is zero and at the interface of two layers, stresses and 

displacements are continuous. 

 

Figure 6.1: Two layers soil deposit overlying rigid bedrock considered in 

Madera’s approach. 

Finally, the combined natural period 
a b

T −  of two layered system is obtained by 

solving following equation,  

tan tan
2 2

a b a b b

a b a b b a a

T T T H

T T T H

ρπ π
ρ− −

   
=   

   
 (6.6) 

Dobry et al. (1976) have graphically represented the solution (i.e., for
a b

T − ) of the 

above transcendental equation for a range of values of 
a a b b

H Hρ ρ  and 
b a

T T  using 

which one can approximately ascertain the value of 
a b

T − . If the densities of the layers 

are assumed to be constant then Eq. (6.6) reduces to,  

tan tan
2 2

a b a b

a b a b b a

T T T H

T T T H

π π

− −

   
=   

   
 (6.7)  
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The fundamental period of a soil deposit made up of several layers can be computed 

by successive application of Eq. (6.7) by considering two layers, having individual 

fundamental periods 1T and 2T respectively, at a time. In the first instant, combined 

period, 1 2 a b
T T− −=  of top two layers is computed using 1a

T T=  and 2b
T T= in Eq. (6.7).  

Then these two layers are treated as equivalent single layer with equivalent values of 

depth, density and period 1 2T − to represent it as Layer-a in the next instant and third 

layer is treated as Layer-b. Again, 1,2 3T −  (natural period of top three layers together) is 

computed by using 1 2T − for 
a

T  and 3T  for 
b

T  in Eq. (6.7). This process of successively 

computing the natural period is continued till the last layer (lowermost layer is the 

layer immediately above the bedrock) is reached. Final result represents the combined 

natural period, (5)

1 N
T T −= of all layers. The equivalent depth of the layer-a above 

th
m layer is a simple summation of depths of all layers up to th

m  layer i.e., 

1

1

m

a i

i

H H
−

=

=∑  (6.8) 

The main drawback of the above mentioned procedure is obtaining solution for Eq. 

(6.7) manually. Although charts are developed for this purpose, it is cumbersome to 

implement this procedure in every successive step. Also, for any intermediate value 

other than the range of values used in charts, interpolation is necessary. In order to 

eliminate these shortcomings in implementation of this procedure, Hadjian (2002) 

approximated the solution of Eq. (6.7) by transforming the equation into cosine 

function form.  

6.3  PROPOSED METHOD FOR ESTIMATION OF FUNDAMENTAL 

PERIOD OF SOIL DEPOSITS ( )( )New
T  

The new method proposed in this study essentially involves idealisation of layered 

soil profile with an equivalent soil deposit having continuous shear wave velocity 

profile of linearly variation. For this purpose, an equation for fundamental period of 

the deposit with linearly varying shear wave velocity profile is derived. For any 
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layered profile with distinct shear wave velocity for each layer, curve fitting process 

using regression analysis can be employed to get an equivalent linear fit. Thus 

obtained curve fitting constants, consisting of non-zero shear wave velocity at the 

surface and rate of change of shear wave velocity along the depth, are used to estimate 

the fundamental period of the layered profile.  

6.3.1  Deposit with continuous variation of shear wave velocity       

Here, the objective is to approximate the layered profile with an equivalent profile 

having continuous variation of shear wave velocity.  Simple case of linear variation of 

shear wave velocity has been considered to find free vibration response of the soil 

deposit for vertically propagating transverse waves. Earlier, earthquake response of 

linearly non-homogeneous soil deposits has been presented in Chapter 3. Wave 

equation describing one dimensional shear wave propagation in a soil deposit of 

constant density ρ , and continuously varying shear modulus ( )G z , along the depth z, 

is represented by  

2

2

1
( )

u u
G z

t z zρ
∂ ∂ ∂ 

=  ∂ ∂ ∂ 
   (3.4) 

( )G z , is related to depth dependent shear wave velocity ( )
s

v z as, 2( )
s

G z vρ= . Linear 

distribution of shear wave velocity (shown in Figure 3.5 of Chapter 3) may be 

represented by, 0( )
s

v z v az= + (Eq. 3.12 of Chapter 3). The solution of Eq. (3.4) is 

obtained in Chapter 3 as,  

( ) ( )2 2
2 2

0 0(0.5) ln( ) (0.5) ln( )

1 2

0

1
( )

( )

s si v az i v az
a a

s

U z A e A e
v az

ω ω− + − − +  
= + 

+   
 (3.12) 

Here, 1i = − , 1A and 2A are constants evaluated by satisfying boundary conditions; 

zero shear stress at the surface (at 0z = ) and zero relative displacement at the base 

(at z H= ) in (3.12) yield characteristic eigen values equation as,  

( )2 cos ln sin 0η η µ η+ =  (6.9) 
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Here, 0/
sH s

v vµ = is the ratio of base to surface shear wave velocities. 
sH

v  is the shear 

wave velocity at the bottom (i.e., )z H= of the deposit ( 0sH s
v v aH= + ). The solution 

of Eq. (6.9), η is the dimensionless quantity related to µ  and ω (modal frequencies) 

as,  

( ) 2 2
ln

(0.5 )a
a

µ
η ω= −  (6.10) 

Thus, for a soil deposit having linearly varying shear wave velocity profile, knowing 

the values of 0s
v and

sH
v  Eq. (6.9) can be solved. Hence, the fundamental frequency, 

ω (or fundamental period, 2 /T π ω= ) of the deposit with linearly varying shear wave 

velocity profile is function of smallest root ( η ) of Eq. (6.9). Therefore, using 

0 ( 1) /
s

a v Hµ= −  in (6.10), we get ω  as  

{ }
2

2

0

1
ln

ln
s

H

v

ω µ
η µ

µ
−

= +  (6.11) 

6.3.2  Linear regression analysis 

In the proposed method, in order to compute fundamental period of the layer deposit, 

it is essential to get equivalent linear distribution of shear wave velocity representing 

layer deposit with distinct shear wave velocity for each of the layer. The equivalent 

linear distribution of shear wave velocity is obtained in the form of Eq. (3.12). Using 

linear regression analysis by method of least squares, fitting parameters 0s
v  and a  of 

Eq. (3.12) are obtained. Substituting H , µ  and 0s
v  along with smallest root η  of Eq. 

(6.9), into Eq. (6.11) fundamental frequencyω  can be estimated. 

If N data points corresponding to shear wave velocities and depths represent the 

layered configuration of shear wave velocity profile, then linear regression using 

method of least squares [Johnson (2000)] may be employed to obtain parameters 0s
v  

and a  for linearly varying shear wave velocity profile. Let th
i layer shear wave 

velocity and corresponding mid-depth be represented by 
si

v  and ( )i mid
z  
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( 1, 2,3,...... )i N= respectively. Then, following equations are used to get least square 

estimate of 0s
v  and k , 

2

2

( ) ( )

1 1

2

2

1 1

( ) ( )

1 1 1

    

N N

zz i mid i mid

i i

N N

vv si si

i i

N N N

zv i mid si i mid si

i i i

S z z N

S v v N

S z v z v N

= =

= =

= = =

  
= −   
   


    
= −    

    


  = −     

∑ ∑

∑ ∑

∑ ∑ ∑

 (6.12) 

Then,  

0 ( )

1 1

 

      

zv

zz

N N

s si i mid

i i

S
a

S

v v N a z N
= =


= 




    = −        
∑ ∑

 (6.13) 

Finally, in order to ascertain the inherent variability in shear wave velocity profile 

defined by the original data set corresponding to layered idealisation with respect to 

assumed linear trend, coefficient of variation (COV) and correlation coefficient ( )r  

are calculated. Normalization of standard deviation (SD) with respect to the mean 

shear wave velocity of the assumed linear variation (mean of the trend, t ) gives COV 

[Phoon and Kulhawy (1999)]. Thus, 

( )21

1
vv zv zzSD S S S

N
 = − −

 (6.14) 

( )

( )

2

0 ( )

1

1

1

1

vv zv zz

N

s i mid

i

S S S
SD N

COV
t

v az
N =

 − −= =
+∑

 (6.15) 

And correlation coefficient is,  
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zv

zz vv

S
r

S S
=  (6.16) 

COV and r  are useful indicators of goodness of linear fit for layered profile. If the 

linear fit manifests in high value of COV, then it is an indication of increase in 

variability of the shear wave velocity profile [Chenari et al. (2012)]. On the other 

hand low value of r  is representing the case of highly scattered shear wave velocity 

profile along the depth. This may be the case of profiles with large shear wave 

velocity contrasts between layers or in case of large fluctuations in depth of individual 

layers.   

6.3.3 Approximation of fundamental period 

In Eq. (6.11) the LHS represents the dimensionless frequency dependent term while 

RHS is a function of µ  and η . As can be seen in Eq. (6.9), η  is function of  µ  alone. 

Therefore, it is possible to establish a relationship between µ  and 0H vω  by 

computing η for different values of .µ Varying the values of µ in the range 

1.0 10.0µ≤ ≤ , the smallest root of Eq. (6.9), η  is computed and then using this in Eq. 

(6.11), 0D vω  is obtained. Figure 6.2 shows µ (1.0 10.0)µ≤ ≤ versus 0H vω plot. 

Also, the regression curve for the equation of the form ( )0

c
H v a bω µ= + is shown. 

The values of the curve fitting constants ,a b  and c  that provide best fit are 0.324, 

1.254 and 0.853 respectively. Thus, the relationship between µ and 0H vω is 

expressed as,  

0.853

0

0.324 1.254
H

v

ω
µ= +  (6.17) 

The error in estimated value of 0s
H vω using the above equation compared to its 

actual value as obtained using Eq. (6.9) and Eq. (6.11) for varying values of µ is also 

shown in Figure 6.2. As it can be seen the error (dashed line) is acceptably low (that 

is, less than 0.2%), except in the small range of values around 2µ ≈ where error is 

about 0.25%. Hence, instead of solving the transcendental equation (Eq. 6.9), 
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approximated relationship given in Eq. (6.17) can be directly employed to compute 

0H vω .  

1 2 3 4 5 6 7 8 9 10
0
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  predicting Equation (6.17): 

         ω D / v
0
= 0.324 + 1.254 µ 

0.853

 Error (%)

µ

ω 
H

 /
 v

s
0

0.00

0.08

0.16

0.24

0.32

0.40

E
rro

r (%
)

 

Figure 6.2: Relationship between µ and
0s

H

v

ω ( )for, 1 10µ≤ ≤  

Knowing the depth H , shear wave velocities 0s
v and

sH
v , the fundamental period can 

be computed using Eq. (6.17) and 2 /T π ω= as, 

( )

0.853

0

2

(0.324 1.254 )

New

s

H
T

v

π
µ

=
+

 (6.18) 

It can be verified that, in case of a homogeneous soil deposit of total thickness H  and 

constant shear velocity 0s
v , the error in the fundamental period computed using Eq. 

(6.18) is less than 0.5% compared to exact value obtained from Eq.  (6.1).  

6.3.4  Step by step procedure of the proposed method   

The method proposed in this study for estimating the fundamental period of a layered 

soil deposit involves simple procedure requiring fewer steps like weighted average 

shear wave velocity or simplified Rayleigh’s methods in which no iterative process is 
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required unlike Madera’s or exact Rayleigh’s methods. Following are the steps of the 

proposed method:  

i. The data 
si

v and mid depth of the corresponding layer ( ( )i mid
z ) of layered shear 

wave velocity profile are tabulated. 

ii. The sums S•• ( ),  and zz vv zvS S S are computed using Eq. (6.12)   

iii. Fitting parameters 0s
v  and a are computed from Eq. (6.13) 

iv. Shear wave velocity ratio 0/
sH s

v vµ = is computed where, 0sH s
v v aH= +  

v. The fundamental period ( )New
T is computed using Eq. (6.18) 

6.4  VERIFICATION OF THE PROPOSED METHOD 

One of the most reliable methods of ascertaining fundamental period of a site is by 

analyzing its downhole array data of earthquake accelerograms recorded at that site. 

The recorded earthquake data pertaining to an instrumented downhole array provide 

vital information for seismic site characterisation. The new method proposed here is 

validated by comparing the fundamental period computed with that obtained from 

actual earthquake data recorded in some of the instrumented geotechnical arrays.  

6.4.1  Geotechnical arrays  

Table 6.1 presents the details of the four instrumented geotechnical downhole arrays 

employed in this study to validate the proposed alternative procedure for computing 

fundamental period of the layered profile. These geotechnical downhole arrays were 

established as part of a project on site amplification studies by the California Strong 

Motion Instrumentation Program (CSMIP) in California, USA. Geotechnical data 

available at these stations include suspension logging shear-wave velocity profiles. 

The data related to shear wave velocity profile and earthquakes recorded by these 

instrumented sites are available in CSMIP website. More details about these arrays 

are given in Graizer et al. (2000) and references cited therein.  
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Table 6.1: Strong motion geotechnical array stations 

Downhole Geotechnical 

Array 
Agency 

Station 

No. 

Latitude/ 

Longitude 
Sensor depths, m 

La-Obregon Park 

Geotechnical array 
CSMIP 24400 

34.037N 

118.178W    
0, 70 

La-Cienega Geotechnical 

Array 
CSMIP 24703 

34.036N 

118.378W 
0, 18, 100, 252 

Eureka Somoa 

Geotechnical Array 
CSMIP 89734 

40.819N 

124.165W 
0, 19, 33, 56, 136 

El Centro - Meloland 

Geotechnical Array 
CSMIP 01794 

32.773N 

115.447W 
0, 30, 100, 195 

Table 6.2: Layer data of shear wave velocity profiles considered for the analysis 

Array Obregon Park La-Cienega 
El-Centro 

Meloland 
Eureka Somoa 

Layer 

No. 

Layer 

Depth 

(m) 

s
v  

(m/s) 

Layer 

Depth 

(m) 

s
v  

(m/s) 

Layer 

Depth 

(m) 

s
v  

(m/s) 

Layer 

Depth 

(m) 

s
v  

(m/s) 

1.  1.22 399.29 2.13 139.90 2.44 185.01 10.06 149.96 

2.  3.66 487.68 1.83 179.83 4.57 114.91 4.88 180.14 

3.  2.13 420.62 3.05 210.01 3.05 224.94 5.18 230.12 

4.  3.66 478.54 3.05 239.88 4.88 164.90 11.89 259.99 

5.  3.66 539.50 3.05 279.81 5.18 199.95 10.06 220.07 

6.  1.52 420.62 4.88 309.68 7.93 249.94 10.06 239.88 

7.  1.22 548.64 2.13 289.86 1.83 309.98 12.80 289.87 

8.  1.83 429.77 1.83 349.91 6.10 355.09 24.99 320.04 

9.  2.13 350.52 2.13 369.72 11.89 299.92 14.94 359.97 

10.  1.83 469.39 1.83 339.85 17.07 420.01 45.11 409.96 

11.  1.22 539.50 3.96 313.94 24.99 480.06 24.99 459.94 

12.  3.05 460.25 9.75 472.44 17.07 549.86 14.94 600.15 

13.  8.84 429.77 21.34 411.48 17.98 459.94 5.11 449.89 

14.  7.93 478.54 12.19 624.84 10.97 600.15 

15.  4.88 600.46 26.85 518.16 

16.  6.10 499.87 

17.  2.13 670.56 

18.  13.11 530.35   

 

In these arrays, apart from triaxial accelerometers at the surface and engineering 

bedrock levels, sensors are installed at several intermediate depths except in case of 

La-Obregon Park Geotechnical array. The highlighted (boldfaced) depths in the Table 

6.1 against an array indicate the total depth ( H ) of the soil column considered for 

analysis. The accelerograms recorded by the sensors located at these corresponding 

depths are used for computing the fundamental period of the soil column. These 

instrumented sites are chosen to represent wide range of soil column depths ranging 

from 70 m to 195 m and exhibiting significant variability with respect to shear wave 

velocity profile along the considered depths. These factors associated with the chosen 
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soil deposits amply ascertain the efficacy of the proposed method compared to other 

approximate methods for estimation of the fundamental period.  

The shear wave velocity profiles idealised into layered soil deposits are inferred from 

continuous PS logging and SASW data. The layer configurations considered in this 

study are adopted from Graizer et al. (2000) and also from the website of Pacific 

Earthquake Engineering Research Center (PEER) sponsored research project on 

Calibration Sites for Validation of Nonlinear Geotechnical Models [Stewart (2002)]. 

Layer depths and their corresponding shear wave velocities used in the present study 

are given in Table 6.2.  

6.4.2  Fundamental period using earthquake data 

Acceleration time histories recorded during an earthquake at two depths can be used 

to determine dynamic characteristics, such as fundamental period and amplification 

transfer function of soil deposit included between these two depths [Roësset (1977)]. 

For this purpose response spectrum for low damping value is obtained for both these 

records, and ratio between these response spectra is obtained. Fundamental period for 

the deposit is determined as period corresponding to peak of the response spectrum 

ratio between ground surface and bottom of the soil deposit. To determine the 

fundamental periods of the soil deposits of geotechnical arrays considered in this 

analysis, earthquake accelerograms recorded by these instrumented geotechnical 

arrays are selected as indicated in Table 6.3. For this purpose, earthquake 

accelerograms of both the horizontal components are considered. All the earthquakes 

considered are of weak ground motions with low peak ground accelerations of less 

than 0.02g. 

For the recorded motion at a particular array the response spectrum of 2% damping is 

obtained at two depths, one for the recorded surface motion and another for the 

motion recorded at the depth considered for defining the depth of soil deposit. These 

response spectra are smoothened and spectral ratio is obtained. Period corresponding 

to peak of the response spectrum ratio is taken as the fundamental period of the 

deposit included between ground surface and the considered depth of the deposit. 
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Figures 6.3(a) to Figure 6.3(d) show ratio of response spectra between selected depths 

obtained for the soil deposits of four geotechnical arrays considered. The periods 

corresponding to peaks of the spectra of both the horizontal components of the 

earthquake along with their average curve are also given.    

Table 6.3: Details of earthquake events considered in the analysis 

Geotechnical 

Array 
Earthquake event 

Epicentral 

distance 

(km) 

Components 

of the event 

PGA (g) 

(Horizontal) 

90° 0.011 Obregon Park 

Geotechnical 

array 

Calexico area eq. 

Mw=7.2 

April 4
th

 2010 

348.30 
360° 0.013 

90°
 
 0.010 La Cienega 

Geotechnical 

array 

Calexico area eq. 

Mw=7.2 

April 4
th

 2010 

349.30 
180° 0.009 

90°
 
 0.010 Eureka Somoa 

Geotechnical 

Array 

Eureka Offshore eq. 

ML=4.4 

September 22
nd

 2000 

24.40 
180° 0.011 

270°   0.008 El Centro 

Meloland 

Geotechnical 

array 

Borrego Springs 

Area Eq. 

ML=5.4 

July 7
th

 2010 

120.70 
360

°
 0.011 

The results obtained from the above analysis using the earthquake data is summarized 

in Table 6.4.  For each of the soil deposit considered for verification of the proposed 

method, only one of the seismic events recorded by the downhole instruments of these 

sites is selected. However, Graizer et al. (2000) have analysed several events recorded 

by some of these downhole arrays and obtained mean trend of spectral amplification 

ratio between surface and bedrock. Periods corresponding to peak spectral ratio 

shown in Table 6.4 for La-Cienega deposit compares very well with range of period 

of peak amplification under weak motions presented by Graizer et al. (2000). In 

addition, spectral ratios obtained for weak and strong motion separately have 

indicated reduction in amplification under strong ground motions compared to weak 

motions and decrease in period corresponding to peak amplification due to strong 

ground motion. In order to eliminate these effects on computed fundamental period, 

only the records of weak motions are selected for this analysis.  
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Figure 6.3: Computation of Fundamental periods from response spectrum ratio 

method (a) La-Obregon Park (surface/70 m) (b) La Cienega (surface/100 m) 

(c) Eureka Somoa (surface/136 m) and (d) El Centro Meloland (surface/195 m) 

 

Table 6.4: Fundamental periods computed from response spectrum ratio method 

and SHAKE analysis 

Geotechnical 

Array 
Component 

T  (s)  

[RS ratio 

method] 

( )EQR
T (s) 

[Average 

curve] 

( )SHAKE
T (s) 

[SHAKE analysis] 

% 

difference 

90° 0.525 Obregon 

Park 360° 0.575 
0.565 0.555 1.80% 

90° 0.825 
La Cienega  

180
°
 0.855 

0.835 0.834 0.12% 

270° 1.840 El Centro 

Meloland  360° 1.900 
1.895 1.956 3.12% 

90° 1.220 Eureka 

Somoa  180° 1.165 
1.190 1.188  0.17% 
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The fundamental period computed from representative earthquake data recorded at 

each of these four arrays is reaffirmed by comparing these results with periods 

corresponding to first peak of the amplification transfer function obtained for the 

corresponding site using SHAKE. As noted earlier, the natural period computed from 

theory of multiple reflections of waves employed in SHAKE is almost same as the 

exact solution of Rayleigh’s iterative method. Amplification transfer function between 

surface and depth H  is obtained for low damping value of 2% for all four sites and is 

as shown in Figure 6.4. For this purpose, computer program EERA [Bardet et al 

(2000)] is used. Also shown are the periods corresponding to peaks representing 

fundamental period of the particular soil deposit. The amplification shown in Figure 

6.4 is normalized using respective maximum values such that amplification ratio is 

one for all the cases. The fundamental periods computed from earthquake data and 

SHAKE analysis ( ) ( ) and EQR SHAKE
T T respectively are presented in Table 6.4. The 

percentage difference ( ) ( ) and EQR SHAKE
T T  is given in last column of the Table 6.4. 

There is a good agreement between results obtained from these two methods 

confirming the accuracy of average range of site periods obtained from spectral ratio 

of recorded data. 
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6.4.3  Fundamental period using proposed method 

In order to validate the proposed method, the fundamental periods of four soil 

deposits (Table 6.1) considered above are computed using the proposed method as 

well as from other analytical methods discussed earlier. The computed fundamental 

period results are relatively compared with those obtained using actual earthquake 

data summarized in Table 6.4. Firstly, the proposed method is implemented using the 

procedure as described earlier (Section 6.3.4). The layer-wise shear velocity data 

given in Table 6.2 are tabulated with shear wave velocities and corresponding layer 

mid-depths measured from surface. Summations required to be used in Eq. (6.12) are 

calculated for all the four soil deposits as shown in Table 6.5. Also, in continuation, 

Table 6.5 gives the values of summations of Eq. (6.12), linear trend fitting constants 

0s
v and a  (Eq. 6.13) and statistical quantities of the linear trend (Eq. 6.14 and 6.15).  

Instead of calculating manually, it is also possible to obtain curve fitting parameters 

0s
v  and a using any graph plotting software tool. In that case, data of a particular 

deposit tabulated in Table 6.5 may directly be used to plot the shear wave velocity 

profile and implement curve fitting tool by selecting linear fit option. Such a plot of 

layered profile along with equivalent linearly varying shear wave profiles for all the 

four cases of soil deposits considered are shown in Figure 6.5(a) to Figure 6.5(d). 

Parameters 0s
v and a obtained in Table 6.5 and shown in Figures 6.5(a) to 6.5(d) are 

identical. In all cases the equivalent linear shear wave velocity profile is found to 

represent the actual layered profile with COV less than 0.20. The r  value for La-

Obregon Park deposit is as low as 0.581 indicating highly scattered distribution of 

shear wave velocities along the depth compared to other deposits as in those cases r  

value is around 0.90. Low COV indicate that fluctuation of discrete shear wave 

velocity values along the depth is uniform with respect to its linear trend. The curve 

fitting results are tabulated for all the soil profile cases in Table 6.5 along with 

computed value of their fundamental period ( )New
T using Eq. (6.18). 

 

 



  300 

Table 6.5: Calculation of fundamental period using proposed method  

Soil Deposit La-Obregon Park La-Cienega Eureka Somoa 
El Centro 

Meloland 

No. ( i ) ( )i mid
z  

si
v  ( )i mid

z  
si

v  ( )i mid
z  

si
v  ( )i mid

z  
si

v  

1  0.00 399.29 0.00 139.90 0.00 185.01 0.00 149.96 

2  0.61 399.29 1.07 139.90 1.22 185.01 5.03 149.96 

3  3.05 487.68 3.05 179.83 4.72 114.91 12.50 180.14 

4  5.94 420.62 5.49 210.01 8.53 224.94 17.53 230.12 

5  8.84 478.54 8.53 239.88 12.50 164.90 26.06 259.99 

6  12.50 539.50 11.58 279.81 17.53 199.95 37.03 220.07 

7  15.09 420.62 15.54 309.68 24.08 249.94 47.09 239.88 

8  16.46 548.64 19.05 289.86 28.96 309.98 58.52 289.87 

9  17.98 429.77 21.03 349.91 32.92 355.09 77.42 320.04 

10  19.96 350.52 23.01 369.72 41.91 299.92 97.38 359.97 

11  21.95 469.39 24.99 339.85 56.39 420.01 127.41 409.96 

12  23.47 539.50 27.89 313.94 77.42 480.06 162.46 459.94 

13  25.60 460.25 34.75 472.44 98.45 549.86 182.42 600.15 

14  31.55 429.77 50.29 411.48 115.98 459.94 192.45 449.89 

15  39.93 478.54 67.06 624.84 130.45 600.15 195.00 449.89 

16  46.33 600.46 86.87 518.16 135.94 600.15 

17  51.82 499.87 100.58 518.16 

18  55.93 670.56 

19  63.55 530.35 

20  70.10 530.35 

 
 

 

N  20 17 16 15 

( )i midz∑  530.66 500.79 786.99 1238.293 

2

( )i mid
z∑  22690.14 29122.78 72632.96 174622.1 

siv∑  9683.496 5707.38 5399.84 4769.817 

2

siv∑  4798692.85 2224454.69 2215159.47 1764561.71 

( ) sii mid
z v∑  274825.9 226729.92 375709.34 520794.89 

zz
S (Eq. 6.12) 8610.298 14370.603 33923.135 72397.420 

vv
S (Eq. 6.12) 110188.115 308326.074 392769.490 247818.097 

zv
S (Eq. 6.12) 17895.168 58601.781 110107.389 127032.821 

a (Eq. 6.13) 2.078 4.078 3.246 1.755 

0s
v (Eq. 6.13) 429.030 215.602 177.839 173.136 

0sH s
v v kH= +  574.698 625.767 619.100 515.361 

0/
sH

v vµ =  1.340 2.902 3.481 2.977 

( ) ( )New
T s  

(Eq. 6.18) 
0.531 0.853 1.213 2.020 

SD  (Eq. 6.14) 61.983 65.838 48.569 36.215 

COV  (Eq. 6.15) 0.128 0.196 0.144 0.114 

2
r  (Eq. 6.16) 0.338 0.775 0.910 0.899 
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Figure 6.5: Equivalent linear shear wave velocity profile for the layered soil 

deposits (a) 0 429.03; 2.078
s

v a= = , (b) 0 215.601; 4.078
s

v a= = , (c) 0 177.839;
s

v =  

3.246a = and (d) 0 173.136; 1.755
s

v a= =  

6.4.4  Fundamental period using other methods 

Fundamental periods of the four soil deposits considered above are also estimated 

from other five methods, discussed in sections 6.2.1 to 6.2.5 above and the results are 

presented here. The specimen calculations for implementation of these methods, 

except simplified Rayleigh’s method, are illustrated in Table 6.6 for the case of La 

Cienega deposit. In Column (4) of Table 6.6, fundamental period is computed using 

average shear wave velocity of the deposit, i.e. using Eq. (6.2b) and Eq. (6.3b) 

respectively. In Col. (5), values computed are fundamental periods of the respective 

individual layer of thickness 
i

H and velocity
si

v . In Column (6), summation required 

for Method-4 is computed. Cumulative depth up to bottom of a particular layer, i.e. 

sum of all individual layer thickness (
i

H ) up to and including th
i layer is computed in 
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Column (7). In Column (8 and 9), fundamental period of the deposit is computed 

using Madera’s approach by obtaining the solution of transcendental equation (Eq. 

6.6) for every layer. The values of 
a

H and 
b

H (representing thicknesses of top and 

bottom layers of a two layer system) are replaced with 1iH −∑ and 
i

H respectively. 

i.e, in Eq. (6.6) the ratio /
a b

H H  is replaced by 1 /i iH H−∑  given in Column (8) 

against each layer starting from second layer to compute 1 ( )iT − which represents the 

fundamental period of the deposit consisting of all layers up to and including th
i layer. 

Hence, the fundamental natural period ( (5)

1 15 0.850 sT T −= = ) of the entire soil deposit 

as computed from Madera’s approach is mentioned at the bottom of Column (9). 

Summary of results of (1) (2) (4), ,T T T and (5)
T  respectively corresponding to Methods 

1, 2, 4 & 5 are tabulated in last column of Table 6.6. Implementation of simplified 

Rayleigh’s procedure is demonstrated for the case of La Cienega deposit in Table 6.7.  

6.5  RESULTS AND DISCUSSION 

In order to ascertain the efficiency of the proposed method over other methods, 

fundamental period computed from proposed method is compared with that obtained 

by approximate methods (1) (2) (3) (4)[ , , & ]T T T T  and with more rigorous Madera’s 

approach (5)[ ]T . Table 6.8 summarizes results obtained from all the procedures 

including proposed method ( )[ ]newT . For the purpose of comparing these estimated 

results with realistic values, fundamental periods obtained from response spectrum 

ratio of recorded earthquake data ( )[ ]EQR
T  and period corresponding to first peak of 

amplification transfer function obtained from SHAKE ( )[ ]SHAKE
T analysis are 

tabulated. Figure 6.6 compares the results obtained from different methods including 

proposed method with respect to fundamental period computed from recorded 

earthquake data as well as from SHAKE analysis. Percentage error in the fundamental 

period computed using approximate methods, including proposed method of the 

present study, with respect to ( )SHAKE
T is presented using bar graph in Figure 6.7. 
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  Table 6.6: Specimen calculation for La-Cienega profile using methods 1, 2, 3 and 4 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Layer 

( i ) 

depth 

(
i

H ) si
v  

si i
v H×  

4 /
i si

H v

( )
i

T  

2

si i
v H×  iH∑  

1i

i

H

H

−∑
 

Madera (1971) 

(Eq. 6.7) 

Summary of results of 

Methods 

1, 2, 4 & 5 

1 2.13 139.90 298.50 0.061 41760.75 2.13  1T = 0.061 

2 1.83 179.83 328.88 0.041 59142.57 3.96 1.17 1 2T − = 0.095 

3 3.05 210.01 640.10 0.058 134426.02 7.01 1.30 1 3T − = 0.143 

4 3.05 239.88 731.15 0.051 175385.77 10.06 2.30 1 4T − = 0.186 

5 3.05 279.81 852.85 0.044 238632.86 13.11 3.30 1 5T − = 0.220 

Method – 1,

2

1

4
N

si i

i

H

v H
=

 
 
 
 
 
 
∑

  

(1)
T = 0.93 s 

6 4.88 309.68 1510.23 0.063 467683.76 17.98 2.69 1 6T − = 0.269 

7 2.13 289.86 618.46 0.029 179268.49 20.12 8.43 1 7T − = 0.296 

8 1.83 349.91 639.92 0.021 223913.31 21.95 11.00 1 8T − = 0.313 

Method – 2, ( )iT∑  

(2)
T = 1.042  s 

9 2.13 369.72 788.84 0.023 291651.71 24.08 10.29 1 9T − = 0.330 

10 1.83 339.85 621.52 0.022 211225.27 25.91 13.17 1 10T − = 0.349 

11 3.96 313.94 1243.97 0.050 390537.45 29.87 6.54 1 11T − = 0.397 

12 9.75 472.44 4607.99 0.083 2176999.17 39.62 3.06 1 12T − = 0.429 

13 21.34 411.48 8779.34 0.207 3612521.70 60.96 1.86 1 13T − = 0.618 

Method – 4, 

3

2

1

2

3
N

si i

i

H

v H

π

=

 
 
 
 
 
 

∑
 

 
(4)

T = 0.812 s  

14 12.19 624.84 7618.05 0.078 4760061.91 73.15 5.00 1 10T − = 0.668 

N = 15 27.43 518.16 14214.17 0.212 7365211.80 100.58 2.67 1 15T − = 0.850 

Sum → 100.58  43493.97 1.042 20328422.54    

Method – 5, ( )1 15T −  

(5)
T = 0.850  s 
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Table 6.7: Specimen calculation for La-Cienega profile using method - 3 

Layer  i
H  

mi
H z−  

si
v  1 2

mi

i i i

si

H z
X X d

v
+

−
= +  

2

1( )
i i i

X X H++

 

2
21( )i i

si

i

X X
v

H

+ −  

15 27.43 86.87 518.16 0.009 0.002 0.771 

14 12.19 67.06 624.84 0.011 0.005 0.140 

13 21.34 50.29 411.48 0.017 0.017 0.319 

12 9.75 34.75 472.44 0.019 0.013 0.053 

11 3.96 27.89 313.94 0.020 0.006 0.031 

10 1.83 24.99 339.85 0.020 0.003 0.010 

9 2.13 23.01 369.72 0.021 0.004 0.008 

8 1.83 21.03 349.91 0.021 0.003 0.007 

7 2.13 19.05 289.86 0.021 0.004 0.009 

6 4.88 15.54 309.68 0.022 0.009 0.012 

5 3.05 11.58 279.81 0.023 0.006 0.005 

4 3.05 8.53 239.88 0.023 0.006 0.004 

3 3.05 5.49 210.01 0.024 0.007 0.002 

2 1.83 3.05 179.83 0.024 0.004 0.001 

1 2.13 1.07 139.90 0.024 0.005 0.000 

∑  100.58    0.094 1.372 

Method – 3, 

2

1
(3) 1

2
21

1

( )

( )

N

i i i

i

N

i i
si

i i

X X H

T T
X X

v
H

π
+

=

+

=

+
= =

−

∑

∑
= 0.822 

Table 6.8: The fundamental periods computed from different methods  

Profiles ( )→  

Periods ( )↓  

La-Obregon 

Park 
La-Cienega Eureka Somoa 

El-cento 

Meloland 

(1)
T  0.568 0.930 1.341 2.184 

(2)
T  0.577 1.042 1.590 2.458 

(3)
T  0.559 0.822 1.248 2.011 

(4)
T  0.511 0.812 1.154 1.888 

(5)
T  0.548 0.850 1.136 2.597 
( )New

T  0.531 0.853 1.213 2.020 
( )SHAKE

T  0.555 0.834 1.188 1.956 
( )EQR

T  0.565 0.835 1.190 1.895 

In case of La Obregon Park deposit, shallowest deposit ( )70H m=  among the cases 

considered, the fundamental period computed from approximate methods agree 

closely with that of exact value [ ( )SHAKE
T = 0.555 s] However, for this soil deposit the 

error in estimated value is largest in case of Method-4 which is close to about 8%, 
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whereas for all other methods, the error is less than 5%. In case of La Cienega and 

Eureka Somoa soil deposits (H = 100m and H = 136m respectively), except for 

Methods 1 and 2 ( (1) (2)&T T ) the computed fundamental periods all other methods 

have yielded the results with error less than around 5%. For these two soil deposits the 

error associated with weighted average shear wave velocity method ( (1)
T ) is about 

12% while it is more than 25% in case of sum layer periods method ( (2)
T ). 
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Figure 6.6: Comparison of fundamental periods computed from different 

methods 
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The deepest soil deposit among the cases considered is El-Centro Meloland   

( )195H m= . For this case, the error in estimated fundamental period using simplified 

Rayleigh’s Method ( (3)
T ) is about 33%. It is interesting note that the fundamental 

period estimated using this method was close to exact value with less than 5% error in 

case of other three comparatively shallower soil deposits considered in this study. 

Hence this method appears to be inconsistent for deeper soil deposits, because mode 

shape resulting from first iteration of Rayleigh’s method could be far from exact 

mode shape as depth of the soil deposit increases. Method based on assumption of 

linear mode shape (Method-4) is much simpler to implement and has estimated the 

fundamental period with better accuracy than Method-3. However, in case of La 

Obregon Park, the fundamental period computed using Method-4 ( (4)
T ) is 

comparatively more erroneous than other approximate methods.  

Method based on successive application of exact solution for two layered system 

(Method-5) has predicted the fundamental period ( (5)
T ) within acceptable error range 

of about 5%. However, implementation of this method is tedious and becomes more 

cumbersome as number of layers associated with the soil deposit increase.  

The newly proposed alternative method presented here has been able to estimate the 

fundamental period [ ( )New
T ] which closely agrees with the exact values in case of all 

the four deposits considered in this study. The error associated with ( )New
T  compared 

to exact value [ ( )SHAKE
T ] are 4.32%, 2.28%, 2.10% and 3.27% respectively for La 

Obregon Park, La Cienega, Eureka Somoa and El Centro Meloland soil deposits. 

Thus, it can be concluded that the proposed method appears to be both consistent and 

accurate than other approximate methods yet simpler to implement than reliable but 

tedious procedures such as method based on successive application of two layer 

solution proposed by Madera (1971).   

6.6  SUMMARY  

Considering the importance of the fundamental period in seismic site characterisation, 

a simplified alternative method is proposed to estimate the fundamental period of 
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layered soil deposit on rigid bedrock. In this new method, the layered shear wave 

velocity profile of the soil deposit is approximated with an equivalent linearly varying 

shear wave velocity profile. An equation for the fundamental period is proposed based 

on closed form solution obtained for linearly varying shear wave velocity profile. The 

proposed method is validated by comparing its results with that of exact solution and 

as well as with the results computed from actual earthquake data.  

The fundamental periods computed from popularly used approximate methods based 

on average shear wave velocity of the deposit is found to be inconsistent for relatively 

deeper deposits and also in case of large fluctuation in shear wave velocities along 

depth. The proposed method is seen to be more reliable and accurate for estimating 

the fundamental period of the layered soil deposits particularly for deeper deposits 

with significant variation in shear wave velocity profile. Further, it is observed that 

successive use of two layered solution is comparatively accurate but tedious to 

implement than the proposed method. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  308 

 



CHAPTER 7 

CONCLUSIONS AND SCOPE FOR FUTURE STUDY 

7.1 CONCLUSIONS 

 7.1.1  General 

Reliable and consistent site response prediction for expected seismic forces is an 

important issue in earthquake disaster mitigation tasks. Also free-field response analysis 

is an integral part of the study concerned with soil structure interaction problem. Routine 

seismic ground response analysis in engineering practice is usually performed by 

modeling the ground as one-dimensional horizontally layered deposit and analysis is 

carried out in frequency domain. Equivalent linear (EQL) approach is used in order to 

account for nonlinear behaviour of soil deposit under strong seismic excitation. In most 

of the situations, seismic site response analysis is accomplished by employing standard 

curves developed and readily available in literature. Popularity of computer programs 

implementing EQL method is evident primarily because of its ease in implementation and 

interpretation of results as compared to true non-linear analysis. Though non-linear time 

domain method has ability to simulate dynamic response of ground, complexities 

involved in obtaining the realistic parameters of non-linear models makes it unpopular in 

routine engineering practice. The present study contributes to enhance the scope of 

seismic site response analysis using EQL approach by addressing the following issues.  

•••• In the routine analysis the soil deposit is idealised as layered system though most 

often variations in soil properties along the depth of a soil deposit is either continuous 

or discretely random. Thus, within the framework of currently used popular 

programs, a computer program for one dimensional seismic site response analysis is 

developed, which can adequately model continuously or discretely inhomogeneous 

soil deposits instead of usual layer approximation. 
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•••• The method to compute effective strain in turn used to get strain compatible shear 

modulus and damping properties during the iteration process of EQL approach is 

ambiguous and lacks rational reasoning. Thus, an unambiguous and rational method 

which accounts for resulting intensity of shaking in each of the successive iterations it 

evolved.   

•••• The major inconsistency of EQL approach is discrepancies in the computed response 

at certain frequency ranges. Major cause for this is unrealistic damping values 

assigned at these frequency ranges disregarding magnitude of strain associated with 

these frequencies. Accordingly, a scheme is proposed in which the damping value of 

the soil is appropriately assigned to overcome these consistencies.   

•••• Estimation of fundamental period of soil deposit is an important prerequisite in 

seismic site characterisation. Hence, the possibility of extending the concept of 

idealizing the shear wave velocity profile as continuously varying profile to assess 

fundamental period of layered soil deposit is investigated. This extended study has 

resulted in an alternative method to estimate fundamental period of layered soil 

deposit.  

The conclusions of the study carried out are summarized in the following sections. 

7.1.2 Seismic response analysis of layered soil deposits 

•••• Under the excitation of relatively weak input motion, the results of frequency domain 

and time domain linear analyses are in good agreement. Spectral characteristics of the 

computed response clearly reveal the effect of frequency content of the input motion.  

•••• Spectral characteristics of the responses computed for relatively strong input motion 

indicate that the high frequency response from EQL analysis is always 

underestimated compared to that of time domain nonlinear analysis. Frequency range 

at which underestimation of response sets off appears to be consistently associated 

with the frequency content of the input motion and modal characteristics of the soil 

deposit.  
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•••• The response of the soil deposit excited by means of two input motions with distinctly 

different frequency characteristics but normalized to same relatively low maximum 

acceleration is equally sensitive to spectral characteristics of the input motion and 

plasticity index (PI) of the soil. Though large difference is observed in computed peak 

surface acceleration for different PI values, spectral amplitudes of their corresponding 

response spectra appears to be having negligible difference.  

7.1.3 Seismic response of continuously inhomogeneous soil deposit 

•••• As the impedance of the layer decreases, wave energy dissipated in that layer 

increases. However, the wave amplitude increases as the impedance of a layer 

decreases relative to base layer. Since amplification of wave amplitude is sensitive 

to layer impedances, the importance of appropriate idealization of the shear wave 

velocity profile of the soil deposit becomes evident.  

•••• The decrease in contrasting impedance ratio tends to be insignificant after certain 

limiting number of layers used to approximate the continuously varying shear wave 

velocity profile.  

•••• As impedance ratio between inhomogeneous soil deposit and underlying bedrock 

increases, the maximum amplification decreases. The troughs of the amplification 

transfer function are shifted upward signifying much of the energy is reflected back 

into the flexible half-space.  

•••• In rigid bedrock underlying an inhomogeneous deposit, irrespective of degree of 

inhomogeneity the maximum amplification is unaltered. However, the modal 

frequencies of the deposit are dependent on degree of inhomogeneity. Thus, the 

current practice of modeling the bedrock as rigid when input motion is prescribed at 

the base of the deposit (within motion) not only overestimates the response at 

resonant frequencies but also affects the spectral characteristics of the computed 

response. 
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•••• The response of continuously inhomogeneous deposits is sensitive to impedance 

ratio between surface layer and bedrock, damping ratio, inhomogeneity parameters 

such as shear wave velocity ratio ( )0 0/  or /
sH s H

v v G G  and degree of 

inhomogeneity defined by power (  or )m n of the inhomogeneity function.  

•••• The parametric study carried out indicates that the prediction of high frequency 

response can be improved without affecting much of the lower mode responses. 

The appropriate configuration of Gibson layers can be effectively used to represent 

continuously inhomogeneous soil deposits instead of approximating them with a 

stack of homogeneous layers.  

•••• In order to compare the implications of idealizing the deposit with continuous and 

layered profiles, soil deposit and recoded earthquake data of La-Cienega and El-

Centro Meloland geotechnical array sites (USA) are considered. Results of 

idealisation with more number of layers indicating continuous variation in soil 

properties is found to be closer to reality than those with less number of layers. The 

results clearly demonstrate that the high frequency response characteristics are very 

much sensitive to layer configuration particularly contrasting impedance ratios 

between the layers. 

7.1.4 Computer program SRISD 

•••• The computer program SRISD developed is tested and validated by comparing its 

output with analytical closed form solutions of continuously inhomogeneous soil 

deposits and layered deposits responses computed using SHAKE analysis. The 

unique features of SRISD are: 

−−−− Three options are provided to input profile data of the soil deposit. 

−−−− An option may be chosen to vary either shear modulus and/or damping in 

successive iterations.  

−−−− Refined options for selecting the method for computing effective strain are 

incorporated.  
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−−−− The frequency dependent equivalent linear analysis can be chosen by opting 

either frequency dependent damping model proposed by Darendeli (2001) or 

frequency dependent analysis model proposed in this study.  

7.1.5 Refinements to equivalent linear analysis  

•••• It has been shown that the maximum acceleration response, amplification transfer 

function and Fourier amplitude spectra of the computed surface accelerogram all 

these response quantities are sensitive to chosen value of R. 

•••• The advantage of the proposed method for computing effective strain is that, the 

user intervention is completely avoided in the calculation of effective strain because 

program itself updates the value of R by assigning appropriate value at every node 

in successive iterations based on intensity of shaking in the previous iteration.  

•••• The proposed alternative method for computation of R-value is as reliable as routine 

method in satisfying the convergence criteria of the EQL analysis. It can be easily 

accommodated within the framework of frequency domain equivalent linear 

analysis computer programs. 

•••• Accounting for the effect of radiation damping considerably enhances the quality of 

the predicted response at the fundamental frequency of the deposit comparing well 

with that of time domain nonlinear response.  

•••• In order to verify all the proposed improvements, a case study related to a downhole 

geotechnical array [TKCH08 (KIK-net)] of Japan is presented. It is evident that 

both correlation coefficient ( )r and efficiency coefficient ( )E are more for 

frequency dependent EQL analysis with shear wave velocity profile being idealised 

with a continuous function compared to results obtained for routine EQL analysis 

with layered shear wave velocity profile as presented in the table below. Hence it 

can be concluded that, proposed recommendations are able to effectively improve 

the predictability of frequency domain EQL analysis.  
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Acceleration time history response at the surface of the soil deposit from the 

downhole geotechnical array TKCH08 (KIK-net) of Japan 

Input motion 
NS – horizontal 

component 

EW – horizontal 

component 

Analysis r  E  r  E  
Layered profile – Frequency 

independent routine EQL analysis 
0.623 0.453 0.594 0.466 

Continuous  profile – Frequency 

dependent EQL analysis 
0.637 0.472 0.643 0.512 

Response spectra of acceleration time history response  

Layered profile – Frequency 

independent routine EQL analysis 
0.948 0.888 0.868 0.724 

Continuous  profile – Frequency 

dependent EQL analysis 
0.950 0.900 0.955 0.906 

7.1.6 Fundamental period layered soil deposit 

•••• Considering the importance of the fundamental period in seismic site characterisation, 

an alternative method is proposed to estimate the fundamental period of layered soil 

deposit on rigid bedrock. The proposed method is validated by comparing its results 

with exact values of fundamental periods of four natural soil deposits and it is shown 

to be acceptable for a wide range of depths of soil profiles ranging from 70 m to 195 

m, however the other approximate methods show wide scatter in the fundamental 

period with increase in depth of deposit. 

7.2 SCOPE FOR FUTURE STUDY 

The concept of approximating the randomly inhomogeneous soil deposit as continuously 

inhomogeneous deposit in seismic response analysis seems to be promising in 

overcoming uncertainties in the predicted response particularly with respect to 

idealization of shear wave velocity profile. However the present study is limited to 

frequency domain equivalent linear analysis, hence this concept may be extended to time 

domain nonlinear analysis. 
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In the present study frequency dependent damping is modeled by incorporating radiation 

damping to reduce the response near fundamental frequency of the deposit. The number 

of modes to be considered is arrived based on the observations of limited parametric 

study. Elaborate parametric study may be carried out to relate radiation damping to modal 

frequencies of the deposit and frequency characteristics of the input motion. Thus one 

may propose an unbiased method to assign the frequency range for which radiation 

damping effect is to be considered in the analysis.  

In the present study the radiation damping accounting for energy dissipation only in the 

half-space (elastic bedrock) underlying the soil deposit is considered. The magnitude of 

damping additionally introduced is in proportional to fundamental frequency of the 

deposit, which is computed based average shear wave velocity of the soil deposit. 

However further investigation needs to be taken up to consider the radiation damping 

effect more realistically with due consideration to energy dissipated at the interfaces of 

all the layers due to reflection of waves depending upon corresponding impedance ratio 

at the interface.  

Currently available data with respect to frequency dependency of shear modulus and 

damping ratio is widely scattered and contradictory. Once the effect of excitation 

frequency on dynamic soil properties is clearly established more rational frequency 

dependent equivalent linear analysis schemes can be incorporated into the computer 

program developed in this study. 

The concept of equivalent linear shear wave velocity idealisation appears to be efficient 

in estimating the modal characteristics of layered soil profile. Application of this concept 

to estimate amplification characteristics of the layered soil deposit may be explored to 

develop empirical ground motion prediction equations to incorporate in code of practice, 

thus overcoming the unrealistic modeling of discontinuity at layer interfaces leading to 

contrasting layer impedances.   
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APPENDIX – I  

MATLAB PROGRAMS TO COMPUTE AMPLIFICATION 

FUNCTION OF INHOMOGENEOUS SOIL DEPOSITS USING 

ANALYTICAL SOLUTION  

AI.1 Program for Amplification of Continuously Inhomogeneous Soil Deposits 

%*************************************************************************** 

%*************************************************************************** 

% program inhomocontinuous.m 

%*************************************************************************** 

%*************************************************************************** 

% 

% Program to compute Amplification function between free surface motion and 

% bedrock motion for continuously inhomogeneous soil deposit  

% Input motion is Harmonic Excitation  

% 

%************************************************************************** 

% 

% Depth dependent Shear wave velocity function is vs(z)=vs0*(1+az)^(n/2) 

% Continuous varation of shear wave velocity considered is G(z)=A(z0+z)^n 

% 

%************************************************************************** 

% 

%Amplification Surface to outcrop rock (Elastic bedrock - Amp2 of CHAPTER-3 

%Amplification Surface to Base (Rigid bedrock) - Amp1 of CHAPTER-3 

%Amplification for n<1; n=1; and n>1 or m<2; m=2; and m>2 [Towhata (1996)] 

%For linear shear wave velocity distribution enter n=2  

%Amplification is computed for constant density throughout the depth  

%z = Depth coordinate; z0 and A are inhomogeinity parameters  

% 

%************************************************************************** 

% 

% Brock = 1 when bedrock is considered to be rigid  

% Brock = 2 when bedrock is considered to be elastic (flexible) 

% 

%************************************************************************** 

%************************************************************************** 

%************************************************************************** 

%************************************************************************** 
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clear all; 

Brock=input('input bedrock option: [rigid (1) or flexible (2)] Brock:'); 

n=input('input value of inhomogeneity factor (n):'); 

v0=input('input value of surface velocity (v0):'); 

vH=input('input value of base velocity (vH):'); 

H=input('input total depth of the deposit (H):'); 

rho=input('input density (rho):'); 

fmax = input('enter max. frequency (rad/s) for amplification (fmax):');  

if (Brock == 2) 

vr=input('input value of bedrock velocity velocity (vr):'); 

rbr=input('input bedrock density (rbr):'); 

end; 

damp=input('input damping factor in % (damp):'); 

damp=damp/100; 

VRn=(v0/vH)^(2/n); 

z0=H*VRn/(1-VRn); 

A=(rho*v0*v0*complex(1,(2*damp)))/(z0^n); 

disp(z0);disp(VRn);disp(A); 

lam=(2/(2-n))*sqrt(rho/A); 

ztH=lam*((H+z0)^((2-n)/2)); 

zt0=lam*((z0)^((2-n)/2)); 

zt=ztH*(2-n)/2; 

nu=1/(2-n); 

% 

%-Linear distribution of shear wave velocity 

% 

if (n == 2) 

    damc=sqrt(complex(1,2*damp)); 

    v0c=v0*damc; 

    vHc=vH*damc; 

    mu=vHc/v0c; 

    a=(vHc-v0c)/H;   

    omg=0; 

  for dd=0.1:0.1:fmax; 

    omg=omg+1; 

    k=sqrt((dd/a)^2-0.25); 

    theta=k*log(mu); 

    A1=(2*k*cos(theta)+sin(theta))/(2*k*sqrt(mu)); 

    if (Brock==1) 

      AA(omg)=1/A1;  %#ok<AGROW> 

    else 

      A2=(vH*rho/(vr*rbr))*dd*sin(theta)/(k*a*sqrt(mu)); 

      AA(omg)=1/(A1+(complex(0,1)*A2)); %#ok<AGROW> 
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    end; 

    omg1(omg)=dd/(2*3.1415926); %#ok<AGROW> 

  end; 

end; 

% 

%-Non-Linear distribution of shear wave velocity with n<2 

% 

if (n<2 && Brock == 2) 

    nu1=nu+1; 

    b=(n-2)/(sqrt(z0)*3.141592654*rho); 

    omg=0; 

for dd=0.1:0.1:fmax; 

    omg=omg+1; 

    A1=(bessely(nu,zt0*dd)*(besselj(nu,ztH*dd)-zt*dd*besselj(nu1,ztH*dd)))); 

    A2=(besselj(nu,zt0*dd)*(bessely(nu,ztH*dd)-zt*dd*bessely(nu1,ztH*dd)))); 

    A3=(1/(rho*dd*dd*sqrt(z0+H)))*(A1-A2); 

    A41=(bessely(nu,ztH*dd)*besselj(nu,zt0*dd)); 

    A42=(bessely(nu,zt0*dd)*besselj(nu,ztH*dd)); 

    A4=(A41-A42)*(sqrt(H+z0)/(complex(0,1)*rbr*vr*dd)); 

    A5=A3+A4; 

    AA(omg)=(b/(dd*dd))/(A5); %#ok<AGROW> 

    omg1(omg)=dd/(2*3.141592654); %#ok<AGROW> 

end; 

elseif (n<2 && Brock == 1) 

    nu1=nu+1; 

    b=(sqrt((z0+H)/z0))*(n-2)/3.141592654; 

    omg=0; 

for dd=0.1:0.1:fmax; 

    omg=omg+1; 

    A1=(bessely(nu,zt0*dd)*(besselj(nu,ztH*dd)-zt*dd*besselj(nu1,ztH*dd)))); 

    A2=(besselj(nu,zt0*dd)*(bessely(nu,ztH*dd)-zt*dd*bessely(nu1,ztH*dd)))); 

    AA(omg)=(b)/(A1-A2); %#ok<AGROW> 

    omg1(omg)=dd/(2*3.141592654); %#ok<AGROW> 

end; 

% 

%-Non-Linear distribution of shear wave velocity with n>2 

% 

elseif (n>2 && Brock == 2) 

    nu1=-nu+1; 

    b=(n-2)/(sqrt(z0)*3.141592654*rho); 

    omg=0; 

for dd=0.1:0.1:fmax; 

    omg=omg+1; 
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    A1=((bessely(-nu,-zt0*dd))*(besselj(nu1,-ztH*dd))); 

    A2=((besselj(-nu,-zt0*dd))*(bessely(nu1,-ztH*dd))); 

    A12=(A1-A2)*(1/(sqrt(A*rho*dd*dd)*((H+z0)^((n-1)/2)))); 

    A3=((besselj(-nu,-zt0*dd))*(bessely(-nu,-ztH*dd))); 

    A4=((bessely(-nu,-zt0*dd))*(besselj(-nu,-ztH*dd))); 

    A34=(A3-A4)*(sqrt(H+z0)/(complex(0,1)*rbr*vr*dd)); 

    AA(omg)=(b/(dd*dd))/(A12+A34); %#ok<AGROW> 

    omg1(omg)=dd/(2*3.141592654); %#ok<AGROW> 

end; 

elseif (n>2 && Brock == 1) 

   nu1=-nu+1; 

   b=(n-2)*(sqrt(((z0+H)^(n-1))*A))/((sqrt(z0*rho))*3.141592654); 

  omg=0; 

for dd=0.1:0.1:fmax; 

    omg=omg+1; 

    A1=((bessely(-nu,-zt0*dd))*(besselj(nu1,-ztH*dd))); 

    A2=((besselj(-nu,-zt0*dd))*(bessely(nu1,-ztH*dd))); 

    AA(omg)=(b/dd)/(A1-A2); %#ok<AGROW> 

    omg1(omg)=dd/(2*3.141592654); %#ok<AGROW> 

end;   

end; 

plot(omg1,abs(AA)); 

xlabel('Frequency (Hz)'); 

if(Brock == 1) 

    ylabel('Amp1-amplification (surface/rigid bedrock)'); 

else 

    ylabel('Amp2-amplification (surface/elastic bedrock)'); 

end; 

%******************************************************************** 

%******************************************************************** 
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AI.2 Program for Amplification of Soil Deposit with Stack of Gibson Layers or 

Homogeneous Layers 

%************************************************************************** 

%************************************************************************** 

% program inhomogibsonlay.m 

%************************************************************************** 

%************************************************************************** 

% 

% Program to compute Amplification function between free surface motion and 

% bedrock motion for soil deposit consists of stack of gibson layers  

% Input motion is Harmonic Excitation; Davis and Hunt (1994) 

% 

%************************************************************************** 

% 

% Shear modulus for each layer is linearly distributed along the depth 

% Continuous varation of shear modulus in each layer is G(z)=a + b*z 

% z = Depth coordinate; a and b are inhomogeinity parameters  

% For stack of homogeneous layers b=0 i.e., G is constant  [CHAPTER-2] 

% 

%************************************************************************** 

% 

%Amplification Surface to outcrop rock (Elastic bedrock - Amp2 of CHAPTER-3 

%Amplification Surface to Base (Rigid bedrock) - Amp1 of CHAPTER-3 

%Amplification is computed for constant layer density  

%Thompson-Haskel Transformation matrix is formulated for each of the layer 

% 

%************************************************************************** 

% 

% Brock = 1 when bedrock is considered to be rigid  

% Brock = 2 when bedrock is considered to be elastic (flexible) 

% 

%************************************************************************** 

% array data of v0[..], vb[..], h[..], rho[..] and damp[..] 

%************************************************************************** 

%************************************************************************** 

%************************************************************************** 

%************************************************************************** 

clear all; 

lay=input('input number of layers (lay):');  

% 

%Following arrays contain "lay" number of data for each of the layer 

% 
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v0=[300;400];  %shear wave velocity at the top of the layer 

vb=[200;500];  %shear wave velocity at the bottom of the layer 

h=[50;50];     %depth of the layer 

rho=[1.8;1.8]; %density of the layer 

damp=[5;5];    %damping ratio of the layer in percentage 

for m=1:lay 

    damc(m)=sqrt(complex(1,2*damp(m)/100)); %#ok<AGROW> 

    disp(damc(m)); 

    g0(m)=(v0(m)*damc(m))^2*rho(m); %#ok<AGROW> 

    gb(m)=(vb(m)*damc(m))^2*rho(m); %#ok<AGROW> 

    if ((v0(m)-vb(m))<0.0001) 

        gbar(m)=g0(m); %#ok<AGROW> 

    else         

        gbar(m)=(gb(m)-g0(m))/g0(m); %#ok<AGROW> 

    end; 

end; 

fmax = input('enter max. frequency (rad/s) for amplification (fmax):');  

Brock=input('input bedrock option: [rigid (1) or flexible (2)] Brock:'); 

if (Brock == 2) 

vr=input('input value of bedrock velocity velocity (vr):'); 

rbr=input('input bedrock density (rbr):'); 

gr=vr^2*rbr; 

end; 

omg=0; 

for dd=0.1:0.1:fmax; 

    omg=omg+1; 

    H=[1 0;0 1]; %Intialize Thompson-Haskel matrix 

    A(omg)=[0];T=0;t11=0;t12=0;t21=0;t22=0;zt1=0;zt2=0; %#ok<AGROW> 

    for k=lay:-1:1 

        if (v0(k)== vb(k)) 

            kk(k)=1/(v0(k)*damc(m)); %#ok<AGROW> 

            gc(k)=(v0(k)*damc(k))^2*rho(k); %#ok<AGROW> 

            kh=kk(k)*h(k)*dd; %#ok<AGROW> 

            kg=kk(k)*gc(k)*dd; 

            t11=cos(kh);t12=sin(kh)/kg;t21=-kg*sin(kh);t22=cos(kh); 

            % 

            T=[t11 t12;t21 t22];%compute Thompson-Haskel matrix of the layer 

            % 

        else 

        zt1(k)=(2*dd*h(k))/(gbar(k)*sqrt(g0(k)/rho(k))); %#ok<AGROW> 

        zt2(k)=zt1(k)*sqrt(1+gbar(k)); %#ok<AGROW> 

        t111=(-bessely(1,zt1(k))*besselj(0,zt2(k))); 

        t112=(besselj(1,zt1(k))*bessely(0,zt2(k))); 
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        t11=((pi/2)*zt1(k))*(t111+t112); 

        t121=(-bessely(0,zt1(k)).*besselj(0,zt2(k))); 

        t122=(besselj(0,zt1(k)).*bessely(0,zt2(k))); 

        t12=(((pi/2)*zt1(k))/(dd*sqrt(g0(k)*rho(k))))*(t121+t122); 

        t211=(bessely(1,zt1(k))*besselj(1,zt2(k))); 

        t212=(besselj(1,zt1(k))*bessely(1,zt2(k))); 

        t21=(((pi/2)*zt2(k))*(dd*sqrt(g0(k)*rho(k))))*(t211-t212); 

        t221=(bessely(0,zt1(k))*besselj(1,zt2(k))); 

        t222=(besselj(0,zt1(k))*bessely(1,zt2(k))); 

        t22=((pi/2)*zt2(k))*(t221-t222); 

        T=[t11 t12;t21 t22]; 

        end; 

        H=H*T;         %update Thompson-Haskel matrix 

    end; 

    if (Brock == 2) 

        AAN=((complex(0,1)*dd*rbr*vr*H(1,1))+H(2,1)); 

        AA(omg)=(complex(0,1)*dd*rbr*vr)/AAN; %#ok<AGROW> 

    else    

        AA(omg)=1.0/(H(1,1)); %#ok<AGROW> 

    end 

omg1(omg)=dd/(2*3.141592654); %#ok<AGROW> 

end; 

plot(omg1,abs(AA)); 

xlabel('Frequency (Hz)'); 

if(Brock == 1) 

    ylabel('Amp1-amplification (surface/rigid bedrock)'); 

else 

    ylabel('Amp2-amplification (surface/elastic bedrock)'); 

end; 
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APPENDIX II 

ILLUSTRATIVE EXAMPLE OF ANALYSIS USING   

SRISD (Seismic Response of Inhomogeneous Soil Deposits)  

AII.1 INTRODUCTION  

This appendix outlines the input and output features of SRISD program using 

different options available for idealisation of shear wave velocity of the deposit. 

Details of these options are explained in Chapter 4. In addition to routine SHAKE 

kind of analysis, an example run is carried out using the proposed option to calculate 

effective strain in the iterative process of equivalent linear analysis. Theoretical 

background of the proposed method for this purpose is presented in Chapter 5. The 

example problem considered here is related to La-Obregon Park geotechnical array. 

The data of Chino Hills Earthquake recorded at this site is used for this purpose. 

AII.2 LA-OBREGON PARK GEOTECHNICAL ARRAY 

The details about La-Obregon Park geotechnical array are presented Chapter 6. This 

geotechnical downhole array was established by California Strong Motion 

Instrumentation Program (CSMIP), USA. Soil deposit details consisting of PS-

logging data and its layered idealisation are taken from the website associated with 

the research project on Calibration Sites for Validation of Nonlinear Geotechnical 

Models of University of California, Berkeley [Stewart (2002)]. The strain dependent 

nonlinear behaviour of the soil deposit is modeled using suggested shear modulus and 

damping curves as suggested in this website. The raw data of shear wave velocity 

profile obtained from PS-logging survey and its layered idealisation as given in the 

website are shown in Figure AII.1. The approximated equivalent linear variation of 

the shear wave velocity distribution is also shown in this figure. The details for this 

linear fit is given in Chapter 6 (Table 6.5). The strain dependent soil properties used 

in the analysis are shown in Figure AII.2. The average curves of shear modulus and 

damping shown in the same figure are used in the analysis in which continuously 

distributed shear wave velocity profile is considered.  



 348 

 

70

60

50

40

30

20

10

0

320 400 480 560 640 720

Shear wave velocity  (m / s)

D
e
p
th

 (
m

)

 Layered profile  ( LY-SD & LY-ER )

 Discrete point data profile  ( DP-SD )

               (PS - Logging data)

 Equivalent continuous profile  ( CA-SD )

               [ v
s
 (z) = 429.03 + 2.08 z]

             (linear variation - r
2
 = 0.338)

 

Figure AII.1: Shear wave velocity profiles data of La-Obregon Park geotechnical 

array soil deposit used in the analysis.  
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Figure AII.2: Strain dependent soil property curves ( /

max
G G andζ ) used in the 

analysis. Average curve used for the case of analysis carried out with 

approximated continuously varying shear wave velocity profile. 
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AII.3 EARTHQUAKE DATA 

 

La-Obregon downhole geotechnical array is instrumented to record all the three 

component acceleration time history at the surface and at the depth of 70.0 m from the 

surface. The horizontal components are designated as 90 and 360 degree components. 

Data used for this example study is earthquake record of July 29, 2008 Chino Hills 

earthquake. The details of this earthquake event are tabulated in Table AII.1. The 360 

degree component of this event recorded at 0 m and -70.0 m are shown in Figure AII.3. 

The acceleration time history recorded at 70.0 m is used as base input motion in this 

illustrative example.  

Table AII.1: Details of Chino Hills Earthquake of 2008, recorded at La-Obregon 

Park site 
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Figure AII.3: Earthquake accelerograms recorded at La-Obregon Park site at 

the surface and at depth 70.0 m. 

Moment magnitude 5.4 

Epicentral distance 39.2 km 

Focal depth 13.6 km 

Latitude 33.95N 

Longitude 117.77W 
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AII.4 ANALYSIS CASES 

As shown in Figure AII.1 three cases of shear wave velocity profiles are analysed. 

The designations of problem cases analysed are shown in Table AII.2.  

Table AII.2: Designations used for different input cases considered 

Case details Designation 

SRISD Analysis for layered shear wave profile with 

constant R-value (0.44 for 5.4
w

M = ) 
LY-SD 

SRISD Analysis for layered shear wave profile with 

R-value as proposed in this study (Chapter 5). 
LY-SD-R 

SHAKE Analysis (using EERA program) for layered 

shear wave profile with constant R-value (0.44 for 

5.4
w

M = ) 
LY-ER 

SRISD Analysis for shear wave profile defined by 

discrete data points (PS-Logging data) with R-value 

as proposed in this study (Chapter 5) 
DP-SD 

SRISD Analysis for shear wave profile defined by 

linear function of depth (Continuous variation) with 

R-value as proposed in this study (Chapter 5). The 

strain dependent soil properties are those 

corresponding to average curves of Figure AII.2 

CA-SD 

SRISD Analysis for shear wave profile defined by 

linear function of depth (Continuous variation) with 

R-value as proposed in this study (Chapter 5). The 

strain dependent soil properties are those obtained 

using normalized equations proposed by Zhang et al. 

(2005)  

CZ-SD 

In Table AII.2, LY represents layered deposit, DP represents profile for which data 

are given at discrete points and C represents continuous profile. the average curve is 

designated by A and Zhang et al (2005) model is represented by Z. Hence CA and 

CZ are representing the soil deposit of continuous shear wave velocity profile and soil 

properties being modeled using average /
max

G G and ζ curves (Figure AII.2) and 

Zhang et al (2005) model respectively. SD and ER are indicating the programs used 

for the analysis that is SRISD and EERA respectively. Strain dependent soil 

properties curves shown in Figure AII.2 are designated by curve numbers which 

refers to number assigned to these curves in SRISD built-in data. Actually Curve #5 

and #7 are representing Vucetic and Dobry (1991) proposed curves for clay of 

plasticity index 15% and 50% respectively. While Curve #2 represents Seed and 
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Idriss (1970) average curve for sand. Zhang et al (2005) normalized soil property 

model is represented by Curve #22. 

AII.5 INPUT DATA FILES  

Input data files for SRISD program for the cases of shear wave velocity profiles are 

described here. In all the three cases the input files mainly consists of three parts. In 

the first part problem definition and input motion file are specified. In the second part 

the soil deposit properties are given. In the third part various options for the analysis 

and output specifications are instructed to the program. Thus only second part of the 

input file differs depending upon the option selected to model the shear wave velocity 

profile of the soil deposit. Input data file for the analysis case of LY-SD-R is 

presented in Table AII.3. In this table, for the sake of clarity, these three parts of the 

input file are shown separately.   

The soil deposit data include; layer depth (m), soil type, unit weight ( 3/kN m ), shear 

wave velocity ( /m s ) low strain damping, (%), plasticity index (%), OCR and 

geological age. If the soil type is chosen from the models available in SRISD built-in 

data, then soil type is given in terms numbers assigned in the program. To input new 

data procedure explained Chapter 4 may be adopted and the coefficients of the 

polynomial representing data are entered. Plasticity index, OCR and geological age 

data are used only when the selected soil model is function of these factors [for e.g., 

Ishibashi and Zhang (1993), Darendeli (2001), Zhang et al. (2005) etc.]. When the 

chosen soil model is capable of calculating initial damping ratio, then the 

corresponding data given as input is considered to be redundant. During the iterations 

of equivalent linear analysis, the magnitudes of shear modulus or damping can be kept 

constant independently by exercising this option during program execution. 

 Tables AII.4 and AII.5 list the input files of the analyses cases DP-SD and CZ-SD 

respectively. The explanatory notes appended to these tables give details about input 

data to be given in order to exercise different options of SRISD program. Background 

details of these options are discussed in Chapters 4 and 5. Results obtained for all 

these analyses cases are presented in the following sections.   



 352 

Table AII.3: Input data file for LY-SD-R analysis case 

Line 
no 

Input file Comments 
Line 
no 

1 
2 
3 
4 
5 
6 
7 

INPUT FILE  LY-SD-R ANALYSIS LA–OBREBON SITE (38 LAYERS)  
CH36070.ACC 
LOL381.OUT 
LOL382.OUT 
70.0      
1 
38      

Title of the problem 
Input motion file 
Out file #1 
Out file #2 
Total depth of the deposit 
Type of shear wave velocity profile  
Number of layers 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

• 
• 

43 
44 
45 

1.22     5 16.50       399.29        2          15     1         2 
1.22     5 16.50       487.68        2          15     1         2 
1.22     5 16.50       487.68        2          15            1         2 
1.22     5 16.50       487.68        2          15     1         2  
0.91     2 16.83       420.62        2           0             1         2 
1.22     5 16.77       420.62        2          15            1         2 
0.61     2 16.92       478.54        2           0             1         2 

  •     •      •          •          •      •         •      • 
  •     •      •          •          •      •         •      • 
2.74     2     17.17        530.35        2           0     1         2 
2.74     2 17.23       530.35         2          0     1         2 
2.67     2 17.29       530.35         2          0             1         2 

Line #8 to Line #45  
Layer details are entered in the following 
sequence 
 
Column #1 – layer depth 
Column #2 – soil type (as given in SRISD) 
Column #3 – unit wt (kN / m3) 
Column #4 – shear wave velocity ( m / s) 
Column #5 – initial damping  
Column #6 – plasticity index 
Column #7 – OCR 
Column #8 – Geological age 
 

8 
9 

10 
11 
12 
13 
14 

• 
• 

43 
44 
45 

46 
47 

 
48 

 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

70.0 
0, 0.72 
      
0     17.29         530.35          2 
    
1      0.44           20  
0    
Y      
1      
0      
Y 
1 
0.6 
Y 
1 
0.0,70.0 

Depth at which input motion is to be given 
Depth of water table & K0– (only used in 
calculation of effective confining stress) 
Bedrock properties (Type, unit wt., Shear 
wave velocity, damping) 
Choice of R, R-value, No. of iterations 
Choice of frequency dependent analysis 
Output of accn time histories required? 
No. of required depths  
Depths (as many as indicated previously) 
Out stress-strain time histories required? 
No. of required depths  
Depths (as many as indicated previously) 
Amplification ratios required? 
No. of required depths  
Depths (as many as indicated previously) 

46 
47 

 
48 

 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

Note-1: In line# 6; For selecting layered profile analysis, input 1(present case); For soil deposit with 

continuous variation of shear wave velocity, input 2; For profile of discrete data points, input 3. 

Note-2: In line# 8 to 45; Plasticity index, OCR and Geological age data are used only when soil type is 

20 [Darendeli (2001)] or 21 [Ishibashi and Zhang (1993)] or 22 [Zhang et al (2005)] otherwise 

these data are ignored.  

Note-3: In line# 47; These data (depth of GWT and K0) are used to calculate effective confining 

pressure (
mσ ′ ) by default. However 

mσ ′ is further used only when strain dependent soil 

properties are function of 
mσ ′ (i.e., soil type is 20 or 21 or 22 as mentioned in the previous note). 

Note-4: In line# 49; For routine analysis, input choice as 1 and specify R-value (0.44 in this case). If R 

is calculated internally based intensity of shaking after successive iterations as in case of 

proposed method input 2 and need not specify R-value or input 3, if R is to be calculated based 

on average specified number of peak values of strain history then input 3 and followed by 

number of peak strain values to be considered for calculating the average (Default 10). Details 

are given in flowchart of Chapter 5 (Figure 5.7)  

Note-5: In line# 50; For routine analysis (Frequency independent), input choice as 0, if the frequency 

dependent analysis is desired using the method proposed in this study then input 1 the followed 

by the frequency (Target frequency, 
T

f ) up to which radiation damping need to be incorporated 

beyond which damping is logarithmically decreased; when soil type is 20 [Darendeli (2001) 

model] frequency dependent analysis can be invoked by input 2, then damping is calculated 

using the excitation frequency. ). Details are given in flowchart of Chapter 5 (Figure 5.22). 
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Table AII.4: Input data file for DP-SD analysis case 

Line 
no 

Input file Comments 
Line 
no 

1 
2 
3 
4 
5 
6 
7 

INPUT FILE – Vs profile by Discrète data set (70 pts)-LA-OBREBON  
CH36070.ACC 
LA0DC1.OUT 
LA0DC2.OUT 
70 
3 
70    

Title of the problem 
Input motion file 
Out file #1 
Out file #2 
Total depth of the deposit 
Type of shear wave velocity profile  
Number of layers 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

• 
• 

75 
76 
77 

0.00     5  16.50         400.0       2         15        1          2 
1.00     5 16.50         400.0       2         15        1          2 
2.00     5 16.50         473.9       2         15        1          2 
3.00     5 16.50         518.1       2         15        1          2 
4.00     5 16.50         454.5       2         15        1          2 
5.00     5 16.50         531.9       2         15        1          2 
6.00     2 16.83         442.5       2           0        1          2 

  •     •      •          •          •     •      •      • 
  •     •      •          •          •     •      •      • 
67.00   2 17.23         540.5        2          0        1         2 
68.00   2 17.23         540.5        2          0        1         2 
69.00   2 17.23         540.5        2          0        1         2 

Line #8 to Line #77 
Data at desired depth are entered in the 
following sequence 
 
Column #1 – depth at which the data are     

specified 
Column #2 – soil type (as given in SRISD) 
Column #3 – unit wt (kN / m3) 
Column #4 – shear wave velocity ( m / s) 
Column #5 – initial damping  
Column #6 – plasticity index 
Column #7 – OCR 
Column #8 – Geological age 

8 
9 

10 
11 
12 
13 
14 

• 
• 

75 
76 
77 

78 
79 

 
80 

 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

70      
0    0.72     
  
2 17.23 540.5 2  
 
50 
2  20 
0      
Y      
1      
0      
Y      
1      
0.5      
Y      
1      
0.0,70.0 

Depth at which input motion is to be given 
Depth of water table & K0– (only used in 
calculation of effective confining stress) 
Bedrock properties (Type, unit wt., Shear 
wave velocity, damping) 
Step size for R-K scheme (cm) 
Choice of R, R-value, No. of iterations 
Choice of frequency dependent analysis 
Output of accn. time histories required? 
No. of required depths  
Depths (as many as indicated previously) 
Out stress-strain time histories required? 
No. of required depths  
Depths (as many as indicated previously) 
Amplification ratios required? 
No. of required depths  
Depths (as many as indicated previously) 

78 
79 

 
80 

 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

Note-1: In line# 6, for selecting layered profile analysis, input 1; For soil deposit with continuous 

variation of shear wave velocity, input 2; For profile of discrete data points, input 3 (present 

case). 

Note-2: In line# 8 to 77; Plasticity index, OCR and Geological age data are used only when soil type is 

20 [Darendeli (2001)] or 21 [Ishibashi and Zhang (1993)] or 22 [Zhang et al (2005)] otherwise 

these data are ignored.  

Note-3: In line# 79 these data (depth of GWT and K0) are used to calculate effective confining pressure 

(
mσ ′ ) by default. However 

mσ ′ is further used only when strain dependent soil properties are 

function of 
mσ ′ (i.e., soil type is 20 or 21 or 22 as mentioned in the previous note). 

Note-4: In line# 81 for routine analysis, input choice as 1 and specify R-value (blank in this case). If R 

is calculated internally based intensity of shaking after successive iterations as in case of 

proposed method input 2 (as in this case) and need not specify R-value or input 3, if R is to be 

calculated based on average specified number of peak values of strain history then input 3 and 

followed by number of peak strain values to be considered for calculating the average (Default 

10). Details are given in flowchart of Chapter 5 (Figure 5.7)  

Note-5: In line# 83; For routine analysis (Frequency independent), input choice as 0, if the frequency 

dependent analysis is desired using the method proposed in this study then input 1 the followed 

by the frequency (Target frequency, 
T

f ) up to which radiation damping need to be incorporated 

beyond which damping is logarithmically decreased; when soil type is 20 [Darendeli (2001) 

model] frequency dependent analysis can be invoked by input 2, then damping is calculated 

using the excitation frequency. ). Details are given in flowchart of Chapter 5 (Figure 5.22). 
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Table AII.5: Input data file for CZ-SD analysis case 

Line 
no 

Input file Comments 
Line 
no 

1 
2 
3 
4 
5 
6 
7 

INPUT FILE  CA-SD ANALYSIS LA–OBREBON SITE (linear  variation)   
CH36070.ACC 
LA0F0CZ1.OUT 
LA0F0CZ2.OUT 
70.0 
2 
1     

Title of the problem  
Input motion file 
Out file #1 
Out file #2 
Total depth of the deposit 
Type of shear wave velocity profile  
Number of layers 

1 
2 
3 
4 
5 
6 
7 

8 
 
 
 
9 
 

10 

70.0     1      22       2      0     1       2 
 
 
 
429.03   574.70    16.93     17.19 
 
1.0 

Layer details are entered in the following 
sequence; Layer depth, type of continuous 
variation, soil type, initial damping, 
plasticity index,  OCR,  Geological age 
Vs0, VsH, unit wt. at the surface and at  the 
base  
Value of b in the power law function 
Vs=Vs0 (1+az)^b (b=1 for linear variation) 

8 
 
 
 
9 
 

10 

11 
 

12 
13 

 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0     17.19     574.70      2 
 
70.0 
0.0   0.72 
 
50      50 
2   20 
0 
Y 
1 
0.0 
Y 
1 
0.5 
Y 
1 
0.0 70.0 

Bedrock properties (Type, unit wt., Shear 
wave velocity, damping) 
Depth at which input motion is to be given 
Depth of water table & K0– (only used in 
calculation of effective confining stress) 
Step size for R-K scheme (cm) 
Choice of R, R-value, No. of iterations 
Choice of frequency dependent analysis 
Out acceleration time histories required? 
No. of required depths  
Depths (as many as indicated previously) 
Out stress-strain time histories required? 
No. of required depths  
Depths (as many as indicated previously) 
Amplification ratios required? 
No. of required depths  
Depths (as many as indicated previously) 

11 
 

12 
13 

 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Note-1: In line# 6; For selecting layered profile analysis, input 1; For soil deposit with continuous 

variation of shear wave velocity, input 2 (present case); For profile of discrete data points, input 3. 

Note-2: In line# 8; Plasticity index, OCR and Geological age data are used only when soil type is 20 

[Darendeli (2001)] or 21 [Ishibashi and Zhang (1993)] or 22 [Zhang et al (2005)] otherwise 

these data are ignored. In the present case soil type is 22. Initial damping is ignored if soil type is 

20 or 22 and calculates it by the respective equations.  

Note-3: In line# 13; These data (depth of GWT and K0) are used to calculate effective confining 

pressure (
mσ ′ ) by default. However 

mσ ′ is further used only when strain dependent soil 

properties are function of 
mσ ′ (i.e., soil type is 20 or 21 or 22 as mentioned in the previous note) 

Note-4: In line# 14; the step sizes used here represent the nodes at which soil properties are updated 

after successive iteration and second value is a dummy node at which response is calculated but 

soil properties at these nodes are not updated using the curves of strain dependent properties. 

However at these nodes soil properties are interpolated from updated properties of the adjacent 

nodes. In the present case 0.5 m is used for both, i.e., no intermediate nodes are considered.  

Note-5: In line# 15; for routine analysis, input choice as 1 and specify R-value. If R is calculated 

internally based intensity of shaking after successive iterations as in case of proposed method 

input 2 (present case) and need not specify R-value or input 3, if R is to be calculated based on 

average specified number of peak values of strain history then input 3 and followed by number 

of peak strain values to be considered for calculating the average (Default 10). Details are given 

in flowchart of Chapter 5 (Figure 5.7)  

Note-6: In line# 16; For routine analysis (Frequency independent), input choice as 0, if the frequency 

dependent analysis is desired using the method proposed in this study then input 1 the followed 

by the frequency (Target frequency, 
T

f ) up to which radiation damping need to be incorporated 

beyond which damping is logarithmically decreased; when soil type is 20 [Darendeli (2001) 

model] frequency dependent analysis can be invoked by input 2, then damping is calculated 

using the excitation frequency. ). Details are given in flowchart of Chapter 5 (Figure 5.22). 
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Figure AII.4: Amplification ratio between surface and base input motions 

(0.0m/70.0m) computed for different idealisations of shear wave profiles from 

SRISD analysis [(c) and (d)]. Comparison of amplification ratio results from 

SRISD and EERA for the case of layered profile [(b)].  Comparison of 

amplification ratio results from SRISD using routine and proposed methods of 

computing effective strain for the case of layered profile [(a)]. 
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Figure AII.5: Surface acceleration responses computed for different idealisations 

of shear wave profiles from SRISD analysis [(b) (c) and (d)]. Comparison of 

surface acceleration response results from SRISD and EERA for the case of 

layered profile [(a)].  Comparison of surface acceleration response results from 

SRISD analysis using average curves to represent strain dependent soil 

properties and normalized model for strain dependent soil properties of Zhang 

et al (2005) [(e)] with continuous variation approximation of shear wave velocity 

profile. 
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Figure AII.6: Response spectra of computed acceleration responses at the 

surface of the soil deposit idealised with different shear wave profiles; 

Comparison of results of SRISD analyses with that of recorded motion [(c) (d) 

and (e)]; Comparison of results of SRISD and EERA for the case of layered 

profile [(a)]; Comparison of results of SRISD using routine and proposed 

methods of computing effective strain for the case of layered profile [(b)];  

Comparison of response spectra of SRISD analysis using average curves to 

represent strain dependent soil properties and normalized model for strain 

dependent soil properties of Zhang et al (2005) with continuous variation 

approximation of shear wave velocity profile [(f)]. 
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Figure AII.7: Fourier spectra of computed acceleration responses at the surface 

of the soil deposit idealised with different shear wave profiles; Comparison of 

results of SRISD analyses with that of recorded motion [(c) (d) and (e)]; 

Comparison of results of SRISD and EERA for the case of layered profile [(a)]; 

Comparison of results of SRISD using routine and proposed methods of 

computing effective strain for the case of layered profile [(b)];  

Comparison of response spectra of SRISD analysis using average curves to 

represent strain dependent soil properties and normalized model for strain 

dependent soil properties of Zhang et al (2005) with continuous variation 

approximation of shear wave velocity profile [(f)]. 
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Figure AII.8: Variation of maximum responses along the depth of the soil deposit 

computed for different cases of analyses; (a) Maximum acceleration, (b) 

maximum strain and (c) Maximum shear stress; (d) Variation of ratio of 

effective to maximum strain at different depths as obtained from proposed 

method of analysis in comparison with its constant value as in case of routine 

analysis.   
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AII.6 RESULTS  

Figure AII.4 compares the results of amplification ratio as obtained for different cases 

of analyses listed in Table AII.2. Also the results of SRISD are compared with that of 

EERA. The acceleration time history at the surface of the deposit under these cases is 

shown comparatively in Figure AII.5. The response spectra and Fourier amplitude 

spectra of the predicted surface acceleration response from these analyses are 

presented in Figure AII.6 and Figure AII.7 respectively. Figure AII.8 comparatively 

show the variation of maximum responses of acceleration, shear strain and shear 

stress along the depth as obtained for different cases of analyses. Also to illustrate the 

essential difference between newly proposed and routine methods for computation of 

effective strain, R-value obtained for each of the iterations is plotted against constant 

value of 0.44R = that is used in the routine analysis.  
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