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ABSTRACT

The main objective of this thesis is to enhance the scope and response estimation
ability of routine one dimensional (1D) seismic response analysis in frequency
domain using equivalent linear (EQL) method. This is the popularly used method of
analysis in engineering practice. For this purpose a computer program is developed

incorporating the scheme to accommodate the objectives of this research work.

In order to meet the solution procedure employed in the routine analysis, the soil
deposits exhibiting continuous inhomogeneity are also being idealised as layered
systems. The analytical results obtained for continuously inhomogeneous soil deposits
have demonstrated that the layered idealisation of such soil deposits would result in
contradictory response quantities. Secondly, the major limitation of the EQL method
is inconsistent estimation of response at high frequency and in the resonant frequency
region. This may be attributed to the use of single valued strain in all the frequency
ranges during the iterations of EQL scheme of analysis. Both these drawbacks of the
popularly used computer programs have been addressed and modifications are

implemented in the computer program developed as part of this research work.

The numerical procedure developed and implemented in the computer program is
capable of handling all possible cases of idealisation of soil deposit. Two
modifications have been proposed to routine EQL analysis scheme; one with respect
to computation of effective strain in the iterative process and secondly, frequency
dependent damping model is formulated to overcome inconsistencies in predicted
response at certain frequency ranges. The results are compared with both analytical
solutions and observed data of geotechnical downhole array sites of Japan and USA.
Finally an alternative method is proposed to estimate the fundamental period of the

layered deposit by approximating it with linearly varying shear wave velocity profile.

The outcome of this research work is expected to enhance the predictive capabilities
of the most commonly used site response analysis procedure and contribute in the

direction of improving the seismic site response analysis in engineering practice.

Keywords: Seismic site response, Equivalent linear analysis, Frequency dependent

analysis, Fundamental period of layered deposits.






CHAPTER 1

CHAPTER 2

CONTENTS

List of Figures
List of Tables

Nomenclature

INTRODUCTION

1.1
1.2
1.3
1.4
1.5

GENERAL

BACKGROUND AND MOTIVATION
SCOPE AND OBJECTIVES OF THE WORK
METHODOLOGY

SCHEME OF PRESENTATION

ANALYSIS OF INHOMOGENEOUS SOIL DEPOSITS —
HORIZONTALLY LAYERED PROFILE

2.1
22

2.3

24

2.5

2.6

2.7

INTRODUCTION
SEISMIC GROUND RESPONSE ANALYSIS
2.2.1 General

2.2.2  Factors Affecting Ground Response
Analysis

JUSTIFICATION FOR ONE DIMENSIONAL
ANALYSIS

GOVERNING EQUATION OF MOTION FOR
WAVE PROPAGATION

OVERVIEW OF MATHEMATICAL METHODS

2.5.1 Theory of multiple reflections — Frequency
domain analysis

2.5.2  Time domain analysis - Lumped parameters
idealisation

AMPLIFICATION OF SURFACE RESPONSE

2.6.1 Amplification functions
2.6.2  Effect of soil and bedrock impedances

METHODS OF MODELING STRAIN
DEPENDENT SOIL PROPERTIES

X
XX1il

XXV

O N o =

11
12
12
13

14

16

18
18

25

28
32
37



2.8

29

2.10

2.11

2.12

2.7.1  Equivalent linear Method
2.7.2 Nonlinear method

OVERVIEW OF COMPUTER PROGRAMS FOR
SITE RESPONSE ANALYSIS

COMPARISON BETWEEN EQUIVALENT
LINEAR AND NONLINEAR METHODS

EXAMPLE COMPARATIVE ANALYSIS

2.10.1 Input motions

2.10.2 Linear analysis

2.10.3 Equivalent linear and nonlinear analysis
2.10.3.1 Homogeneous soil deposit
2.10.3.2 Inhomogeneous soil deposit

EFFECT OF STRAIN DEPENDENT SHEAR
MODULUS AND DAMPING ON SITE
RESPONSE

SUMMARY

CHAPTER 3 ANALYSIS OF CONTINUOUSLY INHOMOGENEOUS
SOIL DEPOSITS — ANALYTICAL STUDIES

3.1
3.2

3.3

3.4

INTRODUCTION

DISCREPANCIES IN LAYERED DEPOSIT
CHARACTERISATION

PHYSICAL IMPLICATIONS OF LAYERED
IDEALIZATIONS

SOIL DEPOSIT WITH CONTINUOUS
VARIATION OF STIFFNESS ALONG THE
DEPTH

34.1  Soil deposit with linearly varying shear
wave velocity profile (n=1)

3.4.2  Continuous variation of shear wave velocity
with n<landn>1 (n#1)

3421 Casel: 0<m<?2
3422 Case?2: m>2

3.4.3  Mode shapes
343.1 Casel: 0<m<?2

38
41
44

47

51
51
53
57
62
63
66

76

79
81

84

89

91

98

101

104
105
105



3432 Case?2: m>2 106

3.4.4  Parametric study on effect of inhomogeneity 106
parameters
3.4.5  Effect of inhomogeneity parameters on 115
mode shapes
3.5 INHOMOGENEOUS DEPOSIT OVERLYING A 118
HOMOGENEOUS LAYER OF FINITE
THICKNESS
3.5.1 Amplification function for two-layer 119
inhomogeneous soil deposit
3.5.2  Parametric studies on amplification in two- 122
layer inhomogeneous soil deposit
3.6  MULTI-LAYER SOIL DEPOSIT WITH 124
CONTINUOUSLY INHOMOGENEOUS LAYER
PROPERTIES
3.6.1 Amplification function for inhomogeneous 125
multiple layers
3.6.2  Parametric study on transition Gibson layer 128
at layer interfaces
3.7 COMPARISON BETWEEN CONTINUOUSLY 129
INHOMOGENEOUS SOIL DEPOSIT AND ITS
LAYERED APPROXIMATION
3.8 COMPARISON USING OBSERVED 135
EARTHQUAKE DATA
3.9 FREQUENCY CHARACTERISTICS OF 143
ESTIMATED SURFACE RESPONSE
3.9.1 Earthquake data 146
3.9.2  Analysis and results 146
3.10 SUMMARY 151

CHAPTER 4 ANALYSIS OF CONTINUOUSLY INHOMOGENEOUS
SOIL DEPOSITS - COMPUTER PROGRAM SRISD

4.1 INTRODUCTION 155
4.2 NUMERICAL PROCEDURE TO SOLVE 1-D 156
WAVE EQUATION
4.2.1  Governing equations 156

4.2.2  Fourth order Runge - Kutta scheme 160



4.3

4.4

4.5

4.6

4.7

4.2.3  Boundary conditions

424  Frequency domain analysis
SOIL PROFILE DATA

4.3.1 Continuous profile

4.3.2  Profile data at discrete points
4.3.3  Layered profile

INPUT MOTION SPECIFICATION
4.4.1 Surface motion

442  Base motion

EQUIVALENT LINEAR ANALYSIS

4.5.1  Modeling strain dependent shear modulus
and damping properties

4.5.2  Empirical shear modulus and damping
curves

4.5.2.1 Ishibashi and Zhang (1993)
equations

4.5.2.2 Darendeli (2001) Equations
4.5.2.3  Zhang et al. (2005) equations

4.5.2.4  Comparison of Empirical
Equations

GENERAL DESCRIPTION OF COMPUTER
PROGRAM SRISD

4.6.1 Outline of the program
4.6.2 Input soil profile data
4.6.2.1 Layered profile

4.6.2.2 Continuously inhomogeneous
deposit

4.6.2.3 Soil profile defined using discrete
data points

4.6.3 Earthquake data

4.6.4 Equivalent linear analysis data
TESTING OF PROGRAM

4.7.1 Problem statement

4.7.2 Results and comparison

4.7.3 Comparison with analytical results

161
162
164
164
165
166
167
167
167
167
168

175

176

177
178
179

182

182
182
182
183

183

183
184
184
185
190
191



CHAPTER 5

4.8

4.9

4.10

4.11

4.12

PARAMETRIC STUDIES ON AMPLIFICATION
USING COMPUTER PROGRAM SRISD

COMPARISON OF EQUIVALENT LINEAR
ANALYSIS RESPONSE COMPUTED USING
DIFFERENT SOIL MODELS

EFFECT OF STEP SIZE USED FOR SPATIAL
DISCRETIZATION - STABILITY AND
ACCURACY

EXAMPLE ANALYSIS: LA-OBREGON PARK
GEOTECHNICAL ARRAY

SUMMARY

EQUIVALENT LINEAR ANALYSIS - PROPOSED
REFINEMENTS

5.1
5.2

5.3

54

5.5

INTRODUCTION

LIMITATIONS OF EQUIVALENT LINEAR
APPROACH

EFFECT OF R-VALUE ON COMPUTED
RESPONSE USING EQUIVALENT LINEAR
ANALYSIS

PROPOSED ALTERNATIVE METHODS TO
COMPUTE EFFECTIVE STRAIN

5.4.1 Method based on maximum acceleration
5.4.2 Method based on average strain
5.4.3 Implementation in SRISD program

5.4.4 Comparative study between proposed method
and routine analysis.

FREQUENCY DEPENDENT EQUIVALENT
LINEAR ANALYSIS

5.5.1 Frequency dependency of dynamic soil
properties

5.5.2 Frequency dependency of observed ground
motions

5.5.3 Available methods to incorporate frequency
dependent analysis

5.5.3.1 Sugito et al. (1994)
5.5.3.2 Yoshida et al. (2002)
5.5.3.3 Kausel and Assimaki (2002)

194

196

202

206

206

209
210

212

215

215
218
218
220

222

223

226

227

227
227
228



CHAPTER 6

5.5.34 Darendeli (2001)

5.5.3.5 Park and Hashash (2008); Jeong
et al. (2008)

5.5.4 Comparison of methods of frequency

dependent ground response analysis

5.6  PROPOSED METHOD FOR FREQUENCY

DEPENDENT ANALYSIS

5.6.1 Preamble to proposed model

5.6.2 Effect of damping on soil amplification

characteristics

5.6.3 Effect of damping on spectral amplitudes of

response computed from EQL analysis

5.6.4 Proposed method for frequency dependent

equivalent linear analysis

5.6.5 Comparative study

5.7 CASE STUDY - TKCHO8

5.7.1  Details of TKCHO08 Geotechnical array

5.7.2  Shear wave velocity profile

5.7.3  Earthquake data

5.7.4  Different options considered for the case
study

5.7.5  Validation of proposed method for effective
strain computation

5.7.6  Comparison of responses from layered and
continuous profile idealization of soil
deposit — Frequency independent EQL
analysis (SRISD)

5.7.7  Comparison of responses from layered and
continuous profile idealization of soil
deposit — Frequency dependent EQL
analysis (SRISD)

5.7.8  Results and discussion

5.8 SUMMARY

AN ALTERNATIVE METHOD FOR ESTIMATION OF
FUNDAMENTAL PERIOD OF LAYERED SOIL

DEPOSITS

6.1 INTRODUCTION

vi

230
233

235

236

236
238

240

242

247
250
250
252
253
255

257

261

266

269
274

279



CHAPTER 7

6.2

6.3

6.4

6.5
6.6

7.1

FUNDAMENTAL PERIOD OF
INHOMOGENEOUS SOIL DEPOSIT

6.2.1 Method-1: Weighted average of shear wave
velocity (T(”)

6.2.2  Method-2: Sum of layer periods (T(z))

6.2.3  Method-3: Simplified Rayleigh’s Method
()

6.2.4  Method-4: Linear fundamental mode shape
(7)

6.2.5  Method-5: Successive application of two
layer solution (T®)

PROPOSED METHOD FOR ESTIMATION OF
FUNDAMENTAL PERIOD OF SOIL DEPOSITS

(o)

6.3.1 Deposit with continuous variation of shear
wave velocity

6.3.2 Linear regression analysis

6.3.3 Approximation of fundamental period

6.3.4 Step by step procedure of the proposed
method

VERIFICATION OF THE PROPOSED METHOD

6.4.1 Geotechnical arrays

6.4.2 Fundamental period using earthquake data

6.4.3 Fundamental period using proposed
method

6.4.4 Fundamental period using other methods
RESULTS AND DISCUSSION
SUMMARY

CONCLUSIONS AND SCOPE FOR FUTURE
STUDY

CONCLUSIONS
7.1.1 General

7.1.2 Seismic response analysis of layered soil

vii

282

283

284

284

285

285

287

288

289
291
292

293
293
295
299

301
302
306

309
309
310



7.1.3

7.2.4
7.2.5
7.2.6

deposits

Seismic response of continuously
inhomogeneous soil deposit

Computer program SRISD

Refinements to equivalent linear analysis

Fundamental period layered soil deposit

7.2 SCOPE FOR FUTURE STUDY

REFERENCES

APPENDIX -1 MATLAB PROGRAMS TO COMPUTE
AMPLIFICATION FUNCTION OF
INHOMOGENEOUS SOIL DEPOSITS USING
ANALYTICAL SOLUTION

All

AlL2

Program for Amplification of Continuously
Inhomogeneous Soil Deposits

Program for Amplification of Soil Deposit
with Stack of Gibson Layers or
Homogeneous Layers

APPENDIX - 1II ILLUSTRATIVE EXAMPLE OF ANALYSIS
USING SRISD (Seismic Response of
Inhomogeneous Soil Deposits)

AllL1
AIL2

AlL3
AlL4
AILS
AlL6

LIST OF PUBLICATIONS

BIO DATA

INTRODUCTION

LA-OBREGON PARK GEOTECHNICAL
ARRAY

EARTHQUAKE DATA
ANALYSIS CASES
INPUT DATA FILES
RESULTS

viii

311

312
313
314
314

317

337

341

345
345

347
348
349
358



Figure
No.

2.1

2.2
2.3
24

2.5

2.6

2.7

2.8

29
2.10

2.11

2.12

LIST OF FIGURES

Title

Waves propagate almost vertically near the surface due to
refraction at horizontal layer boundaries [Modified from Kramer
(1996)]

Equilibrium of forces acting on an infinitesimal element
Model ground representing layered soil deposit

Lumped mass model of the soil deposit [Modified from Hashash
and Park (2001)]

Terminology related to amplification of surface motion with
respect to input bedrock motion

Shear wave velocity profiles considered for the parametric study
on free-surface to bedrock amplification. Grey and red lines
represent the velocity profile of the equivalent homogeneous and
layered inhomogeneous deposits

Amplification of motion between free-surface and bedrock for the
case of a homogeneous deposit (a) frequency dependent
amplification (b) variation of maximum amplification at modal
frequencies

Amplification of motion between free-surface and bedrock for the
case of an inhomogeneous deposit (a) frequency dependent
amplification (b) variation of amplification at modal frequencies

Iterative procedure for equivalent linear analysis

Flowchart for equivalent linear method implementation to
account for strain dependency of shear modulus and damping in
seismic response analysis in frequency domain

Strain dependent shear modulus and damping curves for sand
[Seed and Idriss (1970)]

Comparison between responses computed using equivalent linear
and nonlinear analysis Finn et al (1978). (a) Shear modulus
profile of the soil deposit used in comparative response analysis
(b) Maximum shear stress variation along the depth computed
using total stress analyses of SHAKE, DESRA and CHARSOIL
(c) Acceleration response spectra computed using total stress
analyses of SHAKE, DESRA and CHARSOIL

Page
No.

15

17
20
25

29

33

34

35

39
40

50

52



2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

Input ground motions used for the analysis (a) EQ1 and (b) EQ2

Spectral characteristics of input ground motions EQ1 and EQ2
Smoothened Fourier spectra (b) Acceleration response spectra
(Damping =5 %)

Comparison of maximum acceleration profile along the depth
computed from frequency and time domain analysis. (a) Input
motion EQ1 (Scaled to a,,,,=0.1g); (b) Input motion EQ1 (Scaled
t0 Apmax=0.42); (c) Input motion EQ2 (Scaled to a,,,,=0.1g); (d)
Input motion EQ2 (Scaled to a;, = 0.4g)

Comparison of surface acceleration response from frequency and
time domain analysis. (a) Input motion EQ1 (Scaled to
Amax=0.4g); (b) Input motion EQ2 (Scaled to a,,,,,=0.4g)

Comparison of acceleration response spectrum (5% damping) for
surface acceleration records computed from frequency and time
domain analysis. (a) Input motion EQ1 (Scaled to a,,,,=0.1g); (b)
Input motion EQ1 (Scaled to a,,,,=0.4¢); (c) Input motion EQ2
(Scaled to ay,,=0.1g); (d) Input motion EQ2 (Scaled to @y =
0.49).

: Comparison of acceleration response spectrum (5% damping)
for surface acceleration records computed using EQL and
nonlinear analysis (Homogeneous deposit) (a) Input motion EQ1
(Scaled to a;u.,=0.1g); (b) Input motion EQ1 (Scaled to
Amax=0.42); (c) Input motion EQ2 (Scaled to a,,,,=0.1g); (d) Input
motion EQ2 (Scaled to a,,.. = 0.4g).

Comparison of acceleration response spectrum (5% damping) for
surface acceleration records computed using EQL and nonlinear
analysis (Inhomogeneous deposit) (a) Input motion EQ1 (Scaled
t0 Apmax=0.1g); (b) Input motion EQ1 (Scaled to a,,,,=0.4g); (c)
Input motion EQ2 (Scaled to d,,,=0.1g); (d) Input motion EQ2
(Scaled to @ = 0.42).

Comparison of Fourier spectrum of surface acceleration records
computed using EQL and nonlinear analysis (Homogeneous
deposit) (a) Input motion EQ1 (Scaled to a,,,,=0.1g); (b) Input
motion EQ1 (Scaled to a,,,,=0.4¢); (c) Input motion EQ2 (Scaled
t0 anax=0.1g); (d) Input motion EQ2 (Scaled to a,,= 0.4g).

52
52

53

54

55

58

59

60



2.21

2.22

2.23

2.24
2.25
2.26

2.27

2.28

2.29

2.30

2.31

3.1

3.2
3.3

Comparison of Fourier spectrum of surface acceleration records
computed using EQL and nonlinear analysis (Inhomogeneous
deposit) (a) Input motion EQ1 (Scaled to a,,,,=0.1g); (b) Input
motion EQ1 (Scaled to a,,,,=0.4¢); (c) Input motion EQ2 (Scaled
t0 a;nax=0.1g); (d) Input motion EQ2 (Scaled to a,,, = 0.42).

Amplification ratio for homogeneous deposit computed for the
response obtained using equivalent linear analysis

Amplification ratio for inhomogeneous deposit computed for the
response obtained using equivalent linear analysis

Strain dependent G/G,,,, curves [Vucetic and Dobry (1991)]
Strain dependent Damping curves [Vucetic and Dobry (1991)]
Input motions used in the analyses; (a) EQ1; (b) EQ3 -

a,, =0.66g.

Response spectra of the input motions EQ1 and EQ3 used in the
analysis; Kobe earthquake record (EQ3 - a,, =0.69g) and

Loma- Prieta earthquake record (EQ3 - a,,, =0.36g).

Peak acceleration profile for different Plasticity index values due
to input motion at the base of the deposit. Input motions EQ1 and
EQ3 are scaled toa,,, =0.007g .

Peak acceleration profile for different Plasticity index values due
to relatively strong input motion at the base of the deposit. Input

motions EQ1 (a,,, =0.36g)and EQ3(a,, =0.66g)are scaled
toa, =0.007g.

max

max

Comparison of response spectrum of computed surface motion of
a homogeneous deposit using EQL analysis for different values of
plasticity index

Comparison of amplification transfer function between surface
and base of the homogeneous deposit for weak and strong input
motions using EQL analysis for different values of plasticity
index

Comparison of shear wave velocity profiles interpreted from data
obtained from different field tests at La Cienega site USA [Boore
et al. (2003)].

Phenomenon of wave propagation at the layer interface

Influence of impedance ratio on transmitted and reflected waves

Xi

61

64

65

67
67
69

69

71

71

73

75

83

84
86



3.4

3.5
3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14a

3.14b

3.15

3.16

Effect of equivalent layered idealisation of continuously
inhomogeneous soil deposit on impedance ratio.

Soil deposit with linearly varying shear wave velocity profile

Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile with different surface shear wave
velocities

Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile with different rate of heterogeneities

Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile overlying elastic bedrock with
different impedances

Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile and approximated layered profile

Details of the continuously inhomogeneous soil deposit
considered in the analysis

Amplification of inhomogeneous soil deposit for different values
of m and vy Results reproduced for the examples taken from
Towhata (1996)

Amplification of inhomogeneous soil deposit forv,, /v, =30and
different values of m

Amplification of inhomogeneous soil deposit form =1and

different values of (v, /v,y) ;

@ v,=10m/s®d)v,=100 m/s.

Profiles with continuous variation of shear wave velocity,
v lv,=5 & m= 0.4(n=0.20)

for different surface shear wave velocities

Effect of surface velocity on amplification of inhomogeneous
deposit overlying rigid bedrock

Effect of inhomogeneity parameters on amplification of
inhomogeneous deposit overlying rigid bedrock

Effect of impedance ratio between base of the soil deposit and
bedrock on amplification of inhomogeneous deposit overlying
elastic bedrock for different damping ratios of the soil
(v,o=100m/s,u=4&m=04).

Xii

87

95

96

96

97

100

107

108

109

111

111

113

114



3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

Mode shapes for the soil deposit with (v, /v,,)=2.0 for

different values of m

Mode shapes for the soil deposit with (v, /v,,) =20.0 for
different values of m.

Two-layer deposit comprising of an inhomogeneous surface layer
followed by a homogeneous layer over a rigid base

Soil Deposit with continuous variation of shear wave velocity,
overlying a homogeneous soil deposit of shear wave velocity of
different depths.

Effect of depth and shear wave velocity of homogeneous layer
underlying an inhomogeneous layer on amplification ratio and
modal frequencies.

Multiple layers of Gibson soil above homogeneous bedrock

Linear variation shear modulus along the depth of individual layer
(Gibson soil layer)

Comparison of amplification function computed for an equivalent
layered profile consisting of Gibson layers with that of exact
solution

Effect of transition layer depth on the amplification of surface
motion

Effect of contrasting impedance ratio on amplification
characteristics of idealized equivalent two layer system

Effect of contrasting impedance ratio in idealized three layer
system on amplification

(a) 2-layers and 40-layers idealisation (b) Comparison of
maximum accelerations computed along the depth

Comparison of computed acceleration time histories at the surface
for 2-layers and 40-layers models, (a) linear analysis, (b)
Equivalent linear analysis and (c) Input ground motion at the
bedrock level

PS-logging data of La-Cienega array and corresponding layered
and continuous approximation

Acceleration time history data of 4™ April 1997 earthquake
recorded at La-Cienega geotechnical array

Strain dependent shear modulus and damping curves used in the
analysis

Xiii

116

117

120

122

123

125

125

128

129

131

132

133

134

136

137

138



3.33

3.34

3.35

3.36

3.37
3.38

3.39

3.40

3.41

342

3.43

4.1

4.2

4.3

Comparison of computed surface acceleration time history in
different time windows with corresponding observed record of
360° component

Comparison of computed surface acceleration time history in
different time windows with corresponding observed record of
90° component.

Comparison of acceleration response spectrums of predicted and
observed ground motions at the surface of the deposit for the
input motions cases of (a) 360°~component and (b) 90°-
component

Shear wave velocity profiles considered for the analyses in Case-
1, Case-2 and Case-3

Strain dependent soil properties used in the analyses

Variation of impedance ratio across depth in different cases of
layer idealisations

Recorded accelerograms of surface and 100 m depth at El-Centro
Meloland geotechnical array during 04" April 2010 earthquake

Comparison of computed surface responses for the cases
considered with recorded accelerograms (dotted grey line) of
surface

Comparison of Fourier spectra of computed surface responses for
different cases with that of recorded accelerogram (grey line) at
the surface

Comparison of Fourier spectra of computed surface responses for
different cases in the frequency range of 10 to 30 Hz

Comparison of normalized Fourier amplitude ratio of computed
surface responses in the frequency range 1 to 30 Hz.

One-dimensional soil deposit with continuous variation soil
properties and its discrete idealisation is space

Different options for soil profile data and corresponding input
data to control step size depending upon the profile configuration;
(a) Continuous profile data, (b) Profile data at discrete points and
(c) Layered profile data

Curve fitting for EPRI (1993) data for strain dependent shear
modulus and damping ratio as function of plasticity index

Xiv

139

140

142

143

145
145

146

147

148

149

150

159

165

172



4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Curve fitting for Vuocetic and Dorby (1991) data for strain
dependent shear modulus and damping ratio as function of
plasticity index

Curve fitting for EPRI (1993) data for strain dependent shear
modulus and damping ratio as function of confining pressure

Strain dependent shear modulus degradation curves as a function
of plasticity index (for ¢/, = 100 kPa). Comparison of

¥y vs G, curves proposed by Vucetic and Dobry (1991) with (a)
Curves proposed by Zhang et al (2005), (b) Darendeli (2001).

Strain dependent damping ratio curves as a function of plasticity
index (for ¢/, = 100 kPa). Comparison of ¥ vs G, _curves

proposed by Vucetic and Dobry (1991) with (a) Curves proposed
by Zhang et al (2005), (b) Darendeli (2001).

The shear wave velocity and unit weight profiles of layered soil
deposit considered for example problem to validate SRISD
output.

Stain dependent soil and bedrock properties used in the example
analysis

Comparison of amplification ratio between surface layer and
bedrock motions computed from SHAKE91 and SRISD for the
example profile shown in Figure 4.8.

Comparison of acceleration time history responses at different
depths between SHAKE91 and SRISD for the example profile
(Figure 4.8). Response computed for the input motion given at
bedrock.

Comparison of acceleration time history responses at different
depths between SHAKE91 and SRISD for the example profile
(Figure 4.8). Response computed for the input motion given at
surface.

Computed maximum acceleration response along the depth of the
soil deposit for input motion at the base - Comparison of between
SHAKE91 and SRISD for the example profile (Figure 4.8)

Comparison of amplification results between analytical solution
and SRISD — Soil deposit overlying rigid bed rock; Damping
ratio{ =5%; (a)v,, /v, =0.50 & m=4., (b)

v, /v, =020 & m=0.4and (c) v, /v, =0.50 & m=0.4

XV

173

174

180

181

186

187

187

188

189

190

192



4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Comparison of amplification results for two layer soil profile
between analytical solution and SRISD. The inhomogeneity
factors of top layer are v , /v, =0.50 & n=0.20

(v, =200 m/s). Shear wave velocity and depth of homogeneous

layer considered are v, =800 m/s and H, =100 m respectively

Comparison of amplification results for two layer soil profile
having continuous variation of density in the top layer and
continuous linear variation of shear wave velocity in the bottom
layer using SRISD

Comparison of variation of peak acceleration response along the
depth of the profile for two layer soil profile having continuous
variation of density in the top layer and continuous linear
variation of shear wave velocity in the bottom layer using SRISD

Comparison of surface motion amplification computed using
different strain dependent shear modulus and damping models
(Maximum acceleration = 0.20 g and PI1 = 100 %)

Comparison of variation of maximum acceleration along the
depth of the soil deposit computed using different models of
strain dependent shear modulus and damping properties of soil
(Input motion: maximum acceleration = 0.05 g) (a) PI =30 % and
(b) PI=100 %

Comparison of variation of maximum acceleration along the
depth of the soil deposit computed using different models of
strain dependent shear modulus and damping properties of soil
(Input motion: maximum acceleration = 0.20 g) (a) PI = 30 % and
(b) PI =100 %

Comparison of variation of maximum shear stress along the depth
of the soil deposit computed for inhomogeneity parameter m;
Input motion: maximum acceleration = 0.20 g and PI1 =50 %

Comparison of surface amplification of input motion at bedrock
level soil deposit computed for inhomogeneity parameter m; Input
motion: maximum acceleration = 0.20 g and PI = 50 %

Amplification between surface and bedrock motions computed

for different step sizes (Az)used for discretization of the soil

deposit; Input motion: Kobe Earthquake (EQ3) normalized to
0.05¢

XVi

193

194

195

197

199

200

201

201

203



4.24

4.25

4.26

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

Variation of maximum acceleration along the depth computed for

different step sizes (AZ ) used for discretization of the soil deposit;
Input motion: Kobe Earthquake (EQ3) normalized to 0.05g

Amplification between surface and bedrock motions computed
for different step sizes (Az)used for discretization of the soil
deposit; Input motion: Kobe Earthquake (EQ3) normalized to
0.5¢

Variation of maximum acceleration along the depth computed for

different step sizes (Az)used for discretization of the soil deposit;
Input motion: Kobe Earthquake (EQ3) normalized to 0.5g

Schematic diagram depicting the reason for overestimation of
shear stress by the equivalent linear method [reproduced from
Yoshida et al. (2002)]

Effect of R value on Amplification between surface and bedrock
(After eight iterations)

Effect of R value on variation of maximum acceleration along the
depth (After eight iterations)

Effect of R value on frequency characteristics of computed
surface acceleration time history

Peak Ground Acceleration (PGA)and Modified Mercalli
Intensity (MMI ) correlations

Comparison of mean trend of empirical correlations and Trifunac
and Bardy (1975) correlation

Flowchart for computation of effective strain using different
options in the computer program SRISD

Variation of R value over each of the eight iterations and thick
line represents the constant R value used in routine equivalent
linear method

Comparison of amplification between surface and base for all
three cases of analysis

Comparison of variation peak acceleration profile along the depth
of the deposit for all three cases of analysis (After eight iterations)

Convergence of strain over eight iterations for all the three cases
of analysis.

Frequency dependence of energy dissipated within a soil mass
[Shibuya et al. (1995)]

Effect of effective confining stress on frequency dependent small
strain damping property of soil for different values of plasticity
index.

XVii

203

204

204

212

213

213

214

217

218

219

220

221

221

222

224

231



5.14

5.15

5.16

5.17
5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

Effect of effective plasticity index on frequency dependent small
strain damping property of soil for different values of confining
pressure.

Three frequency depending damping models used in frequency
dependent equivalent linear analysis of Park and Hashash (2008)
and Jeong et al. (2008)

Comparison of response spectrums of computed surface motions
using frequency dependent analysis procedures with that from
equivalent linear and nonlinear analyses [Kwok et al. (2008)]

Effect of damping on maximum amplification at different modes

Amplification between surface and bedrock computed from EQL
analysis carried out using SRISD program.

Response spectrum of surface motion computed from EQL
analysis carried out using SRISD program.

Fourier spectrum of surface motion computed from EQL analysis
carried using SRISD program

Frequency dependent radiation damping implemented in SRISD
program and proposed by Zhao (1997)]

Flowchart for equivalent linear analysis with frequency dependent
damping formulation using proposed method as implemented in
the computer program SRISD

Comparison of amplification between surface and base of the soil
deposit as computed from routine EQL analysis and proposed
method for frequency dependent analysis. Frequency dependent
analysis for two cases of target frequencies, i.e.,

fr = f,and f, = f , corresponding to first and fourth mode

natural frequencies.

Comparison of response spectra of the estimated surface motions
from routine EQL analysis, frequency dependent EQL analysis
and time domain nonlinear analysis.

Comparison of Fourier spectra of the estimated surface motions
from routine EQL analysis, frequency dependent EQL analysis
and time domain nonlinear analysis.

Shear wave velocity profiles interpreted from SASW survey
adjacent to TKCHOS site [Kaklamanos et al. (2011)]

Layered shear wave velocity profile (KiK-net) and its
approximated continuous profile idealisation.

Horizontal components of accelerograms recorded at base and

surface of the soil deposit of TKCHOS site during 2003 Tokachi-
Oki earthquake

XViii

232

234

236

239
240

241

241

244

246

248

248

249

252

253

254



5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

Response spectrum of the horizontal components of
accelerograms recorded at base and surface of the soil deposit of
TKCHOS site during 2003 Tokachi-Oki earthquake

Variation of R — value along the depth used for calculation of
effective strain in successive iterations of EQL analysis

Computed variation of maximum acceleration along the depth of
the soil deposit using proposed method and routine method for
calculation of effective strain in successive iterations of EQL
analysis (SRISD)

Amplification of surface motion with respect to base motion
computed using proposed and routine methods for calculation of
effective strain in successive iterations of EQL analysis (SRISD)
— (a) NS component (b) EW component

Acceleration time histories at the surface of the soil deposit
computed using proposed and routine methods for calculation of
effective strain in successive iterations of EQL analysis (SRISD)
— (a) NS component (b) EW component

Response spectra of predicted acceleration time histories at the
surface of the soil deposit using proposed method and routine
method for calculation of effective strain in successive iterations
of EQL analysis (SRISD) — (a) NS component (b) EW component

Comparison of computed amplification ratio between surface and
base motions for the cases of layered and continuous shear wave
velocity profiles of TKCHOS site using frequency independent
EQL analysis (SRISD). (a) EW component; (b) NS component

Comparison of computed acceleration time history response for
the cases of layered and continuous shear wave velocity profiles
of TKCHOS site using frequency independent EQL analysis
(SRISD) with observed surface motion during 2003 Tokachi-Oki
earthquake. (a) Layered profile EW component, (b) Continuous
profile EW component, (c) Layered profile NS component and
(d) Continuous profile NS component

Comparison of Fourier spectra and response spectra of the
computed acceleration time histories at the surface of the deposit
(Figure 5.36); (a and b) EW component; (c and d) NS component

Comparison of computed amplification ratio between surface and
base motions for the cases of layered and continuous shear wave
velocity profiles of TKCHOS site using frequency dependent EQL
analysis (SRISD). (a) EW component; (b) NS component

XiX

258

258

258

259

259

260

262

263

264

266



5.39

5.40

541

542

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Comparison of computed acceleration time history responses for
the cases of layered and continuous shear wave velocity profiles
of TKCHOS site using frequency dependent EQL analysis
(SRISD) with observed surface motion during 2003 Tokachi-Oki
earthquake. (a) Layered profile EW component; (b) Continuous
profile EW component; (c) Layered profile NS component; and
(d) Continuous profile NS component

Comparison of Fourier spectra and response spectra of the
computed acceleration time histories at the surface of the deposit
(Figure 5.39). (a & b) EW component; (¢ & d) NS component

Comparison of goodness-fit parameters obtained for computed
acceleration responses at the surface of the TKCHOS soil deposit
with different cases of analysis. NS — component (top row) and
EW — component (bottom row)

Comparison of goodness-fit parameters obtained for response
spectra of computed acceleration responses at the surface of the
TKCHOS soil deposit with different cases of analysis. NS —
component (top row) and EW — component (bottom row)

Two layers soil deposit overlying rigid bedrock considered in
Madera’s approach.

Relationship between u andﬂ (for, 1Su< 10)
sz

Computation Fundamental periods from response spectrum ratio
method (a) La-Obregon Park (surface/70 m) (b) La Cienega
(surface/100 m) (c) Eureka Somoa (surface/136 m) and (d) El
Centro Meloland (surface/195m)

Fundamental period computed from amplification transfer
function of SHAKE Program

Equivalent linear shear wave velocity profile for the layered soil
deposits (a)v,, =429.03;a =2.078, (b)v,, =215.601;a =4.078,
(c)v,,=177.839; a=3.246and (d) v, =173.136;a =1.755
Comparison of fundamental periods computed from different
methods

Percentage Error in fundamental periods computed from different
methods

XX

267

268

272

273

286

297

298

301

305

305



AllL1

AllL2

AlL3

AllL4

AILS

AllL.6

AIL7

Shear wave velocity profiles data of La-Obregon Park
geotechnical array soil deposit used in the analysis

Strain dependent soil property curves (G/G, and{ ) used in the

analysis. Average curve used for the case of analysis carried out
with approximated continuously varying shear wave velocity
profile

Earthquake accelerograms recorded at La-Obregon Park site at
the surface and at depth 70.0 m

Amplification ratio between surface and base input motions
(0.0m/70.0m) computed for different idealisations of shear wave
profiles from SRISD analysis [(c) and (d)]. Comparison of
amplification ratio results from SRISD and EERA for the case of
layered profile [(b)]. Comparison of amplification ratio results
from SRISD using routine and proposed methods of computing
effective strain for the case of layered profile [(a)]

Surface acceleration responses computed for different
idealisations of shear wave profiles from SRISD analysis [(b) (c)
and (d)]. Comparison of surface acceleration response results
from SRISD and EERA for the case of layered profile [(a)].
Comparison of surface acceleration response results from SRISD
analysis using average curves to represent strain dependent soil
properties and normalized model for strain dependent soil
properties of Zhang et al (2005) [(e)] with continuous variation
approximation of shear wave velocity profile

Response spectra of computed acceleration responses at the
surface of the soil deposit idealised with different shear wave
profiles; Comparison of results of SRISD analyses with that of
recorded motion [(c) (d) and (e)]; Comparison of results of
SRISD and EERA for the case of layered profile [(a)];
Comparison of results of SRISD using routine and proposed
methods of computing effective strain for the case of layered
profile [(b)]; Comparison of response spectra of SRISD analysis
using average curves to represent strain dependent soil properties
and normalized model for strain dependent soil properties of
Zhang et al (2005) with continuous variation approximation of
shear wave velocity profile [(f)]

Fourier spectra of computed acceleration responses at the surface
of the soil deposit idealised with different shear wave profiles;
Comparison of results of SRISD analyses with that of recorded
motion [(c) (d) and (e)]; Comparison of results of SRISD and
EERA for the case of layered profile [(a)]; Comparison of results
of SRISD using routine and proposed methods of computing
effective strain for the case of layered profile [(b)]; Comparison
of response spectra of SRISD analysis using average curves to
represent strain dependent soil properties and normalized model

XXi

348

348

349

355

356

357

358



for strain dependent soil properties of Zhang et al (2005) with
continuous variation approximation of shear wave velocity profile

[(D)]

AILS8 Variation of maximum responses along the depth of the soil 359
deposit computed for different cases of analyses; (a) Maximum
acceleration, (b) maximum strain and (¢c) Maximum shear stress;

(d) Variation of ratio of effective to maximum strain at different
depths as obtained from proposed method of analysis in
comparison with its constant value as in case of routine analysis

XXii



LIST OF TABLES

Table Title Page

No. No.

2.1 Details of the input motions used for the comparative analyses 51

3.1 Fundamental frequencies of the soil deposit considered for 109
parametric study presented in Figure 3.13

3.2 First four modal frequencies of the soil deposits with different 115
inhomogeneity parameters

3.3 Comparison peak acceleration computed using LCC and LC3L 141
idealised deposits with measured data for both the components of
the earthquake

4.1 Typical strain dependent shear modulus and damping ratio data 170
used in equivalent linear analysis programs

4.2 Curve fitting constants for EPRI (1993) data for strain dependent 170
shear modulus and damping ratio as function of plasticity index

4.3 Curve fitting constants for Vuocetic and Dorby (1991) data for 171
strain dependent shear modulus and damping ratio as function of
plasticity index

4.4 Curve fitting constants for EPRI (1993) data for strain dependent 171
shear modulus and damping ratio as a function of confining
pressure

4.5 Relative importance of soil parameters those influence strain 176
dependent Shear modulus and Damping curve [Darendeli (2001)]

4.6 Curve fitting parameters «, ¥, and A of Eq. (4.43) and Eq. (4.44) 179
for different geological groups [Zhang et al (2005, 2008)]

5.1 Correlations between PGA and MMI [Compiled by Linkimer 216
(2008)]

5.2 Detail of TKCHOS site; Geotechnical and Earthquake data used in 251
the case study

5.3 Results of the statistical analyses for goodness-of fit of the 271

acceleration response at the surface computed from SRISD and
observed record.

xxiii




5.4 Results of the statistical analyses for goodness-of fit of the 271
acceleration response spectrum at the surface computed from
SRISD and observed record.

6.1 Strong-Motion Geotechnical Array Stations 294

6.2 Layer data of shear wave velocity profiles considered for the 294
analysis

6.3 Details of earthquake events considered in the analysis 296

6.4 Fundamental periods computed from response spectrum ratio 297
method and SHAKE analysis

6.5 Calculation of fundamental period using proposed method 300

6.6 Specimen calculation for La-Cienega profile using methods 1, 2, 3 303
and 4

6.7 Specimen calculation for La-Cienega profile using method - 3 304

6.8 The fundamental periods computed from different methods 304

AILLT | Details of Chino Hills Earthquake of 2008, recorded at La-Obregon
Park site

AlIL2 | Designations used for different input cases considered

AIL3 | Input data file for LY-SD-R analysis case

AlIL4 | Input data file for DP-SD analysis case

AILS | Input data file for CZ-SD analysis case

XXiv




NOMENCLATURE

a Inhomogeneity parameter
a,. Maximum acceleration
a Inhomogeneity parameter
A, Amplitude of incident wave
A, Amplitude of reflected wave
Ay Amplitude of transmitted wave
C Damping coefficient
[C] Viscous damping matrix
E Transmitted wave component
E, Wave energy components of incident wave
E, Wave energy components of transmitted wave
E, Wave energy components of reflected wave
F Reflected wave component
g Acceleration due to gravity (m / s2)
G Shear modulus
G, Shear modulus at free surface
G Complex shear modulus
G Imaginary component of complex shear modulus
G,.. Low strain shear modulus
Total thickness of the soil deposit
H, Thickness of the i"layer

XXV



J, (®).

U(z)

si

vs 0

Imaginary number (i = J-1 )

Bessel’ function of first kind of order v

@ p

_@'p

Complex wave number given by k* =
b SVERRY T 206

Stiffness coefficient of the i” layer

Assembled stiffness matrix

Mass coefficient of the i” layer
Modified Mercali intensity

Moment magnitude of the earthquake

Assembled mass matrix

Correlation regression coefficient

Ratio of effective strain to maximum strain
Fundamental period of the soil deposit
Time in seconds

Shear displacement in horizontal direction
Velocity in horizontal direction
Acceleration in horizontal direction

Amplitudes of displacement

Shear wave velocity at i” layer
Shear wave value at the free surface

Shear wave velocity at the base of the soil deposit

Shear wave velocity of bedrock

v, =vAJ1+2i{

XXVi

=



Y,(®)

piory,

7. & T

l max

T(z)

Bessel’ function of second kind of order v

Spatial co-ordinate along the depth

Vi Pi

Vi Pist

Impedance ratio between top and the bottom layer & =

Impedance ratio between base of the deposit and bedrock ¢, = Y Ps

vsrpr
Shear strain
Rate of shear strain

Viscosity coefficient

Ratio of shear wave velocity at the base to that of at the surface
Stress amplitude of incident wave

Stress amplitude of transmitted wave

Stress amplitude of reflected wave

Density of the bedrock

Mass density or unit weight at i layer

Shear stress of the i”layer and maximum shear stress
Amplitudes of shear stress

Inhomogeneity parameter

Excitation frequency, Rad / s
Transformed depth coordinate, function of z

Viscous damping ratio in %

XXVii



XXViii



CHAPTER 1

INTRODUCTION

1.1  GENERAL

It is well established that earthquake waves will amplify near the surface as they
propagate through the earth mantle and crust after originating from the deep faults.
The evaluation of amplification characteristics of the waves is a very important field
of study in earthquake geotechnical engineering. Free-field response of the earth
surface due to earthquakes is an important parameter to be established in ascertaining
the dynamic loads for earthquake resistant design of structures. Thus seismic site
response analysis is primarily performed in order to estimate the seismic motion at the
free surface of the soil deposit for a given input seismic motion within the deposit or
to transfer the free surface motion of soil deposit to the surface of the outcropping

bedrock.

Many aftermath survey reports of damages during mild to severe seismic events have
revealed that the type of structure, the type of material used and construction practices
are vital factors influencing the severity of damage [Borcherdt and Gibbs (1976);
Berrill (1977); Bertero (1989) and others]. Nevertheless the dynamic response of the
structure is primarily controlled by the closeness of its natural frequency to the
predominant frequency of the input earthquake motion. In turn, the predominant
frequency of earthquake wave near the surface depends on the characteristics of soil
deposit above the bed rock and the level of strain experienced by ground during the
earthquake because the seismic wave characteristics are affected as the wave

propagates through soil deposit.

Thus, it is important to assess the local site effects on the seismic response of built
environment, particularly in urban areas. Hence, microzonation of the urban areas
becomes imperative for mitigation of earthquake risks. The reliable evaluation of

response of the near surface soil deposit under expected earthquake input motion at



bedrock level is the key problem in seismic microzonation. Well documented fallout
studies of data pertaining to strong earthquakes have clearly revealed that the main
reason for high intensity site specific seismic motion is the soft soil condition. 1985
Michoacan earthquake of Mexico, 1989 Loma Prieta earthquake, 1994 Northridge
earthquake of USA, 1995 Kobe earthquake of Japan, 1999 Kocaeli earthquake of
Turkey, 2001 Bhuj earthquake of India and many other events in the recent past are
glaring examples of site amplification causing catastrophic damage to structures

during earthquakes.

1.2 BACKGROUND AND MOTIVATION

There are several methods available for evaluating seismic response of soil deposits
essentially differing in use of numerical techniques and modeling of soil stress-strain
behavior. Principally they may be classified as linear, equivalent linear (EQL) and
nonlinear methods. Further, the analysis can be one, two or three dimensional. Among
these, EQL method based on the solution of wave equation using multiple reflection
theory with one or two dimensional idealization is the most popular method. The
reason for its popularity is its simplicity, particularly in evaluation of soil parameters
used in the analysis. On the other hand, nonlinear method is based on lumped mass
idealization of layered soil deposit with equation of motion being integrated in time
domain unlike the EQL approach which is based on continuous solution of wave
equation in frequency domain. Although in time domain approach the nonlinear
behaviour of the soil can be considered more realistically, the main problem is that, it
requires several input parameters that are tedious to evaluate. The solution of wave
equation using multiple reflection theory in frequency domain has distinct advantages
such as deconvolution that is, the bed rock acceleration time history can be computed

using the input motion at the surface or at any other intermediate layer.

The most widely used computer program based on equivalent linear method is
SHAKE [Schanbel et al. (1972)] and its subsequent versions e.g., SHAKE91 [Idriss
and Sun (1992)]. In the recent past, several other computer programs similar to
SHAKE are available such as EERA [Bardet et al. (2000)], DYNEQ [Yoshida et al.
(2002)], DEEPSOIL [Hashash (2011)], STRATA [Kottke and Rajthe (2008)] etc.,



These programs can compute the dynamic response of horizontally layered soil
deposit due to vertically propagating and horizontally polarized (SH-wave) shear
waves. These programs are developed based on multiple reflection theory of waves in
frequency domain. The nonlinearity is modeled by defining the curves of strain
dependent shear modulus and damping. The stiffness degradation of the soil due to
the increase in strain is accomplished by comparing the computed strains with

generalized strain dependent modulus reduction curves.

Time domain approaches are capable of directly incorporating nonlinear and time
varying behavior of the soil. Also, while the analysis is carried out, they preserve the
time history of dynamic response quantities which are transient in nature rather than
harmonic as it is treated in the frequency domain. On the other hand, in the time
domain approach it is impossible to implement the concept of multiple reflection
theory which is an exact solution of the wave equation. Using the multiple reflection
theory approach, the incident and reflected waves can be separated, input wave can be
specified at any point in the half space and incident and reflected wave components
can be extracted at any desired location. Most often this aspect is an important
requirement in engineering practice. Even though time domain approach is
recommended for truly nonlinear analysis, EQL approach based on multiple reflection
theory continues to sustain its importance and popularity in the geotechnical
earthquake engineering practice. Recently, appreciable research advancements have
been achieved in numerical procedures, computational methods, constitutive
modeling and measurement of soil properties (both in field and laboratory) that are
appropriate for seismic site characterisation procedures. In spite of these
developments, according to a survey conducted and reported by Kramer and Paulsen
(2004) for large number of practicing engineers throughout the globe, equivalent
linear one-dimensional analysis is still the most popular choice for analysis because of

its simplicity, convenience in providing input data and easy interpretation of results.

In some instances non-homogeneity of the surface deposit may be due to continuous
variation of stiffness and density rather than distinctly layered formation. Recognizing
this fact, many investigators have attempted to treat the prevailing condition of non-

homogeneity and computed the dynamic response of the deposit subjected to



harmonic base excitation. Among these, important contributions are from Gazetas
(1982), Davis (1995), Towhata (1996), Roviths et al. (2011), Vrettos (2013) etc. From
the review of these studies it can be concluded that, there is scope and need for
improving the routine SHAKE method of analysis for predicting seismic ground
response. These analytical studies are dealt to give amplification for the limited cases
without considering nonlinear behavior and variation of density along the depth of the
soil deposit. Also these analytical studies assume that inhomogeneous surface deposit
is overlying a homogeneous elastic half-space or rigid base rock. However, in reality

these assumptions are seldom valid.

The analytical and numerical studies, reported in literature, have pointed out that main
drawback of the routine one-dimensional modeling of the ground arises out of the
assumption of perfectly horizontal layers of varying depths. This assumption leads to
unrealistic and contrasting impedance ratio between adjacent layers. In turn, this may
result in poor simulation of ground response. Hence, there is a need for overcoming
this lacuna by modeling the ground profile with continuous variation of soil properties,
particularly shear wave velocity, which introduces a smooth transition zone at layer

interfaces instead of abrupt variation.

Although many of the researchers disagree with the effect of loading frequency on the
dynamic soil properties, in the recent past, some studies have observed that effect of
loading frequency on the soil stiffness and damping is significant. Consequential
effect of loading frequency / strain rate on damping ratio is yet to be ascertained
clearly. Rix (2004), through experimental study, reaffirmed the general trend of effect
of frequency on damping suggested by Shibuya et al. (1995). Even though effect
loading frequency on soil properties is debatable, in order to improve the accuracy of
response prediction of EQL method, especially in the high frequency range, it may be

appropriate to incorporate frequency effects into the analysis procedure.

Equivalent linear method utilizes effective strain (7, ) to update soil properties after

every iteration and these updated shear moduli and damping values are employed in
the next iteration. Throughout a particular iteration, these values remain constant.

There is no technically rational procedure available to convert the resulting maximum



strain (y,,. ) to effective strain(}/qﬁ.). In their computer program SHAKEO9I, Idriss

and Sun (1992) computed effective strain as y,, =Ry, where R is an empirical

parameter which depends on magnitude of the earthquake (M) asR=(M —1)/10,
while Schnabel et al. (1972) recommended a value of 0.55 to 0.65 for R in their

program SHAKE. It is observed that single value of parameter R is not capable of
reproducing the entire response history at complete range of frequencies. Several
other methods for computing R have been proposed. However, they are aimed at
altering R depending on excitation frequency instead of acceleration or strain
amplitude [Sugito et al. (1994), Yoshida et al. (2002), Kausel and Assimaki (2002)
etc.]. Hence, evolving a rational procedure to compute effective strain based on

acceleration or strain amplitudes of the corresponding iteration is imperative.

Several post earthquake geotechnical studies have clearly demonstrated that intensity
of structural damages and its distribution are closely dependent on dynamic
characteristics of the underlying soil deposit i.e., its modal characteristics. Hence,
reliable assessment of fundamental period of the soil deposit is an important
requirement 1in seismic site characterisation particularly in the process of
microzonation of urban areas. Since shear wave velocity and fundamental period are
directly interrelated, many empirical relationships have been proposed to compute
average shear wave velocity as an equivalent substitute to complex shear wave
velocity profile of inhomogeneous layered deposit. Summary and relative comparison
of all empirical methods available till then is given in the paper by Dobry et al. (1976).
The order of error in fundamental period computed from these empirical methods
could be significantly large in some cases where large velocity gradient exists
between layers of the deposit. Hence, evolving an alternative method for evaluation of

fundamental period of the deposit, as accurately as possible, is extremely important.

1.3  SCOPE AND OBJECTIVES OF THE WORK

The focus of this study is to improve the prediction capabilities of total stress one
dimensional seismic site response analysis using frequency domain equivalent linear

approach. The improvements suggested in order to achieve this broad objective are



based on documented limitations of this approach in the literature. Although some
modifications are suggested previously, addressing issues related to discrepancies in
predicted and observed responses at certain frequency ranges, very few attempts have
been made to deal with some of the uncertainties and ambiguities in one dimensional
frequency domain site response analysis using equivalent linear approach. The
improvements and modifications suggested in this study are believed to enhance the
scope of application of equivalent linear one dimensional site response analysis in
frequency domain in engineering practice. In the first phase of this study, a computer
program SRISD (Seismic Response of Inhomogeneous Soil Deposits) is developed
and tested to obtain one dimensional seismic response of inhomogeneous soil deposit
with continuous variation in soil properties along the depth. In the next phase,
modified method to compute effective strain and consideration of frequency effect are
incorporated in equivalent linear analysis. Lastly, an alternative method for estimating
fundamental period of layered soil deposit is proposed. For this purpose, variability in

shear wave velocity profile along the depth is approximated with continuous variation.
The objectives of the present research work are as follows:

» To develop an algorithm and computer program based on the numerical procedure
adopted to solve one-dimensional wave equation in frequency domain with

nonlinearity of the soil being modeled using equivalent linear approach.

» To introduce an option in the computer program to consider continuous variation
in soil properties along the depth of the one-dimensional soil profile with different

types of inhomogeneity functions.

» To provide a refined method to compute effective strain for updating strain
dependent shear modulus and damping properties of the soil deposit in successive

iterations

» To incorporate an option for considering frequency dependent soil properties in

equivalent linear approach.

» To test and validate computer program by comparing its results, for benchmark
problems cited in literature, with results of existing computer programs and closed

form solutions



» To validate the efficiency of the procedure adopted by comparing the results with

response quantities measured during actual earthquakes.

» To identify the effects of plasticity index and characteristics of input motion on

the dynamic response of soil deposit by performing parametric study

» To propose an alternative method to estimate fundamental period of layered soil
deposits by idealizing the deposit with an equivalent continuous shear wave

velocity profile

14 METHODOLOGY

Based on the objectives listed above, following methodology is adopted

¢ Transform governing equation of motion for one dimensional vertical propagation
of waves in continuously inhomogeneous soil deposit into a set of ordinary

differential equations.

® Numerically integrate the equations obtained previously using fourth order

Runge-Kutta scheme.

* Employ EQL approach incorporating an alternative method to compute effective
strain based on intensity of maximum acceleration computed in the preceding
iteration and carry out iterations till convergence of shear strain at all nodal points.

Implement these procedures in a computer program coded in FORTRAN

¢ Incorporate different input provisions in the computer program which include
details of soil profile with different options for prescribing the shear wave velocity
or shear modulus and density as continuous function of depth apart from routine

layered configuration.

® Prescribe strain dependent shear modulus and damping properties choosing
appropriate curve from a suite of curves available in the built in library or site

specific data.

¢ In order to overcome frequency response discrepancies of equivalent linear
analysis, additional damping shall be introduced near the fundamental frequency

and damping will be decreased in the high frequency range beyond the first few



modes of response. This scheme is envisaged to reduce and enhance the response
respectively near resonant frequency and high frequency ranges. Additional
damping is attributed to radiation damping due to the energy dissipation in the
underlying half-space of the deposit. For this purpose, approximate expression

relating radiation damping with modal frequencies shall be used.

¢ Prescribe input motion at any depth in the form of acceleration time history. The
strain, stress, acceleration time histories and amplification ratio between any two
depths can be obtained as output at desired depths of the deposit. The variation of
peak acceleration, maximum shear strain and maximum shear stress along the

depth of the deposit are the default outputs.

e Validate the computer program with the results of the analytical studies reported
in literature [for e.g., Gazetas (1982), Towhata (1996), Davis (2004), Rovithis et
al. (2011), etc.] and measured field data of vertical geotechnical arrays. The shear
wave velocity profile and earthquake data recorded and documented at California
Strong Motion Instrumentation Program (CSMIP) and Kiban-Kyoshin network

(KiK-net) websites are utilized for this purpose.

¢ Estimate the fundamental period of the layered soil deposit by approximating the
layered shear wave velocity profile with an equivalent linear variation. For this
purpose closed form exact analytical solution shall be used to compute the

fundamental period of linearly varying shear wave velocity profile.

e Efficiency of the proposed vis-a-vis other available methods to estimate
fundamental period shall be verified by comparing their results with values
computed from recorded earthquake accelerograms of instrumented geotechnical

downhole arrays.

1.5 SCHEME OF PRESENTATION

The entire work is presented in seven chapters. Brief introduction is presented in the
first chapter. This includes the importance of the present work, problem statement and
list of objectives of the present work. The second chapter describes the seismic

response analysis of horizontally layered soil deposit. Various numerical techniques



available for seismic ground response are discussed. Results obtained from frequency
domain equivalent linear and time domain nonlinear methods of analyses are
compared. Parametric studies carried out to investigate the effect of characteristics of
input motion and soil properties on the computed response are presented. The

limitations of equivalent linear analysis in frequency domain are highlighted.

In chapter three, significance of idealizing the soil deposit with continuous variation
in soil properties is brought out. The uncertainties associated with characterisation of
soil deposit as layered deposit and its effects on the computed response are
demonstrated through example analysis. The analytical solutions obtained for
different kinds of inhomogeneity functions have been reviewed and scope of some of
these solutions is extended for additional boundary conditions. Results of the
parametric study carried out with regard to effect of inhomogeneity parameters on
amplification characteristics are presented. This chapter is concluded with example
analyses wherein the improvement in response prediction by approximating the
layered profile by means of a continuously varying shear wave velocity profile is

demonstrated.

The fourth chapter focuses on the development of numerical scheme for seismic
response analysis of continuously inhomogeneous ground. The general features of the
computer program SRISD developed as part of this study have been discussed. The
results of the analysis using SRISD are validated by comparing with that of
SHAKEII analysis and those from closed form analytical solutions presented in the

previous chapter.

The fifth chapter gives the details of two newly proposed improvements to routine
equivalent linear analysis. Firstly, a rational method to compute effective strain
required to update soil properties in equivalent linear approach is presented. Besides,
a new method for frequency dependent equivalent linear analysis is developed. The
implementation of these proposals in the framework of SRISD is discussed. Finally, a

case study is presented to validate the salient features of the present research work.



An alternate approach for estimating the fundamental period of layered soil deposit is
proposed in chapter six. For this purpose layered shear wave velocity profile is
approximated with a linearly varying continuous shear wave velocity profile.
Efficiency and accuracy of the proposed method is established by comparing its
results with other simplified methods, exact solutions and those computed using
observed field data. Conclusions and scope for future work are presented in the last
chapter. The computer programs used for analytical results of chapters two and three
are coded in MATLAB®. These programs are listed in Appendix-I. In Appendix-II
details about the computer program SRISD is presented. The description and
preparation of input data file along with output of the program is explained using an

example analysis.
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CHAPTER 2

ANALYSIS OF INHOMOGENEOUS SOIL DEPOSITS -
HORIZONTALLY LAYERED PROFILE

2.1 INTRODUCTION

In this chapter the importance of evaluating the dynamic response of the ground
during earthquakes and the aspects of seismic wave propagation through layered soil
deposit are discussed. Validating facts related to simplification of complex wave
phenomena into one dimensional idealisation are elaborated. Theory for one
dimensional wave equation and well established solution using the concept of
multiple reflection theory applied to one dimensional wave propagation in layered soil
deposit is discussed. Various numerical techniques that are available in the literature
for the purpose of evaluating the seismic ground response using one dimensional
wave equation are reviewed. Finally, some of the deficiencies of equivalent linear
analyses in frequency domain against nonlinear analysis in time domain are
highlighted using an example. In this preliminary comparative study shear wave
velocity profile idealisation, frequency and amplitude characteristics of the input

motion are considered as parameters.

The theory of wave propagation deals with the problem of defining the transmission
of energy that is released and spreading due to localized disturbance (source) in a
medium. The seismic wave propagation through the earth medium is basically a three
dimensional problem. Seismic waves originating from the focus propagate in all

directions and characteristics of these waves are altered with respect to time and space.

The variations in wave characteristics as the wave propagates in the medium are
significantly influenced by source geometry, type of disturbance, path of its
propagation, geology of the ground, etc. Basically the seismic waves are classified
into body waves and surface waves. The surface waves are generated due to total

reflection of the body waves at the free ground surface.



The body waves are classified into primary or longitudinal wave (P-wave) and
secondary or transverse wave (S-wave). P-wave propagates generating vibrations
parallel to the direction of propagation and S-wave propagates generating vibration
normal to the direction of propagation. S-wave component contributing to horizontal
oscillations is called SH-wave while that contributing to vertical oscillations is called
SV-wave. As a result of complex discontinuities in the earth media the body waves
are phenomenally modified due to reflection, refraction, scattering, diffraction,
attenuation, amplification, and other propagation related mechanisms [Newmark

(1968); Newmark and Rosenblueth (1971); Okamoto (1984)].

2.2 SEISMIC GROUND RESPONSE ANALYSIS

2.2.1 General

The evaluation of ground surface motion due to an earthquake is associated with the
solution of the problem of wave propagation. The solution procedure can be clearly
distinguished into two fields of study. Firstly, modeling of surface ground motion that
includes complete process of wave propagation from mechanism of fault rupture to
generation of surface waves dealing with large geometrical domain, basically
concerned with the field of study of seismology. The other is related to soil dynamics
or earthquake geotechnical engineering in which the response of the subsoil above the
bedrock due to propagation of waves are studied to evaluate the surface motion for an
input motion prescribed at bedrock. The latter case is justified by the assumption that
the earthquake motion at the assumed bedrock level can be defined as a function of
distance from the source of disturbance and source mechanism; thereby complexity of

the problem is greatly reduced.

From the engineer’s point of view, it is essential to obtain accurate and complete site
specific ground motion response quantities for reliable soil-structure interaction
analysis and designing the structures for future earthquakes. Both engineers and
seismologists have accepted that site specific ground motion, due to strong motion
seismic events, is greatly affected by the response of the surface soil deposit above the

bedrock [Seed and Idriss (1969), Chin and Aki (1991), Beresnev and Wen (1996) and
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Field et al. (1997)]. In general, the problem of seismic ground response analysis may
be defined as determination of temporal and spatial variation in all response quantities
of a soil deposit due to observed or estimated input motion prescribed at a control

point within the soil deposit [Lysmer (1978)].

2.2.2 Factors Affecting Ground Response Analysis

In reality, the procedure for exact characterization of strong earthquake motion
involves considering all the factors which greatly influence the surface ground motion.
According to Ferritto et al. (1999), these factors include seismological factors
comprising intensity, frequency characteristics and duration of input motion (Bedrock
motion); Geological factors such as soil type, profile of the soil deposit, underlying
bedrock type, geologic structure and its profile (topography, basin effects etc.);
Geotechnical factors consisting of low strain elastic properties of the soil, damping
characteristics of the soil, stiffness degradation behavior of the soils due to cyclic load,
natural period of the soil deposit, impedance ratio between the bedrock and overlying
soil stratum and stress-strain relationship for soil and finally regarding analytical and
numerical procedure which appropriately considers the dimensionality of the problem,

soil nonlinearity and continuous or discrete modeling.

It is essential to recognize the fact that seismological factors affecting ground
response analysis include large spatial domain compared to geotechnical factors
which are usually confined to a relatively small scale. Generally, the outcome of
seismicity estimation of a site is presented as the peak acceleration expected for a
given return period that usually corresponds to the shaking at a rock outcrop. This
site-specific data, typically comprising of anticipated acceleration time history of the
rock outcrop, is used as input motion at the bedrock and propagation of waves
through soil media is modeled. Then site effects have to be evaluated considering
geotechnical parameters such as soil type, deposit thickness, stiffness and damping
properties as a function of intensity of the bedrock motion. There are many empirical,
simple and complex procedures available to compute site-specific dynamic soil
response. The site-specific seismic ground response analysis is primarily aimed at

characterisation of modification in the frequency and amplitude of the seismic wave
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as it propagates through surface soil deposit. More elaborative three dimensional
models using methods based on finite element, finite difference, boundary element,
etc. are available for seismic ground response analysis [Frankel and Vidale (1992),
Frankel (1993), Zeng and Anderson (1996)]. Joyner and Boore (1988) have given

extensive review of the works related to site amplification studies.

2.3  JUSTIFICATION FOR ONE DIMENSIONAL ANALYSIS

Usually, considering the limitations and complexities involved, the three dimensional
seismic wave propagation problems are often idealized as two or one dimensional
problems. The limitations and complexities in three dimensional analysis are; defining
the seismic bedrock motion considering all seismological factors including source
mechanism and path effects, modeling anisotropic and inelastic stress-strain behavior
of soil (constitutive modeling), ascertaining the parameters of the constitutive model
through in-situ or laboratory procedures and implementing all these with a numerical
procedure which is computationally economical and accurate. Research is still going
on to address many aspects of these issues decisively, hence engineers are yet to be
satisfied with capabilities and accuracy of the procedure involved in three

dimensional modeling.

For any seismic event the distance of wave propagation is often great compared with
the dimensions of the source. Therefore, according to Newmark and Rosenblueth
(1971), at points sufficiently distant from the source of a disturbance the waves may
be regarded as plane waves. Also by modeling the source of fault rupture as a line of
relatively large length, it can be assumed that all the waves are propagating parallel to
a plane. Thus, according to Roé&sset (1977), for the situations stated above, the seismic
wave propagation problems may be treated as two dimensional. In two dimensional
analysis, lateral extent of the soil deposit can be taken into account as finite [Joyner

(1975), Marsh (1992)].

The investigation of many acceleration records of earthquakes suggests that wave
refraction from edge boundaries, focusing and scattering of waves, alteration to type

of waves, etc. that are associated with two and three dimensional effects are important
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[Tucker and King (1984), Bard and Bouchon (1985) and others]. Where these effects
are significant, calculations assuming one-dimensional wave propagation models fail
to simulate the observed results [King and Tucker (1984)]. In spite of employing 2D
or 3D analysis, according to Boore (2004), in some cases discrepancy between
predicted and observed spectral ratios is not negligible, although the results from two
and three dimensional analysis can predict the overall trend of the observed response
spectra. Despite tremendous additional effort put into spatial modeling, modeling the
constitutive behavior and computational procedures, these kinds of differences exists.
Even with refinement of geotechnical model to better match the observed
characteristics of ground motion the predictions were systematically different than the

observations over a wide range of frequencies [Scherbaum et al. (1994)].

& Site

Layered
ground
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/_,...—-—-—-L_H

Layered ground
with increase in

{L— Fault

Source

Figure 2.1: Waves propagate almost vertically near the surface due to refraction
at horizontal layer boundaries [Modified from Kramer (1996)]

There are many studies available in the literature comparing the ground response
estimates using 1D, 2D and 3D analyses [Joyner and Boore (1988), Boore (2004)
Bielak et al. (2000), Semblat (2011)]. On the other hand Dickenson et al. (1991), Seed
et al. (1994) and Dobry et al. (1994) have shown that the one-dimensional model
provided a good approximation to the observed site response in the Loma Prieta

earthquake, especially for the case of soft clay sites.

As a further simplification with respect to dimensionality of the problem, the problem

is reduced to one dimension by assuming that the seismic surface motion of the soil
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deposit is primarily due to the upward propagation of shear waves from underlying
bedrock. Observational studies carried out using seismograms obtained at several
stations in Japan and elsewhere have confirmed that the angle of incidence is less than
five degrees near the surface of the deposit [Salt (1974)]. Also these studies have
indicated that incident angle of shear wave at the surface layer becomes almost
vertical irrespective of epicentral distance. Thus, as a consequence of Snell’s law, use
of vertically incident waves as the excitation can be justified because, body waves
tend to become vertical as they travel upwards as shown in Figure 2.1. This is true if
the ground surface, the rock surface and the boundaries between different soil
surfaces are nearly horizontal. Otherwise, two/three dimensional analysis is

indispensable [Idriss and Seed (1968)].

24  GOVERNING EQUATION OF MOTION FOR WAVE PROPAGATION

Consider homogeneous soil deposit overlying rigid bedrock subjected to an input
seismic motion at its base. The balance of forces on an infinitesimal soil element of
depth dzis shown in the Figure 2.2. Here 7is the shear stress, pis the density, uis
the displacement in the horizontal direction (x-axis) and i is the resulting horizontal
acceleration due to change in shear stress in that direction. The wave propagation is

considered in the z-direction alone.

Considering the inertia force of the element, equilibrium in the horizontal direction

can be stated as

—piidz—2'+(1'+?)—zdzj=0 2.1
That is,

. du 0T
pi = PBT? =% (2.2)

Eq. (2.2) is the equation for one dimensional ground response analysis. If the soil

stress-strain behaviour is assumed to be represented by Kelvin-Voigt model [Tsai and
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Housner (1970); Kramer (1996)], then the shear stress 7 is related to shear strain and

rate of shear strain as,

T=Gy+ny (2.3)

2
Ju(z.1) strain rate is 7= o u(z.1)
0z 070t

is the viscosity coefficient. Substituting for 7 in Eq. (2.2),
p& — ﬁ — Ga_zu + 77 831/1
o’ oz dz> 9zt

Here, strain isy = , G is the shear modulus and 7

2.4)

> X
T———

pdz ; dZ:
drt

— - 7+—dz
dz

SH wave

edrock

- Input motion at
WW”W“ i e o
V‘rwh L b bedrock level

‘Y
Figure 2.2: Equilibrium of forces acting on an infinitesimal element
Introducing complex shear modulus, G* as G =(1+2i{)G where, { is the

frequency dependent viscous damping ratio andi = J-1. ¢ is related tonas ¢ = “n

2G
[Kramer (1996)], where @ is the loading frequency. Thus the stress-strain relation

may be expressed as
=G y=(1+2i{)Gy (2.5)

By substituting Eq. (2.5) to Eq. (2.2),
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d’u L0y . 0u

Since u(z,7) is a function of both space and time, by separation of variables the

horizontal displacement u(z,) can be expressed as,
u(zt)=u (z)u, (1) =U(z)e" 2.7)

w’p _wp
(1+2i£)G G’

Expressing the complex wave number k, as k* = and substituting

Eq. (2.7) into Eq. (2.6) yields an ordinary differential equation as

d*U(z)

2
Z

+k’U(z2)=0 (2.8)

The solution of the equation may be expressed as

U(z)= Ee™ + Fe™ (2.9)
Hence the horizontal displacement is given by Eq. (2.7) as,

u(z) =Ue™ = Ee'™*™) 4 Fem itk (2.10)

Here E and F are complex constant, which can be determined by boundary conditions.
Physically E represents the transmitted wave (upwards) and F represents reflected

wave (downwards) at each of the layer interfaces.

2.5 OVERVIEW OF MATHEMATICAL METHODS

2.5.1 Theory of multiple reflections — Frequency domain analysis

The analytical solution to the general problem of transmission of elastic waves
through distinctly stratified horizontal layers of linearly elastic material was dealt by
Thomson (1935) and Haskel (1953). Later this approach, well known as theory of

multiple reflections of waves, is extended to geophysical problem associated with
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transmission of seismic waves in stratified geologic medium by Haskel (1960). For
the problems related to wave propagation in soil deposits consisting of multiple
horizontal homogeneous layers, the solution given in the previous section for single
layer can be extended using multi-reflection theory [Roésset and Whitman (1969),
Tsai and Housner (1970), Schnabel et al. (1972), Cherry (1974), Roésset (1977),
Erdik (1987) and others]. Figure 2.3 shows the model for a horizontally multi-layered
soil deposit. The coordinate zis defined independently for each layer measuring from
the top. That is, for the i layer, z; ranges from 0 to H; which is the thickness of the i

layer. The density p;, maximum shear modulus (low strain) G, or maximum shear
wave velocity v and damping factor ¢; are assumed to be constant within each layer.

By accounting for boundary conditions, the theory of multiple reflections gives the
total response at all layers by summing the closed form solution of each layer. The

boundary conditions are

i. The shear stress at ground surface is zero = 7(z, =0,1)=7,=0

ii. The displacement is continuous at the interface of boundary layers

= um(zm = Hm’t) = um+1(Zm+1 = O’ t)

iii. The shear stress is continuous at the interface of boundary layers

= Tm(zm = Hm’t) = Tm+l(Zm+1 = O’I)

These boundary conditions will yield 2n-1 equations to evaluate 2n unknowns those

are corresponding to E |, E, , E.,........ E and F,F, F,........... F, which are the amplitudes

of the upward and downward wave components in each of the layers respectively.
Hence we can obtain all the wave amplitudes when one of the amplitude is given at an

arbitrary layer as an input motion.

The displacement in the m™ layer is obtained using Eq. (2.10) as,

u,(z,,t)=(E, e +F e n)e™ (2.11)
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Figure 2.3: Model ground representing layered soil deposit
The shear stress in the layer is,
t, =G, 7, (z,,t)=iG k (E, e —F ¢ ") (2.12)

If the displacement and shear stress at the top and bottom of the m™ layer are

ufrf)(O,t), Tf,f)(O, t) and uff)(Hm,t), Tfn")(Hm,t) respectively, then from Eq. (2.11) and

Eq. (2.12) we have,

u =(E, +F,)e"
) =iG, k,(E, - F,)e"

(2.13)

b _ ik, H, —ik, H,, \ iot
u,” =(E e +Fe )e

b)) _ ;" ik My _ —ikH,, S0
) =iG k, (E e F.e )e

(2.14)

1.e.,

u’(nf) _ 1 1 Em it
[ liGik, -Gk, || F, [ 21
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M,(f) 3 eik"lH'” e_ik’"H’” Em eiwt (2 16)
| |Gk, —iG ke || F, |

m m m m m m

Eliminating E, and F, from the above equation yields,

i H
”r(:) COS(kam) w ur(rz)
20 (= Gk, 70 (2.17)
" ~G k, sin(k, H,) cos(k,H )| "

Based on the boundary condition, continuity of displacement and shear stresses at the

layer boundary interfaces, we get the following results for m and m+1 layer

R (2.18)
At
Combining, Eq. (2.17) and Eq. (2.18), displacement and shear stresses at the top of

successive layers are related as following

sin(k, H )

® cos(k, H ——m om0
Gk, sin(k H ) costk H )|\

m
m m

The Haskel-Thomson transfer matrix Zm for the m” layer relating the displacements

and stresses of successive layers in terms of layer properties may be defined as,

_ cos(k, H,) %
(4, ]= Gk, (2.20)
-G, k, sin(k, H ) cos(k,H,)

By recursively applying the relation to other layers from layer (m+1) to the top of the

surface layer, we obtain,

m+1

{Zm+1}=[xm}[zm_1][xm_2] ............... [22][1]{2} ean
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For a deposit of total thickness H and consisting of n layers, the displacement and

stresses at the base and surface of the deposit can be established as,

{ZZ}:[&_J[ZH][&_J ............... [22][;11]{2}

A A l(u
ie. {”H}:{_“ _UH 0} (2.22)
z.H 21 A22 TO

where,

[i_‘u f‘n}=[x]=[zn_1][@_2}[zn_3} ............... (A4 2.23)

Ay Ay

[Z] is the transformation matrix between layers / and n. By using the Eq. (2.22), we

can obtain the displacement for all layers, when amplitude at base or at an arbitrary
layer is given. The most useful aspect of multiple reflection theory is that
deconvolution is possible, that is from the observed acceleration record at the surface
we can obtain corresponding bedrock acceleration time history. For this purpose we

use the boundary condition that the shear stress at the ground surface is zero,

i.e.7, =0 in Eq. (2.22). Most of the computer programs such as, SHAKE [Schnabel et
al. (1972)], EERA [Bardet et al. (2000)] etc., for site response analysis based on

theory multiple reflections of waves have been developed using an alternative form of
amplification transfer function. Haskel-Thomson transformation matrix is derived by
incorporating reflected and transmitted wave amplitudes in successive layer interfaces
[Cherry (1974); Roésset (1977)]. Using the boundary conditions of continuity of
stress and displacement at the interface of m and m+1 layers, the transformation

matrix is given by,

1 ik, H, 1 —ik, H
— 1+ o e _ 1_ o e Fmim
E,.|_[20+%) 7% E,
- (2.24)

1 ik, H 1 —ik, H
—(-a )™ —A+a e '
2( ) 2( )
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*

m

—=2 ™" Thus, in this case,

*

where &, is called impedance ratio. It is defined as ¢, =

m+1" m+l1
Haskel-Thomson transfer matrixAm relating the amplitudes of successive layers in

terms of layer properties may be defined as,

1 ik, H 1 —ik,, H
—(+a,)e™  —(1-a,)e "M
2( ) 2( )

L )
Il

(2.25)

_lkm Hl)l
m

1 wn 1
—(1-a )" —(+a )e
2( ) 2( )

The transfer matrix relates the amplitudes of upward and downward propagating
waves between layer m and layer (m+1). By recursively applying the relation to other

layers from layer n to the surface layer, we obtain,

{?}:[&_J[&_zm_g] ............... [Azw]{?}

n

: En_Au Alz E| _rz1E
{FnHAﬂ Azj{ﬂ}_m{ﬁ} =

where, [fq is the transformation matrix between layers / and n. By using the Eq.

(2.26), along with the stress free boundary condition at the surface, we can obtain the

amplitude of displacement for all layers when amplitude at base or at an arbitrary

layer is given. Let u, and u; be the displacements at the top of thei” and j"layers

respectively. From Eq. (2.10) we have,

u(z, =0,0)=(E, + F)e” (2.27)
u,(z; =0,0)=(E, + F,)e" (2.28)
Therefore displacement ratio between " and j” layers is,

u(z, =0,0) (E +F)e” (E +F) _
u,(z; =0,t) (E,+F)e” (E,+F)

T, (@) (2.29)
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where T, (@) is the transfer function (function of frequency) between i and j’h
layers. The transfer function T, (o) defined in Eq. (2.29) for displacements is valid
as well for velocity and acceleration. The absolute value of the transfer function

(‘Ti/ j(a))‘) is defined as the amplification ratio between the corresponding layers.

Since the transfer function does not contain the amplitude F, at the ground surface, by
assuming E, , we can calculate £ and F at all the other layers from Eq. (2.26). Then

the transfer function between any two arbitrary layers may be calculated. When the

amplitude of a response quantity is given at i" layer, the corresponding response

quantity at the j” layer is calculated from Eq. (2.29) using (‘Ti/ j(a))‘). Since the

transfer function is a function of frequency, the frequency of the harmonic wave

influences the magnitude of the transfer function.

However the input motion, such as earthquake accelerogram, is a random function of
time. It consists of several harmonic components of different frequencies. Therefore,
it is essential to decompose the given wave form into harmonic waves in order to
extend this method in seismic analysis. Usually Fast Fourier Transform (FFT) is used
to divide the random accelerogram into its harmonic components. The response
quantities thus obtained using this frequency domain approach, are recomposed into
time histories using inverse Fourier transform (IFFT). Schnabel et al. (1972) used this
procedure of evaluating the ground response in their most popular computer program

SHAKE. SHAKEO91 [Idriss and Sun (1992)] is the later version of SHAKE.

Recently, many other computer programs are developed implementing this procedure.
EERA [Bardet et al. (2000)] which is spread sheet version of SHAKE91, STRATA
[Kottke and Rajthe (2008)], DEEPSOIL [Hashash (2011)] are some of them which
are available as freeware programs and are very much popular equally among
researchers and practicing engineers. In this work either EERA and/or DEEPSOIL are
used for various parametric analyses in frequency domain as well as for the purpose
of comparative studies. The frequency domain equivalent linear analyses carried out
using other programs are synonymously referred to as SHAKE analysis throughout

this thesis.
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2.5.2 Time domain analysis - Lumped parameters idealisation

When nonlinear effect is significant and the problem is essentially two or three
dimensional, a discrete model of the soil profile (finite differences or finite elements)
and true nonlinear analysis in time domain is the recommended procedure. For such
models, the resulting wave propagation equations are solved numerically in the time
domain using direct integration schemes. Equation of motion is integrated using

explicit or implicit direct integration scheme.
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Figure 2.4: Lumped parameters model of the soil deposit [Modified from
Hashash and Park (2001)]

The main advantage of time domain analysis is that the cyclic stress-strain behavior of
soil can be incorporated conveniently by using an appropriate constitutive law. Also

the analysis can be carried out both in terms of total stresses and in terms of effective
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stresses. In case of effective stress analysis, the pore pressure generation and

dissipation during the earthquake is directly taken into account in the formulation.

When a soil deposit is assumed to be made up of horizontal layers with distinctly
different mechanical properties and subjected to vertically propagating shear waves, it
may be analyzed by modeling it as one dimensional as in the theory of multiple
reflections of waves. However in time domain approach, soil deposit is spatially
discretised either using continuum model or using discrete lumped mass approach. In
the latter approach, each layer of the soil deposit is replaced by a lumped mass
connected with spring and dashpot to represent its elastic and energy dissipating
properties. One dimensional analysis in time domain using lumped mass approach is
employed for the purpose of comparison and validation of results of the present

research work.

A simple mechanical model of the soil deposit as shown in Figure 2.4 is representing
a semi-infinite medium with a unit width and an infinite length for which the equation
of motion of multi-degrees of freedom may be formulated using basic theory of

vibration [Clough and Penzien (1993); Chopra (1995)].

The mass of each soil layer is assumed to be concentrated at a point due to equal
contribution from the adjacent layers. That is, the lumped mass corresponding to any
layer is obtained by lumping half the mass of each of the two consecutive layers at
their common boundary with lumped mass corresponding to first layer being,
m, = p,H, /2. In general, lumped mass of i" soil layer is,

_ pH_ +pH,

, , =23, 2.30
: 5 l n (2.30)

m

Here p, and H, are mass density and thickness of the i" layer respectively. The

stiffness coefficients for linear elastic material may be expressed for i” soil layer may

be expressed ask, =G,/ H,, where G, is the average shear modulus of the soil of i"

layer. The viscous damping coefficient c,is similarly expressed for each of the layer

based on appropriate viscous damping coefficient at small strain level [Hashash and
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Park (2002)]. Thus the equation of motion for discrete model can be expressed in

terms of assembled matrices as [Clough and Penzien (1993)],
[M Wi} + [CHa}+ [ K Nu} =—[M][1]d, 2.31)

Here, [M ] is the assembled mass matrix, [K ] is the assembled stiffness matrix and

[C] is the assembled viscous damping matrix. Displacement, velocity and

acceleration vectors relatively with respect to bedrock in the horizontal direction are

respectively represented by{u},{i} & {ii} . The acceleration time historyii,(t), is the

prescribed input motion at the base of the deposit. The order of mass, stiffness and
damping matrices depend on number of layers employed to model the soil deposit.
The mass matrix is diagonal while stiffness and damping matrices are symmetric tri-
diagonal. The equation of motion (Eq. 2.31) can be solved by using direct numerical
integration techniques such as Newmark-$ or Wilson-0 or any other unconditionally

stable methods [Bathe and Wilson (1987)]. The absolute response quantities of any
soil layer may be computed, for example absolute acceleration of the i” layer

isi; + i, . At every time step the computed strains are used along with the material

constitutive model to compute shear stress and to update the stiffness matrix.

This approach has been employed by many researchers and among them the earliest
attempt was by Idriss and Seed (1967, 1968). They used lumped parameters to
represent inertia, stiffness and damping properties of the continuously inhomogeneous
deposit. In their study the deposit is assumed to be overlying rigid bedrock. Later
many computer codes have been developed, e.g., MASH [Martin and Seed (1978)],
DMOD [Matsovic (1993)], TESS [Pyke (2000)], DEEPSOIL [Hashash and Park
(2001); Hashas et al. (2011)], DESRA [Finn et al. (1977)], etc., with several
modifications and improvements in this approach of discrete lumped parameter
idealisation to estimate the response the surface soil deposit. Particularly these
improvements are aimed at modeling nonlinear stress strain behavior of soil. Also to
prescribe input motion at the base of the deposit with appropriately modeling the soil

and rock interface to account for underlying elastic half-space characteristics.
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Apart from modeling the inertia, stiffness and damping properties of the soil deposit
with discrete lumped parameters, continuum discretization is also employed in site
response analysis. Usually, finite difference, finite element method, boundary element
method, etc. are the numerical procedures which have been used in the solution
formulation. The details of these methods and their implementation in site response
analysis are elaborated elsewhere [Kramer (1996), Bardet and Tobita (2001), Stewart
and Kwok (2008), Hashash et al. (2010), Semblat (2011), etc.].

The main concern in use of all the methods of analyses discussed above is about
modeling the damping characteristics of the soil deposit. Frequency independent
hysteretic damping model employed in frequency domain equivalent linear analysis is
deficient of physical explanation [Ching and Glaser (2001)]. On the other hand, many
studies have concluded that Rayleigh damping formulation used in time domain
analysis is ambiguous because it is based on principle of orthogonality of mode
shapes [Chang et al. (2000); Park and Hashash (2004)]. Even though efficient
methods for modeling the energy dissipation characteristics of soil have been
proposed, they are not popular because their implementation is rather mathematically

complex [Inaudi and Kelly (1995); Inaudi and Markis (1996)].

2.6 AMPLIFICATION OF SURFACE RESPONSE

2.6.1 Amplification functions

In solving the problem of site response for prescribed motion at the base of the soil
column, it is essential to satisfy the appropriate boundary conditions particularly at the
interfacial boundary of bedrock and soil column. Contrasting rigidity across the soil-
bedrock boundary controls the magnitude of energy dissipation within the soil

column.

Hence it is important to consider the finite rigidity of the underlying medium. Joyner
and Chen (1975) formulated a solution procedure by considering the bedrock as
elastic. There are two practical situations, causing main difference in how the input

motion is prescribed. In the first case the input motion is prescribed as control motion
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at the rock outcropping (2E,) and compute free soil surface (2E,) and/or within
(bedrock) E +F response of the deposit, referred to as deconvolution. Secondly,
input motion is prescribed as control motion within the deposit often at the interface
of soil base and top of bedrock. In the latter case, the responses are computed at
surface and/or at any point within the deposit. Most often the recorded motions are
available at the outcropping rock surface and are used to estimate the bedrock motion
E +F in a nearby site.

. Rock outcrop motion
Free surface motion ock outcrop motio

> ¢ ° > 2E,

Bedrock m L

[
? ? ? ?Incoming wave field

Figure 2.5: Terminology related to amplification of surface motion with respect
to input bedrock motion

The modification to amplitude and frequency characteristics of the wave as it
propagates through the soil deposit is often represented by amplification function
defined as the ratio of frequency response at the surface of the deposit to input motion
at its base. Amplification function is dependent on the elastic property of the bedrock
on which the soil deposit is based. Often the expression for amplification function is
obtained for two situations depicted in Figure 2.5. Firstly for the case in which

bedrock is assumed to be rigid that is amplification function ( Amp, ) is obtained
disregarding the elastic and damping properties of the bedrock. Thus Amp,is the ratio

of response at the free surface (at z =0) of the deposit to input motion at the soil and
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bedrock interface (at z=D ), that corresponds to absolute value of the transfer

function between surface and base of the deposit, i.e.,

_| 4o

mrface/baae -

Amp, (@) =

(2.32)

H

In terms of Eq. (2.26) noting that because of stress free (TO = 0) boundary condition

at the surface (i.e., F; = E,) and using the elements of the transformation matrix for

displacement amplitudes between surface and base we get,

2_|

Ampl(w)—| A+ A

(2.33)

The other terminology for amplification function is Amp, , associated with the case in

which the bedrock is considered to be elastic. This also corresponds to ratio of free
surface motion at the top of the soil deposit to rock outcrop motion, therefore

Amp, may expressed as,

2E,
2E,

— 2E‘l —
2En+1

1
All

Amp, = (2.34)

The amplification ratio, Amp, represents the ratio of the amplitude of free surface

motion to that of outcropping motion which is representing surface motion in the
absence of soil deposit [Roésset (1977); Towhata (2008)]. The maximum value of

these amplification functions for the case of homogeneous soil deposit of depth H,

damping ratio " and shear velocity v, is given by Roésset (1977) as,

1%
A s
( pl)max wHé’

(2.35)
%

A S £ N—
( mpZ)’"‘”‘ av,+oH{
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In the above equation impedance ratioor=v_p /v _p, , where v and v_are the shear
wave velocities in soil and rock respectively while p, and p, are their respective

(2i-1)7v,

densities. Natural frequency corresponding to i" mode is given by, @, = SH

Relationships for the amplification functions Amp, and Amp, derived using the

transformation matrix involving displacement and shear stresses is as follows.

Using the boundary condition, zero shear stress at the surface (7, =0)in Eq. (2.22)

we get following results,

L f_‘ll”“} (2.36)
T, =AU,

Therefore, from Eq. (2.32) and Eq. (2.36) we get,

Uy |_| 1
All

Amp, (@) = (2.37)

Uy

The displacement and shear stress at the top of elastic bedrock is obtained using Eq.

(2.11) and Eq. (2.12) as,

u,(0,£) = (E, + F.)e } (2.38)

7.(0,t)=iG.k (E —F.)e”

E, and F, are transmitted and reflected wave amplitudes in the rock. G, and k, are

complex shear modulus and wave number of the elastic half-space respectively.

Eliminating F, from Eq. (2.38) and satisfying the condition of continuity of
displacement and stresses at the soil-bedrock interface i.e., u, =u, and 7, =7, by

using Eq. (2.36) yields the following relationship,

iG.ku, +1, =2iG k E e (2.39)
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Substituting Eq. (2.36) in Eq. (2.39) and noting that the shear stress vanishes at the

free surface, surface displacement is given as u, = 2E,e'” . Therefore we get Amp,as,

|25 | Gk,
T|2E,| iGk A, +A,

Amp, (2.40)

It can be verified that for the rigid bedrock condition, wherein G: tends to infinity,

then Eq. (2.40) reduces to case of amplification function Amp, given in Eq. (2.37).

2.6.2 Effect of soil and bedrock impedances

In order to emphasize the effect of impedance ratio at the soil and bedrock interface
on the amplification of response, parametric analysis is carried out using a
hypothetical soil deposit of total thickness 50.0m and constant unit weight equal
to18.5 kN/m’. Shear modulus of the deposit is considered to be linearly proportional

to depth, which results in shear wave velocity to be proportional to square root of

depth. The depth dependent shear wave velocity (v,(z)) has the form,

v.(z2)=v,(1+az)*’ in which v, shear wave value at the free surface and ais the

inhomogeneity parameter which controls the rate of variation of v _(z).

Firstly, the deposit is assumed as homogeneous with shear wave velocity 200 m/s
which is the average value of the inhomogeneous shear wave velocity profile. The
deposit is divided into 25 layers, each of 2.0m thick that result in layer fundamental
frequency of 25 Hz. In the second case the deposit is divided into 30 non-uniform
layers to approximate actual continuous velocity variation. The layer discretization
conforms to minimum fundamental frequency of each of the layer is 25 Hz, except
bottom most layer. The resulting impedance ratio of between successive layers varies
between 0.85 and 1.0. Figure 2.6 shows the shear wave velocity profiles of both cases
considered in this parametric study along with variation of impedance ratio between
the layers. The amplification of input motion at bedrock level to free-surface motion

is computed for both rigid and elastic bedrock cases. For the latter case, the

amplification is computed by varying the impedance ratio(1/ &) between base of the
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deposit and elastic bedrock. The values of 1/a(=v,p, /v, p,) considered in this

analysis are 1, 2, 4 and 16.

The amplification ratios for rigid and flexible bedrock cases, respectively

Amp, and Amp, , are computed from Eq. (2.37 and 2.40). Figure 2.7a shows surface to

bedrock frequency dependent amplification for the case of homogeneous deposit. In
Figure 2.7b the peak amplification values of Figure 2.7a and corresponding
frequencies are plotted. Figures 2.8a and 2.8b respectively show amplification and

peak values of the amplification plots for the case of inhomogeneous soil deposit.
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Figure 2.6: Shear wave velocity profiles considered for the parametric study on
free-surface to bedrock amplification. Grey and red lines represent the velocity
profile of the equivalent homogeneous and layered inhomogeneous deposits.

33



Impedance Ratio
—l/a=1 —1l/a=2
20 1 —— la=4 —— l/a=8
— I/a=16 —— I/ = infinity (Rigid base

Homogeneous deposit

I (a)

Amplification (Surface/Base)

20
Frequency (Hz)
40 Impedance Ratio
—m— /=1 —m—1/a=2
—m—l/a=4 —m—1/a=8
20 1 —w—I/a=16 —mu— I/ = infinity (Rigid base

10 =
8 1 \ Homogeneous deposit
6 . .

Maximum amplification (Surface/base)
N

2 A =
\.
— J
1 ] - - .\-\.\.\::I\
0.8 - T N
a— \m
0.6 T I T T T T T
06 08 1 2 4 6 8 10 20

Frequency (Hz)

Figure 2.7: Amplification of motion between free-surface and bedrock for the
case of a homogeneous deposit (a) frequency dependent amplification (b)
variation of maximum amplification at modal frequencies
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Figure 2.8: Amplification of motion between free-surface and bedrock for the
case of an inhomogeneous deposit (a) frequency dependent amplification (b)
variation of amplification at modal frequencies

Figures 2.7a and 2.8a demonstrate that amplification tends to its maximum value at
the frequencies corresponding to modal frequencies of the deposit. In addition, these

figures reveal the well established facts of wave propagation in layered soil deposit

35



such as, rigid bedrock idealisation leads to larger amplification than for the deposit
overlying a flexible base; impedance ratio at the soil and bedrock interface has
significant influence of the amplification characteristics; the peaks of amplification
ratio reduce with frequencies and almost converge to same value at high frequencies
for different impedance ratios. The average fundamental period of both the deposits
considered here is 1.0 sec (natural frequency = 1 Hz) and damping ratio of 2.5% is

used for the both the deposits.

As it can seen in Figure 2.6 the inhomogeneous deposit is relatively soft near the
surface and stiff towards the base compared to homogeneous deposit. Effect of this
velocity gradient on the amplification trends is evident from Figure 2.7b and 2.8b.
The modal frequencies almost unaltered, particularly after first mode, due to
contrasting impedance ratio. Whereas, there is a clear shift in the fundamental
frequency to lower value when 1/a =1 compared to that for 1/a>1in case of

homogeneous deposit.

On the other hand, in case of inhomogeneous deposit there is an increase in
fundamental frequency whenl/a =1compared to higher values ofl1/¢«. In both the
deposits fundamental and higher frequencies do not alter with increase inl/« .
Though the natural frequencies of individual layers is same (i.e. 25 Hz) in both the
cases, higher frequency responses are filtered more effectively in case of
homogeneous deposit than in inhomogeneous deposit. This phenomenon, probably,
can be attributed to comparatively stiff layers near the base of the inhomogeneous
deposit. In case of the homogeneous deposit, forar =1, the peaks of the amplification
ratio are less than one for all frequencies above fundamental frequency and appears to
be much flatter compared to that of inhomogeneous deposit. Whereas in case of
inhomogeneous deposit the amplification is greater than one up to about 15 Hz which

corresponds to well above fundamental frequency of the deposit.

The above study necessitates the need for clear understanding that is required in
specifying the point of control for input motion and prescribing bedrock properties. In
frequency domain analysis this is not an issue of concern because input motion can be

specified at any point inside the deposit (often termed as within motion) or at free
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surface (outcropping motion). On the other hand in time domain approach always
there is ambiguity associated with specifying input motion and prescribing the
properties of the bedrock. Whenever the input motion is specified as within motion, it
is prescribed at the base of the deposit with bedrock being considered as rigid. For
specifying the motion at outcropping rock surface the elastic properties of the rock is
considered. However, many still opt to convert outcrop motion to within motion using
linear frequency domain approach and specify that converted motion at the base of the
deposit with rigid bedrock idealisation. For e.g., Visone et al. (2010) employed this
procedure to analyze one dimensional soil deposit using time domain finite element
approach in their comparative study. This kind of unsophisticated practice is still in
vogue among many practicing engineers in spite of clear guidelines set out in this
regard by others [e.g. Kowk et al. (2007), Hashash et al. (2010), etc.]. In general,
boundary condition at the base of the deposit can be modeled to accommodate
transmission waves back into half-space by considering elastic properties of the
bedrock or can be idealised as totally reflecting boundary by considering the bedrock
as rigid. Both these have large implication on the predicted surface response for an
input motion at the base of the deposit. Hence, it is important to give primary
attention to appropriately model the soil deposit and accordingly specify the input
motion. In this regard, Kowk et al. (2007) proposed following guidelines based on
detailed parametric investigation. If the input motion is an outcrop motion, then this
motion is applied at the base of the deposit with elastic bedrock boundary condition.
If the input motion required to be used is a within motion, usually vertical array
record at some depth, then the base motion is applied using rigid bedrock boundary

condition.

27 METHODS OF MODELING STRAIN DEPENDENT SOIL
PROPERTIES

Apart from modeling of wave propagation model used in seismic site response
analyses, amplitude and frequency content of computed motions are primarily
controlled by the dynamic properties such as shear modulus and material damping of

the soil deposit. Laboratory tests on soils have revealed that pronounced nonlinear
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behaviour under shear loading conditions is manifested depending upon the type of
soil, initial confining pressure, rate and magnitude of loading, etc. If nonlinear
behaviour of earth materials observed in laboratory is applicable to in-situ soil
properties subject to earthquake loading, then site response calculations must
accommodate these strain dependencies as nonlinear constitutive relations. Seed and
Idriss (1970) and Hardin and Drnevich (1972a) are some of the earliest research
efforts to give the trend of this observable fact through the curves depicting decrease
in shear modulus and increase in material damping with increasing shear strain.
Subsequently many developments have taken place in characterizing the soil
behaviour for dynamic analysis. In general nonlinear and equivalent-linear are the two

approaches used to model strain dependent soil response.

2.7.1 Equivalent linear Method

Seed and Idriss (1970) formulated and proposed an equivalent linear characterization
of dynamic soil properties to model nonlinear behavior of soil and implemented in the
most widely used computer program SHAKE [Schnabel et al. (1972)]. In equivalent-
linear method, the nonlinear variation of soil shear moduli and damping are modeled
as a function of shear strain. The hysteretic stress-strain behavior of soils under
symmetrical cyclic loading is represented by an equivalent modulus and equivalent
damping ratio. The equivalent modulus is corresponding to the secant modulus
through the endpoints of the hysteresis loop and equivalent-linear damping ratio is
proportional to the energy loss from a single cycle of shear deformation. An iterative
procedure, based on linear dynamic analysis, is performed to find the shear modulii

and damping ratios corresponding to the computed shear strains.

The equivalent linear analysis procedure is depicted in Figure 2.9 and flowchart to
implement it in seismic site response analysis is shown in Figure 2.10. As shown in
these figures, initial estimates of the dynamic shear modulus, corresponding to low
strain shear modulii (G, ), and damping ratios are assigned to each of the layer for
the first iteration. For the second and subsequent iterations, shear modulus and

damping ratio values corresponding to an effective strain ( 7,, ) are determined.
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Effective strains for all the layers are calculated as a fraction of the maximum strain
obtained from the previous iteration. These effective shear strains are assumed to be

constant within each of the soil sub-layers for the entire duration of the excitation.

R e ) (¥
1 - 30
0.8 Damping - iteration (i+/) I
| F-———— - m—mm—m———————— - =25
G/G, - iteration (i+2) | L S
< 0.6- I Convergence creteria [—G/G, cuv] L0
D: : [’chf]i = [’chf]i-%-l A %D
G | I Ky = RY,.x | —— Dampingaunve | I g
0.4 | ' 158
4 Damping- iteration (i+2) I 10
G/G - iteration (i+])
0.2 — _ lm}_ _________ |
| | Dapirg- iteraion ()] amemememememem i emem o™ D
| -
0.0 | Lo
Yo ¥ Ve
T T T | T T T | T T T | T T T | T T T | T T T | T T T
1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 10
Shear Strain (log1 Oy)

Figure 2.9: Iterative procedure for equivalent linear analysis

The ratio of equivalent effective shear strain to the calculated maximum strain is
specified as an input data (R) and the same value of R is used for all sub-layers. Idriss
and Sun (1992) proposed an empirical formula to compute the ratio,

asR=(M —1)/10 where M is the magnitude of the earthquake corresponding to input

motion. The effective strains thus computed at the mid-depth of each of the soil layer
from the previous iteration are used to obtain new values of strain-dependent modulus
and damping ratio for the subsequent iteration as shown in Figures 2.9 and 2.10. The
linear response calculation is repeated, new effective strains evaluated, and iterations

performed until the changes in properties are below some tolerable limit (i.e., Ay is
negligible). Generally five to eight iterations are sufficient to achieve convergence.

For the purpose of illustration, a set of strain dependent shear modulus (G /G, )and

damping (¢ in %) curves for sand proposed by Seed and Idriss (1970) is shown in

Figure 2.11.
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40



The equivalent linear method of analysis has been found to provide acceptable results
for many engineering applications. However, a number of limitations of equivalent
linear method have been noted in the literature [Yu et al. (1993), Sugito (1995),
Kausel and Assimaki (2002), Yoshida et al. (2002), etc.]. The inherent limitations of
this formulation is that, the effective uniform shear strain compatible frequency
independent soil properties for each of the layer are assumed to be same for entire
duration of shaking i.e., all hysteresis loops are symmetric about origin of the stress-
strain plot. Hence permanent plastic deformations are not modeled. Any site response
analysis program which employs equivalent linear approach, is capable of total stress
analysis only. Hence it does not perform analysis wherein the stiffness of the soil is
modified at each iteration to account for generated excess pore water pressures i.e.,
progressive loss of strength and large displacements resulting as a consequence of
excess pore water pressure are neglected. Equivalent linear approach does not
consider the maximum shear strength of the soil as one of the parameters. Hence there
is a possibility that, the computed shear stresses may exceed the dynamic shear
strength of the soil particularly when soft soil deposit is subjected to bedrock input
motion of high level acceleration. This aspect can result in over prediction of peak

ground acceleration, particularly the high frequency components.

In spite of these limitations, numerous validation studies have demonstrated the
accuracy of the one dimensional equivalent linear method to model the dynamic
response of various soil profiles for which ground surface and representative rock

input motions are available [Seed et al. (1994); Dobry et al. (1994)].

2.7.2 Nonlinear method

The seismic site response analysis using nonlinear models is accomplished in time
domain using explicit or implicit direct integration of equation of motion at desirable
time steps. Usually, if the methods track the exact form of stress-strain relationship,
then they are referred to as nonlinear methods. A variety of nonlinear soil models are
used, they have been primarily developed from laboratory test results. They range
from relatively simple cyclic stress-strain relationships such as Ramberg-Osgood

model [Streeter et al. (1974)], elasto-plastic model [Richart (1975)], Iwan-type model
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[Joyner and Chen (1975); Taylor and Larkin (1978); Bardet and Tobita (2001)], the
hyperbolic model [Hardin and Drnevich (1972b)], Martin-Devidenkov model [Martin
and Seed (1978, 1982)] etc. to advanced constitutive models incorporating yield

surfaces, hardening laws, and flow rules. Critical assessment of these models may be

found in Finn (1988).

Much attention has been given to plasticity theory for development of constitutive
models of soil response to cyclic loading. Elastic-plastic models of soil behaviour
under cyclic loading based on multi-yield or boundary surface kinematic hardening
plasticity theory are accepted as suitable means of obtaining plastic modulus
progressively. Pande and Zienkiewicz (1982) give general description of the
developments made in elastic-plastic constitutive modeling. Available elastic-plastic
constitutive models are complex and incorporate many calibrating parameters which
are impossible to directly measure in field or laboratory. Nonlinear methods can be
formulated in terms of effective stresses to allow modeling of the generation and
dissipation of excess pore pressure during and after earthquake shaking. In case of
nonlinear effective stress models coupled equations are used to treat two phase soil
system (soil and water phases). Studies on validation of the elastic-plastic models
suggest that the accuracy of predicted response is strongly path dependent [Finn
(1999)]. Hence use of data from static tests for calibrating the elastic-plastic model
parameters may not be adequate for reliable seismic response analysis i.e., these
parameters must be evolved from appropriate cyclic shear tests. As it is very difficult
to obtain undisturbed samples of loose sand in the field, parameters evaluated from
laboratory tests on these samples are unreliable. Hence it is difficult to characterize
the volume change characteristics which controls pore-water pressure development in

saturated loose sands.

Nonlinear models of cyclic behaviour essentially consist of a backbone curve and
rules that describe unloading and reloading behavior, pore-pressure generation, and
shear modulus degradation. Modulus reduction curves coupled with the small strain

modulus (G, ) can be used to construct backbone curves. Unload-reload rules are

usually simulated using Masing’s rule [Hardin and Drnevich (1972b)]. This rule is
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empirically devised in the sense it is based on geometrical manipulation of stress-
strain plot by translation of origin and expansion of vertical and horizontal axes to
model the unloading and reloading curves, starting from every reversal point of a

hysteresis loop.

Above mentioned nonlinear models have certain limitations and advantages in
describing the response of soils to the cyclic loads produced due to earthquakes.
When the advantages provided by the fully nonlinear soil response programs is
weighed against the cost of laboratory testing programs required to obtain modeling
parameters of the constitutive relation, the conclusion is not encouraging to use these
methods for practice. In their review study pertaining to computer programs for
seismic site response analysis, Dickenson et al. (1998) noted that, one dimensional
nonlinear analysis program DESRA-2C [Lee and Finn (1991)] is capable of
conducting effective stress analysis with redistribution and dissipation of pore water
pressure, but the constitutive relationships utilized in DESRA-2C require 18 material
constants for each soil layer. Similarly, another popular program SUMDES
[Arulanandan et al. (2000)] which incorporates plasticity model based on critical state
soil mechanics requires as many as twenty soil parameters for each layer. Hence it
becomes very difficult and expensive to scrutiny the performance of these
sophisticated models through parametric studies, which is an essential exercise to be
performed before using it for practical field problems. With the advent of significant
development in laboratory testing facilities, sophisticated constitutive relationships
can be developed merely by curve fitting process as mentioned by Ishihara (1996),

...... there is no nonlinear model of any kind established on a sound physical basis”.

In the recent years, researchers are strongly advocating nonlinear method of analysis
for predicting seismic site response. Their concern basically originated from observed
laboratory test data which consistently show that stress-strain relationship of soils is
nonlinear and hysteretic. The nonlinear soil response during strong earthquakes is also
observed from field data [Beresnev and Wen (1996)]. The characteristic of the
nonlinearity of site effects is to cause the difference in the amplification factor
between rock and soil site to decrease as the excitation strength increases. However,

the question of how far laboratory studies reflect the field behaviour remains to be
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answered. Main reason for this is attributed to sample disturbance and stress relief,
which are inevitable to some degree when sampler is inserted into the ground and

sample is extracted from the sampler.

2.8 OVERVIEW OF COMPUTER PROGRAMS FOR SITE RESPONSE
ANALYSIS

Circumstances under which geotechnical engineers have to work particularly, in the
field of soil dynamics, are changing rapidly since last five decades. This is primarily
because of development in the field of computer technology and duly cost of
computing has been reduced drastically. Research that has taken place in
understanding the behaviour of soils under cyclic loading, though not without
ambiguities and uncertainties, has resulted in the development of several constitutive
models. As a consequence of these, considerable number of computer programs has
been developed particularly for estimating ground response under seismic loading.
Basically what differentiates these programs are, the numerical schemes used in the
solution of wave equation, the dimensionality of the problem that can be handled, the
constitutive models for stress-strain behaviour and finally type of analysis i.e., total or
effective stress analysis. The requirements of the practicing engineers are also
changing in terms of simplicity in preparation of input files, intended use of these

programs, more reliable outputs for variety of applications, etc.

Varieties of computer programs that can be used to predict the dynamic response of
soil deposits are available. The level of sophistication of numerical and analytical
methods used in these programs varies considerably. Some of the simple programs
require just strain dependent modulus and damping curves whereas more complex
programs require multitude of soil parameters for each soil layer in the model [Lade
(2005)]. In addition, the computer programs that have been developed for modeling
dynamic soil response rely on various simplifications and assumptions in order to
solve equations for wave propagation through soils. The wvariety of analysis
procedures for dynamic soil response ranges from relatively simple linear-elastic total

stress soil models to sophisticate and fully nonlinear effective stress techniques.
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It is more than four decades since the first computer program SHAKE [Schnabel et al.
(1972)] was published and is sustaining its popularity even today in some or the other
form. This computer program uses theory of multiple reflections of waves with
equivalent-linear modeling of soil behaviour to compute the response of a one-
dimensional, horizontally layered visco-elastic system subjected to vertically
propagating shear waves. Exact continuum solution to the wave equation is adopted
with Fast Fourier Transform (FFT) algorithm to transform the transient motions of
earthquake into harmonic waves. The success of SHAKE in explaining the response
of horizontal layered ground during earthquakes led to the computer programs
QUAD-4 [Idriss et al. (1973)], LUSH [Lysmer et al. (1974)] and FLUSH [Lysmer et
al. (1975)] which are generalized extensions of one dimensional equivalent linear

model to two and three dimensions.

In the recent past several computer programs similar to SHAKE are available such as
EERA [Bardet et al. (2000)], WESHAKE [US Army Corps of Engineers], ProShake
[EduPro Civil Systems, Inc.] etc. Essentially all these programs enhance the
computing features particularly with respect to input and output of the program
otherwise the technical qualifications are same as SHAKE. Equivalent linear
approach with multiple reflection theory is coded for site response analysis
considering frequency effects in DYNEQ [Yoshida et al. (2002)] details of which are
discussed in chapter six. Silva and Lee (1987) and Schneider et al. (1993) developed
an alternative solution procedure in which, control motions are represented with
power spectral density functions instead of time histories. The bedrock power
spectrum is propagated through a one-dimensional soil profile as explained in Silva
(1976) and probabilistic estimates of peak time-domain values of shear strain or
acceleration from the power spectrum is obtained using random vibration theory. The
computer program RASCAL [Silva and Lee (1987)] is developed using this procedure
such that the error resulting from transformation of time domain to frequency domain
and vice versa as opted in SHAKE is eliminated. Kottke and Rathje (2008) developed
the computer program STRATA to compute seismic response of one dimensional soil

deposit using equivalent linear approach similar to SHAKE. In addition, STRATA
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has an option to carry out analysis based on random vibration theory (RVT) in which

input motion can be provided in terms of Fourier amplitude spectra.

CHARSOIL [Streeter et al. (1974)] is one of the earliest computer programs which
implemented the truly nonlinear approach for evaluation of ground motion. Ramberg-
Osgood representation of the stress-strain behaviour of soil is incorporated into the
equation of motion and solved the equations by method of characteristics [Papadakis
et al. (1974); Streeter et al. (1998); Douglas et al. (2003)]. Freeware NERA [Bardet
and Tobita (2001)] is the code available for nonlinear seismic response analysis of
layered ground. This program is based on finite difference approach for solution of
equation motion and utilizes Iwan — Mroz model [Joyner and Chen (1975)] to
represent soil behaviour. DESRA-2 [Lee and Finn (1978)] and its later version
DESRA-2C [Lee and Finn (1991)] is the computer program developed for nonlinear
ground response analysis including effective stress formulation. This program is
developed based on lumped mass MDOF system idealization of the soil deposit. The

equation motion is integrated directly using Newmark- £ algorithm [Bathe and Wilson

(1987)]. The stress-strain behaviour of the soil is represented by the hyperbolic
skeleton curve and Masing criterion is used to define loading and unloading behaviour.
Procedure for modeling nonlinear cyclic behavior of soil, effective stress formulation
and their implementation in ground response analysis is detailed in Ishihara and
Towhata (1982). Summary about subsequent developments in the generations of
computer programs and comparative study with regard to these programs can be
found in Liao et al. (2002), Suwal et al. (2014), Bolisetti et al. (2014), etc. Detailed
technical evaluation and review about most popularly used site response analysis
computer programs with regard to merits and demerits, limitations, along with modus
operandi of their usage are given by Kwok et al. (2007), Stewart and Kwok (2008)
and Matasovic and Hashash (2012).

An interesting survey report about usage of computer programs in ground response
analyses is prepared by Kramer and Paulsen (2004). This survey report is an attempt
to access the popularity of site response analysis methods and computer codes used in
geotechnical engineering practice. This report clearly indicates that one dimensional

equivalent method of analysis is the most popular among practicing engineers and
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consultants over the other methods used for ground response analyses. The difficulty
in reliable estimation of the calibrating parameters of nonlinear material models and
effort involved in obtaining other physical characteristics of the soil required for these
methods have made the professionals to abstain from using these techniques in routine
site response analysis. Hence computer programs developed using equivalent linear
analysis in frequency domain continue to be popular among researchers and
practicing engineers for general purpose seismic site characterisation applications
such as validation of advanced method of analysis and large scale microzonation
studies [e.g., Ansal et al. (2001); Pitilakis (2004); Sitharam and Anbazhagan (2008),
Ansal et al. (2010) and others].

29 COMPARISON BETWEEN EQUIVALENT LINEAR AND
NONLINEAR METHODS

In the literature, number studies have been conducted to compare the response of the
soil deposits using both equivalent linear and truly nonlinear methods. Among them
the most important studies reported by Constantopoulos et al. (1973), Joyner and
Chen (1975), Finn et al. (1977), Finn (1978), Yu et al. (1993) etc. are frequently cited
in the literature for the purpose of comparison. Yu et al. (1993) recognized the
existence of specific ranges where nonlinear and linear responses will differ and
predicted these ranges from simple qualitative reasoning as well as from quantitative
analysis. In the low frequency range difference is hardly noticeable because the
wavelength is long; waves are not greatly affected by the subsurface strata. As most
of the energy is concentrated in the intermediate frequency range, the attenuation of
strong motion by hysteretic damping reduces the amplitude relative to weak motion.
Hence they observed that there is a decrease in spectral amplitudes in case of
nonlinear method compared to linear analysis. They have concluded that, transition
from low frequency to intermediate frequency range occurs well below the spectral

corner frequency and also depends on thickness of soil deposit.

Finn et al. (1977) have investigated the validity of the equivalent linear method for
determining the effect of stress-strain nonlinearity of soil deposit on its dynamic

response by analyzing the response of level site of dry sand deposit of 61 m thickness.
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Sinusoidal base motion of wide range of frequencies of acceleration amplitude of
0.065¢g is considered as an input motion. The results are very similar except around
frequency of 1 Hz, where equivalent linear method using SHAKE shows a tendency

toward higher resonant peak.

Finn et al. (1978) compared the acceleration response spectra (5% damping) of
ground motions, for a shallow cohesionless soil deposit of about 15 m thickness,
obtained using SHAKE, DESRA and CHARSOIL. The soil profile used for the
response analyses is shown in Figure 2.12a. The soil is a uniform deposit of saturated
sand with water table being located at a depth of 1.5 m. The distribution of the low
strain shear modulus along the depth of the deposit is shown. The input motion at the
base of the deposit used was derived from first 10 seconds record of N-S acceleration
component of the 1940 El Centro earthquake scaled to 0.1g. Stress-strain curves were
set almost identical between the hyperbolic model used in DESRA and the Ramberg-
Osgood model used in CHARSOIL which correspond to strain dependent modulus
and damping curves employed in the equivalent linear approach of SHAKE. The
acceleration response spectra thus computed is compared in Figure 2.12c. All the
methods show strong response around a period of 0.5 sec, but SHAKE shows much

stronger response.

It may be noted that, in case of SHAKE, there is an increase of about 40% in the
maximum amplification of the pseudo-acceleration above the values computed by
CHARSOIL and DESRA. It should be noted that the predominant period of input
motion and the fundamental period of the soil deposit considered for the analysis
almost match. This stronger response is also reflected in the magnitudes of computed
maximum shear stresses at various depths in the sand deposit as shown in Figure

2.12b.

Several comparative studies have reported this tendency of increased response around
resonance in the analysis based on equivalent linear method. If the fundamental
period of the site, as determined by the strain compatible elastic stiffness after the
final iteration, is close to the predominant period of the input motion then resonance

occurs. This tendency is often termed as pseudo-resonance because it is primarily the
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function of the method adopted i.e., equivalent linear analysis in which analysis is
carried out with constant set of soil properties throughout the duration of motion.
Hence there is time for resonant response to buildup. In case of nonlinear approach, as
the soil stiffness properties are altered at every time step according to the current state
of strain, there is no scope for pseudo-resonance to buildup. The equivalent linear
method overestimates the dynamic response quantities due to pseudo-resonance as

shown in Figures 2.12.

However Yoshida et al. (2002), while proposing frequency dependent equivalent
linear approach, has ruled out pseudo-resonance effect as the cause for overestimated
response quantities rather with an altogether different argument which is explained in
chapter five of this report. Apart from the problem of pseudo-resonance, it has been
observed that the equivalent linear approach underestimates the amplification at high
frequencies. This shortcoming of equivalent linear method has been confirmed by
many comparative studies involving field data as well as theoretical studies based on

nonlinear approaches [Beresnev and Wen (1996); Yu et al. (1993)].

Very recently more rigorous comparative analysis between equivalent linear and truly
nonlinear analysis is carried out and reported by Yoshida (2014). In his study,
different soil profile configurations from more than 200 sites and about 11 strong
motion earthquake data were employed for relative evaluation of site response
analysis procedures. The main conclusions drawn in this elaborate comparative study
quantitatively confirmed many of the earlier reported limitations of the equivalent
linear approach. The response quantities that were used for comparisons include peak
values of acceleration (PGA), velocity (PGV) and displacement (PGD) apart from
their respective response time histories. Also response spectra and Fourier spectra of
surface responses were used for further assessment. Yoshida (2014) finally concluded
that the PGA is overestimated on an average by about 41% while PGV and PGD are
underestimated by about 6% and 20% respectively by EQL approach compared to
nonlinear total stress analysis. However, averages of different spectral quantities
obtained using EQL approach satisfactorily agree with that of truly nonlinear time

domain analysis.
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Figure 2.12: Comparison between responses computed using equivalent linear
and nonlinear analysis [Finn et al. (1978)]. (a) Shear modulus profile of the soil
deposit used in comparative study (b) Maximum shear stress variation along the
depth computed using total stress analyses of SHAKE, DESRA and CHARSOIL
(c) Acceleration response spectra computed using total stress analyses of SHAKE,
DESRA and CHARSOIL
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2.10  COMPARATIVE STUDY OF FREQUENCY AND TIME DOMAIN
ANALYSIS

In this study an example analysis is carried out to verify the conclusions reported with
regard to deficiencies of equivalent linear method of analysis as against nonlinear
time domain analysis. For this purpose inhomogeneous and equivalent homogeneous

soil deposits shown in Figure 2.6 is considered here again.

2.10.1 Input motions

In order to study the influence of frequency characteristics input acceleration time
history on the computed response, two accelerograms with distinctly different
frequency characteristics are selected. These accelerograms correspond to recorded
data of Loma-Prieta earthquake of 1989 and Northridge earthquake of 1994. Details
of these records are shown in Table 2.1 and acceleration time histories are shown in
Figure 2.13. The Fourier amplitude spectra and spectral acceleration plot of these two
input motions EQ1 and EQ2 are shown in Figure 2.14a and 2.14b respectively. Apart
from studying effect of frequency characteristics of input motion, to study effect of
intensity of shaking on the predicted response, the EQ1 and EQ2 are scaled to 0.1g
and 0.4g respectively. Form these figures it is evident that the input motion EQ1 has
energy concentrated over wide range of frequencies compared to that of input motion
EQ2. On the other hand, significant duration of intensive shaking in EQ2 is

comparatively larger than that in EQ1.

Table 2.1: Details of the input motions used for the comparative analyses

Eq. . Maximum | Predominant | Significant
ID Event Station (Code) acceleration period* (s) | duration*(s)
Loma-Prieta Gilroy #1-
EQI1 (1989) Gavilan College 0.357g 0.40 5.00
(CSMIP 47006)
. Lake Hughes
EQ2 No?g;fge #12A (CSMIP 0.257g 0.22 9.80
(1994) 24607)
Port Island (PI)
EQ3 | Kobe (1995) | array recorded at 0.665 0.36 8.01
the depth -83m

* - Ground motion parameters are obtained from SeismoSignal (Ver. 4.0)
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Figure 2.14: Spectral characteristics of input ground motions EQ1 and EQ2
Smoothened Fourier spectra (b) Acceleration response spectra (Damping = 5%)

Equivalent linear analysis is carried out using EERA program and for nonlinear
analysis in time domain DEEPSOIL is employed. DEEPSOIL has option for both
equivalent linear analysis and time domain nonlinear analysis. Hence, for the sake of
convenience, in this study, for some of the analyses DEEPSOIL is used even for
equivalent linear analysis. For equivalent linear analysis the shear strain dependent
modulus and damping properties is modeled using the mean curves proposed for sand
by Seed and Idriss (1970). These curves are shown in Figure 2.11. The comparative
study is carried out only for the case of input motion specified at the base of the

deposit overlying rigid bedrock.
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2.10.2 Linear analysis

In order to assess the efficiency of multiple reflection theory of waves implemented in
frequency domain analysis against time domain analysis, linear analysis is carried out
keeping the shear modulus and damping constant. The constant damping ratio used in
this analysis is 2.5% and unit weight of the soil is taken to be 18.50 kN/m’. Linear
analysis in frequency domain is carried out using EERA code and for time domain
analysis DEEPSOIL soil is employed. The analysis is performed for homogeneous
deposit having constant shear wave velocity of 200 m/sec. As explained earlier, the
50m thick homogeneous deposit is discretised into 25 uniform layers such that
fundamental frequency of these individual layers is set to 25 Hz. For the purpose of
comparing linear frequency and time domain results, the results from the linear
analyses are presented in terms of variation in computed peak acceleration along the
depth, acceleration time history response at the surface of the deposit and response
spectra of the surface acceleration response. However, the amplification result is
already presented in Figure 2.7 for the rigid bedrock case which clearly depicts the

modal frequencies of the deposit.
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Figure 2.15: Comparison of maximum acceleration profile along the depth

computed from frequency and time domain analysis. (a) Input motion EQ1

(Scaled to a;,,,,=0.1g); (b) Input motion EQ1 (Scaled to a,,,,=0.42); (c) Input
motion EQ2 (Scaled to a,,,,=0.1g); (d) Input motion EQ2 (Scaled to a,,,, = 0.42)
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The maximum acceleration profile obtained from both, frequency domain and time
domain analyses, are presented in Figure 2.15. The comparisons are shown for the
cases of EQ1 and EQ2 input motions scaled to 0.1g and 0.4g respectively in Figures
2.15 (a), (b), (c) and (d) respectively. The maximum accelerations computed along the
depth from these two analyses for all the cases considered are in good agreement with

negligibly small differences.

’ (a)

| EQl -Inputa_ =0.4g |

Acceleration (g)
(=)
wn
I

| EQ2-Inputa =04g
'1.0 T I T I T I T I T I T I T | T
7 8 9 10 11 12 13 14 15

| — Time domain - Linear analysis Frequency domain - Linear analysis

Figure 2.16: Comparison of surface acceleration response from frequency and
time domain analysis. (a) Input motion EQ1 (Scaled to a,,,,=0.4g); (b) Input
motion EQ2 (Scaled to a,,,,=0.42)

In Figures 2.16 (a) and (b) acceleration time history responses computed for the cases
of EQ1 and EQ2 input motions respectively are presented for strong motion portion
time window. The result presented Figure 2.16 corresponds to input motions EQ1 and
EQ?2 that are scaled to maximum of 0.4g. Figures 2.17 (a), (b), (c) and (d) compare
response spectra of estimated surface acceleration time histories under input motion
cases EQ1 (auq =0.1g), EQ1 (amax =0.4g), EQ2 (aqr =0.1g) and EQ2 ( apq, = 0.42)
respectively. The time history responses and their response spectra results are
satisfactorily comparable in both the cases of analyses under moderate to high
intensity input motions with different frequency characteristics. Both these figures
confirm the adequacy of frequency domain analysis as compared to time domain

analysis for linear site response analysis of layered soil deposits.
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Figure 2.17: Comparison of acceleration response spectrum (5% damping) of surface acceleration records computed
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Nevertheless, it is should be noted that there are small differences in the results of
frequency domain and time domain methods of analysis. The reasons for differences,
though negligibly small, may be attributed to inherent deficiencies of frequency domain
analysis. Primarily, the error associated with transform of input time history signal to sum
of harmonic signals of distinct amplitudes and frequencies having phase differences using

Fourier transformation.

These harmonic signals with distinct frequencies are used as input motions to get steady
response of the deposit. The steady state responses to these harmonic excitations are also
of the same frequency as that of input signal with obvious phase difference depending on
damping. That is, the computed response is free of transient components of the response
associated with other modal frequencies of the deposit. In time domain analysis the
computed response includes the contribution of transient response components of other
modes [Sarma (1994)] which may contribute to the small difference in computed

responses from these methods of analyses.

The predominant periods of the input motions are 0.4 sec and 0.16 sec for EQ1 and EQ2
motions respectively (Table 2.1). The response spectrum of computed surface motion in
both the cases clearly demonstrates that, the response of the deposit reaches its peak at
predominant periods of the input motions. Apart from this the response spectrum has
another distinct peak at the fundamental period of the soil deposit (1.0 sec) in all the
cases presented in Figure 2.17. Also over all shape of the response spectrum in case of
linear response appears to be scaled up drift of the input motion spectrum except at the

fundamental period of the soil deposit.

The ratio of computed surface peak ground acceleration (PGA) to maximum (a,  )of

max )

EQI and EQ2 input motions is found to be about 2 and 1.7 respectively for both the cases

of a, =0.1g and a,, =0.4g . That is the soil deposit has comparatively higher

max

amplified response under EQI than due to input motion EQ2. However it is interesting to

56



note that response spectrum for EQ2 input motion has larger peak values than that for

EQ1 input motion though computed PGA of the surface response is the other way.

Most important observation of the linear response analysis is that, there are no visible
peaks in the response spectrum of the computed response surface motion under EQI
excitation between predominant period of the input motion and the fundamental period of
the soil deposit. Whereas in case of EQ2 excitation there are two small peaks in the
response spectrum trends within this range of periods. These intermediate peaks which
are distinct characteristics of the spectrum for EQ2 case coincide with the third (1/5 sec)
and second (1/3 sec) modal periods of the deposit. This observation holds good for both
frequency domain and time domain analyses. In conclusion it may be stated that
characteristics of the input motion will greatly influence the response of the deposit

particularly at resonant frequencies.

2.10.3 Equivalent linear and nonlinear analysis

Equivalent linear (EQL) approach is used in frequency domain analysis to approximate
nonlinear cyclic behavior of soil. On the other hand in time domain analysis it is possible
to exactly simulate the experimentally observed dynamic behavior of soil. The direct
integration scheme employed to solve uncoupled equation of motion in time domain
analysis can track strain dependent modulus degradation and hysteretic damping of the
soil response under cyclic loading at every step of time increment. The comparative
analysis carried out here aims to reaffirm adverse implications of EQL analysis on the
computed results of seismic site response analysis which are reported in the literature to
advocate true nonlinear analysis. Here too, the homogeneous and inhomogeneous soil
deposit configurations (Figure 2.6) used in the previous section are considered. The strain
dependent shear modulus and damping properties of the soil corresponding to average
curves of sand proposed by Seed and Idriss (1970), shown in Figure 2.11, is adopted for
both EQL and nonlinear analysis. In this comparative study DEEPSOIL program is
employed to carry out analyses. The R value equal to 0.5 is used to calculate effective

strain in the iterations of equivalent linear analysis.
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Figure 2.18: Comparison of acceleration response spectrum (5% damping) of surface acceleration records computed
using EQL and nonlinear analysis (Homogeneous deposit) (a) Input motion EQ1 (4,,4,=0.1g); (b) Input motion EQ1
(Amax=0.42); (c) Input motion EQ2 (a,,,,=0.1g); (d) Input motion EQ2 (a,,.x = 0.42).
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Figure 2.19: Comparison of acceleration response spectrum (5% damping) of surface acceleration records computed
using EQL and nonlinear analysis (Inhomogeneous deposit) (a) Input motion EQ1 (a,,,,=0.1g); (b) Input motion EQ1
(Amax=0.42); (c) Input motion EQ2 (a,,,,=0.1g); (d) Input motion EQ2 (a,,,, = 0.42).
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Figure 2.20: Comparison of Fourier spectrum of surface acceleration records computed using EQL and nonlinear
analysis (Homogeneous deposit) (a) Input motion EQ1 (a,,,,,=0.12); (b) Input motion EQ1 (@,,,,=0.42); (c) Input motion
EQ2 (@mq,=0.1g); (d) Input motion EQ2 (a4, = 0.42).
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Figure 2.21: Comparison of Fourier spectrum of surface acceleration records computed using EQL and nonlinear
analysis (Inhomogeneous deposit) (a) Input motion EQ1 (a,,,,=0.1g); (b) Input motion EQ1 (@,,,,=0.42); (c) Input
motion EQ2 (a,,4,=0.1g); (d) Input motion EQ2 (@, = 0.42).
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2.10.3.1 Homogeneous soil deposit

Figures 2.18a and 2.18b present the comparison of results of surface acceleration
response spectra for EQL and nonlinear analysis for EQ1 input motion scaled to 0.1g
and 0.4g respectively. Figures 2.18c and 2.18d present these results for the case of
EQ?2 input motion scaled to 0.1g and 0.4g respectively. All the observations made in
case of linear analysis of homogeneous deposit with respect to general trends of the
response spectrum of computed surface motion are equally valid for EQL and
nonlinear analyses. In general, it should be noted that the nonlinearity of the soil has
resulted in attenuation of input motion as the waves propagate to surface in all the
=0.1g.

cases shown in Figure 2.18 except for the case of EQ2 input motion of a

max

Also, attenuation is observed to be large for a,_=0.4g compared toa, =0.1g, it

max max

can be concluded that the nonlinear response will result in decreased peak response
with increase in intensity of input motion. The EQL approach has overestimated
spectral accelerations at all frequencies including and above fundamental frequency of
the soil deposit compared to nonlinear approach. The spectral values of the surface
response of the homogeneous deposit under EQ2 excitation having

a,, =0.1g obtained using EQL method closely agrees with that of nonlinear method.

Apart from decreased amplitudes, shift in modal periods to higher values is evident in
all the cases signifying stiffness degradation due to strain softening behaviour of the

deposit. Comparing shift in modal periods for input motions with a,_=0.1g and

max

a,, =0.4git can be concluded that modal periods get longer as the intensity of input

motion increases. At frequencies above predominant frequency of the input motion,
EQL method has yielded suppressed response compared to nonlinear approach. As
mentioned earlier, this aspect of under prediction of response at higher frequencies by
EQL approach has been reported by many studies [e.g., Finn (1977, 1978); Yu et al.
(1993) etc.]. Compared to linear analysis, EQL analysis shows up with almost same
trend but nonlinear analysis does not have dominant peaks at frequencies other than

fundamental frequency.
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In all the cases there appears to be a unique frequency range at which the spectral
values computed for the response obtained by EQL analysis are lower than that for
nonlinear analysis. The frequency at which the response spectrum of EQL analysis
crosses response spectrum of nonlinear analysis is close to about 7 Hz (at
period = 0.14 sec ) for all the four cases considered in Figure 2.18. Above this
frequency limit the response spectrum becomes horizontal, that represents constant
spectral values almost independent of period. This observation leads to the conclusion
that the response computed at higher frequencies using EQL analysis is independent
of characteristics of the input motion. That is it mainly depends on the mechanical and
geometrical properties of the soil deposit and the model used to represent strain

dependent behaviour of the soil.

2.10.3.2 Inhomogeneous soil deposit

In Figure 2.19 the comparison between the response spectra of computed surface
acceleration response using EQL and nonlinear analyses are presented. The shear
wave velocity profile of the soil deposit considered in this analysis is shown in Figure
2.6. The average shear velocity of the deposit is equal to 200 m/sec which is equal to
shear wave velocity of the homogeneous deposit considered previously. All the four
cases presented in Figure 2.19 have higher spectral values when compared to
respective response spectra of homogeneous deposit. Obviously this is due to
presence of relatively soft layers close to surface of the deposit than that of
homogeneous soil deposit. Though higher response is evident, it should be noted that
the shape of response spectra have not been altered much in case of inhomogeneous
deposit compared to response spectra of the homogeneous deposit. In this case also
the response spectra in the almost same short period region has constant trend as in
the homogeneous deposit case. However it is interesting to note that the spectral
values in the short period range less than about 0.1 sec pertaining to EQL analysis is
over estimated compared to nonlinear analysis. That is generalized conclusions from
some of the earlier studies (for e.g. Figure 2.12) regarding under estimation of spectral

values in high frequency range may not be valid for all cases.
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To understand this discrepancy in high frequency spectral values for homogeneous
and inhomogeneous deposit, Fourier amplitude spectrum of the estimated surface
acceleration response using EQL and nonlinear analysis are compared. Figure 2.20
and Figure 2.21 show the smoothened Fourier spectra of the responses obtained for
homogeneous and inhomogeneous deposits respectively. Notably, in these figures the
EQL analysis shows lower high frequency response than that of nonlinear analysis in
a consistent manner for both homogeneous and inhomogeneous soil deposits when
compared to nonlinear analysis. The frequency range at which this deviating trend of
EQL approach is observed is uniquely consistent for given input motion irrespective

of its scaled peak acceleration magnitude of a,, =0.1g and a,, =0.4g. However,

for EQ1 motion the frequency corresponding to lower EQL response is about 5 Hz,

while for EQ?2 it is about 10 Hz.

Amplification ratio of the responses between surface and input motions are plotted for
homogeneous and inhomogeneous deposit cases in Figure 2.22 and Figure 2.23
respectively. The amplification of surface motion is independent of input motion
characteristics in case of linear response. However, equivalent linear analyses results
evidently show the effect of shear modulus and damping properties on amplification

transfer function.
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Figure 2.22: Amplification ratio for homogeneous deposit computed for the
response obtained using equivalent linear analysis
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Figure 2.23: Amplification ratio for inhomogeneous deposit computed for the
response obtained using equivalent linear analysis

For all the four cases of input motions the amplification of motion at the surface
clearly signifies the effect of input motion characteristics. The amplification decreases
with increase in intensity of input motion. The amplification ratio in case of EQ2
input motion is significantly higher compared to the case of EQ1. This brings out the
effect of frequency characteristics of the input motion on amplification as it was
evident in response spectrum representation also. It is also interesting to note that, the

amplification of deposit under EQ2 input motion with a,  =0.4g almost follow the
amplification under EQ1 witha,, =0.1g . Since the strain dependent properties

incorporated in EQL analysis are same for both input motion cases, EQ1 must have
resulted in stronger strain response in near surface layers compared to EQ2 motion.
Shift of peaks to lower frequencies with increased intensity of motion indicate that the
modal frequencies of the deposit decrease as input motion is stronger. Also, the high

frequency response diminishes with increase in intensity of input motion.

The diminishing high frequency response in EQL analysis in frequency domain
compared to nonlinear analysis in time domain can be attributed mainly to use of
constant values of damping and shear modulus throughout a particular iteration for all

frequencies. High frequency response is associated with small strain magnitude and
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strain level associated with low frequency response is significantly high. However, in
case EQL analysis constant values of modulus and damping corresponding to
effective strain is used; this in turn overestimates low frequency range response and
underestimates high frequency response. Also, there are reasons inherent to nonlinear
analysis in time domain that can significantly contribute to high frequency response

[Sarma (1994); Joyner and Chen (1975)].

2.11 EFFECT OF STRAIN DEPENDENT SHEAR MODULUS AND
DAMPING ON SITE RESPONSE

This study is primarily intended to illustrate the effect of plasticity index, one of the
many soil properties which are of concern to prepare input data for EQL analysis. The
objective of considering the change in plasticity index values is to show the effect of
change in shape of shear modulus and damping curves with strain level on the site
response. There are several soil models available to simulate strain dependent soil
properties, particularly shear modulus and damping. These soil models are typically

expressed in terms of strain versus G/G, , and ¢ curves depending on type of soil

(for ex. clay, sand, gravel etc.) and in-situ state of soil (confining pressure, relative
density, OCR, age, etc.). Hence making an ideal choice regarding representation of
strain dependent soil properties for EQL analysis is important and at the same time a
difficult decision one has to make. This parametric study is an attempt to understand
the consequential effect of improper representation of strain dependent soil properties

on the computed response.

The computed site response using EQL approach significantly depends on shear
modulus and damping ratio properties employed in the analysis. In order to
comprehend this, as an exemplar study, the effect of plasticity on the response of the
soil deposit under seismic excitation is considered. For this purpose, a 60 m deep
homogeneous clay deposit is considered. The constant shear wave velocity of the
deposit is considered to be 200 m/s while its unit weight is assumed to19 kN/m’. The
shear wave velocity and unit weight of the bedrock are taken as 1500 m/s and 22
kN/m’ respectively. The plasticity of the soil deposit is varied with the same values as

that of Vucetic and Dobry (1991) curves, shown in Figure 2.24 and Figure 2.25, such
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that actual values of shear modulus and damping are taken without interpolation. The
equivalent linear analysis is carried out using computer program STRATA [Kottke

and Rathje (2008)].
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Figure 2.24: Strain dependent G/G,,,, curves [Vucetic and Dobry (1991)]
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Figure 2.25: Strain dependent Damping curves [Vucetic and Dobry (1991)]

Apart from studying the effect of plasticity index on the response, the other objective
of this parametric study is to understand the effect of characteristics of input

earthquake motion on the nonlinear response of the soil deposit. It is well established
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that the stiffness degradation with respect to induced shear strain is primarily
controlled by its magnitude. However, strain level induced under cyclic loading is a
function of several other factors apart from intensity of shaking. Influences of some of
these additional factors are not yet quantified conclusively. Among these, influence of
frequency and number of cycles of excitation are not well understood. In case of
seismic excitation wherein frequency and number cycles of loading scenario are very
much complex compared to nature of loading usually employed in a laboratory test.
Hence there are several studies which made efforts to simulate strain dependent shear
modulus and damping properties of soil directly from downhole array records of
strong and weak earthquake events in order to verify and/or validate observations
made in controlled laboratory tests [Kokusho et. al. (1992), Elgamal et. al. (1995),
Zeghal et. al. (1995), Davis and Berrill (1998), etc.]. In the process, possible
refinements were proposed to improve the soil constitutive models to simulate
stiffness degradation upon cyclic loading [Zhou and Gong (2001); Li and Assimaki
(2010); Drosos et al. (2012)]. Nevertheless, directly incorporating these
recommendations in EQL method of analysis is impossible because the soil
nonlinearity under cyclic loading is approximated by secant modulus corresponding to
effective (or average) strain. However, new generation of strain dependent shear
modulus and damping curves have been proposed incorporating influence of number
of cycles and frequency of loading which can be used conveniently in equivalent
linear analysis procedure, for example, Darendeli (2001). The details of such
empirical relations particularly of those which are used in this research work to model
strain dependent shear modulus degradation and damping ratio are detailed in chapter

four of this thesis.

Two earthquake motions are considered as input motions at bedrock level; outcrop
motion recorded at Gilroy site during 1989 Loma Prieta earthquake, i.e. the same
input motion one (EQ1) used in the earlier analysis (Figure 2.13a) and the other one,
designated as EQ3, corresponds to within motion accelerogram recorded at the depth
of 83.0m of Port Island downhole array during 1995 Kobe earthquake is shown in
Figure 2.26. Predominant period, maximum acceleration and significant duration of

the EQ3 record are also tabulated in Table 2.1 along with respective details of EQ1.
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Figure 2.26: Input motions used in the analyses; (a) EQ1; (b) EQ3
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Figure 2.27: Response spectra of the input motions EQ3 and EQ1 used in the
analysis; Kobe earthquake record (EQ3 - a,, =0.665g) and Loma- Prieta

earthquake record (EQ1 -a,,, =0.357g).

69



In order to compare their spectral characteristics, the response spectra of these two
motions are shown in Figure 2.27. The two input motions considered for the analysis
were recorded in different geological conditions and their characteristics are distinctly
different as can be observed from their accelerograms. The peak accelerations
recorded in the above mentioned cases are about 0.36g and 0.66g respectively for
Loma Prieta (EQ1) and Kobe (EQ3) earthquakes. The response spectrum presented in
Figure 2.27 clearly shows the difference in frequency characteristics of these two
earthquakes. The EQ3 motion exhibits high spectral amplitudes in the low frequency
range while EQI record has relatively large spectral amplitudes in the high frequency
ranges. However, the predominant period of these earthquakes motions are relatively

very close and is about0.4s .

Apart from analyzing the deposit under recorded acceleration levels, analyses are also
carried out for the case of input motion corresponding to low level of shaking. For
this purpose both the accelerograms were normalized to give same peaks of about
0.007g. This particular parametric analysis may be helpful in capturing the effect of
frequency and predominant period of the input earthquake motion. Since intensity of
shaking is low, the induced strain level should be moderately low. Hence influence of
frequency content and predominant period of the input motion may dominantly
influence the building up of strain which in turn can influence shear modulus and
damping ratio depending upon the duration of shaking. Significant duration of
shaking of EQ1 and EQ3 motions are 5 and 8 seconds respectively and they are
markedly different. In order to ascertain effect of level of shaking and plasticity
indices of the soil on the computed response, both strong and weak motions are

considered as input motions assuming different values of PI for the deposit soil.

Figure 2.28 shows the computed peak acceleration profile for the cases of scaled
down input motions with varying plasticity indices of the deposit. For low level of
shaking there is always amplification of surface motion irrespective of plasticity index
of the deposit. Also in case of low level of shaking there is localized amplification at
36 m depth in case of Loma Prieta input motion for all values of plasticity indices.
Overall trend of the computed peak acceleration profiles for the cases of input

motions EQ1 and EQ3 are distinctly different.
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Figure 2.28: Peak acceleration profile computed for input motions EQ1 and EQ3

scaled toa,, = 0.007 g for different plasticity index values
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Figure 2.29: Peak acceleration profile due to relatively strong input motions
EQ1(a,,, =0.36g)and EQ3(q,, =0.66g) for different plasticity index values
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For all values of PI, the peak acceleration profile due to EQ1 input motion exhibits
almost similar variation along the depth including for the case of PI = 0 which
corresponds to cohesionless soil. While for EQ3 input motion the peak acceleration
profiles clearly exhibit their dependency on PI value used for the soil. For plasticity
index ranging from O to 15 %, the amplification at 36 m depth is relatively low in case
of Kobe earthquake input motion. This aspect evidently demonstrates that, the
frequency characteristics of earthquake input motion and plasticity index of the
deposit both have direct influence on the amplification and deamplification of waves

at different depths of the deposit.

Figure 2.29 shows computed maximum acceleration profiles under excitation of EQ1
and EQ3 input motions with different maximum levels of acceleration. The maximum
acceleration of EQ1 input motion is 0.36g while that of EQ3 is 0.66g. Under the
excitation of these higher level of shaking there is significantly more deamplification
in peak acceleration response in case of Kobe earthquake (EQ3) compared to Loma
Prieta earthquake (EQ1). This tendency vanishes as the plasticity index of the soil
increases beyond PI = 50% for the case of EQIl input motion and this trend of
deamplification of input motion at the surface persists for all values plasticity indices

used in this analysis with an exception for PI = 200 % in case of EQ3 input motion.

Apart from comparison of maximum accelerations computed at the surface, it is
interesting to note that the predicted maximum acceleration response along the depth
of the soil deposit is entirely different for the strong input motion compared to that of
weak input motion. For PI < 50%, the motion is attenuated at all the depths of the soil

deposit. When PI > 50%, maximum accelerations are more than peak (a, =0.36g)

of the Loma Prieta (EQ1) input motion throughout the entire depth. But in case of
Kobe (EQ3) input motion the waves are attenuated at all depths for all cases of
plasticity indices except for the case of PI equal to 200 %. The ratio of peak values of
surface to bedrock acceleration is about 2.5 and 1.2 for Loma Prieta and Kobe input

motions respectively for the case of PI1 =200%.
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Figure 2.30: Comparison of response spectrum of computed surface motion of a
homogeneous deposit using EQL analysis for different values of plasticity index.

The response spectra of the computed surface acceleration time histories are shown in
Figure 2.30 for all the cases of plasticity indices under both EQ1 and EQ3 input
motions with and without scaling down acceleration time histories.  Spectral

acceleration values of the predicted surface motions for weak input motions are
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almost identical irrespective of plasticity of the soil. However, EQ1 input motion has
yielded marginally higher spectral accelerations compared to EQ3 input motion. This
difference is noticeably higher for PI=0. While in case of strong input motion the
effect of plasticity index on the computed surface response is evident particularly
when plasticity index increases in the range of 0 to 50%. Response spectra of the
surface motion for PI = 100% and PI = 200% is almost indistinguishable. With the
exception of PI = 0%, for all other cases the difference in spectral values in the period
range less than about 1.0s is negligible for EQ1 and EQ3 input motions though the
characteristics of these input motions are distinctly different. But for the period range
greater than 1.0s the response due to EQ3 input motion has resulted in higher spectral
values than that of EQ1 motion for all values of plasticity indices. Obviously, higher
response at lower frequency ranges may be attributed to larger amplitudes of EQ3
accelerogram compared to EQ1 input motion. It should be noted that, though the
predominant period of both the input motions are less than ls (Figure 2.27), the
spectral accelerations of EQ3 input motion in the low frequency range (< 1Hz) is

significantly larger than that of EQ1 motion.

Figure 2.31 shows amplification of input motion as waves traverse from bedrock to
surface. The amplification transfer functions between surface and bedrock
demonstrate that the frequencies corresponding to peaks are almost coinciding for
both the cases of normalized (0.007g) Loma Prieta and Kobe input motions. However
under the excitation of strong input motion, there is significant difference in
amplification values also in shifting of modal frequencies towards lower values.
These plots of amplification transfer functions clearly indicate that as the intensity of
shaking increases generally amplification decreases. Also, shifting of modal
frequencies towards lower values with increase in intensity of shaking is evident from
these figures. It is interesting to note that as the plasticity index increases there is
increase in amplification ratio. This increase in amplification is more pronounced as
intensity of shaking deceases. More interestingly, as plasticity index increases again
we can observe the shifting of modal frequencies towards higher values and

convergence to frequencies that corresponding to low intensity shaking.
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Figure 2.31: Comparison of amplification transfer function between surface and
base of the homogeneous deposit for weak and strong input motions using EQL
analysis for different values of plasticity index.

75



2.12 SUMMARY

In this chapter various methods available to estimate seismic site response are
reviewed with the main objective of appraising their relative merits and demerits
particularly for general purpose applications in engineering practice. In order to
capture nature of deviations in predicted responses using frequency domain linear and
equivalent linear analyses relative to time domain linear and nonlinear analyses,
comparative study is carried out by using input motions of varying amplitude and
frequency content. In order to recognize the importance of accurate characterization
of shear wave velocity both inhomogeneous and equivalent homogeneous deposits are
considered for the parametric studies. Finally, a parametric study is performed in
which the effect of selection of curves used to model strain dependent stiffness
degradation and damping properties of the soil deposit on computed response is
established by considering plasticity index as a parameter. Outcome of these review

and parametric studies are summarized as follows,

In view of nature of geological process leading to formation of soil deposit and
physics of wave propagation, one-dimensional formulation is justifiable. One-
dimensional analysis is dominantly popular among engineers because of its
simplicity. Moreover, the result of one dimensional analysis particularly using
multiple reflection theory is successfully validated with field observations by many
researchers. However, under many circumstances the computed responses, even using
complex numerical procedures and two or three dimensional modeling, fail to

simulate the observed behaviour.

Numerical procedures enumerated in this chapter have their own advantages and
disadvantages particularly with respect to accuracy and computational effort involved.
Therefore more than numerical procedure used, the important aspects which probably
can improve results are precise evaluation of geometrical and mechanical
characteristics particularly proper idealization of inherent inhomogeneity soil deposit

along its depth.
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Equivalent linear technique is used in order to account for nonlinear behaviour of soil
deposit under strong seismic excitation. Equivalent linear analysis makes use of strain
dependent shear modulus and damping curves to update these properties in an
iterative manner. In most of the situations, seismic site response analysis is
accomplished by employing generic curves developed for such purposes and readily
available in literature. However, experience and engineering judgment are key factors
for making appropriate selection of such average curves depending upon site
conditions, most often, assessed based on fewer and routine geotechnical

investigations.

Popularity of computer programs implementing equivalent linear method is evident
primarily because of its ease in implementation and interpretation of results as
compared to true non-linear analysis. Obviously non-linear time domain method has
ability to simulate dynamic response of ground because at every time step mechanical
properties of soil are updated. However complexities involved in obtaining the
realistic parameters of non-linear models makes it unpopular in routine engineering
practice. Hence there is always scope for improvement of equivalent linear method

with clear understanding of its inefficiencies and lacunae.

The comparative study is carried out using one dimensional frequency domain and
time domain linear analyses for low amplitude input motions with distinctly different
frequency characteristics. The results obtained from both these methods of analyses
are in good agreement. The response spectra of the computed surface accelerogram
clearly revealed the effect of frequency content of the input motion on the estimated
peak response. The input motion with wide range of frequency content (EQ2 motion)
tends to excite soil deposit significantly at the frequencies corresponding to its higher
modes. Thus it is important to consider frequency content of the input motion as well
as modal frequencies of the soil deposit in frequency dependent damping formulation

to control discrepancies in the response at resonant frequencies.

The comparative study carried out with respect to equivalent linear and nonlinear
approaches for relative high amplitude input motions has brought out some of the

limitations of equivalent linear analysis. Primarily, the outcome of this study confirms
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well established limitations of equivalent linear analysis, i.e., it underestimates high
frequency response compared to nonlinear analysis and also it results in
overestimation of response at fundamental frequency of the deposit. Both these
discrepancies are probably related to the main drawback of the equivalent linear
analysis: the use of constant values of shear modulus and damping throughout a
particular iteration at all frequencies. Results presented herein indicate that the
frequency range at which underestimation of response sets off appears to be
consistently associated with the frequency content of the input motion and modal

characteristics of the soil deposit.

Based on the parametric study reported here, broadly following observations can be
made. The response of the soil deposit excited by means of two input motions with
distinctly different frequency characteristics but normalized to same relatively low
maximum acceleration is equally sensitive to spectral characteristics of the input
motion and plasticity index of the soil. However, the maximum acceleration profile
appears to be having almost identical kind of variation with different magnitudes of
maximum accelerations depending on plasticity index. Though large difference is
observed in computed peak surface acceleration for different PI values, the response
spectra of these surface motions appears to be having negligible difference in spectral

amplitudes of the response spectrum.

Another important issue of concern with respect to equivalent linear analysis is
computation of effective strain which is required to allocate strain dependent soil
properties compatible with induced strain level for the succeeding iteration. The
procedure which is implemented for this purpose in popular site response analysis
computer programs is indistinct because the effective strain is calculated as the
product of maximum strain and constant value (R) which remains same throughout
the analysis at all layers of the soil deposit irrespective of intensity of shaking induced
at that layer. The guideline recommended to obtain R value, based on magnitude of
the earthquake, is ambiguous. Hence, an alternative rational procedure is proposed in

Chapter 5.
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CHAPTER 3

ANALYSIS OF CONTINUOUSLY INHOMOGENEOUS SOIL
DEPOSITS - ANALYTICAL STUDIES

3.1 INTRODUCTION

The earthquake waves originating from source of disturbance located inside the
earth’s crust propagate through geological medium before reaching the surface. The
geometrical and mechanical characteristics of soil deposit near the surface have
greater influence on wave characteristics than other factors associated with an
earthquake. Recognizing this fact, particularly geotechnical engineers have considered
the problem of predicting the surface motion due to input motion at the bedrock level
as one of the major tasks in the field of study of soil dynamics. As has been discussed
in the previous chapter, most popular method of modeling the ground is
approximating it as stack of uniform visco-elastic layers of infinite lateral extent.
Then seismic response analysis of the soil deposit is carried out due to incident shear
wave at the bedrock level and propagating vertically through the surface layers. Thus
the problem of site response analysis is essentially treated as one-dimensional. In this
chapter some of the analytical studies in which the soil deposit is modeled as
continuously inhomogeneous instead of discrete layers of uniform properties are
reviewed. Basically all these studies consider shear modulus and/or shear wave
velocity to vary continuously assuming all other properties (for e.g. density, damping,

etc.) to remain constant with depth.

In order to meet the requirement of the popular methods of ground response analysis
procedures, it is essential to model the inhomogeneous surface deposit as a layered
system. Hence, whatever be the method of geophysical investigation adopted, finally
the data has to be interpreted so as to yield appropriate layered system. In many
instances even though the soil deposit exhibits almost continuous variation of
stiffness/shear wave velocity along the depth, it is customarily interpreted as layered

deposit for the sake of accommodating it in the analysis procedure. This tendency to



idealize surface deposit as layered system in spite of deposit exhibiting continuous
variation of stiffness and density properties may have serious shortcoming on the
accuracy of results of ground response analysis. Hence, this chapter attempts to study
the appropriateness of approximating the deposit with continuous variation of shear
modulus compared to layered idealisation. Modeling the surface deposit with
continuous variation in soil properties may overcome the problem of pseudo
resonance conditions that prevail due to trapping of waves and the reverberations
inside the layers with contrasting impedances at their boundaries. The comparison is
made between the computed responses of the deposit with both, layered and its

approximated continuous idealizations.

Natural soil deposits are inherently inhomogeneous and anisotropic. Therefore the soil
properties significantly vary in all the directions at every point along the depth. The
distribution of these soil properties at a site depends on heterogeneity of constituent
materials, geological history and its incessant alteration by nature. Among several
other reasons, most importantly, the inhomogeneity of soil is the consequence of
variation of its mechanical and physical properties [Lambe and Whitman (1979);
Wood (2004); Schevenels et al. (2007)]. Inhomogeneity of the soil deposit is the
outcome of several causes; its genesis, mode of sedimentation process, stress history
and in-situ state of stress, microstructures and mineral composition, etc. Usually the
soil properties vary gradually along the depth of sedimentary soil deposits and these
variations are primarily influenced by the mode, material type and rate of sediment
deposition. Inhomogeneity in case of residual soil deposits can be manifested due to
gradual process of weathering, fluctuations in ground water table, temperature
variation, and other environmental conditions. Ageing is also an important time factor
for inducing significant alterations to engineering properties of the soil [Schmertmann
(1991)]. Thus, it is clear that, irrespective of the method of formation both natural and
man made soil deposits usually tend to exhibit continuous variation of soil properties

and deformation characteristics with depth.

Inherent variability of soil properties along the depth is evident in most of the natural
soil deposits. Attempts have been made to satisfactorily model this inherent variability

through statistical analysis. Primarily, these studies are intended to model both
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variability of properties due to heterogeneity and inconsistency in testing procedures
adopted to measure respective soil properties [Terzaghi (1955), Krahn and Fredlund
(1983), Phoon and Kulhawy (1999), Sojka et al. (2001)]. It is well established that
shear modulus at any depth of natural soil deposit is dependent on in-situ confining
stress and over consolidation ratio which are functions of depth [Gibson (1974),
Hardin and Richart (1963), Gazetas (1981) and others]. Residual soil is also found to
exhibit continuous variation with regard to its shear modulus and damping properties
along the depth. Macari and Hoyos (1996) have reported that the variation of these
properties for a particular residual soil deposit considered in their study can be

approximated by an equation of linear trend. They found that at any depth z, in terms

of their magnitudes at the surface (z=0), the shear modulus and damping may be
represented by G(z)=G_,(1+0.15z) and by {(z)={|_, (1—-0.2z) respectively.

Even in case of soil deposits apparently exhibiting layered profile, in some instances,
the properties are observed to be varying gradually at the layer interfaces signifying
presence of smooth transition zone between the layers [Davis (1994, 1995); Pyke et al.

(2007)].

3.2  DISCREPANCIES IN LAYERED DEPOSIT CHARACTERISATION

As earthquake waves propagate through soil media, their amplification or attenuation
is mainly dependent on shear wave velocity and geometrical characteristics of soil
deposit overlying the bedrock. Many kinds of field tests are available in practice to
quantify these characteristics. Some of these procedures can directly measure the
shear wave velocities at different depths of the soil profile, while in other cases it is
obtained employing empirical methods in an indirect manner. Also there are
sophisticated methods of field tests available such as, SASW, Suspension P-S logging,
downhole methods etc., in which continuous profiling of shear wave velocities across
the depth of the soil deposit is possible. However these methods seem to be expensive
and they aren’t considered as part of routine geotechnical investigation. In this regard,
the results of penetration tests such as SPT, SCPT, etc., are more popularly employed
to assess shear wave characteristics of soil deposits using well established empirical

relationships [Ohta and Goto (1978); Mayne and Rix (1995); Kokusho and Yoshida
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(1997); Vijayendra and Prasad (2001); Andrus et al. (2007); Wair et al (2012) and

others]

Geophysical field tests for determination of shear wave velocity of soil deposit are
classified into invasive and non-invasive methods. Boreholes are necessary in the
former method and test is carried out on the surface without making boreholes in the
latter case. These methods are essentially associated with propagation of body and
surface waves respectively. Cross hole, down hole and suspension P-S logging
methods of investigations are the techniques for which boreholes are necessary. Most
popular method among the non-invasive methods is Spectral Analysis of Surface
waves (SASW) wherein test is conducted from the top surface of the soil deposit.
Good account of these methods with respect to their advantages, limitations and latest
developments are given by Lo Presti, et al. (2004), Boore (2006) and references cited

therein.

Results of invasive method of field tests like down hole or cross hole or suspension
logging procedures, are obtained in terms of depth versus travel-time curves for the
arrival of shear waves at the receiver of the borehole. These are then used in
conjunction with bore log details which consists of information about layered
structure of the soil deposit to interpret average shear wave velocity of each of these

layers.

Towhata (1996), with an example, clearly demonstrated this aspect of interpreting the
down hole survey test data to yield layered velocity structure though the soil deposit
exhibits continuous variation of stiffness properties. To substantiate his argument, he
considered travel time-depth data of a downhole survey at Shin-Ohta site in Japan. If
layered structure exists then travel time versus depth plot must consist of as many
piecewise linear segments as the number of layers with distinct shear wave velocity
present in the deposit. The slope of these linear segments would yield shear wave
velocity of each of these layers. Even though travel time-depth plot exhibits nonlinear
continuous variation indicating the continuous variation of shear wave velocity with
depth, as is done routinely, it is approximated with piecewise linear segments to get

approximate average shear wave velocity of idealized layered deposit.
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Thus giving an accurate description of velocity structure (P and S waves) of the soil
deposit formation overlying bedrock is inherently difficult because of peculiarities
associated with wave motion in complex geological media. The procedure involved in
interpretation of data obtained from any of these field tests requires expertise and
thorough experience in analyzing the data. Many times it appears that these
interpretations are subjective [Boore (2003); Brown et al. (2002)]. Also it is
interesting to note that, results interpreted for a particular site from data obtained
using different field tests often do not agree and some times differ to a large extent. In
order to illustrate this aspect, data reported by Boore et al. (2003) is employed. They
have reported the data pertaining to shear wave velocity profile for La Cienega site,
USA using surface to borehole and suspension P-S logging methods. Suspension P-S
logging data have been interpreted to fit complex layering system using the results of
surface to borehole velocity logging results as a guideline. Interpreted shear wave
velocity structure thus obtained from these analyses are shown in Figure 3.1 along
with actual field data of suspension logging method. This figure clearly demonstrates

the inconsistency of final result or judgment involved in interpretations of the results.
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Figure 3.1: Comparison of shear wave velocity profiles interpreted from data
obtained from different field tests at La Cienega site USA [Boore et al. (2003)].
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3.3 PHYSICAL IMPLICATIONS OF LAYERED IDEALIZATIONS

The product of shear wave velocity, density of a layer and the cosine of the angle of
incidence is termed as impedance of that layer. In case of horizontally layered soil
deposits subjected to disturbance of vertically propagating body waves the incidence

angle is considered to be zero.

If v, and v ,are the shear velocities of two successive layers with p,and p,as their
corresponding densities, then the impedance contrast between these layers is
quantified by the ratio of their impedances as, p,v,/ p,v,, . Impedance contrast is
mainly responsible for phenomenon of trapping of seismic waves within the layer

leading to change in wave characteristics including magnitude of amplification of

ground motions.
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Transmitted wave
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Figure 3.2: Phenomenon of wave propagation at the layer interface

Figure 3.2 shows soil deposit of two layers with distinct shear wave velocity and
density properties. As waves propagating in the upward direction reach the interface
of these two layers, part of the wave energy is transmitted and the remaining is
reflected back as indicated the Figure 3.2. The amplitudes of incident, transmitted

and reflected waves are respectively represented by A,, A, and A, [Kramer (1996)].

These are related to one another in case of vertically propagating wave as,
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A =—A

1+ 3.1)
P al'l
F lva !

Here ar=pyv,/ p,v,, 1s the impedance ratio between the two the layers. From Eq.

(3.1) it is clear that, amplitude of incident wave is partially transmitted to overlying

layer depending upon impedance contrast of the adjacent layers.

The energy transmitted across the boundary is also dependent on the impedance ratio
between the layers at that boundary interface. Transmitted and reflected energy
components across a boundary are proportional to square of the corresponding wave
amplitudes [Towhata (2008)]. Thus the transmitted and reflected wave energies

expressed as their ratio with respect to incident wave energy are given by,

b
T‘ﬁ I
(lm)z (3.2)
ER:( —06)2 1
I+ o)

In the above equations E,, E, and E,respectively represent incident, transmitted and

reflected wave energy components. In the field of study of laminated composites the
reflected component of the energy is also termed as impedance mismatch and is
considered to be effective means to represent mismatch in impedance across the layer
boundaries [for e.g. Chen and Chandra (2004)]. Similarly, the transmitted and
reflected stress amplitudes across the interfaces of layers with contrasting impedances

are represented using following relationships [Kramer (1996)].

o = 2a
r—57 Y
1+ (3.3)
s =21
F 1lva !

In order to understand the effect of contrasting impedances of layers on wave

amplitudes, the ratio of amplitudes of reflected waves to that of transmitted waves at
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an interface of two layers is plotted against impedance ratio in Figure 3.3. Also ratio
of reflected to transmitted magnitudes of energy and stress are plotted in the same
figure. This figure clearly indicates that, the nature and magnitude of amplitudes of
transmitted and reflected waves at an interface is affected by impedance ratio. When
o <1, displacement amplitude of the reflected wave is less than one and approaches
0.5 as impedance ratio approaches zero which corresponds to absence of top layer.
Therefore when waves arrive at a free surface, the amplitude of transmitted wave
becomes twice that of incident wave. For the case of impedance ratio far greater than
one, wave reflection is dominant compared to its transmitted counterpart and no wave
is transmitted if the overlying layer 1s infinitely rigid (i.e., A, = Oas,& — ). Hence
incident wave will be reflected back completely. Fora <1, almost all incident wave
energy has to be dissipated in the top layer while significantly large magnitude of
energy is reflected as the top layer is relatively stiffer than the bottom layer.
Consequential effect of these features of energy transmission across the boundary of
layers with contrasting impedances is reproduced in magnitude of stress transmitted to
top layer. In case of ratio of reflected and transmitted stress amplitudes, as the
impedance ratio decreases, the stress response transmitted to top layer decreases and

tends to zero as the wave reaches free surface.
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Figure 3.3: Influence of impedance ratio on transmitted and reflected waves
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More importantly, it should be noted that all the wave energy is transmitted
completely without any reflection as the impedance ratio tends one (& — 1), that is,
ratio of reflected to transmitted wave amplitude tends to zero. The impedance ratio at
any location of the deposit tends to one when the shear wave velocity and density
properties of the soil exhibit continuous variation along its entire depth. If the ground
which is continuously heterogeneous in reality is approximated with an equivalent
layered idealisation, then superficially contrasting impedances between the layers is
induced in the analysis. This kind of layered approximation of continuously

inhomogeneous soil deposit may in turn affect the computed responses significantly.
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Figure 3.4: Effect of equivalent layered idealisation of continuously
inhomogeneous soil deposit on impedance ratio.

Figure 3.4 demonstrates the effect of idealizing a linearly distributed shear wave
velocity profile into an equivalent layered deposit. The linearly varying shear wave

velocity profile as a function of depth (z ), may be expressed in terms of surface shear
wave velocity, v,, and inhomogeneity parameter, a as v (z)=v,,(1+az). Thus
a =0 corresponds to homogeneous layer and as a increases shear wave velocity
variation becomes steeper. In Figure 3.4, the resulting impedance ratio between the
layers of the idealised layered profile is plotted against dimensionless parameter

aH where H is the total depth of the profile. The layer depths are calculated to yield
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constant impedance ratio across all the intended number of layer boundaries. For a

given value of a, as the number of layers employed to approximate the actual profile

decreases the impedance ratio between the layers will shift further away from one
indicating more contrasting impedances between the layers. Whatever may be the
number of layers used in approximation of continuously inhomogeneous deposit ,
there always exist some difference in the impedances across adjacent layers. By
comparing the trends of the curves of 8, 10 and 12 layers, it is evident that there is no
appreciable advantage by simply increasing the number of layers beyond certain limit
because reduction of difference in impedances between layers is not substantial for

any degree of inhomogeneity.

As a consequence of modeling the ground as a layered medium, apart from changes in
the amplitude of transmitted and reflected waves, there is also a possibility of trapping
transmitted waves inside a layer when there is sharp change in impedance ratio
between the layers of relatively greater depths. That is along with difference in layer
impedances, depth of the layers also matters in wave propagation. When wave length
is longer or shorter than the depth of the layer, then the pseudo resonance state may
prevail in that layer. This kind of situation leads to localized resonance condition due
to the reverberation of trapped waves. This may result in, depending on magnitude of
damping associated with that layer, high amplification of ground motions in a certain
frequency range. Hence, apart from impedance ratio, other mechanical and
geometrical properties of the layered system will greatly affect wave transmission

mechanism.

Thus the effect of layered idealisation on the ground response is evident. Hence,
seismic ground response analysis may yield erroneous results in case the surface
deposit is modeled as layered ground when its stiffness and density characteristics are
being continuously varying with depth. Usually in practice, this kind of factitious
method of modeling the deposit is followed in order to meet the requirement of the
popularly adopted method of analysis like one employed in computer program
SHAKE. While using such methods of analysis, uniform shear wave velocity values
for each of the layer must be judiciously assigned in order to avoid fictitious

amplification of waves transmitted through those layers leading to trapping of waves
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resulting in prevalence of pseudo resonance conditions. In such instances, where
surface deposit shows continuous variation of soil stiffness and density properties, it
is important to model it appropriately with closely stacked thin layers or more
preferable develop the physical and mathematical model to account for prevailing

actual continuous variation of deposit characteristics.

Recognizing the fact that, in some instances inhomogeneity of the surface deposit
may be due to continuous variation of stiffness and density rather than distinctly
layered formation, many investigators have attempted to treat the prevailing condition
of inhomogeneity and computed the dynamic response of the deposit subjected to
harmonic base excitation [Ambraseys (1959), Idriss and Seed (1968), Schreyer (1977),
Dobry et al. (1976), etc.]. Some of these analytical studies considered vanishing shear
modulus or shear wave velocity near the surface. However more often non-zero
stiffness at the surface is evident in reality. Some of these studies have attempted to
address this problem with rigorous analytical solutions by modeling the variation of
stiffness and/or shear wave velocity with different inhomogeneity parameters. Among
these, foremost contributions in the recent past include Gazetas (1982), Dakoulas and
Gazetas (1985), Towhata (1996), Zhao (1996), Travasarou and Gazetas (2004),
Rovithis et al (2011), Vrettos (2013) and many others.

3.4 SOIL DEPOSIT WITH CONTINUOUS VARIATION OF STIFFNESS
ALONG THE DEPTH

The wave equation for one-dimensional transverse vibration due to shear wave

propagation in a soil deposit with constant density, o and shear modulus, G(z)

varying continuously along the depth is given by

ou 19 ou
| G() = 34
Y paz( (@) azj G5

Here, u(z,t) represent the horizontal displacement at depth z and time #. Noting that,

v =G/ p, in terms of shear wave velocity, the above equation may be expressed as,
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32 ([ )] a”j (3.5)

Many researchers have treated the problem of computing amplification of ground
motion in a soil deposit with shear wave velocity increasing with depth. The general
trend of depth dependent function defining continuous variation of shear wave

velocity profile is given by
v,(2)=v,,(1+az)" (3.6)

Here, v, is shear wave velocity at z = 0 (surface), a is positive constant representing

rate of heterogeneity and 7 is a positive power in the range 0 <n <1. Correspondingly,
linear variation of shear wave velocity is obtained by settingn =1. In fact, the above
equation is a general form of the particular cases considered earlier by several
researchers. For the case of constant density, either of the two forms of equation of
motion i.e., Eq. (3.4) or Eq. (3.5) can be employed to model the continuously
inhomogeneous trend in terms shear modulus or shear wave velocity respectively. In
case of geotechnical investigation surveys to profile small strain shear modulus using
seismic refraction or cross-hole techniques, propagation path of the signal is generally
assumed to be a straight line in order to calculate travel time of the signal. This may
result in discrepancies in computed results [Woods (1978)]. In recognition of this
tendency, geophysicists use different forms of depth dependent velocity functions as
prerequisite in geophysical investigations to apply correction to computed travel time
data. Some of these popularly employed body wave velocity functions, including the
trend given in Eq. (3.6), representing continuous inhomogeneity of the earth are
presented in Kaufman (1953), Hryeiw (1989) and others. One of the earliest studies
with regard to dynamic response analysis of continuously inhomogeneous soil
deposits is by Ambraseys (1959). He considered the case in which the shear modulus
is assumed to be linearly varying with depth. This corresponds to the case n=0.51n

Eq. (3.6). Later Toki and Cherry (1972 and 1974) considered a more general case of

depth dependent shear modulus variation of the form G(z) = A(G, +z)" in which Ais

the proportionality constant, G, is the shear modulus at z = 0 (surface) and form <1.
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They studied the effect of degree of inhomogeneity on the variations of acceleration
and strain responses along the depth of continuously inhomogeneous deposits.
Schreyer (1977) obtained the solution for the free vibration response characteristics of
the deposit having shear wave velocity profile varying according to Eq. (3.6) for the
case of n=2 and for various values of (include both a <0 & a >0) heterogeneity
factors. Forced vibration response study carried out for the case of exponentially
decaying forcing function applied at the surface of the deposit, Schreyer (1977) has
shown that the soil layer response along its depth is sensitive to both a and the rate of
exponential decay of the forcing function. Compiling the results of the above study,
expressions to compute natural frequencies and corresponding mode shapes are
presented by Gazetas (1982). For this purpose, soil deposits having continuous
variation of shear wave velocity profile as given by Eq. (3.6) with various values of

n(=0.25, 0.5, 2/3 and 1.0) are considered.

3.4.1 Soil deposit with linearly varying shear wave velocity profile (n=1)

If shear wave velocity is assumed to be varying linearly as shown in Fig. 3.5, then

v(z)=v,,+az (3.7)

v, 1s the non-zero shear wave velocity at surface (z=0) and a is the constant
defining rate of change of v with depth. Comparing Eq. (3.6) and Eq. (3.7), it is
evident that the parametera of Eq. (3.7) is represented bya =av . Substituting Eq.

(3.7) in Eq. (3.5) and noting that p is assumed to be constant, results in,

d’u 0 _ o au}
Ze_7 + - 3.8
o’ 9z {(V‘YO a) oz 5-8)

Assuming the solution of the wave equation as, u(z,t)=U(z)exp(iwt) and
substituting in Eq. (3.8) we get,

d*U 2a  dU @’
2 + — + — \2
dz (v, +az) dz (v, +az)

U=0 (3.9)
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Consider a transformation of x =gln(vs0 +az)and substituting in Eq. (3.9) yields an
a

equation with constant coefficients as,

2 —
‘2?4{%)‘2—(]4@:0 (3.10)
X X

Surface

v.(z=0)=v,

Z
vi(2)=v,(1+az)

u(z,0)=U(z)e™

Uniform density = p

vi(z=H)=v ,(1+aH)

Bedrock ]
(shear wave velocity = v,,,density = p, ) '

sr?

Z
Figure 3.5: Soil deposit with linearly varying shear wave velocity profile

Thus the solution of Eq. (3.10) is obtained as,

U(x)= Ale[_;”+ (MJIJ + Aze[_;w_ (MJIJ 3.11)

Substituting back for x, as ngln(vso+c_zz) and further simplification yields the
a

solution of Eq. (3.9),

1 ;,/(a/,)z—(o.sf In(v,o+az)
U(p)=————=7Ae """ +Ae
Jo, +Ez){ 1 ’

The expression for shear stress amplitude 1is obtained by noting

U (2)
0z

W} 312

that, 7(z) = G(z2) ie,
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t(z)=aplv, {A (ix-0.5)e™" A, (i +0.5) e ™"} (3.13)

2 0.5
where, K:{(g) —i:l , i=+~-1, A and A, are constants. Using the boundary
a

condition, shear stress vanishes at the surface in Eq. (3.13), we get,

ix—0.5
= A exp|i2xIn(v, 3.14
A, i p[ ( 30)]iK'+O.5 ( )
Therefore, response at the surface, U (0) =U (z =0) may be expressed as,
Uy ="2£ ¢ (3.15)
%

s0

A explixIn(v,)]
ix+0.5

U(H)=U(z=H)of the deposit is given by

where, C is a new constant, C=

The response at the base

UH)= \/ZVC_ [sin(K‘ln M)+ 2Kk cos(kIn ,u)] (3.16)

where, the ratio of shear wave velocity at the base to that at the surface

isp(=v,, /v,). Also at the base the shear stress is given by,

t(z=H)=7(H) = C_p( j\/_ [2isin(x1n w)] (3.17)

If 7’is the depth coordinate measured downwards from the top of bedrock then the

displacement and shear stress for z”>0.01s given by,

U(2)= o™ 1 g (3.18)

T(Z,) — prvSr _ lp a)V {A/ o7 v, _ A;e—iwz'/vv } (319)
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where, v and p, are shear wave velocity and density of the bedrock. A and A, are

constants. In case of elastic bedrock, compatibility of displacements and stresses at

the soil and bedrock interface yields,

2
1(z=H)=7'( =0)= 2cap(“’j Vo [2sin(xIn )] = p.av,, (A - A;) (3.20a)

a

iC

\Y vsH

These boundary conditions imply,

Uz=H)=U'(Z=0)=>

[sin(Kln M)+ 2K cos(kIn ,u)] =A+A (3.20b)

oa =t

{sin(l(ln,u) {hl)a’b +1}+2K’COS(K‘1H,U)} (3.21)
a

va

where a, = pv, / pv_1is the impedance ratio at the base of the soil deposit with

respect to underlying bedrock. Amplification ratio between input motion and surface
motion for rigid bedrock condition (within motion) is obtained by using Eq. (3.15)

and Eq. (3.16) as,

Uy(2=0) i1 3.22)
U,(z=H) [sin(xng)+2xcos(xn )] '

Amp(l) =

While amplification of surface response with respect to outcrop motion (elastic

bedrock) is obtained from Eq. (3.15) and Eq. (3.21)

U(z=0 2K
Amp,,, = (2=0)_ u (3.23)

24 {sin(l{ln 1) {2“” a, + 1} +2Kcos(xIn ﬂ)}
a

Here Amp, and Amp, are used to represent same terminologies of amplification

ratio as used in the previous chapter. These results are also obtained in slightly
different form by Gazetas (1982), Lojelo and Sano (1988) and Zhao (1996). The
results obtained above are corresponding to the undamped case. To include viscous

damping into analysis, the shear wave velocity v, in the equation may simply be
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replaced withv, =v _/1+2i{ where ¢ is the damping ratio corresponding to viscous
damping. .

For the purpose of demonstrating the effect of surface shear wave velocity on
amplification in ground motion for the case of continuously inhomogeneous deposit,

amplification results for a 40 m thick deposit of constant density and linearly varying
shear wave velocity profile i.e., v (z) =v,, (1+az) is considered. Figure 3.6 shows
the amplifications computed from Eq. 3.22 (Amp,,,) for two deposits with identical
rate of heterogeneity (a =0.2) but with different v , values. That is, in both the cases
the shear wave velocity ratio (¢ =v,, /v,,=7) between base and surface of the

deposit is kept the same. The underlying bedrock is considered to be rigid. Hence,
irrespective of shear wave velocity distribution, for given values of 4 and a the
magnitude of peak amplification is same. However, modal natural frequencies are
affected, because average shear wave velocity corresponding to v ,=40m/s and

80m / s cases considered are 160 m/s and 320 m/s respectively. The results presented

above are obtained for damping value, { =2.5% .
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Figure 3.6: Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile with different surface shear wave velocities.

For the same deposit shown in Figure 3.6, with v ; =80 m/sec but varying a values,

results in a change in surface deposit/bedrock impedance ratio. For the values of
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a=0.1, 0.2, 0.5&0.75 the amplification computed from Eq. (3.22) is plotted in

Figure 3.7. This figure clearly demonstrates the effect of rate of heterogeneity on
amplification characteristics. Obviously, the mean shear velocity of the deposit
increases with increase in value of a for the given magnitude of shear wave velocity
at the surface. Hence, the fundamental frequency of the deposit increases with

increase in the value of a.
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Figure 3.7: Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile with different rates of heterogeneities.
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Figure 3.8: Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile overlying elastic bedrock with different impedances.

In order to study the effect of impedance ratio between base of the deposit and elastic

bedrock, the amplification of surface motion is computed for 30 m thick deposit of
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v, =40 m/sand v, =280 m/s. The bedrock shear wave velocity is varied to give

impedance ratio of 1/, =1, 1.5, 2.0 and 4.0 between base of the soil deposit and

bedrock.
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Figure 3.9: Amplification characteristics for the deposit of linearly increasing
shear wave velocity profile and approximated layered profile.



Figure 3.8 presents these results obtained using Eq. (3.23), from which it can be
concluded that, as the impedance ratio decreases (i.e., as the bedrock become stiffer)
the peak amplification increases, also troughs get shifted upwards. Hence the
flexibility of the bedrock results in increase in radiation damping. These results are

obtained for the damping ratio of { =2.5% . Effect of impedance ratio on modal

frequencies of the deposit is almost negligible. However there is noticeable increase
in fundamental frequency of the deposit as bedrock becomes more flexible which is

significant for the case of ¢, =1. More important observation to be noted is that the

attenuation at troughs of the amplification function decrease at high frequencies with

decrease in ¢, value.

Figure 3.9 demonstrates the effect of idealizing an inhomogeneous deposit with an
equivalent layered profile. For this purpose various configurations of layered profiles
are considered as substitutes for the linearly distributed shear wave velocity profile.
The thickness of layers for each of these different configurations is calculated keeping
the impedance ratio constant between successive layers. Therefore as the number of
discrete layers employed to approximate continuous variation of shear wave velocity
increases the impedance ratio between layers approach one. However, as
demonstrated earlier impedance ratio never becomes one irrespective any number of
layers that are used. From this figure it is clear that when 10 layers are used to
represent actual profile the amplification almost converges to exact analytical solution,
however this is valid for the type and degree of inhomogeneity considered here. Also
as the number of layers decreases the impedance contrast is increased between the
layers which in turn significantly affect the high frequency response with

underestimation of peak values.

3.4.2 Continuous variation of shear wave velocity with n<landn>1 (n#1)

In the study presented above only the case of soil deposits with shear wave velocity
varying linearly along the depth is considered. In order to study the effect of variation
of shear wave velocity as a nonlinear function of depth of the deposit on amplification

characteristics of the surface motion, some of the recent literature in this regard has
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been reviewed. These studies mainly differ in type and kind of depth dependent
function, defining the variation of shear wave velocity or shear modulus of the soil
deposit, considered for the analysis. These studies cover most of the real situations of
continuously inhomogeneous ground encountered in practice. Most important among
these studies include Towhata (1996), Hadid and Afra (2000), Afra and Pecker (2002),
Davis and Hunt (1994), Davis (1995), Rovithis et al. (2011) and Vrettos (2013).
These analytical studies may be considered as general in the sense; the results are
presented for arbitrary values of the parameters that define the degree of
inhomogeneity unlike the study presented in the previous section wherein the

solutions were obtained for particular case of inhomogeneity parameters.

Towhata (1996) observed that routine analysis with treatment of inhomogeneity of the
soil deposit using approximated layered idealisation with distinct uniform layer
properties resulted in contradictory response values. That is, the peak ground
acceleration values computed from routine analysis yielded lower values for relatively
soft deposits when compared with that obtained for stiffer soil deposits. Hence,
Towhata (1996) dealt the case of continuous variation of shear modulus property in a

manner described by the following relation,
G(2)=A(z+2z)" (3.24)

Here Ais a constant parameter which controls the magnitude of the shear modulus
of G(z) , while the parameter z,governs the rate of inhomogeneity and the power m

stands for type of inhomogeneity which is a function physical and mechanical

characteristics of the soil deposit.
In fact one can establish equivalence between Eq. (3.6) and Eq. (3.24) by virtue of the
relationshipv, (z) =(G(z) / ,0)0'5 where pis assumed to be constant. The relationship

between the parameters of Equations (3.6) and (3.24) arev,, =+ Az’ / P, n=m/2 and

a=z,' . However, most importantly, the limitation of Eq. (3.6) is v,, #0. Hence it is
convenient to use Eq. (3.24) whenever it is required to consider v, =0or low shear

wave velocity value near the surface. Towhata (1996) presented the relationship for
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displacement as a function of depth and results presented are limited to amplification
of surface motion with respect to outcropping rock motion for undamped case. The
amplification functions derived based on the procedure of Towhata (1996) are
presented below. Herein, this particular study is extended to include amplification
with respect to rigid bedrock motion and damped response. Relationships for both the

amplification functions, Amp, and Amp,, , are derived and presented. Figure 3.10

shows the inhomogeneous soil deposit considered in the analysis.

V5o :\]Go/p

> u

GO =A(z+z,)"

Mass density = p

Bedrock
Rigid (v, = ) or
Elastic (v, = )

Mass density p,

Figure 3.10: Details of the continuously inhomogeneous soil deposit considered in
the analysis

Substituting Eq. (3.24) in Eq. (3.4) and assuming mass density of the soil deposit as

constant we get,

d'u 0 ou
—=—1A " — 3.25
Po az{ (z+2) az} (3.25)

Seeking harmonic solution of the equation, the displacement and shear stress in

horizontal direction may be expressed as
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u(z,1)=U(z)e" (3.26)
7(z,1) =T(2)e” (3.27)
Amplitudes of displacement and shear stress U (z) and T(z) respectively are related as,

U (z)
0z

T(2) =G(2) (3.28)

Finally, Equations (3.25), (3.26), (3.27) and (3.28) yields [Towhata (1996)],

nwd’T  par’
(20+2)" 5 +'OTT=0 (3.29)

The solution of this equation in terms Bessel’s functions is given by Towhata (1996)
for the casesO0<m <2, m=2and m>2. However, for m=2 that corresponds to the
shear wave velocity profile with linear variation, the amplification results have been
presented earlier (Section 3.4.1). In the analysis carried out by Towhata (1996) the
bedrock underlying the soil deposit is considered to be elastic and the amplification

results presented therein was limited to v, =v, . Also the results presented by

Towhata (1996) were limited to undamped response of the deposit. For the purpose of
carrying out more general parametric study including effect of variation of impedance
at the interface of soil and bedrock the essential amplification functions have been

derived including effect of damping in the following sections.
3421Casel: O0<m <2

The solution of Eq. (3.29) for shear stress and displacement are,

T(2)=(z,+2)" {AJ, (£)+AY, (&)}
(3.30)

U(z) :_(Z(,)O%)_'{{AIJV (§)+A2Yv (f)}_z_Tmf{Al‘]w-l (§)+A2Yv+1 (f)}}
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Here A, and A, are constants. Bessel functions of first and second kinds of order v are
respectively represented by J (®)andY,(®). The order of the Bessel function,V and

transformed depth coordinate, £ are given by the following

v=1/2—m)

E2vpa? A (z, + z)(l_%)

Using the boundary condition, at z =0 shear stress is zero in Eq. (3.30), the

(3.31)

expression for displacement amplitude is obtained as,

( Z +z )—0.5

A 2—m
U<z>:3—2{n(fo) 562", ()
paw { 2 } (3.32)

A
J, (&)

Therefore displacement amplitude at z =0and at z = H are obtained using Eq. (3.32)

Here A, is a new constant given by A, = and & is the value of & atz=0.

Umy/uf_m (3.33)

TPW" || 2,

A3 . 0.5 2
U(H): (Z 5 ) |:}/v (fo){-]v (fH)_TmeJVH(fH)}

(3.34)
7_
_JV (fo){yv (é:H )_Tméqywa (é:H )}}

The shear stress amplitude at z = H obtained from Eq. (3.30) is,
T(H) = A, (Zo +H)0-5 {_Yv (fo)‘]v (fH)-i_ J, (fO)Yv (é:H )} (3.35)

&, is the value of & at z=H . Assuming bedrock underlying the soil deposit as rigid

(within motion) the amplification of input motion with respect to ground surface

motion is given by ratio of U,andU, i.e.,

102



[Yv(e%){fv(éH)—Z_TméHJm(éH )} (3.36)

@62 x|

For the case of elastic bedrock (outcrop motion), if the z'is the depth coordinate
measured from the top of bedrock (Figure 3.10) then the displacement and shear stress
for z/>0.0is given by Eq. (3.18) and Eq. (3.19) respectively. Satisfying the boundary
condition with respect to continuity of displacement and shear stress at soil and

bedrock interface, we get,

[ﬁ{n(fo){JV(fH)—z‘TmeJm(fH )}

~J, (50){YV (f”)_z_TmfﬂYm(fﬂ )H (3.37)

+@[Yv (é:H)JV (fO)_Yv (é:o)‘]v (fH )]]

1awp.v,,
Gazetas (1982) dealt this case (0 <m < 2) adopting the depth dependent shear wave
velocity function in the form given by Eq. (3.6) and presented results for limited cases
of n values. While Rovithis et al. (2011) presented the results for the more general
case in the sense that forO<n <1. However they extended their study to deposit
consisting of two layers with continuously inhomogeneous top layer being overlying a
homogeneous deposit. This particular case will be discussed later in this chapter. The
amplification function given by them is limited to ratio between motions at surface

and rigid bedrock at the base.
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3.4.2.2 Case 2: m >2

Following the same procedure as dealt above the displacement amplitude along the

depth of the deposit is obtained for m > 2 as,

\/Ew(ZA:_ Z)0_5<m—1) [Y_v (=&)L (=6)-T., (=&)Y, (—f)] (3.38)

U(z)=

Above equation is used to compute surface (z =0) and base (z = H ) displacement as

A (m—2)

U0)=———= (3.39)
O= T

U =0 = [ () ()= () ()]0

Amplification ratio for the case m > 2 can be obtained for input motion prescribed at

the top of rigid bedrock as

_m—2 ’A(ZO-FH)m_l B B _ B -1
Amp(l) - T ,OZO [Y—v (_§O)Jl—v( éH) J—v( §O)Yl—v( fH ):I (341)

The amplification of input motion prescribed at the top of outcropping rock surface

with respect to surface motion of the soil deposit is given by

Ampm 7Z'pma)2_ 2Z
L [V, (&) (<€)~ (&)Y ()]
\/Aa)zp(zo +H) (3.42)
(0 +H) :
+W[‘]—v (=&)Y, (=€) Y., (=&) ., (=&, )]
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The amplification functions presented above are limited to undamped response only.

As explained earlier in section 3.4.1, in order to account for equivalent viscous
damping of the soil the complex shear modulus (G™) or complex shear wave velocity
(v;) can be substituted for G and v, respectively [Kramer (1996)]. That is, for the case
of viscous damping, G* =G (1+2i{)or v =v,\/l+2i{ where { is equivalent viscous

damping ratio.

3.4.3 Mode shapes
343.1Casel: O0<m<2

Natural frequencies of the continuously inhomogeneous deposit having shear modulus
distribution given by Eq. (3.24), for the case of 0 < m < 2, can be extracted using Eq.
3.34. Imposing the condition of zero displacement at the base under the state of free

vibration we get the characteristic equation,

RGN 2 (625 60 (6} 0, )1 (6) =25 60 (6 | =0 49

Solving the above equation we get the i” root &’ which in turn yields corresponding
natural frequency @), of the soil deposit as,
_ &l 2-m)

= 3.44
(e H) (344

The corresponding free vibration displacement function (U m(z))along the depth is

obtained by substituting Eq. 3.44 in Eq. 3.32. Normalizing this depth dependent

displacement with respect to surface displacement results in dimensionless mode

shape, d"(z) as follows,

hen_ T ) (i) ) 27M 4 (i)
P zﬁz{YV( ; ){Jv(f )= (é )}
(3.45)

(e nlen)-2 e 6]
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3.4.3.2 Case 2: m >2

The characteristic equation for the case of m > 2, is obtained using Eq. 3.40, as

Y—v (_50)‘]1—\/ (_é:H)_J—v (_é:o)Yl—v (_fH)ZO (3.46)

After solving the above equation for &, the corresponding frequencies can be

calculated using Eq. (3.44). Finally the mode shape corresponding to that particular
modal frequency is obtained using Eq. (3.44) and Eq. (3.38) as follows,

@ Pz v
m—1
m—=2\A(z,+H) (3.47)

o)) )

q)(i)(z) —

3.4.4 Parametric study on effect of inhomogeneity parameters

To compute amplification for different degrees of inhomogeneities of the soil deposit
with respect to both rigid and elastic bedrock cases using Equations (3.36, 3.37, 3.41
and 3.42) MATLAB® code is developed. Using this program some of the the
examples of the parametric study presented in Towhata (1996) are reproduced. In the

first case the deposit 30.0 m thick with surface shear wave velocity v, equal to 100

m/s is considered. For this relatively stiff deposit overlying elastic base, the

amplification function (Amp,,,) is obtained for m =1and m =4 with impedance ratio
of one between base of the deposit and bedrock (i.e.v, =v_, =300 m/s). While in

the second case, v, =10 m/s with v =v_, =300 m/s are used to represent the

deposit which is relatively soft near the surface. The results presented in Figure 3.11
are for undamped case with base to bedrock impedance ratio of one. The shear wave
velocity profiles corresponding to all the four cases considered here are also shown.
This figure clearly demonstrates the effect of type and degree of inhomogeneity on
the stiffness of the deposit near the surface. As the value of exponent of the shear

wave velocity or shear modulus variation function increases, the profile characterizes
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reduction in stiffness near surface, hence greatly affects the surface amplification of

base input motion.

Depth ()

] ——m=40

,_‘
(9}
el by by by b

0 5 10 15 20
12 30 T T T

I
150 300
v, () (ms)

(=]

o0

—m=1, A =4800, z0=3.75
n=0.5, v, = 100 nvss, v.,= 300 nv's)
m=4, 1 =0.0064, z =41.0
n=2.0, v, = 100 nvss, v.,= 300 nv's)
m=1, 4 =5400, z =0.033

n=0.5, v, = 10 m/s, v,= 300 nv's)

T m=4, A =0.089, ZU=6.70
10 15 20 (=2.0,v =10m/s, v _=300m)
Frequency (Hz)

Amplification (Surface/outcrop)

N

o

(e)
(91

Figure 3.11: Amplification of inhomogeneous soil deposit for different values of
m and vy Results reproduced for the examples taken from Towhata (1996)

In the first case (v,, =100 m/s) the effect of variation in the value of mis almost
insignificant. Particularly at high frequencies the amplification converges to a
constant value of about 1.7 irrespective of type of inhomogeneity. In case of relatively
soft deposit (v, =10 m/s ) there appears to be significant effect of type of
inhomogeneity. In case of m =4 the surface motion is amplified manifold in the lower
frequency range compared to m =1and in the high frequency range the amplification
converges to constant value of about 5.5. Hence it can be concluded that in the lower

frequency range the amplification depends on type of inhomogeneity.

It is interesting to note that, the amplification is almost converging to a unique value

for both the cases with different values of m in the high frequency range. In fact it

can be shown that both Eq. (3.37) and Eq. (3.42) converge to+/v,, /v,, for all values
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of m and for large values of @. In the first case /v, /v,, = /3 and in the second case

Var Voo = /30 which are close to the values in the Figure 3.11 at high frequency

ranges. In order investigate this aspect the amplification at surface are computed for

different values of m.

12 .
1 (a) vsH/vs0=3O —m=1.00 —m=1.25
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Figure 3.12: Amplification of inhomogeneous soil deposit forv , /v, =30and
different values of m

Figure 3.12(a) and 3.12(b) show the effect of m on amplification function for
m<2and m > 2respectively. All the curves shown in these figures are obtained for

vo=10m/s and v, =v, =300 m/s . As stated above, it is evident that high

frequency range amplification is almost same (of about,/v, /v, ) for all values of m.

However for the case of m <2the convergence to this unique value is at much higher

values of frequencies compared tom =2 . Also for the case of m =2, right from first
peak the amplification function is oscillating about the value equal to /v, /v,, while

for m < 2 this happens at higher mode peaks. Further, Figure 3.13(a) presents the

108



amplification trends for different values of ratio of base to surface shear wave

velocities v, /v,, (#) with m=1and H =30 m.

Table 3.1: Fundamental frequencies of the soil deposit considered for parametric
study presented in Figure 3.13.

vy /v, | Case(a) v,,=10 m/s | Case (b) v, =100 m/s
( ,u) Vo Frequency (Hz) Vo Frequency (Hz)
30 300 1.916 3000 19.16
20 200 1.278 2000 12.78
15 150 0.960 1500 9.60
10 100 0.643 1000 6.43
5 50 0.328 500 3.28
2 20 0.143 200 1.43
6 6
@ v, =10m/s -
5 * -5
4 -4

Amplification (surface/Bedrock)

1 T | T | T | T | T | T 1
0 10 20 30 40 50 60
5 5
§ _—,U=30 —,U=20 'uzvsH/VSO o
é u=15 ——u=10
& 4 wu=5 —u=2 -4
S ] i
&
s 34 (b v, =100m/s 3
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Figure 3.13: Amplification of inhomogeneous soil deposit for =1and different
values of 12 (v, /v,)); (@) v, =10 m/s (b)v,, =100 m/s.
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Two cases of surface shear wave velocities v, =10 m/sandv =100 m/s have been
considered for this parametric study. Figure 3.13(a) presents the results for
v, =10 m/s while Figure 3.13(b) presents the results for v, =100 m/s . The

fundamental frequencies of the soil deposit with different inhomogeneity parameters
considered here are calculated using the characteristic Eq. (3.43). These frequencies

are presented in Table 3.1. For given values of x and m the frequency is directly
proportional tov  orv, . Thus increase in v, or v, proportionately increases the
fundamental frequency. Thus, ten folds increase in both v, and v, in Case (b)

compared to Case (a) has resulted in proportionate increase in fundamental frequency
of the respective soil deposit. Obviously, frequencies corresponding to higher modes

are also shifted in the same manner.

For the results presented above the analyses are carried out to obtain amplification
function assuming impedance ratio between base of the deposit and bedrock as one. In
the following sections results are presented for the cases of varying impedance ratio
and also for the case of soil deposit overlying rigid bedrock. The shear wave velocity
ratio between base and surface of the soil deposit (v, /v ) and exponent value m (or
n) control the trend of the continuous variation of shear modulus (or shear wave
velocity) profile. As v, /v  increases the deposit represent larger inhomogeneity,

lower value of m combined with relatively largev, /v, values will result in sharp

transition of shear wave velocity near the surface.

In order to study the effect of surface shear wave velocity on the response of

continuously inhomogeneous deposit overlying rigid bed rock, the analysis is carried

out for constant values of v, /v, =5and m=0.4(n=0.20) with 5% of damping ratio

and varying surface shear wave velocity (v, )of the profile. The four different values

of surface shear wave velocities considered are 50 m/s, 100 m/s, 200 m/s and 400 m/s.
The shear wave velocity profiles considered in this parametric study are shown in

Figure 3.14a. The amplification transfer function obtained for these cases is shown in

Figure 3.14b.
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Figure 3.14a: Profiles with continuous variation of shear wave velocity,
vy /v, =5 & m=0.4(n=0.20)for different surface shear wave velocities
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Figure 3.14b: Effect of surface velocity on amplification of inhomogeneous
deposit overlying rigid bedrock

It can be observed that for constant values of inhomogeneity parameters i.e., surface
to base shear wave velocity ratio and exponent value (v, /v,,=5.0 & m=0.40) the

amplification at all modes remains same irrespective of surface shear wave velocity

(v,,) value. However, the variation in periods corresponding to these peak values of

amplification transfer function is considerable for different surface shear wave
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velocities. That is, the modal frequency characteristic of the deposit is sensitive to
surface shear wave velocity of the deposit with all other factors of the inhomogeneous
deposit being constant. As v increases, the modal frequencies increase while
amplifications with respect to these frequencies remain almost unaffected. Also, ratio
between successive modal frequencies increase as the soil becomes stiffer as

v,,increase. Thus it can be concluded that the amplification characteristics are depend

onv, /v,, m andv , in case of an inhomogeneous deposit.

An analysis is also carried out for the values of m = 0.02, 0.40, 1.20, 2.0 and 4.0 (i.e. n
= 0.01, 0.20, 0.60, 1.0 and 2.0). The values of v, /v  considered in this analysis are

1.25, 2.0, 4.0 and 20 with v equal to 200 m/s. Figure 3.15 shows the effect of

inhomogeneity parameters on the amplification of surface motion due to input motion

prescribed at the top of rigid bedrock.

The effect of exponent value, m , of the inhomogeneity function on the amplification
peaks is almost insignificant when the velocity ratio is close to one i.e., which
correspond to more or less homogeneous deposit. But the amplification peaks are well
separated and shifted to higher frequencies as velocity ratio increases because the
modal frequencies increase with increase in v, /v,, value. Thus it can be concluded
that, modal characteristics of the deposit is very much sensitive to shear wave velocity

ratio v, /v, particularly for larger values compared to small values of v, /v, .

For m<1 the difference in peak amplification corresponding to fundamental

frequency is noticeable for all cases of v, /v considered. On the other hand

for m > 1amplification peaks corresponding to fundamental frequency is almost same

except for very large value of v, /v, in which case the peak amplification is

marginally enhanced form =1. For all the results presented in this figure damping
ratio of 5% is used. For the soil deposit on rigid bedrock the effect of inhomogeneity
appears to be relatively inconsequential as shown in both Figure 3.14b and Figure
3.15 when compared to deposit on elastic base as evident from Figures 3.11, 3.12 and

3.13.
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Figure 3.15: Effect of inhomogeneity parameters on amplification of
inhomogeneous deposit overlying rigid bedrock.
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Figure 3.16: Effect of impedance ratio between base of the soil deposit and
bedrock on amplification of inhomogeneous deposit overlying elastic bedrock for
different damping ratios of the soil (v, =100m/s,yu=4&m=0.4).
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Figure 3.16 shows the effect of contrasting impedances of soil and the elastic bedrock
on the amplification characteristics. For an undamped case, the amplification

increases with frequency for all values of impedance ratios, ¢, at the base with

respect to bedrock, as observed earlier. The rate of increase in amplification peak
values decreases with increase in frequency and this decrease in rate of increase in
peak values appears to be considerable with increase in impedance ratio. On the other
hand as the damping ratio increases the peaks of the amplification function
monotonically decreases. The decrease in amplification is apparently considerable

with increase in impedance ratio.

3.4.5 Effect of inhomogeneity parameters on mode shapes

In an attempt to understand overall effect of inhomogeneity parameters on the
response, particularly consequence of low surface shear wave velocity deposits
combined with higher degree of inhomogeneity, mode shapes are computed for soil
deposits with different inhomogeneity parameters. For this purpose, for two different
cases of surface to base shear wave velocity ratios mode shapes are computed using
Eq. (3.45) and Eq. (3.47) respectively for the different values of m in the ranges
m<2andm >2. The values of mused in this analysis are 0.5, 1.5, 2.5 and 4.0. The
natural frequencies corresponding to first four modes for all the cases considered in
this study are computed using the respective characteristic equations of Eq. (3.43) and

Eq. (3.46). These modal frequencies are presented in Table 3.2.

Table 3.2: First four modal frequencies of the soil deposits with different
inhomogeneity parameters

ll'l(vSH/va):2 ﬂ(V‘YH/VSO):ZO
m— 0.5 1.5 2.5 4.0 0.5 1.5 2.5 4.0

@ (rad/s)| 2.84 | 2.63 2.57 2.54 | 28.00 | 20.04 | 1449 | 11.25

w,(rad/s) | 775 | 7.01 6.87 6.79 | 74.82 | 40.90 | 29.02 | 23.67

@;(rad/s) | 12.75] 11.56 | 11.31 | 11.18 | 121.86 | 63.82 | 45.36 | 36.91

@,(rad/s) | 17.77 | 16.13 | 1579 | 15.60 | 168.95 | 87.49 | 62.26 | 50.51
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Figure 3.17 and Figure 3.18 show the mode shapes of the soil deposit with
U(vy /ve)=2 and u(vy, [v,,) =20 respectively. First case (4 =2.0) represents a
soil deposit which is close to homogeneous deposit while latter one ( #=20.0)

represents a case of higher degree of inhomogeneity particularly low surface shear

wave velocity. Interestingly, mode shapes of soil deposit with g =2 are almost
tangential to the vertical near the surface. While for the soil deposit with ¢ =20 the

mode shapes become tangential to the horizontal in case of all modes. It is clear from
these figures that, the mode shapes are almost comparable to homogeneous deposit
for a soil deposit with moderate inhomogeneity and also satisfy zero shear stress

boundary condition at the surface [Rovithis et al. (2011)].

The contradictory trend in mode shape near the surface in case of higher degree of
inhomogeneity is of particular interest in view of large near surface amplification. As
the soil deposit is relatively weaker near the surface more is the deviation from the
assumed boundary condition of zero shear strain at the surface. This aspect is well
demonstrated by Towhata (1996) with paradoxical results obtained in case of routine
layered deposit idealisation. In fact, Travasarou and Gazetas (2004) have shown that
the assumption of zero shear strain at the surface for the case of vanishing near
surface stiffness will result in underestimation of response quantities when the soil

deposit is discretised into homogeneous layers.

3.5 INHOMOGENEOUS DEPOSIT OVERLYING A HOMOGENEOUS
LAYER OF FINITE THICKNESS

In the previous sections the analytical solutions presented was limited to a single
continuously inhomogeneous layer overlying rigid or elastic bedrock. In this section
some of the analytical solutions available in the literature with regard to a
continuously inhomogeneous layer overlying a homogeneous layer are discussed.
Results presented in Figures 3.11 and 3.12 of previous section are, in fact, pertaining
to the configuration of inhomogeneous layer overlying a homogeneous half-space.
This configuration is a consequence of assuming impedance ratio one between base of

inhomogeneous soil deposit and underlying soil stratum. Afra and Pecker (2002)
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considered an inhomogeneous layer at the top of homogeneous half-space. In their
study, the shear modulus of the top layer is characterised by continuous function of
depth analogous to Eq. (3.24) in which the exponent value was limited toO<m < 2.
Later this solution is extended to include the case of finite thickness homogeneous

layer underlying continuously inhomogeneous top layer.

Rovithis et al (2011) and Mylonakis et al. (2013) considered a two layer system in
which top layer is characterised as inhomogeneous shear wave velocity profile
overlying a homogeneous layer of finite thickness. The inhomogeneity function
defining shear wave velocity profile of the top layer is similar to Eq. (3.6). The depth

dependent shear wave velocity function considered in their study is given by,
-1\ |
vi(2)=vy, [b‘i'(?j Z} (3.48)

i.e, it is similar to Eq. (3.6) except thata =(b—1) / bH . Here the parameter b is related

tou (ratio of base to surface shear wave velocities) asb = (1/ ,u)l/" .

3.5.1 Amplification of surface motion

Two-layer soil deposit consisting of homogeneous layer underlying an
inhomogeneous top layer is shown in Figure 3.19. Total depth of the top layer is

H, and H, is the depth of homogeneous bottom layer. The depth coordinate for the top
layer is z; (0<z <H,) and that for bottom layer is z, (0<z, <H,). The mass
densities of these two layers are p, and p, respectively. The shear wave velocity
profile of the top layerv (z,),is defined by the Eq. (3.6) wherein exponent n is

limited to less than one (0 <n <1); while for bottom homogeneous layer, overlying

rigid bedrock, it isv_,. The amplification function for single inhomogeneous layer

having shear wave velocity profile as defined in Eq. (3.6) overlying rigid bedrock has
been obtained by Rovithis et al. (2011). Substituting Eq. (3.6) in Eq. (3.5) and

following the same procedure that has been presented in the previous sections, the
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displacement at any depth z due to input motion at the base of the top

inhomogeneous layer is obtained in terms of Bessel functions as,

-v(l-n)

A1[1+GZI] 1 1 1 1
uD = : 0(])){&(5“)%( ) () (6] (3.49)

17v+l

Here &% is the transformed depth coordinate,

@ -n
£V = (1+az )1 (3.50)
av,(1-n)
2n—1 .
(;1) = fﬂ) atz, =0, v= " (0<n<l), u= Vst and A, is a constant.
2(1-n) Vyo
Vo =~Go/P
> u
Vxl (Z) = Vx() (1 + aZl )n
H
Z1Y .
Mass density, p, vy = /GH /p
H, Homogeneous layer
Mass density; p, P
shear wave velocity, v., A

Figure 3.19: Two-layer deposit comprising of an inhomogeneous surface layer
followed by a homogeneous layer over a rigid base
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The response at the top of the homogeneous layer due to harmonic excitation at it

base is given by [Kramer (1996)],

. . .
uy(zy=H, orz,=H,)=B, sm(ﬁ]wl cos( ZZ] (3.51)

v‘v 2 vs 2

Input motion at the bedrock level is, u,(z=H,+H, or z, =0) =u,, is the boundary
condition to be used along with other boundary conditions such as, the displacement
is continuous 1i.e.,u,(z, =H,)=u,(z,=H,) and 7,(z, =H,)=71,(z, =H,) i.e., shear
stress is continuous at the layer interface. Employing these boundary conditions along
with the boundary conditions at the free surface (i.e., at z; =0 enforcing stress free

condition) of the deposit the integration constants are evaluated. Finally, amplification

at the surface with respect to input motion prescribed at rigid bedrock level is,

1
[Wl(a)) - Wz(w)]

Amp,, = {2(1_”)“/’2 (3.52)

w1+ aH,

Here,

l/’l(a)):(%jX[Jv( ﬁ}))YV“( él))_‘]w—l( él))Yv( g))]cos(w—sz
st

vsH

{2 H e {2

st

Using Eq. (3.52) we can get the surface amplification of base motion as a function of
excitation frequency for the case of soil deposit whose shear wave velocity profile
varies as given by Eq. (3.6) and overlies homogeneous layer of constant shear wave
velocity. However, as in the previous case, the amplification response is obtained
disregarding nonlinear behaviour of soil and density of the soil deposit remains
constant with depth. In case bottom layer is inhomogeneous then the above given

equations cannot be used. To include viscous damping (damping ratio, { ) in the

analysis, shear wave velocity (1{Y ) of the layers is replaced with v, =v \/1+2i{ .
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3.5.2 Parametric study on amplification of two-layer soil deposit

This section deals with the study of amplification characteristics of inhomogeneous
layer overlying a homogeneous layer of constant shear wave velocity. The analytical
solution to this problem is obtained in the form of amplification transfer function
between surface motion and input motion at the top of rigid bedrock underlying the

bottom homogeneous layer, and given by Eq. (3.52).

0 |
10- v, =400 nvs
] - —-v_ =500 ms
20_ ..... 1% =600WS
. v =800 nv/s
30 -
1H,=50m v, /v, =20
T 50-
s Y1 T
& T Vo
| '
@) 100 - I '
‘H2=50m ' :
14,=100m | 1+ |
1H =200 m U
- 2 ' :
- o
i o
] Lo
i roa
i o
U
i Lo
200 ' L] L) i L)

200 400 600 800

Shear wave velocity (nv/s)

Figure 3.20: Soil Deposit with continuous variation of shear wave velocity,
overlying a homogeneous soil deposit of shear wave velocity of different depths.

In order to study the effect of depth and stiffness of the homogeneous layer on
amplification of base input motion at the surface of the deposit, these properties of the
bottom layer is varied as indicated in Figure 3.20. The inhomogeneity parameters

considered are velocity ratio associated with top layer,v, /v, =2.0 and exponent

n=0.20 of the velocity function. The densities of top and bottom layers are kept
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constant at p, = p, = 2000 kg /m’. The depth of the bottom layer (homogeneous
layer) is considered to vary with three cases i.e., H, =50,100 and 200 m and four

shear wave velocity cases i.e., v, =400, 500, 600 and 800 m /s are considered.

16

: (@): H, =50 m

v, = 400 nv/'s

(b): H, =100 m

v, = 400 nv/s

Amplification (Surface / Rigid bedrock)

Frequency (Hz.)

Figure 3.21: Effect of depth and shear wave velocity of homogeneous layer
underlying an inhomogeneous layer on amplification ratio and modal
frequencies.

The results of this parametric study are shown in Figure 3.21. The frequency
dependent amplification characteristics of the inhomogeneous deposit overlying a

homogeneous deposit of depths 50 m, 100 m and 200 m for different v, values are
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shown in Figures 3.21a, 3.21b and 3.21c respectively. As it can be observed from
these figures, the peak amplifications corresponding to modal frequencies is

maximum for the case of v, =800 m/s when compared to other cases. Hence, it can
be concluded that the amplification increases as the stiffness of the bottom layer

increases and this increase is significant for impedance ratio (v, /v, ) greater than

about 2. At lesser values of impedance ratio the increase in amplification is

comparatively insignificant particularly as the depth of the bottom layer increase.

It is interesting to note that the effect of depth of homogeneous layer on amplification
characteristics appears to be complex phenomenon than the effect of velocity ratio

v, /v, . Also, comparing the results of depth, H,equal to 100 m and 200 m to that of

50 m, particularly at higher frequencies (after two or three modes) the trend of
amplification is considerably affected at higher frequencies particularly for stiffer

bottom layer i.e., v, =800 m/s. Also, amplification is marginally greater in case of

H, =100m compared to H, =200m deposit for all values of v, .

3.6 AMPLIFICATION OF MULTI-LAYERED SOIL DEPOSIT WITH
CONTINUOUSLY INHOMOGENEOUS LAYER PROPERTIES

All the above mentioned studies consider the case of inhomogeneous elastic layer
with shear modulus or shear wave velocity varying continuously as a function of
depth. The work presented by Davis and Hunt (1994), Davis (1995) and Davis (1994)

considered multiple layers with linear variation of shear modulus in each of the layers.

Site response under seismic excitation studies usually employ idealised site models in
which homogeneous soil layers are separated by distinctly defined horizontal layer
interfaces. The impedance mismatches at these interfaces give rise to wave reflections
which strongly affect the calculated free surface response. In order to avoid this
inconsistency Davis (1995) extended the concept proposed in the work of Davis and
Hunt (1994) to incorporate smoothly varying interfaces between the layers. This was

justified by the argument that the interfaces are made up of weathered soil [Macari
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and Hoyos (1996)]. The variation is assumed to be linear, thus avoiding superficial

impedances at the interface of adjacent layers.

3.6.1 Amplification function for inhomogeneous multiple layers

Employing the Haskell-Thomson transfer matrix approach Davis and Hunt (1994)
obtained an analytical solution for SH wave amplification by multiple layers of
Gibson soil shown in Figure 3.22. Gibson soil represent elastic or viscoelastic layers

with linearly varying shear modulus [Gibson (1974)].

Free surface \

Layer -1

Layer — 2

Layer — (n-1)

BEDROCK

Figure 3.22: Multiple layers of Gibson soil above homogeneous elastic bedrock
[Reproduced from Davis (1995)]

G d
o Giblson soil
M ayer
G Y

Figure 3.23: Linear variation shear modulus along the depth of individual layer
[Reproduced from Davis (1995)]

>
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Consider a single layer of Gibson soil of thickness H shown in Figure 3.23 subjected
to vertically propagating SH waves. Let z be the local depth coordinate within the
layer and u(z,t) denote horizontal displacement and 7(z,7) denote shear stress.
Subscripts 1 and 2 refer to conditions at the upper and lower surfaces of the layer,

respectively. Let @ denote the excitation frequency; p the mass density;
G (2) =G(z)(1+i{), complex shear modulus and {,is the hysteretic damping ratio.
Suppose G’ is a linear function of z, such that G*/ p=c~z+l5z , where a and b are

2 2
VA‘Z — vsl

complex constants given by a=v’(1+i{) and b= (1+i¢) with v, and v,

being the corresponding shear wave velocities at top and bottom of the layer.

A transfer matrix is derived for the response at the top of a Gibson soil layer in terms
of the response at the base. Multiplying the transfer matrices for each soil layer leads
to relations between the free surface response and the bedrock incident wave form.
This relation yields the free surface amplification function. This procedure is similar
to that which is used in the program SHAKE except that the transfer matrix for each

layer is derived assuming it as Gibson layer instead of homogeneous layer idealisation.

Following the same procedure as described in Chapter 2 (Eq. 2.22) the transfer matrix

for the i" Gibson layer in terms of particle velocity and shear stress is expressed as,

l/'tZ _ Zl(:) Zl(Zi) L'tl (3 53)
r | A0 20 || ¢ )

2 21 22 1
where,

Zl(li) = z b~ 2 [_Yl(é:l)‘lo(é:z)-i_Jl(é:l)YO(é:Z)]
inw

AY =[G+, (E)]

10— impa,|[ aa+bh) | (3.54)

1 IB [_Yl(é:l)‘h(é:z)"'Jl(é:l)Yl(é:z)]

) [d+l§h]
Ay =T[—Yo(fl)ﬁ(fz)—Jo(fl)Yl(fz)]
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Here J, () & Y, (®)denote Bessel functions of the first and second kind of orderv,

NG a+bh

and & = 7 and ¢, ZZT. The matrix A is the Haskell-Thomson matrix

for the layer with linear shear modulus variation. It can be used recursively to find the

response of multiple layer deposit. Consider the case with (n—1)layers illustrated in
Figure 3.22. The free surface response, (4,,7,), is related to the response at the
bedrock interface, (u,,7,), by

m:[gm—»],,,[;«q..[zeq (407 LH% ﬂ u (3.5

n

In Equation (3.55), each of the matrices A", A®,.....is the appropriate transfer matrix

to each of the layer i =1, 2, ........ and A is the product of all the A matrices.

Considering harmonic input motion at the top of the bedrock along with appropriate
boundary conditions at the free surface and at the elastic bedrock-soil layer interface,

amplification function between surface/bedrock is obtained as,

— u _| prvsr |
i, TR ) 30

In the above equation, p, and v denote bedrock density and shear wave velocity

respectively.

Here an attempt is made to verify the possibility of idealizing the continuously
inhomogeneous soil profile with an equivalent layered profile consisting of Gibson
layers (i.e., linear variation of shear modulus). For this purpose soil profile of Figure
3.11 is discretised into 10 layers with linear distribution of shear modulus and
amplification is computed using Eq. (3.55) and Eq. (3.56). The results obtained from
both the analyses are compared in Figure 3.24. The amplification function computed
using 10-layer equivalent profile almost exactly compares with that of exact solution.
Thus it can be concluded that soil profile exhibiting continuous variation of soil

properties can be modeled with an equivalent layered profile consisting of Gibson
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layers instead of idealizing it as a homogeneous layered profile as is being made in

routine analysis procedure.

5
=10 layers with linear v (z) &l
y v =10mfs,v =300 m/s & n =1 o
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Figure 3.24: Comparison of amplification function computed for an equivalent
layered profile consisting of Gibson layers with that of exact solution.

3.6.2 Parametric study on transition Gibson layer at layer interfaces

The effect of contrasting impedances between the adjacent layers at their interfaces is
evident. Also natural soil deposits seldom exhibits perfectly layered profile. Despite
this fact usually the soil deposit is idealised as layered profile in routine one-
dimensional site response analysis. Thus it may be appropriate to introduce a
transition layer at the interface in order to achieve smooth transition of impedance
between the adjacent layers. This may also help in overcoming pseudo-resonance
conditions resulting in spurious high frequency responses. Here a parametric analysis
is performed to study the effect of depth of transition layer on the surface motion

amplification.

A 30 m depth deposit made up of two layers is considered for the analysis. The depth

of each layer is 15 m, the shear wave velocity of the top layer is assumed to be 100
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m/s and that of bottom layer is 300 m/s. A transition layer at the interface of these two
layers is considered. The depth d, of this transition layer is varied from O to 15 m. The
effect of introducing transition layer on the amplification of surface motion is
presented in Figure 3.25. In this figure, the frequency is normalized with respect to
fundamental frequency of the deposit and amplification is presented in terms of its
peak values at first five modes. From this figure it can be observed that introducing
transition layer at the interface greatly improves the high frequency response without

affecting the amplification at the fundamental frequency significantly.

—m—d=00m (f] =1.544 Hz)
—m—d=30m (f,=1.432 Hz)
d=60m (f,=1.321 Hz)
—m—d=90m (f =1.226 Hz)
d=120m (f, = 1.146 Hz)
—m—d=150m (f,=1.082 Hz)

Maximum amplification
[\S)
0e]
1

1
8
Normalised frequency ( f/ fI )

Figure 3.25: Effect of transition layer depth on the amplification of surface
motion.

3.7 COMPARISON BETWEEN CONTINUOUSLY INHOMOGENEOUS
SOIL DEPOSIT AND ITS LAYERED APPROXIMATION

In Figure 3.9 the amplification result of exact solution obtained for the deposit with
linear variation of shear wave velocity along the depth is compared with that obtained
for different layered configurations. Obviously, from this figure, it was evident that as
number of layers is increased to closely represent the actual velocity profile the
amplification seems to approach the exact solution. However it is interesting note that,

though the convergence is evident for sufficiently large number layers in the first peak
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(i.e. corresponding to first mode of vibration), there are substantial differences in the

frequencies and amplification of the higher mode of vibration.

In order to study the effect of arbitrariness and inconsistency in prescribing layered
idealisation for a surface deposit which possesses nearly continuous variation of shear
wave velocity distribution and uniform density throughout its depth, the deposit of
40m thickness with linear distribution of shear wave velocity is considered here. The
shear wave velocity is varying from 80 m/s at the surface to 720 m/s at the base and it
is overlying an elastic bedrock havingv, =720 m/s. Thus the shear wave velocity
function defining the profile is given by v _(z) =80(1+0.2z) . Inconsistency in decision
making about depth of each layer is incorporated by varying the thicknesses of each
of the layer of equivalent two layer and three layer models to represent 40m thick
continuously inhomogeneous deposit. Based on its depth from the surface and its
thickness, the average shear wave velocity of each layer is assigned. In equivalent
layer system the layer thicknesses H, and H, are varied resulting in variation of
impedance ratios between the top two layers as well as bottom layer and bedrock.
Density being constant, the impedance ratio between any two layers is simply the

ratio of their shear wave velocities.

Two layer equivalent model of the actual continuous variation is shown in Figure 3.26.
The variation of impedance ratio as H,and H,are varied is plotted with respect to
ratio of H, and H, . There seem to be consistency in the trend of variation of
impedance ratio at both interfaces i.e., between the top two layers as well as bottom
layer and bedrock but obviously no particular relation exists between them. The
maximum amplification computed for the ratios of H,/H, is shown along with
corresponding impedance ratio. Though maximum amplification computed for
equivalent layered idealisation closely agrees with that of exact value for a particular
configuration of two layer thicknesses, it is important to note that frequency at which
this amplification is obtained does not match with that of exact solution. Close
agreement of maximum amplification of equivalent two layer deposit with that of

exact value is incidentally at H, / H, =4.0.
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Figure 3.26: Effect of contrasting impedance ratio on amplification
characteristics of idealized equivalent two layer system

Further, to demonstrate the implications of inconsistency in layered approximation the
same deposit considered in the previous example is approximated with three layers
with variation in their depths. In the three layers approximation, depths of top and

bottom layers are considered to be of same thickness (i.e., H, = H,) while middle
layer thickness H, is varied such that total thickness of the deposit is 40m i.e.,
H,=40-2H,. Three layer equivalent model of the actual continuous variation is
shown in Figure 3.27. The variation of impedance ratio as H, and H, (or H,) are
varied is plotted with respect to ratio of H, and H, (or H,). As in the previous case

(two layer approximation), there is no particular relation existing with contrasting
impedance ratios between any of the two layers and amplification. The maximum

amplification computed for ratio of H,/H, (or H,/H, ) is shown along with

resulting impedance ratios between top and middle layers, middle and bottom layers

131



and bottom layer and bedrock. Close agreement of maximum amplification of

equivalent two layer deposit is incidentally found to be at H, / H, (or H,/H, ) =3.0.
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Figure 3.27: Effect of contrasting impedance ratio in idealized three layer system
on amplification

Finally, comparison of results pertaining to ground response analysis of continuously
inhomogeneous deposit and its layered approximation is made in respect of seismic
input motion at the bedrock level. The 40m depth deposit considered previously is
analysed by idealizing it as 40 layers of 1.0m thick and 2 uniform layers of 20m thick
(Figure 3.28a). For the purpose of comparing effect of layered idealisation of actual
continuous variation on the computed response due to input earthquake motion at the
base of the deposit. An earthquake motion recorded at Diamond Heights (USA)

during 1989 Loma Prieta earthquake is normalized to 0.1g peak acceleration and used

as input motion.

In both cases of layered deposit idealizations, both linear and equivalent linear

analyses were carried out using the program EERA. In order to implement equivalent
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linear approach arbitrarily selected average strain dependent shear modulus and
damping curves are used in the analysis,. In case of linear analysis, computation is
carried out using initial values of shear modulus and damping. The response of the
deposit is compared in terms of maximum acceleration computed along the depth of
the profile. Figure 3.28b shows the variation of the acceleration response in terms of
its maximum values along the depth. Results obtained from equivalent linear analysis
(EQL) and linear analysis (L) for ideal 40 layers deposit is compared with those of

approximated 2 layers deposit.
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Figure 3.28: (a) 2-layers and 40-layers idealisation (b) Comparison of maximum
accelerations computed along the depth

In case of linear analysis both idealisations yield almost similar values of maximum
acceleration at the surface. However, for the depths in the range of about 5m and 30m
the maximum accelerations are higher for approximated 2 layer deposit when
compared to 40 layers deposit. On the other hand, in case of equivalent linear analysis

the surface acceleration computed for 2 layer system is grossly underestimated by
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about 33 percent when compared to that of 40 layers deposit case. Also, incidentally,
in case of 40 layers deposit the difference in variation of maximum accelerations
along the depth computed from linear and EQL analyses is not much below 10m from
the surface. Surprisingly, in contrast to this observation, this kind of phenomenon is
not observed in case of linear and EQL analysis of two layered model though same
strain dependent stiffness and damping properties are used in the analysis. This needs
to be investigated further, with rigorous parametric study, to conclude on effects of
contrasting impedance properties on the results of linear and EQL analysis. However,
this clearly indicates that inappropriate layered idealisation will have profound effect
on the response than the kind of nonlinear model (strain dependent stiffness and

damping model) employed.
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Figure 3.29: Comparison of computed acceleration time histories at the surface
for 2-layers and 40-layers models, (a) linear analysis, (b) Equivalent linear
analysis and (¢) Input ground motion at the bedrock level.

Figure 3.29 compares the acceleration time histories computed at the surface for the
cases under consideration i.e., both ideal 40 layer and approximated 2 layer models.
These responses are obtained for the same input motion shown at the bottom (Figure
3.29c), which is given at the bedrock level. In case of both linear (Figure 3.29a) and

equivalent linear analysis (Figure 3.29b), there are noticeable differences in the

134



characteristics of the response. Particularly, in case of linear analysis the peak value
surface accelerations are almost comparable (0.463g and 0.455g respectively for 40
and 2 layer cases) but their time history characteristics are different. While in EQL
analysis the underestimation of maximum response (0.532g and 0.359g respectively
for 40 and 2 layer cases) in case of two layered deposit compared to that of
continuation variation idealisation is observed. Hence it can be concluded that
contrasting layer impedances may result in underestimation of high frequency

response.

3.8  COMPARISON USING OBSERVED EARTHQUAKE DATA

As discussed earlier, there are discerning issues with respect to geotechnical
investigations and subsequent interpretation of soil profile for the purpose of ground
response analysis. These issues result in inconsistent predicted response quantities. In
order to overcome these inherent deficiencies in the current practices, which are
difficult to quantify, this study proposes to approximate the surface deposit with
continuous variation soil properties. In the advent of this conceptually abstract
alternative, the approximation of shear wave velocity profile of surface deposit with
best fit continuous variation is considered as an initial option. The approximated
continuous variation is replicated by closely stacked layers and assigned with
appropriate shear wave velocity values and routine analysis of layered deposit used in

programs like SHAKE is carried out.

For the purpose of demonstrating the efficacy of the proposed method, data recorded
at an instrumented geotechnical array during an earthquake event is considered. For
this purpose, geotechnical downhole array established at La-Cienega site of USA is
considered. This particular array was installed by the California Strong Motion
Instrumentation Program (CSMIP) with the support of California Department of
Transportation (Caltrans). La-Cienega downhole array consists of four accelerometers
installed at depths 0.0 m, 18.3 m, 100.60 m and 252.0 m. La-Cienega array has
recorded many events of different magnitudes and peak accelerations. Among these
event recorded on 4™ April, 1997 is considered in this study. Shear wave velocity

profile of this particular array as interpreted from the data obtained from different
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geotechnical investigations is shown in Figure 3.1. Here same data pertaining to PS-
logging is reproduced in Figure 3.30. Continuous variation approximation of
continuous PS-logging data using power law and corresponding 3-layer

approximation is also shown in Figure 3.30. The continuous variation approximation

of shear wave velocity along the depth (z) is represented by the
equation v _(z) =v,,+bz° . Nonlinear regression method is used for curve fitting
process by setting constraint on non-zero shear wave velocity at surface v, (=120m/s).

The best fit for scattered PS-logging data is obtained with parametersb =88.87 and

c=0.32 resulting in correlation coefficient of r>=0.75. Shear wave velocities of
120 m/s at the surface and 640 m/s at the bedrock level are kept same for the layered

and continuous variation idealisations.
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Figure 3.30: PS-logging data of La-Cienega array and corresponding layered

and continuous approximation.

The 4™ April, 1997 seismic event recorded by this array is one of the of low

magnitude (M L= 3.3) earthquake at an epicentral distance of 6.7km and focal depth

of 4.2km. The acceleration time histories recorded during this event, at surface and
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100m depth in 360° and 90° component directions, are shown in Figure 3.31. These
data are available at California Strong Motion Instrumentation Program (CSMIP)
website. The recorded peak accelerations are 0.059g and 0.013g respectively at
surface and 100 m depth for 360° component, while corresponding values for 90°

component are 0.078g and 0.022g respectively.

0.08
0.04 =
0.00 o
-0.04 = Recorded - 360° component - ?ec;)rded - 90" component
) (surface) surface)
p -0.08 T T T T .
£ I
b= 0 10 20 0 10 20
3
8 0.02
o
< 001 =
0.00 o
001 = _ .
Recorded - 360" component Recorded - 90" component
-0.02 o (100 m depth) - (100 m depth)
' 1 ' T T T
0 10 20 0 10 20
Time (sec)

Figure 3.31: Acceleration time history data of 4™ April 1997 earthquake
recorded at La-Cienega geotechnical array.

The computer program EERA is used to perform ground response analysis. The
analysis is carried out to compute response at the top (ground surface) of the idealized
surface deposit due to an input motion at the base of the deposit. In order to ascertain
the effectiveness of the proposed continuous variation idealisation of shear wave
velocity profile of an inhomogeneous deposit, predicted ground surface motions from
the analysis is compared with the observed response of the deposit. Also efficiency of
the proposed method is verified by comparing its results with that of idealized 3-layer
deposit in terms of surface response quantities. For the purpose of preparing the
deposit profile data of La-Cienega geotechnical array for EERA program, the
continuous variation shown in Figure 3.30 is approximated using 40 layers in order to
closely represent the variation trend without significant contrasting impedance ratio
between any two adjacent layers. However, the three layer deposit is represented in

the input data in the manner as shown in Figure 3.30. Henceforth, in this study, La-
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Cienega deposit idealized as 40 layers deposit to closely represent continuous
variation of shear wave velocity shall be referred to as LCC and that with 3-layer

idealisation as LC3L.

Considering the low magnitude of the earthquake and lower level of peak
accelerations of input motion (Figure 3.31) the influence of nonlinear response may
be considered to be insignificant. However, nonlinear analysis is carried out using
equivalent linear approach of EERA. For this purpose, the nonlinearity of the soil
deposit is modeled with strain dependent shear modulus and damping curves shown in
Figure 3.32a and 3.32b respectively. Since the La-Cienega deposit is predominantly a
clayey soil deposit a typical strain dependent shear modulus [Sun et al. (1988)] and
damping [Idriss (1990)] curves of cohesive soil are used. The density of the soil is

considered to be constant ( p =2.055 /m’) throughout the depth of the deposit.
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Figure 3.32: Strain dependent shear modulus and damping curves used in the
analysis

In previous sections it was demonstrated that, the ground surface response due to
excitation at the base of the deposit is greatly affected by shear wave velocity values

at the surface (v ) and at the base (v, ) of the deposit. Hence, these shear wave
velocity values (v ,andv, ) in both the cases (LCC and LC3L) are prescribed with
identical values of v ; =120m/s and v, =640m/s respectively. Thus two idealized

cases LCC and LC3L synonymously represent the important geotechnical
characteristics of the deposit except for geometrical characteristics in terms of depths

of the layers considered. This factor influences the impedance characteristics of the
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deposit as a consequence of variation in average shear wave velocities of these

idealized layers.

0.08 0.08

0.00 <= “\+ 0.00
-0.08 1 | 1 | ” 1 | . 1 1 . | 1 | 1 i | 1 .'.I 1 -0.08
52 54 5.6 5.8 6.0 6.0 6.2 6.4 6.6 6.8 7.0
0.08 0.05

At 0.00
-0.08 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 -0.05

0.03 0.03

Acceleration (g)

-0.03 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 -0.03
9.0 9.2 9.4 9.6 9.8 10.010.0 10.2 104 10.6 10.8 11.0

0.02 0.01

0.00

-0.02 1 | 1 | 1 | I | I L | L | L | I | I -0.01
11.0 11.2 114 11.6 11.8 12.015.0 15.2 154 15.6 15.8 16.0

Time (s)

Recorded (Surface)
— Approximated continuous variation of V_(LCC-Deposit)
------- Approximated 3-Layer deposit (LC3L-Deposit)

Figure 3.33: Comparison of computed surface acceleration time history in
different time windows with corresponding observed record of 360° component.

The earthquake ground response analysis for both (LCC and LC3L) the cases is
carried out to predict the surface responses due to prescribed input motion at 100m
depth. The analysis is performed for both 360° and 90° components of the recorded
earthquake shown in Figure 3.31. Results of these analyses are shown in Figure 3.33
and Figure 3.34 in terms of acceleration time histories at the surface of the deposit.

Figure 3.33 gives acceleration time history computed at ground surface for the both
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LCC and LC3L cases of soil deposit idealisations due to 360° component input

motion. For the purpose of clarity the results are presented in different time windows.
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Figure 3.34: Comparison of computed surface acceleration time history in
different time windows with corresponding observed record of 90° component.

It is clear from this Figure 3.33 that, the predicted surface response using LCC-

deposit has a trend which closely matches with trend of the observed motion in the

region of peak acceleration (5.25—6.0s) when compared to LC3L deposit case.

However, in the region between 6.2 and 9.0 seconds both LCC and LC3L cases over

predicts the responses compared to observed record with LCC prediction being closer
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to measured record than LC3L prediction. More importantly, after 9.0s the LC3L
shows wayward trend with unusual amplification of motion than the recorded data,
whereas LCC closely follows the recorded response. These kinds of similar
observations can be made with respect to response due to input motion of 90°

component as shown in Figure 3.34.

The peak ground accelerations predicted and recorded for various cases are tabulated
in Table 3.3. From this table it can be seen that the predicted peak surface
accelerations with the deposit of LCC case is more closer to recorded data than the
LC3L case for the 360° component input motion. In case of 90° component input
motion, LCC deposit yielded exactly the same peak acceleration as that of observed
data. In case of LC3L deposit even though the predicted peak values are within the

acceptable limits there exists phase difference in the occurrence of peak response.

Table 3.3: Comparison peak acceleration computed using LCC and LC3L
idealised deposits with measured data for both the components of the earthquake.

Peak Surface Input motion component of the earthquake
accelerations

obtained from 360° — Component | 90° — Component
Recorded data 0.059¢ 0.078g

Computed using

LCC-Deposit case 0.055g 0.078g

Computed using

LC3L -Deposit case 0.067g 0.083g

In order to verify the objectives of this study further, surface responses computed
from both idealisations (LCC and LC3L) are compared using their corresponding
response spectra. Response spectra for 5% damping are obtained for computed
surface acceleration responses of both the cases of idealisations of the deposit. These
response spectra are plotted in Figure 3.35 along with that of acceleration recorded at
the surface. Peak spectral accelerations obtained for the surface response of
approximated continuous variation coincide well with that of measured response
compared to 3-layer idealisation of the deposit. Particularly in case of 360°

component input motion, shown in Figure 3.35a, response spectrum of the surface
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acceleration predicted from LCC deposit case almost coincides with that of measured
record. Whereas, in case of LC3L deposit idealisation, response spectrum show
considerably over estimated spectral acceleration ordinates. It is pertinent to note that,
despite peak values of predicted surface accelerations mentioned in Table 3.3 have
shown appreciable difference with measured values, comparison of spectral values is

found to be satisfactory.
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Figure 3.35: Comparison of acceleration response spectra of predicted and
observed ground motions at the surface of the deposit for the input motion cases
of (a) 360°-component and (b) 90°-component.

In case of 90°-component input motion, shown in Figure 3.35b, there is a marginal
difference between spectral values of predicted and measured acceleration reponses.
However, comparatively LCC deposit has yielded better results than LC3L deposit
when compared with actually measured data. In spite of good agreement with peak
value of acceleration in this case (Table 3.3), there are considerable differences in
spectral values, particularly in period range of 0.5s to 1.0s. This observation is

apparent for the case of LC3L idealisation in particular.
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3.9 FREQUENCY CHARACTERISTICS

RESPONSE

OF ESTIMATED SURFACE

In the previous chapter, it has been observed that, equivalent linear analysis fails to
simulate the measured ground motions at high frequencies and in general the analysis
doesn’t yield consistent results under weak and strong ground shaking. Many of the
researchers have attributed this particular deficiency of equivalent linear approach to
frequency dependency of soil properties, i.e., strain rate dependency of shear modulus
and damping. The parametric study presented here is an attempt to address the
problem by examining the possibility of layer impedances as the cause for poor

response simulation at higher frequency ranges.
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Figure 3.36: Shear wave velocity profiles considered for Case-1, Case-2 and
Case-3 analyses
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In order to compare the efficiency of the different cases of layer interpretations in
simulating the high frequency responses at the surface of the soil deposit, an
instrumented geotechnical downhole array at El-Centro Meloland (USA) is
considered. This geotechnical array was installed by the California Strong Motion

Instrumentation Program (CSMIP) near USA-Mexico border.

The details of El-Centro Meloland geotechnical array are available at the website of
Calibration Sites for Validation of Non-Linear Geotechnical Models [Stewart (2002)]
sponsored by PEER Lifeline Programs. The information available includes continuous
PS logging data and its layered idealisation. Based on these data three distinctly
different layered profiles referred to as Case-1, Case-2 and Case-3 are considered. The
shear wave velocity profiles corresponding to these cases are shown in Figure 3.36.
Site specific strain dependent damping and modulus reduction curves corresponding

to soil types S1, S2 and S3 are as shown in Figure 3.37.
Basis for three cases of layer interpretations are as follows,

Case-1: Layered idealisation interpreted in routine manner as usually obtained by
engineering judgment based on PS-logging data of the site as available in program

website. Totally 15 layers used to define the velocity profile.

Case-2: Layered deposit considered in Case (1) is modified by elimination of sudden
velocity gradients at the layer interfaces. This is obtained by assuming smooth linear
velocity gradient at layer interfaces extending over an appropriate depth in both of the

adjacent layers. Thus 48 layers are employed to model this case.

Case-3: Interpreted layered deposit to match idealised continuous variation of shear

wave velocity. Best fit for the PS-logging data is obtained using simple power law
equation V (z) =V,, +bz° where, b and care constants, V,(z)is the shear wave velocity
at depth z measured from surface and V, is the non-zero surface shear wave velocity.
Curve fitting process to approximate the PS-logging data using the above equation

results in v, (z) =140+11.187"" with regression coefficient, > =0.72. Using this
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trend, 35 layers are used to model the shear wave velocity variation across the depth

of the soil profile.
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Figure 3.38: Variation of impedance ratio across depth in different cases of layer
idealisations.

Figure 3.38 shows the variation of resulting impedance ratios between the layers as a
consequence of different cases of layered idealisation of the soil deposit. It must be
noted here that impedance contrast is significantly large in Case-1 compared to other
two cases. Unlike Case-2, in Case-3 the impedance ratio is almost equal to unity

between most of layers except for few layers around mid depth of the deposit.
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3.9.1 Earthquake data

El-Centro Meloland geotechnical array is instrumented with accelerometers at depths
Om, 30m, 100m and 195m . This array recorded an earthquake event namely Baja
California event of Mexico on April 04, 2010. The magnitude of this event is reported
to be M,,=7.2 at an epicentral distance of about 70km (Origin: 64km south of Mexico-
USA border at a shallow depth of about 10km). The 270° component of this event
recoded maximum acceleration of 0.099g at 100m depth and 0.191g at the surface of
this array [Center for Engineering Strong Motion Data (CESMD)]. The recorded data

is shown in Figure 3.39.
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Figure 3.39: Recorded accelerograms at the surface and at 100 m depth of El-
Centro Meloland geotechnical array during April 04, 2010 earthquake.

3.9.2 Analysis and results

Using EERA equivalent linear analyses is carried out to predict surface motion for all
the above cases. Acceleration time history recorded at the depth of 100 m (Figure
3.39) is used as input motion at the base of the soil profiles (Figure 3.36) representing

3 cases of layer idealisations considered herein.
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Figure 3.40: Comparison of computed surface responses for the cases considered
with recorded accelerogram at the surface

The computed acceleration time histories for all the three cases of analyses are
compared with that of measured. The results of these analyses along with measured
acceleration record at the surface are presented in Figure 3.40 in the time window of
48 to 53 seconds which represent strong motion phase of the record (time window
includes presence of negative and positive maximum accelerations). Computed
acceleration time histories of the surface motion are in good agreement with the trend
of measured record particularly in the initial phase and attenuating phase (low
amplitude signals). However, in the strong motion phase there are noticeable

differences in the results of all the three cases of analyses.

The computed maximum accelerations are -0.216g (at time, t = 50.43s), -0.205g (at, t
= 50.44s) and -0.189g (at, t = 50.44s) for cases 1, 2 and 3 respectively, while
corresponding recorded data is -0.192g (at t = 50.45s). Hence from Figure 3.40., it
may be noted that, better prediction of peak acceleration in Case-3 compared to that
of Case-1 is evident, though the trend of accelerograms are almost identical for all the
cases. Also, many of the peaks of recorded data are better simulated in Case-3

compared to other two cases.

147



In order to comparatively study the discrepancies in the prediction of responses with
different layered idealisations, smoothened Fourier spectra of the responses obtain for
each case are plotted. These are compared with that of measured response as

illustrated in Figure 3.41.

1.0 -

0.8

0.6 1

0.4+

Normalised Fourier amplitude

0.2 1

0.0 T I T I - I
0.1 05 1 5 10 30 50

Frequency (Hz)

Figure 3.41: Comparison of Fourier spectra of computed surface responses from
different cases of shear wave velocity profiles with that of recorded accelerogram
at the surface

For the purpose of comparison all the spectra are normalized with respect to peak
Fourier amplitude of measured record resulting in unit maximum for the Fourier
spectra of recorded data. In the lower frequency ranges (less than 1 Hz), spectra of the
predicted responses under all the cases are more or less same within acceptable range
of differences with respect to spectral values of recorded motion. In this frequency
range it is interesting to note that frequency distribution of Fourier amplitudes of

Case-2 closely follows the trend of measured data compared to other two cases.

In the intermediate range of frequencies (1 to 10 Hz.), Fourier spectra of computed
responses for all the three cases are waywardly deviating from spectra of recorded
data. Fourier amplitudes are higher in the range of about 1 to 2.5Hz, lower in the

range of about 2.5 to 5.5 Hz and thereafter following closely the spectra of recorded
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motion up to 10 Hz. In these ranges again we may notice that Case-2 and Case-3
hardly have any noticeable difference between them and show better comparison than

Case-1 with the recorded data.
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Figure 3.42: Comparison of Fourier spectra of computed surface responses for
different cases of shear wave velocity profiles in the frequency range 10 to 30 Hz.

As observed in many of the earlier studies, for e.g., Yoshida et al. (2002), Kausel and
Assimaki (2002) etc., in the higher frequency range (>10 Hz) all the three cases
monotonically underestimate the responses than the actual. Hence an attempt has been
made to closely look at the effect of variation in layer impedances on the computed
high frequency responses using equivalent linear analysis. In order to understand the

clear variations in the results of responses at high frequency range, normalized
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Fourier spectra between 10 to 30 Hz are plotted separately for all the three cases

considered in Figure 3.42 along with spectra of recorded motion.

In Figure 3.42 the comparison clearly indicates that, all layer idealisations considered
yield lower amplitude responses in the high frequency region. Even though response
computed using Case-2 idealisation observed to be more promising in lower
frequency ranges than Case-1, it fails to show better comparison than Case-1 in higher
frequency ranges. However, Case-3 idealisation shows remarkably better simulation
of high frequency spectral values of observed record. For the purpose of quantitative
comparison of predictions alternative plot is presented in Figure 3.43 by taking the
ratio of Fourier amplitudes of recorded surface motion to that of each of the cases
considered. In this figure horizontal line at unit value is the reference line representing

perfect simulation (ratio of recorded motion spectral amplitudes to itself).
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Figure 3.43: Comparison of normalized Fourier amplitude ratio of computed
surface responses in the frequency range 1 to 30 Hz.

Spectral ratios of Case-1 and Case-2 clearly indicate that between 15 Hz and 30 Hz,
they are underestimated by the magnitude of 2 to 7 times while correspondingly it is
only 1 to 3.5 times in Case-3 idealisation. Up to 15 Hz all cases show acceptably good
simulations and this favorable trend continues up to 20 Hz for Case-3. Thus it can be
concluded that underestimation of response using equivalent linear analysis in the

high frequency region arises mainly due to contrasting impedance ratios between the
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adjacent layers. Also different layer idealisations of soil deposit indicate that avoiding
sudden velocity gradients at the layer interfaces greatly improve the high frequency
simulations. One possible and effective way of achieving this is by idealising the soil

deposit using continuously varying shear wave velocity profile (case-3).

3.10 SUMMARY

In this chapter the importance of idealizing the soil deposit as continuously
inhomogeneous deposit is highlighted. In view of the process involved with its
genesis, influence of environmental, mechanical and other actions are primary reasons
for the natural soil deposit to exhibit continuous inhomogeneity. This aspect is well
recognized and many studies have attempted to address the problem by seeking
analytical solution to response of continuously inhomogeneous deposit and identified
the factors which considerably affect the response of such deposits. Also categorically
these studies have recognized the fact that eventually the response obtained by
modeling such continuously inhomogeneous soil deposits by approximated layered
profiles may give inconsistent results. Some of the case studies involving actual
observed data have revealed that analysis carried out with routine layered idealisation
may result in contradictory response. Literature available in this regard has been
reviewed and important results are presented. Also, in this study, an attempt is made
to extend the solutions obtained in some of these earlier studies with further
derivation to address more general cases. However these analytical studies are limited
to linear elastic analysis and only inhomogeneity with respect to variation of shear
modulus/shear wave velocity of the soil deposit is considered. The depth
inhomogeneity of other soil properties particularly density of the soil deposit is
disregarded. Comparative and parametric studies are carried out to identity the effects
of approximating the continuously inhomogeneous soil deposits with layered profile
idealization on the computed response. Summary of important observations made

from these studies is presented below.

The amplification transfer function between surface and base of the deposit is
presented for different inhomogeneity functions defining the variation of shear

modulus or shear wave velocity along the depth. Starting with a simple case of linear
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variation of shear wave velocity along the depth, higher degree inhomogeneity
functions representing the continuous variation of stiffness property have been dealt.
Analytical results with regard to amplification transfer functions and mode shapes of

such inhomogeneous deposits are presented for different inhomogeneity parameters.

Theoretically, the effect of impedance ratio between successive layers on the
transmitted and reflected magnitudes of wave amplitude, stress amplitude and wave
energy are discussed. As the impedance of the layer decreases wave energy dissipated
in that layer increases. Thus wave energy at the surface of a relatively soft layer turns
out to be smaller. However, the wave amplitude increases as the impedance of a layer
is lower relative to base layer. Since amplification of wave amplitude is sensitive to
layer impedances, the importance of appropriate idealization the shear wave velocity
profile of the soil deposit is emphasized. For this purpose, variation in impedance
ratio across the layers as a consequence of approximating a continuously
inhomogeneous deposit with layered profile is parametrically studied. Study carried
out for a particular case of inhomogeneity function indicates that the decrease in
contrasting impedance ratio tends to be insignificant after certain limiting number of

layers used to approximate the continuously varying shear wave velocity profile.

It is observed that as the impedance ratio between inhomogeneous soil deposit and
underlying bedrock decreases the maximum amplification increases. More
importantly, in case of relatively flexible bedrock, troughs of the amplification
transfer function is shifted upwards indicating increase in radiation damping as much
of energy is reflected back into flexible half-space. Also it is noted that in case of
rigid bedrock underlying an inhomogeneous deposit, irrespective of the degree of
inhomogeneity the maximum amplification is unaltered. However, in this instance,
the modal frequencies of the deposit are dependent on degree of inhomogeneity. Also
shifting of modal frequencies to higher values is evident with increase in shear wave
velocity near the surface of the deposit. Both these observations are important in view
of the current practice of modeling the bedrock as rigid when input motion is
prescribed at the base of the deposit (within motion). This assumption not only leads
to overestimation of the responses at resonant frequencies but also affects the spectral

characteristics of the computed response.
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The analytical study carried out in this chapter also brings about the following

important observations,

— As the damping increases the amplification peaks decreases with increase in
frequency and rate of decrease is dependent on the impedance ratio between
surface layer and bedrock at the base of the deposit.

— The response of continuously inhomogeneous deposits is sensitive to impedance

ratio between surface layer and bedrock, inhomogeneity parameters such as ratio

of shear wave velocity at the base to that at the surface (v, /v, or G, /G,)

and degree of inhomogeneity defined by power (m or n) of the inhomogeneity
function.

— As the ratiov, /v ,increases (refers to decrease inv ,, i.e., large shear wave

velocity gradient near the surface) the modal characteristics are very much

sensitive compared to small values of v, /v, .

— Similarly, for the values of m <1 the response characteristics are significantly
affected compared to large values of m for all values of velocity ratios.

— Trends of the mode shapes corresponding to all the natural modes of vibration of
the deposit are significantly different for low and high values of

v, /v, particularly near the surface of the deposit signifying deviation from the

assumptions made regarding surface boundary condition.

Amplification characteristics of waves at the free surface of an inhomogeneous layer
overlying a homogeneous layer of finite thickness (instead of half-space) are studied.
In particular, the effect of depth of homogeneous bottom layer on amplification at the
free surface. As the shear wave velocity of the bottom layer increases the
amplification increases because of decrease in impedance ratio between the two layers.
Increase in depth of the bottom layer decreases the resonant frequencies but maximum
amplification depends on the ratio of depths of top and bottom layer. More
importantly, all resonant amplitudes are considerably higher than that obtained for

single layer for all values of impedance ratio between base of the deposit and bedrock.
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The solution obtained for stack of multiple Gibson layers is used to study the scope
for incorporating a transition layer at the interfaces of homogeneous layered system in
order to achieve gradual variation in layer impedances at their interfaces. Thereby it is
intended to overcome unrealistic effects of contrasting impedances on the
amplification characteristics of layered deposits. The parametric study carried out by
varying the depth of transition zone with respect to layer thickness indicates that
prediction of high frequency response can be improved without affecting much the
lower mode responses. Also it is shown that appropriate configuration of Gibson
layers can be used effectively to represent continuously inhomogeneous soil deposits

instead of approximating them with stack of homogeneous layers.

In order to verify the observations made above, two independent studies are carried
out using the profile data of two instrumented geotechnical downhole arrays. The
earthquake data recorded at these sites are used to compare the computed response
from different shear wave velocity profile idealisations with an objective to
investigate the implications of idealizing the deposit with continuous and layered
profiles. Firstly, calculated responses for three different layered idealisations were
compared with the measured response (La-Cienega site, USA). Results of idealisation
with more number of layers indicating continuous variation in soil properties is found

to be closer to reality than those with less number of layers.

In the second case study an attempt is made to address the issue of underestimation of
high frequency response in equivalent linear analysis. For this propose, analyses are
carried out considering three cases of layered idealisations, with distinctly different
impedance characteristics, representing the shear wave velocity profile of a soil
deposit of El-Centro Meloland geotechnical array site. The computed surface
responses are compared with those of actually measured data. The results clearly
demonstrate that the high frequency response characteristics are very much sensitive

to layer configuration particularly for contrasting impedance ratios between the layers.
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CHAPTER 4

ANALYSIS OF CONTINUOUSLY INHOMOGENEOUS SOIL
DEPOSITS - COMPUTER PROGRAM SRISD

41 INTRODUCTION

Characterisation of local site effects for earthquake ground motion is usually
performed using one dimensional earthquake ground response analysis. These classes
of analyses procedures are often based on the assumption that perfectly horizontally
layered soil profile is excited by vertically propagating and horizontally polarized
shear waves. In fact, in some instances non-homogeneity of the surface deposit may
be due to continuous variation of stiffness and density rather than distinctly layered
formation. Review of analytical studies pertaining to amplification characteristics of
continuously inhomogeneous soil deposits and outcome of these studies have been
presented in the previous chapter. Also, comparative study carried out with regard to
modeling continuous inhomogeneity with an equivalent layered profile consisting of
sufficiently large number of layers closely representing the trend of continuous
variation has revealed distinct advantages in improving the results. Particularly,
improvement in high frequency response simulation using equivalent linear procedure
was evident compared to routine layered analysis. In view of these studies it can be
concluded that, there is scope for improving the standard equivalent linear method of
predicting seismic ground response. As these analytical studies have pointed out,
main drawback of the routine one-dimensional modeling of the ground arises out of
the assumption of uniform horizontal layers of varying depths. This kind of modeling
the ground leads to unrealistic and contrasting impedance ratio between adjacent
layers. In turn this results in poor simulation of ground response. Hence there is need
for overcoming this lacuna by modeling the ground profile with continuous variation

of soil properties thus resulting in smooth transition instead of abrupt variation.

In the previous chapter, fallout of performing the analysis based on obscurely

modeled layered idealisation when the ground essentially exhibits continuous



variation of soil properties has been brought out. In this chapter numerical analysis
and the associated computer program developed for seismic response analysis of 1-D
continuously inhomogeneous ground is presented. The details about the computer
code SRISD (Seismic Response of Inhomogeneous Soil Deposits) along with

example analyses for validation and testing of the program are presented.

4.2 NUMERICAL PROCEDURE TO SOLVE 1-D WAVE EQUATION

The procedure described here is similar to the one implemented by Prasad (1996).
This procedure was developed essentially for limited application, primarily, to verify
experimental data pertaining to model ground prepared using a laminar box. The main
objective of the test was to study the deformation characteristics of the homogeneous
model ground under harmonic excitation. Thus, in his study the computer code
developed was limited to carrying out linear analysis under harmonic excitation. In
the present study, the numerical procedure is further modified and extended to
develop a general purpose site response analysis computer program which will have
all the features and capabilities of any other available computer program based on
equivalent linear response analysis. Apart from this broad objective, the envisaged
computer program shall include some additional attributes to accommodate the

refinements based on the outcome of this research work.

4.2.1 Governing equations

For a soil deposit with continuous variation in shear modulus along the depth (z),
wave equation for the upward propagation of shear waves given by Equation (3.4) of

previous chapter may be expressed using the usual notations as,

du [ .. _ou
U _2|G () 4.1
p o [ (2) BJ 4.1

where G~ is the complex shear modulus, given by,

G =G(1+2i{)=G+iG (4.2)
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Here G (G:pvf) is the shear modulus, i=\/j , ¢ is the equivalent viscous

damping coefficient which is considered to be independent of frequency of excitation
and G = 2iG{ . If the excitation is considered to be harmonic, then displacement and

shear stress are expressed as functions of space and time as given by Equations (3.26)

and (3.27) respectively (Chapter 3). Combining these with Eq. (4.1) yields,

L O°T

G
27

+p&’T=0 4.3)

Since shear modulus is complex, the shear stress amplitude, T is also complex. If 7,
and 7, are real and imaginary parts respectively of shear stress amplitude, we have,
T=1, +ir, (4.4)
Therefore, it follows

dT _dr, .dt, _ , .,

—+i—==17,+IT,
dz dz dz
(4.5)

d’T _d’t, +id212 g

2t dt dt 7

Substituting in (4.3) yields,

Gt —Gt, + pa’t, +i(Gt, +Gt,” + p’t,) =0 (4.6)
Making both real and imaginary parts equal to zero,

Gt —-Gt,” + pa’t, =0 (4.7
Gt +Gr, + pw't, =0 (4.8)

Combining the above equations (4.7) and (4.8), we have,
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7| |G G| (7,
(-

This yields,

e —pa’ (Gt, +Grt,)

1 G +G? (4.10)
, =
» _ po (Gt,—Gt,)
7’.2 - Gz_i_lég : (411)
From Eq. (4.5), we have 7 =%; T, :%; T{':% andT;:%.
dz az az az
Taking &, =7,; k, =7,; kK, =7, and k, =7,, we have,
dx, : Jr
dzl =K =Kk, i.e, K3:a—zlzfl (4.12)
dx, . oaon,
d; =K, =k,; i.e, K, =0_)—Z2=T2 (4.13)
—_— 2 ~
aK; _ o - 2P¥ (GK 1 GKy) (4.14)
dz G +G
, =
ax, _ o _po (GK —Gk,) (4.15)

dz ! G*+G*

Therefore simultaneous equations (4.12) to (4.15) represent a set of four first order
ordinary differential equations. Numerical solution of these differential equations is

obtained using the Fourth order Runge-Kutta method to give k,x,, k; and k. Then,

shear stress amplitude is given by Eq. 4.4,
T=x +ix, (4.16)

Displacement, shear strain and acceleration amplitudes are obtained using the

following,
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1 oT 1
—=——— (K, +ik,) 4.17)

pw 97 pw

Displacement; U(z) =—

Shear strain; &—U = l = L”fz (4.18)
Jdz G G+G

Acceleration; ii(z) = l(l(3 +ik,) (4.19)
Yo,

Zi=0 Ground surface

|z,
Az 7

-\'-\- 7= ;= idz
Ziv1

Az is constant

Shear Modulus, G (z)
or
Shear wave velocity, v (z)
or
Density, p (z)
or
Damping ratio, { (z)

Z Bedrock

Figure 4.1: One-dimensional soil deposit with continuous variation in soil
properties and its discrete idealisation in space

The above set of ordinary differential equations (4.12, 4.13, 4.14 and 4.15) may be

expressed in the general form as,

dxK
d—zl=ﬁ(z,lq,lf2,l(3,lf4)

dx.

dZ2 :fZ(Z’K-l’KZ’K-3’K4)

4.20

i, (4.20)
i = f,(2, K, K,, K, K,)

dx,

dZ4 = fi(2. K, K, K3, )
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Here f,.f,.f; and f, are the functions of dependent and independent variables
representing the derivatives of &, k,,k; and k, respectively. Assuming that the soil
properties such as shear modulus (G(z)) or shear wave velocity (v,(z)), density
(p(z))and damping ratio({(z)) of the deposit is defined at n data points including

bed rock at the depths Z,Z,,Z.,......... Lo V4

i n-1°

Z, measured from the surface
(Z, =0), then between any two data points Z. and Z,, the soil properties may be

interpolated for any desired variation.

Suppose, the step size for numerical differentiation is Az, the soil properties are

determined for all the nodes (Z,/Az) using corresponding interpolation function.

The discrete idealisation of the deposit for the purpose of implementing numerical
procedure is shown schematically in Figure 4.1. Procedure described above can
accommodate continuous variation in shear modulus or shear wave velocity, density
and damping ratio of the deposit along the depth. The system of first order total

differential equations (Equations 4.12 to 4.15) are solved for the values of «,k,,k;

and x;, .

4.2.2 Fourth order Runge - Kutta scheme

The computer program SRISD is developed to obtain responses using Equations
(4.17), (4.18) and (4.19). In order to solve the simultaneous Equations (4.12), (4.13),

(4.14) and (4.15) fourth order Runge-Kutta numerical differentiation scheme is used.
In this method the truncation error is (Az)’ [Atkinson (1984)] and it is worth noting

that the gain in accuracy achieved using higher order method is not much vis-a-vis
fourth order scheme, particularly, in view of added computational effort and
complexity involved [Ralston and Rabinowitz (1978)]. The following steps illustrate
the method of implementation of fourth order Runge-Kutta scheme to solve for

K, K,,k; and k, of Eq. (4.20) at any depth z, with an interval of Az (Figure 4.1). In

general form, using the values of «,,k,,k; and x,at z,, that is K;i) where j=1to 4

1

i+1)

at z,, Kj. may be computed using fourth order Runge-Kutta scheme as,
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K'(.Hl) — K.(i) +%(Q1(j) +2qgi) +2q§j) +C]f‘j))(AZ) (421)

J J

where the coefficients g\, ¢\",q\" are g\’ represented by the following relationships,

() _ i) (i) (i) (i)
4" =1 (Z;’Ki(l KKK )
) Az ) Az ) ) Az ) ) Az ) ) Az )
C];]) :fj Zi+_,’(.1(1) + 4, ,K‘;l)‘i‘ 9, ’Két) + 4q, ’K;(tl)—i_ 9,
2 2 2 2 2
() () ) () (4.22)
. Az o Azqy” o Azqy) o AzgY) . Azgy
qéj) :fj Zi+_,’(.1(1) + 4 ,K‘;l)‘i‘ 49> ’Két) + 4 ’K;(tl)—i_ 49>
2 2 2 2 2
qi]) — fj (Zi +AZ,K'1(i) +AZC]§j),K'§i) +AZQ§j),K3(i) +Azq§j)’K-ii) +AZC]§j))

The coefficients ¢, q.”,q” and q” are computed for all values of j successively at

(i) L) L L0)

the depth z, knowing &, &{", K} 0

and k" either from the boundary condition (that

is at z=0) or from the computations of previous iteration. Then using equation

(i+1) (i+1)

(4.21) k", &", k" and k" are updated to &V, &V, KT

(i+1)
, K, ’

and k" respectively.

This procedure may be continued for all the nodes that are equally spaced atAz.

4.2.3 Boundary conditions

In Eq. 4.21, Kj’”) for i =0 may be computed using the values of K;m which may be
established with the boundary condition at the surface i.e., shear stress Tieo) = 0.Asa

result, from Eq. 4.16 we have T __, =0. Therefore at z=0we getx; +ix, =0. Hence,

k" =0and x}” =0. Assuming that the acceleration is known at the surface, we have

U - = (k5 +iK,)/ pfor all time increments. Input acceleration being a real quantity,

(0)

we get & 0

=pii(z=0,t)and x,” =0. Thus at z =0satisfying the boundary condition

of zero shear stress and known acceleration yields,
0) _ 0 _ (0) _
K=K =k =0

(4.23)
K% = pii(z=0,1)
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4.2.4 Frequency domain analysis

The theory and equations developed in the above section are capable of analyzing the
ground response due to input steady state harmonic acceleration record. However,
general seismic accelerogram is usually transient and defined in time domain at
discrete time intervals. Therefore it is necessary to decompose this time history data
into its harmonic components and corresponding amplitudes. To accomplish this fast
Fourier transformation (FFT) may be adopted. Among several FFT techniques that are
available, Cooley and Tukey algorithm is popular. In the present study Sande-Tukey
algorithm based on decimation in frequency process is used. Although these two
methods differ in type of process they will produce identical final results [Remirez

(1985)].

Consider the accelerogram a(¢)defined at discrete intervals of time which typically

represents the data of an earthquake event of total duration 7" as follows,

a(t):{a(t) for O<t<T} 424)
0 fort>T

The Fourier transform A(@) of this function is defined as,
T .

A(@) = [a(t)e ™ dt (4.25)
0

Since the given data is in discrete form the above integral may be replaced by the

summation over the time axis of N equal intervals, which correspond to the N +1

time coordinates 7, n=0,1,2,.......... N , such that ¢, —t =Ar for all values
ofn=0,12,............. N —1, so that,

N-1 —i(gjnk
A(k) =Y a(n)e " , 0<k<N (4.26)

n=0

Depending on whether the value of k£ is odd or even the above equation can be

expressed as,
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A

A(2k) = ZZ [a(n) + a(n +%HW”(2") (4.27)

n=0

for even values of k and when & is odd, we have

A

AQk+1)= i[a(n) —a(n+%ﬂwn<2k+n 4.28)

n=0

(27
where W =e (N ) is complex valued weighting function. From Eq. (4.27) and Eq.

(4.28) we get the two sided frequency domain record at discrete frequencies @), for

k=0,12,......... % —1at Aw= ZTl from N data points of time domain record. Fourier

transform has an inverse that has an almost identical structure to recover discrete time

record from its frequency domain data as,
1 N-1 i(ﬁjnk
a(n) = NZA(k)e Y , 0<n<N (4.29)
k=0

the above equation yield the equations,

a(2n) = % 2 {A(k) + A(k + %HW‘W") (4.30)
1 3_1 N —k(2n+1)
a(2n+1):ﬁz Ak = A| k+— | |W (4.31)

Equations (4.30) and (4.31) are the inverse Fourier transforms of A(®), in which apart
from scaling factor 1/ N the inverse Fourier transform is just as Eq. (4.27) and Eq.
(4.28) with W being replaced by its complex conjugate. Hence, algorithm that
computes the Fourier transform can be used, with minor modification, to compute the
inverse discrete Fourier transform. It is evident from the equations that, the even and

odd parts of the A(w) or a(t) can be computed separately using discrete points of
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length N/2 and this decomposition can be applied recursively thereby reducing the

computational effort to enormous extent [Schilling and Harris (2002)]. Thus FFT

algorithm requires the condition N =2" to be satisfied. In order to meet this
condition actual record is appended with required number of zeros at the same time
interval. This, adding quiet zone to accelerogram, in fact has got additional advantage
because it improves the frequency resolution. In the SRISD computer program, the
FFT pseudo-code given by Chapra and Canale (1998) is implemented with

modification.

4.3  SOIL PROFILE DATA

Soil profile data consist of geometrical data and material properties. The geometrical
data depends on how the soil profile is modeled with respect to soil properties. The
soil properties associated with an inhomogeneous deposit in turn depends upon the
type of inhomogeneity. The inhomogeneity of the soil deposit is usually modeled
using layered idealisation. However, more often available field and laboratory data
will generally provide information about the soil properties and its distribution along
the depth at discrete points, often at constant interval, to appropriately model as one-
dimensional soil deposit. In general the soil deposit can be modeled as continuous
profile or discrete data points or layered profile depending on analysis model
employed. The numerical procedure described above is modified in spatial
discretization of the soil deposit to provide flexibility in modeling as explained in the
following sections. Usually, low strain shear modulus or shear wave velocity, density
and initial damping ratio of the soil deposit are the essential soil properties for the

seismic site response analysis.

4.3.1 Continuous profile

If the soil properties are continuously varying along the depth the data is required to
be given in the form of an appropriate function of depth. Most popular power law
functions which can be used to model continuous distribution of shear modulus or
shear wave velocity along with analytical solutions for the amplification response are

discussed in the previous chapter.
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For continuously inhomogeneous soil deposits the data is in the form of associated

parameters of the function defining its variation. The numerical procedure described

above is also compliant for modeling continuous variation of damping and density of

the soil deposit. Along with these parameters of the depth function defining the trend

of soil properties distribution, appropriate uniform step size for spatial discretization

is to be selected (Azin Figure 4.2a) with due consideration to rate of change of soil

properties along the depth in order to ensure accuracy.

0 (a) ! b 0 (0
a » C
R
= 2. - &,
20- § 20 ,%) 207 %
g % = z -
@) z o —A i
i+1 %
Z.
A 271 i+3 ﬁ
40- 40 E 40 A Z[
? Az
= _
Ej‘ _L. 21
60_ 60_ 60 1 A Z[+1
i zZ,
80+ 80- 80 ’
100 100 T T T 1 100 T T T T

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Shear wave velocity (m/s)

Figure 4.2: Different options for soil profile data and corresponding input data
to control step size depending upon the profile configuration; (a) Continuous
profile data, (b) Profile data at discrete points and (c) Layered profile data

4.3.2 Profile data at discrete points

In case of continuous profiling techniques such as continuous P-S logging technique,

shear wave velocity distribution along the depth is obtained often at equally spaced
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discrete points. Usually such information is interpreted to arrive at layered shear wave
velocity profile. In the numerical procedure explained above, it is possible to use this
raw data of discrete shear wave velocity distribution along the depth for response
analysis. For this purpose the values of shear wave velocities or shear modulus and

corresponding depths are used as profile input data. That is, v, or G, is prescribed at

corresponding depths z,fori=1,2,....n . In general all the soil properties between these

data points are assumed to be linearly distributed and can be obtained by interpolation.

The procedure is illustrated in Figure 4.2b.

4.3.3 Layered profile

The numerical procedure using Runge-Kutta method developed for seismic response
of continuously inhomogeneous soil deposits can be generalized to carry out analysis
of layered profiles. For this purpose, the variable step size for spatial discretization is

used. In the procedure developed Az is constant, whereas in case of layered profile
Az, between two successive layers is the difference in mid-depths of these two layers

as shown in Figure 4.2c. At these points the data pertaining to soil properties (shear
wave velocity or shear modulus, density and damping ratio) of those layers are to be

prescribed. These data are considered to be uniform throughout the depth of that layer.

In classical numerical analysis, the methods which can implement variable step size
are called adaptive methods and they are often preferred to improve the speed
depending on the solution trend. Here the objective is to accommodate analysis of
layered profile within the frame work of the numerical algorithm developed for
continuously inhomogeneous profiles. The procedure for numerical implementation
of this variable step size discretization along with its effect on stability and accuracy
is detailed elsewhere [Schilling and Harris (2002)]. However, the procedure can be
easily programmed to adjust step size depending upon thicknesses of adjacent layers
such that the process is advanced to mid-reach of every layer. In order to enhance the
accuracy of the solution, intermediate data points with appropriate spacing may be

considered.
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44 INPUT MOTION SPECIFICATION

4.4.1 Surface motion

The surface boundary condition used to obtain the initial values of x;,x,,&; and x at

z=0can be directly used in the response analysis for the case of input motion
prescribed at the surface of the soil deposit. Eq. (4.23) gives the values as
K =k, =k, =0and k3 = pii(z =0,t). Here, ii(t)is the acceleration time history for

which the responses are calculated at any desired depths.

4.4.2 Base motion

For the case of input motion is to be prescribed at the base of the soil deposit the

initial values of x;,,,k; and k, given in Eq. (4.23) alone is not sufficient. However,

the procedure used here is similar to deconvolution of surface motion to obtain base
motion but with modification. Almost all popular computer programs developed for
equivalent linear analysis of layered deposits the response at surface due to base input
motion is obtained using the relative amplification between surface and base and vice
versa as detailed earlier (Chapter 2). Herein, instead of using amplification function,
shooting method [Schilling and Harris (2002)] is introduced for estimating the surface
motion. For any arbitrary surface motion given at the surface, the base motion is
estimated and adjusted accordingly to obtained target accelerogram in an iterative
manner. For this purpose, the iterative scheme employed to implement equivalent
linear method is also simultaneously used for estimation and updating of input
accelerogram at the base of the soil deposit (z = H ). If the input motion is to be given

at any intermediate depth (0 < z; < H ) other than surface (z=0) or base (z = H ) the

same procedure is used.

45 EQUIVALENT LINEAR ANALYSIS

In equivalent-linear method, the nonlinear behaviour of soil is modeled by
considering shear modulus and damping as a function of shear strain. The hysteretic

stress-strain behavior of soils under cyclic loading is represented by an equivalent
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modulus and damping ratio. The equivalent modulus is corresponding to the secant
modulus through the endpoints of the hysteresis loop and equivalent-linear damping
ratio is proportional to the energy loss from a single cycle of shear deformation. An
iterative procedure, based on linear dynamic analysis, is performed to find the shear
modulus and damping ratios corresponding to the computed shear strains. The
iterative procedure of equivalent linear method (EQL) to update shear modulus and
damping consistent with computed effective strain in a particular iteration is
previously described in Chapter 2 (Section 2.7.1). As shown in the Figures 2.9 and
2.10, initial estimates of the dynamic shear modulus, corresponding to low strain

shear modulus (G, )and damping ratios ({) are assigned to each of the nodes for

the first iteration.

Thus equivalent linear analysis essentially requires input of shear modulus ratio

(G/G,,.) and damping ratio (¢ ) curves expressed as function of strain ( 7,y )- In case

of routine large scale ground response studies usually readily available information
with respect to different types of soil are used. Many of the computer codes for e.g.,
SHAKE [Schnabel et al. (1972)], SHAKE91 [Idriss and Sun (1992)], DEEPSOIL
[Hashash (2011)], STRATA [Kottke and Rathje (2008)], EERA [Bardet et al (2000)],
etc. have incorporated some of the popular generic curves and they are readily
available for the user. For example, such typical data pertaining to clay and sand are
presented in Table 4.1. In fact the data given in this table is taken from the computer

program STRATA. If the site specific information is available, then G/G,  and
¢ values at discrete strain data are to be provided by the user. In both the cases linear
interpolation is carried out to computeG/G,,, and ¢ at any intermediate strain level.

In the following sections data required to be provided in this regard for the computer

program SRISD is discussed.

4.5.1 Modeling strain dependent shear modulus and damping properties

In the computer program SRISD the G/ G

max

and { versus 7,5 curves are approximated

by a polynomial function and data is given in the form of coefficients of the

polynomial function. This procedure is implemented to overcome linear interpolation
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between data points and thereby associated interpolation error is avoided. Firstly, it is
demonstrated that many of the generic data curves can be satisfactorily represented by

a seventh degree polynomial. Thus G/G, and ¢ can be conveniently expressed as a

continuous function of effective strain. For some of the popularly used generic strain

dependent G/ G

max

and ¢ curves, the polynomial coefficients are incorporated in the

subroutine. The seventh degree polynomial to represent strain dependent shear

modulus and damping ratio is given by,

()
G, = io B, (4.32)
$(7)

Here 7, is the effective strain computed based on computed maximum strain (%, )

in the previous iteration. Coefficients of Eq. (4.32) B, (i=0,1,2,...7) are distinctly

different curve fitting constants for shear modulus and damping. The procedure of
expressing strain dependent modulus degradation and damping in the form Eq. (4.32)
is verified for two popularly used curves for clayey soils of different plasticity indices
(PI) proposed by EPRI (1993) and Vucetic and Dobry (1991). The results of the curve
fitting process are tabulated in Tables 4.2 and 4.3. Figures 4.3a and 4.3b show the

curves of strain dependentG /G, _and ¢ respectively obtained using the curve fitting

coefficients tabulated in Table 4.2 for the data of EPRI (1993), while Figures 4.4a and
4.4b present these results respectively for the curves proposed by Vucetic and Dobry
(1991). In these figures actual data points of respective curves are also plotted. It is
clear from these figures that the Eq. (4.32) exactly represents the experimental data.
Further this procedure is also validated for the confining pressure dependent curves
proposed for cohesionless soil proposed by EPRI (1993). The curve fitting results are
tabulated in Table 4.4. Figures 4.5a and 4.5b show the comparison of the actual data
and curve fitted to these data using Eq. 4.32. As in the previous case, here too the

curves fitted using polynomial function exactly represents the actual data.

Hence it can be concluded that, the polynomial function of appropriate degree can be

used to represent the strain dependent shear modulus and damping ratio of the soil. As
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stated previously, in the computer program SRISD this m