
OM GANESHAYA NAMAH

DWDS - A SCALABLE, CONTEXT-AWARE

FRAMEWORK FOR DISTRIBUTED WEB SERVICE

DISCOVERY USING SEMANTICS

THESIS

Submitted in partial fulfilment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

by

SOWMYA KAMATH S.

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

JUNE 2016

DECLARATION
by the Ph.D Research Scholar

I hereby declare that the Research Thesis entitled “DWDS - A SCALABLE,

CONTEXT-AWARE FRAMEWORK FOR DISTRIBUTED WEB SERVICE

DISCOVERY USING SEMANTICS”, which is being submitted to National

Institute of Technology Karnataka, Surathkal in partial fulfilment of the

requirements for the award of the degree of Doctor of Philosophy in Information

Technology is a bonafide report of the research work carried out by me. The material

contained in this Research Thesis has not been submitted to any University or

Institution for the award of any degree.

Sowmya Kamath S.

Reg.no. 110653IT11P02

Department of IT,
NITK Surathkal

Place: NITK, Surathkal
Date:

CERTIFICATE

This is to certify that the Research Thesis entitled, “DWDS - A SCALABLE,

CONTEXT-AWARE FRAMEWORK FOR DISTRIBUTED WEB SERVICE

DISCOVERY USING SEMANTICS”, submitted by Sowmya Kamath S

(Reg.no.110653IT11P02), as the record of research work carried out by her, is

accepted as the Research Thesis submission in partial fulfilment of the requirements for

the award of the degree of Doctor of Philosophy in Information Technology.

Prof. Ananthanarayana V.S.
Research Guide

(Signature with date and seal)

Prof. G. Ram Mohana Reddy
Chairman - DRPC

(Signature with date and seal)

Dedicated to my family

Acknowledgements

First and foremost, I take this opportunity to express my heartfelt gratitude to God
for granting me the wisdom, health and strength to undertake this research work and
enabling its successful completion. I express deep gratitude and appreciation to my
esteemed research guide, Prof. Ananthanarayana V.S, whose timely advice and constant
encouragement has helped shape me as a dedicated researcher. I am very much obliged
to him for his valuable guidance and scholarly inputs, always given selflessly, despite his
busy schedule. I consider it a great privilege to have been able to pursue my doctoral
studies under his guidance and am thankful for the opportunity. I also acknowledge the
role of Dr. Prakash S. Raghavendra, in introducing me to the emerging area of Semantic
Web research and for encouraging me to pursue doctoral studies.

I sincerely thank Prof. G. Ram Mohana Reddy (Chairman-DRPC & Head, Dept.
of IT, NITK), Dr. S.S. Kamath (Dept. of MACS, NITK) and Dr. Annappa B (Dept.
of CSE, NITK), for serving as my research committee members and for their valuable
comments and suggestions. Special thanks to Dr. Santhi Thilagam for her kind words
of motivation and advice. I also acknowledge Dr. Maya Ahmed’s role in rekindling the
passion for Mathematics in me.

I greatly appreciate the help and support of all my friends and peers during my time
as a research student. I am indebted to Dr. Geetha V, for being such a good friend
and for always offering her time & inspiration whenever required. I thank my fellow
students, Ms. Pushpalata, Dr. Melwyn D’Souza and Dr. Poornalatha G, for the lively
discussions on varied topics, research and otherwise. I also acknowledge my dear friends,
Madhuri Velaga, Bhagi Chandra, Raksha V. Prabhu and Dr. Aruna Kamath, for their
invaluable friendship. I particularly thank all my colleagues and the supporting staff of
the Department of Information Technology, who have always provided their help and
cooperation as needed, during my research work and beyond.

My family has always believed in my abilities, far more than I give myself credit
for. Words cannot express my love and gratitude towards my parents, Mr. S.P.Kamath
and Mrs. Vijayalakshmi P. Kamath, for all the sacrifices made on my behalf. A special
mention for my siblings, Sushma and Krish, who willingly gave their time whenever I

asked for it; be it boosting my morale, turning proofreaders for me, or simply listening
to my woes. Their prayers for me and their best wishes are what sustained me thus far
on this momentous journey. I also thank my in-laws for their best wishes and blessings.
On this occasion, my beloved grandparents are also in my thoughts, who, I sincerely wish
were with me in person today, to share this joyous moment.

And finally, I express my deepest appreciation to my husband, Krishnananda, for his
encouragement and his whole-hearted support in all my endeavours. He has been a pillar
of strength to me while I strived towards my goal. All my success and achievements are
dedicated to my daughter, Ananya. For one so young, her love was always given freely
and understandingly, during the toughest of times. At the end of a hard day, one look at
her smiling face invariably made my biggest problems seem quite trivial.

Sowmya Kamath S

Abstract

Service-oriented Computing is a popular paradigm that lays the foundation for a robust
distributed computing infrastructure for both intra- and cross-enterprise application
integration and collaboration. It spans a diverse range of possible applications -
standalone services, software mashups combining multiple Web services, micro-services
used in the implementation of entire IT system landscapes etc. For any such
service-oriented application design, the discovery of relevant services that can provide
the desired capability is one of the basic tasks. In particular, Distributed Web service
discovery is deemed to be one of the grand challenges in Web service research, due to
the current distributed nature of services on the Web. This applies in particular to
scenarios where a large number of service offers are available in an distributed
environment like the WWW; making the process of making a selection difficult,
especially given the limitations of keyword based matching. Hence, it is very desirable
to improve this process to support efficient Web service discovery, using intelligent,
semantics based techniques.

This thesis addresses the important aspects of Web service discovery, focusing on
services available in a large scale, distributed environment, that is, the Web. The main
research contributions are towards the improvement of service discovery based on
implicit semantic information, inference of service domain knowledge, context-aware
Web service discovery and composition-oriented Web service discovery. An efficient,
scalable framework called Distributed Web service Discovery with Semantics (DWDS),
is presented, to address the issue of distributed Web service discovery using semantics.
The DWDS framework also provides autonomic features like automated repository
management, redundancy control and verification, in order to maintain the validity of
the service repository. Based on the statistics collected over the course of 3 years, it was
found that the techniques proposed for developing the DWDS framework and adding
autonomic features were effective and supported scalable service discovery.

To support similarity based service discovery and effective categorisation of services
in the repository, automatic metadata generation and similarity computation
techniques, that use the inherent functional semantics of the services were incorporated.

As traditional unsupervised categorisation mechanisms like K-means clustering and
supervised techniques like Classification cannot deal with the dynamic nature of the
framework, a bio-inspired incremental clustering algorithm, BI2C, based on the flocking
behaviour of birds was proposed. BI2C incrementally clusters the service collection
after each change introduced by periodic crawler runs, thus, supporting the scalability
of the service repository. BI2C achieved an average speed up of more than 57% over
traditional clustering algorithms and was also able to deal with the large volume of
service descriptions available in the DWDS repository.

To enable context-aware, natural language based querying during Web service
discovery in DWDS, semantics based query analysis techniques were developed. Also,
any complex queries were automatically processed to determine their constituent
sub-queries, so that composite service discovery can be supported. It was found that
the semantic analysis of user query to capture context were effective as it resulted in
16% improvement in precision and over 37% increase in recall, over keyword matching
based approach.

To extend composite service discovery, a concept of capturing the service
input/output dependencies formally through a Service Interface Graph (SIG) was
proposed. In the SIG, services are represented as nodes, and their dependencies are
captured as edges. Any user queries that have sub-queries are answered by traversing
the SIG, so that the correct invocation sequence required to satisfy the user query
requirements can be identified. Experimental evaluation showed that the proposed
method achieved an accuracy of 70.68% and effectively identified correct composition
templates in O(N2) time.

To summarize our contributions, our work focuses on developing a semantics based
distributed Web service discovery framework that can automatically retrieve service
descriptions available in heterogeneous sources on the Web, to build a scalable service
repository. Automated metadata generation and dynamic categorisation techniques
enable the framework to support efficient basic and composite Web service discovery in
a context-aware manner.

Contents

List of Figures vi

List of Tables viii

List of Algorithms x

Abbreviations and Nomenclature xi

Part I - Introduction & Background

1 Introduction 2

1.1 Web Services . 4
1.2 Semantics for Web Services . 7

1.2.1 Need for Semantics . 7
1.2.2 A Motivating Example . 8
1.2.3 Major Challenges . 12

1.3 Web Service Discovery . 13
1.3.1 Basic and Composite Services . 14
1.3.2 Current Scenario . 16
1.3.3 Prevalent Issues in Web Service Discovery 17

1.4 Summary . 19
1.5 Organization of the Thesis . 20

2 Literature Review 22

2.1 Web Service Discovery - A Review . 22
2.1.1 Web Service Discovery Architectures 23

2.1.1.1 Centralized Architectures 23
2.1.1.2 Decentralized Architectures 26
2.1.1.3 Centralized vs. Decentralized Approaches 28
2.1.1.4 Hybrid Architectures . 29

2.1.2 Web Service Discovery Techniques 29

i

2.1.2.1 Functional Aspects based Discovery 29
2.1.2.2 Non-functional Aspects based Discovery 34
2.1.2.3 Functional vs. Non-functional Service Discovery 36

2.1.3 Remarks . 37
2.2 Adding Semantics to Web Service Descriptions 38

2.2.1 Using Semantic Web Service Formalisms 38
2.2.2 Generating Service Metadata . 42
2.2.3 Remarks . 43

2.3 Review of Web Service Categorization Approaches 43
2.3.1 Taxonomy based . 43
2.3.2 Clustering based . 46
2.3.3 Classification based . 48
2.3.4 Hybrid Approaches . 50
2.3.5 Remarks . 51

2.4 Understanding User Requirements . 52
2.4.1 Using Limited Vocabulary Requests 53
2.4.2 Using Semi-structured Queries. 54
2.4.3 Using Natural Language Interfaces. 54
2.4.4 Remarks . 55

2.5 Composite Web Service Discovery - Review 55
2.5.1 Indexing based . 56
2.5.2 Semantics/Ontology based . 57
2.5.3 Graph based . 58
2.5.4 Remarks . 59

2.6 Research Directions . 60
2.7 Summary . 62

3 Problem Description 64

3.1 Problem Definition . 64
3.2 Scope of the Work . 64
3.3 DWDS - Distributed Web Service Discovery Framework using Semantics 68
3.4 Summary . 71

Part II - Building a Scalable Web Service Repository

4 Finding Distributed Web Services 73

4.1 Introduction . 73

ii

4.2 Problem Statement . 74
4.3 The Proposed Framework - DWDS . 74

4.3.1 Building the Service Repository 75
4.3.2 SSC Crawling Modes . 78

4.4 Autonomic Repository Management . 80
4.4.1 The DWDS Change Propagation Strategy 81
4.4.2 Event Driven Change Propagation 85

4.5 Experimental Results and Discussion . 86
4.5.1 SSC Performance . 86

4.5.1.1 Theoretical Analysis of SSC Performance 87
4.5.2 Volume Statistics of the Service Collection 88
4.5.3 Quality Statistics of the Service Collection 89
4.5.4 Temporal Statistics of the Service Collection 91

4.6 Summary . 93

Part III - Metadata Generation and Service Categorization

5 Generating Metadata for Web Services 95

5.1 Introduction . 95
5.2 Problem Statement . 96
5.3 Background . 96

5.3.1 Natural Language Documentation of a Service 96
5.3.2 Functional Semantics of a Service 98

5.4 Capturing the Functional Semantics of Services 99
5.4.1 Feature Extraction . 100
5.4.2 Automatic Service Tagging . 104
5.4.3 Service Similarity Computation 107

5.5 Service Categorization using Similarity 108
5.5.1 Similarity based Clustering . 109

5.5.1.1 Cluster Tagging . 110
5.5.2 Similarity based Classification . 111

5.6 Experimental Results and Discussion . 113
5.6.1 Quality of Service Tagging . 113
5.6.2 Service Clustering Performance 114
5.6.3 Service Classification Performance 116
5.6.4 Web Service Retrieval Performance 117

5.7 Summary . 119

iii

6 Dynamic Clustering of Web Services 120

6.1 Introduction . 120
6.2 Problem Statement . 121
6.3 Background . 122
6.4 Proposed Dynamic Clustering Approach 123

6.4.1 Bird Intelligence based Incremental Clustering (BI2C) 124
6.4.2 The BI2C Algorithm . 125

6.4.2.1 The Basic Flocking Model 125
6.4.2.2 The Extended Flocking Model 127
6.4.2.3 Model Constraints . 128
6.4.2.4 Flocking Methodology 128
6.4.2.5 Web Services as a Multi-agent Framework 129
6.4.2.6 Optimizing the Clustering Process 130
6.4.2.7 Clustering Phases . 132

6.4.3 Automatic Cluster Tagging . 134
6.5 Experimental Results & Discussion . 135

6.5.1 Incremental Clustering Performance 136
6.5.2 Goodness of Clustering . 139
6.5.3 Evaluating the Cluster Tagging Process 142
6.5.4 Visualizing the Clustering Process 143

6.6 Summary . 146

Part IV - Context-aware Web Service Discovery

7 Semanticising the User Query 148

7.1 Introduction . 148
7.2 Problem Statement . 149
7.3 Proposed Methodology . 150

7.3.1 Query Analysis Engine . 150
7.3.1.1 A Sample Query Resolution Scenario 154

7.3.2 Query-Service Similarity . 156
7.3.3 Service Selection and Ranking . 157

7.4 Experimental Results . 158
7.4.1 Web Service Retrieval . 158

7.4.1.1 Serving Complex Queries 159
7.4.1.2 Serving Simple Queries. 160

7.4.2 Web Service Retrieval Time . 166

iv

7.5 Summary . 167

8 Composite Service Discovery 169

8.1 Introduction . 169
8.2 Problem Statement . 170
8.3 Proposed Methodology . 171

8.3.1 Capturing Service Dependencies 171
8.3.2 Representing Service Dependencies 173
8.3.3 Serving Complex Queries . 175

8.4 Experimental Results and Analysis . 178
8.4.1 Web Service Retrieval . 178
8.4.2 Composite Service Discovery - An Example Scenario 182
8.4.3 Composite Template Generation Accuracy 184
8.4.4 Theoretical Analysis . 185

8.5 Summary . 187

9 Conclusions and Future Work 188

9.1 Future Scope . 189

Publications based on Research Work 192

References 194

v

List of Figures

1.1 SOA Publish-Find-Bind Model . 4
1.2 Web Services Conceptual Architecture 6
1.3 A Motivating Example - Travel scenario 9
1.4 A composite service workflow . 14
1.5 Web Services Conceptual Model - Theory vs. Practice 16

2.1 Classification of Web Service Discovery Architectures 24
2.2 Hierarchy of Web Service Discovery Techniques 30
2.3 OWL-S Ontology Components . 39
2.4 Web Service Modeling Ontology Components 40
2.5 Web Service Categorization Techniques 44
2.6 Context-aware Web Service Discovery - Approaches 53
2.7 Composite Web Service Discovery - Approaches 56

3.1 Process of building the service repository 65
3.2 Automatic metadata generation for services 65
3.3 Process of dynamic categorization . 66
3.4 Context-sensitive processing of user query 66
3.5 Basic and composite service discovery . 67
3.6 Proposed Methodology for DWDS Framework 70

4.1 Distributed Web Service Retrieval and Indexing Process 76
4.2 Workflow and associated processes of the SSC 84
4.3 Service portals - Service quality statistics 90
4.4 WSDL Complexity statistics . 90
4.5 Quality of Natural Language Documentation 91

5.1 Snapshot of well-documented and poorly documented WSDLs. 97
5.2 A sample WSDL and its functional elements 98
5.3 Process of metadata generation for services in DWDS repository 100
5.4 Service Classification Accuracy . 117

vi

5.5 Comparison between WSDL-level similarity only and WSDL-level
Similarity+tags approaches . 118

6.1 Dynamic Service Clustering process . 123
6.2 Bird flocking behaviour during migration 124
6.3 Given region with agents and the corresponding quadtree 131
6.4 BI2C vs. HAC - Clustering Time for ASSAM dataset 138
6.5 BI2C vs. HAC - Clustering Time for OWL-S TC dataset 138
6.6 BI2C vs. HAC - Clustering Time for services in DWDS Repository . . . 139
6.7 Services visualised as agents on 2D canvas 144
6.8 Sensor range of visualised agents . 144
6.9 A view of cluster formation at some iteration 144
6.10 Two new services are introduced, to imitate repository changes after active

crawling . 145
6.11 Incremental clustering process for the newly added services 145

7.1 Web Service Discovery - Overall View . 150
7.2 Query Analysis Engine - Detailed View 151
7.4 Observed Precision and Relative Recall for NL Query and Semantic Query

Approaches (for Query Classes 1, 2 and 3) 163
7.5 Balance performance for DWDS (Average F-measure at β = 1) 165
7.6 Precision-oriented performance for DWDS (Average F-measure at β = 0.5)165
7.7 Recall-oriented performance for DWDS (Average F-measure at β = 2) . 166
7.8 Comparison of Result Generation time of NL Query and Semantic Query

approaches using DWDS . 167

8.1 Proposed composite service discovery methodology 171
8.2 Profile model of a sample OWL-S document 172
8.3 Equivalent abstract workflow for a sample complex query 176
8.4 Observed precision-recall values . 181
8.5 Observed f-score values . 181
8.6 Result Generation Time . 182

vii

List of Tables

1.1 Potential Issues due to Service/Datatype Naming and Interface Structure
during Web Service Discovery . 11

2.1 Centralized vs. Decentralized Web Service Discovery Architectures 28
2.2 Functional vs. Non-functional Service Discovery 36
2.3 Comparison of OWL-S, WSMO and SAWSDL approaches. 41
2.4 Service Composition example . 56

4.1 The Proposed Incremental Strategy (States and the associated data entities) 82
4.2 Crawl data specifics of the Multi-threaded crawlers of SSC 86
4.3 Summary of retrieved WSDLs and their sources 89
4.4 Temporal Statistics on indexed WSDLs and their sources 92
4.5 Service availability - Growth Rate . 92

5.1 Term vector generation process - Examples 101
5.2 Tags and associated tag-weight for a service CustomerSupportService . . 114
5.3 Tags and associated tag-weight for the service calculateDistanceInMiles . 114
5.4 Some generated clusters and corresponding cluster tags 115

6.1 Experimental Setup - BI2C vs. HAC . 136
6.2 Comparative Cluster-time Evaluation - BI2C vs. HAC 137
6.3 Number of clusters formed per dataset - BI2C vs. HAC 139
6.4 BI2C vs. HAC - Clustering Goodness Evaluation 141
6.5 Some generated classes and their corresponding class tags 142

7.1 Classes of queries used for performance evaluation 159
7.2 Precision & Relative Recall for Query Class 1 for DWDS 160
7.3 Precision & Relative Recall for Query Class 2 for DWDS 161
7.4 Precision & Relative Recall for Query Class 3 for DWDS 161
7.5 Average F-measure for DWDS . 164
7.6 Average Result Generation Time (DWDS) 167

8.1 OWL-S TC 4 Service dataset statistics 178
viii

8.2 Query classes and details . 179
8.3 Experimental setup and sample queries used for different testcases 179
8.4 Experimental results for Web service discovery for various testcases . . . 180
8.5 One possible Composite Service Template for given complex query 184
8.6 An alternate Composite Service Template identified for given complex query184
8.7 Composition template generation accuracy 185

ix

List of Algorithms

4.1 Distributed Web Service Retrieval and Indexing Process 79
4.2 Event-driven Automatic Change Propagation Algorithm 85
5.1 WSDL Element Extraction & Term Token Generation process 102
5.2 Term token generation from badly named WSDL elements 103
5.3 Hierarchical Agglomerative Clustering . 109
6.1 BI2C Initial Clustering Phase . 132
6.2 BI2C Incremental Cluster Maintenance Phase 134
7.1 Service selection and ranking process . 158
8.1 Service Interface Graph construction process 174
8.2 Executing complex queries using SIG . 177

x

Abbreviations

ABC Artificial Bee Colony Algorithm

ACO Ant Colony Optimization

ANN Artificial Neural Network

API Application Program Interface

B2B Business to Business

B2C Business to Customer

BFS Breadth First Search

BI2C Bird Inspired Incremental Clustering Algorithm

BPEL Business Process Execution Language

CoS Cost of Service

CT Composite Service Templates

DAG Directed Acyclic Graph

DFS Depth First Search

DHT Distributed Hashing Tables

DoM Degree of Match

DOM Document Object Model

DWDS Distributed Web service Discovery with Semantics

DWSRIE Distributed Web Service Retrieval and Indexing Engine

EAI Enterprise Application Integration

ebXML Enterprise Business eXtensible Markup Language

FCA Formal Concept Analysis

FIPA Foundation of Intelligent Physical Agents

GA Genetic Algorithm

HAC Hierarchical Agglomerative Clustering

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

xi

IR Information Retrieval

IOPE Input Output Precondition Effects

IT Information Technology

JADE Java Agent Development Framework

LDA Latent Dirichlet Allocation

LSI Latent Semantic Indexing

MIME Multi-purpose Internet Mail Extensions

MSF Multi-species Flocking Model

NAICS North American Industry Classification System

NGD Normalized Google Distance

NLI Natural Language Interfaces

NLP Natural Language Processing

NLTK Natural Language Tool Kit (Python)

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

P2P Peer to Peer

PLSI Probabilistic Latent Semantic Indexing

POS Parts of Speech

PSO Particle Swarm Optimisation

QoE Quality of Experience

QoS Quality of Service

QT Quality Threshold

RDF Resource Description Format

SAWSDL Semantic Annotations for WSDL and XML Schema

SIC Standard Industrial Classification

SIG Service Interface Graph

SKOS Simple Knowledge Organization System

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SOBL Semantic Object Behavior Language

xii

SOC Service-oriented Computing

SOE Service Oriented Enterprises

SSC Specialized Service Crawler

SVD Singular Value Decomposition

SWS Semantic Web Service

TAO Transitioning Applications to Ontologies

TTA Tree Traversing Ant

UBR Universal Business Registries

UDDI Universal Descriptions, Discovery and Integration

UNSPSC United Nations Standard Products and Service Codes

URI Uniform Resource Identifier

WSD Word Sense Disambiguation

WSDL Web Service Definition Language

WSFL Web Services Flow Language

WWW World Wide Web

W3C World Wide Web Consortium

WSMO Web Service Modeling Ontology

XML eXtensible Markup Language

xiii

Nomenclature

Notations used in Chapter 4

p a Webpage considered for binary categorisation during
WSDL existence check

b branching factor of a particular Webpage
d depth of crawling when BFS is used

Notations used in Chapter 5

r rank of a word in a dictionary of N words
N number of distinct words in a dictionary
tf term frequency of a tag candidate t in a WSDL document d
tfmax highest frequency of any term in d
df frequency of occurrence of the term t in other WSDL

documents
D number of WSDL documents in the dataset.
U tf-idf matrix
V semantic-relatedness matrix
K a particular domain considered for SVD generation
sim(ti, tj) similarity between any two terms ti and tj
si some service si in the dataset
fsi Feature vector of of service si
simoo(si, sj) similarity between the operations of si and sj
simo i/o type(oi, oj) similarity between the input/output messages of si and sj
simwsdl(si, sj) total similarity between the WSDLs of two services si

and sj
simcluster(ci, cj) similarity of a pair of clusters for merging for HAC
tmerge computed threshold for merging two clusters for HAC
simtag(g, s) how well a tag g represents service s
csimservice(s, c) how well the given service s represents its cluster c

xiv

Notations used in Chapter 6

−→val Alignment Velocity
−→vch Cohesion Velocity
−→vsp Separation Velocity
−−→vsim Attraction Velocity
−−→vdsim Repulsion Velocity
ac agent being considered currently.
ni ith neighbour of ac
−→vc velocity of the current agent ac
−→vi velocity of ni, within the defined locality of ac
pi position of ni in virtual space
pc position of ac in virtual space
sim(ni, ac) pair-wise similarity between agents ac & ni
d(pi, pc) Euclidean distance between pi and pc in virtual space
Sr Sensor Range for nearest neighbour search
SF Speedup Factor
tHAC Cluster time of HAC Algorithm
tBI2C Cluster time of BI2C Algorithm
JM(Ci, Cj) Jaccard Measure value for two clusters Ci and Cj
DB-Index(Ci, Cj) DB Index value for two clusters Ci and Cj
Sk(Ci) average distance of all services in a cluster to their

cluster centre
S(Ci, Cj) distance between two different cluster centres Ci and Cj

Notations used in Chapter 7

/CC Part-of-speech tag for coordinating conjunctions
cos θcj ,qt Cosine similarity between cluster cj and query terms qt
cos θsk,qt Cosine similarity between service sk and query terms qt
w(sk, qt) relative weight of a term with respect to sk and qt.
relR Relative Recall
Fβ-measure F-measure value at various values of β
F1-measure Balanced F-measure (β = 1)
F0.5-measure Precision-oriented F-measure (β = 0.5)
F2-measure Recall-oriented F-measure (β = 2)

xv

Notations used in Chapter 8

Si a service node in the Service Interface Graph
~VoutSi

Output vector of service Si
~VinSk

Input vector of service Sk
cos-sim(~VoutSi

,
~VinSk

)
Cos-sim of output vector of Si and input vector of Sk

CTcorrect Correct composite service templates generated
CTincorrect Incorrect composite service templates generated
CTpartial Partial composite service templates generated
CTconflict Composite service templates with I/O conflicts
CTtotal Total composite service templates generated

xvi

PART I

Introduction & Background

Chapter 1

Introduction

With over a trillion pages and billions of users, the Web is undoubtedly one of the most
popular technological inventions in history. It has currently grown into the most
important medium for information exchange and already is one of the core
environments for business communications & social interactions. While initially
intended for enabling information sharing among scientists, the Web has since then
evolved to cater to governments, businesses, and individuals to make their data and
applications easily accessible. The original design of the Web served its purpose and
went beyond anticipated predictions in its popularity. However, as the number of
applications available and the volume of data on the Web saw an exponential increase,
it become apparent that the Web could no longer sustain its growth in its present form.

Currently, the majority of data on the Web is ‘understandable’ to humans or to custom
developed applications, thus rendering the current Web mostly ‘syntactic’. Much of the
effort in actually reading and understanding content available on the Web is delegated
to humans, while, computers, with their immense processing power are limited to mostly
displaying information as instructed. So far, the main impediment to automated machine
processing has been the limited availability of semantics, which can enable machines to
‘understand ’ Web data. The Semantic Web (Berners-Lee et al. 2001) is an emerging
paradigm shift towards the Next Generation Web, that aims to overcome this limitation.
Berners Lee et al, in this seminal article of 2001, defined the Semantic Web as -

“...an extension of the existing Web, in which information is given a well-
defined meaning....a new form of Web content that is meaningful to computers,
that will unleash a revolution of new possibilities” (Berners-Lee et al. 2001).

To this end, the ultimate goal of a Semantic Web is, to transform the Web as we
know today into a medium through which data and applications can be automatically
understood and processed.

2

Chapter 1. Introduction 3

The real power of the Semantic Web will be realized when, automated programs
that can collect Web content from diverse sources, process the information
automatically and exchange the results with other programs are available (Hendler
2001). The effectiveness of such software programs will increase exponentially as more
machine-readable Web content and automated services become available. Even
programs that were not expressly designed to work together can transfer data among
themselves when the data is enriched with semantics. In view of this ultimate goal, the
development of technologies for supporting the envisioned Semantic Web has been the
priority of various research communities (e.g., database, artificial intelligence, intelligent
agents). As of today, several technologies like the Resource Description Framework
(RDF), and the Web Ontology Language (OWL) have been standardized and are
available to support the basic functionalities of the Semantic Web. This effort is the
focus of numerous research projects, with the aim to integrate semantic technologies in
various fields, like, knowledge management, business intelligence, Web 2.0 and
service-oriented computing (Benjamins 2008).

Service-oriented Computing (SOC) and Web services will be integral in bringing
together distributed applications that consume the semantic data available on the Web
(Hendler 2001; McIlraith et al. 2001). Berners-Lee et al. (2001) put forth the idea of
‘software agents ’ or ‘services ’ that could work together in order to collect and process
(semantic) data. Discussing the potential benefits of such autonomous agents, they also
noted that -

“In a process called ‘service discovery’, it would be necessary to describe a
service’s functionalities semantically by a common language in a way that lets
other agents ‘understand’ both the function offered and how to take advantage
of it”.

McIlraith et al. (2001) illustrated why adding semantics to Web services is a
fundamental need for achieving automation over the Web, as envisioned by the
Semantic Web. They coined the term, ‘semantic Web services’, to describe such a class
of intelligent services; whose functionalities, interfaces, and effects are described in an
unambiguous, machine-understandable form. As Web service standards are based on
XML1, which is one of the fundamental building blocks of the Semantic Web, it would
be a natural progression to combine Web service technologies & Semantic Web
technologies to transition towards semantic Web services (SWS).

In the area of Web service research, the inclusion of semantics in various tasks in the
Web service life cycle is often seen as one of the grand challenges that need to be met

1eXtensible Markup Language

Chapter 1. Introduction 4

in order to facilitate the success of Web services on a broad scale (Krummenacher et al.
2005; Martin et al. 2007; Papazoglou 2003). The W3C is currently actively engaged in the
process of semanticising Web service standards to facilitate service foundations, service
management, and service engineering. As background information, we briefly discuss
some important concepts and technologies in the field of Web services, in Section 1.1. In
Section 1.2, a discussion on the need for semantics in Web Services and related issues is
presented.

1.1 Web Services

Service-oriented Computing (SOC) (Papazoglou 2003) is one of the enabling technologies
for distributed computing and is expected to be a major player in enabling the Semantic
Web (Hendler 2001). The core idea in SOC in the concept of a service oriented architecture
(SOA), which is composed of services. A service is an abstracted unit of some system
functionality, which can be called, consumed and reused without needing to know the
implementation details of the underlying system. Since services may be offered over
specific protocols and can communicate over the Internet, they provide a distributed
computing infrastructure for both intra- and cross-enterprise application integration and
collaboration.

Figure 1.1: The SOA Publish-Find-Bind Model (adapted from Gottschalk et al. (2002))

The basic model that describes the actors and the actions in a SOA scenario is the
publish-find-bind model (Gottschalk et al. 2002), shown in Figure 1.1. The model consists
of three different actors, each with its own associated operations and actions.

1. The Service Provider, which are a software program with a known interface, offers
one or more services. These could be published in a service registry, which is often
hosted by a service broker.

Chapter 1. Introduction 5

2. The Service Consumer (or Service Requester/Service Client) searches for required
services and consumes selected services. If the service to be used is known, the
service consumer directly binds the service. If not, a service broker may aid in the
process of finding the service, after which the binding is performed and service is
invoked.

3. The Service Broker facilitates service management and can have different roles.
In most scenarios, the broker provides a service registry where services can be
published and found.

In the model shown in Figure 1.1, the service consumer can either be a human or
a software client. The service provider can be a human, organization or a software
agent. The service broker or service registry is a necessary component in order to publish,
find and consume distributed services based on the business process. Hence, effective
description of the service’s functionalities is important for finding or discovering services
for binding. This is where Web service standards come into play. Following the SOA
principles, a Web service is a set of related functionalities that can be programmatically
accessed over the Web. To formalize the definition, we use a more refined definition by
the W3C Web Service Activity Group, which defines a Web service as -

“a software application identified by a URI, whose interfaces and bindings
are capable of being defined, described, and discovered as XML artefacts. A
Web service supports direct interactions with other software agents using XML
based messages exchanged via Web-based protocols” (Austin et al. 2002).

This stresses the role of XML in the Web service standards. A Web service primarily
binds to Web protocols like HTTP2 or HTTPS3 and uses the HTTP primitives of
request/response methods for data transfer between consumer and service endpoint or
between two service endpoints. The service interface hides the implementation details,
allowing it to be used independently of the platform where it is deployed. As services
are loosely coupled and self-contained, it is possible to dynamically invoke and
substitute services, for e.g., in a business process, or across the borders of a single
company or organization (Gottschalk et al. 2002).

Several technologies form the core of the Web service technology stack, all of which are
primarily based on XML. Figure 1.2 extends the minimalist SOA model in Figure 1.1 to
illustrate the Web services conceptual architecture. XML is used for structuring the data
to be transferred, SOAP4 for transferring data between remote systems, and WSDL5 for

2HyperText Transfer Protocol
3HyperText Transfer Protocol Secure
4Simple Object Access Protocol
5Web Service Description Language

Chapter 1. Introduction 6

describing the capabilities of the service. A service is invoked by sending SOAP messages
to the service endpoints on the remote system. Another optional component of the SOA
triangle (Michlmayr et al. 2007) is the UDDI6, that plays the role of a service broker in
a service discovery scenario over the Web. It acts as a business registry and provides
a directory service for locating required services and to support dynamic binding, by
allowing service consumers to query the registry. Companies like Microsoft, SAP and
IBM spearheaded the movement for an UDDI Universal Business Registry (UBR), to
provide world-wide free publishing and querying Web services.

Figure 1.2: Web Services Conceptual Architecture (extended from Fig. 1.1)

A Web service can be used in an application by itself (e.g., currency conversion
service), or with other services, to carry out a complex aggregation or a business
workflow. Services belonging to the first category are called basic or atomic services, as
their implementation is self-contained and does not invoke any other services. Services
in the second category are linked together in a workflow, in a pre-defined sequence, and
are called as complex or composite service. Here, each constituent service’s execution
invokes other services to perform the next sub-task. Composite Web services are more
common and are used in various domains like government (e.g., tax payment,
automated document processing), in e-commerce (e.g., order processing and logistics),
B2B scenarios etc.

6Universal Description, Discovery and Integration

Chapter 1. Introduction 7

1.2 Semantics for Web Services

The term ‘semantics’ is defined as the meaning of information, as opposed to syntax,
which defines the structure of data. In a Web service, syntax is represented by the
structure of its service description (WSDL) and semantics refers to something extra
about this syntactic data, i.e., metadata. Sheth et al. (2006) identified different levels
of semantics for Web services - semantics for data, functional/non-functional parameters
and execution.

i. Data semantics - a formal definition of the data that is referenced in the input and
output messages of the Web service.

ii. Functional semantics - a formal definition of the functionalities of the Web service,
by annotating standard vocabulary concepts to the operations, preconditions and
effects of a service, as per its domain.

iii. Non-functional semantics – used to formally define any references to service quality
like Quality of Service (QoS) and other user given constraints.

iv. Execution semantics - a formal definition of the process of service execution and
actions associated with this execution.

To achieve machine-processability of service content, this metadata has to be based on
well-defined, standardized vocabularies like ontologies and concept taxonomies (Cardoso
et al. 2006). Currently, three ontology based approaches are available for generating
semantic annotations for Web services - OWL-S (Web Ontology Language for Services),
SAWSDL (Semantic Annotations for WSDL and XML Schema) and WSMO (Web Service
Modeling Ontology). These are formalisms for annotating different parts of a service
description based on semantic technologies.

1.2.1 Need for Semantics

A Web service based application consists of several distinct phases depending on the
activities performed during its operation. This is referred to as the Web Service Life cycle,
and the activities performed during the various phases can be categorized as design-time
activities, build-time activities and deployment/run-time activities (Akkiraju 2007).

• Design-time activities - service modelling and creation activities.

• Build-time activities - publication of the service advertisement, service discovery,
selection and composition related activities.

Chapter 1. Introduction 8

• Deployment/Run-time activities - service binding, service invocation, execution
monitoring.

For enabling complete automation, which is currently an idealistic scenario, each
of these phases and activities must be powered by explicit semantics. This could be
potentially achieved by annotating the appropriate parts of the Web service with concepts
from a richer model to unambiguously determine its domain. During service creation,
the service provider must also incorporate domain modelling while choosing datatype
terms, element names and documentation. The service capabilities must be described
in domain-specific natural language terms as per the identified semantic model. During
service advertisement, the service must be placed in the most relevant registry category
as per its identified domain. For service discovery, reasoning techniques need to be used
to find the semantic similarity between the service description and the request.

Further, in some cases where no direct matches are found, the functionality of
multiple services may need to be aggregated and composed. During composition, the
functional aspect of the annotations may need to be used to aggregate the functionality
of multiple services to create useful service compositions, while the semantics of
non-functional aspects of services can help in determining whether these compositions
are valid. During invocation, semantics can be used to represent data transformations.
In case of failure of a service during run time, semantics can enable automatic service
discovery and binding to find suitable alternate services. Therefore, once represented,
semantics can be leveraged by software programs to automate service discovery,
mediation, composition, execution and monitoring. We discuss an example scenario to
further stress the need for semantics in Web service life cycle tasks in Section 1.2.2.

1.2.2 A Motivating Example

We consider a tourism related scenario to illustrate the importance of semantics in Web
services domain. This scenario will be treated as a running example throughout this
thesis. Consider that Alice and Bob want to take a vacation and they hire a travel agent
to take care of trip booking. Alice describes their needs (where they want to go and
when), the restrictions (budget, number of days), and some personal preferences (hotel
with a pool, preferred airlines). It is the job of the travel agent to use various information
repositories (flight schedules, hotel bookings, destination guides) to plan the trip to suit
Alice and Bob’s specifications and take their consent before booking the trip.

Consider that, the above scenario is to be performed using a virtual travel agent.
Figure 1.3 depicts the process of enacting the travel scenario using such a virtual travel
agent along with other Web services. The main actors in this scenario are - the tourist, the

Chapter 1. Introduction 9

virtual travel agent service, the service providers of the various travel services as requested
by the tourist (airlines, hotel, activities, cab) and other additional services (payment
services, airport pickup, local sightseeing services). The tourists are required to provide
their requirements in a formal manner to the virtual travel agent service. Assuming
that all needed services are available in a central registry, the work of the travel agent
service then, is to effectively find the services for each of the consumer requirements, in
accordance to the additional restrictions imposed by the user. In the idealistic scenario
discussed, all these services would be semantically annotated to support unambiguous
discovery and selection. For instance, the different airline companies may use varied terms
in their service descriptions (e.g., departure, destination, airfare, baggage), which are all
explicitly defined as belonging to the air travel domain. Also, the travel agent service is
aware of the vocabulary used in the various domains, and using this shared knowledge,
it can communicate effectively with the different services to perform its duties.

Figure 1.3: A Motivating Example - Travel scenario

However, the current situation is far from the idealistic one. Very few services
currently on the Web have explicitly defined, standard semantics that clearly identify
its capabilities and domain. As per published studies (Fan et al. 2005; Kim et al. 2004;
Li, Zhang, et al. 2007), there are more than 20,000 services on the Web, most with
WSDL based service descriptions, without any associated semantics. In UDDI registries
and also in service portals, the services are manually categorized by service providers,

Chapter 1. Introduction 10

which compounds the problem due to the scope for misclassification, making matching
that much more difficult. Some problems that may arise due to lack of semantics are
listed below and discussed on a case by case basis.

(i) Syntactically similar but semantically different services.
In the absence of explicit semantics, two service descriptions that may seem to

have similar datatypes and structure, but may actually be dissimilar when their
functional semantics is considered. For example, consider two services - a
getSeatAvailability service that takes the flight number (xsd:string) and the date of
travel (xsd:date) as input and returns the number of available seats (xsd:integer).
The other, a flightAvailability service provides parameters such as, the date of
travel (xsd:date), sourceCity (xsd:string), destinationCity (xsd:string), and returns
the flight number (xsd:string). Syntactically, that is, just considering the datatype
of the input and output parameters in this example, the interfaces and also the
service names may seem to be a reasonable match, but their intended functionality
is quite different. A syntactic matching engine could still consider this a potential
match — if not a good one. But clearly, these two services are meant to perform
very different functionalities and this could lead to false positives during matching.

(ii) Syntactically different but semantically similar services.
In contrast to the first case, two syntactically dissimilar services may be

intended for similar functionalities, semantically. For example, two services, both
meant for hotel amenity checks may have completely different syntactic structures.
The service getHotelFacilities takes the hotel name as input in string form
(containing the city name, state name, country name in an XML document
represented as xsd:string) and returns the list of available facilities as a xsd:string.
Another service, verifyPoolAvailability exposes the individual parameters
separately instead of putting them in an XML document. Structurally these two
services look different even though they perform similar functions of checking the
available amenities at a hotel. Thus, a syntactic matching engine may not consider
these two services as good matches, leading to false negatives. A semantic
matchmaking engine based on lexical and term similarity may find the services to
be a partial match depending on the similarity of the service terms.

(iii) Syntactically different and seemingly semantically different services.
When designing services for specific purposes, different service providers may

choose different terminologies to express the same concepts. For example, one
service provider may refer to the confirmation number sent to a customer as

Chapter 1. Introduction 11

bookingId, where as a train booking service may call it PNRnumber (PNR -
Passenger Name Record; indicates the current booking status of a passenger). In
the absence of domain information indicating that PNR is a subClassOf

bookingId, specifically related to train bookings in India and that, both are
different ways of uniquely identifying a ticket booking, these two terms may be
considered as unrelated terms, potentially leading to false negatives. These kinds
of superficial differences may stand in the way of identifying suitable services if
domain semantics are not explicitly specified.

(iv) Syntactically similar and seemingly semantically similar services.
In some scenarios, the interfaces of services may look similar at first glance, both

syntactically and semantically, but may actually represent very different things. To
illustrate this, consider two services: getBookQuoteAmount and checkBookPrice.
Both services take a parameter bookID (xsd:string) and return an (xsd:float) and
the names of the parameters are similar as well. However, these services perform
completely different functions. The getBookQuoteAmount service from the travel
domain that takes the unique ID of a customer’s travel itinerary as input and
returns the total amount charged to the customer. The checkBookPrice service is
a publishing related service that returns the price of a book given its unique ID
(ISBN). If a syntactic matching is performed on these two services based on the
number of parameters and datatypes, they could incorrectly be considered a match
because of structural similarity. In case of semantic matching based on lexical and
name-similarity, without considering their domain and context, these could still be
considered a partial match, thus resulting in false positives.

Table 1.1: Potential Issues due to Service/Datatype Naming and Interface Structure
during Web Service Discovery

Interface Structure

Similar Different

Service/
Datatype
Naming

Similar

False Positives
(due to inadequate
domain context)
e.g. case (iv)

False Positives
(due to lexical
matching)
e.g. case (i)

Different

False Negatives
(due to lack of

domain knowledge)
e.g. case (ii)

False Negatives
(due to syntactic

matching)
e.g. case (iii)

Chapter 1. Introduction 12

In summary, there is a possibility for falsely identifying some services as matches when
they are not (false positives as in cases (i) and (iv)); and incorrectly identifying some
services as poor or no match when they could indeed be a good match (false negatives
(as in cases (ii) and (iii)). Table 1.1 presents a summary of the various scenarios discussed.
The vision of semantic Web services is to enable better automatic matching of services
based on semantic context, so that the cases of false positives and negatives can be
minimized as much as possible. However, before this vision can be a reality, there are
several challenges that have to be addressed, which are discussed in Section 1.2.3.

1.2.3 Major Challenges

As highlighted earlier, there are several major hurdles that are to be overcome before the
ideal scenario of automated, semantics based Web service task execution can be realized.
Adding semantics to Web service descriptions is a time consuming task especially since
automated tool support for large-scale annotation is not yet available. A majority of the
current approaches (Nayak et al. 2007; Sangers et al. 2013; Srinivasan et al. 2006) that
aim to improve service tasks like discovery and selection, were applied to small datasets
of semantic Web service descriptions (i.e., OWL-S, SAWSDL or WSMO) to test their
techniques. However, these approaches have several limitations.

First and foremost, it is impractical to expect all new services to have semantic
descriptions (Paliwal 2012). Secondly, descriptions of the vast majority of already
existing Web Services are specified using Web Services Description Language (WSDL)
and do not have associated semantics (Crasso et al. 2008b). Hence, the greatest
challenge facing the Web service community today is the monumental task of adding
semantics to already published services. This problem is compounded by the fact that,
the number of services published on the Web is quite large (more than 20,000 as per
certain published estimates (Fan et al. 2005; Li, Zhang, et al. 2007)). The task of
annotating these services with their domain model would fall to the service providers,
whose motivation for doing so is very low, due to the manual effort required (Paliwal
2006). The time and human effort involved in manually or semi-automatically
annotating service interfaces is quite massive, with currently available tools (Farrag
et al. 2013). Furthermore, lightweight and standard, service specific ontologies that can
be used to annotate service interfaces and the tools to do this automatically on a
large-scale, are not yet available (Plebani et al. 2009).

The conceptual Web service architecture discussed in Section 1.1 offers limited support
for semantics based service discovery, matchmaking, selection and composition (as seen
from the travel scenario example discussed). The solution to the challenges identified here,
requires an augmentation of the ‘traditional’ Web service architecture, by incorporating

Chapter 1. Introduction 13

effective mechanisms for optimizing service-specific processes. In particular, the Web
service life cycle tasks of service discovery and composition, are particularly challenging
and have generated a great deal of interest in the research community. A key requirement
for a successful Web service based application is that, potential users/client are able to
discover and use it. If interaction needs to be accomplished in an automated way, other
applications should be able to find the right service and obtain the information necessary
to interact with it. Semantics can play an important role in accomplishing discovery in
these settings. In this thesis, we concentrate on the problem of Web service discovery
and examine the critical issues and research challenges, in Section 1.3.

1.3 Web Service Discovery

In this thesis, we focus on the problem of semantics based automated Web Service
discovery. Automatically discovering services is the process of finding a service that
matches a given set of requirements. These requirements may be - functional (Crasso
et al. 2008b; Plebani et al. 2009; Rajasekaran et al. 2005) or non-functional (Birukou
et al. 2007; Kuang 2012; Ran 2003). Services may be discovered from a central
repository (Kourtesis et al. 2008; Sivashanmugam et al. 2004; Yu et al. 2012)) or in an
distributed manner (Dong et al. 2004; Schmidt et al. 2004; Wang 2006). Service
matching could be syntactic using keywords (Song et al. 2007; Wu and Chang 2007),
using structure matching (Kokash et al. 2007; Stroulia et al. 2005) or interface matching
(Hao et al. 2007; Wang and Stroulia 2003) and/or based on semantic matching, like
lexical similarity (Elgazzar et al. 2010; Fang et al. 2012; Sangers et al. 2013) and
ontology matching (Nayak et al. 2007; Paolucci et al. 2002; Segev et al. 2012).

In the travel scenario example discussed in section 1.2.2, two business models can be
identified - the scenario were the tourist interacts with the virtual travel agent service is
a business-to-consumer (B2C) model, where finding a service provider that can offer a
service whose capabilities match the specified requirements is required. For example,
this may be finding an airline ticket booking Web service given a source, destination
and payment method (atomic service). The interaction between the virtual travel agent
service and the other service providers (airlines, hotel, cab, sightseeing etc) is a
business-to-business (B2B) setting, where much more complex tasks of integrating
multiple services with additional constraints may be required, thus requiring
composition of services (composite service). We discuss example Web service discovery
scenarios that can be served by basic and composite services in the next section.

Chapter 1. Introduction 14

1.3.1 Basic and Composite Services

In the traditional mode of service discovery as per the conceptual Web service architecture
(as shown in Figure 1.2), the service provider uses the UDDI Publish API to register and
advertise their service in the service broker. The advertisement is listed in one of the
standard categories available in the UDDI. This means that the listing is dependent
on the service provider’s discretion (and limited) knowledge of the UDDI classification
scheme (manual categorization) (Akkiraju, Goodwin, et al. 2003; ShaikhAli et al. 2003).
A service consumer interested to find certain services, can use the UDDI’s Inquiry API to
submit a keyword query to the registry, and all services matching those specific keywords
are returned as a ranked list. Of these, the service consumer can choose a service and
request for its endpoint information from the service broker, using which a bind action
can be performed. This is an example for Basic or Atomic Service Discovery, and the
query that is submitted to the system is called a simple query.

Composite service discovery is the process of determining several basic services that
can be invoked in sequence to satisfy some complex task (Benatallah, Dumas, et al. 2002).
A composite process explicitly defines which component services should be invoked, in
what order and how to handle any exceptional situations that may arise during execution
(Alonso et al. 2004). From application development perspective, supporting composite
service discovery can help business application developers in minimizing the amount of
work required to develop applications, ensuring a rapid deployment of designed SOA
systems.

Figure 1.4: A composite service workflow

Figure 1.4 depicts a common scenario in real-world travel booking example discussed
in Section 1.2.2, where individual booking services are performed by travel agents based
on customer preferences. In the e-travel booking scenario, the customer request has to

Chapter 1. Introduction 15

be carried out in a well-defined sequence, for it to be correct and valid. The requirements
are to first book the flight; if it is available and booked, only then the hotel booking
and the car rental services are to be invoked, and finally payment service for completing
the transaction. These tasks have to be carried out, in a pre-defined order, to prevent
undesirable effects and financial loss to the customer.

In order to automate such a process in a SOA system, the main requirement would be
semantically defined services that can be invoked in order as per the composite workflow
definition, in accordance with the user directives. Critical to such a system, is context
sensitive processing of the user’s request, to determine both the constituent services and
also the correct invocation sequence.

As most business processes are composite services, any Web service discovery
mechanism intended for application developers will be of limited use unless certain
techniques to automatically or semi-automatically recommend services that are suitable
for composition, as required by their complex requirement, are incorporated. Due to
increasing number of published web services in e-business domain, the demand for
automated techniques to identify composite services for fast application development
has also increased.

Most existing works in the area of web service discovery currently, deal with the
problem of identifying relevant atomic services for a given user requirement. Researchers
have used various approaches – keyword based search (Song et al. 2007), service broker
based approaches (D’Mello 2008; Al-masri et al. 2009), service tagging based techniques
(Fang et al. 2012; Li, Xiong, et al. 2014; Lin et al. 2014), service classification (Corella
et al. 2006c; Varguez-Moo et al. 2013), semantics based search (Chan et al. 2011; Wu,
Chang, and Aitken 2008), domain ontology based matching (Benatallah, Hacid, et al.
2005; Nayak et al. 2007), non-functional parameters based selection (Almasri et al. 2007;
Alrifai et al. 2010; Xu 2007) etc, and have reported good results. However, the fact
remains that most Web service based applications are actually workflows that depend on
multiple, loosely coupled Web services to be composed in a valid sequence to provide the
intended functionality. Automated techniques to identify services that can be coupled
together to provide the requested functionality, especially when the potential candidates
are too many, would be very beneficial to application designers. However, the current
scenario is not very conducive to such automated systems, as existing standards-based
approaches do not offer support for composition-oriented service discovery. We discuss
the limitations of existing frameworks in Section 1.3.2.

Chapter 1. Introduction 16

1.3.2 Current Scenario

Current Web service registries, especially the two standardized efforts, UDDI (mostly
B2C scenarios) and ebXML7 (for B2B environments) suffer from several shortcomings.
The UDDI offers users a unified and systematic way to find service providers through a
centralized registry of services, that is often termed as an automated online ‘directory’
for Web services (Curbera et al. 2002). ebXML envisioned the creation of a single global
electronic marketplace where businesses can find each other, agree to become trading
partners, and conduct business (Hofreiter et al. 2002). Both have seen significant
standardization efforts and have been recognized as the standards for web service
registry implementations. However, in practice, ebXML is in use only in certain highly
specialized domains like supply chain management and logistics, while the UDDI is
rarely used any more. The Universal Business Registries (UBRs) maintained by IBM,
Microsoft, and SAP failed to gain adoption and were shut down in 2006 after only 5
years in operation (Krill 2005). Some reasons for the failure of the UBRs were lack of
active maintenance by many service providers, keyword based matching approach,
manual classification, limited support for expressive queries and for composite services
(Al-Masri et al. 2007a).

(a) SOA in theory (b) SOA in practice

Figure 1.5: Basic SOA Model - Theory vs. Practice (adapted from Michlmayr et al. (2007))

The main aim of the service broker in the SOA triangle is to support the publish-
find-bind architecture in a truly distributed way. However, in practice, a major share
of today’s SOA applications have increasingly adopted an abridged model (Michlmayr
et al. 2007) consisting of the service provider and service consumers (as shown in Figure
1.5). This is possible by providing the exact service endpoint information required to
invoke the service to their known service consumers, which is for all purposes, static
binding. Any change in the service’s endpoint data will require all clients also to be

7Electronic Business using eXtensible Markup Language

Chapter 1. Introduction 17

reconfigured manually, to avoid “service unreachable” errors. Due to this, the service and
the consumers are tightly coupled. Hence, the basic principle of SOA, that of building
loosely-coupled systems supporting dynamic lookup and binding, is defeated (AbuJarour,
Naumann, and Craculeac 2010).

The downsized model shown in Figure 1.5b has gained popularity in recent times
primarily due to the lack of intelligent broker-based frameworks, that can overcome the
issues that existed in the UDDI and the UBRs. In the current decentralized scenario,
discovering Web services when there is no prior information about their endpoints has
become quite an impossible task. An application designer who wants to find a service
for a particular task may have to use a known service, without having the means to find
potentially better, unknown services available over the Web. This has given rise to several
difficulties, which are discussed in Section 1.3.3.

1.3.3 Prevalent Issues in Web Service Discovery

As discussed earlier, a major percentage of service providers currently seem to prefer
hosting their services on their own servers or make them available through some third
party portals like ProgrammableWeb, XMethods etc. Thus, application designers
searching for new and potentially relevant services have to deal with these varied
sources available in a distributed manner (Al-Masri 2009). Service discovery in such a
distributed environment as the open Web has hence become quite challenging. Until
2005, the public UDDI registries (UBR) served as the primary source of service
advertisements. Intended as a public platform for publishing services, the service
repository of the UBR eventually became a source for mostly misclassified and
incomplete service descriptions due to lack of enthusiastic adoption. Due to this, the
UBRs that were hosted by Microsoft, IBM and SAP were discontinued. Since then,
several issues have emerged in the area of Web service discovery, in light of the lack of
popularity of existing registry approaches, and have garnered active research interest.
Some of these are discussed below.

1. Escalating volume of published services on the Web.

Fan et al. (2005) and Steinmetz (2009) conducted exploratory surveys on public
Web services and presented statistics on the projected number of services available
on the Web. A survey of services available in the UDDI/UBRs in 2006 and 2007 (Li,
Zhang, et al. 2007) and those indexed by search engines (Song et al. 2007) reported
that the number of published services has consistently doubled once in three years.
Zheng et al. (2014) reported that the current number of available services on the
Web is in tens of thousands. As services proliferate at such an exponential rate,

Chapter 1. Introduction 18

the problem of finding them to serve a given requirement becomes harder and more
time consuming.

2. Current non-availability of an efficient mechanism for distributed Web

service discovery and retrieval.

Currently, a common approach used by service providers that offer public Web
services is to put up a list of services with a textual description attached to each
service to explain their functionality on their own websites (AbuJarour, Naumann,
and Craculeac 2010). Many of these descriptions may also be available in service
portals, often in multiple service portals, thus compounding the problem of service
discovery.

3. Low quality of Web service documentation.

Kim et al. (2004) and Li, Zhang, et al. (2007) examined the complexity, number
of operations, quality of documentation and the functional diversity of public Web
services. These studies conclusively found that the services that were hosted on
service providers’ websites were the ones that were most up-to-date and had the
most content-rich documentation. These services are typically found embedded in
HTML Web pages, containing the descriptions about the services’ functionalities
etc. The service end-points were found quite poor in terms of the contents of
the <documentation> tag, meant to contain a detailed description of the service
capabilities. Of the 3500 service descriptions considered for Li, Zhang, et al. (2007)’s
study, only about 15% were found to have documentation of more than 100 words,
while about 67% of the services had less than 50 words. About 900 services did not
have any descriptions at all. Also, the majority of the services did not have any
documentation for the service operations. This means that the traditional methods
of keyword based search will potentially overlook relevant services, which may not
have the required terms to be discovered, during querying (Stroulia et al. 2005).

4. Limited availability of semantic service descriptions.

As discussed earlier in Section 1.2.3, the vast majority of already existing Web
services are WSDL based and do not have explicitly defined semantics. The process
of adding semantic annotations to the thousands of published service descriptions
is a massive undertaking and will require extensive time and effort from the service
providers, which is unreasonable to expect.

5. Lack of adequate domain information.

Without an adequate service organizing architecture and domain knowledge,
the actual domain which a service belongs to is hard to capture, as similarity based

Chapter 1. Introduction 19

categorization cannot be performed. Without domain-specific grouping, the process
of querying a service collection to find relevant services for a given query becomes
very tedious and time-consuming (Nayak et al. 2007).

6. Limited context-sensitive querying support.

Considering the service consumer’s perspective during the service discovery
process, it is quite possible that the user may not be aware of all the knowledge
that constitutes the domain of the services they are seeking to find. Specifically, the
user may not be aware of all the terms related to the service request. As a result
of this, many services relevant to the request may not be retrieved. For example,
a user may need services that find ‘zipcode’ of a city anywhere in the world, not
knowing that some countries use the term ‘pincode’ and ‘postal code’ to refer to the
same information. Hence, only services that support zipcode retrieval services for
cities in USA may be returned, ignoring other potentially relevant services. When
the user uses the selected service to find the ‘zipcode’ of Mumbai city, then a “No
data found ” error may be returned, as services serving countries other than the
USA, would use country-specific terminology.

7. Limited support for composition-oriented service discovery.

One of the limitations of the UDDI and UBRs was their lack of support for
discovering services for serving complex queries. Most existing approaches for
service discovery focus only on simple service discovery given a set of user
requirements. Being able to identify services that could be potentially linked
together in sequence to perform certain aggregated functionalities is a critical
requirement that is missing in the current scenario.

In view of these core issues in the Web service discovery phase, it is crucial to address
them to ensure the continuing growth and popularity of Web service based application
development. Intelligent solutions to enable semantics based distributed Web service
discovery and retrieval are the need of the day. In the next chapter, we present a state-
of-the-art review of the existing research work in the area of Web service discovery and
then, formulate the problems addressed in this thesis.

1.4 Summary

In this chapter, the concepts of the Semantic Web and the Semantic Web services were
discussed. The need for inclusion of semantics in the process of critical service life cycle
tasks has become paramount due to the lack of adequate support in the existing Web

Chapter 1. Introduction 20

service conceptual model. Based on the challenges discussed in the previous section, we
summarize that there exists scope for improving the process of Web service discovery by
addressing new research problems in the area, specifically in the directions listed below:

• Developing effective mechanisms for distributed Web service discovery to address
the issues in finding and retrieving service descriptions available on the open Web.

• Developing techniques for automatically adding semantic annotations and
generating metadata for large service collections to address the lack of explicit
semantics in service descriptions and low quality of service documentation.

• Developing algorithms to effectively categorize large service collections to support
domain specific discovery.

• The exploitation of background knowledge and meta-data for providing intelligent
querying mechanisms for service consumers.

• Exploring methods for semantics based composite Web service discovery.

1.5 Organization of the Thesis

This thesis is structured as follows -
In Chapter 2, a review of various solutions existing in literature for semantics based

Web service discovery, including composition-oriented service discovery, domain specific
categorization, and context-sensitive user query handling is presented. Based on our
observations on research gaps, we discuss the identified research directions in view of our
work. In Chapter 3, the problems addressed in this thesis are formally defined and the
scope of the work is discussed. We also present the general solution methodology and the
definitions that are necessary to understand the defined problems.

In Chapter 4, we discuss the proposed framework for distributed Web service discovery
for finding and retrieval of services available from varied sources and the process of efficient
indexing of these services in a central repository. We also discuss the various problems
associated with distributed service discovery and present certain optimization to the
proposed framework. We prove that this framework is scalable, helps in eliminating
redundancy and also deals efficiently with any changes in the service collection. Empirical
evaluations and experiments are presented to validate the proposed approach.

In Chapter 5, we propose similarity analysis and semantics based processing
techniques for automatically generating metadata for indexed service collection to
address the lack of semantics in the descriptions themselves. Chapter 6 presents a novel,
semantics based service categorization algorithm for domain specific grouping of similar

Chapter 1. Introduction 21

services. Chapter 7 discusses the proposed intelligent querying functionalities for adding
knowledge based support to the proposed framework.

In Chapter 8, a detailed discussion of the process of Web service discovery for both
atomic and composite services using the developed framework is presented. The
efficiency of this entire system is validated by both theoretical analysis and
experimental analysis on the framework’s service collection and using standard datasets.
In Chapter 9, we summarise the contributions of our research work and highlight the
possible future research directions.

Chapter 2

Literature Review

In Chapter 1, a discussion on the background, scenarios, challenges and research
motivations in semantics based automatic service discovery was presented. The
problems addressed by this thesis lie in the wider context set by SOA, Semantic Web
and Context-aware computing. Our research work is contextualized within the current
trend of semantically enriching information published on the Web, to enable automated
processing and autonomous interaction between systems, through Web services. We
focus on the phase of Service Discovery as this plays a very important part in the Web
service life cycle.

In this chapter, a review of existing work dealing with various challenges and issues
(as summarized in section 1.4 of Chapter 1) in the process of large-scale, distributed Web
service discovery is discussed. The state of the art in the area of web service discovery
architectures and techniques in literature are presented in Section 2.1. The problem
of semantic annotation and metadata generation for service collections and a review of
the existing approaches is discussed in Section 2.2. The problem of categorizing large
service collections semantically and the available techniques is studied in Section 2.3.
Following this, research works that focus on improving the querying process from the
user’s perspective in the area of service discovery are discussed on Section 2.4. The
problem of composition-oriented service discovery is discussed in Section 2.5, followed by
identified research directions and summary.

2.1 Web Service Discovery - A Review

Discovery of relevant Web services for given requirements has been a fundamental area of
research in service-oriented computing. As stated before (in Chapter 1), after the failure
of the UBRs in 2006, services are truly distributed over the Web and are available from
heterogeneous sources like service portals, providers’ Web servers etc, making discovery a

22

Chapter 2. Literature Review 23

very challenging task. Current Web service technologies do not support the automation
of critical processes such as discovery and ranking, which are necessary for later stage
tasks like selection, composition and execution. In literature, researchers have tried to
address this problem in different ways and the pros and cons of these works is presented
in the following section.

2.1.1 Web Service Discovery Architectures

Several early works in the area of Web service discovery can be categorized based on the
methodology adopted in finding them. These works are based on the locality of services,
due to which there are several diverse categories proposed. Such architectures can be
broadly classified as Centralized and Decentralized (or Distributed) architectures. Figure
2.1 shows the classification of the various approaches discussed.

2.1.1.1 Centralized Architectures

In a centralized Web service discovery architecture, service descriptions are available in
a central repository or registry, using which clients can articulate their requests and find
required services. Some techniques that propose centralized repository based
architectures for Web service discovery are discussed here. Xu (2007) proposed a
centralized approach that stores service reputation information within the repository to
enable QoS based Web service discovery. The reputation scores of a service in this
approach are computed through user feedback, and are used during service
matchmaking and ranking. Skoutas (2008) proposed an index-based method in
centralized environments, for fast selection of services when a query is submitted. This
approach relied on matchmaking of service request and the service advertisements of a
limited set of indexed services, and focused on fast retrieval of services using efficient
data structure. Their approach was later extended for service discovery in peer to peer
overlay networks. Yu et al. (2012) designed and developed a centralized approach based
on a service repository that allows faceted search and visual discovery of service
descriptions for both providers and consumers. While their system supported
operation-level matching of services indexed in the repository, it provided only keyword
based search, thus affecting recall.

1. UDDI based Approaches: UDDI is an initiative to bring standardization to the
process of service advertising and discovery. The UDDI standard allows businesses
and individuals to publish service advertisements in a standardized manner that
allows clients to invoke APIs to perform various tasks like publishing, inquiry,
subscription etc. It is intended to give a well-organized access to the

Chapter 2. Literature Review 24

W
eb

Se
rv
ic
e
D
is
co
ve
ry

A
rc
hi
te
ct
ur
es

C
en
tr
al
iz
ed

X
u
(2
00

7)
;

Sk
ou

ta
s
(2
00

8)
;

Y
u
et

al
.(
20

12
)

U
D
D
I
b
as
ed

P
ao

lu
cc
ie

t
al
.(

20
02

);
A
kk

ir
aj
u,

G
oo

dw
in
,e

t
al
.(
20

03
);

K
ou

rt
es
is

et
al
.(

20
08

)

B
ro
ke
r
b
as
ed

Se
rh
an

ie
t
al
.(
20

05
);

A
l-m

as
ri
et

al
.(
20

09
);

D
’M

el
lo

(2
00

8)

N
on

-U
D
D
I

S
er
vi
ce

P
or
ta
ls

(P
ro
gr
am

m
ab

le
W
eb
;

B
io
C
at
al
og

ue
;

X
M
et
ho

ds
)

D
ec
en
tr
al
iz
ed

W
u
an

d
C
ha

ng
(2
00

7)
;M

a
et

al
.(

20
08

);
P
al
iw
al

(2
01

2)

A
ge
nt

b
as
ed

Sy
ca
ra

an
d
P
ao

lu
cc
i(

20
04

);
W
an

g
(2
00

6)
;

H
an

et
al
.(
20

08
)

W
eb

S
ea
rc
h

b
as
ed

So
ng

et
al
.(
20

07
);

W
u
an

d
C
ha

ng
(2
00

7)
;

A
lm

as
ri
et

al
.(
20

08
)

P
ee
r-
to
-p
ee
r

Sc
hm

id
t
et

al
.(
20

04
);

V
u
et

al
.(
20

06
);

Si
ou

ta
s
et

al
.(
20

09
);

Li
,Q

ia
n,

et
al
.(
20

11
)

S
er
vi
ce

S
ea
rc
h

E
n
gi
n
es

W
oo

gl
e;

Se
ek
da

;
P
la
tz
er

an
d
D
us
td
ar

(2
00

5)
;

G
ia
nt
si
ou

et
al
.(
20

09
);

Zh
an

g
et

al
.(
20

10
)

H
yb

ri
d

A
tk
in
so
n
et

al
.(

20
07

);
C
ra
ss
o
et

al
.(
20

08
b)
;

G
ui
na

rd
et

al
.(
20

09
);

P
le
ba

ni
et

al
.(
20

09
)

F
ig
ur
e
2.
1:

C
la
ss
ifi
ca
ti
on

of
W
eb

Se
rv
ic
e
D
is
co
ve
ry

A
rc
hi
te
ct
ur
es

Chapter 2. Literature Review 25

human-related, business-related and technical information of a service. The UDDI
based Universal Business Registries (UBRs) were intended as a central directory
of all available services. But they suffered from several major problems, resulting
in their discontinuation. These issues are listed here.

- UBR enrolment was voluntary, gradually rendering its collection stagnant, due
to disinterest in maintaining already published service advertisements.

- UBR enrolment was public, leading to the availability of both genuine business
services and spurious/incomplete services published by novices, thus affecting
the quality and dependability of the collection (Almasri et al. 2008).

- UBR depended on service providers to correctly categorize their services,
often leading to misclassification (Klusch et al. 2006). Services with similar
functionality may be listed in different categories (e.g. Service S1 for finding
local attractions may be listed in a different category than a related service
S2, that finds local events), while dissimilar services may be listed in same
category (e.g. services for currency conversion and HTML to XHTML
conversion may both be listed under a generic category called ‘conversion’).

- UBR being public and open, could not guarantee the validity or quality of
information it contained.

- Finding services published in the UBR was primarily keyword based resulting
in low recall, thus affecting precision (Akkiraju, Goodwin, et al. 2003).

- The UDDI/UBR offers no support towards finding composite Web services.

Aiming to solve these issues, researchers proposed various enhancements to the
UDDI. Paolucci et al. (2002) proposed the concept of adding semantic capabilities
to the UDDI to enhance service discovery by using the OWL-S ontology.
Akkiraju, Goodwin, et al. (2003) extended this idea by proposing enhancements
to the UDDI inquiry API for supporting explicit user requirement specification.
They also developed techniques for semantic matchmaking and automatic service
compositions using BPEL4WS. Both these approaches required some changes to
the UDDI APIs and implementation of a separate UDDI server. Kourtesis et al.
(2008) proposed an extended UDDI registry called FUSION that uses SAWSDL
and DL based reasoning for effective matchmaking.

2. Broker based Approaches: In Broker based methods (D’Mello 2008; Al-masri
et al. 2009; Serhani et al. 2005), an additional component called the service broker
acts like a middleware that facilitates service related tasks. Additional quality

Chapter 2. Literature Review 26

assurances can be provided by the broker by incorporating QoS based execution
and verification.

Centralized approaches offer several advantages over other approaches. Service
descriptions are available in at one site, in a repository or a registry. Users can
articulate their queries at this point to retrieve required service information. However,
the registry can become a bottleneck or single point of failure in case of high access
traffic, thus affecting performance. In fact, several researchers proposed the concept of
distributed and/or replicated registries to overcome this issue. For addressing the
problem of searching in these multiple registries, techniques for propagating search
queries over multiple federated registries to return overall results were proposed
(Al-Masri et al. 2007b; Sivashanmugam et al. 2004; Verma et al. 2005; Zhang, Akkiraju,
et al. 2007).

The core idea of these approaches was facilitating efficient interaction between
different distributed public/shared/private registries for query propagation and service
discovery. Also, newer UDDI versions added support for accommodating interactions
between distributed registries. In B2B scenarios, different enterprises may host their
own UDDI servers as private/shared deployments, due to which, the number of UDDI
registries themselves may be more, needing distributed service discovery. These
developments ultimately paved the way to decentralized and hybrid architectures.

2.1.1.2 Decentralized Architectures

Decentralized or distributed approaches focus on the problem of finding services available
at providers’ sites. These can be classified into four different categories, based on the type
of access methods employed in finding and retrieving distributed service descriptions and
also managing service collections.

1. Agent-based Architectures: These methods make use of intelligent, software agents for
distributed Web service discovery (Garcia-Sanchez et al. 2009; Han et al. 2008; Sycara
and Paolucci 2004; Wang 2006). Agent-based algorithms facilitate interaction between
multiple distributed agents that can remotely interact with their peers for dynamic
activity coordination to complete a given task (in this case, finding and returning
relevant Web services). An agent-based broker can perform very complex reasoning
tasks like - matchmaking between service capabilities and requester queries; finding
the best service based for a particular query (ranking), invoking the selected service
on the requester’s behalf (invocation), interacting with the service whenever required
(execution); and returning query results to the requester (Sycara and Paolucci 2004).

Chapter 2. Literature Review 27

Recent works in this area have concentrated on autonomous multi-agent interaction
and automated Web service composition (Klusch 2012).

2. Web search based Architectures: Several public Web service exploratory surveys are
available in literature that were based on keyword based queries fed to conventional
search engines like Google, to find services. Such surveys (Fan et al. 2005; Kim et al.
2004; Li, Zhang, et al. 2007) focused on analysing the number, quality, geographic
distribution, complexity, development environment, message characteristics,
responses, versioning etc., of publicly accessible Web services, using primarily Web
search. Song et al. (2007) used conventional search engines to discover services, using
keyword based queries, aimed at finding service descriptions embedded with Web
pages. Wu and Chang (2007) proposed a system for retrieving relevant web services
directly from the Web using data mining techniques. Al-Masri et al. (2008)
conducted a similar experiment to determine the liveliness quotient of services
published on the Web and reported that the rate at which number of services
accessible through search engines grew at almost 286% when compared to a modest
12% growth in UDDI registries.

3. Peer-to-Peer based Architectures: Peer-to-peer (P2P) computing is “a distributed
application architecture that partitions tasks or workloads between equivalent peers in a
network ”. A P2P approach offers some advantages like improved scalability by avoiding
dependency on centralized points; eliminating the need for costly infrastructure as
direct communication among clients is enabled and resource aggregation (Milojicic
et al. 2002). In literature, some proposals for P2P enabled approaches for Web service
discovery exist, that aim to overcome the issues associated with centralized approaches.
Such works are on efficient indexing data structures like Internet-scale distributed
hashing tables (DHT), that efficiently map a service’s data elements to physical peers
to enable Web service discovery. Improvements proposed for optimizing the distributed
indexing schemes led to the development of robust P2P overlay frameworks like Chord
(Stoica et al. 2001; Stoica et al. 2003), SCRIBE (Castro et al. 2002), and Tapestry
(Zhao et al. 2004).

Based on these frameworks, several techniques for P2P based scalable Web service
discovery were proposed, that can support keyword based searches (Schmidt et al.
2004), QoS based selection (Vu et al. 2006), similar service search (Li, Qian, et al.
2011) and semantic service publication (Si et al. 2013). Here, the peers store the
service information robustly so it can be quickly retrieved using the distributed hashing
structure. However, implementing and maintaining P2P networks as the number of

Chapter 2. Literature Review 28

peers increase in number and locality. Also, there may be trust issues while sharing
service information among peers, which have to be addressed effectively.

4. Service Search Engines: In recent research, a new paradigm for Web service
discovery has emerged, that is based on applying information retrieval methodologies
similar to search engines to find services published on the Web. The focus in these
approaches is to find and retrieve services and create a centralized repository where
users can articulate their search queries. The forerunners of these approaches were
service search engines like Woogle (Dong et al. 2004), Service-finder (Brockmans
et al. 2009; Della Valle et al. 2008) and Seekda (Steinmetz 2009), but none of these
are available online currently. Other researchers proposed different techniques to
retrieve service descriptions, like vector space model based indexing (Platzer and
Dustdar 2005) and conventional search engine based discovery (Song et al. 2007; Wu
and Chang 2007).

2.1.1.3 Centralized vs. Decentralized Approaches

Table 2.1 summarizes the various features and distinctions in centralized and distributed
service discovery approaches. Each category is suited for different scenarios and have
their own advantages and disadvantages, some of which are discussed here.

Table 2.1: Centralized vs. Decentralized Web Service Discovery Architectures

Criteria Centralized Decentralized

Facility for publishing
services?

Yes. No. (Indexing based)

Availability of business
data?

Yes. No.

Provides search
features?

Yes. (Keyword based) Yes. (Keyword/Semantics)

Provides service
categorization?

Manual (uses standard
taxonomies.)

Intelligent categorization
techniques have been used.

Are WSDLs stored? No. Yes.
Guarantee of quality of
service description?

No. No. (can be incorporated)

Support for versioning? No. No. (can be incorporated)
Caching supported? No. No. (can be incorporated)
Automatic updates
supported?

No. Limited. (Intelligent
techniques need to be
incorporated)

Chapter 2. Literature Review 29

2.1.1.4 Hybrid Architectures

Hybrid architectures form the third category of Web service discovery architectures,
consisting those works that incorporate the best features of both the centralized and
decentralized architectures. Research work in this area employ varied methods for
finding and discovering distributed Web services and then provide registry like indexing
facilities similar to that of UDDI, and user interfaces for querying (Atkinson et al. 2007;
Guinard et al. 2009). In literature, there exist approaches that augment the underlying
hybrid architecture by the use of ontology based categorization (Crasso et al. 2008b;
Garcia-Sanchez et al. 2009), domain-specific clustering (Ma et al. 2008; Nayak et al.
2007), semantic matchmaking (Paliwal 2012; Plebani et al. 2009) and machine learning
based classification (Chen et al. 2013a; Crasso et al. 2008b; Skoutas 2010a).

The main advantage of hybrid architectures is that, they are well suited for the
current scenario where services are available from heterogeneous sources and are also
numerous in number. Most of these approaches also focus on overcoming some problems
of the UDDI (like keyword based searching and manual categorization) by applying
intelligent techniques like domain-specific clustering and classification. Such techniques
are discussed in more detail in Section 2.2.

2.1.2 Web Service Discovery Techniques

The objective of Web service discovery is to facilitate access to available service
descriptions for binding. Service descriptions essentially encapsulate the functional
capabilities of a service, while other non-functional aspects such as QoS, QoE (Quality
of Experience) and CoS (Cost of Service) are handled separately, for example, by a QoS
broker. Hence, techniques focusing on Web service discovery can be categorized into
Functional Aspects based and Non-functional Aspects based techniques. Figure 2.2
summarizes the various techniques classified as per these two aspects.

2.1.2.1 Functional Aspects based Discovery

The functional capabilities of a Web service are represented by its description (WSDL),
which is available at registries/portals/service endpoints. Such functional semantics can
be extracted for serving user queries. Two main approaches can be identified herein -
Syntactic Matching and Semantic Matching.

A. Syntactic Matching

Syntactic matching mechanisms are primarily based on using the keywords, categories or
service interfaces of available services to facilitate service discovery process. We discuss
existing works under this category next.

Chapter 2. Literature Review 30

Web service discovery techniques

Functional aspect based methods

Syntactic matching

Keyword based matching (Song et al. (2007); Wu and Chang (2007);
Al-Masri et al. (2007b))

Indexing based (Dong et al. (2004); Della Valle et al. (2008);
Steinmetz (2009))

Interface/signature matching (Wang and Stroulia (2003);
Gao et al. (2005); Hao et al. (2007))

Similarity based matching (Stroulia et al. (2005); Kokash et al. (2007);
Grigori et al. (2006); Berardi et al. (2005))

Semantic matching

Functional semantics based (Ye et al. (2006); Shin and Lee (2007);
Shin (2009); D’Mello and Ananthanarayana (2009))

Using additional annotation (Heß et al. (2003); Oldham et al. (2005);
Elgazzar et al. (2010); Fang et al. (2012))

Ontology generation based (Nayak et al. (2007); Sabou et al. (2005);
Segev et al. (2012))

Context-aware (Broens et al. (2004); Xiao et al. (2010);
Rasch et al. (2011); Sangers et al. (2013))

Using semantic descriptions (Sycara (2003); Klusch et al. (2006);
Keller et al. (2006); Plebani et al. (2009); Schulte et al. (2010))

Non-functional aspect based methods

QoS (Ran (2003); D’Mello (2008); Torres et al. (2011);
Alrifai (2012); Zheng et al. (2014))

Service usage statistics (Birukou et al. (2007); Chan et al. (2012);
Zhou et al. (2013))

Usability (Namgoong (2006); Stollberg et al. (2007); Mohebbi et al. (2013))

User preference/Personalization (Shao et al. (2007); Liu (2013);
Kuang (2012))

Figure 2.2: Hierarchy of Web Service Discovery Techniques

Chapter 2. Literature Review 31

Keyword based Matching. In this category, the keywords that are present in the
WSDL’s documentation and categoryBag tags are extracted and utilized for service
discovery (Al-Masri et al. 2007b). Other approaches include conducting keyword based
searches using conventional search engines at regular intervals to search for services
embedded within webpages and available within HTML forms (Song et al. 2007; Wu
and Chang 2007). These approaches focused on using the efficient indexing of search
engines to conduct faceted search for only WSDL documents. Some of the issues with
these approaches are -

- All relevant services may not be retrieved as keywords may have many synonyms
and associated senses (verb/noun).

- Mis-categorized services may not be returned even though they may be relevant, in
case of category-based matching.

- There is no way to check validity/liveliness of the services retrieved by conventional
search engines. Also, these approaches depend on the usage of wildcard characters
(e.g. keyword * keyword) etc., for conducting Google/Yahoo searches, which can
result in higher recall, but can adversely affect precision.

Indexing based Matching. Several service search engines (Della Valle et al. 2008;
Dong et al. 2004; Steinmetz et al. 2008) that used traditional information retrieval
techniques for finding services on the Web and indexed them into a repository, come
under this category. Their main aim was to provide querying interfaces to the users,
then quick matchmaking of the query terms with the indexed services to generate a
ranked list of matching services. However, these frameworks are no longer available
online currently and it is not possible to evaluate their performance.

Interface/Signature Matching. The Web service interface is a collection of
functionally related operations. Wang and Stroulia (2003) proposed techniques for
assessing the structural similarity of two WSDL documents by matching its operations
and the element types, like input/output operations etc, using signature matching and
type mapping. This was to be an extension to the UDDI API for improving the service
discovery process. Other approaches proposed schema matching algorithm for
supporting web-service operations matching that also considered schema semantics
(Hao et al. 2007) and using the interface matching technique for selecting service for
compositions (Gao et al. 2005). However, interface matching methods suffer from
several issues -

Chapter 2. Literature Review 32

- They assume that service designers have assigned meaningful names to the element
names, however this is most often not the case.

- Similar element names may in fact be having different datatypes, which reduces the
degree of similarity.

- Operations defined for similar functionalities may in fact have different signatures.
For example, a city search service can use different operation signatures (using city
and state name, using zipcode, using longitude/latitude, etc). In such a scenario,
the requester could be satisfied with one option for serving the query, or may require
all the options, depending on the requirement. It would be difficult to identify all
such options in all cases, by just interface matching.

Similarity based Matching. Soem methods that aim to alleviate the issues
associated with interface matching methods have focused on computing similarity
between each service description and their natural language descriptions through
partial-semantic matchmaking (Kokash et al. 2007; Stroulia et al. 2005). The problem
of identifying similar behaviours when more than service is found relevant, generated a
lot of interest and some research works used behaviour matching algorithms to evaluate
the semantic distance between two service interactions (Berardi et al. 2005; Grigori
et al. 2006). These approaches considered the messages exchanged between two services
during a valid conversation and the activities performed within a service, to determine
even partial matches. However, these approaches were computationally expensive and
do not scale well, especially when the number of services and service interactions is
large.

B. Semantic Matching

Web service discovery through semantic matching aims to the semantic context (or
meaning) of terms used in a service description to determine a service’s functionality
without ambiguity. Depending on the type and level of semantics employed, these can
be classified into seven broad categories. These are discussed below:

Functional Semantics based. Some available works in this category proposed varied
approaches like - representing a service’s functionality semantically, either by explicitly
determining each service’s domain and adding this information as its metadata (Ye et al.
2006), by considering the functionality of a Web service as a one-to-one relationship of
action (input) and object (output) by analysing the natural language description of all
services in a dataset (Shin 2009; Shin and Lee 2007) and through extensible functional

Chapter 2. Literature Review 33

knowledge based mapping of the operations in published descriptions into an abstract
operation description for better mapping (D’Mello and Ananthanarayana 2009). Some
limitations of such functional semantics based approaches are -

- Most available works are based on the definition of a functional domain ontology
and the mapping of service element concepts to that of the ontology concepts. If
the service element has more than one associated concept, then the mapping may
not be valid.

- Creation and maintenance of domain ontologies for different services is an additional
burden. Context aware systems were developed to overcome this limitation.

Using Additional Annotation. Researchers tried to organize or categorize service
collections by generating additional annotation or metadata for each service by
automatic analysis of service descriptions. Frameworks like Meteor-S (Oldham et al.
2005) and Assam (Heß et al. 2003; Heß et al. 2004) proposed techniques to annotate
syntactic service descriptions with semantic concepts to enhance service discovery.
Other approaches include techniques for analysing the meaning of the terms extracted
from service descriptions and using them as features for clustering services as per their
similarity (Elgazzar et al. 2010; Fang et al. 2012). These approaches have focused on
generating additional explicit knowledge using the implicit data available in service
functional descriptions to aid service discovery.

Ontology Generation based. Service ontology plays a major role in matching service
functionality and the request. Some approaches propose the automatic generation of
the domain ontology of the service through machine learning techniques based on the
problem domain (Nayak et al. 2007; Sabou et al. 2005; Segev et al. 2012). Based on
the textual description of the services, the relevant terms are identified and extracted,
using which the domain is learned and the ontologies of the services are generated for
enhancing processes like discovery and selection.

Context-aware. Context-awareness refers to the property of a system where the
system can adapt its behaviour as per the change in circumstances. In the context of
the service discovery problem, context-aware techniques aim to provide different results
as per the change in service user preferences or service provider
functionalities/conditions. For example, the discovery mechanism may offer support for
discovery based on user location or service’s availability timings etc. Some such
techniques proposed consider matching of query concepts with that of service’s domain
ontologies, for identifying level of matching (Broens et al. 2004), context modelling for

Chapter 2. Literature Review 34

dynamic handling of various context types & their relationship to user request (Xiao
et al. 2010) and user profile based context-aware discovery (Rasch et al. 2011).

Using Semantic Service Descriptions. In literature, several researchers have used
the proposed semantic Web formalisms for measuring their suitability for Web service life-
cycle tasks. Service descriptions defined using the three formalisms - OWL-S, WSMO
and SAWSDL have been used in various literature, as the base dataset over which various
techniques for discovery have been proposed.

Sycara (2003) presented an OWL-S based automated discovery, selection and
composition framework using the OWL-S/UDDI matchmaker which adds semantic
capabilities to the UDDI. The automatic service mediation was managed using the
OWL-S process model. Klusch et al. (2006) also used OWL-S for semantic
matchmaking over syntactic service descriptions with a matchmaker called OWLS-MX.
The requests in this approach were specified in OWL-S while the dataset was WSDL
documents, and the matchmaker was needed to achieve approximate matching between
the request and the service documents.

Keller et al. (2006) proposed a method based on logical reasoning for the Goal to
Service matchmaking process, as per the WSMO specification. Plebani et al. (2009)
proposed a framework called URBE (UDDI Registry by Example) that uses a bipartite
graph matching algorithm for both the inputs and outputs of a given service request
and offer. They used SAWSDL descriptions to evaluate the performance and suitability
of their approach for enhancing the UDDI registry. Schulte et al. (2010) used SAWSDL
descriptions for matchmaking by combining syntax and semantic similarity measures with
subsumption reasoning-based Degree of Match (DoM). Each of these approaches used the
different semantic Web formalisms on datasets and conducted experiments to evaluate
their adaptability to real-world service usage scenarios.

2.1.2.2 Non-functional Aspects based Discovery

Non-functional properties refer to those aspects where metrics like quality, efficiency,
preferences, usage etc., can be considered and the process of service discovery can be
enhanced further. Based on the non-functional parameters considered during the
discovery process, this category can be sub-divided into four main sections - QoS based,
service usage statistics based, usability based and user preference based. Non-functional
approaches are discussed briefly here.

QoS based. QoS is the most commonly used parameter and several works exist in
literature in the area of quality driven service discovery. Researchers proposed

Chapter 2. Literature Review 35

techniques for discovering services that offer the user desired level of QoS for various
parameters like response times and locality (Kritikos et al. 2009), reputation based
trustworthy service discovery (Ran 2003), self-adaptive service discovery using
user-defined QoS constraints (Torres et al. 2011), efficiently representing quality
requirements using a Quality Constraint Tree (QCT) (D’Mello 2008) and using QoS
constraints for composing services (Alrifai et al. 2010) are some relevant works in this
area.

Service Usage Statistics based. Recommending services based on their usage
statistics and history is another interesting area in this category. Birukou et al. (2007)
proposed a recommender system to help service-based application developers discover
appropriate services using a task description and the history of previous decisions made
for similar objectives. Their approach is based on observing service invocations over
time to collect usage data so as to use this recommend the best services when new
requests arrive. Chan et al. (2012) proposed a web service discovery system based on
recommendation using collaborative filtering of user interactions with the services and
historical usage data. Zhou et al. (2013) used service data and popularity in a service
network for ranking services for a given user request.

Usability based. Usability measures the ease of use of performing a particular task.
In the context of Web service discovery, techniques proposed in this category, take
user/client system’s convenience, capabilities or limitations into consideration during
the discovery process. Namgoong (2006) proposed an matchmaking algorithm that
computes the semantic matching between the client’s requirements and the available
service capabilities and ranks services based on a factor called usability score, which
measures the level of convenience of the client while using the service. Stollberg et al.
(2007) proposed a caching based technique to improve the subsequent discovery tasks
using previous discovery results. This WSMO based system keeps track of identified
goal templates for each query and use this information for reducing the search space of
similar discovery requests that are submitted later in time. Mohebbi et al. (2013) used a
technique called a pre-matching filter to reduce the search space independently of the
user’s querying process to achieve better response times during actual discovery.

User Preference/Personalization based Personalized service discovery focuses on
emphasizing user’s requirements beyond what is explicitly stated. Shao et al. (2007)
proposed collaborative filtering based approach for assisting users in selecting services
with best QoS by using similarity mining and prediction from past consumers’

Chapter 2. Literature Review 36

experiences. Kuang (2012) extended the idea of collaborative filtering-based service
recommendation, by using a technique called Bayesian Inference to predict the QoS of
an unused service for current service consumer. Liu (2013) proposed a situation aware
collaborative filtering algorithm that returns personalized service results to a user,
based on what other users invoked in various situations.

2.1.2.3 Functional vs. Non-functional Service Discovery

Several varied techniques are available in both functional and non-functional aspects
oriented service discovery. The main advantage of functional service discovery techniques
is that they are well suited for distributed, real-world Web services, most of which will
not have any associated QoS, invocation data, usage statistics etc. These discovery
techniques primarily are based on using the available service description documents and
the elements that indicate the service’s functionality (through natural language names
as given by their service provider) to determine most relevant services for a given task.
Hence, these techniques are well-suited for large service collections, without any additional
associated metadata. Since, the current scenario is exactly this, and most services are
simply available on the Web, functional semantics based Web service discovery is more
practical and scalable. Table 2.2 presents an overall comparison of the two approaches
and their relative merits/demerits.

Table 2.2: Functional vs. Non-functional Service Discovery

Criteria Functional Non-functional

Dependency Only service descriptions
are required

Service descriptions and
their associated quality data
(QoS/Cost/History/Invocation
data etc.)

Data Availability Available in repositories/
service portals or in other
sources over the Web

QoS values have to be
generated from specific real-
world Web services during
operation.

Suitability Well suited for both
centralized & distributed
architectures

Suited for small service
datasets with known QoS
values.

Support for
Personalization

Limited (context-aware
techniques have to be
incorporated)

Yes (users can select desired
QoS parameters)

Scalability Yes. Limited (dependent on
availability of QoS data).

Chapter 2. Literature Review 37

In case of non-functional aspects based discovery, most works have used small datasets
and have applied their techniques to closed environments, rather than to real-world Web
services. It is difficult to capture QoS data, usage statistics and invocation details, unless
specifically made available by the service providers or bought from a third party company
that sells QoS data at premium rates. Gathering the required non-functional data itself
is the biggest challenge and quite a daunting task. Understandably, most techniques
proposed have been validated for small datasets and can be applied by administrators of
closed repositories where relevant quality data is available.

Recently, there have been some concentrated efforts in gathering service QoS values
for real-world Web services. The QWS dataset (Al-Masri et al. 2008) contains QoS data of
365 Web services, for nine different QoS parameters like latency, throughput, availability
etc. The WS-DREAM dataset (Zhang et al. 2011) contains QoS data of 4532 services/142
users in terms of response times and throughput values. Currently, these are the only
datasets available for QoS based discovery experiments to the best of our knowledge.

2.1.3 Web Service Discovery - Remarks

In Section 2.1, a comprehensive review of Web service discovery architectures and
techniques was presented. A comparative study of centralized and decentralized
approaches revealed several research gaps. Centralized approaches offer the advantage
of standard taxonomy based classification, business oriented organization etc. Also,
these offer a central point where users can articulate their search queries. But, they are
mainly dependent on service providers for keeping the published data organized and
up-to-date, which became the main point of failure. Decentralized approaches are more
suited for the current scenario, as they support discovery over services available in
distributed sources. However, existing approaches suffer from several issues, like lack of
support for versioning, no caching, and no automatic updates. Hence, a hybrid
architecture that incorporates the best features of both centralized and decentralized
approaches, with additional improvements to overcome their negative aspects would be
very advantageous.

Comparing functional and non-functional aspects based service discovery techniques,
it can be said that functional approaches are more suited for distributed Web service
discovery than non-functional approaches. Non-functional techniques have the limitation
of unavailability of QoS data for unknown, distributed services, due to which they are not
scalable, and hence are not well suited. Using semantics based processing and metadata
for service descriptions during functional aspects based discovery can further enhance the
discovery process. In this context, we explore existing techniques for adding semantics
to service descriptions and for generating metadata, in Section 2.2.

Chapter 2. Literature Review 38

2.2 Adding Semantics to Web Service Descriptions

Today’s Web service standards are primarily motivated by the interoperability of
software components over the Web and are built on XML. Services are usually
described using natural language which is often too imprecise. As a result, WSDL-based
service descriptions cannot be interpreted without human intervention. Accordingly,
further functionalities such as automated Web service discovery, execution, or
composition are very difficult to achieve (McIlraith et al. 2001).

As the set of available Web Services grows, it becomes increasingly important to
have automated tools to help identify services that match user requirements. Finding
suitable Web services depends on the facilities available for service providers to describe
the capabilities of their services and for service consumers to describe their
requirements in an unambiguous, and ideally, machine-interpretable form (Berners-Lee
et al. 2001). Adding semantics to represent the requirements and capabilities of Web
services is essential for achieving unambiguity and machine-interpretability.

2.2.1 Using Semantic Web Service Formalisms

Today, Semantic Web Services are a prominent field of research and have resulted in a
number of different approaches and standards such as the Web Ontology Language for
Services (OWL-S), the Web Service Modeling Ontology (WSMO) and Semantic
Annotations for WSDL and XML Schema (SAWSDL). These are formalisms that
explicitly make use of semantic technologies to semantically describe different parts of a
service description. Here, we examine the salient features of each of these formalisms.

1. Web Ontology Language for Services (OWL-S)

OWL-S (Burstein et al. 2004) is an ontology within the OWL-based framework of the
Semantic Web, for describing Semantic Web Services. Its aim is to enable users and
software agents to automatically discover, invoke, compose, and monitor Web resources
offering services, under specified constraints. The class Service provides an
organizational point of reference for a declared Web service; each distinct published
service will have one instance of Service ontology, which has three properties - presents,
describedBy and supports. The classes ServiceProfile, ServiceModel, and
ServiceGrounding are the respective ranges of these properties. Each instance of
Service, presents a ServiceProfile ontology, be describedBy a ServiceModel ontology, and
supports a ServiceGrounding ontology. Figure 2.3 shows the components of the OWL-S
Ontology.

Chapter 2. Literature Review 39

i. ServiceProfile is used to describe what the service does. This information is primary
meant for human reading, and includes the service name and description, limitations
on applicability and quality of service, publisher and contact information.

ii. ServiceModel describes how a client can interact with the service and provides the
sets of inputs, outputs, pre-conditions and results of the service execution.

iii. ServiceGrounding specifies the details that a client needs, to interact with the service,
such as, communication protocols, message formats, port numbers, etc.

Figure 2.3: OWL-S Ontology Components

2. Web Service Modeling Ontology (WSMO)

WSMO (De Bruijn et al. 2005) is the other major approach for modelling services
semantically. WSMO provides a framework for semantic descriptions of Web Services
and acts as a meta-model for such Services based on the Meta Object Facility (MOF).
Ontologies are described in WSMO at a meta-level. A meta-ontology supports the
description of all the aspects of the ontologies that provide the terminology for the
other WSMO elements. Figure 2.4 shows the components of WSMO.

Semantic service descriptions, according to the WSMO meta model, can be defined
using the language defined by WSML (Web Service modelling Language), which consists
of four core elements deemed necessary to support Semantic Web services: Ontologies,
Goals, Web Services and Mediators.

i. Goals are defined as the objectives that a client may have when invoking a service.

ii. WebServices provide a semantic description of services on the Web, including their
functional (Capability) and non-functional (Interface) properties, as well as other
aspects relevant to their interoperation.

Chapter 2. Literature Review 40

iii. Mediators in WSMO are special elements used to link heterogeneous components
involved in the modelling of a Web service. They define the necessary mappings and
transformations between linked elements.

Figure 2.4: Web Service Modeling Ontology Components

3. Semantic Annotations for WSDL and XML Schema (SAWSDL)

SAWSDL (Kopecky et al. 2007) defines how to add semantic annotations to various
parts of a WSDL document such as input and output message structures, interfaces and
operations. The extension attributes defined in this specification fit within the WSDL
2.0, WSDL 1.1 and XML Schema extensibility frameworks. The annotations on schema
types can be used during Web service discovery and composition. In addition, SAWSDL
defines an annotation mechanism for specifying the data mapping of XML Schema types
to and from ontology; such mappings could be used during invocation, particularly when
mediation is required. To accomplish semantic annotation, SAWSDL defines extension
attributes that can be applied both to WSDL elements and to XML Schema elements.

i. modelReference - an extension attribute to specify the association between a WSDL
or XML Schema component and a concept in some semantic model. It is used to
annotate XML Schema type definitions, element declarations, and attribute
declarations as well as WSDL interfaces, operations, and faults.

ii. liftingSchemaMapping and loweringSchemaMapping - two extension attributes that
are added to XML Schema element declarations and type definitions for specifying
mappings between semantic data and XML.

Comparing Semantic Web Service Formalisms. Table 2.3 compares the three
semantic web service formalisms on the basis of common parameters. Lara et al. (2004)
reported that users often have difficulty recognizing the differences between these

Chapter 2. Literature Review 41

formalisms and choosing the appropriate paradigm for their application. Hence, a
systematic comparison between the three approaches in the context of different views:
the service consumer, provider and broker, is presented.

As seen from the Table 2.3, SAWSDL is currently a W3C recommendation, as it aims
to add semantic elements to WSDL itself. However, when a service is to be advertised,
SAWSDL is intended to be used along with OWL-S or WSMO. From both consumers’
and provider’s viewpoint, OWL-S seems to be better choice, currently, as some semi-
automated tools are available for one-on-one mapping between WSDL and OWL-S. There
still require manual intervention, but can still reduce the extensive work required in
manually generating semantic service descriptions.

Table 2.3: Comparison of OWL-S, WSMO and SAWSDL approaches.

Context OWL-S WSMO SAWSDL

W3C Status Submission Submission Recommendation
Usage As an additional

description
As an additional
description

as an enhanced
WSDL

Basis Based on the
W3C standard
Web Ontology
Language (OWL)

Based on Web
Service modelling
Language (WSML)

Focus is on adding
new elements to
WSDL itself while
developing it.

Consumer’s
viewpoint

Profile specifies
the service
objectives for both
user’s requests
and provider’s
advertisements.

The Goal is
defined to describe
users’ needs.

To be used along
with OWL-S,
WSMO or other
ontologies for user
advertisements.

Provider’s
viewpoint

Service Model is
used to represent
the service’s
control and
dataflow

defines a special
constructor
webService to
describe the
service.

Not Applicable

Inputs,
Outputs,
Preconditions
& Effects
(IOPE)

Explicitly defined
as per the IOPE
Model

Defined by
a Capability
constructor

Defined by WSDL
itself (only input
and output
constructs),
without any
semantics.

Orchestration uses a process
based description
of how complex
services invoke
basic services

details of
how WSMO
orchestrations will
be described are
not fully defined

Not Applicable

Chapter 2. Literature Review 42

2.2.2 Generating Service Metadata

In the absence of semantic annotations in most service descriptions, researchers tried to
compensate by using intelligent processing techniques to capture the inherent functional
semantics of a service available in its description. Some studies (AbuJarour, Naumann,
and Craculeac 2010; Li, Zhang, et al. 2007) reported that, even though the quality of
natural language documentation for services is poor, service designers mostly use well-
defined element names and the quality of WSDL is generally good.

In this context, some works focused in adding metadata automatically to services
without the use of semantic Web service formalisms. Heß et al. (2003) and Heß et al.
(2004) proposed a machine learning based approach that used Naive Bayes and SVM
algorithms to automatically discover the semantic categories of Web Services. They used
both the WSDL and the UDDI entry of 364 services to train the ensemble classifier, to
train it to automatically attach such domain labels to new test data. They reported a
maximum precision of 0.68 when used on a dataset of 100 test services. Since they did
not consider the operation and message level semantics of the WSDL, this approach could
not achieve better precision during service discovery.

Agarwal et al. (2004) proposed OntoMat-service, a tool intended for service workflow
designers for manually adding domain metadata to model service workflows. Bau III
et al. (2008a) and Bau III et al. (2008b) proposed an annotation framework for stateless
and stateful services, where a developer can explicitly define the web service logic using
a standard programming language. These constructs are augmented with declarative
annotations specifying preferences for exposing the logic as a stateless/stateful web
service. At compile time, an enhanced compiler analyses the annotated source file and
automatically generates the mechanisms required to expose it as a stateless/stateful
web service. However, these tools require manual effort from service designers at
development time, hence are unsuited for already published services.

Elgazzar et al. (2010) and Fang et al. (2012) used the service’s WSDL and similarity
measures like Normalized Google Distance (NGD) (Cilibrasi et al. 2007) to measure the
similarity between terms to automatically annotate the service domain to a given
dataset of services. NGD is a similarity metric based on the concept of information
distance, and uses the Google search API to automatically compute distance between
two words via Google indexed terms. Using NGD, the authors calculated the similarity
between every term extracted from the WSDL to determine relative frequencies, using
which the domain was inferred and the service was annotated with its domain
information. The authors claimed good accuracy at inferring the domain, however, this
method is very time consuming as NGD of every term pair has to be computed by using
the results returned by the Google API. However, the advantage of these approaches is

Chapter 2. Literature Review 43

that semantics and metadata can be generated from available data, i.e., the WSDLs,
thus at least partially overcoming the problem of current non-availability of explicitly
defined semantics in service descriptions.

2.2.3 Adding Semantics to Web Service Descriptions - Remarks

As discussed in Section 1.2.3, automatically generating semantic annotation for service
descriptions is quite challenging. Due to the volume of published service descriptions,
the time and effort required for manually/semi-automatically generating these
descriptions is quite massive, due to which adopting semantic Web service formalisms
for large-scale service annotation, especially for distributed service discovery, may be
difficult. Adopting generated metadata based approaches using intelligent processing
techniques to capture the functional semantics of a service from its service description
may be potentially more suited for current scenario. In the next section, we discuss
existing approaches for categorizing Web services available in published literature.

2.3 Review of Web Service Categorization Approaches

One of the major tasks of service management is effective service categorization to
facilitate service retrieval. Categorization enables domain specific searching, discovery
and search space reduction by eliminating irrelevant categories for a given user request.
Most categorization techniques aim to find those parameters based on which two
objects that need to be categorizes are sufficiently different, so they can be said to
belong to different categories. As such, current Web service categorization techniques
can be broadly classified into four categories - Taxonomy based, Clustering based and
Classification based. Some works that use hybrid techniques that use the merits of other
approaches are discussed under Hybrid approaches. Some relevant work from published
literature in each of these categories are discussed in this section.

2.3.1 Taxonomy based Web Service Categorization

The earliest efforts at categorization used the concepts of a taxonomy or hierarchical
structuring. Taxonomies may refer to a classification of things or concepts, as well as
to the principles underlying such a classification (Grossi et al. 2004). Some standard
taxonomies that are available currently are UNSPSC1, NAICS2 and SIC3. Some systems
that categorize services using taxonomies are presented below.

1United Nations Standard Products and Service Codes
2North American Industry Classification System
3Standard Industrial Classification

Chapter 2. Literature Review 44

W
eb

Se
rv
ic
e
C
at
eg
or
iz
at
io
n
T
ec
hn

iq
ue

s

Ta
xo

no
m
y

U
D
D
I
an

d
U
B
R
s

(U
N
SP

SC
/N

A
IC

S
ba

se
d
W

hi
te

;Y
el
lo
w

&
G
re
en

pa
ge
s.
)

S
er
vi
ce

P
or
ta
ls

-
P
ro
gr
am

m
ab

le
W
eb

-
X
M
et
ho

ds
-
B
io
C
at
al
og

ue
-
M
as
he
ry

O
th
er

w
or
ks

Sh
ai
kh

A
li
et

al
.(
20

03
)

C
or
el
la

et
al
.(
20

06
a)

C
lu
st
er
in
g

O
nt
ol
og

y
(N

ay
ak

et
al
.(
20

07
);

X
ie
,C

he
n,

et
al
.(
20

11
);

K
um

ar
a
et

al
.(
20

13
))

D
at
a
M
in
in
g
(
P
al
iw
al

(2
00

6)
;

Li
u
an

d
W
on

g
(2
00

9)
;E

lg
az
za
r
et

al
.(
20

10
))

N
L
P

b
as
ed

(
Sa

jja
nh

ar
et

al
.(

20
04
);

P
al
iw
al

(2
00

7)
;M

a
(2
00

7)
)

U
se
r-
ce
nt
ri
c
(C

he
n
(2
01

0)
M
aa

m
ar

et
al
.(

20
11

);
C
he
n
et

al
.(
20

13
a)
)

B
io
-i
n
sp
ir
ed

(C
hi
fu

et
al
.(
20

10
);

X
u
an

d
R
ei
ff
(2
00

8)
;P

op
et

al
.(
20

10
))

C
la
ss
ifi
ca
ti
on

S
em

an
ti
cs

(C
or
el
la

et
al
.(

20
06

c)
;

K
at
ak

is
et

al
.(
20

09
);

H
eß

et
al
.(
20

04
))

M
ac
h
in
e
L
ea
rn
in
g
(S
ah

a
et

al
.(
20

08
);

C
ra
ss
o
et

al
.(
20

08
a)
;W

an
g
(2
01

0)
;

A
bu

Ja
ro
ur

an
d
N
au

m
an

n
(2
01

0)
)

O
nt
ol
og

y
(A

zm
eh

et
al
.(
20

08
);

A
bo

ud
et

al
.(
20

09
);
K
eh
ag

ia
s
et

al
.(
20

12
))

T
ex
t
m
in
in
g
(B

ru
no

et
al
.(
20

05
);

La
ra
nj
ei
ro

et
al
.(

20
10

))

H
eu

ri
st
ic
/F

u
zz
y
(C

ha
o
et

al
.(
20

05
);

D
ev
is

et
al
.(
20

08
);
C
he
n
(2
01

3b
))

F
ig
ur
e
2.
5:

W
eb

Se
rv
ic
e
C
at
eg
or
iz
at
io
n
T
ec
hn

iq
ue
s

Chapter 2. Literature Review 45

UDDI and UBRs. The UDDI and the UBR were envisioned as a business registry
for enabling businesses to publish service listings and discover each other, and to define
how the services or software applications interact over the Internet. The UDDI being an
open industry initiative, standard taxonomies were adopted for organizing the business
and service listings in its core data structures - the White pages, the Yellow pages and
the Green pages (Universal Description, Discovery and Integration (UDDI) n.d.).

Some of the core problems associated with adopting standard taxonomies is that, most
are extremely large, consisting of thousands of categories, within multiple hierarchical
levels. The placement of a service under the most suitable category requires a considerable
amount of knowledge of the taxonomy, the service characteristics, the application domain,
the overall organization of the repository, implicit guidelines, etc., in order to make
good classification decisions. Since UDDIs allowed publishers to classify their services
themselves, this often led to sub-optimal classification and sometimes, misclassification.

Service Portals. Service portals follow their own classification criteria, and also
allow service publishers to choose the categories in which their services are placed in.
Publishers manually submit their service/API details like service endpoint, descriptions
etc., through a form. During this process, they select one of the several categories that
ProgrammableWeb defines. Currently, there are more than 480 categories, ranging from
‘Mapping’, with the largest collection of 3892 services, while the smallest category is
named ‘Aes’ and has a total of 1 service. BioCatalogue contains primarily Life Sciences
related services, and provides 85 categories like protein synthesis, genomics and
sequence analysis. XMethods has no categorization as all services are displayed as a list.

Other Taxonomy based Works. The major advantage of using standard
taxonomies is that ambiguity can be prevented, however, the users have to be experts in
the organization and hierarchical structure of the taxonomy to use it optimally. Some
researchers tried to solve the issues in UDDI’s taxonomy-based categorization methods
by proposing enhanced methods. ShaikhAli et al. (2003) proposed an enhanced UDDI
registry called UDDIe, that introduced the idea of Blue pages to hold user-defined
parameters associated with their service. It also allowed users to define a leasing period
for services published in the registry to specify the length of time the service
advertisement should remain active. Corella et al. (2006c) proposed a heuristic system
that aids the registry administrator by recommending a ranked list of potentially
relevant classes where a new service fits better. This is done by comparing the new
service with classified services already in the registry.

Chapter 2. Literature Review 46

2.3.2 Web Service Categorization by Clustering

Clustering is a unsupervised technique for categorizing similar data items. Using Web
service datasets, researchers have proposed different methods for clustering services and
these can be majorly divided into five categories are discussed below.

Ontology based Clustering. An ontology is a representation or a taxonomy of
concepts to which a domain conforms to. Identifying services that match a given
domain ontology can help in efficiently clustering and categorizing them. Nayak et al.
(2007) proposed a method called Semantic Web Service Clustering (SWSC) method,
which uses the OWL-S service ontology. They used a small dataset of 35 services
belonging to 8 different domains and applied hierarchical clustering to these to achieve
78% accuracy. Xie, Chen, et al. (2011) used the length of the path between two
ontology concepts, the path weight, the density of concepts, and relationship between
nodes in two service ontologies to determine similar services for clustering. Kumara
et al. (2013) used a hybrid method based on ontology learning and term similarity to
cluster similar services. If ontology concept matching fails, then Term frequency/inverse
document frequency (Tf-idf) is applied to the service names to find functionally similar
service clusters.

Data Mining based Clustering. Data Mining based techniques use concepts like
association rule mining and text mining in categorizing Web services. Paliwal (2006)
used hyperclique patterns based on frequent itemsets, for Web service clustering and
discovery. The hyperclique patterns capture items that are highly associated with each
other, the strength of which is given by its support and h-confidence values, using which
functionally similar services could be determined. However, the authors did not provide
any experimental results to support their claim.

Liu and Wong (2009) used text mining techniques and a two-phase, tree traversing
ant (TTA) algorithm to cluster functionally similar services. In the first phase, the
TTA algorithm is applied to the mined terms, where a term similarity measure called
Normalized Google Distance (NGD) (Cilibrasi et al. 2007) partitions the term clusters,
and in the second pass, a distance measure called n◦ to refine the formed clusters. Only 22
services were used for evaluating the proposed techniques and the authors reported good
clustering results. However, for bigger datasets this technique cannot scale due to the
computationally intensive nature of TTA algorithm. Elgazzar et al. (2010) used K-means
and Quality Threshold (QT) clustering algorithm to cluster Web services using NGD.
They too reported good results but the QT clustering algorithm is very computationally
intensive and time consuming when compared to other traditional clustering algorithms.

Chapter 2. Literature Review 47

NLP based Clustering. Web service descriptions are primarily written in natural
language like English, as they are made of XML based elements. Also, the WSDL
documents have a standard structure and contain elements like service name and
documentation, which can be used for understanding its functional semantics. Some
researchers like Ma et al. (2008), Paliwal (2007), and Sajjanhar et al. (2004) applied
Latent Semantic Indexing (LSI) on the terms extracted from the service names and
documentation. LSI is a statistical technique that captures the underlying semantics
between a set of terms, as highly correlated words indicate the existence of a topic.
Based on this, the domain of a service was determined and categorization was achieved
as per some domain ontology. Ma (2007) proposed the use of Probabilistic LSI (PLSI)
for improving the LSI model, however, failed to give adequate experimental analysis of
their technique.

User-centric Clustering. Recently, a trend of involving users in actively
contributing in the process of categorizing service collections exists, as evidenced in
Web 2.0 applications. These approaches are based on the concept of social tagging and
community filtering for generating metadata for services within large service collections.
One such approach, augments social tagging and user-contributed data by using
statistical techniques like Latent Dirichlet Allocation (LDA) to identify most relevant
tags based on which services can be clustered (Chen et al. 2013a). A small collection of
185 services were used to verify the performance of the proposed approach, which
resulted in better tagging accuracy. But, to be useful in real-world scenarios, the
strategy has to be suitable for larger collections, which requires concentrated efforts of
dedicated social users.

Chen (2010) proposed a collaborative filtering approach based on the nearest
neighbour approach for Web service recommendation. Their idea was to cluster users to
identify location-sensitive Web services, and then recommend services that were most
suited to user needs. Maamar et al. (2011) proposed a novel idea by which service
engineers can build a social network for their Web services which can help in discovering
these services’ peers. This proposes the use of two types of service social networks -
similar (competition and substitution) and different (composition). The idea is that,
during discovery, the similar peers can be used as either substitutes (in case original
service fails) or as competitors (may have better QoS values etc). Similarly, in case of
processes, the difference social network may be traversed to find possible composition
candidates.

Chapter 2. Literature Review 48

Bio-inspired Clustering. Nature-inspired methods have shown great promise for their
varied applications in areas like load balancing, searching, path finding etc. The behaviour
of social insects in nature has been studied and several algorithms have been proposed
for solving categorization problems. Xu and Reiff (2008) presented an immune-inspired
approach for clustering services as a preceding step to composition. The central idea
of the immune-inspired clustering is to first specify the ideal candidate with the best
fitness function. Then, during each iteration, a random individual is selected and if the
fitness function is better than the original, the algorithm stops, or else continues till a
better candidate is found, or the termination point is reached. This is clearly a very
time-consuming process and is not suitable for large service collections.

Chifu et al. (2010) used an ant-inspired method for clustering services based on degree
of match between input and output concepts. In nature, ants exhibit a highly selective
cemetery building behaviour, where random ant workers start to pick up ant corpses and
drop them in separate heaps. In time, these heaps start to merge and become bigger
heaps. This behaviour is adapted to web services, by using the metric of degree of match.
A set of artificial ants carry a service description each and create random heaps during the
first iteration. This process is carried out for a pre-defined number of iterations and the
resultant clustering is observed. The authors claim about 80% accuracy in the clustering,
but they did not incorporate match dynamic thresholding to identify the best clustering.
They note that if the threshold is too high, very few clusters will be formed and vice
versa, if the threshold is too low. They have heuristically selected the threshold to be
0.1, at which the algorithm performed best.

The authors extended the work proposed earlier in (Pop et al. 2010) to incorporate
dynamic thresholding based on the Intra-Cluster Variance (ICV) and Average Item-cluster
Similarity (AICS) metrics. The number of iterations considered is quite high (2000 x
Number of services considered), thus making the method very time consuming. They
also observed that smaller iteration numbers led to large, low quality clusters, whereas,
large iteration numbers resulted in smaller, better-defined clusters.

2.3.3 Web Service Categorization by Classification

Classification is a fundamental technique used to disambiguate between two objects by
capturing their similar and dissimilar features. In general, classification is a supervised
task, which means that, a new entity (test data) is categorized based on the experience
obtained while classifying previous candidates (training data). Hence, classification is
generally suitable for scenarios were certain ground truth values like manually classified
services, or other similarly annotated datasets are available. Some classification based
service categorization works in literature are discussed in this section.

Chapter 2. Literature Review 49

Semantics based Classification. Semantics based approaches focus on capturing the
inherent semantics and similarity between services to categorize them into functionally
similar classes. Some approaches in this area are - semi-automatic technique based on
heuristic matching between new services and already classified services (Corella et al.
2006c), using the textual description and annotation available in OWL-S advertisements
for classifying services using the I/O relationships of exact, subsume and plugin (Katakis
et al. 2009), semi-automatically classifying new services based on a manually classified
dataset using machine learning techniques, which is discussed next.

Machine Learning based Classification. Machine learning based techniques are one
of the common approaches in service classification. Saha et al. (2008) used tensor space
model for service data representation. The tensor space model takes the structure of the
XML based document structure of the WSDL, over which, a rough set based ensemble
classifier for classifying services. Crasso et al. (2008a) used text mining to generate a
training dataset by capturing the category information of published Web services and
then used generic machine learning classifiers to categorize the services. AbuJarour,
Naumann, and Craculeac (2010) used a pre-defined list of categories (obtained from
ProgrammableWeb.com) to classify about 100 services. Similarly, Wang (2010) used the
UNSPSC standard taxonomy to define the categories for their classification algorithm.

Ontology based Classification. This category consists of approaches that use
ontology based concepts like concept hierarchies and lattices. Azmeh et al. (2008)
proposed a technique that uses QoS based filtering to first select and then uses formal
concept analysis (FCA) to classify similar services. The services are first arranged in
partially ordered concept lattice, using a binary relation between services and operation
signatures. Using this, services that share common attributes are identified and
classified. The authors used only 5 services and the operations of all these services to
show the viability of this approach and also note that the construction of a concept
lattice, when the number of objects (services) and attributed (operation signatures) are
large becomes very cumbersome and tedious. Aboud et al. (2009) used a similar
approach that aimed at building various specialization lattices that offer
human-readable views and also programmatically browsable indexes to search for
suitable components.

Text Mining based Classification. Bruno et al. (2005) used text mining to
automatically classify services to specific domains and then to generate additional
metadata about services by identifying key concepts within each category. They used
Support Vector Machines and Formal Concept Analysis in the proposed approach.

Chapter 2. Literature Review 50

Laranjeiro et al. (2010) applied text classification algorithms like Näive Bayes and
k-Nearest Neighbours to segregate services that were fail-safe and failure-prone in an
attempt to analyse the robustness of service collections.

Heuristic/Fuzzy Classification. Heuristic methods employ several different
parameters for classifying services like fuzzy logic (Chao et al. 2005; Corella et al.
2006b; Devis et al. 2008), rough set theory (Chen 2013b) etc. The primary goal is to
capture the abstract definition of service functionality for the goal of concrete service
categorization and discovery. Chao et al. (2005) and Chen (2013b) used fuzzy logic to
capture QoS concepts like ‘high’, ‘good’, ‘most’ etc, which are relative measures and not
absolutely measurable. Using fuzzy logic and semantics based processing, their work
tried to address these issues, so users could use imprecise terms in their query and still
get relevant results. However, this work lacked experimental results and the
effectiveness of the approach could not be verified. Devis et al. (2008) proposed flexible
service discovery framework which uses multiple matchmaking strategies, like domain
ontology based, business domain modelling and logic reasoning. Corella et al. (2006b)
also proposed a heuristic matching between category to service, service to service and
concept to concept matching for correctly classifying services in an UDDI based setup.

2.3.4 Hybrid Approaches for Web Service Categorization

Some approaches in literature do not fall under the three particular categories identified,
and so can only be termed as hybrid due to their fusion based methodologies. Some
of them are discussed in this section. Fenza, Loia, et al. (2008) proposed a framework
that uses fuzzy logic and agent based architecture towards similarity based grouping and
matchmaking of relevant semantic Web services. The process of discovering services that
can satisfy a given user request is delegated to task-specific agents that can identify even
partial matches if no matches are found. This is because; the agents are modelled as
per the fuzzy logic rules defined over the OWL-S descriptions of the services. In another
paper, the same authors proposed an alternate hybrid approach based on the fusion
of fuzzy logic and formal concept analysis that aims to automatically suggest service
relevant terms to the user while querying the system, that may result in potentially
relevant services (Fenza and Senatore 2010). An adhoc query can then be generated,
without requiring strict adherence to formal syntax, to find recommendations on similar
services.

Skoutas et al. (2010b) presented an aggregate ranking mechanism based on both
functional and non-functional parameters of a service, which can be used to re-rank service
discovery results based on user preference. In an extended paper (Skoutas 2010a), the

Chapter 2. Literature Review 51

authors proposed techniques that use multiple parameters and variable weights assigned
to each of them to perform clustering and ranking of services with respect to a submitted
user query. Multiple parameters that were considered include user preferences, QoS values
etc and the underlying relationship between these parameters is dynamically measures
using a set of logical inference rules in order to remove undue bias towards any one
parameter.

Cao et al. (2013) proposed a novel approach that focuses on service discovery for
consumers (from user’s perspective) and consumer discovery (from service provider’s
perspective) using hybrid collaborative filtering algorithm. The approach considers the
consumer-service data, service-provider data and provider-consumer data for generating
recommendations for potential services that match client needs, and also potential
clients for generating revenue for service providers. Platzer and Dustdar (2005) and
Platzer, Rosenberg, et al. (2009) proposed a statistical clustering method using
multi-dimensional angles as the proximity measure for clustering service documents
represented in the vector space, aimed at efficient indexing to optimize querying.

2.3.5 Service Categorization Approaches - Summary

In summary, several varied techniques are available in the three main categorization
techniques - taxonomy based, clustering based and classification based approaches. Based
on techniques available in literature, each may be suited for different scenarios, and this
is probably why, hybrid approaches have been proposed.

Taxonomy based approaches are more suitable for large scale collections where a
standards based approach is used. This is why the UDDI and UBR adopted standard
taxonomies, as the categories are well defined and hierarchically organized. However, this
is also the biggest challenge, as the standard taxonomies have thousands of categories,
and domain experts are required to correctly classify published services in the most fitting
category for improved discovery accuracy. Some classification based approaches tried to
use taxonomies for defining the categories for their classification algorithms, however,
without extensive, properly classified service data as training datasets, these approaches
have not achieved good accuracy. Also, classification approaches are not well suited for
large, unlabelled, distributed service collections, as there may not be enough ground truth
data against which the new services may be classified.

Clustering based approaches are well suited for the current scenario, where large
amounts of services are available in a distributed fashion and decentralized approaches
like service search engines and portals exist. Clustering, being an unsupervised approach,
is a technique that is meant to capture inherent similarity features for grouping similar
entities, hence, clustering based distributed Web service categorization techniques may

Chapter 2. Literature Review 52

perform better and also scale better than the other two approaches. However, traditional
clustering algorithms have several limitations and can be computationally intensive. Also,
any changes in the service dataset will require the clustering process to restart once again;
hence incremental approaches may be needed for real-world applications like service search
engines and portals.

In the next section, another major issue, that is, extending semantics based querying
support to service consumers is discussed. Most existing systems have limited support
for context-sensitive handling of service discovery requests, which itself can affect the
accuracy of the services retrieved, if ambiguity is not resolved. Section 2.4 presents a
review of existing techniques for better understanding a user query.

2.4 Understanding User Requirements

As the volume of data on the Web keeps increasing, one of the primary problems
reduces to how to effectively find it, using the unstructured queries that users provide.
One of the primary problems faced by service based application designers is the
primarily keyword based queries and the lack of expressiveness in the querying
interfaces provided by traditional service repositories like service registries and portals.
Hence, service discovery techniques need to adopt intelligent techniques to process user
requests to understand their context and requirements.

One of the easiest ways of communicating with search engines and other search based
systems has been one’s natural language. Currently, multilingual search is also supported
by most major search engines. The advantage of a natural language querying interface
to any system is that most users can use it intuitively, without any need for additional
structuring to their request. However, in order that the system understands the query
submitted by the user, the query may have to processed and transformed into a structured
query for best matching.

Context-awareness in general has been defined as - “any information that can be used
to characterize the situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an application, including
the user and applications themselves (Abowd et al. 1999)”. In Web service discovery,
context-awareness can refer to several factors, as is evidenced in current literature. In
mobile service discovery scenarios, context-awareness refers to personalization based on
user device type, mobility, preference etc, before identifying the best service to perform
the task (Doulkeridis et al. 2006) (Sheshagiri et al. 2004). In pervasive environments, this
might mean considering user’s location and environment (Mokhtar et al. 2008; Pawar et al.
2006). In dynamic service invocation scenarios, this means a preference to adaptability

Chapter 2. Literature Review 53

and robustness, to ensure task completion (Hong et al. 2009; Spanoudakis et al. 2007). In
case of user-centric query processing systems, context-awareness refers to understanding
user requirements specified in an unstructured manner, to correctly identify the desired
service domain and recommend most relevant services (Paliwal 2012; Sangers et al. 2013).
The problem we are trying to address in this thesis pertains to the last scenario and we
focus the discussion in this area.

Most current literature in Web service discovery discussed in previous sections, tried
to address the issues of effectively capturing service functionalities for relevant service
discovery. For best matching, the same analysis has to be applied to the user request too,
especially in the case of natural language queries. Several researchers tried to address
these challenges and relevant works can be subdivided into three main categories as shown
in Figure 2.6.

Context-aware Web Service Discovery

Using Limited Vocabularies
Bosca, Ferrato, et al. (2005);
Bosca, Corno, et al. (2006);
Xie, Gong, et al. (2006)

Using Semi-structured Queries
Al-Muhammed et al. (2006);

Cremene et al. (2009);
Quarteroni (2013);
Zapater et al. (2015)

Using Natural Language Interfaces
Lim et al. (2010);
Quarteroni (2012);

Sangers et al. (2013);
El Bouhissi et al. (2014a)

Figure 2.6: Context-aware Web Service Discovery - Approaches

2.4.1 Using Limited Vocabulary Requests

Some researchers used a restricted vocabulary of keyword set with which users could
express their requests, for example, explicitly defined input and output parameters. These
approaches can be categorized as limited vocabulary based approaches. Bosca, Ferrato,
et al. (2005) proposed a technique that used a controlled subset of natural language
that was to be applied to a closed, limited set of services like those managed by a single
operator or at a company’s registry. Each of the services are annotated with the applicable
vocabulary terms as per their domain, which allows effective categorization and retrieval.
They extended this approach to support service compositions where the each controlled
user query is processed for lexical constructs designed to convey the operations’ semantics,
in order to recognize and extract fundamental functional requirements implied by the
request, and associate them to entries in the service catalogue (Bosca, Corno, et al.
2006). Xie, Gong, et al. (2006) used a technique that used a vocabulary called SOBL
(Semantic Object behaviour Language) to transform the user’s natural language request
to a formal specification that can be used to find services that can satisfy the request.

Chapter 2. Literature Review 54

2.4.2 Using Semi-structured Queries.

Approaches that focus on imposing some structure on user queries, for easier handling
and processing come under this category. Al-Muhammed et al. (2006) proposed the
use of certain constructs for limiting the expressiveness of natural language queries and
adding some structure to free form queries. They used these constructs when the number
of solutions presented by the system are too many (under-constrained query), or when
no solutions are presented at all (over-constrained query). Hence, in the case of over-
constrained queries, the proposed approach identifies those conditions that need to be
removed, so some results could be returned. Similarly for under-constrained queries, a
few additional conditions are suggested to the users, so unrelated results can be pruned
and to retain the best-m solutions only. Using this technique, the authors developed a
dialogue based system to capture user requests, where the system is able to give feedback
to the users based on the problems noticed during the result generation process.

Cremene et al. (2009) used a pre-defined template based approach, by which users can
specify their requests for candidates for service composition in a structured manner. The
authors claimed that the system was 100% accurate when used in a simulated, intelligent
home environment. However, it is not scalable and is applicable only when a known set
of services is used, that can be automatically invoked. Quarteroni (2013) processed the
repository of services first to identify their functionality and to annotate the services with
the associated metadata during registering the service itself. The queries are submitted
to the system in free form, but are processed, segmented, classified, and mapped to an
execution strategy modelled by the service domain metadata to perform matchmaking.
Zapater et al. (2015) developed a travel information system using semantic Web services
that supports semi-structured queries. Users can specified their travel requests using pre-
defined constructs like to, from, via, through etc, which are considered connecting points
to parts of the query, using which the query can be segmented. Various services are then
invoked to satisfy the user’s request. Again, these types of approaches are suitable for
closed domain datasets who characteristics are known and can be easily modelled.

2.4.3 Using Natural Language Interfaces.

Dealing with primarily unstructured service repositories is a highly challenging task due
to the large number of services involved and their varied domains. Natural language
interfaces (NLIs) support completely free form requests that allow users to query the
underlying repositories without needing to know domain specifics. Most user-focused
applications like popular Web search engines like Google, Bing and Yahoo, provide NLIs,
which help users in conducting their search activities in a very intuitive manner.

Chapter 2. Literature Review 55

Lim et al. (2010) proposed a technique to automatically generate an abstract service
workflow from a user’s natural language complex request. The generated workflow also
specifies all the constituent tasks and their transitions such that multiple services can
be identified for each of the tasks. Quarteroni (2012) designed techniques for identifying
the important focal terms in user queries. Once identified, these are classified as per
the service taxonomy and then used for extracting additional relevant information in
order to match them to suitable services. Sangers et al. (2013) used common natural
language processing techniques like named entity recognition, anaphora resolution and
word sense disambiguation for correctly understanding the context of the user’s request for
matchmaking with WSMO described services. El Bouhissi et al. (2014a) and El Bouhissi
et al. (2014b) used the concept of user goal modelling using ontologies, that is used to
match and discover services. Here, the user request is in the form of a goal that is to be
achieved, which is annotated with ontology terms, to effectively match concepts with the
services in the repository.

2.4.4 Semantics-based Querying - Remarks

Effectively understanding the user query can enhance the service discovery process to a
large extent as unambiguity can be eliminated and the accuracy of search results returned
can be boosted. Of the available techniques, natural language interfaces are most flexible
and support a completely intuitive querying from the user perspective, thus improving
ease of use and user experience in the process. In Section 2.5, a review of existing
techniques for specifically discovering composite Web services in literature are presented.

2.5 Composite Web Service Discovery - Review

It is a fact that most applications need more than one service to offer the intended
functionality. Hence, application designers have to perform the critical task of identifying
the best services for a particular task in the process workflow. For this, they try to discover
available services for each individual subtask, manually. To automatically identify those
services that can invoked in the required sequence to achieve the desired functionality is
a much sought-after feature.

A common example is, an application that offers customers a facility to plan an entire
holiday by booking flight tickets as well as hotel accommodation while taking into account
various parameters such as family activities, prices, special offers, and so on. A major
requirement for supporting such a feature is also identifying the sequence in which each of
the constituent services have to be invoked (or chained in a workflow) to get the desired

Chapter 2. Literature Review 56

results. Table 2.4 shows a scenario where four services {WS1, WS2, WS3, WS4} have to
be invoked in order to satisfy the user’s requirements.

Table 2.4: Service composition required to serve the query “doctor to treat high fever and chills”

Service no. Input(s) Output(s)

WS1 list of symptoms disease information
WS2 disease information recommended treatment
WS3 name of treatment, zipcode list of hospitals
WS4 nearest hospital list of doctors

In literature, very few works focus on the problem of composite Web service discovery.
This is because constraint based service composition is a NP-hard problem that requires
extensive knowledge of the available service domain and service capabilities; and hence is
computationally intensive. Existing approaches in the area of composition-oriented Web
service discovery can be categorized under three groups as shown in Figure 2.7.

Composite Web Service Discovery

Indexing based
Brogi, Corfini, and Popescu (2005);

Kuang et al. (2007);
Wu, Yan, et al. (2015)

Semantics/ontology based
Aversano et al. (2004);

Akkiraju, Srivastava, et al. (2006);
Brogi, Corfini, and Popescu (2008)

Graph based
Liang et al. (2005);

Hashemian et al. (2006);
Liu, Ranganathan, et al. (2007);

Shin (2009)

Figure 2.7: Composite Web Service Discovery - Approaches

2.5.1 Indexing based Composite Service Discovery

Indexing based approaches use the information contained within the service descriptions,
extract it and store it within an index for fast retrieval during the process of discovery.
Brogi, Corfini, and Popescu (2005) proposed an algorithm called Service Aggregation
Matchmaking (SAM) that indexes OWL-S process models of services in the repository as
a tree structure and stores it in the memory. Then, for a given query, SAM can perform
a fine-grained matching at the level of simple processes, and can also return a list of
partial matches, when no full match is possible. Besides returning partial matches, it
also suggests to the client additional inputs that would help in getting a full match. No
experimental results were presented for verifying the validity of their approach.

Chapter 2. Literature Review 57

Kuang et al. (2007)’s approach is based on using an index of OWL-S described outputs
of registered services. A service list is maintained for each output that contains all the
services that deliver that output, in a given repository. Thus the output acts as the key
of the sorted index, so that the matchmaking with the query is optimized. If found, only
those services on the identified output list are considered relevant, and so, others can be
filtered out. The authors claim that this method is faster than sequential composition-
oriented discovery, however, the amount of manual work required while first creating the
index and the service list for each output is quite high, so this method may not be suitable
for large service repositories.

Wu, Yan, et al. (2015) used a multilevel index based model for processing service
output information, to overcome the redundancy problem found in sequential and inverted
index methods. They proposed a 4-level indexing scheme, where the first two levels are
based on the extracted service inputs and outputs. The next two levels use a concept
called as a ‘key’ which is used to eliminate redundancy from the indexed space. This
multi-level indexing representation speeds up the process of finding service composition
candidates by matching terms in the first two indexes. The indexing scheme can be
used over existing service registries for published service management by using four basic
operations provided - retrieve, insert, delete and replace, just like how relational databases
are managed. The authors presented a theoretical analysis of the approach, to prove that
redundancies can be effectively eliminated, but no experimental results were provided in
this paper to support their claim.

2.5.2 Semantics/Ontology based Composite Service Discovery

Ontology based approaches exploit semantic Web formalisms like OWL-S and WSMO for
discovering services for composition. In Aversano et al. (2004)’s approach, the services are
represented using OWL-S ontology. If a single service cannot fulfil the requested input
and output descriptions, then services that fulfil at least one output are searched for. If
a discovered services can fulfil the output, but not the original input, then the process
is repeated by searching for new services, that fulfil the new input as output, until the
original request is satisfied through discovered service composition. Hence, due to the
recursive search the proposed algorithm is polynomial in complexity.

Akkiraju, Srivastava, et al. (2006) proposed a Web service discovery and
composition technique based on semantic matching and AI planning. To understand
ambiguous terms a combination of domain-independent and domain-specific ontologies
were used to facilitate correct service identification. Brogi, Corfini, Aldana, et al. (2006)
extended their previous index based approach for semantics based composition-oriented
discovery, to enhance the algorithm SAM (Brogi, Corfini, and Popescu 2005) proposed

Chapter 2. Literature Review 58

earlier, to also find potential, multiple executions of services, to provide alternate
composition plans to users. They intended SAM to be part of UDDI registries, to
enhance service discovery. In SAM, the discovery takes place on the server-side and the
actual composition process is performed on the client-side by employing the service list
returned by the algorithm. However, the generation of the service list in the extended
version is based on the concept of a hypergraph. In a hypergraph, an edge (called an
hyperedge) can connect any number of vertices, thus the graph construction process and
the result generation becomes polynomial in complexity.

2.5.3 Graph based Composite Service Discovery

Graph based approaches redefine the Web service composition problem as a graph
search problem by representing the services are nodes and the edges are the
dependencies between the services. Most of the approaches are intended to be deployed
at a intelligent service registry/server, which implements the algorithm required to
represent all indexed services as a graph.

Liang et al. (2005) presented a novel graph based service composition template
generation technique. For a given query, possible composition sets are found by
performing a graph traversal using the AND/OR graph search algorithm. Once an ideal
template is selected, the system then attempts to bind the template’s service operations
to registered services. If the binding is successful, the bound template is used to
generate a WSFL document (Web Services Flow Language), which can be used by a
WSFL execution engine to invoke the component services, as per user command.

Hashemian et al. (2006) represent available Web services as an input/output graph.
The behaviour of basic services is studied and the expected behaviour of a composite
service is modelled as a ‘process algebra’, which is generated by a Web service composition
planner component. Using the I/O graph and the generated process algebra, a search for
a suitable composition is carried out and if found is returned to the user in the form of a
BPEL process. This approach was based on the forward chaining process, due to which
cycles may sometimes appear, which can result in incorrect composition templates. Also,
the complexity is a polynomial function dependent on the size of the graph and number
of inputs/outputs.

Liu, Ranganathan, et al. (2007) method consists of modelling services using a semantic
graph and the connections between services as transformations. They also annotate each
operation of the service with additional metadata using RDF graph patterns, so inputs
and outputs are explicitly expressed, in its domain. The domain itself is defined using
OWL-S ontologies. Using this setup, a composition model is proposed that considers the
user given conditions before generating an abstract workflow. A planner engine uses this

Chapter 2. Literature Review 59

model to automatically compose services based on the abstract workflow. The authors
reported that, while the pre-reasoning approach was quite time consuming, it can result
in multiple composition plans based on the identified matching.

Shin (2009) also considered the functional semantics of services while determining the
correct sequence of services for satisfying a user query. WSMO was used to explicitly
define the functional semantics and category of a service. Each service is stored as an
object and action pair in a two-layer graph model, which is traversed to find possible
matching object/action pairs. This approach considered only a single action per object
(WSMO service), however, there may be multiple associated actions, which can lead to
ambiguity and additional processing time. Hence, the composite service discovery process
is of polynomial complexity, and is a function of the graph size and number of inputs,
due to which it is not very scalable. Since the matching is semantics based, this paper
can also be considered under the semantics based composite service discovery category.

2.5.4 Composite Service Discovery - Remarks

As previously stated, few composite Web service discovery techniques exist in published
literature. Available approaches use different methods like indexing, graph construction
and semantics for identifying composite services. Most have high complexity and are time
consuming, which gets worse as the number of services considered increases. Indexing
based methods focus of using the terms extracted from the service inputs and outputs for
index creation, so that matching services can be retrieved based on user query. However,
these natural language terms can have synonyms and hypernyms, or may be used in two
different senses in two different services, so these two services cannot be considered similar.
This distinction is not possible using indexing based methods. Semantics and ontology
based methods alleviate the disambiguation problem to a certain extent, but the process
of searching for the desired output for a given input can be exhaustive due to which
computationally intensive techniques like AI planning and logic based reasoning have to
be used. Graph based techniques are the most efficient as they focus on representing the
available services by their dependencies, and then use various graph traversal problems.
With the inclusion of semantics based processing and intelligent indexing, graph based
algorithms can be made very efficient. Some problems faced by existing graph based
approaches while searching for possible compositions, like cycle detection and avoidance,
graph maintenance, and optimized traversal techniques need solutions and there is scope
for much improvement in these areas.

Chapter 2. Literature Review 60

2.6 Research Directions

A review of published literature in the area of Web service discovery shows an inclination
towards semantics based techniques for enhancing the performance of service discovery.
We presented a comprehensive review of these approaches and compared the categories
in each area based on several important parameters. Some of the important research
directions that need to be pursued to further optimize service discovery related tasks are
presented here:

• Earlier service discovery approaches relied on the public/shared business registries
like UDDI and UBRs which are no longer available. Also, most practical SOA
implementations currently prefer a direct interaction between requester and
provider (AbuJarour and Naumann 2010; Michlmayr et al. 2007), due to which, a
central point of access to published services is no longer available. Some surveys
on public web services have reported conclusively that the recent trend observed
in the domain of service discovery is increasingly towards information retrieval
based approaches to find services over the Web (Fan et al. 2005; Al-Masri 2009;
Al-Masri et al. 2008). Hence, there is definite scope for applying intelligent
information retrieval and semantics based techniques to build a large-scale,
distributed service discovery framework.

• The standards based UDDIs and UBRs failed primarily due to their dependency
on service providers to actively manage their published service descriptions. Unless
these providers keep their service data updated, it was impossible to maintain the
repository. There is scope for incorporating intelligent processing techniques that
can minimize this dependency on humans to update and maintain their data.

• The UDDI and UBRs did not enforce any quality checks on the services published
in their repository (Almasri et al. 2008). Due to this, invalid and incomplete service
descriptions could also be published in the registry, thus affecting the integrity and
standard of the service collection. It is critical to enforce strict quality checks on
the service descriptions to be indexed within a service repository and there is scope
for the development of such measures.

• There are no explicit version control and duplicate management checks in the
UDDI/UBRs and also in any of the existing service search engine approaches.
These are essential, especially in the current scenario, as same services may be
published in multiple, varied sources on the Web. A service provider company
may make its services available on its own website, and then may decide to
advertise these services on several third party service portals. Also, a new version

Chapter 2. Literature Review 61

of an existing service may be released, which supports more (or lesser)
functionalities. When these are indexed by a distributed discovery mechanism, if
each copy is treated as a new service, then the service repository will be highly
redundant and unproductive. Hence, effective version control and duplicate
detection mechanisms need to be developed for efficient registry management.

• Some surveys reported that only about 15% of the services published on the Web
have good quality natural language documentation. The vast majority of services
on the Web exist without proper natural language documentation to effectively
indicate their capabilities to a service consumer. As most existing functional aspects
based discovery approaches deal with synthetic service datasets which consist of well
documented service descriptions, these have failed to handle situations when such
good documentation is not available. Hence, there is scope of developing alternate
methods to capture the functional semantics of a service, without relying exclusively
on the service provider’s documentation, as is the case with several existing works.

• Most approaches for distributed Web service discovery deal with small synthetic
or real-world Web service datasets. This means that their service collection is
essentially static and does not change over time. Dealing with such a static dataset
is straight forward and effective categorization can be achieved using traditional
approaches (discussed in Section 2.3). However, large scale service discovery will
have to deal with the massive collections of services available on the Web. If these
are to be found and indexed in a central repository using a distributed discovery
approach, such a framework will have to deal with constantly changing service
collection. There may be a newer service version available, older services may no
longer be offered and may have been removed from their servers. A distributed
service discovery framework must be able to deal with these constant changes and
be able to effectively categorize services incrementally, rather than having to restart
after each change. There is scope for intelligent categorization algorithms that can
deal with constantly changing, dynamic service collections effectively.

• Often, the results of a service discovery process are dependent on the terms used by
the user during the search process. As users may not be aware of all the domain-
specific terms required for optimal results, it is beneficial to extend context-sensitive
querying support to users.

• As discussed in Section 2.5, very few works have focused on the problem of
discovering relevant services for composition (Composition-oriented discovery). Of
the existing works, most have very high complexity and are not easily scalable to

Chapter 2. Literature Review 62

larger service datasets. Hence, there is scope for developing semantics based
composition-oriented discovery techniques for recommending composite service to
application designers.

Considering these observations, several possible research gaps have been identified
in existing literature, which has provided some promising research directions that are
yet to be explored. These include issues pertaining to distributed Web service discovery
and the limitations observed in existing literature. Possible solutions are offered by the
inclusion of semantics, enabling domain-specific categorization and semantic querying
support during basic and composite service discovery.

2.7 Summary

In this chapter, we examined the basic concepts and the state-of-the-art in published
literature in the area of Web Service Discovery. We classified Web service discovery
approaches as centralized, decentralized and hybrid, and under each, discussed various
techniques used for service discovery, ranging from traditional keyword based matching
to social network based, user-centric discovery. In the current scenario, the type of
architecture that is most suited is a Hybrid Architecture that encapsulates distributed
algorithms for finding and indexing published services, while supporting a centralized
repository as a point of access where user requests can be articulated. There is also a
need for efficient semantics based similarity analysis, indexing and categorization within
the repository to support both basic and composite service discovery, based on natural
language requests.

In the next chapter, we formulate these research issues in a formal manner and present
the solutions proposed to identified research directions in the subsequent chapters of this
thesis. We believe that, Web service discovery being the most critical task in the Web
service life cycle, has a deep impact on the success and failure of a SOA based application,
and that, the work presented in this thesis will make a positive contribution to research
in this area.

Publications

1. Sowmya Kamath S and Ananthanarayana V.S, “Semantic Web Services Discovery,
Selection and Composition Techniques”, at the Third International Conference on
Computer Science and Information Technology (CCSIT 2013), pgs 151 -158, 2013.
DOI : 10.5121/csit.2013.3616.

Chapter 2. Literature Review 63

2. Sowmya Kamath S and Prakash S. Raghavendra, “Semantic Web - Applications,
Challenges and Directions”, at the 3rd International Conference in Information
Technology and Business Intelligence (ITBI 2011), November 25 - 27th, 2011,
Hyderabad, India

Chapter 3

Problem Description

3.1 Problem Definition

Web service technology promotes component reusability through loose coupling in
application to application interactions. The success of the Web service based SOA
systems and dependent on effective solutions for prevalent issues in critical Web service
life cycle tasks like service discovery and composition. In this regard, these prevalent
issues in distributed Web service discovery were discussed and summarized in the
previous chapter. In this chapter, we describe the scope of this thesis and formally
define the identified issues for consideration as an investigation problem. We also briefly
describe the overall methodology adopted for the research work presented in this thesis.

3.2 Scope of the Work

Web service discovery is a fundamentally important task because of its pervasive nature in
all Web service based SOA systems. Having been investigated extensively in the past, the
current scenario warrants a fresh look at the problem of finding services distributed over
the Web. Current Web service conceptual model does not support distributed, semantics
based discovery on the large scale. The most critical issue compounding the discovery
problem further is the exponential growth in the number of published Web services over
the Web and their diversity.

In this thesis, we discuss the problem of effectively finding distributed Web services
from heterogeneous sources over the Web. For this purpose, a distributed Web service
discovery mechanism is required that incorporates certain intelligent techniques for
enabling semantics based service discovery for service consumers. The main emphasis is
given to addressing the following identified problems:

64

Chapter 3. Problem Description 65

1. A distributed mechanism to identify services published in varied sources

over the open Web and retrieve them.

The retrieved services would be indexed using intelligent processing techniques
for best retrieval performance. The framework should support automatic version
management, duplicate detection, and minimize the level of human intervention in
managing the service data. Another major requirement is strict adherence to quality
checking to ensure the integrity of the repository. This framework would support
service discovery using the well-organized service repository. The main idea here
is that a service consumer can use the framework’s user interface for articulating
service discovery requests. Figure 3.1 depicts the distributed approach of finding
and retrieving published services from the Web.

Figure 3.1: Process of building the service repository

2. Using available data to generate additional metadata and semantic

annotation for service descriptions.

As discussed earlier, more than 85% of published services are without proper
natural language documentation, which hinders the correct identification of the
domain of a service. This is addressed by incorporating effective mechanisms for
capturing the functional semantics of a service using natural language processing
techniques. The extracted functional semantics is used for service similarity
computation and for representative metadata generation in the form of natural
language tags, which is shown in Figure 3.2.

Figure 3.2: Automatic metadata generation for services

Chapter 3. Problem Description 66

3. Incorporating semantics based categorization techniques for the large,

dynamic service collection in the repository of the proposed distributed

service discovery framework.

Most existing approaches for Web service discovery use small Web service
datasets, which are essentially static. Hence, traditional clustering and
classification algorithms are adequate. However, the number and diversity of
services indexed within the proposed framework will keep changing constantly and
effective categorization is required to deal with these changes. This is addressed
by using a semantics based dynamic categorization algorithm (as seen in Figure
3.3) that can deal with multiple changes over time incrementally, without needing
to start from scratch each time a change occurs.

Figure 3.3: Process of dynamic categorization

4. Adding context-sensitive querying features for the service discovery

framework to support semantics based service discovery.

To compensate the service consumer’s lack of complete domain term
knowledge, processing the service request semantically, with emphasis on context
will help in correctly understanding user requirement and generate relevant
results. This problem is addressed by integrating a semantics based query
processing mechanism designed to capture the correct context automatically
(depicted in Figure 3.4).

Figure 3.4: Context-sensitive processing of user query

5. Using the proposed framework and its semantic processing mechanisms

for enabling basic and composite service discovery functionalities.

Chapter 3. Problem Description 67

The main requirement for simple service requests are identifying the domain
terms and matching these to service metadata. For composite services, complex
requests have to first correctly interpreted, and then the constituent services have
to be identified. The sequence in which these services have to be chained also
would have to be identified to get a correct and valid result, so user can perform
composition using the identified services. This is done by using semantics based
graph representations, for capturing the service dependencies between services, to
identify candidates for serving complex requests, fast. This process is illustrated in
Figure 3.5.

Figure 3.5: Basic and composite service discovery

With regards to the scope of the work presented, our main contributions, discussed
in subsequent chapters of this dissertation are:

• Developing a framework for distributed Web service discovery, for collecting,
retrieving, and indexing services already available on the Web.

• Automatic generation of representative metadata in the form of tagging and
semantic annotations for indexed services using which the discovery process was
enhanced and better precision and recall were observed.

• An automatic incremental algorithm for semantics based categorization of the
dynamic service collection, which further enhanced the discovery process by
reducing the time taken for generating matches.

• Query analysis algorithm for capturing the context and meaning of the user request.

• A service interface graph traversal algorithm for capturing service dependencies
that helps in identifying the constituent services of a valid composition as well as
the sequence in which they should be composed, for a given complex query.

• Demonstrating that the proposed framework and techniques are amenable for
semantics based basic and composite service discovery.

Chapter 3. Problem Description 68

3.3 DWDS - Distributed Web Service Discovery
Framework using Semantics

The overall system architecture of the proposed DWDS framework is shown in Figure
3.6. It consists of two phases - the pre-processing phase and the discovery phase. In
the pre-processing phase, the distributed Web service discovery and repository building
tasks are carried out, while the discovery phase is where a user can articulate a natural
language query and discover basic or composite services as per the query requirements.
The processes during each of these phases are briefly described here.

Phase I: Preprocessing Related Activities.

1. Retrieving services from the Web. (discussed in Chapter 4)

- The distributed discovery mechanism is employed for finding services available
in various sources on the Web.

- Services are added to a preliminary database called WSDL-Preprocessor after
quality checks.

2. Metadata Generation Engine. (discussed in Chapter 5)

- Here, the service WSDLs are semantically processed to capture the inherent
functional semantics of the services. This is used to compute similarity between
services and to generate a set of representative tags for each service.

- Each service is indexed in the Enhanced Service repository using its metadata.

3. Dynamic Categorization Engine. (discussed in Chapter 6)

- Using the similarity scores and the generated metadata, a dynamic
categorization algorithm is employed to achieve domain-specific grouping.

- Using the metadata of the member services of each group, tags that most
represent the group’s domain are generated for each category, to capture
domain information.

- As the framework tries to find new services continuously, the service collection
keeps changing constantly. This is because, any new services found will be
added and already indexed services ones that are no longer accessible will be
removed from the service repository. The proposed dynamic algorithm aims
to dynamically categorize these new dataitems without needing to restart the
categorization process again.

Chapter 3. Problem Description 69

Phase II: Service Discovery Related Activities.

1. Query Analysis Engine. (discussed in Chapter 7)

- The natural language query submitted by the user does not have any structure
to it. This free form query is processed using NLP techniques to identify the
meaning and context of the query, to generate a structured, semantic query.

- The process of identifying if the submitted query is simple or complex is also
performed at this stage.

- The semantic query (simple or complex) is submitted to the system, which
invokes the discovery algorithm, and performs different actions based on the
type of query.

2. Basic Web Service Discovery. (discussed in Chapter 7)

- In case of a simple query, the task is to identify basic services that match the
meaning+context of the query, and the matching is above a set threshold. A
list of results generated is passed to the Ranking Engine.

- The Ranking Engine determines the top-k services with similarity scores above
a certain threshold, sorts them in descending order and displays the ranked
list to the user.

3. Composite Web Service Discovery. (discussed in Chapter 8)

- In case of a complex query, the task is to identify multiple basic services that
can together satisfy the requirements of the complex query, when used in the
correct sequence. A graph based approach that uses semantic techniques to
capture the service dependencies is integrated with the complex query serving
module, which is used to identify the constituent services for a valid composite
service. All such found templates with a score above a predefined cut-off are
submitted to the Ranking Engine.

- Next, the Ranking Engine determines the top scoring complete composite
service templates and generates a ranked list of these. After this, any partial
templates identified that matched more than 75% of the user requirements
are also considered and a ranked list of partial templates is generated. The
complete and the partial template ranked lists are returned to the user.

Chapter 3. Problem Description 70

F
ig
ur
e
3.
6:

P
ro
po

se
d
M
et
ho

do
lo
gy

fo
r
D
W
D
S

Fr
am

ew
or
k

Chapter 3. Problem Description 71

3.4 Summary

In this chapter, the scope of the research work and the identified problems that are
addressed in this thesis are formally defined. Our contributions, presented in this thesis,
address four important issues. First, we present a framework for efficiently finding,
retrieving and indexing distributed Web services using automatically generated
metadata, to build a Web service repository. Secondly, an efficient algorithm that can
semantically categorize services as per their domain, even when there are constant
changes in the service collections is presented. Thirdly, effective techniques for
generating a structured, semantic query from a free-form, natural language service
request to capture the meaning and context of a user is presented. Fourthly, a Web
service discovery mechanism that can discover both basic and composite services based
on user requirements is presented. The proposed system and techniques have been
developed and experimentally validated. The observed results were found to be very
good and the framework successfully supported semantics based distributed Web service
discovery.

Publications

(based on the work presented in this chapter)

1. Sowmya Kamath S., and Ananthanarayana V. S. “A bottom-up approach towards
achieving semantic web services.”, In Advances in Computing, Communications and
Informatics (ICACCI), 2013 International Conference on, pp. 1317-1322. IEEE,
2013.

PART II

Building a Scalable

Web Service Repository

Chapter 4

Finding Distributed Web Services

4.1 Introduction

In this chapter, we propose a distributed Web service discovery framework as a solution
to the problems formally defined in the previous chapter. The main focus is on
automating the tasks of finding, retrieval, categorisation and management of published
services available on the Web, and also to minimize human involvement. Several
researchers have underscored the need for automation in Web service life cycle tasks for
sustaining the popularity of the Web services paradigm (Cheng et al. 2008; Issarny
et al. 2011). They put forth the concept of enabling autonomous behaviour in service
infrastructures for reducing management costs and effort. As the number of services on
the Web keeps increasing, there arises a requirement for enabling automatic collection
of such published services, to make them available for discovery and use. Hence, a
scalable Web service repository is critical to supporting large-scale, distributed Web
service discovery. In this chapter, we discuss the proposed techniques for developing
such an infrastructure. Our main contributions, as reported in this chapter, are:

• Developing a framework for distributed Web service discovery to find and retrieve
published services available in varied sources over the Web.

• Demonstrating that the framework successfully performs large scale service retrieval
and enables a scalable service repository.

• Verifying that the framework minimizes human intervention by incorporating
certain autonomic behaviour for quality and redundancy control.

The rest of this chapter is organized as follows. Section 4.2 describes the defined
problem addressed in this chapter. Section 4.3 discusses the solution methodology used for
finding and retrieving published services from their remote sources on the Web. Section
4.4 describes the mechanisms designed and incorporated for enabling autonomic features

73

Chapter 4. Finding Distributed Web Services 74

in the proposed framework. Section 4.5 presents the experimental results and analysis
with reference to the framework presented and Section 4.6 summarizes the discussion
presented in this chapter.

4.2 Problem Statement

The problem that is addressed in this chapter is defined here:

Given the large number of published services available from heterogeneous
sources on the Web, find and retrieve these distributed services, to build a
centralized service repository that incorporates autonomic features for system
management, to minimize human intervention.

The solution proposed for this problem, aims at building a Web service repository
that uses - (i) a distributed approach to build the repository and, (ii) a centralized
approach to maintain the service collection. Hence, it is a hybrid architecture that aims
to mitigate the current lack of a central point of access to Web services. The solution
also aims to reduce human intervention in repository management by incorporating self
management behaviour into the framework. This eliminates the need for manual effort in
the management and maintenance of the service collection, thus enhancing productivity.
In Section 4.3, we describe the algorithms developed for finding and retrieving distributed
Web services from varied sources on the Web.

4.3 The Proposed Framework - DWDS

The proposed framework, Distributed Web Service Discovery Framework using
Semantics (DWDS), is intended to find services published in heterogeneous sources on
the Web. Based on various published literature (Fan et al. 2005; Kim et al. 2004) and
from our own study, public Web services are currently available from three main
sources.

- Web servers of service providers, where the services are hosted.

- Embedded within Web pages and HTML forms.

- Third party service portals where services are often advertised by service providers.

Traditional IR techniques used by search engines use keyword based indexing to match
webpages to user queries. The crawler of a search engine visits a web page, reads it, and
then follows any links to other pages. The pages found are added to the search engine
index, indexed by the keywords found in that webpage. Then, a ranking algorithm is

Chapter 4. Finding Distributed Web Services 75

used to search through millions of webpages to rank the results as per a submitted user
query. Hence, in general, traditional web crawlers utilize the graph structure of the Web
to move from one page to another.

When applying Web crawling techniques for finding services, several problems need
to be addressed. Traditional Web crawlers are meant for Web pages and are not suitable
for finding services as -

1. Webpages contain lot of textual information whereas a Web service often has a
short textual description.

2. Webpages contain a lot of plain text while Web service description is a XMLmarked-
up document. So IR methods like Term Frequency/Inverse Document Frequency
(Tf/idf) are not very suitable, if applied directly.

3. Webpages are written in HTML with a predefined set of tags, whereas service
descriptions are more abstract, requiring a knowledge about XML schemas,
namespaces and document well-formedness.

4. Finally, there are no links in WSDL files that can connect one WSDL file with
another. The WSDL is meant for describing the capabilities of a single Web service,
hence such related service information is not available. Hence, the crawler cannot
simply generate more WSDL pages out of several seeds WSDL files, as is the case
with traditional IR.

For dealing with these distributed sources and the problems associated with applying
traditional IR techniques, a modified IR based approach for a service-retrieval specific
mechanism,as designed. The main requirement of such a method is, selectively finding
only service descriptions among the billions of documents published on the Web and
retrieving them whenever such services are available. To achieve this, a service-specific
crawling mechanism called a Specialized Service Crawler (SSC) is proposed. We discuss
the SSC mechanism and its associated processes and the way these are employed to build
the service repository, in Section 4.3.1.

4.3.1 Building the Service Repository

Figure 4.1 shows the architecture of the service retrieval mechanism of the proposed
DWDS framework. The Specialized Service Crawler forms a part of the Distributed Web
Service Retrieval and Indexing Engine (DWSRIE). Its main components are - the SSC, the
Webpage URL Collector, the WSDL Existence Checker, the WSDL Parser & Downloader
and the WSDL Duplicate Checker & Indexer. All successfully retrieved WSDL files are
finally indexed in the WSDL Preprocessor database. Each of these components are
described next.

Chapter 4. Finding Distributed Web Services 76

Figure 4.1: Distributed Web Service Retrieval and Indexing Process

(i) Specialized Service Crawler (SSC)

The SSC is based on the concept of a topical or focused crawler (Chakrabarti et al.
1999). Focused crawlers consider the fact that relevant pages tend to link to other relevant
pages, either directly or through relatively small number of links. The DWDS SSC uses
a Breadth-First-Search (BFS) algorithm for recursively collecting URLs, which are then
examined for any potential service descriptions. During experimental evaluation, it was
observed that BFS based focused crawl discovers the highest quality pages (links that
can potentially yield valid service descriptions) during the early stages of the crawl, when
compared to using depth-first-search (DFS). This is because; the probability that the
neighbouring pages of a relevant link are also relevant is quite high. Hence, if such
neighbouring links are examined early (as in BFS based crawl), more desired documents
may be potentially found, as a faster rate. When DFS was used, the relevancy of the
downloaded pages deteriorated as the depth from the original feed-URL increased. Based
on these observations, a breadth-first search based focused crawl strategy was adopted.

The SSC consists of a set of distributed focused crawlers that start the crawling
process using a set of initial starting points (feed-URL list). Initially, the feed-URL list
consists of the URLs of some service portals currently in operation1. Each crawler thread
is assigned a feed-URL from the initial feed-URL list and the focused crawl for WSDLs
is performed. The newly discovered URLs are handled by the DWSRIE Webpage URL
collector. Then, each crawled page p is categorised as either relevant or irrelevant based
on certain criteria, and the neighbourhood of each relevant p is further explored up to
depth d, looking for additional relevant pages. The new URLs discovered are collected
by the next component.

1BioCatalogue, EMBL-EBI (ebi.ac.uk), ProgrammableWeb, ServicePlatform, Service-repository,
WebServiceList, WebserviceX and XMethods

Chapter 4. Finding Distributed Web Services 77

(ii) Webpage URL Collector

As discussed earlier, the initial feed-URL list consists of the links to the various service
portals, and each crawler thread fetches the links from that domain’s webpages. These
newly fetched links are continuously added to the feed-URL list, which will be used
as new feed-URLs for later crawl cycles. The function of the Webpage URL collector
is to maintain the feed-URL list for use by the SSC. These links will be examined for
potential WSDL files and also subjected to various checks during the subsequent phases,
as performed by the next modules.

(iii) WSDL Existence Checker

To restrict the crawlers to webpages yielding service descriptions only, certain additional
rules are incorporated in the SSC algorithm and these checks are performed by the WSDL
Existence Checker module. To identify whether a retrieved web document is a web service
description, three WSDL Existence Checks are incorporated. These include -

1. Verifying if the URL of retrieved webpage matches the WSDL regular expression
(the webpage URL ends in either ‘.wsdl’ or ‘?WSDL’).

2. Checking the HTTP response header for the fetched webpage, for any occurrence
of MIME types that may indicate Web service documents (the correct MIME type
for WSDL documents is ‘application/wsdl+xml’, however, sometimes the more
generic MIME type, ‘text/xml’ also is found).

3. Checking the source code of the webpage to determine if any web service description
indicators are present (e.g. WSDL and XML namespaces, WSDL specific elements
like portType, messages etc).

It was observed that out of these three tests, at least two have to be true to make
a confident decision about the possible availability of a WSDL within the webpage. If
only the content-type response header is considered, there is an increased possibility of
false positives, specifically if the MIME type is ‘text/xml’, as even a simple XML file
can have the same MIME type. Hence, if at least two of the tests are true, then a WSDL
may have been found and further processes are performed.

(iv) WSDL Parser & Downloader

Based on the results of the WSDL Existence Check, a WSDL has been found if at
least two checks are true. It is now necessary to ensure that it is valid before adding it
to the repository. To check the validity of the WSDL, its XML Document Object Model
(DOM) structure has to be correct and valid. A WSDL Parser is used to parse the entire

Chapter 4. Finding Distributed Web Services 78

WSDL file to check if it has a valid structure. If invalid, then the link is added to the
invalidWSDL-URL list and finally removed from the feed-URL list, to avoid processing
these unproductive links unnecessarily during future crawling rounds. If valid, then the
WSDL file is downloaded from its location on the Web for further processing.

(v) WSDL Duplicate Checker & Indexer

Before the WSDL is added to the service collection, we need to ensure that only new
and unique files have been downloaded. To represent each WSDL file uniquely, a simple
hash generation function is run on the entire WSDL file to generate its unique hash. Then,
the list of hashes of already indexed files is checked and only if the newly generated hash
does not exist on the list, the new WSDL is added to the WSDL Preprocessor database.

4.3.2 SSC Crawling Modes

The SSC performs two types of crawling - Active Crawling (for repository building) and
Selective Crawling (for repository management). These are referred to as SSC Crawling
Modes and are described here.

1. Active Crawling. During this mode, the SSC set of crawlers peruse the links on
the feed-URL list to perform the focused crawl with the objective of finding links
matching the WSDL pattern. As new services are continuously published on the
Web, the active crawling mode focuses on finding these new services for extending
the DWDS repository further. In general, the active crawling process was carried
out on a weekly basis. Algorithm 4.1 refers to the active crawling mode.

Algorithm 4.1 illustrates the working of SSC and all its associated processes
during the active crawling mode. Steps 1 through 4 are performed by the SSC
and the Webpage URL Collector module. Based on the URLs found during these
phases, the WSDL Evidence Checker module performs the task of identifying if a
WSDL yielding link has been found (steps 6 to 8). If at least two check are positive,
then the WSDL Parser Module applies a WSDL DOM tree check and if the file is
found to be valid, then it is downloaded. Next, the WSDL Duplicate Checker
component generates the hash of the newly found service document and checks if
the hash exists. If yes, then this is a duplicate WSDL, which is discarded and the
corresponding URL is added to the duplicateWSDL-URL list and the visited-URL
list to optimize later crawling rounds. In case the new WSDL’s hash does not exist,
then it is added to the WSDL Preprocessor database with the status ‘NewWSDL’.
Further processing like metadata generation and categorisation are carried out on
all WSDL files in the WSDL preprocessor database, with the status ‘NewWSDL’.

Chapter 4. Finding Distributed Web Services 79

Algorithm 4.1 Distributed Web Service Retrieval and Indexing Process
Input: Crawler Queue Q with initial list of feed-URLs

Output: Valid WSDL files

1: while crawler queue Q with feed-urls 6= ∅ do

2: Perform webpage.getURL() for each feed-url

3: Extract all hyperlinks from webpage and add to feed-url list § New feed URLs.

4: for each hyperlink on feed-url list do

5: if hyperlink is not on visited-URLs list then

6: apply WSDL evidence check rules (1) to (3)

7: if at least two checks are positive then § hyperlink contains WSDL.

8: apply WSDL structure validity check

9: if WSDL is valid then

10: download file and generate hash of service document

11: if hash exists then

12: WSDL already exists in repository

13: set URL status to ‘duplicateWSDL-URL’

14: add to visited-URL list § to optimize later crawling rounds.

15: else

16: Set new service document status to ‘NewWSDL’

17: if WSDL is invalid then

18: add webpage.url to invalidWSDL-URL list

19: add to visited-URL list § to optimize later crawling rounds.

20: Save new, valid WSDL file in WSDL Preprocessor database

2. Selective Crawling. Once the services are added to the DWDS repository, there
needs to be process of checking the continued availability of an indexed service at
its remote location on the Web. This is required to ensure that the repository is
kept updated and unavailable services are automatically removed. To deal with this
problem, the selective crawling mode is used. The selective crawling mode uses a
special feed-URL list called the validWSDL-URL list, which consists of the service
URIs of all successfully indexed services (shown in Figure 4.2). Using this list, the
SSC performs a selective crawl of only those webpage links from which services were
retrieved, to find if the service and its description is still available for download at
the remote location.

If a service is not available, then the corresponding file has to be removed from

Chapter 4. Finding Distributed Web Services 80

the DWDS repository. However, this is not done immediately to compensate for
any temporary unavailability problems. During the first selective crawling round, if
the service is found to be unavailable, then it is flagged, but is left untouched in the
service repository. If a second selective crawling round also finds that the service
is still unavailable, only then the indexed service is deleted. The selective crawling
process is performed periodically, on a fortnightly basis.

To enable efficient management of the service repository and the crawlers, certain
autonomic processes were incorporated in the proposed DWDS framework. As the
crawler based framework is inherently dynamic, due to periodic active and selective
crawling processes, it is important to optimize the system performance and reduce
human intervention. The mechanisms designed to support autonomous management of
DWDS are described in Section 4.4.

4.4 Autonomic Repository Management

One of the important requirements of the DWDS framework is to automate critical
maintenance tasks to reduce human effort and thus, promote self-management. Some of
the issues observed during the process of building the service repository were -

1. Service descriptions that are already indexed within the repository may no longer
be available at their remote locations any more. Hence, it becomes important to
keep the index updated such that the status of already indexed documents can
be automatically checked. This means periodic re-crawls have to be scheduled to
maintain the index (handled by incorporating the Selective Crawling Mode).

2. Some URLs that match the WSDL containing regular expression, may not have a
valid service URI, which cannot be added to the repository as the required service
endpoint information would be missing. These also have to be kept track of, to
avoid reprocessing (handled by WSDL Evidence Checker Module).

3. Some downloaded WSDLs may not have a valid DOM structure. These have to be
identified and removed from the repository, and the URLs that resulted in these
files have to be noted (handled by WSDL Parser Module).

4. A service description may be available from multiple sources, e.g. in more than
one service portal and also from the service provider’s website. In this case, only
the first occurrence should be added to the repository and the others should be
discarded as duplicates (handled by WSDL Duplicate Checker Module).

Chapter 4. Finding Distributed Web Services 81

5. Very few URLs would match the WSDL regular expression (WSDL Evidence
Check (1), discussed in Section 4.3.1). Most URLs processed by the SSC are
actually those of normal webpages. These have to be kept track after the first
time they are processed, and eliminated from the SSC feed-URL list to avoid
unnecessary reprocessing during subsequent crawler rounds. Similarly, URLs that
match the WSDL regular expression but do not contain a valid service URL and
those yielding invalid/duplicate WSDLs also need to be kept track of, for
performance optimization.

To tackle these issues, certain autonomic features were incorporated into the
framework. As several thousand data entities are being handled (URLs, WSDL files,
invalid WSDL files, invalid URLs etc), unnecessarily reprocessing these would be a
waste of computing resources. Over time, this volume of data is subject to many
(relatively) small changes each time new service descriptions are crawled and added.
Also, as this data is processed in other ways – for example, generating metadata for
each WSDL, categorising the services as per their domain and finally making them
available for discovery, it is important optimize data handling. This challenge was
addressed by designing and incorporating an effective change propagation technique
based on the concept of event based state machines, which is described in more detail in
Section 4.4.1.

4.4.1 The DWDS Change Propagation Strategy

As discussed in the previous section, the proposed DWDS framework is highly dynamic
due its crawler-based mechanism. In this context, a major challenge to be addressed is
automatic change propagation. Change propagation focuses on the problem of limiting
each component’s processing to only the newest changes, so that results are propagated
down the line to the next component without having the redo the computations for the
entire data (Lopes et al. 2007). The main issues to be handled would be -

1. how to propagate changes between the various components of the framework, so
that consistency is maintained always.

2. how to process the continuous changes automatically without any need for manual
intervention.

Keeping these concepts in mind, the DWDS change propagation strategy was
designed based on the concept of a state machine. In DWDS, each data entity has an
associated “status”, which is used to keep track of the various states that particular
entity is in. Table 4.1 shows the list of states a particular data entity can be in, in the
order corresponding to the various processing phases.

Chapter 4. Finding Distributed Web Services 82

Table 4.1: The Proposed Incremental Strategy (States and the associated data entities)

No. State
(Associated
Entity)

Meaning Associated Action

1 URLNoMatch
(URL)

URL of crawled
Webpage does not match
the WSDL regular
expression.

Add to visited-URL list
and later, remove from
feed-URL List.

2 noServiceURL
(URL)

matched against the
regular expression, but
no valid service URL

Add to visited-URL list
and later, remove from
feed-URL List.

3 invalidWSDL-URL
(URL)

Downloaded WSDL
did not pass DOM tree
verification test

Add to visited-URL list
and later, remove from
feed-URL list

4 duplicateWSDL-URL
(URL)

Hash of service data
already exists in
WSDLPreprocessor
database

Add to visited-URL list
and later, remove from
feed-URL list

5 validWSDL-URL
(URL)

URL yielded a valid
WSDL.

Add to validWSDL-
URL list, which will be
used by crawler to check
status of downloaded
WSDLs during periodic
crawler runs.

6 NewWSDL
(WSDL)

Valid WSDL file that
is stored in WSDL
Repository indexed by
its hash

Initiate extraction of
service elements.

7 WSDLProcessed
(WSDL)

Elements extracted from
WSDL & is ready for
use.

Available for Metadata
Generation Process

8 MetadataGenerated
(WSDL)

Status of the WSDL
for which metadata was
successfully generated

The generated metadata
and service are added to
Service Repository.

9 ToBeCategorised
(WSDL)

Status of a metadata-
generated WSDL file
when added to service
repository.

Available for
categorisation.

10 Active
(WSDL)

Status of WSDL files
that were successfully
categorised.

Available for user
querying.

Chapter 4. Finding Distributed Web Services 83

As shown in the Table 4.1, a data entity in the system can be in the various states
ranging from URLNoMatch to Active depending upon the various processes and
transformations it has to undergo. Depending on which state a data entity is in, it is
also possible to confidently say which data entity we are talking about. For example, in
states URLNoMatch to validWSDL-URL, the data entity in question is an URL, which
is important since keeping track of the state of an URL is useful in optimizing the
functioning of the service crawler during subsequent crawls. In states NewWSDL
through MetadataGenerated, the WSDL file is the data entity under consideration.
Here, as the WSDL file’s status changes from one to another, the change is propagated
to the next data entity, the enriched WSDL files, in the phases ToBeCategorised and
Active. Hence, only new changes are being processed, instead of all the data in the
repository. So, automatic change propagation is achieved, that helps in efficient data
handling in DWDS.

Figure 4.2 depicts the various processes associated with the SSC and shows the
workflow of the proposed change propagation based data handling strategy. The SSC’s
set of crawlers recursively fetch feed-URLs for a feed-URL list, extract links from each
feed-URL and apply the processes described in Algorithm 4.1 to determine if a valid
WSDL file exists. During this process, thousands of URLs need to be processed and
most may not match the WSDL regular expression at all. For pruning the feed-URL
list, these are assigned the status URLNoMatch and are added to the visited-URL list.
In case a candidate URL matches the WSDL regular expression, then the next task is
to check if it has a valid service URL, if yes, the WSDL is parsed for a DOM check and
if valid, its hash is generated. The hash helps in eliminating duplicate WSDL entries in
the repository.

At this point, those URLs that yield a WSDL without a valid service URL and
URLs yielding invalid WSDLs have to be noted and dealt with, appropriately (added
to visited-URL list with the status NoServiceURL and InvalidWSDL-URL respectively).
After generating the hash of the service document, a check is performed to see if the
hash exists, if yes, then the WSDL file is assigned a status duplicateWSDL and the
corresponding URL is added to the visited-URL list. If hash does not exist, then the
WSDL file is indexed in the WSDL Preprocessor database by its hash.Ultimately, the
URLs on the visited-URL list are removed from the feed-URL list to avoid reprocessing
of the same by another crawler thread.

Chapter 4. Finding Distributed Web Services 84

Figure 4.2: Workflow and associated processes of the SSC

Chapter 4. Finding Distributed Web Services 85

4.4.2 Event Driven Change Propagation

Even with an automatic change propagation approach, it is inefficient to be continuously
scanning the repository for the various state changes, for each small change and then
performing the predefined actions. To overcome this issue, the concepts of event driven
programming were used, for deciding when each of the modules should do their job. The
proposed system’s state machine is an event driven model, which keeps track of various
events. When the number of events exceeds a fixed threshold value, the corresponding
actions are automatically initiated and the change propagation happens automatically.
Algorithm 4.2 illustrates the Event-driven Automatic Change Propagation Strategy.

Algorithm 4.2 Event-driven Automatic Change Propagation Algorithm
1: Initialize event-count := 0

2: for each event type do

3: while event-count ≤ threshold do

4: log each data entity’s state change § keep track of all URL, WSDL and enriched

WSDL events

5: Increment count of that type of event

6: if event-count > threshold then

7: Perform action associated with event type

8: reset event-count

To illustrate this strategy, consider that a URL being examined turns out not to
match the WSDL regular expression. As per Algorithm 4.2, the sequence of actions that
are to be followed is begins when the URL is assigned a URLNoMatch status. As per
the event-driven change propagation strategy, this is simply logged as an event on the
event counter and the URL is added to the URLNoMatch list as per policy. After this,
the system continues processing the next URL in the feed-URL list, continuously keeping
track of subsequent events in an appropriate list. When a prefixed threshold is reached
for URL related events (i.e., the number of URLs with URLNoMatch status is greater
than fixed threshold value), then, the crawler’s feed-URL list is automatically updated
by deleting the URLs on the URLNoMatch list from it. Same procedure is followed for
various other events like noServiceURL, InvalidWSDL and duplicateWSDL-URL etc, thus
optimising the data handling process. In the next section, we present the experimental
results as to the effectiveness of the proposed framework with the specialized service
crawler mechanisms and its associated processes.

Chapter 4. Finding Distributed Web Services 86

4.5 Experimental Results and Discussion

In this section, we present the experimental results and a discussion on the effectiveness
of the proposed distributed discovery framework with reference to the contributions
listed at the beginning of the chapter. We present the performance details of the SSC
set of crawlers in Section 4.5.1. The statistics as to the number of services listed in the
repository, the sources from which they were retrieved is discussed in Section 4.5.2.
Some details about the quality and diversity of the service collection currently indexed
in the framework’s repository are presented in Section 4.5.3. We demonstrate that the
framework is scalable using the statistics of the services indexed within the repository
during various time periods and the changes over time in Section 4.5.4.

4.5.1 SSC Performance

To evaluate the performance of the service crawlers, the time required to collect URLs
(URL harvest rate) was first measured. Also theoretical analysis as to the time and space
complexity of the SSC is presented. Table 4.2 depicts the number of URLs collected by
the multi-threaded crawlers over time. It is seen that collection time grows linearly with
the number of URLs collected. The number of URLs collected by the crawler over time,
number of URLs that matched the WSDL URL pattern and the number of valid WSDL
files obtained are tabulated. It can be seen that the number of irrelevant URLs that have
to be processed in order to obtain a few URLs matching the WSDL URL pattern that
may or may not lead to valid WSDL files is quite high. This stresses the importance of
optimizing the process of data handling to avoid unproductive, additional processing of
data entities like irrelevant URLs and WSDL files after each crawler run.

Table 4.2: Crawl data specifics of the Multi-threaded crawlers of SSC

Total URLs
fetched

URL harvest
rate (in minutes)

Links matching
WSDL pattern

Links yielding
valid WSDLs

1000 6 87 39
5000 21 271 134
10000 39 507 298
15000 58 722 412
20000 82 1037 609

Chapter 4. Finding Distributed Web Services 87

4.5.1.1 Theoretical Analysis of SSC Performance

The process of finding, retrieving services and indexing them in the repository after the
requisite checks is the offline phase of the proposed framework; hence the processes are
running in the background.

1. Finding new links from feed-urls:
The algorithm takes as input an initial set of URLs, i.e the feed-urls, and the
depth for the crawling. The algorithm begins with the feed-urls and explores all
the neighbouring URLs (i.e. all the URLs that can be directly reached from the
initial URL). Then, for each of the neighbouring URLs, it explores its unexplored
neighbours, and so on until the given depth is reached. Hence, given a branching
factor b and a depth d, the algorithmic time complexity is -

|feed-urls|+|feed-urls|.b+ |feed-urls|.b2 + . . .+ |feed-urls|.bd = O(bd)

We found that, the average level at which the BFS based SSC crawler thread could
not find any more URLs matching the WSDL pattern was about 4. Hence, we have
set a maximum limit of 5 levels for the depth of the crawl, while the number of URLs
crawled at each level was set to a maximum of 10000. Since all of the nodes of a
level must be saved until their child nodes in the next level have been generated, the
space complexity is proportional to the number of nodes at the deepest level. Thus,
given a branching factor b and graph depth d, the asymptotic space complexity is
also O(bd).

2. Feed-URL list Management: The feed-URL list (Crawl frontier) is implemented as
a FIFO queue using a dynamic array. Hence, new URLs are added to the end of the
queue and crawler threads remove the URL at the beginning of the queue. Each
queue/dequeue operation takes an average of O(1) time.

3. Visited-URL list management: As soon as a crawler thread dequeues an URL from
the feed-URL list, this is a visited URL and needs to be kept track of, so avoid
duplicates in the feed-URL list. The Visited-URL list is implemented as a separate
hash-table (with URL as key) to store each of the frontier URLs for fast lookup.
The hash-table is kept synchronized with the Feed-URL list. Hence, for each search
and insert, the hash table has an average time complexity of O(1).

4. Managing the lists containing URLNoMatch, InvalidWSDLURL, NoServiceURL
and DuplicateWSDL-URL entities: Each of the URLs with this status are added
to the Visited-URL list as a key-value pair, to avoid crawling these links again.
Hence, each insert operation has an average time complexity of O(1).

Chapter 4. Finding Distributed Web Services 88

5. ValidWSDL-URL List Management: The selective crawling mode uses a special
feed-URL list called the validWSDL-URL list, which consists of the service URIs of
all successfully indexed services. Using this list, the SSC crawler threads perform
a selective crawl of only those webpage links from which services were retrieved, to
find if the service and its description is still available for download at the remote
location. This list is also implemented as a FIFO queue using a dynamic array,
hence each queue/dequeue operation takes an average of O(1) time.

Assuming that, the average number of links discovered per page visited is about 6
(as proven in the study published by Kumar et al. (2000) and also verified by Pant
et al. (2004)), the number of URLs added to the feed-URL list per page visited, by each
crawler thread is relatively small. Hence, overall time complexity of SSC can be said
to be effectively proportional to the complexity of finding new links from existing feed-
URLs and the number of links handled by DWDS (denoted as L). Therefore, worst-case
complexity = O(bd).O(L).

4.5.2 Volume Statistics of the DWDS Service Collection

In this section, statistics about the services available in the service repository currently,
their sources, and their quality data is presented. We also discuss the performance of
the SSC with reference to URL harvest rate. Table 4.3 shows the number of services
available and also number of valid WSDLs found from different sources after the service
crawling (all retrieved WSDLs) and WSDL indexing (all valid WSDLs) as of September
2015. To obtain the total valid WSDLs, each WSDL obtained from a source is subjected
to a WSDL structure check to confirm that the file is a WSDL and not just an XML
file. The Eclipse IDE provides the WSDL4J WSDL parser and validator, which is used
for validation of a WSDL document tree. The total number of files obtained from each
service portal with a valid WSDL DOM was taken as the count of the total valid WSDLs
for each source.

As seen from Table 4.3, the SSC was successfully retrieved published services from
various service portals as well as other remote locations of the Web. Of the retrieved
services, a significant number were found to be without a valid service URI/invalid and
hence were discarded. The quality of the service descriptions obtained from various
sources is also tabulated in Table 4.3, and is computed as the ratio of valid to total
service descriptions obtained. Of the multiple sources, the portal ebi.ac.uk yielded the
best quality services, though the collection is currently quite small. Among larger portals,
the services obtained from ProgrammableWeb resulted in the highest percentage of valid
services, at 81.49%. This indicates that, service providers who advertised on this site

ebi.ac.uk

Chapter 4. Finding Distributed Web Services 89

Table 4.3: Summary of retrieved WSDLs and their sources (as of Sep 2015)

Source Total
obtained Total valid Ratio of valid

to total (%)

BioCatalogue 2315 1139 49.2%
Ebi.ac.uk 70 68 97.14%
ProgrammableWeb 1978 1612 81.49%
ServicePlatform 2183 972 44.52%
Service-repository 127 98 77.16%
Webservicelist 1134 286 25.22%
WebserviceX 71 21 29.58%
XMethods 411 338 82.23%
Open Web 11971 7697 64.29%

Total number 20260 12231 61.2%

were generally more active in maintaining their service data.
Figure 4.3 shows the relative service statistics for the various service portal sources

from which WSDLs were retrieved. Among the services obtained from sources other than
service portals (service providers’ Web servers, from webpages and HTML forms etc),
about 64.29% of the WSDLs obtained were valid. This is still quite good, given the
large number of WSDLs obtained, as a majority of these come from service providers’
websites and thus are relatively better maintained than those in service portals. A total of
12,231 service descriptions are currently indexed within the proposed framework’s service
repository and it can be said that the SSC based framework was effective in finding
distributed services from varied sources over the Web.

4.5.3 Quality Statistics of the DWDS Service Collection

In this section, we present some details on the quality and diversity of the services indexed
in the repository currently. Figure 4.4 presents the WSDL file size statistics of the service
collection. An application designer has to first understand the interfaces offered by the
service before using it. The file size is indicative of the complexity of a service. As the
number of operations supported increases, the complexity increases, and also the size.
Through this analysis, we learned that about 41% of the files were less than 10KB, about
65% were less than 20KB and about 85% of the total collection was less that 50KB in
size. Only about 13% of the services were more than 50KB in size, out of which only
3% services were over 100KB and contained several operations. Through this analysis,
we were able to find that the majority of the WSDL files were less than 50 KB, and the

Chapter 4. Finding Distributed Web Services 90

Figure 4.3: Service portals - Service quality statistics (Sep 2015)

available service descriptions were low in complexity.

Figure 4.4: WSDL Complexity statistics (Sep 2015)

Next, we present some details as to the level of natural language documentation
provided for these real world services. As reported by earlier studies (Fan et al. 2005;
Li, Zhang, et al. 2007), we too found that several indexed services either did not have
any documentation at all or had very small quantity of documentation that may not
effectively capture the capabilities of the service. Figure 4.5 presents the statistics on
the quality of the natural language documentation available for each WSDL within its
<documentation> tag. Over 23% of indexed services did not have any natural language

Chapter 4. Finding Distributed Web Services 91

description at all. About 29% had less than 10 words of natural language documentation.
This stresses the need for additional techniques to capture the functional semantics of
the services to enable domain specific categorisation.

Figure 4.5: Quality of Natural Language Documentation (Sep 2015)

4.5.4 Temporal Statistics of the DWDS Service Collection

During the past three years of our work, periodic statistics were collected with reference
to the changes in the DWDS service collection over time. These temporal statistics
are discussed in this section. Table 4.4 presents the details of the number of services
retrieved and indexed in the service repository as of September 2013, September 2014
and September 2015. It can be observed that, in some of the portals (ServicePlatform
and WebserviceX), the number of services available has remained the same, indicating
that there has been no maintenance/advertisement activity at all over the past three
years, while in others (ProgrammableWeb and ebi.ac.uk), a number of REST2 based Web
APIs are also available in addition to WSDL based services. The ebi.ac.uk collection has
reduced significantly since 2013 as only selected services are being offered currently, many
of which are REST based only. This may be because REST is gaining popularity and
service providers are also offering them as an option/alternative currently.

For understanding the changes in the service distribution and the rate of retrieval
over time, we generated statistics on the growth rate of the indexed services on a yearly
basis, starting from September 2013 to September 2015. As seen from Table 4.5, there

2Representational State Transfer (Fielding 2000)

Chapter 4. Finding Distributed Web Services 92

Table 4.4: Temporal Statistics on indexed WSDLs and their sources

Sep 2015 Sep 2014 Sep 2013
Source

Total Valid Total Valid Total Valid

BioCatalogue 2315 1139 1003 821 1892 981
Ebi.ac.uk 70 68 267 212 423 306
ProgrammableWeb 1978 1612 2231 1872 2062 1765
ServicePlatform 2183 972 2183 1289 2183 1437
Service-repository 127 98 104 69 83 74
Webservicelist 1134 286 1217 297 1051 173
WebserviceX 71 21 71 37 71 37
XMethods 411 338 341 301 358 291
Open Web 11971 7697 12300 6707 15272 8873

Total 20260 12231 19717 11605 23395 13937

was a significant change in the number of indexed services in September 2014, this was
because a bigger number of services retrieved from other sources on the Web were found
to be unreachable at certain points of time. Due to this, these files were removed from
the repository during selective crawling rounds.

Table 4.5: Service availability - Growth Rate

Sources
Sep
2013

Sep
2014

Sep
2015

% Change
(2013-14)

% Change
(2014-15)

Average
Change

Service Portals 5064 4898 4534 - 1.66 % - 3.8% - 3.68%
Other Sources
on the Web

8373 6707 7697 - 11.05% + 6.87% - 2.79%

Total indexed 13437 11605 12231 - 7.3% + 2.62% - 3.12%

As of September 2015, the percentage change in the total number of services indexed
in the DWDS repository over a period of last three years is about -3.12%. That is, the
size of the current DWDS service repository is about 3% lesser than that of September
2013, but about 2.6% more when compared to the September 2014 service collection.
Based on these temporal statistics, it can be concluded that the proposed distributed
web service discovery and retrieval mechanisms were effective in enabling and supporting
a scalable service repository for DWDS.

Chapter 4. Finding Distributed Web Services 93

4.6 Summary

In this chapter, a novel distributed Web service discovery framework for finding and
retrieving services available in varied sources over the Web, in a scalable manner, was
discussed. A Specialized Service Crawler mechanism was employed, for building the
sizeable service repository, as evidenced by the collection statistics over the past three
years. An event-based change propagation strategy was also incorporated to deal with
the constantly changing data entities and to optimize the data handling processes.
Experimental evaluation showed that the proposed techniques were effective. Analysis
regarding the crawler performance; the number, quality and diversity of the service
collection currently indexed within the service repository indicate that the framework is
well-suited as a distributed discovery system. Currently, the developed system has a
large service collection, which necessitates effective categorisation to deal with the
functional diversity of the services, which will be addressed in the next chapter.

Publications

(based on the work presented in this chapter)

1. Sowmya Kamath S., and Ananthanarayana V.S., “Change propagation based
incremental data handling in a Web service discovery framework” in Signal
Processing and Information Technology (ISSPIT), 2014 IEEE International
Symposium on, vol. 14, no., pp.000474-000479, 15-17 Dec. 2014.

2. Sowmya Kamath S., and Ananthanarayana V.S, “A Service Crawler based
Framework for Similarity based Web Service Discovery”, at 11th IEEE India
Conference on Emerging Trends and Innovation in Technology (IEEE INDICON
2014), 2014 Annual IEEE, pp. 1-6. IEEE, 2014.

PART III

Metadata Generation and Service

Categorisation

Chapter 5

Generating Metadata for Web Services

5.1 Introduction

In the previous chapter, a novel distributed discovery framework for finding and
retrieving Web services available in varied sources over the Web in a scalable manner,
called DWDS, was proposed. Currently, the developed system has a large service
collection of 12,231 services, most of which do not have any associated information that
can identify its domain or category. Dealing with this large collection would be a
tedious and near-impossible task without intelligent mechanisms to organize them and
to capture their domain information. Therefore, effective similarity analysis and
categorization for grouping similar services is of utmost importance for supporting
domain-specific Web service discovery in a user-friendly manner. In this chapter, we
discuss the techniques proposed to address the problem of automatically generating
metadata for services. Our main contributions, as reported in this chapter are listed
here:

• Developing effective techniques for capturing the functional semantics of indexed
Web services.

• Incorporating mechanisms for automatic metadata generation for each service, using
the extracted functional semantics.

• Demonstrating that the proposed metadata generation mechanism was effective in
capturing similarity of services for determining similar service groups.

• Verifying that the proposed mechanisms improve the Web service discovery process.

The rest of the chapter is organized as follows. Section 5.2 describes the defined
problem addressed here and discusses some background information in this regard.
Section 5.4 discusses the solution methodology developed for capturing the functional

95

Chapter 5. Generating Metadata for Web Services 96

semantics of each service indexed in the DWDS repository. In Section 5.5, certain
experiments that were performed to test the suitability of the generated metadata for
service categorization are presented. Section 5.6 presents the experimental results and
analysis with reference to the techniques discussed and Section 5.7 summarizes the work
presented in this chapter.

5.2 Problem Statement

The problem that is addressed in this chapter is defined here:

Given the large number of indexed services in the framework’s repository, to
develop semantics based intelligent processing mechanisms for automatically
generating metadata for each service, to enable efficient organization and
management of the service collection.

The aim is to incorporate automated processing mechanisms that can identify
service functionalities from their service descriptions and use this to generate additional
metadata. This metadata is also fundamental to the service categorization process, as
the domain information of services is also captured. In Section 5.3, we discuss some
background details on the proposed methodology and then discuss the algorithms
developed for enhancing the service collections with semantics, in Section 5.4.

5.3 Background

In view of the defined objective, the first task is to determine potential avenues for
analysing the information contained in the data at hand, i.e., the WSDL documents.
Two possible options were considered - (1) The natural language documentation of a
service, and, (2) The functional semantics of a service.

5.3.1 Natural Language Documentation of a Service

For the purpose of promoting easy discovery, WSDL provides a <documentation> tag,
which is supposed to contain a detailed natural language explanation of the service
functionalities. However, it has been reported that the quality of service documentation
is quite often not rich enough for supporting efficient service discovery and selection (Li,
Zhang, et al. 2007; Al-Masri et al. 2008). Fan et al. (2005) reported that this
explanatory text is usually about 10-15 words in length, quite generic in several cases
and often, even non-existent. Through our own analysis on the framework’s service

Chapter 5. Generating Metadata for Web Services 97

collection regarding this issue, we discovered that over 23% of indexed services did not
have any natural language documentation at all, while more than 29% of the indexed
services had less than 10 words of natural language documentation. In several cases, the
provided text was as generic as “Service description file for <service-name>” or as
useless as “World’s best service for free”.

Ideally, a well-documented service description provides both service-level and
operation-level documentation that helps in easily identifying the functionalities of a
service. In Figure 5.1a, a snippet of such a well documented service description is
shown, while Figure 5.1b illustrates a more common example as seen is many real world
service descriptions. Hence, intelligent processing using semantic concepts and natural
language processing methods are required for capturing the functional information that
the service designers themselves failed to provide.

(a) Well-documented service description

(b) Poorly documented service description

Figure 5.1: Snapshot of well-documented and poorly documented WSDLs.

Chapter 5. Generating Metadata for Web Services 98

5.3.2 Functional Semantics of a Service

In view of the above limitation, an alternative is required to obtain the relevant
information about a service’s capabilities. The functional semantics of a service, that is,
what a service can offer to its clients when it is invoked, can be helpful in this regard.
The functionality of a service can be described in terms of what it does, and how it
actually works. These aspects of a service’s functional capability are captured to a
certain extent by its service description (either WSDL or semantic descriptions like
OWL-S and WSMO) and is referred to as the IOPE (Inputs, Outputs, Preconditions
and Effects) of the service. However, due to limited availability of semantic service
descriptions, the WSDL of the service can be a potential source of functional
information.

Figure 5.2: A sample WSDL and its functional elements

In WSDL, the functional information is contained within the natural language name
phrases of its elements - <service>, <documentation>, <input>/<output> messages,
<operation> etc. Figure 5.2 shows a sample WSDL and its constituent elements. The
name of eachWSDL element is specified in natural language, generally as a combination of
two or more words to completely represent its functionality. If processed intelligently and
extracted correctly, the functionality and domain of a service could be derived effectively,
thus overcoming the problem of unavailability of semantic Web service descriptions.

Chapter 5. Generating Metadata for Web Services 99

In summary, using the functional semantics of a service, some form of metadata has
to be generated, so that indexed services can be represented intelligently with the
DWDS repository. A detailed study of available metadata formats was conducted and
the Web 2.0 style of tagging was found to be well-suited. However, Web 2.0 applications
depend on users who manually tag the data (for e.g, tags used for blog posts on
Blogger/Wordpress, photos on Flickr, Facebook etc). In case of the DWDS service
repository, the focus is on automatic functional semantics extraction and service tag
generation, without requiring user intervention. The generated tags are used as
representative metadata for each service, based on which they can be categorised and
efficiently retrieved. To this end, the techniques employed in DWDS to extract a
service’s functional and domain information from its WSDL are discussed in Section 5.4.

5.4 Capturing the Functional Semantics of Services

In DWDS, services retrieved from the Web are indexed in the WSDL Preprocessor
database after performing the various checks (discussed in Chapter 4). The next processes
of metadata generation and categorisation are to be performed for this service collection,
to enable effective management. Firstly, the WSDL is to be parsed and processed using
NLP techniques for extracting the functional information contained within it, and this
will be used for generating representative metadata for each service. This metadata is
intended to capture the domain-specific terms associated with each service, so that they
can be grouped as per their domain.

For metadata generation, the WSDL description of the indexed services is considered.
From figure 5.2, it can be observed that the WSDL elements have natural language
names, typically a combination of two or more words, to indicate their functional aspects.
Standard programming conventions dictate that good naming practices should be followed
to ensure understandability while naming such service elements. Here, an operation
‘getAvailableStocks’ that serves a request for returning all available stock information is
named using pascal-casing. Some other naming conventions that can be used - camel-
casing (‘GetAvailableStocks’), underscores as term separators (‘get_available_stocks’)
etc. A combination of one or more these techniques is also used often. Extracting these
element names from the WSDL is the starting point of the metadata generation process.

Figure 5.3 depicts the process of metadata generation for the services indexed in the
WSDL Preprocessor database. It consists of three stages - Feature Extraction, Service
Tagging and Service Similarity Computation. Each of the stages and their sub-tasks are
described in Section 5.4.1.

Chapter 5. Generating Metadata for Web Services 100

Figure 5.3: Process of metadata generation for services in DWDS repository

5.4.1 Feature Extraction

The purpose of the functional semantics extraction process is for generating its
representation features. A feature is defined as the “distinctive attribute or
characteristic of an object”. In case of WSDLs, the distinctive features are their
elements that indicate the service functionalities, that is <service>, <documentation>,
<portType>, <operation>, <input>/<output> messages and <types>. These can be
used for discovering useful information about a service’s domain and function. Hence, a
feature extraction process is used to parse the WSDL and extract all the useful elements
required for further analysis. The process is performed as follows.

(i) WSDL parsing & Element Extraction. For every service indexed in the
repository, the WSDL documents are parsed and various elements like service name,
documentation, operation names, input/output messages and types are extracted and
are used as features. As seen from Figure 5.2, each feature’s name is a combination of
natural language words, and most service designers follow standard programming
conventions and good naming practices like camel-casing, pascal-casing & underscores
to ensure maintainability while naming such service elements. The name of each such
element extracted is split into tokens. For example, an operation of the sample service

Chapter 5. Generating Metadata for Web Services 101

shown in the example is named ‘getAvailableStocks’. This phrase cannot be considered
as one token as it is not a valid English word, so three term tokens given by {‘get’,
‘available’, ‘stocks’} are generated. To maintain consistency during token generation,
certain rules are followed, which are explained next.

(ii) Token Generation. To ensure that the name of each service element is properly
captured, certain name splitting rules are followed -

Case 1: Service element names are split into term tokens by considering capital letters
as the start of a new token and special characters as token separators.

Case 2: Contiguous capital letters are considered as a single token as these mostly
represent acronyms (e.g. SMS, SSN, ISBN etc).

Case 3: If no capital letters or special characters mark the beginning of a new word in
the element name, proper splitting positions cannot be found. In this case, these
element names need to be processed specially to identify tokens correctly.

Algorithm 5.1 illustrates the process of term token generation. Table 5.1 summarizes
the rules followed in each case and the term vector obtained after feature extraction.
In the first two cases, splitting positions can be easily determined and terms can be
obtained. For example, consider an example where a feature is the name of the service
‘Academic-degreeScholarship’, which results in the term tokens ‘academic’, ‘degree’ and
‘scholarship’. Similarly, the service’s operations are also considered as a feature, so after
splitting, an operation named ‘getAcademic-degreeType’, will result in ‘get’, ‘academic’,
‘degree’ and ‘type’, which are the token list for that feature of a service.

Table 5.1: Term vector generation process - Examples

Extracted Feature Splitting Rule(s) Term tokens Feature
vector

filmAction Pascal-casing {film, action} {film, action}
BookAuthor Camel-casing {book, author} {book, author}
latitude1 Suffix number

elimination
{latitude} {latitude}

Book_Price Underscore operator {book, price} {book, price}
getFamily-roomPrice Pascal-casing; Dash

operator
{get, family, room,
price}

{family, room,
price}

SMStoIndiaRequest Contiguous capital
letters; Pascal casing

{sms, to, india,
request}

{sms, india}

findluxuryhotel-
service

Dash operator;
standard naming
conventions not used

{findluxuryhotel,
service}

Additional
processing
required.

Chapter 5. Generating Metadata for Web Services 102

Algorithm 5.1 WSDL Element Extraction & Term Token Generation process
1: procedure TokenGeneration(listofWSDLs)

2: Parse WSDL of service S and extract element names.

3: listofElementsofS ← element names

4: listofTokens← ∅
5: for each name_phrase np in listofElementsofS do

6: if camel-casing/pascal-casing etc then

7: Split into tokens as per rule (1)

8: if special characters then

9: Split into tokens as per rule (2)

10: if contiguous capital letters then

11: Split into tokens as per rule (3)

12: else

13: Further process name_phrase § as per Algorithm 2

14: return list of generated tokens.

(iii) Handling Bad Naming Conventions. As seen from the example in last row
of Table 5.1, we observed that some real world services in the service collection had quite
unkempt element names. For example, consider a service that does not follow standard
naming conventions - ‘citycountrySkilledoccupation_Service’. One of its operations is
named as ‘get_skilledoccupation’, which if considered as a single token will result in
incorrect tokens, that can adversely affect the accuracy of metadata generation. To
correctly generate term tokens for this particular name, it has to be split into ‘city’,
‘country’, ‘skilled’, ‘occupation’ and ‘service’ tokens. For extracting tokens automatically
from such bad names, we used a dynamic programming approach to select the splitting
positions, that exploits relative word frequencies in English as per Zipf’s law (Newman
2005). Zipf’s law states that,

“The probability of encountering the rth most common word in the English
language is given roughly by P (r) = 0.1

r
for r up to approximately 1000”.

Zipf also noted that the law does not hold good for less frequent words due to the
divergence of the harmonic series. Hence, assuming the relative word frequencies follow
Zipf’s law, one can obtain the probability of a word by 1

r·log N where r is the rank of the
word in a dictionary of N words sorted by their relative word frequencies. This concept is
used to resolve badly named service elements such as in the example discussed previously.
Algorithm 5.2 illustrates this approach.

Chapter 5. Generating Metadata for Web Services 103

Algorithm 5.2 Term token generation from badly named WSDL elements
Input:

L = list of badly named WSDL elements

D = custom dictionary consisting of words, successfully extracted from other indexed

services, sorted by their relative frequency of occurrence.

Output: List of correct term tokens, term-list

term-list = ∅

for each badly named element in the list L do

string str = bad -element-name

start-index = 0

end -index = 0

for i = (str.length− 1) till i=0 do

end -index = i § Start from the end of the bad -element-name string

term = splice(str, start-index , end -index) § check if spliced text exists in D

Check in dictionary D for occurrence of term

if found = true then § Dictionary contains term

Add term to term-list

start-index = i § Reset current position to end of extracted term

i = (str.length− 1) § Find current length of bad -element-name string

Decrement i by 1 § Start checking for next valid term

return term-list

A custom dictionary D modelled specifically for our service dataset, containing words
successfully extracted from correctly named services, was used. The dictionary consists
of the words extracted successfully from well-named service features, which is then used
for inferring correct splitting positions for the badly named elements. Assuming that
all words in the corpus are independently distributed, the words in D are sorted as per
their relative frequency of occurrence. Then, a word with rank r in the D will have
a probability of occurrence as given by Zipf’s Law. Using this approach, the splitting
positions could be determined in near linear time (O(n + k)), where n is the number of
characters in the bad WSDL element name and k is the size of the word to be found;
both n and k being small values). As the exact domain was modelled, i.e., service dataset
specific terms were used in the custom dictionary D, this method achieved nearly 94%
accuracy. However, if some generic corpus of English language words was used, then the
results of this approach would not be as effective due to inaccurate domain modelling.

Chapter 5. Generating Metadata for Web Services 104

(iv) Stop word & Function Word Removal. Once all the term tokens for all features
of a service are generated, the stop words (like ‘get’, ‘by’ etc., that do not contribute to
the semantics of a service) are filtered out and a term vector is obtained for each feature.
In addition to this, words used commonly in Web services domain, referred to as function
words (for e.g. ‘service’, ‘input’, ‘output’, ‘request’, ‘response‘, ‘SOAP’, ‘parameter’ etc)
are also filtered as they contribute very little to the context of a service.

(v) Term Token list. The resulting list after stopword & function word removal is
considered the final term token list for the service. The final term token list represents
the functional information of each service and is considered the initial feature vector for
that particular service.

Using these feature vectors, some metadata has to be generated for the services, so
that, their functional and domain information is captured. Using this tag candidate list,
the next stage of automatically generating tags for each service is carried out, as described
in Section 5.4.2.

5.4.2 Automatic Service Tagging

During the previous stage, a set of terms are generated and a feature vector is obtained
from each WSDL element name. Each of these terms represent the service’s functional
information in some way, but all such terms cannot be tags for the service. To determine
the most relevant tags for a given service that would capture its functional semantics best,
automatic tag weighting and ranking techniques were designed, and these are discussed
in this section.

(i) Obtaining Tag Candidates. For this process, the terms extracted from the
service’s WSDL are considered as potential tag candidates. For example, the natural
language documentation for the ZipCodeLookup service, given as “Returns latitude and
longitude for a given US city zipcode” contains the noun phrases ‘latitude’, ‘longitude‘,
‘US city zipcode’. Similarly, from one of its operations ‘getZipcodeforCityState’, the
noun phrases ‘zipcode’, ‘city’ and ‘state’ are obtained. These, together with all the
other noun phrases discovered from the element names of a particular WSDL are
potential tag candidates.

Generally, the tag candidates may contain the same word in different forms.
Lemmatization is a process of identifying and grouping together the different forms of a
English language word so they can be analysed as a single item. Examples are words
like ‘books’, ‘booking’, ‘booked’ which are different forms of the word ‘book’. This
ensures that different variants of a term are reduced to only one. This also reduces the

Chapter 5. Generating Metadata for Web Services 105

vector size, as the unique terms that make up the document are reduced. We used the
WordNet Lemmatizer available in Python’s NLTK for performing lemmatization.

(ii) Tag Weighting. The set of potential tag candidates of a service may contain
several terms, all of which cannot be used as tags. To find the most relevant terms,
the importance of each term to the service functionality should be considered. For this,
a term weighting method called Tf-idf (term frequency-inverse document frequency) is
used to compute the importance of a particular tag candidate to a given service when
compared to its importance in other services in the dataset. Tf-idf values are computed
as follows.

weightt = (0.5 +
tf

tfmax
) · log(0.5 +

D

df
) (5.1)

where, tf is the term frequency of a tag candidate t in the given WSDL document d; tfmax
is the highest frequency of any term in d, df is the frequency of occurrence of the term t

in other WSDL documents and D is the number of WSDL documents in the dataset.
Next, the Tf-idf matrix is calculated and is stored in .csv files. In order to calculate

the semantic relatedness term matrix for terms obtained in the previous step, WordNet is
used. For each pair of tags, a list of associated words is constructed. Semantic similarity
is calculated between each pair of terms in the lists and a weighted average is produced.
This semantic relatedness matrix is also stored in a .csv file.

(iii) Tag Ranking and Selection. The tf-idf matrix will have a very high
dimensionality as it captures the relative importance of all tag candidates generated for
a particular dataset, with respect to each service. However, very few tags will be
relevant for a given service, hence it is important to identify these terms only. In order
to obtain a feature vector made up of the most significant terms, we used Singular
Value Decomposition (SVD) (Klema et al. 1980), a popular feature reduction method.
SVD is a Linear Algebra matrix decomposition technique, which is used to obtain a
factorization of the two complex matrices - tf-idf matrix (U) and semantic-relatedness
matrix (V). A factorization (M) over a given domain K is given by -

M = U Σ V∗ (5.2)

where, Σ is a m × n diagonal matrix with non-negative real numbers on the diagonal,
and U is an m×m, and V ∗ is an n×n, orthogonal matrix over K. The diagonal entries,
σi, of Σ are known as the singular values of M, listed in descending order.

The SVD of M , denoted by Σ, is a diagonal matrix, whose diagonal values are called
singular values. These singular values represent the feature vector of each service, where,
a value for a tag is a combination of syntactic and semantic importance of that tag in the

Chapter 5. Generating Metadata for Web Services 106

service. This helps in effectively capturing the importance of a term in a service’s feature
vector. Hence, SVD helps in factorizing the Tf-idf matrix to identify that set of features
which are most important for a particular service.

We used the Rapidminer Studio (Ertek 2013) for Tf-idf matrix generation and also
for the SVD process. SVD has a complexity of O(mn2), where, m and n is the order of
the U and V matrices to be multiplied. SVD was very effective in reducing the initial
tag set and in identifying the ideal tag candidates that represented the functionality of a
given service to the maximum extent. In our experiments, we initially obtained several
thousands of tag terms. Applying SVD with a variance limit 0.95 (the allowed range is
between 0 and 1), resulted in more than 4000 attributes. With further experiments, it
was found that a variance value of 0.4 gave the most optimal results and 10 attributes
were selected after the SVD process. Then, the tags were ranked as per their relative
importance and based on their rank, the top 5 weighted terms were taken as the tag set
and also the feature vector of each service.

(iv) Tagset Expansion. Once the set of 5 tags for each service is determined, that
service is uniquely indexed by its tags. Hence, homonyms of these tags will also need to be
considered for complete domain representation. For example, a service ‘QuickCarRental’
service is tagged with {car, quote, rent, location, date}. The word ‘car’ can be referred
to as ‘automobile’ or ‘motorcar’ depending on the popular usage in different locations.
If these additional terms are not considered as related terms, then the service may never
be included in the results, even though it is relevant. To overcome this issue, a process
of tag expansion is performed after obtaining the tag set.

For each tag in the tagset, the WordNet synsets are fetched. The tagset is then
expanded by using these cognitive synsets, in order to capture synonyms of the words
that were used as tags for each service. Finally, expanded tagset is used as the feature
vector for each indexed service and is added to the service entry in the repository. This
feature vector will be used to improve the service retrieval process for enabling fast
matchmaking with the given user query.

Since all the services are now represented by their weighted tag set, a mechanism
to identify similar services, so that domain specific categorization can be performed is
required next. In order to do this, the similarity between different services has to be
captured, so the most representative terms for a particular domain can be identified.
Using the computed similarity values, similar services can be grouped, thus helping in
reducing the search space for a particular query, as search can be directed towards the
query-relevant domains and irrelevant groups can be neglected. The stage of service
similarity computation is discussed in Section 5.4.3.

Chapter 5. Generating Metadata for Web Services 107

5.4.3 Service Similarity Computation

To capture the domain information of a service, the similarity between it and every other
service in the repository is required.

To compute the similarity sim(ti, tj) between any two terms ti and tj belonging to
service si and sj, we used WordNet (Miller et al. 1990). WordNet is an online lexical
database that can be used to compute semantic relatedness between two concepts. It is
a large lexical database of English, where nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (called synsets), each expressing a distinct
concept. Synsets are interlinked by means of conceptual-semantic and lexical relations
and the resulting network of meaningfully related words and concepts makes it a useful
tool for computational linguistics and natural language processing tasks.

WS4J (Shima 2013) is the Java implementation of WordNet::Similarity (Pedersen
et al. 2004) that allows the calculation of synset similarity based on the path distance
between two words in the WordNet taxonomy. This can be then used for specifically
computing semantic similarity and semantic relatedness using the WordNet taxonomy.
The tool returns a similarity score for any two given WordNet synsets. The maximum
similarity as given by WS4J between the pair-wise combinations of synsets of the two
considered terms, extracted from each service is taken as the similarity value between
them. Terms from the service name, documentation, input/output messages and
operations are processed separately and the similarity between each term pair is
recursively computed. Finally, the similarity between 2 feature vectors fs1 of service s1
and fs2 of service s2 of a feature f is given by Equation (5.3).

simf (s1, s2) =

∑i=|fs1 |·|fs2 |
i=1 {α · (1− α)i−1 × simi(t1, t2)}∑i=|fs1 |·|fs2 |

i=1 {α · (1− α)i−1}
(5.3)

where, term t1 ∈ fs1 , t2 ∈ fs2 and α is a constant less than 1. |fs1| and |fs2 |
represents the number of terms in fs1 and fs2 respectively. simi(t1, t2) is the similarity
corresponding to the ith index in an ordered list of decreasing values from the set
S = {sim(tp, tq)|tp ∈ fs1 , tq ∈ fs2}. This is done to emphasize similar pairs of tokens in
the similarity computations.

We illustrate the need for an emphasis on similar pairs of tokens in the similarity
computations, instead of taking the average value of S as was the case in of Elgazzar et al.
(2010) with an example. Consider three term vectors, T1 = [book, price], T2 = [horror,
book, recommended, price] and T3 = [car, price] of services s1,s2 and s3 respectively.
Intuitively, T1, T2 are more similar in comparison to T1, T3. However, when similarities
were computed by Elgazzar et al’s approach, it was found that simT (s1, s2) = 0.42 <

Chapter 5. Generating Metadata for Web Services 108

simT (s1, s3) = 0.55. Similarities computed by Equation (5.3) gave correct results i.e.,
simT (s1, s2) = 0.83 > simT (s1, s3) = 0.74. Also, over a large set of similarity values
computed, the values got by Equation (5.3) were more distributed in the range of 0 to 1.

Finally, the total similarity between any two service descriptions s1 and s2 can be
computed by Equation (5.4) below.

simwsdl(s1, s2) = vw1 · simservicename(s1, s2) + vw2 · simdocumentation(s1, s2) +

vw3 · simoperations(s1, s2) + vw4 · simmessages(s1, s2) + vw5 · simtypes(s1, s2)

(5.4)

where, vw1, vw2, vw3, vw4 and vw5 are variable weights whose summation should be
equal to 1. The values of simservice(s1, s2) and simdocumentation(s1, s2) are calculated by
equation 5.3 and simoperation(s1, s2) is calculated by equation 5.5.

simoperation(s1, s2) =

∑
oi∈Os1∪Os2 ,oi /∈Osj ,j∈{1,2}

simoo(oi, Osj)

|Os1|+|Os2|
(5.5)

Here, similarity between oi and the operation set of sj, Osj , is given by -

simoo(oi, Osj) = Maxok∈Osj
p0.4 · simo name(oi, ok) + 0.3 · simo input(oi, ok)

+ 0.3 · simo output(oi, ok)q

(5.6)

where, simo name(oi, ok) is calculated using Equation (5.3). Similarity simo i/o(oi, ok)

between input/output messages with operations oi, oj is computed as the average of
simi/o name(oi, oj) (calculated by Equation (5.3)) and simi/o type(oi, oj) is given by

simo i/o type(oi, oj) =
2 · |typeoi ∩ typeoj |
|typeoi|+|typeoj |

(5.7)

Here, typeoj is the set of data types of input or output used in operation oj. Using
these equations, the total similarity between two services is given by a summation of the
values of each element’s similarity and is calculated using Equation (5.4). This similarity
value can be later used for enabling service domain-specific categorization.

5.5 Service Categorization using Similarity

The process of generating metadata in the form of tags is helpful for capturing the
inherent semantics of a service to create its representative tags, using which the services
can be better indexed. Another advantage is that services with same/similar tags can
be considered to be belonging to the same domain and hence grouped, thus enabling

Chapter 5. Generating Metadata for Web Services 109

service categorization. In this section, we discuss two different techniques used to test
the suitability of the generated tags for automatic categorization. We applied both
unsupervised techniques (clustering) and supervised techniques (classification) for this
purpose. In Section 5.5.1, we discuss the tag based clustering process and in Section
5.5.2, the classification process is presented.

5.5.1 Similarity based Clustering

In this section, a method to cluster services using the extracted features, computed
similarity and generated tags is described. Using the computed similarity, the services
are clustered using Hierarchical Agglomerative Clustering (HAC) (Hastie et al. 2009).
HAC uses “a bottom up approach, where each entity in the considered dataset starts in
its own cluster, and pairs of clusters are merged as the algorithm considers entities
further up the hierarchy, based on their similarity”.

Algorithm 5.3 Hierarchical Agglomerative Clustering
Input: Set of WSDLs

Output: Service clusters

1: Consider each service as a separate cluster

2: for every service in individual clusters do

3: Calculate similarities between clusters

4: for each service description do

5: while similarity value ≥ tmerge do § tmerge = largest Dunn’s Index value

6: Select a pair of clusters that are most similar

7: Remove pair from matrix and merge them

8: Evaluate similarity of new cluster with all other clusters & update matrix

9: Repeat for all services in matrix

Algorithm 5.3 illustrates the process of hierarchically clustering services using the
computed similarity. HAC was applied a small dataset of 500 services selected from the
DWDS service collection. In the first iteration, the pair of services with the maximum
similarity value are merged to form a cluster. This process is continued and the pair of
clusters with maximum similarity are merged in each iteration until the similarity value
is lesser than some threshold. The merging of clusters stops when the similarity value
falls below a given threshold. Instead of setting this to a pre-defined value, we provided a
method to automatically set the threshold value based on the service similarity values. We
used Dunn’s Index (DI) (Dunn 1973), which is a cluster validity measure that identifies
well separated clusters (calculated using Equation (5.9). DI is the ratio of the smallest

Chapter 5. Generating Metadata for Web Services 110

distance between two objects from different clusters to the largest distance of two objects
in the same cluster. Hence, the maximum DI value is the optimal value. As per this, the
HAC merging threshold, tmerge, is set to the largest DI value.

Here, the similarity of a pair of clusters c1 and c2 is computed using Equation (5.8),
based on which they are either merged (if value is more than tmerge), or left separate.

simcluster(c1, c2) = Maxsi∈c1,sj∈c2(simwsdl(si, sj)) (5.8)

The value of the Dunn’s Index is calculated using Equation (5.9).

DI(C) = mini∈C

{
minj∈C,j 6=i

{ α(ci, cj)

maxk∈C{α(ck)}

}}
(5.9)

where, C represents the total set of clusters and α(ci, cj) is the smallest distance
between two services belonging to different clusters ci and cj, and is given by Equation
(5.10). α(ck) is the largest distance between two services in the same cluster ck, and is
given by Equation (5.11).

α(ci, cj) = min{1− simwsdl(si, sj)|si ∈ ci, sj ∈ cj} (5.10)

α(ck) = max{1− simwsdl(si, sj)|si, sj ∈ ck} (5.11)

The complexity of the HAC algorithm is O(n2 log n) since the similarity values have
to be computed for each service pair and then checked with the computed DI value before
deciding if two services belong to the same cluster. Since the highest DI value is used to
set the merging threshold, the algorithm continues merging clusters while the similarity
value is above tmerge When this condition is not met, the process stops and this indicates
the formation of well defined, well separated clusters.

5.5.1.1 Cluster Tagging

After HAC, a set of service clusters are obtained. Now the task is to identify the domain
of the services within each cluster and tag the clusters appropriately, for improving the
efficiency of the retrieval process. To generate tags for each cluster, initially, we consider
all service tags of services within a cluster as potential tag candidates. Then, a ranking
process is applied to these tag candidates by considering two factors:

- how well a tag g represents service s is equal to the Tf -idf value of g in s.
(represented as simtag(g, s)).

simtag(g, s) = Tf -idf(g, s) (5.12)

Chapter 5. Generating Metadata for Web Services 111

- how well the service s whose tag is under consideration represents its cluster c
(represented as csimservice(s, c)) and is computed as follows:

csimservice(s, c) =

i=|c|∑
i=1,si 6=s

simwsdl(s, si)

|c|−1
(5.13)

where |c| represents number of services in cluster c.

Then, the level of similarity between a cluster tag g and its cluster c (denoted by
simclusterTag(g, c)) is given by -

simclusterTag(g, c) =
∑

g∈τ(s),s∈c

(simtag(g, s)× csimservice(s, c)) (5.14)

where, τ(s) is the set of tags for service s. Based on the resultant ranking, the top-5
tags are chosen as cluster tags. In addition to this, a cluster tag expansion process is
performed, by adding synsets provided by WordNet for each tag in the cluster tag set.
These together form the feature vector of each cluster, which will be utilized during the
query-to-service matching process. The results of the suitability of using service similarity
and service tags to generate cluster tags, is presented in Section 5.6.2.

5.5.2 Similarity based Classification

Similar to the way tag based clustering was performed; we discuss a method to classify
services using the extracted features, computed similarity and generated tags. Firstly,
using the features extracted, the similarity between Web services is computed as discussed
in Section 5.4.2 and the service tags are generated as described in Section 5.4.3. Then,
we apply various machine learning techniques to the service tags to classify services into
relevant categories and finally generate class tags for each class. We used six different
classifiers available in the Weka Data Mining Suite (Weka 3 - Data Mining Software in
Java n.d.) for classification of the services into domain specific categories.

1. Naïve-Bayes : Naïve-Bayes is a simple probabilistic classifier based on Bayes’
theorem, that assumes independence between the considered features (Murphy
2006). Here, the assumption is that each feature has an independent contribution
in the probability. For example, consider that an animal can be called as a dog if
it has four legs and it barks. In Naïve Bayes, there is no correlation between the
number of legs and barking features, which often leads to false results.

2. Decision tree: This classifier uses a decision tree for building a predictive model

Chapter 5. Generating Metadata for Web Services 112

(Swain et al. 1977). Here, numerous test questions and conditions are modelled as
a tree structure, where each internal node and the root of the tree denote a testing
attribute while each leaf corresponds to a class label. When some input variables
are given, the class label can be predicted by traversing the tree such that the values
of the given input variables represent the path from the root to leaf.

3. Random forests : Random forests is an ensemble classifier which involves growing
many classification trees (Breiman 2001). A service is classified by assigning its
input vector to each of the trees. Each tree assigns a class label to the service.
This process is called as voting as each tree votes for a class label. The forest then
chooses the class label that obtained the highest number of votes.

4. Bagging : Bagging is another ensemble classifier that applies base classifiers on
random subsets of the original dataset (Skurichina et al. 2002). The subsets are
made by drawing random samples and replacing them at later stages of the
classification. Each base classifier gives its individual predictions and these are
then aggregated either by averaging or voting.

5. Regression: Regression is a probabilistic statistical model which uses the
relationship between the categorical dependent variable (which needs to be
predicted) and various other independent variables (Hosmer et al. 2000).
Regression analysis helps in understanding the variation in the value of a
dependent variable when any one of the independent variables are varied, keeping
all other independent variables fixed. Hence, the focus is on the relationship
between a dependent variable and one or more independent variables.

6. Artificial Neural Network (ANN): ANNs (Bishop 1995), also called Multilayer
Perceptrons, are inspired by biological nervous systems (i.e., the brain), and are
modelled as a layered network comprising of highly interconnected processing
elements called neurons. Neurons work together in order to approximate a specific
transformation function. An ANN is configured for a specific application, such as
pattern recognition or data classification, through a learning process during which
the weights of the inputs in each neuron are updated. The weights are updated by
a training algorithm, such as back-propagation, based on previous iterations, to
reduce the value of an error function.

The classification accuracy was determined using a 10-fold cross validation method
(Kohavi 1995) method. Cross validation is a method of accuracy estimation of a model
when applied to a dataset and is very useful in case of limited data availability. In such a
situation, if enough data is held for training to construct a good model then testing would

Chapter 5. Generating Metadata for Web Services 113

not yield reliable results. The most common cross validation technique is k-fold cross
validation, where, the dataset is divided into k parts with a homogeneous distribution of
classes. Out of the k parts, one is retained for testing while (k − 1) parts are used for
training. This process is performed k times with different testing partitions each time.
The final accuracy is calculated by taking the average of k accuracy scores for each fold.
Using the classes generated by the most accurate classifier, we then applied Equations
(5.12), (5.13) and (5.14) to generate class tags, based on each class’s member services (by
substituting ‘class’ for ‘cluster’ in the equations). The results of the classification and
accuracy achieved with various classifiers is discussed in Section 5.6.3.

5.6 Experimental Results and Discussion

In this section, we present the experimental evaluation of the proposed approaches for
functional semantics extraction, metadata generation and for the service categorization
using the service tags. First, an evaluation of the quality of service tagging based on the
extracted functional semantics is presented in Section 5.6.1. Next, the suitability of the
proposed similarity computation and service tagging approach for service categorization
was evaluated. The results of the evaluation for service clustering is presented in Section
5.6.2 and results of service classification is presented in Section 5.6.3. Finally, a simple
querying mechanism was used to measure the improvement in service retrieval process
due to the addition of tags to the services, when compared to services indexed without
generated tags. The performance of web service retrieval using the untagged services and
tagged services, in the form of precision and recall is discussed in Section 5.6.4.

5.6.1 Quality of Service Tagging

As stated earlier, the Zipf’s Law based approach for determining splitting positions for
token generation from badly named service elements achieved more than 94% accuracy.
To evaluate the efficiency and quality of tagging services and classes, we conducted several
experiments. Since tags are natural language text, we used manual inspection techniques
for a sample random subset. Several services were selected randomly from the service
repository and the service tag quality was subjected to human validation, to determine
relevancy of tags generated for each service. The results of the check are presented here.

Table 5.2 lists the tags generated for one such sample service CustomerSupportService
available in our repository, provided by carrentals.com, using which customers can request
for email support from customer service team. The table also shows the top-5 tags for the
service and their associated tag weights (discussed in Section 5.4.3). The tags are ranked

Chapter 5. Generating Metadata for Web Services 114

by their weights and the top-5 tags for this service are {‘support’, ‘customer’, ‘email’,
‘car ‘rent’}.

Considering another service, calculateDistanceInMiles, we list the service’s generated
tags and the corresponding tag weights in Table 5.3. It can be seen that the system
generated meaningful tags that effectively represented the functionalities of individual
web services. As these tags represent the functional semantics of a service, it can be
concluded that the metadata generation process was effective.

Table 5.2: Tags and associated tag-weight for a service CustomerSupportService

Tags Weight

support 2.26948500217
customer 2.0170629812
email 1.59481500924
car 1.34948500217
rent 1.34948500217

Table 5.3: Tags and associated tag-weight for the service calculateDistanceInMiles

Tags Weight

mile 2.48886180264
calculate 2.32660625689
distance 1.5484550065

geographic 1.14360118508
latitude 0.715121673171
longitude 0.715121673171

5.6.2 Service Clustering Performance

Using the tags generated by the system and the similarity computation mechanism
(discussed in Section 5.4.2), the services were clustered using HAC. A subset of 500
services was chosen from the service repository for this purpose. The HAC algorithm
was applied to these services and the clustering obtained was observed.

It was seen that best results were obtained for vw1 = 0.25, vw2 = 0.15, vw3 = vw4

=vw5 = 0.2 and α = 0.4. The maximum Dunn’s Index value was 0.010042, for which

Chapter 5. Generating Metadata for Web Services 115

Table 5.4: Some generated clusters and corresponding cluster tags

Cluster
No.

Services in Cluster (WSDLs) Cluster Tags

1 (7*)

AcademicAddress; researcher-postal-address-service;
AcademicPostal-address; professor-in-academia-,service;
researcher-address-service; Educational-employeeAddress;
EmployeePostal-address1

address,
post,

academic,
research,
employee

2(10*)

ProvideMedicalFlightInfo-service; Booknonmedicalflight
ProvideMedicalTransportInfo-service;
GetNonMedicalFlightAccount-service;
GetNonMedicalTransportAccount-service;
GetMedicalFlightAccount-service;Bookmedicaltransport
GetMedicalTransportAccount-service;
Booknonmedicaltransport; Bookmedicalflight

medical,
book,

account,
flight,

transport

3(7*)
BookPrice; EncyclopediaPrice; BookAuthorprice1;
EncyclopediaAuthor; BookAuthor1; Author1;
publication-author-service

author,
book,
price,

encyclopedia,
publication

4(9*)

getAltitudeOfLocation; getElevation-FromLocation;
getAltitudeAboveSeaLevel; addressDistanceCalculator
getDistanceBetweenCities-Worldwide;
getDistanceBetweenPlaces; calculateDistanceInMiles;
getDistanceBetweenLocations; calculateDistance

distance,
geographic,
location,
longitude,
latitude,
altitude

5(3*)
retailstore-preparedfoodquantity-service;
retailstore-foodquantity-service.wsdl;
retailstore-foodquality-service.wsdl

store,
retail,
food,

quality,
quantity

* Number of services in each cluster

the corresponding tmerge value was calculated to be 0.65. This yielded 87 clusters with
average cluster size 5.632184. About 87.96% of the web services in the considered dataset
were in top 32% of the clusters formed. Next, cluster tags were generated for each of the
clusters using the method described in Section 5.5.1. A subset of the clustering results
obtained and the corresponding cluster tags for some selected clusters are tabulated in
Table 5.4. As seen from the tabulated results, the clustering accuracy was good and also
the tags generated for each cluster from its member services tags were meaningful.

Chapter 5. Generating Metadata for Web Services 116

5.6.3 Service Classification Performance

For classification, a training dataset is required for which the category information is
already known. For this experiment, a standard dataset called the ASSAM dataset1

was used, which contains 448 service descriptions manually categorized into 25 broad
categories, each subdivided into several subcategories. For example, postal services are
categorized into ‘Mail ’ category and ‘Mail ’ is a type of ‘Communication’ etc, so the
dataset is hierarchically organized. The values vw1 = 0.3, vw2 = 0.25, vw3 = vw4 =
vw5 = 0.15 and α = 0.4 were used for computing WSDL similarity and generate feature
vectors. SVD was performed on the full feature vectors and the reduced feature set of each
service was obtained. Next, the classification process was performed and the accuracy
was determined using 10-fold cross validation (Kohavi 1995).

The Weka classifiers used for experimental evaluation of service classification accuracy
using the feature vectors generated before SVD were - Bagging, Näive Bayes, Decision
Tree, Random Forest and Classification by Regression (CbR). The ANN was used only
after dimensionality reduction due to its complex nature. It was seen that Näive Bayes,
Decision tree and Bagging achieved almost similar accuracy, in the range of 68-70%,
while Regression achieved an accuracy of around 74%. Since regression is based on
assignment of weights to features, it can be inferred that following a similar approach
before classification may result in higher accuracy. For the Random Forests classifier, the
observed accuracy is the highest and it is around 78%. It is an ensemble approach and
works with a randomly selected set of features in each iteration. So, it can be inferred
that some subsets of features tended to have higher accuracy than other subsets. If a
feature selection method is applied on the vectors, it might achieve better accuracy.

The accuracy obtained for service classification using each classifier for the dataset
before and after dimensionality reduction is shown in Figure 5.4. After applying
dimensionality reduction, the accuracy of each of the classifiers improved by at least
7-8% in the case of most classifiers. We applied ANN as well in the second case, i.e.
after dimension reduction. ANN takes a lot of time for training over a dataset with a
large number of attributes, so it was not applied in the first case, when the
dimensionality of the features was very high. In the case of the reduced feature set,
ANN achieved the best accuracy of 88%. Hence, it can be concluded that similarity
computation methods are suited for service categorization using classification.

1Available at http://www.andreas-hess.info/projects/annotator/ws2003.html

http://www.andreas-hess.info/projects/annotator/ws2003.html

Chapter 5. Generating Metadata for Web Services 117

Figure 5.4: Service Classification Accuracy

5.6.4 Web Service Retrieval Performance

In this section, a simple querying mechanism is used to search for services based on
keywords. The main objective of this is to verify that the tagging and similarity based
categorization improves Web service discovery. For this purpose, we use HAC again to
cluster the set of 500 services considered in Section 5.6.2, by using two different approaches
as listed below -

i. Using WSDL-level similarity only (obtained from Equation (5.4)).

ii. Using both the computed WSDL-level similarity and the generated tag similarity.

Since the proposed system is modelled as per traditional IR methods, the most
appropriate metrics to evaluate the performance are precision and recall. In this
context, precision can be defined as the fraction of retrieved services that are relevant
for the given query. Recall is the fraction of all relevant services successfully retrieved
for the given query.

Precision =
|relevant services ∩ retrieved services|

|retrieved services|
(5.15)

Recall =
|relevant services ∩ retrieved services|

|relevant services|
(5.16)

User input was taken through a simple form based GUI through which the users can
specify their service requirement. We illustrate the service discovery process with a
simple example as below.

Search terms : book price

Chapter 5. Generating Metadata for Web Services 118

Effective user request : “find a service that returns the price of a given book”

Based on the above service request, out of the 500 services in the dataset, 57 services
were considered relevant and others were discarded as irrelevant, hence the search
domain was reduced by 88.6%. Out of these 57 services, the system finally identified
three services that were best possible candidates for serving the user request. The
candidate set discovered consisted of the following web services - the services BookPrice,
BookAuthorPrice and EncyclopediaPrice were returned as most relevant for serving the
user query. Similarly, we used different queries to evaluate the overall performance. The
average precision and recall values for each, over the different domains considered are
shown in Figure 5.5. It was seen that the second approach which used both WSDL-level
similarities and the generated tags to discover services achieved 14% improvement in
precision and 16% improvement in recall over the first approach.

(a) Observed precision values (b) Observed recall values

Figure 5.5: Comparison between WSDL-level similarity only and
WSDL-level Similarity+tags approaches

Chapter 5. Generating Metadata for Web Services 119

5.7 Summary

In this chapter, we presented an automated technique to generate representative
metadata for services and to compute their similarity to enable service categorization.
These techniques apply semantics based natural language processing techniques to the
extracted elements of the service description to generate tags that capture the
functional semantics of the service. The quality of the tagging was validated by manual
inspection and was found to be meaningful. To further evaluate the effectiveness of
these mechanisms, the computed service similarity and generated tags were used to
categorize services using both clustering and classification. Then, tags were generated
for the generated clusters/classes using weighting and ranking techniques on the tags of
their member services. Experimental evaluation of this categorization validated that the
categorization accuracy was quite good and the cluster/class tags generated, were able
to effectively capture the domain information of a cluster/class. Further, we performed
simple Web service discovery experiment and found that the computed similarity and
tagging resulted in a 14% increase in precision and 16% increase in recall.

Publications

(based on work presented in this chapter)

1. Sowmya Kamath, S., and V. S. Ananthanarayana. “Similarity analysis of service
descriptions for efficient Web service discovery”, In Data Science and Advanced
Analytics (DSAA), 2014 IEEE/ACM International Conference on, Shanghai,
China., pp. 142-148. IEEE, 2014.

2. Sowmya Kamath S., and Ananthanarayana V.S., “Towards Semantic Web
Services: An Empirical Evaluation of Service Ontology Generation Tools”, 12th
IEEE India Conference on Electronics, Energy, Environment, Communication,
Computer, Control E3 − C3, (IEEE INDICON 2015), pp.1-6, 2015.

3. Sowmya Kamath S and Ananthanarayana V.S, “Semantics based Web Service
Classification using Morphological Analysis and Ensemble Learning”, International
Journal of Data Science and Analytics, Springer, ISSN: 2364-4168 (Scopus and EI
Indexed)

Status: Accepted

Chapter 6

Dynamic Clustering of Web Services

6.1 Introduction

The problem of building a scalable Web service discovery framework and enabling
automated metadata generation and categorisation techniques have been discussed in
the previous chapters. The service repository of the framework is scalable, because it is
based on the concept of a Specialized Service Crawler. This means that the number of
services in the service repository can change over time, as demonstrated by the
temporal statistics presented of the service collection (discussed earlier in Section 4.4.4).
As a result, the service collection is inherently dynamic and to deal with this problem
efficiently, an incremental change propagation based approach was proposed for keeping
track of the different data entities.

The same problem is observed while the process of service categorisation is to be
carried out. As the service collection (i.e., the dataset) may change after each scheduled
periodic crawler run, services that are already categorised should effectively remain the
same and only the new changes must be processed, thus reducing unnecessary rework.
Supervised approaches like machine learning based classification is not suited for our
service collection, as the domains of most indexed services are unknown, and hence a
training dataset is difficult to provide. Unsupervised approaches include several
traditional clustering approaches like K-Means, Hierarchical Clustering etc. The
clustering process has to restart after any change in the underlying dataset, when these
algorithms are used; hence these clustering approaches are not equipped to deal with a
dynamic data collection.

Hence, there is a need to design an effective clustering algorithm that is capable of
dealing with the dynamic nature of the DWDS framework to achieve domain-specific
grouping, incrementally, as and when the changes happen, without any need for manual
intervention. In this chapter, we discuss such an algorithm.

120

Chapter 6. Dynamic Clustering of Web Services 121

Our main contributions, as reported in this chapter are listed below:

• Developing a mechanism for large-scale, domain-specific categorisation of services
using their functional semantics.

• Designing the algorithm to be able to deal with the dynamic nature of the proposed
framework.

• Demonstrating that the proposed clustering approach performs better when
compared to traditional algorithms and was effective in dealing with dataset
changes incrementally.

• Evaluating the quality of clustering of the proposed clustering approach.

The rest of this chapter is organised as follows. Section 6.2 describes the defined
problem addressed in this chapter and Section 6.3 discusses some background information
in this regard. Section 6.4 discusses the solution methodology developed for categorising
services using their functional semantics, while incorporating an incremental strategy to
deal with the dynamic nature of the service collection. In Section 6.5, we present the
experimental results on the performance of the proposed algorithm in comparison with
traditional algorithms and evaluate the goodness of clustering achieved by it. Section 6.6
summarizes the work presented in this chapter.

6.2 Problem Statement

The problem that is addressed in this chapter is defined here:

Given the constant changes in the indexed service collection, to develop an
efficient algorithm that can deal with the changes incrementally, to enable
domain-specific service grouping.

The solution proposed for this problem, aims at improving the process of managing the
repository by automating the process of categorising services. Using the tags generated as
metadata for each service, the service categorisation process has to discover the domain
information of services, so domain-specific grouping can be performed. In addition to
this, the categorisation has to be performed in an optimized manner, such that only
the new changes in the service collection must be processed, instead of reprocessing
the entire collection. In Section 6.3, we discuss some background information regarding
the proposed methodology and then, describe the algorithms developed for performing
dynamic service categorisation in Section 6.4.

Chapter 6. Dynamic Clustering of Web Services 122

6.3 Background

The problem of clustering a tagged dataset can be effectively handled by using
traditional clustering algorithms like hierarchical clustering. However, a major
limitation of such algorithms is that they are efficient only for small sized, static
datasets. The DWDS service collection is inherently dynamic in nature as WSDLs are
being continuously processed and added/deleted during periodic active and selective
crawler modes. During each scheduled active crawling cycle, new service descriptions
may be added. When selective crawling is performed, the availability status of service
descriptions already added to the WSDL repository is checked and the service may be
removed if continuously inaccessible. Hence, every small change in the WSDL dataset
will mean that the clustering will have to restart if traditional clustering methods are
used. Therefore, an efficient clustering strategy is needed to process the dynamic data
in a cost-effective and time-aware manner.

To mitigate this problem, the concept of incremental clustering (Can 1993) was
adopted, which focuses on dealing with multiple (small) changes incrementally, rather
than re-clustering the entire dataset. Currently, there exist incremental versions of some
traditional algorithms like Incremental K-Means (Wagstaff et al. 2001) and Incremental
DBSCAN (Ester et al. 1998). However, incremental K-Means assumes that the data
distribution fits into a pre-specified number of clusters k. Similarly, for incremental
DBSCAN, the best values of ε and minpts are determined by a trial and error method,
and are also highly dependent on the data being clustered. Also, another main
drawback of both incremental algorithms is the execution time required when dealing
with large data sets of high dimensionality (Jain 2009).

Most existing work in Web service clustering deal with small, closed service datasets
and have not been applied to larger collections. In real-world scenarios, service
collections are dynamic as new services may be published and older ones may no longer
be accessible, due to which, traditional clustering algorithms are not very suitable.
Recently, algorithms inspired by animal behaviour in nature have been applied towards
clustering dynamic datasets like streaming data and for dynamic information retrieval
problems. These have achieved good results and are well suited for such optimization
problems. The main principle of these algorithms is the tasks accomplished by the
interactions of a large number of simple agents that can adapt to their environment and
work towards a common goal. These agents can be ants as used in ant colony
optimization algorithm (ACO), particles in particle swarm optimization (PSO), bees in
artificial bee colony algorithm (ABC) or populations of individuals in genetic algorithm,
which collectively exhibit intelligent behaviour.

Chapter 6. Dynamic Clustering of Web Services 123

Wang, Shen, et al. (2012) performed experiments to measure the adaptability of bio-
inspired algorithms like ant colony optimization (ACO), particle swarm optimization
(PSO), genetic algorithms etc., for web service composition and found them to be very well
suited. They reported that these techniques when applied to the problem of web service
candidate selection for composition were efficient and resulted in a significantly reduced
search space. Since clustering for service discovery also has a similar objective of reducing
the search space to effectively serve a user query, these findings are relevant. Since
the proposed framework is inherently dynamic, there is a need for a dynamic clustering
mechanism that can cope with the continuous changes in the dataset and process new data
incrementally. Also, the clustering would be efficient as the functional capabilities of the
services are best represented by its tag set, based on which they can be categorised most
efficiently. In this context, bio-inspired approaches like Swarm Intelligence algorithms
are best suited for high density and dynamic data. To this end, a novel bio-inspired
incremental clustering algorithm for web service clustering is proposed and discussed in
detail in Section 6.4.

6.4 Proposed Dynamic Clustering Approach

Figure 6.1 depicts the dynamic clustering methodology for the developed framework’s
service collection. The process of automatic service categorisation is dependent on two
main processes - Automatic Service Tagging (described in section 5.4.2 of Chapter 5) and
Service similarity computation (described in section 5.4.3 of Chapter 5). The Dynamic
Clustering & Cluster Tagging phase is performed based on the computed similarity values
and the generated service tags and is discussed in Section 6.4.1.

Figure 6.1: Dynamic Service Clustering process

The process of service tagging, similarity computation and service categorisation is
performed based on the status of each service entity, as per the change propagation
strategy described in section 4.3.2 of chapter 4. This is required to reduce the amount

Chapter 6. Dynamic Clustering of Web Services 124

of work required every time a new service is added to the system, after periodic crawler
runs. According to this, each service entity is assigned a corresponding status as soon it
successfully completes a certain process. For instance, when a newly crawled service S
has passed all checks and is added to the repository, it is assigned the status
‘NewWSDL’, which means that it is now ready to be preprocessed. Next, the WSDL of
the service S is analysed for tag generation and similarity computation (using the
techniques described in section 5.4.1 and 5.4.2). If successful, the status of service S is
set to ‘MetadataGenerated’, and the service tags are saved in the repository, after
which, the service status is changed to ‘ToBeCategorised’. Thus, clustering is to be
performed on all services with this status, using the service pair-wise similarities. The
proposed dynamic clustering algorithm described in Section 6.4.1.

6.4.1 Bird Intelligence based Incremental Clustering (BI2C)

The proposed dynamic clustering algorithm, named BI2C Algorithm, is inspired by the
migratory behaviour of birds in nature. Birds display very complex and diverse grouping
rituals, called flocking, which differs from species to species. Generally, some species
display very rigid patterns and groupings during seasonal migration, while others form
complex flocks for safety and self-preservation. During migration, many species of birds
follow a ‘V’ shaped formation, with the leader at the leading edge of the formation. It is
quite extraordinary that among hundreds of birds migrating, same species always form a
flock very fast and in an organised manner, even in full flight (Freiderici 2009). Even when
the individuals have to leave the flock for food or rest, they always return to the exact
same flock and resume their position. Figure 6.2 illustrates such bird flocking behaviour
during flight and migration.

Figure 6.2: Bird flocking behaviour during migration

An interesting phenomenon that has often captured the interest of bird watchers and
researchers alike, is that, birds in formation are always in alignment with each other and
maintain the same velocity as their nearest neighbours. This effectively helps them in keep
in formation. Researchers proved that birds watch and imitate their nearest neighbours,

Chapter 6. Dynamic Clustering of Web Services 125

hence making this an effective local optimization strategy. All birds inherently display this
behaviour, thus, helping them achieve a global optimization by maintaining a constant
relative speed and alignment. Also, birds can make sudden changes in direction and still
maintain flock formation, in the case of danger or direction change, due to this strategy.
Thus, birds can almost always maintain their formation and individual position within
their species’ flock, even if thousands of birds belonging to different species are flying all
around them. Hence, the main properties of flocking behaviour can be summarized as -

i. Homogeneity : Every bird in the flock follows the same behavioural model.

ii. Locality : Only the movements of the nearest flock-mates influence the motion of a
particular bird.

iii. Collision Avoidance : Each bird actively avoids colliding with its nearest neighbours.

iv. Velocity matching : Each bird attempts to match the velocity of its neighbours.

v. Flock centering : Each bird attempts to stay close to its nearest neighbours.

The bird flocking behaviour was formally described and mathematically formulated by
Reynolds (1987), who used the flocking model for computer simulations of groups of flying
objects in animation movies. In a novel approach to clustering Web services, we adapt
this model and use it to enable domain-specific categorisation of services incrementally
and dynamically, to deal with the dynamic nature of the proposed framework. The
fundamental concepts and the complete working of the proposed algorithm is discussed
in Section 6.4.2.

6.4.2 The BI2C Algorithm

6.4.2.1 The Basic Flocking Model

In BI2C, the DWDS services are modelled as a flock of independent agents that interact
with each other in virtual space, to cluster by a bottom up, decentralized and self-
organizing method. The flocking model is described by three important properties based
on which the behaviour of birds can be emulated as a data clustering strategy. They are
-

1. Alignment is a behaviour that causes a particular agent to line up with agents that
are close by i.e., within a defined radius (helps in encouraging clustering behaviour).

2. Cohesion is a behaviour that causes agents to steer towards the “centre of mass”, i.e.,
the average position of the agents within a certain radius. This helps in achieving
well-formed, compact clusters (minimising intra-cluster distance).

Chapter 6. Dynamic Clustering of Web Services 126

3. Separation is the behaviour that causes an agent to steer away from all of its
neighbours, within a defined radius. This helps in maintaining well-separated
clusters (maximising inter-cluster distance).

The basic flocking model follows these three properties and defines three different
velocities that conform to each property. Hence, each agent (service) is influenced and
guided by three steering velocities that operate parallely on each individual at every
instance of time. These are described below.

1. Alignment Velocity (−→val) - The velocity which enables agents (services) to keep
moving in accordance to the average heading and velocity of the neighbours, to
promote clustering behaviour. Each boid in a flock tries to head in the same
direction as the rest of the flock. In every iteration, each agent looks at the
direction in which it is travelling in comparison to the directions of all its
neighbours (within a defined radius), and realigns itself to match their heading.
The velocity vectors of each boid within the Sr are averaged and the resulting
vector points in the average direction of the flock, which the boid then tries to
head in. It is given by Equation (6.1).

Alignment velocity −→val =
n∑
i

(−→vi) (6.1)

2. Cohesion Velocity (−→vch) - The velocity that guides an agent (service) to keep moving
along with its neighbours. The cohesion component of the algorithm is mainly
responsible for the togetherness of a group of similar agents. During every iterations,
each agent checks at the position of each other agent to see if it is within a specified
sensor range Sr, that is, it checks to see which other agents are close enough to
be considered flockmates. The positions of the qualifying neighbours are averaged
and the agent steers towards that position. This way, each agent is trying to steer
towards the centre of the flock, resulting in them all staying close together. It is
given by Equation (6.2).

Cohesion velocity −→vch =
n∑
i

(pi − pc) (6.2)

3. Separation Velocity (−→vsp) - The velocity that keeps an agent (service) from colliding
with its neighbours by moving away from them. While in a flock, each agent tries
not to run into another in the flock. They try to remain separate by keeping a
specified amount of space in between themselves. Each agent checks all the other

Chapter 6. Dynamic Clustering of Web Services 127

agents on the canvas to see if the distance between them is too small, and if so,
adds an inversely proportional amount to its velocity in the opposite direction. It
is given by Equation (6.3).

Separation velocity −→vsp =
n∑
i

(
−→vi +−→vc
d(ni, ac)

) (6.3)

where,
ac = agent under current consideration.
−→vc = the velocity of the current agent ac.
pc = the position of ac in virtual space.
ni = ith neighbour of ac
−→vi = the velocity (in this case, similarity) of the ith neighbour, ni, within the defined

locality of the current agent (given by the attraction or repulsion velocities as computed
by equations (6.4) and (6.5)).

pi = the position of ni in virtual space.
d(ni, ac) = the Euclidean distance between the current agent ac and the neighbour ni

in virtual space.

6.4.2.2 The Extended Flocking Model

Apart from the above three velocities defined by the Basic Flocking Model (Reynolds
1987), two other velocities attraction and repulsion are defined. These are based on the
computed service similarity values sim(ni, ac), and are defined to govern the clustering
behaviour. These are calculated based on the similarity between every service pair
(computed using the technique described in section 5.4.3 of Chapter 5).

4. Attraction (−−→vsim): keeps two similar agents together and is given by -

Attraction vsim =
n∑
i

{sim(ni, ac)× d(pi, pc)} (6.4)

where, sim(ni, ac) is the pair-wise similarity computed using the feature vectors
of agents ac & ni; and d(pi, pc) is the Euclidean distance between pi and pc in virtual
space.

5. Repulsion (−−→vdsim): allows dissimilar agents to repel each other to refrain from
clustering, and is given by:

Repulsion velocity vdsim =
n∑
i

1

{sim(ni, ac)× d(pi, pc)}
(6.5)

Chapter 6. Dynamic Clustering of Web Services 128

6.4.2.3 Model Constraints

To conform to the locality property of the flocking model, a locality perimeter called the
sensor range (Sr) is defined. It is a variable value and is the measure of the radius around
a particular agent, using which a circle is drawn around it. Within this circle, the current
agent ac interacts with the other neighbouring agents and shows clustering behaviour
based on the similarity values and computed velocities.

To limit the search for a neighbour to this predefined radius, an efficient optimization
technique called Region Quadtree were used, which makes BI2C an efficient local-search
and optimization algorithm (discussed in detail in Section 6.4.2.6). Since similarity is also
considered, this particular flocking model becomes a Multi-species Flocking Model. This
means that, even though there are services belonging to multiple domains, only similar
services should form a cluster and maintain some degree of separation from the services
belonging to other clusters. Hence, a certain threshold value is pref-defined, and only
if the similarity between two services is larger than the defined value, they can form a
cluster.

6.4.2.4 Flocking Methodology

Each agent (service) is governed by the values of the computed velocities of alignment,
separation and cohesion; while the direction of movement is governed by the
attraction/repulsion velocities. The procedure is carried out as follows:

1. Initially, the agents are placed at random positions on the ‘canvas’. The values of
maxIterations, sensor range Sr and threshold are defined.

2. During the first iteration, a random agent is chosen as the current agent.

3. The neighbours of ac within the defined Sr are retrieved by querying the region
quadtree.

4. Now, the values of the velocities−→val, −→vsp and−→vch are computed for the first time, using
the velocity of the ith neighbour and the Euclidean distance between current agent
ac and the ith neighbour, within Sr. Each of these velocities work independently,
so, they may have positive or negative values.

5. Next, these three velocity vectors are added to the agent’s current velocity to obtain
its new velocity. Interpreting the velocity as how far the boid moves per iteration,
it is simply added to the current position.

6. The direction in which the current agent should move is given by the
similarity/dissimilarity between it and the ith neighbour.

Chapter 6. Dynamic Clustering of Web Services 129

- If similarity ≥ threshold, then current agent is moved towards the ith neighbour
by a value equal to the new velocity.

- If similarity < threshold, then current agent is moved away from the ith

neighbour by a value equal to the new velocity.

7. During subsequent iterations, agents can form clusters by moving towards similar
services (or away from dissimilar services to interact with other possibly similar
services). The status of each cluster and its members can be observed after the
pre-defined number of iterations (maxIterations).

To model this intelligent behaviour in each agent, certain requirements are to be met.
Each individual service has to be modelled as an social entity, that interacts with other
entities and takes active decisions, regarding its position and movement, during each
iteration. The process of defining services as intelligent agents and the framework used
to implement BIC is discussed in Section 6.4.2.5.

6.4.2.5 Web Services as a Multi-agent Framework

To be able to follow the flocking rules, each service has to be modelled as an intelligent
entity that is capable of distinct, simple functionalities. To emulate the independent agent
whose clustering behaviour can be governed by the rules of the flocking model, we used
the Java Agent DEvelopment Framework (JADE) (Bellifemine et al. 1999; Bellifemine
et al. 2001). JADE is a multi-agent framework which follows the FIPA (Foundation of
Intelligent Physical Agents) rules for implementing agents. This framework can be used to
implement a distributed system of agents controlled by a central administrative platform
in which each agent can effectively display autonomous quality, pro-activeness and social
behaviour. These properties are important in simulating the flocking behaviour and are
described below -

1. Autonomous - Agents can control their own actions to a certain degree and,
sometimes, are also able to take decisions.

2. Proactive - Agents do not only react in response to external events (i.e. a remote
method call) but they also exhibit a goal-directed behaviour and, whenever required,
are able to take initiative.

3. Social behaviour - Agents are able to, and need to, interact with other agents in
order to accomplish their task and achieve the defined system goal.

To ensure that each service entity in the system, modelled as an agent, follows the
rules required for the enactment of the flocking model, two types of agents are created
that display the above three properties -

Chapter 6. Dynamic Clustering of Web Services 130

1. Manager agent - takes care of initializing the agents, communicating with them,
calculating similarities when new agents are added to the dataset, destroying
agents when their corresponding services are to be deleted from the repository.
The Manager agent holds references to all basic agents created in a container and
allows communication between the agents.

2. Basic agent - are actual services that are modelled to interact in 2D space, emulating
birds in the sky. Each basic agent has a certain position, a velocity and a reference to
the Manager agent for communicating with other agents. Each agent can query for
all its neighbouring agents through an optimized data structure called the quadtree.
After obtaining a list of neighbouring agents within its sensor range Sr, each agent
calculates the resulting change in velocity (due to similarity or dissimilarity) by
applying the flocking rules. Using this, each updates its own velocity & direction
of movement.

JADE conforms to the specifications defined by the Foundation of Intelligent Physical
Agents (FIPA) (O’Brien et al. 1998). One of the major principles defined by FIPA for
agent based systems is asynchronism. According to this principle, agents cannot directly
interact with each other. They have to interact through message queues. This principle
poses a problem when an agent needs to query other agents within its sensor range only.
In order to overcome this problem, we store the changes in the data values of each agent
in a NoSQL database so that each agent can query the database to get information about
the neighbouring agents within its sensor range. To improve the process of querying for
an agent’s neighbours only in the vicinity of the current agent, the proposed BI2C uses
certain efficient data structures to optimize the clustering performance. We discuss this
optimising mechanism in Section 6.4.2.6.

6.4.2.6 Optimizing the Clustering Process

In BI2C Algorithm, there is a need to optimise the performance to support local search
and optimise the process of finding neighbours within the sensor range. As each agent
needs to perform a continuous local search to find agents within its sensor range, the
algorithm is of complexity O(n2). In order to optimize the querying process, we need an
efficient data structure to optimise the process. Such a data structure should facilitate
quick access to neighbouring nodes for optimal local search.

For this purpose, the quadtree (Finkel et al. 1974), a class of hierarchical data
structures that are efficient for large-scale spatial indexing problems is used. Owing to
its “Divide and Conquer” strategy, it is most often used to partition a two dimensional
space by recursively subdividing it into four quadrants or regions. It is used extensively

Chapter 6. Dynamic Clustering of Web Services 131

in the fields of computer graphics and image processing for encoding data to reduce
storage requirements. Some common types of quadtrees are – region quadtrees, point
quadtrees, and edge quadtrees. We used the region quadtree to optimize the querying
process during the running of the BI2C algorithm.

Figure 6.3: Given region with agents and the corresponding quadtree

Region Quadtrees are based on a recursive subdivision of a given region into four equal
sized quadrants at each level. The region is recursively decomposed into four rectangular
blocks until all blocks are occupied by an agent or are empty as shown in Figure 6.3.
Every node of the tree corresponds to a quadrant in the dataset. Each inner (non-leaf)
node has four child-nodes where each one represents a quarter of its parent node (referred
to using geographic direction: NW, NE, SW, SE) and all quadrants in the same level
have the same size. The leaf nodes correspond to the blocks, which do not require further
subdivision. Each descendant nd of a node n represents a quadrant in the plane whose
origin is n and which is bounded by the quadrant boundaries of the previous step.

Region quadtrees were used in the BI2C to manage the agents in 2D space and
optimize the process of searching for neighbours within an agent’s sensor range Sr. During
quadtree construction, each agent is assigned to a leaf node in the quadtree. Then,
the quadtree is traversed to get all the agents within the sensor range of the agent
under consideration. The similarity between the agent and all the retrieved agents within
the sensor range is then computed, so that the flocking model based interaction can
commence. This greatly decreases the computation overhead as the total number of
computationally intensive similarity comparisons are limited to only those between the
retrieved agents in the vicinity of the current agent and not the entire set. The detailed
working of the algorithm is explained in Section 6.4.2.7.

Chapter 6. Dynamic Clustering of Web Services 132

6.4.2.7 BI2C– Clustering Phases

The working of the proposed BI2C algorithm can be viewed as consisting of two separate
phases - Initial Clustering and Incremental Cluster Maintenance. Each is discussed in
detail below, with reference to the respective stages.

A. Initial Clustering Phase. In the first phase, all the services in the repository are
to be clustered for the first time. Algorithm 6.1 illustrates the initial clustering phase in
BI2C.

Algorithm 6.1 BI2C Initial Clustering Phase
Input:

Set of services modelled as autonomous agents

Computed similarity values

Defined sensor range Sr of each service

Number of iterations maxIterations

Output: Clustered services

Create agents and deploy in 2D virtual space with random velocities

for j = 1 · · · maxIterations do § maxIterations set to 400 iterations

for each current agent ac do

Retrieve neighbours within Sr by querying the Region Quadtree

Compute velocities −→val, −→vsp and −→vch using velocity of the ith neighbour and their

Euclidean distance

Add three velocity vectors to get new velocity −−→vnew § Current agent must move

by a value = −−→vnew

for each neighbour ni within sensor range Sr do

if attraction velocity vsim ě threshold then

Move towards ni by a value = −−→vnew § ni & ac are similar enough to cluster

else

Move away from ni by a value = −−→vnew § services are dissimilar

Update Sr

Interact with other agents as per flocking rules.

return cluster details

As seen in Algorithm 6.1, a set of services are modelled as agents and are added to the
virtual space for the first time, after computing each service’s pair-wise similarity with
every other service in the repository. The agents should follow the defined rules as per

Chapter 6. Dynamic Clustering of Web Services 133

the flocking model and their movement is governed by the various velocities as described
earlier, so that they can interact with their neighbours within a defined sensor range Sr.

For preventing an exhaustive search of the entire service set to determine neighbours,
a small sensor range is defined, so that the search for neighbours can be treated as a local
search problem. Agents can then form clusters by moving towards similar services (or
away from dissimilar services) when similarity is above a certain threshold value. The
status of each cluster and its members can be observed after the pre-defined number
of iterations (during experiments, it was seen that the maximum number of iterations,
after which there were no more changes in the formed cluster information was about 360,
hence, the maxIterations value was set to 400).

B. Incremental Cluster Maintenance Phase. The next phase is triggered on the
introduction of a new set of services after a periodic (active or selective) crawler run.
The Incremental Cluster Maintenance phase is triggered when the event-count of
‘ToBeCategorised’ events is above some defined number, say 100. This means that 100
new metadata generated WSDLs with the status ‘ToBeCategorised’ are available in the
Enriched Service Repository. Hence, only these 100 WSDLs have to clustered
incrementally, by either joining existing clusters, or by forming a new cluster, if
sufficiently dissimilar from existing services.

Consider that active crawling was performed, and that several new WSDLs have
been found, which have been added to WSDL Preprocessor database first and then to
the Enriched Service Repository after metadata generation. The pairwise similarity
computation with all other services has to be computed now. Here, instead of
computing the similarity between every service pair in the repository, a small fraction
equivalent to 1

10

th of the total services is selected, randomly from each existing cluster.
The similarity between the each newly added service and those from the selected 1

10

th

services from each cluster is computed.
Next, the new service is also modelled as an agent along with these 1

10

th services and
deployed in 2D space. After enactment of the flocking model, it can join the cluster
containing the service with which the maximum attraction velocity (vsim) was obtained
(if it is higher than the threshold value of 0.75). If the maximum similarity value is lesser
than threshold value, after 400 iterations, then the new service is sufficiently dissimilar,
so a new cluster can be formed. Hence, this phase clusters new additions incrementally
without having to recompute all the earlier clusters.

During the selective crawling process, the SSC rechecks the status of all the indexed
WSDL files in the repository to keep it up-to-date. The crawlers use the links on the
validWSDL-URL list as feed-URLs and systematically visit each for checking the status of

Chapter 6. Dynamic Clustering of Web Services 134

indexed WSDLs (described in detail in section 4.3, Chapter 4). At the end of this process,
any indexed services that were unavailable have to be removed from the repository. Hence,
the corresponding hashes are located and the services are removed from the repository,
at the same time, the cluster member list is also updated. Algorithm 6.2 illustrates this
process.

Algorithm 6.2 BI2C Incremental Cluster Maintenance Phase
Input: Clustered set of services

Output: Updated clusters with new services

1: Find pair-wise similarity with 1
10

th random services from each existing cluster

2: Create agent to represent each new service Snew.

3: Deploy Snew as agent along with 1
10

th random services from each existing cluster in

2D virtual space

4: for i = 1 · · · maxIterations do

5: for each new service Snew added do

6: find list of neighbouring agents using quadtree § As explained in Section 6.4.2.7

7: Compute various velocities w.r.t. each neighbour using Euclidean distance §

As per basic and extended flocking model

8: if max(~vsim) ě threshold then § threshold is set to 0.75

9: Add Snew to the cluster of the neighbour for which ~vsim value was highest

§ incrementally clustered

10: else

11: Move Snew away by an amount equal to total computed velocity

12: if max(~vsim) ≤ threshold then

13: Create a new cluster § Snew does not belong to any existing clusters

14: return updated cluster details

After the completion of each clustering phase, each cluster is labelled with an unique
identifier. The member services of each cluster, as identified by their hash-id are also
noted. Next, the tags of the member services have to be processed further to capture
enough domain information so that representative cluster tags can be generated. This
process is described in Section 6.4.3.

6.4.3 Automatic Cluster Tagging

After the incremental clustering process, the clusters formed represent the functional
diversity of the services in the collection. To capture the domain-specific terms of each

Chapter 6. Dynamic Clustering of Web Services 135

cluster, additional metadata in the form of cluster tags is required. Given a query, cluster
metadata can be used to efficiently eliminate irrelevant domains, thus reducing search
space and optimising the process of service discovery. To capture the most appropriate
domain-specific terms for generating the tagset of a cluster, the tags of each member
service of that cluster are considered as potential tag candidates. However, all such tag
terms cannot be used as cluster tags, so to find the relative importance/weight of each,
a ranking process is applied to these tag candidates. two factors are considered while
performing this ranking -

- How well a tag g represents service s. This value is equal to the Tf -idf score
obtained for g in s (represented as simtag(g, s)).

simtag(g, s) = Tf -idf(g, s) (6.6)

- How well the service s, whose tag is under consideration, represents its cluster c
(denoted as csimservice(s, c)).

csimservice(s, c) =

i=|c|∑
i=1,si 6=s

simwsdl(s, si)

|c|−1
(6.7)

where |c| represents number of services in cluster c.

Then, the level of similarity between a cluster tag g and its cluster c (denoted by
simclusterTag(g, c)) is given by -

simclusterTag(g, c) =
∑

g∈τ(s),s∈c

(simtag(g, s)× csimservice(s, c)) (6.8)

where τ(s) is the set of tags for service s.
Using the values obtained for these two factors, all candidate tags are ranked. Based

on the resultant ranking, the top-5 tags are chosen as cluster tags. In addition to this, a
cluster tag expansion process is performed, by adding synsets provided by WordNet for
each tag in the cluster tag set. These together form the weighted feature vector of each
cluster, which will be utilized during the query-to-service matching process.

6.5 Experimental Results & Discussion

In this section, the experimental evaluation of the proposed approaches for functional
semantics and similarity based incremental clustering is discussed. Firstly, we evaluate
the performance of the proposed BI2C algorithm in comparison to traditional clustering
algorithms to verify the speed-up achieved by its incremental nature in Section 6.5.1.

Chapter 6. Dynamic Clustering of Web Services 136

The evaluation of the clustering goodness of the proposed BI2C is discussed in 6.5.2.
After the clusters are formed, the process of tagging these cluster is carried out, and the
quality of tagging is discussed in Section 6.5.3. A simple visualization of the incremental
clustering process was developed which is presented in Section 6.5.4.

6.5.1 Incremental Clustering Performance

The main advantage of the incremental clustering algorithm over traditional clustering
algorithms is the time and cost savings by not having to recompute the clusters after
every small dataset change. To evaluate the performance of BI2C, a traditional
algorithm, Hierarchical Agglomerative Clustering (HAC) is also applied on the service
collection. We also used two other service datasets, the ASSAM dataset1, which is a
publicly available collection of categorised service descriptions containing 448 manually
classified service descriptions. We chose 70% of the services for initial clustering (round
1), then 15%, 10% and 5% for three subsequent clustering rounds (round 2, round 3 and
round 4), for testing incremental clustering performance. The clustering performance in
terms of time taken and clustering goodness was compared with that of Hierarchical
Agglomerative Clustering. Similar experiments were conducted on the OWL-S TC
dataset2, which contains 1076 WSDL files belonging to various domains like food,
communication, military, medical etc. Finally, the proposed BI2C and HAC were also
applied to the DWDS service collection (currently contains 12,231 WSDL files). Again,
four different testcases were considered, with number of services equal to 70%, 15%,
10% and 5% of the dataset size.

Table 6.1: Experimental Setup - BI2C vs. HAC

Test Dataset
Initial size

Round 1(70%)
Number of New Additions*

Round 2(15%) Round 3(10%) Round 4(5%)

1
ASSAM

(448 WSDLs)
314 67 45 22

2
OWL-S TC

(1076 WSDLs)
752 162 108 54

3
DWDS

(12231 WSDLs)
8562 1835 1222 612

*to mimic the actual changes in the repository after a periodic active/selective crawl

The experiments were carried out on a Intel® Core i7™ Quad-Core Workstation with
16GB DDR3 SDRAM and 1TB hard drive. The experimental setup with reference to

1Available at http://www.andreas-hess.info/
2Available at http://semwebcentral.org/projects/owls-tc/

http://www.andreas-hess.info/
http://semwebcentral.org/projects/owls-tc/

Chapter 6. Dynamic Clustering of Web Services 137

each round, for the various datasets used, is provided in Table 6.1. The results obtained
with reference to clustering time of the two algorithms, HAC and the proposed BI2C, is
summarised in Table 6.2.

As can be seen from Table 6.2, the proposed incremental algorithm was very effective
in handling the various datasets with a significant saving in time. For the ASSAM dataset,
the HAC required a total of 12.52 minutes for the initial dataset (round 1) and for the
reclustering process (after round 2, round 3 and round 4), while the BI2C algorithm
performed incremental clustering in about 5.1 minutes. Similarly, for OWL-S TC dataset,
the HAC’s total clustering time was 21.79 minutes, while that of BI2C was 9.71 minutes.
Finally, for the DWDS service collection of 12,231 WSDLs, the hierarchical algorithm
failed to complete, while the BI2C algorithm completed the clustering in about 1 hour,
28 minutes.

Table 6.2: Comparative Cluster-time Evaluation - BI2C vs. HAC

Clustering Time (in minutes)
Test Method

Round 1 Round 2 Round 3 Round 4
Speedup
Factor

Speedup
(%)

HAC 2.54 3.09 3.36 3.52
1

BI2C 3.19 1.01 0.56 0.34 2.69x 62.8%
HAC 4.23 5.11 6.02 6.43

2
BI2C 4.41 2.27 1.58 1.45 2.24x 55.4%

HAC
failed to
complete

- - -
3

BI2C 58 .39 14.27 9.19 6.21 - -

Figure 6.4 provides the clustering time performance of HAC and the proposed BI2C
for the first dataset considered, the ASSAM dataset. It can be seen that the HAC
algorithm performs well for the initial size of 314 WSDLs considered, and has a clustering
time lower than that of BI2C. This is because, for BI2C, the initial clustering phase
requires repeated interaction with the manager agent for querying the relative positions
of the neighbouring agents and for computing the velocities for beginning the clustering
process. However, during round 2, 3 and 4, the BI2C just performs the incremental
cluster maintenance process, due to which the time taken for clustering the new services
is lesser. In contrast, HAC has to restart the clustering process after new services are
introduced during round 2-4, hence, the clustering time is dependent on the number
of services to be clustered. Similar results were observed for the OWL-S dataset (refer
Figure 6.5). For the DWDS repository, the HAC failed to compute the clusters during
the initial phase itself, while the BI2C algorithm took about an hour’s time for initial
clustering, completing the incremental clustering of the entire dataset in 88 minutes.

Chapter 6. Dynamic Clustering of Web Services 138

Figure 6.4: BI2C vs. HAC - Clustering Time for ASSAM dataset

Figure 6.5: BI2C vs. HAC - Clustering Time for OWL-S TC dataset

Based on these observations, it can be said that there was a significant improvement in
clustering time for each dataset, when the BI2C was used. The average speedup achieved
by BI2C when compared to the HAC approach was calculated as per equation (6.9) and
(6.10).

Speed-up Factor SF =
tHAC
tBI2C

(6.9)

%Speed-up = (1− 1

SF
)× 100 (6.10)

where, tHAC is the total clustering time required by HAC to achieve clustering for
the initial size considered, and rounds 2, 3 and 4. Similarly, tBI2C represents the total
clustering time for the proposed algorithm and SF is the computed speed-up factor.

As per the clustering time comparison, BI2C was 2.69 times faster than HAC for the
ASSAM dataset, while for the OWL-S TC dataset, it was 2.24 times faster. It was not

Chapter 6. Dynamic Clustering of Web Services 139

Figure 6.6: BI2C vs. HAC - Clustering Time for services in DWDS Repository

possible to compare the two for the DWDS service collection as the HAC failed to cluster
the large collection completely. Hence, considering the first two testcases, the proposed
BI2C algorithm achieved an average speed-up of about 57.35% over the HAC approach.

6.5.2 Goodness of Clustering

The validations performed for assessing the clustering goodness of the proposed
incremental algorithm is presented in this section. Table 6.3 summarises the details
about the number of clusters formed for the proposed BI2C and the HAC approaches,
for the considered testcases (as shown in Table 6.1). We check the goodness of the
clustering using standard cluster validation measures, which is discussed below.

Table 6.3: Number of clusters formed per dataset - BI2C vs. HAC

Number of clusters formed
Case Algorithm

Round 1 Round 2 Round 2 Round 4

HAC 37 39 39 39
1

BI2C 36 38 39 39
HAC 48 50 54 54

2
BI2C 51 54 56 56

HAC
failed to
complete

- - -
3

BI2C 321 334 339 343

In general, clustering validation can be categorised into two classes, external clustering
validation and internal clustering validation. External clustering validation measures use

Chapter 6. Dynamic Clustering of Web Services 140

external information not present in the data for performing validation, while internal
validation measures rely on the data information itself to measure the goodness of the
clustering (Liu, Li, et al. 2010). As such external information for the service description
data considered is not available, we used two internal validation methods - Jaccard’s
Measure and Davies Bouldin Index.

Jaccard’s Measure. In general, a good clustering method should construct high
quality clusters with low inter-cluster similarity. The Jaccard’s Measure (JM) (Jaccard
1912; Real et al. 1996), also known as the Jaccard Similarity Co-efficient, is a statistic
used for comparing the similarity and diversity of sample sets. Hence, it can be used to
observe the similarity or degree of overlap between generated clusters. Since the
proposed algorithm uses natural language tags that are generated from the WSDL files,
the resultant clusters may have some degree of overlap and hence the Jaccard’s Measure
is used to evaluate cluster overlap. JM between any two clusters Ci and Cj is calculated
using Equation (6.11).

JM(Ci, Cj) =
|Ci ∩ Cj|
|Ci ∪ Cj|

(6.11)

where, |Ci ∩ Cj| is the number of common services in the two clusters Ci and Cj.
|Ci ∪ Cj| gives the total number of services in both clusters Ci and Cj. If JM(Ci, Cj)

is equal to 1, it indicates that the clusters Ci and Cj are exactly similar while a value
of 0 indicates that the clusters are totally different. Therefore, for good clustering, the
computed JM should be low, as it indicates higher inter-cluster distance and low level of
overlapping.

Davies Bouldin Index. The Davies and Bouldin index (Davies et al. 1979), commonly
called DB-Index, is a well-known cluster validity measure, defined as the ratio of the sum
of within-cluster scatter to between-cluster separation. DB-Index is computed using the
Equation (6.12) as below.

DB-Index(Ci, Cj) =
1

k

k∑
i=1

maxi 6=j

{Sk(Ci) + Sk(Cj)

S(Ci, Cj)

}
(6.12)

where k is the number of clusters, Sk(Ci) is the average distance of all services in a
cluster to their cluster centre, and S(Ci, Cj) is the distance between two different cluster
centres Ci and Cj.

To compute DB-Index, the information about clusters formed is collected. Then, the
average distance of all services in a particular cluster to their cluster centre is calculated.

Chapter 6. Dynamic Clustering of Web Services 141

The, for each cluster, the DB index with other clusters is calculated using equation 6.12,
and the largest DB-Index for each cluster is determined. Finally, the average DB-Index
for the clustering algorithm is obtained by equation 6.13.

DB-Indexavg =

k∑
i=1

DB-Indexmax

Number of clusters k
(6.13)

In general, a clustering algorithm that produces a collection of clusters with the
smallest DB–Index is considered the best algorithm. This is because, the computed
ratio will be small only if the clusters are compact and far from each other, thus
indicating a well-defined clustering. Consequently, the average DB-Index value was
considered for both HAC and BI2C.

Evaluation. The average value of the computed Jaccard Measure and the least
Davies Bouldin Index obtained for both HAC and BI2C, for the considered datasets,
are tabulated in Table 6.4. After the clusters were generated, Jaccard’s Measure value
between the various cluster pairs for all clusters formed was computed and JMavg was
found for each dataset. The JMavg was found to be nearly the same for HAC and BI2C
for both the ASSAM and the OWL-S TC dataset, indicating similar cluster goodness
performance in case of small datasets. In the case of a large dataset like that of the
DWDS repository, HAC failed to cluster at all, while JMavg for BI2C was about 0.219.
In view of these reasonably low value of Jaccard’s Measure, it can be concluded that the
quality of clusters generated by BI2C was satisfactory.

Table 6.4: BI2C vs. HAC - Clustering Goodness Evaluation

Dataset Algorithm
Total Clusters

k

Jaccard Measure

JMavg

DB Index

DB-Indexavg

HAC 39 0.169 1.26
ASSAM

BI2C 39 0.171 1.32
HAC 54 0.198 1.47

OWL-S TC
BI2C 56 0.201 1.49
HAC - - -

DWDS
BI2C 343 0.219 1.95

When least DB-Indexavg values were considered, HAC performed slightly better than
BI2C for both ASSAM and OWL-S TC datasets. However, HAC fails for the DWDS

Chapter 6. Dynamic Clustering of Web Services 142

dataset, while the DB-Indexavg value for BI2C was 1.95. This indicates good inter-
cluster separation, based on which we conclude that the clustering goodness of BI2C is
satisfactory.

6.5.3 Evaluating the Cluster Tagging Process

To evaluate the quality of the automatic tagging of service clusters, we present the
tagging results for the ASSAM dataset used earlier. It consists of 448 service
descriptions categorised by a human into 25 broad main categories, each subdivided into
several subcategories. For example, mail services were categorised into ‘Mail’ category
and ‘Mail’ is a type of ‘Communication’, so the dataset is hierarchically organised.

Table 6.5: Some generated classes and their corresponding class tags

Cluster
No.

Service
Domain

Some member services Cluster Tags

1 (42*) conversion
ConvertAcceleration,
ConvertDensity,
C-Temperature, HtmlToxml

convert, unit,
measure, translate,
metric

2 (12*) weather

FastWeather,
WeatherByZipCode,
ForecastByICAO,
weatherWarningsByState

weather, zipcode,
forecast, station,
country

3 (5*) flight
AdvanceFlightService,
AeroflotServiceSchedule,
AirportInformationWebService

flight, airport,
status, schedule,
city

4 (11*) currency
CurrencyConverter,
EuroService,
CurrencyExchangeService

currency, convert,
exchange, rate,
country

5 (22*) news

DotnetDailyFact,
eSynapsFeed,
LiveNewsService,
SlashDotHeadlinesProvider

news, article,
live, daily,
feed

6 (16*) email
EmailValidate, EmailVerifier,
ISpamCheck, HTMLEmail

email, address,
domain, validate,
verify

* Number of services in cluster generated

Table 6.5 shows the tags generated for some generated clusters after the incremental
clustering process for the ASSAM dataset. The quality of tags generated for both the
services and the clusters was good after conducting a manual human validation. It can
be seen that the term weighting applied to the tags of the member services of each class
resulted in good quality cluster tags. The system generated meaningful tags that

Chapter 6. Dynamic Clustering of Web Services 143

effectively represented the functionalities of the individual Web services and of the
generated clusters.

6.5.4 Visualizing the Clustering Process

A simple visualisation was generated to illustrate the working of the BI2C algorithm. A
small sample dataset consisting of 25 services was considered for the visualisation and
the interaction between the services was visualised in a 2D bounded space. For the
purpose of visualization, we used the Visualizer class of the JADE framework, where an
object of Visualizer class is run as a separate thread along with the JADE framework for
visualizing the data and the behaviour of the agents. The Visualizer contains a reference
to the manager agent, through which it can obtain data about the agents. It generates
a simple two dimensional GUI to display the visualization, through which the user can
interact with the visualization. A paint function queries for the current position of all
the agents through the manager and draws them on the panel. This is an asynchronous
thread that is unrelated to the JADE framework, which enables it to act as the View
part of a MVC framework.

The visualization consists of a canvas referred to as the sky, where each of the services,
represented by agents, are visualized as discs. A special function queries the database
for the computed similarity values between the services for rendering the positions of
each of the agents, after which their movement is controlled by the various computed
velocities. A sensor range Sr (visualized as a red circle) is defined, within which the
agents start interacting with their neighbours. Based on this interaction, the agents can
either attract (or repel) based on their similarity values to begin the clustering process.
The blue lines represent similarity and yellow lines represent dissimilarity. Figures 6.7,
6.8, 6.9, 6.10 and 6.11 depict the initial and various in-progress views of the clustering
process’ visualisation.

As seen from Figure 6.7, the services are visualized as agents and are placed at random
positions in the 2D space. The manager agent queries the database for the similarity
values between the different services using which the agents start interacting with each
other. In Figure 6.8, the sensor range (defined as 0.2 currently) is visualised, within which
the agents interact and begin the clustering process based on the computed similarity
values. The attraction velocity is depicted as the blue line and the repulsion velocity is
the yellow line, as can be seen in Figure 6.9. Figure 6.9 also shows a snapshot of the
cluster formation process, where a few clusters have started forming.

To demonstrate the incremental clustering process, two new services are introduced
onto the sky, which is shown in Figure 6.10. Also, the representative tagset of each service

Chapter 6. Dynamic Clustering of Web Services 144

Figure 6.7: Services visualised as agents on 2D canvas

Figure 6.8: Sensor range of visualised agents

Figure 6.9: A view of cluster formation at some iteration

Chapter 6. Dynamic Clustering of Web Services 145

is also used as a label (the first tag of the tagset is only shown), using which it is easy to
identify some formed clusters. Figure 6.11 shows the generated clusters at the end of the
predefined number of iterations. It can be seen that the newly introduced services have
clustered with existing clusters based on their similarity values. Already formed clusters
also may have changed based on the new services interaction. As depicted in Figure 6.11,
all services were effectively managed and a satisfactory domain-specific clustering was
achieved.

Figure 6.10: Two new services are introduced, to imitate repository changes
after active crawling

Figure 6.11: Incremental clustering process for the newly added services

Chapter 6. Dynamic Clustering of Web Services 146

6.6 Summary

In this chapter, a novel clustering algorithm called Bird Intelligence based Incremental
Clustering (BI2C) Algorithm was discussed. The BI2C Algorithm is intended to
effectively cluster the constantly changing service collection in the DWDS framework,
as a result of the repeated runs of the service crawler. The proposed clustering
algorithm uses the computed semantic similarity between services to perform
incremental clustering of the service dataset, thus overcoming the limitation of
traditional clustering algorithms. When compared to Hierarchical Agglomerative
Clustering, the proposed BI2C Algorithm achieved an average speed-up of over 57.35%,
during experimental evaluation using the DWDS service collection and two other
standard datasets. Two internal cluster validity measures, Jaccard Measure and Davies
Bouldin Index were used for evaluating the goodness of the clustering of the BI2C

algorithm, which was found to be good. The quality of the tags generated for each
cluster generated by BI2C was subjected to human validation and were found to be
meaningful. These cluster tags would be used during the process of Web service
discovery, to eliminate irrelevant clusters for a given query, so that search space
reduction can be achieved.

Publications

(based on work presented in this chapter)

1. Sowmya Kamath S and Ananthanarayana V.S, “A Bio-inspired, Incremental
Clustering Algorithm for Semantics based Web Service Discovery”, International
Journal on Reasoning-based Intelligent Systems (IJRIS), Inderscience Publishers,
Volume 7, Issue 3-4, 2015. ISSN: 1755-0564 (Scopus and EI Indexed)

Status: Online.

PART IV

Context-aware Web Service Discovery

Chapter 7

Semanticising the User Query

7.1 Introduction

As discussed in the previous chapters, the proposed techniques for automatic service
metadata generation and dynamic categorisation are intended for extending domain-
specific service discovery over the DWDS service collection. To support semantics based
Web service discovery in DWDS, all services and clusters in the large collection are
indexed using their representative tags. Hence, a query can be served by performing
a query-service matching. However, such a matching is highly dependent on the exact
terms used by the user while querying, due to which potentially relevant services may
not be matched.

This problem arises when information is retrieved by literally matching terms in
documents with those of the query (syntactic matching). Since there are usually many
ways to express a given concept (synonymy), the literal terms in a user’s query may not
match those of a relevant document (e.g. “convert” -> “change”, “transform”, “translate”
etc). Most words also have multiple meanings, called polysemy (e.g. the word chip is
polysemic as it can be used in multiple contexts, as in “getChipDetails” in Silicon chip
specification vs. “getChipPrice” used in online casino services.). So, terms in a user’s
query may often be literally matched to those contained in documents, which may
result in imprecise results. This problem is further compounded by the occurrence of
homonyms (e.g., “tire” as in a car tyre vs. “tire” after exercising), hypernyms (e.g.,
“vehicle” is a hypernym of “car”) and hyponyms (e.g., “car” is a hyponym of “vehicle”),
which deteriorates the result quality further, if not specifically identified. Hence, due to
the diversity with which users can express their requests and service providers can
describe their services, simple syntactic matching will be completely inadequate.

To address these problems and to enhance the Web service discovery process, an
intelligent mechanism for understanding user context and requirements is crucial. As

148

Chapter 7. Semanticising the User Query 149

the user query is unstructured, i.e., in natural language, techniques for natural language
processing (NLP) need to be employed, for effectively capturing user context. The
resultant semantic query is well-structured, which can be much easily processed and
executed by the system, thus enabling it to produce best matching results for a given
user query.

In this chapter, we discuss the techniques proposed for understanding the user
requirements using semantics and natural language processing techniques. Our main
contributions, as reported in this chapter are listed below:

• Incorporating techniques for semantics based query analysis in DWDS framework
to capture user requirements.

• Automatic identification and processing of simple and complex queries for relevant
Web service discovery.

• Demonstrating that the semanticised query improves the performance during Web
service discovery process.

The rest of this chapter is organised as follows. Section 7.2 describes the defined
problem addressed in this chapter. In Section 7.3, we discuss the methodology of
semantic analysis of user queries for capturing the correct context and the methods
used for identifying simple and complex queries for enabling simple and composite
service discovery. Section 7.4 presents the experimental results on the performance of
the proposed techniques in comparison with natural language keyword based matching
approach. Section 7.5 summarizes the work presented and the contributions of the work
presented in this chapter.

7.2 Problem Statement

The problem that is addressed in this chapter is defined here:

Given an unstructured user query for discovery Web services, to design
semantics based query analysis techniques for capturing user context and to
identify simple & complex queries.

We propose a solution that aims to incorporate a natural language querying interface
to the proposed DWDS framework, to maximise ease-of-use. The developed techniques
should be able to cope with the diversity in natural language terms used by a user. It
must also be able to identify specific situations where simple service discovery is to be
conducted or a composite service discovery process is required, for a given user query. In
Section 7.3, we discuss the proposed methodology and describe the techniques developed
for processing and semantic analysis of query.

Chapter 7. Semanticising the User Query 150

7.3 Proposed Methodology

The detailed methodology followed for identifying the type of service discovery required
(simple or composite), and for efficiently capturing user requirements, when specified in
unstructured natural language is described in this section. Figure 7.1 depicts the overall
view of the complete service discovery process for a given natural language query. In
Section 7.3.1, we describe the working of the Query Analysis Engine in detail, followed
by the Service Matching process in Section 7.3.2.

7.3.1 Query Analysis Engine

The process of query processing and generating a structured query is performed by the
Query analysis Engine is shown in Figure 7.1. When a natural language query is
submitted to the system, the processes depicted abstractly in Figure 7.1, and in detail
in Figure 7.2 are performed in order. Each of these processes is described below.

Figure 7.1: Web Service Discovery - Overall View

1. Query Preprocessing. The first step in handling the query is to perform certain
cleaning tasks to preprocess the query. Extra white spaces introduced accidentally by the
user while entering the query is trimmed down to one and the query string is subjected
to a normalization process to take care of other irregularities.

Chapter 7. Semanticising the User Query 151

2. Normalized Query String. After preprocessing, the resultant query string is
subjected to a process of normalization. Firstly, the occurrence of the short form ‘&’ is
mapped to its English language equivalent of ‘and’. After this, all other special characters
are removed. Another common problem that occurs during natural language querying,
is the varied forms in which users can give input for the same document. For example,
‘NITK’ may be typed as ‘N.I.T.K’, or ‘Nitk’ or ‘nitk’. If not addressed, each of these
will be considered as different terms. Hence, a process of normalization is performed and,
finally all words are converted to lower-case, for a uniform representation. The next series
of tasks performed on the normalized query are illustrated in Figure 7.2.

Figure 7.2: Query Analysis Engine - Detailed View

3. POS Tagging of Query String. For the normalized query, the next task is to
determine its type - simple or complex. Depending on the type of query, the method of
processing further differs. Firstly, the normalized query is taken as a string and is tagged
using a Part of Speech (POS) tagger. We used the Stanford POS Tagger (Toutanova

Chapter 7. Semanticising the User Query 152

et al. 2000), which follows the Penn Treebank tagset (Miltsakaki et al. 2004). After POS
tagging, the query is represented as a string of tokens.

4. Identify Query Type. In the POS tagged query, we specifically look for all terms
tagged as /CC, which represent the coordinating conjunctions, as per Penn Treebank
terminology. In English, coordinating conjunctions are those parts of speech that are used
in a sentence to connect words, phrases & clauses. Seven such coordinating conjunctions
exist – ‘and’, ‘or’, ‘but’, ‘for’, ‘nor’, ‘yet’ and ‘so’. Based on these, the query type can be
easily determined - their existence indicates a complex query, while their absence means
the query is simple.

5. And/or condition processing. At present, only the first two coordinating
conjunctions, ‘and’ & ‘or’, have been considered. This means that a query is simple, if
no ‘and’/‘or’ are present. If the ‘and’/‘or’ coordinating conjunctions are found, then
the query is treated as a complex query and has to be processed accordingly, as below.

• Complex Query Processing

(i) Splitting at ‘And/Or’: In the case one or more ‘and’/‘or’ are found, the
query is to be considered a complex query. To process it further, it is first split
at each word tagged /CC (i.e., at each coordinating conjunction ‘and’, ‘or’.
The resultant subqueries are each processed as an independent query, which
helps in determining the candidate services that form a part of the composite
candidate set that can serve the complex user request. For example, if the
submitted query is “book hotel or resort and hire taxi”, then, the tagged query
is as shown below:

book/NN hotel/NN or/CC
resort/VB and/CC
hire/VB taxi/NN

(ii) Determining set of Subqueries: For the given example, the input query is
composed of three subqueries, and the user desires to find services for hotel or
resort booking in London, and then to hire a car. After AND/OR condition
processing, the user request is split into three subqueries “book hotel”; “book
resort” and “hire taxi”. This request is treated as a complex request and each
query is run independently, then the results are put together as per the logical
representation of ((SQ1 ∨ SQ2) ∧ SQ3).

(iii) Stopword Removal: Stopword removal focuses on eliminating those words
that add little or no meaning to the search. This is helpful as the search

Chapter 7. Semanticising the User Query 153

space can be reduced. In general, to determine the stop words, the stopword
list provided by Python’s NLTK was adapted, to exclude any coordinating
conjunctions (if they exist).

(iv) Subquery Expansion: Each subquery is processed independently and
parallely. To address synonymy, WordNet synsets of each final subquery
term are retrieved to capture the synonyms and are added to the subquery
feature vector. Hypernym/homonym relationships can also be captured
through the WordNet taxonomy, as it is organised as a hierarchy. To address
polysemy, it is important to capture the correct sense in which each word is
used. To capture word sense correctly, the JCN Similarity algorithm (Jiang
et al. 1997a) was used which captures the semantic relatedness between word
senses in a phrase as per the method proposed by Jiang et al. (1997b). The
algorithm returns a score denoting how similar the word senses of the two
input synsets are. This score is used to choose the most relevant word sense
for each subquery term, in context with the rest of the subquery, i.e., the one
with the highest score is chosen.

(v) Subquery Feature Vector Generation: For each subquery, the terms, their
synsets and the identified senses together form its feature vector ~sqt. This
represents each subquery in the vector space similar to the service documents,
which allows vector operations like dot product and cosine similarity to be
performed to determine level of similarity between services and query.

• Simple Query Processing

(i) Processing as simple query: As no coordinating conjunctions are found, each of
the POS tagged query terms are considered as potential candidates for query
vector generation.

(ii) Stopword removal: The stopword removal process is carried out similar to how
it is done for each subquery, in the case of a complex query.

(iii) Query Expansion: The process of query term expansion is carried out as
explained earlier, by identifying the WordNet synsets and also the word
senses as returned by JCN algorithm.

(iv) Query Feature Vector Generation: Finally, the query vector is generated, using
which further matchmaking with service cluster vectors is performed.

Chapter 7. Semanticising the User Query 154

7.3.1.1 A Sample Query Resolution Scenario

The steps followed during query resolution for a given natural language query are
described in detail below -

1. Initially, the submitted natural language query phrase is taken as a string. After
case conversion to lowercase, removal of special characters and boundary detection,
the resultant query words are tokenized. For example, consider the sample query,
“service to find rainfall for a zipcode”. After tokenization, it results in the tokens -
‘service’, ‘to’, ‘find’, ‘the’, ‘rainfall’, ‘for’, ‘a’ and ‘zipcode’.

2. The tokenized query is POS tagged used the NLTK POS tagger. This process deals
with identifying the part of speech information of a particular query term in the
context of the query. This results in -

service/NN to/TO find/VB rainfall/NN for/IN a/DET zipcode/NN

This means that - the terms, {‘service’, ‘rainfall’, ‘zipcode’} are nouns, {‘find’} is
a verb and {‘to’, ‘in’} are prepositions and {‘a’} is a determiner. This information
is used later, in the process of Word Sense Disambiguation.

3. Stopwords like ‘to’, ‘for’, ‘a’ are removed. The function words, ‘find’, ‘service’ are
also discarded. Thus,

Service Request (SR) = {‘rainfall’, ‘zipcode’}

4. Next, each of the remaining SR terms are searched in WordNet using Python
NLTK packages to extract the related upper concepts like hyponym/hypernyms.
These concepts are utilized to determine the category of the web services to be
searched for discovering the most appropriate web service satisfying the requested
functionality. NLTK provides several path similarity computation algorithms like
Leacock-Chodorow Similarity, Wu-Palmer Similarity etc, that use WordNet path
hierarchy concepts to extract the root concepts of the concept hierarchy that have
the SR terms as its leaf nodes. In the given example, this results in ‘weather’ and
‘postal address’. These are added to the service request SR. Now,

SR = {‘rainfall’, ‘zipcode’, ‘precipitation’, ‘postal address’}

5. Before matching these terms to the service tagset, the WordNet synsets (synonyms)
of each of the SR terms are extracted. Now, the problem is that each of these terms
may have multiple word senses, based on possible English language usage. For

Chapter 7. Semanticising the User Query 155

example, WordNet says ‘zipcode’ is a noun, which has the synsets {‘zip’, ‘postal
code’, ‘postcode’}. The word ‘zip’ may be used in multiple contexts (as noun, it
means ‘zipper ’; as verb, it means ‘to run around fast ’; totally 7 different senses
are identified by WordNet). Since ‘zipcode’ was POS tagged as noun, its verb
sense can be neglected. However, even the noun usage of ‘zip’ has four different
identified sense usages in English language (e.g., “All their efforts were reduced to
zip”, “the child is full of zip (energy)”, “postal code of a place” and “a zip for a pair
of trousers”).

To identify the correct sense in the context of the service request SR, the
Word Sense Disambiguation Algorithm, JCN Similarity was used. JCN Algorithm
captures the semantic relatedness between word senses in a phrase as per the Jiang-
Conrath Similarity metric. It returns a score denoting how similar two word senses
are, based on the Information Content (IC) of the Least Common Subsumer (most
specific ancestor node) and that of the two input Synsets. The score is used to
choose the most relevant word sense for each subquery term, in context with the
rest of the POS tagged query, and is calculated as per the equation -

Score =
1

(IC(s1) + IC(s2)− 2 ∗ IC(lcs))
(7.1)

This score is recursively calculated for all the word senses obtained fromWordNet
for each SR term. The sense with the highest score is chosen as the most relevant
word sense for each subquery term, in context with the rest of the subquery. This
is the query expansion phase, giving the final SR, as below.

SR = {(‘rainfall’, ‘rain’), (‘zipcode’, ‘postal code’, ‘postcode’), (‘precipitation’,
‘weather condition’, ‘atmospheric condition’), (‘postal address’)}

6. This final SR (i.e., query terms, their synsets and the identified senses together)
is used as the query feature vector ~qt. This represents the query in the vector
space in a way similar to the service documents, which allows vector operations like
dot product and cosine similarity to be performed to determine level of similarity
between services and query.

After the query resolution, the unstructured natural language query is represented in
a structured format as a semantic feature vector. At the same time, the services in the
DWDS repository and also, the service clusters are represented by their weighted feature
vectors, after metadata generation and service categorisation. Hence, all entities, i.e., the
query, the service clusters and the services are represented in a common format, allowing

Chapter 7. Semanticising the User Query 156

effective matchmaking. The process of retrieving relevant services is described in Section
7.3.2.

7.3.2 Query-Service Similarity

For retrieving relevant services for a given query, the feature vectors of the query, the
clusters and the services are used. Using their respective feature vectors, each of the
entities are represented in common space called the vector space as per the Vector Space
Model (VSM) (Salton et al. 1975). The VSM is a document space consisting of N
documents, each identified by one or more weighted (using techniques like Tf-idf) or
unweighted (if term exists, value is 1; else value is 0) index terms T . If z such index
terms are present, then each document in the document space is represented by a z-
dimensional vector, Dn = (T1,z, T2,z, . . . , Tn,z), where Ti,z represents weight of the ith

term in document Dn.
In DWDS, the services are represented by their tagset (words), clusters are

represented by their tags (words) and the query is also represented by its vector
composed of words, hence each dimension in VSM is represented by a word vector, as
shown below -

Cluster cj = (w1,j, w2,j, . . . , wn,j)

Service sk = (w1,k, w2,k, . . . , wn,k)

Query qt = (w1,t, w2,t, . . . , wn,t)

where, each term corresponds to the weight of a word wi in that document (either
cluster, service or query).

Using the weighted vector representation of clusters, services and the query in VSM,
level of matching between a given query and possibly relevant services can be determined
by using a similarity measure that computes the inner product of the two vectors, or
alternatively, an inverse function of the angle between the corresponding vector pairs.
This similarity measure is called Cosine Similarity (cos θ). When the terms assignment
for a cluster/service vector and the query vector is similar, the angle θ approaches 0,
due to which cosine similarity value is closer to 1, indicating high relevance to the query.
Similarly, as the dissimilarity between a cluster/service and query vector increases, the
θ between their vector representations increases, due to which cosine similarity value
is nearer to zero, thus indicating that the cluster/service is irrelevant to the query. In
this way, the computed cosine similarity values can be used to generate a ranked list of
clusters/services for a given query.

Cosine similarity values between the query and a cluster/service is computed using
the equation (7.2) in the case of clusters and equation (7.3) in the case of services.

Chapter 7. Semanticising the User Query 157

cos θcj ,qt =
~cj · ~qt
‖~cj‖‖~qt‖

=

∑n
i=1(wi,j . wi,qt)

b∑n
i=1w

2
i,j .

b∑n
i=1w

2
i,qt

(7.2)

cos θsk,qt =
~sk · ~qt
‖~sk‖‖~qt‖

=

∑n
i=1(wi,k . wi,qt)

b∑n
i=1w

2
i,k .

b∑n
i=1w

2
i,qt

(7.3)

where, cj represents a service cluster j, sk represents a service k, qt represents the
terms in the query and w represents relative weight of a term with respect to sk and qt.

To make sure that the vector dot product is performed properly in case of unequal
length of feature vectors, the cluster feature vectors are either padded or truncated
temporarily, depending upon the length of the query vector. For example, when the
dot-products of a service sk and some query qi is to be computed, the dot product is
performed for the full length of the query vector and no further (i.e. if the service vector
is longer, it is truncated). However, if service vector is shorter than the query vector,
then the service vector is padded with additional zeros to normalise the length of the
two vectors. After the dot product computation, the cosine similarity values are
computed. Using the computed cosine similarity values, a list of all services matching
the user requirements can be generated. This process is explained in Section 7.3.3.

7.3.3 Service Selection and Ranking

The next process is the task of actually determining the most relevant services for the
processed query. This process is depicted in Figure 7.1, in view of the complete service
discovery scenario for a given query. The way the entire process is handled is illustrated
in Algorithm 7.1. As depicted, the cosine similarity between the query vector and the
weighted feature vectors of the service clusters is computed first. This is done to minimise
the time required to generate the most relevant service candidate set for a given user query,
by eliminating the most irrelevant clusters representing other domains at the beginning
itself. Next, the obtained query-cluster cosine similarity values are ranked, and the only
the top-3 clusters with the highest values are chosen as potential candidates for service
matching and are added to candidate-cluster -set .

After this, the query-service cosine similarity is computed for each service belonging to
the clusters in the candidate-cluster -set . A predefined threshold of 0.75 is considered for
good quality matching, and only if the computed value of query-service cosine similarity is
above this threshold, such services are added to the candidate-service-set . After ranking
all services, the results are returned to the user.

Chapter 7. Semanticising the User Query 158

Algorithm 7.1 Service selection and ranking process
Input:

Clusters and services represented in VSM

Query q represented in VSM

Output: Candidate set of most relevant services for q

1: candidate-cluster -set = ∅

2: candidate-service-set = ∅

3: Compute cosine similarity between query and all cluster vectors.

4: Rank clusters by their cosine-similarity value

5: Select top 3 clusters as candidate-cluster -set

6: for each service in candidate-cluster -set do

7: Compute cosine similarity with query vector

8: return cosine-similarity value of service

9: if cosineSimilarity(queryV ector, service) > Threshold then § Threshold set to 0.75

10: Add service to candidate-service-set

11: Rank services in candidate-service-set by cosine similarity value.

12: Return candidate-service-set

7.4 Experimental Results

In this section, the experimental evaluation of the improvement in the Web service
discovery process using the techniques proposed for semantic analysis of query are
presented. In Section 7.4.1, a comparative evaluation of improvement in Web service
retrieval when the semantic query is used is discussed, using popular IR metrics like
precision, recall and F-measure, for the DWDS service collection. Section 7.4.2 presents
the Web service retrieval time to evaluate the performance of the proposed approach.

7.4.1 Web Service Retrieval (DWDS Repository)

In this section, we discuss the effective improvement achieved during Web service retrieval
using the proposed techniques to analyse user requirements. Two different approaches
were used to evaluate the effectiveness of the techniques proposed for query analysis.
The first one is the Natural Language (NL) Query Approach, where the natural language
query submitted by the user is directly used. The second approach uses the Semantic
Query, which is generated by the Query Analysis Engine.

Since the proposed system is modelled as per traditional IR methods, the most
appropriate metrics to evaluate the performance are precision, recall and f-measure. In

Chapter 7. Semanticising the User Query 159

this context, precision can be defined as the fraction of retrieved services that are
relevant for the given query (equation (7.4)). Recall is the fraction of all relevant
services successfully retrieved for the given query (equation (7.5)). F-measure is
computed as a combination of precision and recall, as shown in Equation (7.6).

Precision P =
|relevant services ∩ retrieved services|

|retrieved services|
(7.4)

Recall R =
|relevant services ∩ retrieved services|

|relevant services|
(7.5)

Fβ-measure =
(β2 + 1)PR

β2P +R
where β2 =

1− α
α

(7.6)

where, α ∈ [0, 1] and thus, β2 ∈ [0, ∞]. When α = 1
2
, the value of β = 1, which

results in the balanced F-measure, commonly referred to as F1. Values of β < 1 emphasise
precision and values of β > 1 emphasise recall (Manning et al. 2008).

Table 7.1: Classes of queries used for performance evaluation

Class No. Query Class Example Query

1 Simple query (General) “find book author”
2 Simple query (Particular) “hotel room for family with kids”
3 Simple query (Proper nouns) “sunrise time in US city”
4 Complex Query “stock symbol of company and

current price”

To evaluate the service discovery process, we conducted some experiments using
different lengths of queries for each approach, i.e. by varying the number of keywords in
the input query. Some query categories and sample queries are given in Table 7.1. A
total of 100 different queries (30 each from simple query classes and 10 from the
complex query class), were submitted to the system and the quality of results generated
were observed. In Section 7.4.1.2, we discuss the results obtained for the simple query
classes. The details about complex query classes is given in Section 7.4.1.1.

7.4.1.1 Serving Complex Queries

While running the queries on the system, we observed that complex queries were
successfully identified and processed to generate a set of subqueries. However, to
identify relevant services for each subquery, the system requires a special representation
of services. This is because; both the constituent services and a valid sequence in which

Chapter 7. Semanticising the User Query 160

these should be invoked to serve the complex query need to be determined. This
requires intelligent techniques to capture the dependencies between services. The
techniques that enable composite service discovery using the developed semantic query
mechanism and using captured service dependencies are discussed in Chapter 8.

7.4.1.2 Serving Simple Queries.

In this section, we present the observed results for the simple query classes. To evaluate
the performance of the system, simple queries of length 1 to 10 terms were submitted to
the system, 30 per class. Since each query is pre-processed, an average of 3.4 keywords
was obtained per query. After identifying the correct sense of the terms in the query,
enhancing the query by including each keyword’s WordNet synsets in the query vector
added an average of 8.1 more search terms per query. Due to this, each query resulted in
an average of 11.5 keywords being submitted to the system.

Currently, the DWDS repository contains 12,231 services, categorized into 343 tagged
clusters. Calculating recall for each query when the number of underlying documents is
diverse is somewhat problematic as the retrieved document set will be very small when
compared to the size of the dataset itself. Hence, the recall numbers would always be
small. To overcome this limitation, a measure called relative recall (Frické 1998) was
used. For computing relative recall, we assume that, the query which retrieved the highest
number of services in the set of queries executed on the system is the one which achieved
100% recall. Then, the recall of all other queries can be measured against this value and
hence the concept of relative recall. Using this strategy, the queries from different classes
were executed and results are tabulated in Table 7.2, 7.3 and 7.4.

Table 7.2: Observed precision & relative recall values for Query Class 1, for NL Query and Semantic
Query approaches over DWDS repository.

NL Query Semantic Query
Query Length
(in words)

Precision
(%)

Relative Recall
(%)

Precision
(%)

Relative Recall
(%)

1 84.56 11.24 79.13 18.19
2 75.78 17.13 83.12 39.31
3 69.02 24.18 86.57 48.93
4 63.14 31.49 89.18 59.97
6 58.04 37.12 87.79 73.45
8 51.29 43.97 83.62 87.19
10 43.89 47.15 76.37 100

Chapter 7. Semanticising the User Query 161

Table 7.3: Observed precision & relative recall values for Query Class 2, for NL Query and Semantic
Query approaches over DWDS repository.

NL Query Semantic Query
Query Length
(in words)

Precision
(%)

Relative Recall
(%)

Precision
(%)

Relative Recall
(%)

1 86.21 4.19 77.61 13.67
2 81.01 9.35 82.49 29.14
3 75.45 18.75 90.43 43.21
4 69.51 24.4 88.67 57.11
6 65.37 31.09 84.45 71.96
8 58.22 37.11 80.31 88.81
10 51.68 41.82 77.53 100

Table 7.4: Observed precision & relative recall values for Query Class 3, for NL Query and Semantic
Query approaches over DWDS repository.

NL Query Semantic Query
Query Length
(in words)

Precision
(%)

Relative Recall
(%)

Precision
(%)

Relative Recall
(%)

1 92.14 1.31 90.16 9.71
2 87.31 4.39 93.32 21.31
3 81.26 7.17 95.76 43.22
4 76.53 12.34 89.91 66.51
6 67.13 17.18 84.03 81.09
8 56.11 22.91 79.34 96.15
10 48.96 24.31 73.11 100

Precision and Relative Recall. We analyse the results obtained in terms of precision
and relative recall for various query classes. As seen from Table 7.2, for the NL Query
Approach, precision is reasonably high at 84.56% when a single keyword is used, but
recall is the lowest at 11.24% of highest recall observed. This is because the system
literally matches the single keyword to the tags of the clusters formed and returns only
those services having this tag. Also, it can be observed that as the number of query
terms increase, the recall values improve slightly as more services would match the exact
terms in the query. However, the precision deteriorates, as the query length increases, as
the number of services matched literally to the keywords in the natural language query
increases. When the query length was 10, the relative recall was still only about 47% of
that obtained for Semantic Query Approach, while the precision was at an all-time low.
Similar values were observed for query class 2, while for query class 3, since the submitted
term was a proper noun, a very high precision value of 92% was obtained.

Chapter 7. Semanticising the User Query 162

For the Semantic Query Approach, the relative recall was 100% for a query length
of 10 words, as this essentially retrieved about 1612 services, which was the maximum
number of services matched from the DWDS repository. Hence, as per the definition of
relative recall, we consider this as the query which resulted in 100% recall, and measure
all other query recalls against this value. For the highest recall, the precision observed
was only about 77%.

Also, for query class 1 and for the Semantic Query Approach, the highest precision
of 91.63% was observed when the query length was 3. This could be due to the fact
that, effective POS tagging requires the analysis of a term’s nearest neighbour terms. For
example, when the length of the query is 1, a term like ‘book’ can be either a verb or
a noun-phrase. Therefore, results can differ and precision may suffer if the user meant
it as either sense. However, if the query is changed to ‘book author’, which is a query
of length 2, the context of the user is much clearer and so the precision improves. We
observed the best precision was obtained when the query length was between 2 - 4, as the
relationships between the words can be correctly captured and the most relevant services
can be retrieved.

Similar results were observed for query class 2 and 3. Due to the existence of proper
nouns in queries belonging to query class 3, the NL Query approach recorded the highest
precision for query length 1, even though the recall was only 1.31%. The recall did not
improve much, even for query length 10, and achieved only 49% precision. Overall, the
Semantic Query approach achieved approximately 16% improvement in precision and
37% increase in recall, when compared to the NL Query approach.

F-measure. Using the observed precision and relative recall values, the F-measure
values were computed, by using relative recall (relR) in place of recall in Equation (7.6).
The balanced F-measure is given by β value of 1. Also, for testing the precision-oriented
performance, a β value of 0.5 was used and for testing recall-oriented performance β
value of 2 was used. Hence, the value of F1 -measure, F0.5 -measure and F2 -measure
are given by Equations (7.7), (7.8) and (7.9) respectively.

F1 -measure =
´2 . P . relR

P + relR

¯

(7.7)

F0.5 -measure =
´ (1.25) . P . relR

(0.25) . P + relR

¯

(7.8)

F2 -measure =
´5 . P . relR

4P + relR

¯

(7.9)

Chapter 7. Semanticising the User Query 163

Figure 7.4: Observed Precision and Relative Recall for NL Query and Semantic Query Approaches (for
Query Classes 1, 2 and 3)

Chapter 7. Semanticising the User Query 164

F-measure is an indicator of the overall performance quality of an IR system and
lies in the range 0 to 100% (best possible value). A F-measure value of 50% or more is
considered as good retrieval performance (Makhoul et al. 1999). The computed values
for both the approaches for β = 1, 0.5 and 2 are shown in Table 7.5. An average of
precision and relative recall obtained for all simple query classes was used for F-measure
computation.

Table 7.5: Average F-measure values for NL Query and Semantic Query approaches for β = 1, 0.5 and
2 for DWDS repository

F-measure (%)

(NL Query)

F-Measure (%)

(Semantic Query)Query Length

(in words) F1 F0.5 F2 F1 F0.5 F2

1 10.49 22.24 6.87 23.72 41.40 16.62
2 18.27 34.17 12.47 44.44 62.68 34.42
3 27.33 44.23 19.78 60.31 75.58 50.18
4 34.30 49.34 26.29 72.61 81.76 65.30
6 39.31 50.96 31.99 80.16 83.24 77.30
8 42.59 49.36 37.45 85.63 82.85 88.61
10 42.34 45.66 39.47 86.15 79.54 93.96

Figure 7.5, 7.6 and 7.7 show the balanced, precision-oriented and recall-oriented F-
measure values for NL Query and Semantic Query approaches. These results can be
interpreted as follows.

1. Balanced Performance (F1):

(i) For NL Query: The F1-measure values were in the range 11% to 42%,
which indicates that the overall retrieval accuracy was poor when the natural
language query was directly used.

(ii) For Semantic Query: The balanced system performance, as indicated by the
F1-measure values, was found to be quite good. The worst performance was
when the the query length at 23%, while the best performance was when the
query length was 8 and 10 words, at 86%. This indicates that the system’s
overall performance and accuracy while supporting Web service discovery was
very much improved, as evidenced by the 16% increase in precision and 37%
increase in recall, on average.

Chapter 7. Semanticising the User Query 165

Figure 7.5: Balance performance for DWDS (Average F-measure at β = 1)

2. Precision-oriented Performance (F0.5):

(i) For NL Query: The values were in the range of 22% to 45% for plain natural
language query. Hence, it can be concluded that, the precision obtained for
natural language query was below average.

(ii) For Semantic Query: The values achieved were in the range 41% to 79%
indicating very good retrieval accuracy. This means that the semantic
analysis of the natural language query was effective and was able to capture
user context correctly, in most of the cases. As the query length exceed 4,
the f-measure values deteriorate, to 79% for a query of length 10.

Figure 7.6: Precision-oriented performance for DWDS (Average F-measure at β = 0.5)

Chapter 7. Semanticising the User Query 166

3. Recall-oriented Performance (F2):

(i) For NL Query: The recall achieved for this approach also was quite low, as
the F-measure values were in the range 7% to 39%.

(ii) For Semantic Query: The recall performance was also observed to be very
good, as indicated by the F-measure values ranging from 16% to 94%. As
a larger set of services is retrieved, the possibility of matching more relevant
services to the varied words used in the user query increases, instead of literal
keyword matching. Hence, good recall-oriented performance underscores the
effectiveness of the proposed semantic analysis techniques.

Figure 7.7: Recall-oriented performance for DWDS (Average F-measure at β = 2)

7.4.2 Web Service Retrieval Time

Precision and recall are the most popular measures for IR performance evaluation, but
users may not always care about relevancy only. For example, depending on their need,
users may sometimes not want all services relevant to their search; but may be more
concerned about getting a good enough answer in a short amount of time. To evaluate
this, an additional metric that measures the average time taken for serving a given user
query was used. The result generation time is the time from the start until the completion
of a service retrieval task, and is recorded in seconds. The average time required for
producing the results for the NL Query and Semantic Query approaches over DWDS
Repository is given in Table 7.6.

Chapter 7. Semanticising the User Query 167

Table 7.6: Average Result Generation Time for NL Query and Semantic Query approaches using
DWDS repository

Query Length
(in words)

Time for NL Query
(in seconds)

Time for Semantic Query
(in seconds)

1 4 13
2 11 25
3 17 37
4 25 48
6 33 61
8 41 83
10 49 98

Figure 7.8: Comparison of Result Generation time of NL Query and Semantic Query approaches using
DWDS

On an average, the Semantic Query approach took about 26.4 seconds more than
the NL Query approach, to generate service search results. Even though some latency
in introduced in the generation of service discovery results, when the semantic query
approach is used, the improvement achieved in terms of precision and recall is significant,
as a result a higher result generation time can be considered as an acceptable tradeoff.

7.5 Summary

In this chapter, the proposed techniques for semantically analysing the natural language
query of the user to address the issues of synonymy, polysemy and
hypernymy/hyponymy were discussed. Through experimental analysis over the DWDS
repository, it was observed that the proposed techniques resulted in an average

Chapter 7. Semanticising the User Query 168

improvement of over 16% in precision and 37% in recall. The computed f-measure
values, F1, F0.5 and F2 indicate that the balances, precision-oriented and recall-oriented
performance of the proposed approach was good. To evaluate the latency of the system,
when the proposed techniques were used, the result generation time was computed,
which showed that the proposed semantic query approach required an average of about
26.4 seconds more than the natural language query approach, to generate results.
However, as the precision is significantly increased, this is considered an acceptable
trade-off.

We also discussed the methodology designed for automatically identifying and
processing complex queries to determine its subqueries in this chapter. However, to
execute each subquery parallely and to determine the correct order in which the services
are to be chained to serve the given complex query, requires intelligent mechanisms that
can capture service dependencies. Such a technique is proposed and discussed in the
next chapter.

Publications

(based on work presented in this chapter)

1. Sowmya Kamath S and Ananthanarayana V.S, “Semantic Similarity based Context-
aware Web Service Discovery using NLP Techniques”, Journal of Web Engineering
(JWE), Rinton Press, Princeton, New Jersey, Volume 15, Issue 1 & 2, 2016. [ISSN:
1540-9589] (SCI Indexed)

Status: Online.

Chapter 8

Composite Service Discovery

8.1 Introduction

In Chapter 7, the process of performing Web service discovery in the DWDS framework
when the user submitted query is simple was described. However, in SOA based systems,
a crucial requirement is service reuse. The idea of service reuse is similar to that of
code reuse where, newer and more advanced applications and systems can be built using
modular components of existing systems. In a similar way, whenever a single basic service
is inadequate for performing a given task, a composition of two or more such basic
services may be required. Such a service is referred to as a composite Web service. It
is composed of existing basic services (also known as constituent services or component
services), invoked in a particular sequence, and with a designated flow structure. The
functionality provided by such a composite service is an integration of the functionality
of its constituent services.

In a large repository, each such constituent service chosen may often have one or
more alternatives, which can possibly perform the subtask in a similar (or better) way
as the originally chosen service. Hence, several alternate composite services may be
possible; each using varied available services in different sequences, to achieve the same
task. Generally, application designers have no choice but to resort to manually
determining the most suitable services for developing a particular service based
application, and to determine the order in which these should be used, to perform the
required functionality. However, manual identification of such constituent services and
their correct invocation sequence is a time consuming task, especially when the
repository contains a large number of services. Also, it may be nearly impossible to
manually identify all alternative composite services, so that the designer can have a
choice of composite service templates. Hence, intelligent, automated methods that can
capture service signatures and dependencies for generating all possible valid composite

169

Chapter 8. Composite Service Discovery 170

service templates can be very beneficial to application designers. In this chapter, we
present a semantics based graph approach for capturing service interface dependencies,
to enable composite service discovery in a time-aware manner. Our main contributions,
as reported in this chapter are -

- Designing an efficient semantics based service dependency capturing mechanism, to
identify the constituent services of a valid composite service template.

- Demonstrating that the proposed semantics based mechanism was amenable to
determining the correct sequence in which services should be invoked to satisfy
given complex task requirements.

- Demonstrating that the proposed approach achieved good accuracy while
discovering composite service templates, and the result generation time was
satisfactory.

The rest of this chapter is organised as follows. Section 8.2 describes the defined
problem addressed in this chapter. In Section 8.3, we discuss the methodology designed
for capturing the service dependencies of Web services from their service descriptions,
representing the captured service dependencies in a formal manner and executing
complex queries using the formal representation. In Section 8.4, we discuss experimental
results on the performance of the proposed techniques in terms of accuracy and result
generation time, and also present the theoretical complexity of the proposed composite
service discovery approach. Section 8.5 summarizes the work presented in this chapter.

8.2 Problem Statement

The problem that is addressed in this chapter is defined here:

Given a set of Web services and a complex service request for composable
service templates, to design an approach for capturing service dependencies
that can identify one or more such templates, along with their constituent
services and the correct order of invocation.

We propose a solution that aims to capture the interface details and service
dependencies of Web services and then uses them to identify both constituent services
and the correct sequence for valid composite templates for a given query. As WSDLs do
not provide any interface information explicitly, semantic service descriptions like
OWL-S which contain such details within the description itself have to be employed.
Hence, we chose to use the OWL-S descriptions of services specified in WSDL, as input

Chapter 8. Composite Service Discovery 171

and output details of a service are explicitly defined in the Profile Model of the OWL-S
specification. In Section 8.3, we discuss the proposed composite service discovery
methodology using the generated OWL-S and describe the techniques developed for
capturing and using the service dependencies of services.

8.3 Proposed Methodology

In this section, the techniques designed for enabling composite service discovery using the
captured service dependencies of all services in a given dataset are described in detail. To
capture the functional semantics and also the input/output service dependencies correctly,
the OWL-S1 of a WSDL service description was used. Figure 8.1 provides an overall view
of composite service discovery process.

Figure 8.1: Proposed composite service discovery methodology

8.3.1 Capturing Service Dependencies

The OWL-S semantically describes the syntactic descriptions of the services using
ontologies. Each OWL-S file consists of three sub-ontologies, profile, process and
grounding, of which the profile model provides information on the capabilities of a
service (service name, input/output names, natural language description, service
provider details etc). Hence, the OWL-S profile model is helpful in capturing essential

1The OWL-S TC 4 dataset was used for experimental evaluation of the proposed approach. Available
at http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

Chapter 8. Composite Service Discovery 172

data about a web service while recommending relevant ones to satisfy user queries. A
sample OWL-S profile model defining the interfaces of its corresponding Web service is
shown in Figure 8.2.

Figure 8.2: Profile model of a sample OWL-S document

OWL-S Parsing. The profile model of each OWL-S service in the dataset is first
captured while parsing the OWL-S file. To extract the information, a OWL-S Document
Parser was used, to parse each file and extract the contents of required elements - the
<profile:hasInput>, <profile:hasOutput> and <profile:textDescription>.

OWL-S Profile Element Extraction. During the indexation phase, pertinent
information from the OWL-S profile is extracted, to enable Web service representation
in the form of service dependencies. The OWL-S profile model has a set of elements
that provide information about the service inputs, outputs and capabilities -
<profile:hasInput>, <profile:hasOutput> and <profile:textDescription>. These
elements are extracted and are processed further to extract information that can be
used to index the web services conceptually.

Element Processing. The extracted OWL-S profile elements, <profile:hasInput> and
<profile:hasOutput> contain names that represent the functionality of the service. These
are natural language phrases, which are extracted and processed further for obtaining the
functional semantics and context of the service. The processing applied is similar to the
extraction processes applied to WSDLs (discussed in Chapter 5, Section 5.4). Various
techniques like determining term splitting positions, tokenization, stopword & function
word removal are performed at this stage.

Context Identification. The overall functionality of a service is typically described in
natural language within the <profile:textDescription> element in the profile model. This
is intended for the use of human readers to understand the capabilities of the service. As

Chapter 8. Composite Service Discovery 173

the number of terms in the <profile:hasInput> and <profile:hasOutput> is limited, the
<profile:textDescription> content is used for capturing the domain of a service. Hence,
POS tagging is performed on this extracted description, and any identified stopwords and
function words were removed.

Next, the synonym sets (referred to as synsets) are found using WordNet (Miller et al.
1990) to determine the multiple meaning of the words. To identify the correct synset so
that the correct context is captured, a word sense disambiguation algorithm called JCN
Similarity algorithm (Jiang et al. 1997a) is applied. JCN returns a score denoting how
similar the word senses of the two input synsets are. This similarity measure is based
on a combination of using edge counts in the WordNet ’is-a’ hierarchy and using the
information content values of the WordNet concepts. It computes values that indicate
the semantic distance between words and hence the inverted value is used as a measure
of semantic relatedness. The computed values are used to choose the most relevant word
sense for each feature term. Term weighting and ranking techniques are applied to the
resultant feature set to determine the top 5 terms, which are then used as a weighted
feature vector for a OWL-S document.

OWL-S Input/Output Vector Generation. Finally, the weighted and ranked
features obtained from the <profile:hasInput> element are saved as the OWL-S
document’s input vector (~Vin) and those obtained from the <profile:hasOutput> are
used as the OWL-S document’s output vector (~Vout). These vectors contain the top-5
terms obtained after tag weighting and ranking, that most represent the interface
details of the service.

This procedure is repeated for all OWL-S files in the dataset, at the end of which,
an indexed dataset that contains the input/output vector representation of every
OWL-S document is obtained. These input and output vectors represent the interface
dependencies of each OWL-S service, and are used for constructing a service
dependency graph called the Service Interface Graph (SIG). The process of representing
these captured service dependencies in a formal manner is described in Section 8.3.2.

8.3.2 Representing Service Dependencies

Determining composite service templates is a complex process that has to consider several
crucial requirements, like -

- Capturing the interface details of each basic service to find its capabilities.

- Searching and identifying one or more sets of suitable basic services that can
together satisfy the user requirements, based on the service dependencies.

Chapter 8. Composite Service Discovery 174

- Determining the sequence in which different basic services are to be placed, such
that the output of the preceding service in the sequence matches the input expected
by the next service, to yield the final desired output.

To serve these requirements, the proposed methodology uses a Service Interface Graph
(SIG) to formally represent the captured service dependencies. The SIG is a directed
acyclic graph (DAG) that is constructed to model services and the relation between their
interfaces. Each node in this graph represents a web service. A node can have several
incoming and outgoing edges. An edge from node ‘Si’ to node ‘Sj’ signifies that the
output of a service ‘Si’ is similar to the input accepted by service ‘Sj’ i.e., service ‘Si’ and
‘Sj’ can be chained together in order. Algorithm 8.1 depicts the process of constructing
the service interface graph.

Algorithm 8.1 Service Interface Graph construction process
Input: Input & output vectors of all OWL-S services in dataset

Output: The Service Interface Graph, SIG

1: Represent each service as a node in the SIG

2: for each service node Si in the SIG do

3: Compute cos-sim of ~Vout of service Si with ~Vin of all other services Sk
4: for each service node Sk do

5: if cos-sim(~VoutSi
, ~VinSk

) > cutoff then § Currently cutoff is set to 0.75

6: Add an edge between SIG node Si and Sk
7: Check SIG for any cycles

8: if cycle is found then

9: Delete last added edge

10: else

11: Add new edge to SIG adjacency list

12: Save SIG in memory by its adjacency list.

To construct the graph, the input and output vectors of all the OWL-S services in the
dataset are used. Then, matchmaking is performed between the output of each service
to the input of every other service i.e., the cosine similarity between the output vector of
a particular service (~VoutSi

) and input vector of all other services (~VinSk
) is determined as

per equation (8.1).

cos θ(~VoutSi
, ~VinSk

) =
~VoutSi

· ~VinSk

‖~VoutSi
‖ ‖~VinSk

‖
=

∑n
j=1(wj,i . wj,k)

b∑n
j=1w

2
j,i .

b∑n
j=1w

2
j,k

(8.1)

Chapter 8. Composite Service Discovery 175

where,
wj,i represents the relative weight of the output vector terms of service Si,
wj,k represents the relative weight of the input vector terms of some other service

Sk, in the considered dataset.

The pre-defined similarity cutoff for adding edges is currently fixed at 0.75 and a high
value is chosen to ensure that there is a near-perfect match between the interfaces. If the
computed cosine similarity value is found to be greater than 0.75, then an edge is added
between the two service nodes. After the addition of each edge, the graph is checked
for any cycles. If the newly added edge has introduced a cycle, then the recently added
edge is discarded. The main objective here is to model services such that composite
service discovery problem can be treated as a simple graph traversal problem. Thus, it
is essential to have an acyclic graph.

The process is continued for each service node Sk, and the SIG is finally constructed.
Once constructed, the SIG is stored in the memory using its adjacency list representation.
Within the graph, each node contains -

- Service Name and unique Service Identifier.

- Vector representation of service interfaces – for both input and output.

- A list of service nodes to which the current service node has an outgoing edge.

The process of SIG construction takes place only once, when the server is initially
started for the first time. Hence, it is also a part of the pre-processing step and is an
off-line process. Once constructed, the graph resides in main memory and the same graph
is used for serving each complex query, by performing a graph traversal as described in
Section 8.3.3.

8.3.3 Serving Complex Queries

Whenever a user submits a request to the system, the first step is to process the query
to determine if it is a simple or a complex query (as per the process described in section
7.3, Chapter 7). This task is performed by the Query Analysis Engine and the output
of this processing is - the query vector (in case of simple query) or subquery vectors
(in case of complex query). As discussed, for a simple query, there are no ‘and’/‘or’
keywords, so the cosine similarity value between query vector and output vectors of all
services is recursively computed, then services are sorted by their cos–sim values and
all services with similarity above a threshold of 0.75 are displayed to the user. In the
case of a complex query, the SIG has to be traversed based on the identified subquery
components, to determine relevant services for each subquery.

Chapter 8. Composite Service Discovery 176

For a complex query, firstly, we assume that the user always specifies what is wanted
(i.e. the output). Therefore, the terms obtained for each subquery are considered as part
of its output vector. For the processed complex query, the set of subquery feature vectors
{SQ1, SQ2 . . .SQn } are considered in order. Based on the identified occurrence of ‘and’
and ‘or’, the logical structure of the complex query is also considered.

Figure 8.3 depicts the abstract workflow while executing a sample complex query -
“book hotel or resort and hire taxi”. The logical representation of this complex query is
((SQ1 ∨ SQ2) ∧ SQ3). Hence a valid composite template for this complex query is -
{best hotel booking service, best taxi booking service} and also {best resort booking service,
best taxi booking service}. Hence, the logical representation of the complex query is used
to determine the way composition templates should be returned to the user.

Figure 8.3: Equivalent abstract workflow for a sample complex query

Algorithm 8.2 depicts the process of executing complex queries using the constructed
SIG. To serve a complex query, again the concept of similarity between subquery vectors
and service interface vectors is considered. For the first subquery sq1 of a complex query,
cosine similarity of subquery vector ~Vsq1 with the output vectors of all services in the SIG
is computed using the equation (8.2).

cos θ(~VoutSk
, ~Vsqt) =

~VoutSk
· ~Vsqt

‖~VoutSk
‖ ‖~Vsqt‖

=

∑n
j=1(wj,k . wj,sqt)

b∑n
j=1w

2
j,k .

b∑n
j=1w

2
j,sqt

(8.2)

where,
~VoutSk

represents the output vector terms of a service Sk in the SIG.
~Vsqt represents subquery vector terms for a complex query with n subqueries.
w represents relative weight of a term with respect to service Sk & subquery sqt.

Chapter 8. Composite Service Discovery 177

Algorithm 8.2 Executing complex queries using SIG
Input:

Service Interface Graph SIG

Number of subqueries n of complex query Q

Subquery vectors ~Vsqn representing each subquery of complex query Q

Output: Ranked list of all obtained composite service templates.

1: Level l = 0 § Start SIG traversal

2: for first subquery sq1 of Q do

3: Compute cos-sim of ~Vsq1 and ~Vout of all nodes § Services are the nodes in the SIG

4: Rank results by their cos-sim values

5: Select top-10 nodes as level 1 services

6: set l = 1 § Relevant services for subquery sq1 identified

7: for l= 1 to n; n+ + do § Traverse SIG levels for each subquery upto sqn

8: for each node on level l do § Input to next level

9: Perform DFS traversal of SIG § 10 iterations

10: for every new node visited do

11: Find cos-sim of ~Vsql & ~Vout of service node

12: Store node with highest cos-sim value

13: return path and all nodes between source node and node with best output §

Composite service templates obtained.

14: return all possible composite service templates to user ranked by aggregate cos-sim

values.

Using the computed cos-sim values, a ranking is performed, and ten services with the
best cos-sim values are selected. This gives the top-10 start-points for finding all potential
composite service templates, for the rest of the subqueries. This is considered as the first
level of services that satisfy a first part of the user request. For the next subquery, each
of the first level services’ outputs are considered as inputs. So, for each of these inputs,
the graph is traversed using the well known Depth First Search (DFS) Algorithm starting
from the level 1 input service as source.

During DFS, for every node visited, the similarity between the node’s output vector
and corresponding subquery vector is determined and the node with best output vector
is selected. To optimize the result generation time when a complex query is received, the
graph is traversed a predefined number of times (10 times in our implementation), for
each possible source node, in parallel. This process is continued for all the subqueries

Chapter 8. Composite Service Discovery 178

in the user request. Finally, the path between the corresponding source node and the
node with best output yields the composite service template for the corresponding source
service. After all iterations, all possible composite service templates are obtained. These
are ranked by their aggregated path cos-sim values, and the ranked list of generated
composite service templates is returned to the user.

8.4 Experimental Results and Analysis

In this section, a discussion on the theoretical and experimental evaluation of the proposed
approaches for discovering composite services is presented. The retrieval performance of
the method for various complex query types and for different dataset sizes is summarized
in Section 8.4.1. The number of accurate composite service templates generated by the
system was observed and the results are presented in Section 8.4.3. A theoretical analysis
of the proposed methodology’s complexities is discussed in Section 8.4.4.

8.4.1 Web Service Retrieval

To evaluate the web service retrieval performance of the proposed method, several
experiments using different classes of queries were performed by varying the number of
OWL-S documents taken from the OWL-S TC 4 dataset. The domain-wise service
distribution of this dataset is shown in Table 8.1.

Table 8.1: OWL-S TC 4 Service dataset statistics

Service Domain No.of Available Services

Communication 56
Economy 349
Education 285

Food 34
Geography 60
Medical 73

Simulation 16
Travel 165
Weapon 38

We also considered different types of complex queries, based on the occurrence of ‘and’
& ‘or’ (as shown in Table 8.2). To evaluate the service discovery process, experiments
were conducted using these different types of queries over various dataset sizes. Since the

Chapter 8. Composite Service Discovery 179

quality of returned results as well as the time taken for generating the results may vary
with the size of the dataset, each experiment is conducted for different number of OWL-S
documents. The number of OWL-S documents considered for the various testcases were
100, 300, 500 and 1076 and all three types of complex queries were submitted to the
system. Sample queries in each complex query class and the considered OWL-S category
are shown in Table 8.3 below.

Table 8.2: Query classes and details

Class Complex Query Type Description

1 Sequence contains one or more ‘and’

2 Choice contains one or more ‘or’

3 Mixed contains both ‘and’ + ‘or’

Table 8.3: Experimental setup and sample queries used for different testcases

Test
case
No.

No.of
services
used

Service
Domains

Complex
Query
Type

Sample Queries

1 100
Medical (60)

Geography (40)
sequence

treatment and hospital room
availability

choice clinic or hospital address

mixed
clinic or hospital in city and
distance from address

2 300 Education (300) sequence degree and research funding offers

choice
research funding or job opportunity
in country

mixed
scholarship or research funding
and part time job in country

3 500 sequence hotel in city and car hire
Travel (165)

Geography (60)
Economy (275)

choice
sports or adventure activity near
address

mixed
sports events and weather in city
or country

4 1076 All categories sequence weather and sunrise time in city
choice address of bank or ATMs in city

mixed
price and genre of book for given
title or isbn

Chapter 8. Composite Service Discovery 180

The metrics used to evaluate the discovery performance were precision and recall as
per equations (8.3) and (8.4). Balanced F-measure, which is the harmonic mean of the
precision and recall performance of a IR system was also computed (as given by equation
(8.5)).

Precision =
|relevant services| ∩ |retrieved services|

|retrieved services|
(8.3)

Recall =
|relevant services| ∩ |retrieved services|

|relevant services|
(8.4)

F -Score = 2 ∗ Precision ∗Recall
Precision+Recall

(8.5)

Table 8.4 summarizes the observed experimental results for the various cases
considered. For each test, a set of 20 different queries for each query type were run on
the system and the average value of precision, recall, and result generation time were
noted. The best values for precision were observed during testcase 1 using 100 services
at 95.94% while the lowest precision value of 61.21% was obtained for testcase 4, where
1076 services were considered.

Table 8.4: Experimental results for Web service discovery for various testcases

Test
case
No.

No.of
services
used

Complex
Query
Type

Precision
(%)

Recall
(%)

F-Measure
(%)

Result
Generation

Time
(in mins)

1 100 sequence 95.94 43.03 59.41 00:26
choice 94.3 39.39 55.57 00:33
mixed 91.53 52.12 66.42 00:49

2 300 sequence 82.67 18.33 29.77 01:34
choice 79.12 40.00 52.89 01:42
mixed 78.04 53.33 62.39 02:02

3 500 sequence 78.33 16.60 26.36 02:24
choice 75.14 14.40 24.15 02:34
mixed 63.9 21.18 33.17 02:55

4 1076 sequence 74.8 11.50 19.37 04:17
choice 76.4 9.65 17.13 04:25
mixed 61.21 12.89 21.30 04:38

Chapter 8. Composite Service Discovery 181

Figure 8.4 shows the precision-recall performance of observed during Web service
discovery. The balanced F-measure values were computed and are as shown in Figure
8.5. It can be observed that the balanced F-measure values indicate good precision-
recall performance initially, which deteriorate as the number of services considered for
the experiment increases. The average value of observed precision for all the testcases
was 79.28% and average recall was 33.15%.

Figure 8.4: Observed precision-recall values

Figure 8.5: Observed f-score values

Chapter 8. Composite Service Discovery 182

Figure 8.6: Result Generation Time

Figure 8.6 shows the time taken to generate the results in each testcase for different
complex query types. The average result generation time was about 2 minutes, 22
seconds. Even though the result generation was reasonable, the important factor here is
to evaluate if valid composite service templates were identified. To demonstrate the
process of generation of composite service templates, a sample scenario is considered
and discussed in Section 8.4.2.

8.4.2 Composite Service Discovery - An Example Scenario

Consider a sample complex query from an application designer, who wishes to build an
application that helps people book their hotel room or resort, and check out local
activities at one go. The submitted complex query is -

Query Q = “Service to book hotel room or resort and surfing spots at a city”.

However, there may not be any one service that can do all this, so the designer has
to plan a composition of suitable services. In such a situation, the SIG can be helpful in
identifying those services that can be chained together to get the required output.

1. During query processing, the complex query would be resolved into its constituent
subqueries, by first splitting it at the tokens marked as coordinating conjunctions
and then each subquery is processed as per the process described earlier (in Question
(a) of Part III). After this each subquery is represented as a semantic feature vector.

Chapter 8. Composite Service Discovery 183

2. The next task is to construct the Service Interface Graph (SIG) (Algorithm 8.1).
For this, all OWL-S services are represented as input/output vectors.

3. To identify and recommend any potentially composable service sets to the service
designer, the SIG is used to capture the input/output dependencies. The SIG is
constructed by recursively computing the cosine similarity between a service Si’s
~Vout and the ~Vin of all other services. If this computed value is more than a pre-
defined cut-off of 0.75, then an edge is added between these two nodes in the SIG.
This process is continued for all services in the dataset (some services may not
match with any other service, these are left out of the SIG).

4. For finding the services matching that can serve each subquery, Algorithm 8.2 is
used. The different subquery semantic vectors (after splitting and all processing)
of the example given above are -

~Vsq1 = {(‘book’, ‘reserve’, ‘hold’), (‘hotel’), (‘room’)}

~Vsq2 = {(‘resort’, ‘luxury hotel’, ‘holiday resort’)}

~Vsq3 = {(‘surf ’, ‘surfboard’, ‘surfride’), (‘spot’, ‘point’, ‘place’), (‘city’,
‘metropolis’, ‘urban center’)}

5. First, the cos-sim of ~Vsq1 with the ~Vout of all the services in the SIG is computed. The
top 10 cos-sim values are chosen as Level 1 services. Next, a DFS is performed from
each node in level 1, and for each node visited, the cosine similarity is computed
between the node’s ~Vout and the ~Vsqi vectors. The node with the highest cos-sim
value is stored. Finally, the path and all nodes between source node and node with
best output is returned. This is one possible composite service template. Similarly,
other possible templates can be identified by recursively traversing the SIG.

For the complex query considered, Table 8.5 shows one possible composite service
template, that can serve the application designer’s need. Table 8.6 shows another option
for the same requirement. This example demonstrated how the SIG helps in capturing
the service interface dependencies, which can be used for discovering one or more service
composition templates. To evaluate this accuracy and performance of the discussed
approach, the quality of generated templates is taken into consideration, the results of
which are presented in Section 8.4.3.

Chapter 8. Composite Service Discovery 184

Table 8.5: One possible Composite Service Template for given complex query

No. Service Name Input vector ~Vin Output vector
~Vout

WS309 citycountryduration_ HotelReserve
-service

{city, country, duration} {hotel, reservation}

WS281 CityLuxuryhotel {city} {luxury, hotel}
WS957 surfing_beach_service {city, country} {surf, beach,

address}

Table 8.6: An alternate Composite Service Template identified for given complex query

No. Service Name Input vector ~Vin Output vector ~Vout

WS12 hotel_Worldwideservice {hotel, city, date} {reservation}
WS Geographical-

regionLuxuryhotel
{geographic, region,
date}

{luxury, hotel}

WS940 surfingorganization_destination
_Bestservice

{organization} {surf, point, city}

8.4.3 Composite Template Generation Accuracy

To evaluate the quality of composite service templates generated, some additional
statistics were collected. These include -

1. Number of correct templates generated (CTcorrect). Composite service templates
that completely satisfy the requirements of the complex query.

2. Any partial templates generated (CTpartial). Templates that satisfy at least 75% of
the complex query requirements.

3. Any incorrect templates generated (CTincorrect). Templates with wrongly identified
constituent services or incorrect invocation sequence.

4. Templates with I/O datatype conflicts (CTconflict). Templates that may be correct
at the semantic level of I/O matching, but the datatypes of the output parameter of
first service and the input parameter of second service do not match. For example,
consider a service HotelRoomBooking, which takes the booking number as input
(xsd:int) and gives the allotted room details (xsd:string) as output. If this service
is recommended in a composite service template, where other services require a
xsd:string booking number, then an I/O datatype conflict will arise. In this case,
even if the correct constituent services and invocation order has been identified, the
template may be useless to application designers.

Chapter 8. Composite Service Discovery 185

Table 8.7 depicts the results of the composite service discovery process. The retrieved
templates in each case were subjected to a human evaluation and categorized as correct,
partial, incorrect and I/O datatype conflict templates. As per this criteria, the accuracy
of composite service template generation using the proposed methodology is calculated
as per equation (8.6).

%Accuracy =
(CTcorrect + CTpartial − CTincorrect − CTconflict)

CTtotal
∗ 100 (8.6)

As seen from Table 8.7, the average composite service template accuracy observed for
all the testcases considered was 70.68%. It was observed that the accuracy can deteriorate
due to I/O datatype mismatches in some of the identified templates. However, the number
of incorrect templates generated was quite low, while partial templates that matched
more than 75% of the complex query requirements were also obtained. Hence, it can be
concluded that the composite service template generation accuracy using the proposed
methodology was satisfactory. In the next section, we present a theoretical analysis of
the performance of the developed approach.

Table 8.7: Composition template generation accuracy

Composite Service Templates generatedServices
used

Complex
Query
type

Correct Partial Incorrect I/O Conflict
Accuracy

(%)

sequence 2 1 0 0 100
choice 2 0 0 0 100100
mixed 1 1 0 0 100

sequence 3 1 1 0 60
choice 4 1 0 0 100300
mixed 2 1 0 1 50

sequence 4 2 1 1 50
choice 3 2 1 1 42.86500
mixed 2 2 1 1 33.33

sequence 4 3 1 2 40
choice 4 2 1 1 501076
mixed 3 3 1 2 33.33

Average Accuracy 70.687

8.4.4 Theoretical Analysis

Generating composition templates that satisfy a given user request is a very complex
problem. In general, time complexity is a crucial criterion for discovering composite

Chapter 8. Composite Service Discovery 186

service templates as every possible combination of available services must be considered
to determine input-output dependencies. In this section, we analyse the performance of
the developed approach, by considering each of its major critical processes and the time
complexity with reference to them.

Indexing OWL-S services. Indexing a single OWL-S document after extracting its
functional semantics and semantic vector generation takes constant time and is of O(C)

time complexity. Then, the process of indexing a dataset of N services takes O(N) time.

Query Analysis. This task involves semantically analysing the request to identify any
subqueries and the query vector generation for each individual query. It is dependent on
the number of subqueries in the request, which if present, may have a few words at the
most, which can be processed in constant time. Hence, this task takes O(C) time.

Constructing the Service Interface Graph. While constructing the Service
Interface Graph, the semantic input vector of each service has to be matched with the
semantic output vector of every other service. Thus, the time complexity of graph
construction is O(N2), where N is the number of services in the dataset. The process of
checking for cycle formation takes constant time O(C) and thus it doesn’t add anything
to the complexity.

Adding new services to the Service Interface Graph. The SIG is constructed only
once when the server is started and need not be constructed repeatedly as it is stored in
the memory. Whenever a new service is added to the database, a new node representing
the service data will have to be appended to the graph. Hence, its input/output vectors
have to be matched with that of every other service already in the graph, therefore,
adding a new node is also of O(N2) complexity.

Traversing the Service Interface Graph. The task of SIG traversal to find
composite service templates is to be carried when a query is submitted to the system.
To search for matching services, the expected output is extracted from the user query.
This process involves finding the cosine similarity between every reachable OWL-S
document from source node, which is of time complexity O(N). As the SIG traversal is
based on finding the topological order, i.e., the algorithm process all nodes first and
then for every level 1 node, the same process is run on all adjacent nodes. Since total
adjacent nodes or vertices in a graph is given by O(E), the overall time complexity of
this process is O(V +E). Even if the entire SIG has to be traversed and a match is still

Chapter 8. Composite Service Discovery 187

not found, the process is of at most O(V + E) complexity. In the SIG, services are
nodes/vertices, hence V = N . Thus, the time taken for this task is O(N) . O(N + E).

Therefore, the overall complexity of the system can be presented as - O(N) + O(N2)

+ O(C) + O(N2) + O(C) + O(N) + O(N) . O(N + E) = O(N 2). Hence, it can be
concluded that the system is quite efficient and can support scalability. If deployed in a
computing environment that supports large graph storage and processing, the proposed
methodology would be able to handle a large number of web services and still return
results in a reasonable amount of time.

8.5 Summary

In this chapter, a methodology for discovering composite service templates as per user’s
complex requirements is proposed, that uses semantics based graph traversal techniques
to capture service dependencies. The approach is based on formal representation of
captured service dependencies using a Service Interface Graph, which is traversed to
determine constituent services and correct invocation sequence for a given complex query.
To evaluate performance of this approach, several experiments using varied sized OWL-S
datasets were used and the performance was observed, in terms of retrieval precision and
recall, and time taken for result generation. The average value of observed precision for all
the testcases was 79.28% and the average result generation time was about 2 minutes, 22
seconds. In addition to retrieval performance, the number of correct, partial, incorrect and
templates with I/O datatype conflicts were determined by manual inspection, to measure
accuracy. The overall accuracy of composite service template generation was found to be
70.68%. The experimental results show that the developed approach generated composite
service templates with a good level of accuracy and also is scalable to handle larger
datasets efficiently.

Publications

(based on work presented in this chapter)

1. Sowmya Kamath S and Ananthanarayana V.S, “Discovering Composable Web
Services based on Functional Semantics and Service Dependencies using Natural
Language Requests”, Journal on Information System Frontiers, Springer
Hiedelberg, ISSN: 1387-3326 (SCI Indexed)

Status: In press

Chapter 9

Conclusions and Future Work

With the explosive growth of the Web data and services, there is a significant need for
simplifying the process of service discovery to provide better matching, composition and
integration capabilities without human intervention. In this thesis, we investigated four
main problems in the domain of Web service discovery - finding distributed Web
services from heterogeneous sources on the Web; effective metadata generation and
dynamic categorization for large service collections; understanding user context and
requirements during the service querying process; and enabling automated composite
Web service discovery. Each problem posed its own challenges, and we proposed novel
approaches to address these challenges effectively. We summarize our contributions in
each of these areas below.

In Chapter 4, we discussed a distributedWeb service discovery framework, DWDS, for
finding and retrieving published service descriptions on the Web to enable semantics based
service discovery. The developed framework extends autonomic features for repository
management and redundancy control for automating the service repository management
process. Periodic active crawling to find more services and selective crawling to check
the status of indexed repository services ensured that the service collection is kept up-to-
date and valid. The main objectives were to minimize human effort and involvement in
the effective management of the repository and also to support scalability. Experimental
results and 3-year statistics presented in this chapter, showed that the approaches used
in developing DWDS were effective in achieving both objectives.

In Chapter 5, intelligent mechanisms for inferring the functional semantics of
services from their service descriptions, and automatically generating service-specific
metadata for each indexed service were presented. Service similarity was computed
using semantic relatedness between service features for enabling domain-specific
categorization for the large service collection. Traditional clustering and machine
learning classification were performed on a small sample of the tagged service collection

188

Chapter 9. Conclusions and Future Work 189

to determine the effectiveness of the developed metadata generation and similarity
computation techniques. Experimental evaluation confirmed that the tagging generated
for each service was meaningful and similarity based domain-specific grouping helped in
increasing the precision and recall performance during Web service retrieval.

It was observed that categorization approaches like traditional clustering and
classification were not suitable due to the dynamic nature of DWDS and the constant
small changes in the service collection after each active/selective crawling. Hence, a
novel dynamic clustering algorithm, BI2C, modelled as per bird flocking rules was
designed and presented in Chapter 6. This eliminates the need for off-line cluster
re-computation and generates updated clusters on the fly. Due to this, it is possible to
dynamically cluster new services introduced thus reducing the effort and time required
for the re-clustering process. During experimental evaluation, BI2C was effective and
achieved a speedup of more than 57%, when compared to traditional hierarchical
clustering.

To understand the user context and requirements during the Web service discovery
process, an intelligent mechanism using semantics and natural language processing
techniques was presented in Chapter 7. The mechanisms designed for identifying
whether a given query required composite service discovery were also described in this
chapter. Experimental evaluation showed that the semantic query achieved more that
17% improvement in precision and 37% increase in recall over the natural language
query. However, the result generation time in the case of the semantic query approach
was an average of 26 seconds more than the keyword based matching approach.

In Chapter 8, a methodology for discovering composite service templates as per user’s
complex requirements was discussed. The approach is based on formal representation
of captured service dependencies using a Service Interface Graph, which is traversed to
determine constituent services and correct invocation sequence for a given complex query.
To evaluate performance of this approach, several experiments using varied sized OWL-S
datasets were used and the average precision observed was 79%. The overall accuracy of
composite service template generation was found to be 70.68%.

9.1 Future Scope

Some possible future works are summarized as follows:

• Currently, the repository of the DWDS framework is centralized, possibly
rendering it a single point of failure. We intend to mitigate this potential problem
by adopting a cloud based deployment model, thus making DWDS truly scalable
and distributed.

Chapter 9. Conclusions and Future Work 190

• Elaborate theoretical analysis of the proposed framework and its processes will be
performed, to completely assess its suitability and scalability for real-world
deployment.

• The DWDS framework uses a bottom-up approach of finding and retrieving
distributed Web services, instead of relying on service providers to publish and
maintain their services, as in other approaches like the UDDI and the UBR. In
future, service providers may themselves be allowed access to their services
indexed in the DWDS repository, to add their details or QoS statistics for their
services. This will enable further enrichment of the DWDS service collection.
Further, QoS based matching and selection can also be incorporated, if large-scale
QoS statistics for all indexed services become available. Similarly, query serving
can be improved by allowing QoS based conditions, as per user requirement, when
such QoS statistics become available. This means that the user will not only be
provided with the most relevant service for a given query, but also possibly the
fastest or most reliable service.

• For enabling personalisation based service discovery, user feedback mechanisms
could be incorporated in DWDS that allows automatic collection of user
comments or ratings. These can be used to improve the ranking mechanisms,
using techniques like sentiment analysis and collaborative filtering. Thus, QoE
(Quality of Experience) based querying capabilities can also be added to DWDS
functionalities.

• Incremental clustering can be further enhanced by incorporating dynamic iteration
adjustment, instead of using predefined number of iterations, ideal cluster number
prediction etc. Hybrid techniques that allow local optimization at cluster level may
be investigated that can improve the goodness of clustering further, to reduce the
effect of cluster overlap (caused by common natural language tags).

• In DWDS, the time required to serve the semantic user query takes about 26
seconds more when compared to keyword based matching approach (natural
language query). Adopting query and result caching mechanisms may help in
reducing this time, by possibly reusing already generated templates while service
similar requests at a later point of time. In this way, subsequent queries that are
partly or fully similar can be served faster. Also, we intend to develop an intuitive
and user-friendly user interface for DWDS.

• Currently, composite service discovery has been verified using a standard semantic
Web service description dataset, OWL-S TC. When bigger OWL-S datasets are

Chapter 9. Conclusions and Future Work 191

available, the proposed technique can be tested and the results can be verified for
ensuring scalability. Also, during composite service template generation, some
generated templates displayed I/O data type conflicts, i.e., a service that can be
chained with another service in order was found to be incompatible due to
datatype mismatch. This is because, currently we have considered on the OWL-S
profile’s <profile:hasInput>, <profile:hasOutput> and <profile:textDescription>.
This problem can be addressed so the accuracy can be further improved. Also, the
querying process can be further enhanced by allowing users to specify
preconditions and effects implicitly, in addition to the required outputs. Other
factors like subquery level QoS and user specified constraints could also be
potentially incorporated.

Publications based on Research Work

Journal Publications

1. Sowmya Kamath S and Ananthanarayana V.S, “Discovering Composable Web
Services based on Functional Semantics and Service Dependencies using Natural
Language Requests”, Journal on Information System Frontiers, Springer
Hiedelberg, ISSN: 1387-3326 (SCI Indexed)

Status: In press

2. Sowmya Kamath S and Ananthanarayana V.S, “Semantic Similarity based Context-
aware Web Service Discovery using NLP Techniques”, Journal of Web Engineering
(JWE), Rinton Press, Princeton, New Jersey, Volume 15, Issue 1 & 2, 2016. [ISSN:
1540-9589] (SCI Indexed)

Status: Online.

3. Sowmya Kamath S and Ananthanarayana V.S, “A Bio-inspired, Incremental
Clustering Algorithm for Semantics-based Web Service Discovery”, International
Journal of Reasoning-based Intelligent Systems, Inderscience Publishers, Volume
7, Issue 3-4, pgs. 261-275, 2015. [ISSN: 1755-0564] (Scopus and EI Indexed)

Status: Online.

4. Sowmya Kamath S and Ananthanarayana V.S, “Semantics based Web Service
Classification using Morphological Analysis and Ensemble Learning Techniques”,
International Journal on Data Science and Analytics, Springer Hiedelberg, ISSN:
2364-4168

Status: Accepted

192

Conference Publications

1. Sowmya Kamath S., and Ananthanarayana V.S., “Towards Semantic Web
Services: An Empirical Evaluation of Service Ontology Generation Tools”, 12th
IEEE India Conference on Electronics, Energy, Environment, Communication,
Computer, Control E3 − C3, (IEEE INDICON 2015), pp.1-6, 2015.

2. Sowmya Kamath S., and Ananthanarayana V.S., “Change propagation based
incremental data handling in a Web service discovery framework” in Signal
Processing and Information Technology (ISSPIT), 2014 IEEE International
Symposium on, vol. 14, no., pp.474-479, 15-17 Dec. 2014.

3. Sowmya Kamath S., and Ananthanarayana V.S., “A Service Crawler based
Framework for Similarity based Web Service Discovery”, at 11th India Conference
on Emerging Trends and Innovation in Technology (IEEE INDICON 2014), 2014
Annual IEEE, pp. 1-6. IEEE, 2014.

4. Sowmya Kamath, S., and V. S. Ananthanarayana. “Similarity analysis of service
descriptions for efficient Web service discovery.” In Data Science and Advanced
Analytics (DSAA), 2014 IEEE/ACM International Conference on, Shanghai,
China., pp. 142-148. IEEE, 2014.

5. Sowmya Kamath S., and Ananthanarayana V. S. “A bottom-up approach towards
achieving semantic web services.”, In Advances in Computing, Communications and
Informatics (ICACCI), 2013 International Conference on, pp. 1317-1322. IEEE,
2013.

6. Sowmya Kamath S and Ananthanarayana V.S, “Semantic Web Services Discovery,
Selection and Composition Techniques”, at the Third International Conference on
Computer Science and Information Technology (CCSIT 2013), February 18 - 20th,
2013, Bangalore, India

7. Sowmya Kamath S and Prakash S. Raghavendra, “Semantic Web - Applications,
Challenges and Directions”, at the 3rd International Conference in Information
Technology and Business Intelligence (ITBI 2011), November 25 - 27th, 2011,
Hyderabad, India

Bibliography

Aboud, Nour-Alhouda, Gabriela Arevalo, Jean-Remy Falleri, Marianne Huchard, Chouki
Tibermacine, Christelle Urtado, and Sylvain Vauttier (2009). “Automated software
component classification using concept lattices”. In: Software Architecture, 2009 &
European Conference on Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on. IEEE, pp. 21–30.

Abowd, Gregory, Anind Dey, Peter Brown, Nigel Davies, Mark Smith, and
Pete Steggles (1999). “Towards a better understanding of context and
context-awareness”. In: Handheld and ubiquitous computing. Springer, pp. 304–307.

AbuJarour, M., F. Naumann, and M. Craculeac (2010). “Collecting, annotating, and
classifying public web services”. In: On the Move towards Meaningful Internet Systems:
OTM 2010. Springer, pp. 256–272.

AbuJarour, Mohammed and Felix Naumann (2010). “Towards a diamond SOA
operational model”. In: Service-Oriented Computing and Applications (SOCA), 2010
IEEE Intl. Conf. on. IEEE, pp. 1–4.

Agarwal, Sudhir, Siegfried Handschuh, and Steffen Staab (2004). “Annotation,
composition and invocation of semantic web services”. In: Web Semantics: Science,
Services and Agents on the World Wide Web 2.1, pp. 31–48.

Akkiraju, R., R. Goodwin, P. Doshi, and S. Roeder (2003). “A Method for Semantically
Enhancing the Service Discovery Capabilities of UDDI”. In: Workshop on
Information Integration on the Web (IIWeb) in conjunction with 18th International
Joint Conference on Artificial Intelligence, pp. 87–92.

Akkiraju, Rama (2007). “Semantic Web Services”. In: Semantic Web Services: Theory,
Tools and Applications: Theory, Tools and Applications. Ed. by Jorge Cardoso. IGI
Global. isbn: ISBN 978-1-59904-045-5.

Akkiraju, Rama, Biplav Srivastava, Anca Ivan, Richard Goodwin, and
Tanveer Syeda-Mahmood (2006). “Semantic matching to achieve web service
discovery and composition”. In: E-Commerce Technology, 2006. The 8th IEEE
International Conference on and Enterprise Computing, E-Commerce, and
E-Services. IEEE, pp. 70–70.

194

Almasri, E and Q H Mahmoud (2008). “Discovering web services in search engines”. In:
IEEE Internet Computing 3, pp. 74–77.

Almasri, Eyhab and Q H Mahmoud (2007). “QoS-based discovery and ranking of web
services”. In: Computer Communications and Networks, 2007. ICCCN 2007.
Proceedings of 16th International Conference on. IEEE, pp. 529–534.

Alonso, Gustavo, Fabio Casati, Harumi Kuno, and Vijay Machiraju (2004). Web services.
Springer Verlag. isbn: 3540440089.

Alrifai, Mohammad et al. (2012). “A hybrid approach for efficient Web service composition
with end-to-end QoS constraints”. In: ACM Transactions on the Web (TWEB) 6.2,
p. 7.

Alrifai, Mohammad, Dimitrios Skoutas, and Thomas Risse (2010). “Selecting skyline
services for QoS-based web service composition”. In: 19th International Conference
on World Wide Web. ACM, pp. 11–20.

Atkinson, Colin, Philipp Bostan, Oliver Hummel, and Dietmar Stoll (2007). “A practical
approach to web service discovery and retrieval”. In: Web Services, 2007. ICWS 2007.
IEEE International Conference on. IEEE, pp. 241–248.

Austin, Daniel, Abbie Barbir, Christopher Ferris, and Sharad Garg (2002). Web Services
Architecture Requirements, W3C Working Draft, 11 October 2002. http://www.w3.
org/TR/2002/WD-wsa-reqs-20021011. accessed 12-10-2013.

Aversano, Lerina, Gerardo Canfora, and Anna Ciampi (2004). “An algorithm for web
service discovery through their composition”. In: Web Services, 2004. Proceedings.
IEEE International Conference on. IEEE, pp. 332–339.

Azmeh, Zeina, Marianne Huchard, Chouki Tibermacine, Christelle Urtado, and Sylvain
Vauttier (2008). “Wspab: A tool for automatic classification & selection of web services
using formal concept analysis”. In: on Web Services, 2008. ECOWS’08. IEEE Sixth
European Conference. IEEE, pp. 31–40.

Bau III, David, Adam Bosworth, Gary S Burd, Roderick A Chavez, and Kyle W Marvin
(2008a). Annotation based development platform for stateful web services. US Patent
7,437,710.

Bau III, David, Adam Bosworth, Gary Burd, Roderick Chavez, and Kyle Marvin (2008b).
Annotation based development platform for asynchronous web services. US Patent
7,356,803.

Bellifemine, F, A Poggi, and G Rimassa (1999). “JADE – A FIPA-compliant agent
framework”. In: Proceedings of PAAM. Vol. 9. 33. London, pp. 97–108.

Bellifemine, F., Agostino Poggi, and Gi Rimassa (2001). “Developing multi-agent systems
with JADE”. In: Intelligent Agents VII Agent Theories Architectures and Languages.
Springer, pp. 89–103.

http://www.w3.org/TR/2002/WD-wsa-reqs-20021011
http://www.w3.org/TR/2002/WD-wsa-reqs-20021011

Benatallah, Boualem, Marlon Dumas, M-C Fauvet, Fethi A Rabhi, and Quan Z Sheng
(2002). “Overview of some patterns for architecting and managing composite web
services”. In: ACM SIGecom Exchanges 3.3, pp. 9–16.

Benatallah, Boualem, Mohand-Said Hacid, Alain Leger, Christophe Rey, and Farouk
Toumani (2005). “On automating web services discovery”. In: The VLDB Journal
14.1, pp. 84–96.

Benjamins, V Richard (2008). “Near-term prospects for semantic technologies”. In:
Intelligent Systems, IEEE 23.1, pp. 76–88.

Berardi, Daniela, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella (2005). “Automatic service composition based on behavioral
descriptions”. In: International Journal of Cooperative Information Systems 14.04,
pp. 333–376.

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). “The Semantic Web. A new
form of Web content that is meaningful to computers will unleash a revolution of new
possibilities”. In: Scientific American 284.5, pp. 1–5.

Birukou, Aliaksandr, Enrico Blanzieri, Vincenzo D’Andrea, Paolo Giorgini, and Natallia
Kokash (2007). “Improving web service discovery with usage data”. In: Software, IEEE
24.6, pp. 47–54.

Bishop, Christopher M (1995). Neural networks for pattern recognition. Oxford university
press.

Bosca, Alessio, Fulvio Corno, Giuseppe Valetto, and Roberta Maglione (2006). “On-the-
fly construction of web services compositions from natural language requests”. In:
Journal of Software 1.1, pp. 40–50.

Bosca, Alessio, Andrea Ferrato, Fulvio Corno, Ilenia Congiu, and Giuseppe Valetto
(2005). “Composing Web services on the basis of natural language requests”. In:
ICWS 2005. IEEE, pp. 817–818.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Brockmans, Saartje et al. (2009). “Service-Finder: First steps toward the realization of

web service discovery at web scale”. In: Camogli (Genova), Italy June 25th, 2009
Co-located with SEBD, p. 73.

Broens, Tom, Stanislav Pokraev, Marten Van Sinderen, Johan Koolwaaij, and
Patricia Dockhorn Costa (2004). “Context-aware, ontology-based service discovery”.
In: Ambient Intelligence. Springer, pp. 72–83.

Brogi, Antonio, Sara Corfini, Jose F Aldana, and Ismael Navas (2006). “Automated
discovery of compositions of services described with separate ontologies”. In:
Service-Oriented Computing–ICSOC 2006. Springer, pp. 509–514.

Brogi, Antonio, Sara Corfini, and Razvan Popescu (2005). “Composition-oriented service
discovery”. In: Software Composition. Springer, pp. 15–30.

— (2008). “Semantics-based composition-oriented discovery of web services”. In: ACM
Transactions on Internet Technology (TOIT) 8.4, p. 19.

Bruno, Marcello, Gerardo Canfora, Massimiliano Di Penta, and Rita Scognamiglio (2005).
“An approach to support web service classification and annotation”. In: e-Technology,
e-Commerce and e-Service, 2005. EEE’05. Proceedings. The 2005 IEEE International
Conference on. IEEE, pp. 138–143.

Burstein, Mark et al. (2004). “OWL-S: Semantic markup for web services”. In: W3C
Member Submission.

Can, Fazli (1993). “Incremental clustering for dynamic information processing”. In: ACM
Transactions on Information Systems (TOIS) 11.2, pp. 143–164.

Cao, Jie, Zhiang Wu, Youquan Wang, and Yi Zhuang (2013). “Hybrid Collaborative
Filtering algorithm for bidirectional Web service recommendation”. In: Knowledge
and information systems 36.3, pp. 607–627.

Cardoso, Jorge and Amit P Sheth (2006). Semantic web services, processes and
applications. Vol. 3. Springer Science & Business Media.

Castro, Miguel, Peter Druschel, Anne-Marie Kermarrec, and Antony IT Rowstron (2002).
“SCRIBE: A large-scale and decentralized application-level multicast infrastructure”.
In: Selected Areas in Communications, IEEE Journal on 20.8, pp. 1489–1499.

Chakrabarti, Soumen, Martin Van den Berg, and Byron Dom (1999). “Focused crawling:
a new approach to topic-specific Web resource discovery”. In: Computer Networks
31.11, pp. 1623–1640.

Chan, Nguyen Ngoc, Walid Gaaloul, and Samir Tata (2012). “A recommender system
based on historical usage data for web service discovery”. In: Service Oriented
Computing and Applications 6.1, pp. 51–63.

Chan, Nguyen, Walid Gaaloul, and Samir Tata (2011). “A web service recommender
system using vector space model and latent semantic indexing”. In: Advanced
Information Networking and Applications (AINA), 2011 IEEE International
Conference on. IEEE, pp. 602–609.

Chao, Kuo-Ming, Muhammad Younas, Chi-Chun Lo, and Tao-Hsin Tan (2005). “Fuzzy
matchmaking for web services”. In: Advanced Information Networking and
Applications, 2005. AINA 2005. 19th International Conference on. Vol. 2. IEEE,
pp. 721–726.

Chen, Liang, Yilun Wang, Qi Yu, Zibin Zheng, and Jian Wu (2013a). “WT-LDA: user
tagging augmented LDA for web service clustering”. In: Service-Oriented Computing.
Springer, pp. 162–176.

Chen, Lin et al. (2013b). “Automatic web services classification based on rough set
theory”. In: Journal of Central South University 20, pp. 2708–2714.

Chen, Xi et al. (2010). “Regionknn: A scalable hybrid collaborative filtering algorithm
for personalized web service recommendation”. In: Web Services (ICWS), 2010 IEEE
International Conference on. IEEE, pp. 9–16.

Cheng, Yu, Alberto Leon-Garcia, and Ian Foster (2008). “Toward an autonomic service
management framework: A holistic vision of SOA, AON, and autonomic computing”.
In: Communications Magazine, IEEE 46.5, pp. 138–146.

Chifu, Viorica Rozina, Cristina Bianca Pop, Ioan Salomie, Mihaela Dinsoreanu,
Vlad Acretoaie, and Tudor David (2010). “An ant-inspired approach for semantic
web service clustering”. In: Roedunet International Conference (RoEduNet), 2010
9th. IEEE, pp. 145–150.

Cilibrasi, Rudi and Paul Vitanyi (2007). “The google similarity distance”. In: Knowledge
and Data Engineering, IEEE Transactions on 19.3, pp. 370–383.

Corella, MA and Pablo Castells (2006a). “Taxonomy-Based Web service categorization
using conceptual parameter descriptions”. In: Proc. of the International Workshop on
Semantic Matchmaking and Resource Retrieval: Issues and Perspectives (SMR 2006)
at the 32nd International Conf. on Very Large Data Bases (VLDB 2006). Seoul:
Morgan Kaufmann Publishers. Citeseer.

Corella, Miguel Angel and Pablo Castells (2006b). “A heuristic approach to semantic web
services classification”. In: Knowledge-Based Intelligent Information and Engineering
Systems. Springer, pp. 598–605.

— (2006c). “Semi-automatic semantic-based web service classification”. In: Business
Process Management Workshops. Springer, pp. 459–470.

Crasso, Marco, Alejandro Zunino, and Marcelo Campo (2008a). “AWSC: An approach
to Web service classification based on machine learning techniques.” In: Inteligencia
Artificial, Revista Iberoamericana de Inteligencia Artificial 12.37, pp. 25–36.

— (2008b). “Easy web service discovery: A query-by-example approach”. In: Science of
Computer Programming 71.2, pp. 144–164.

Cremene, Marcel, Jean-Yves Tigli, Stephane Lavirotte, Florin-Claudiu Pop,
Michel Riveill, and Gaetan Rey (2009). “Service composition based on natural
language requests”. In: Services Computing, 2009. SCC’09. IEEE International
Conference on. IEEE, pp. 486–489.

Curbera, Francisco, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi, and
Sanjiva Weerawarana (2002). “Unraveling the Web services web: an introduction to
SOAP, WSDL, and UDDI”. In: IEEE Internet computing 2, pp. 86–93.

Davies, David L and Donald W Bouldin (1979). “A cluster separation measure”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 2, pp. 224–227.

De Bruijn, Jos et al. (2005). “Web service modeling ontology (wsmo)”. In: Interface 5,
p. 1.

Della Valle, Emanuele, Dario Cerizza, Irene Celino, Andrea Turati, Holger Lausen,
Nathalie Steinmetz, Michael Erdmann, and Adam Funk (2008). “Realizing
Service-Finder: Web service discovery at web scale”. In: European Semantic
Technology Conference (ESTC), Vienna.

Devis, Bianchini, De Antonellis Valeria, and Melchiori Michele (2008). “Flexible semantic-
based service matchmaking and discovery”. In: World Wide Web 11.2, pp. 227–251.

D’Mello, Demian et al. (2008). “A QoS broker based architecture for dynamic web service
selection”. In: Modeling & Simulation, 2008. AICMS 08. Second Asia International
Conference on. IEEE, pp. 101–106.

D’Mello, Demian and VS Ananthanarayana (2009). “Effective Web Service Discovery
Based on Functional Semantics”. In: Advances in Computing, Control, &
Telecommunication Technologies, 2009. ACT’09. International Conference on.
IEEE, pp. 1–3.

Dong, Xin, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang (2004).
“Similarity search for web services”. In: Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30. VLDB Endowment, pp. 372–383.

Doulkeridis, Christos, Nikos Loutas, and Michalis Vazirgiannis (2006). “A system
architecture for context-aware service discovery”. In: Electronic Notes in Theoretical
Computer Science 146.1, pp. 101–116.

Dunn, J. (1973). “A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters”. In:

El Bouhissi, Houda, Mimoun Malki, and Amine Sidi Ali Cherif (2014a). “From User’s
Goal to Semantic Web Services Discovery: Approach Based on Traceability”. In:
International Journal of Information Technology and Web Engineering (IJITWE)
9.3, pp. 15–39.

— (2014b). “Improve Web Service discovery: Goal-based approach”. In: Computer
Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International
Conference on. IEEE, pp. 26–33.

Elgazzar, Khalid, Ahmed E Hassan, and Patrick Martin (2010). “Clustering wsdl
documents to bootstrap the discovery of web services”. In: Web Services (ICWS),
2010 IEEE International Conference on. IEEE, pp. 147–154.

Ertek, Gurdal et al. (2013). “Text mining with rapidminer”. In: RapidMiner: Data Mining
Use Cases and Business Analytics Applications, p. 241.

Ester, Martin, Hans-Peter Kriegel, Jorg Sander, Michael Wimmer, and Xiaowei Xu
(1998). “Incremental clustering for mining in a data warehousing environment”. In:
VLDB. Vol. 98. Citeseer, pp. 323–333.

Fan, Jianchun and Subbarao Kambhampati (2005). “A snapshot of public web services”.
In: ACM SIGMOD Record 34.1, pp. 24–32.

Fang, Lu, Lijie Wang, Meng Li, Junfeng Zhao, Yanzhen Zou, and Lingshuang Shao (2012).
“Towards automatic tagging for web services”. In: Web Services (ICWS), 2012 IEEE
19th International Conference on. IEEE, pp. 528–535.

Farrag, Tamer Ahmed, Ahmed Ibrahim Saleh, and Hesham Arafat Ali (2013). “Toward
SWSs discovery: mapping from wsdl to owl-s based on ontology search and
standardization engine”. In: Knowledge and Data Engineering, IEEE Transactions
on 25.5, pp. 1135–1147.

Fenza, Giuseppe, Vincenzo Loia, and Sabrina Senatore (2008). “A hybrid approach to
semantic web services matchmaking”. In: International Journal of Approximate
Reasoning 48.3, pp. 808–828.

Fenza, Giuseppe and Sabrina Senatore (2010). “Friendly web services selection exploiting
fuzzy formal concept analysis”. In: Soft Computing 14.8, pp. 811–819.

Fielding, Roy Thomas (2000). “Architectural styles and the design of network-based
software architectures”. PhD thesis. University of California, Irvine.

Finkel, Raphael and Jon-Louis Bentley (1974). “Quad trees a data structure for retrieval
on composite keys”. In: Acta informatica 4.1, pp. 1–9.

Freiderici, Peter (2009). Explaining Bird Flocks. Audobon Magazine, March-April 2009.
Frické, Martin (1998). “Measuring recall”. In: Journal of Information Science 24.6,

pp. 409–417.
Gao, Yan, Bin Zhang, Jun Na, Lei Yang, Yu Dai, and Qiang Gong (2005). “Optimal

selection of web services for composition based on interface-matching and weighted
multistage graph”. In: Parallel and Distributed Computing, Applications and
Technologies, 2005. PDCAT 2005. Sixth International Conference on. IEEE,
pp. 336–338.

Garcia-Sanchez, Francisco, Rafael Valencia-Garcia, Rodrigo Martinez-Bejar, and
Jesualdo T Fernandez-Breis (2009). “An ontology, intelligent agent-based framework
for the provision of semantic web services”. In: Expert Systems with Applications
36.2, pp. 3167–3187.

Giantsiou, Lemonia, Nikolaos Loutas, Vassilios Peristeras, and Konstantinos Tarabanis
(2009). Semantic Service Search Engine (S3E): An approach for finding services on
the Web. Springer.

Gottschalk, Karl, Stephen Graham, Heather Kreger, and James Snell (2002).
“Introduction to web services architecture”. In: IBM systems Journal 41.2,
pp. 170–177.

Grigori, Daniela, Juan Carlos Corrales, and Mokrane Bouzeghoub (2006). “Behavioral
matchmaking for service retrieval”. In: Web Services, 2006. ICWS’06. International
Conference on. IEEE, pp. 145–152.

Grossi, Davide, Frank Dignum, John-Jules Ch Meyer, et al. (2004). “Contextual
taxonomies”. In: CLIMA. Springer, pp. 33–51.

Guinard, Dominique, Vlad Trifa, Patrik Spiess, Bettina Dober, and Stamatis Karnouskos
(2009). “Discovery and on-demand provisioning of real-world web services”. In: Web
Services, 2009. ICWS 2009. IEEE International Conference on. IEEE, pp. 583–590.

Han, Liangxiu and Dave Berry (2008). “Semantics-supported and agent-based
decentralized grid resource discovery”. In: Future Generation Computer Systems
24.8, pp. 806–812.

Hao, Yanan and Yanchun Zhang (2007). “Web services discovery based on schema
matching”. In: Proceedings of the thirtieth Australasian conference on Computer
science-Volume 62. Australian Computer Society, Inc., pp. 107–113.

Hashemian, Seyyed and Farhad Mavaddat (2006). “A graph-based framework for
composition of stateless web services”. In: Web Services, 2006. ECOWS’06. 4th
European Conference on. IEEE, pp. 75–86.

Hastie, Tibshirani and Friedman (2009). “Hierarchical Clustering, Elements of Statistical
Learning (2nd ed)”. In:

Hendler, James (2001). “Agents and the semantic web”. In: IEEE Intelligent systems 2,
pp. 30–37.

Heß, Andreas and Nicholas Kushmerick (2003). “Learning to attach semantic metadata
to web services”. In: The Semantic Web-ISWC 2003. Springer, pp. 258–273.

— (2004). “Assam: A tool for semi-automatically annotating semantic web services”. In:
The Semantic Web–ISWC 2004. Springer, pp. 320–334.

Hofreiter, Birgit, Christian Huemer, and Wolfgang Klas (2002). “ebXML: Status,
research issues, and obstacles”. In: Research Issues in Data Engineering: Engineering
E-Commerce/E-Business Systems, 2002. RIDE-2EC 2002. Proceedings. Twelfth
International Workshop on. IEEE, pp. 7–16.

Hong, Jongyi, Eui-Ho Suh, Junyoung Kim, and SuYeon Kim (2009). “Context-aware
system for proactive personalized service based on context history”. In: Expert Systems
with Applications 36.4, pp. 7448–7457.

Hosmer, David W and Stanley Lemeshow (2000). “Introduction to the logistic regression
model”. In: Applied Logistic Regression, Second Edition, pp. 1–30.

Issarny, Valerie, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Panos Vassiliadist,
Marco Autili, Marco Aurelio Gerosa, and Amira Ben Hamida (2011). “Service-oriented
middleware for the future internet: state of the art and research directions”. In: Journal
of Internet Services and Applications 2.1, pp. 23–45.

Jaccard, Paul (1912). “The distribution of the flora in the alpine zone. 1”. In: New
phytologist 11.2, pp. 37–50.

Jain, Anil K (2009). “Data clustering: 50 years beyond K-means”. In: Pattern recognition
letters 31.8, pp. 651–666.

Jiang, Jay and David Conrath (1997a). “Semantic Similarity Based on Corpus Statistics
and Lexical Taxonomy”. In: CoRR cmp-lg/9709008.

— (1997b). “Semantic similarity based on corpus statistics and lexical taxonomy”. In:
Proceedings of ROCLING X, Taiwan.

Katakis, Ioannis, Georgios Meditskos, Grigorios Tsoumakas, Nick Bassiliades, et al.
(2009). “On the combination of textual and semantic descriptions for automated
semantic web service classification”. In: Artificial Intelligence Applications and
Innovations III. Springer, pp. 95–104.

Kehagias, Dionysios, Konstantinos Giannoutakis, George Gravvanis, and
Dimitrios Tzovaras (2012). “An ontology-based mechanism for automatic
categorization of web services”. In: Concurrency and Computation: Practice and
Experience 24.3, pp. 214–236.

Keller, Uwe, Ruben Lara, Holger Lausen, and Dieter Fensel (2006). “Semantic Web
service discovery in the WSMO framework”. In: Semantic Web: Theory, Tools and
Applications. Idea Publishing Group.

Kim, Su Myeon and Marcel-Catalin Rosu (2004). “A survey of public web services”. In:
E-commerce and web technologies. Springer, pp. 96–105.

Klema, Virginia C and Alan J Laub (1980). “The singular value decomposition: Its
computation and some applications”. In: Automatic Control, IEEE Transactions on
25.2, pp. 164–176.

Klusch, M (2012). Intelligent information agents: agent-based information discovery and
management on the Internet. Springer Science & Business Media.

Klusch, Matthias, Benedikt Fries, and Katia Sycara (2006). “Automated semantic web
service discovery with OWLS-MX”. In: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM, pp. 915–922.

Kohavi, Ron (1995). “A study of cross-validation and bootstrap for accuracy estimation
and model selection”. In: International Joint Conference on Artificial Intelligence
(IJCAI 1995). Vol. 14. 2, pp. 1137–1145.

Kokash, Natallia, Aliaksandr Birukou, and Vincenzo D’Andrea (2007). “Web service
discovery based on past user experience”. In: Business Information Systems.
Springer, pp. 95–107.

Kopecky, Jacek, Tomas Vitvar, Carine Bournez, and Joel Farrell (2007). “Sawsdl:
Semantic annotations for wsdl and xml schema”. In: Internet Computing, IEEE
11.6, pp. 60–67.

Kourtesis, Dimitrios and Iraklis Paraskakis (2008). “Web service discovery in the FUSION
semantic registry”. In: Business Information Systems. Springer, pp. 285–296.

Krill, Peter (2005).Microsoft, IBM, SAP discontinue UDDI registry effort. Available from
http://www.infoworld.com, December 2005.

Kritikos, Kyriakos and Dimitris Plexousakis (2009). “Requirements for QoS-based web
service description and discovery”. In: Services Computing, IEEE Transactions on 2.4,
pp. 320–337.

Krummenacher, Reto, Martin Hepp, Axel Polleres, Christoph Bussler, and Dieter Fensel
(2005). “WWW or What is Wrong with Web services”. In: Web Services, 2005.
ECOWS 2005. Third IEEE European Conference on. IEEE, 9–pp.

Kuang, Li et al. (2012). “Personalized services recommendation based on context-aware
QoS prediction”. In: Web Services (ICWS), 2012 IEEE 19th International Conference
on. IEEE, pp. 400–406.

Kuang, Li, Ying Li, Shuiguang Deng, and Zhaohui Wu (2007). “Inverted indexing for
composition-oriented service discovery”. In: Web Services, 2007. ICWS 2007. IEEE
International Conference on. IEEE, pp. 257–264.

Kumar, Ravi, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivakumar,
Andrew Tomkins, and Eli Upfal (2000). “Stochastic models for the web graph”. In:
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on.
IEEE, pp. 57–65.

Kumara, Banage TGS, Incheon Paik, and Wuhui Chen (2013). “Web-service clustering
with a hybrid of ontology learning and information-retrieval-based term similarity”.
In: Web Services (ICWS), 2013 IEEE 20th International Conference on. IEEE,
pp. 340–347.

Lara, Ruben, Dumitru Roman, Axel Polleres, and Dieter Fensel (2004). “A conceptual
comparison of WSMO and OWL-S”. In: Web services. Springer, pp. 254–269.

Laranjeiro, Nuno, Rui Oliveira, and Marco Vieira (2010). “Applying text classification
algorithms in web services robustness testing”. In: Reliable Distributed Systems, 2010
29th IEEE Symposium on. IEEE, pp. 255–264.

Li, Xia, Fang Qian, Chong Li, and Jianjun Yu (2011). “Similar Web Services Discovery and
Matching Based on P2P and Topic Model Learning”. In: Wireless Communications,

http://www.infoworld.com

Networking and Mobile Computing (WiCOM), 2011 7th International Conference on.
IEEE, pp. 1–4.

Li, Yan, Jinhua Xiong, Xinran Liu, Hong Zhang, and Peng Zhang (2014). “Folksonomy-
Based In-Depth Annotation of Web Services”. In: Service Oriented System Engineering
(SOSE), 2014 IEEE 8th International Symposium on. IEEE, pp. 243–249.

Li, Yan, Liangjie Zhang, Ge Li, Bing Xie, and Jiasu Sun (2007). “An exploratory study of
web services on the internet”. In: Web Services, 2007. ICWS 2007. IEEE International
Conference on. IEEE, pp. 380–387.

Liang, Qianhui Althea and Stanley YW Su (2005). “AND/OR graph and search algorithm
for discovering composite web services”. In: International Journal of Web Services
Research (IJWSR) 2.4, pp. 48–67.

Lim, JongHyun and Kyong-Ho Lee (2010). “Constructing composite web services from
natural language requests”. In: Web Semantics: Science, Services and Agents on the
World Wide Web 8.1, pp. 1–13.

Lin, Maria and David W Cheung (2014). “Automatic tagging web services using
machine learning techniques”. In: Proceedings of the 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT)-Volume 02. IEEE Computer Society, pp. 258–265.

Liu, Chenguang et al. (2013). “A Web Service Recommendation Approach Based on
Situation Awareness”. In: Services Computing (SCC), 2013 IEEE International
Conference on. IEEE, pp. 432–437.

Liu, Yanchi, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu (2010).
“Understanding of internal clustering validation measures”. In: Data Mining
(ICDM), 2010 IEEE 10th International Conference on. IEEE, pp. 911–916.

Liu, Zhen, Anand Ranganathan, and Anton Riabov (2007). “Modeling Web services
using semantic graph transformations to aid automatic composition”. In: Web
Services, 2007. ICWS 2007. IEEE International Conference on. IEEE, pp. 78–85.

Liu and Wong (2009). “Web service clustering using text mining techniques”. In:
International Journal of Agent-Oriented Software Engineering 3.1, pp. 6–26.

Lopes, Cassio and Ali Sayed (2007). “Incremental adaptive strategies over distributed
networks”. In: Signal Processing, IEEE Transactions on 55.8, pp. 4064–4077.

Ma, Jiangang et al. (2007). “A probabilistic semantic approach for discovering web
services”. In: 16th international conference on World Wide Web. ACM,
pp. 1221–1222.

Ma, Jiangang, Yanchun Zhang, and Jing He (2008). “Efficiently finding web services using
a clustering semantic approach”. In: Proceedings of the 2008 international workshop

on Context enabled source and service selection, integration and adaptation: organized
with the 17th International World Wide Web Conference (WWW 2008). ACM, p. 5.

Maamar, Zakaria, Pedro Bispo Santos, Leandro Krug Wives, Youakim Badr,
Noura Faci, and Jose Palazzo M De Oliveira (2011). “Using social networks for web
services discovery”. In: Internet Computing, IEEE 15.4, pp. 48–54.

Makhoul, John, Francis Kubala, Richard Schwartz, Ralph Weischedel, et al. (1999).
“Performance measures for information extraction”. In: Proceedings of DARPA
broadcast news workshop, pp. 249–252.

Manning, Christopher D, Prabhakar Raghavan, Hinrich Schutze, et al. (2008).
Introduction to information retrieval. Vol. 1. Cambridge university press Cambridge.

Martin, Daniel and John Domingue (2007). “Semantic web services, part 1”. In: Intelligent
Systems, IEEE 22.5, pp. 12–17.

Al-Masri, Eyhab et al. (2009). “A Broker for Universal Access to Web Services”. In:
Seventh Annual Communication Networks and Services Research Conf. IEEE.

Al-Masri, Eyhab and Qusay H Mahmoud (2007a). “A framework for efficient discovery
of web services across heterogeneous registries”. In: 2007 4th IEEE Consumer
Communications and Networking Conference.

— (2007b). “Crawling multiple UDDI business registries”. In: Proceedings of the 16th
international conference on World Wide Web. ACM, pp. 1255–1256.

— (2008). “Investigating web services on the world wide web”. In: Proceedings of the 17th
international conference on World Wide Web. ACM, pp. 795–804.

Al-masri, Eyhab and Qusay H Mahmoud (2009). “A broker for universal access to web
services”. In: Communication Networks and Services Research Conference, 2009.
CNSR’09. Seventh Annual. IEEE, pp. 118–125.

McIlraith, Sheila A, Tran Cao Son, and Honglei Zeng (2001). “Semantic web services”.
In: IEEE intelligent systems 16.2, pp. 46–53.

Michlmayr, Anton, Florian Rosenberg, Christian Platzer, Martin Treiber, and Schahram
Dustdar (2007). “Towards recovering the broken SOA triangle: a software engineering
perspective”. In: International workshop on Service oriented Software Engineering: in
conjunction with the 6th ESEC/FSE Joint Meeting. ACM, pp. 22–28.

Miller, George, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine Miller (1990). “Introduction to wordnet: An on-line lexical database*”. In:
International Journal of Lexicography 3.4, pp. 235–244.

Milojicic, Dejan S, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne, Bruno
Richard, Sami Rollins, and Zhichen Xu (2002). Peer-to-peer computing.

Miltsakaki, Eleni, Rashmi Prasad, Aravind K Joshi, and Bonnie L Webber (2004). “The
Penn Discourse Treebank”. In: LREC.

Mohebbi, Keyvan, Suhaimi Ibrahim, and Mazdak Zamani (2013). “A Pre-matching Filter
to Improve the Query Response Time of Semantic Web Service Discovery”. In: Journal
of Next Generation Information Technology 4.6.

Mokhtar, Sonia Ben, Davy Preuveneers, Nikolaos Georgantas, Valerie Issarny, and
Yolande Berbers (2008). “EASY: Efficient semAntic Service discoverY in pervasive
computing environments with QoS and context support”. In: Journal of Systems and
Software 81.5, pp. 785–808.

Al-Muhammed, Muhammed J and David W Embley (2006). “Resolving
underconstrained and overconstrained systems of conjunctive constraints for service
requests”. In: Advanced Information Systems Engineering. Springer, pp. 223–238.

Murphy, Kevin P (2006). “Naive bayes classifiers”. In: University of British Columbia.
Namgoong, Hyun (2006). “Effective semantic Web services discovery using usability”.

In: Advanced Communication Technology, 2006. ICACT 2006. The 8th International
Conference. IEEE, pp. 5–11.

Nayak, Richi and Brian Lee (2007). “Web service discovery with additional semantics
and clustering”. In: IEEE/WIC/ACM International Conference on Web Intelligence.
IEEE, pp. 555–558.

Newman, Mark EJ (2005). “Power laws, Pareto distributions and Zipf’s law”. In:
Contemporary physics 46.5, pp. 323–351.

O’Brien, Patrick D and Richard C Nicol (1998). “FIPA—-towards a standard for software
agents”. In: BT Technology Journal 16.3, pp. 51–59.

Oldham, Nicole, Christopher Thomas, Amit Sheth, and Kunal Verma (2005). “Meteor-s
web service annotation framework with machine learning classification”. In: Semantic
Web services and Web process composition. Springer, pp. 137–146.

Paliwal, Aabhas et al. (2006). “Web service discovery via semantic association ranking and
hyperclique pattern discovery”. In: 2006 IEEE/WIC/ACM International Conference
on Web Intelligence. IEEE Computer Society, pp. 649–652.

— (2007). “Web service discovery: Adding semantics through service request expansion
and latent semantic indexing”. In: Services Computing, 2007. SCC 2007. IEEE
International Conference on. IEEE, pp. 106–113.

— (2012). “Semantics-based automated service discovery”. In: Services Computing, IEEE
Transactions on 5.2, pp. 260–275.

Pant, Gautam, Padmini Srinivasan, and Filippo Menczer (2004). “Crawling the web”. In:
Web Dynamics. Springer, pp. 153–177.

Paolucci, Massimo, Takahiro Kawamura, Terry R Payne, and Katia Sycara (2002).
“Semantic matching of web services capabilities”. In: The Semantic Web—ISWC
2002. Springer, pp. 333–347.

Papazoglou, Mike P (2003). “Service-oriented computing: Concepts, characteristics and
directions”. In: Web Information Systems Engineering, 2003. WISE 2003. Proceedings
of the Fourth International Conference on. IEEE, pp. 3–12.

Pawar, Pravin and Andrew Tokmakoff (2006). “Ontology-based context-aware service
discovery for pervasive environments”. In: pp. 1–7.

Pedersen, Ted, Siddharth Patwardhan, and Jason Michelizzi (2004).
“WordNet::Similarity: measuring the relatedness of concepts”. In: Demonstration
papers at HLT-NAACL 2004. Association for Computational Linguistics, pp. 38–41.

Platzer, Christian and Schahram Dustdar (2005). “A vector space search engine for web
services”. In: Web Services, 2005. ECOWS 2005. Third IEEE European Conference
on. IEEE, 9–pp.

Platzer, Christian, Florian Rosenberg, and Schahram Dustdar (2009). “Web service
clustering using multidimensional angles as proximity measures”. In: ACM
Transactions on Internet Technology (TOIT) 9.3, p. 11.

Plebani, Pierluigi and Barbara Pernici (2009). “URBE: Web service retrieval based on
similarity evaluation”. In: Knowledge and Data Engineering, IEEE Transactions on
21.11, pp. 1629–1642.

Pop, Cristina Bianca, Viorica Rozina Chifu, Ioan Salomie, Mihaela Dinsoreanu,
Tudor David, and Vlad Acretoaie (2010). “Semantic web service clustering for
efficient discovery using an ant-based method”. In: Intelligent Distributed Computing
IV. Springer, pp. 23–33.

Quarteroni, Silvia et al. (2012). “Evaluating Multi-focus Natural Language Queries over
Data Services.” In: LREC, pp. 2547–2552.

— (2013). “A bottom-up, knowledge-aware approach to integrating and querying web
data services”. In: ACM Transactions on the Web (TWEB) 7.4, p. 19.

Rajasekaran, Preeda, John Miller, Kunal Verma, and Amit Sheth (2005). “Enhancing
web services description and discovery to facilitate composition”. In: Semantic Web
Services and Web Process Composition. Springer, pp. 55–68.

Ran, Shuping (2003). “A model for web services discovery with QoS”. In: ACM Sigecom
exchanges 4.1, pp. 1–10.

Rasch, Katharina, Fei Li, Sanjin Sehic, Rassul Ayani, and Schahram Dustdar (2011).
“Context-driven personalized service discovery in pervasive environments”. In: World
Wide Web 14.4, pp. 295–319.

Real, Raimundo and Juan Vargas (1996). “The probabilistic basis of Jaccard’s index of
similarity”. In: Systematic biology, pp. 380–385.

Reynolds, Craig W. (1987). “Flocks, Herds and Schools: A Distributed Behavioral Model”.
In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’87. ACM, pp. 25–34.

Sabou, Marta, Chris Wroe, Carole Goble, and Gilad Mishne (2005). “Learning domain
ontologies for web service descriptions: an experiment in bioinformatics”. In:
Proceedings of the 14th international conference on World Wide Web. ACM,
pp. 190–198.

Saha, Suman, CA Murthy, and Sankar K Pal (2008). “Classification of web services
using tensor space model and rough ensemble classifier”. In: Foundations of Intelligent
Systems. Springer, pp. 508–513.

Sajjanhar, Atul, Jingyu Hou, and Yanchun Zhang (2004). “Algorithm for web services
matching”. In: Advanced Web Technologies and Applications. Springer, pp. 665–670.

Salton, Gerard, Anita Wong, and Chung-Shu Yang (1975). “A vector space model for
automatic indexing”. In: Communications of the ACM 18.11, pp. 613–620.

Sangers, Jordy, Flavius Frasincar, Frederik Hogenboom, and Vadim Chepegin (2013).
“Semantic Web service discovery using natural language processing techniques”. In:
Expert Systems with Applications 40.11, pp. 4660–4671.

Schmidt, Cristina and Manish Parashar (2004). “A peer-to-peer approach to web service
discovery”. In: World Wide Web 7.2, pp. 211–229.

Schulte, Stefan, Ulrich Lampe, Julian Eckert, and Ralf Steinmetz (2010). “LOG4SWS.
KOM: self-adapting semantic web service discovery for SAWSDL”. In: Services
(SERVICES-1), 2010 6th World Congress on. IEEE, pp. 511–518.

Segev, Aviv and Quan Z Sheng (2012). “Bootstrapping ontologies for web services”. In:
Services Computing, IEEE Transactions on 5.1, pp. 33–44.

Serhani, M Adel, Rachida Dssouli, Abdelhakim Hafid, and Houari Sahraoui (2005). “A
QoS broker based architecture for efficient web services selection”. In: Web Services,
2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on. IEEE,
pp. 113–120.

ShaikhAli, Ali, Omer F Rana, Rashid Al-Ali, and David W Walker (2003). “Uddie: An
extended registry for web services”. In: Applications and the Internet Workshops, 2003.
Proceedings. 2003 Symposium on. IEEE, pp. 85–89.

Shao, Lingshuang, Jing Zhang, Yong Wei, Junfeng Zhao, Bing Xie, and Hong Mei
(2007). “Personalized QoS prediction forweb services via collaborative filtering”. In:
Web Services, 2007. ICWS 2007. IEEE International Conference on. IEEE,
pp. 439–446.

Sheshagiri, Mithun, Norman Sadeh, and Fabien Gandon (2004). “Using semantic web
services for context-aware mobile applications”. In: MobiSys 2004 Workshop on
Context Awareness.

Sheth, Amit, Kunal Verma, and Karthik Gomadam (2006). “Semantics to energize the
full services spectrum”. In: Communications of the ACM 49.7, pp. 55–61.

Shima, Hideki (2013).WS4J-WordNet Similarity for Java. Available from https://code.

google.com/p/ws4j/.
Shin, Donghoon et al. (2009). “Automated generation of composite web services based on

functional semantics”. In: Web Semantics: Science, Services and Agents on the World
Wide Web 7.4, pp. 332–343.

Shin, Dong-Hoon and Kyong-Ho Lee (2007). “An automated composition of information
web services based on functional semantics”. In: Services, 2007 IEEE Congress on.
IEEE, pp. 300–307.

Si, Huayou, Zhong Chen, Yong Deng, and Lian Yu (2013). “Semantic web services
publication and OCT-based discovery in structured P2P network”. In: Service
Oriented Computing and Applications 7.3, pp. 169–180.

Sioutas, Spyros, Evangelos Sakkopoulos, Ch Makris, Bill Vassiliadis, A Tsakalidis, and
Peter Triantafillou (2009). “Dynamic Web Service discovery architecture based on a
novel peer based overlay network”. In: Journal of Systems and Software 82.5,
pp. 809–824.

Sivashanmugam, Kaarthik, Kunal Verma, and Amit Sheth (2004). “Discovery of web
services in a federated registry environment”. In: Web Services, 2004. Proceedings.
IEEE International Conference on. IEEE, pp. 270–278.

Skoutas, D. et al. (2010a). “Ranking and clustering web services using multi-criteria
dominance relationships”. In: Services Computing, IEEE Transactions on 3.3,
pp. 163–177.

Skoutas, Dimitrios et al. (2008). Efficient semantic web service discovery in centralized
and p2p environments. Springer.

Skoutas, Dimitrios, Mohammad Alrifai, and Wolfgang Nejdl (2010b). “Re-ranking web
service search results under diverse user preferences”. In: VLDB, Workshop on
Personalized Access, Profile Management, and Context Awareness in Databases,
pp. 898–909.

Skurichina, Marina and Robert PW Duin (2002). “Bagging, boosting and the random
subspace method for linear classifiers”. In: Pattern Analysis & Applications 5.2,
pp. 121–135.

https://code.google.com/p/ws4j/
https://code.google.com/p/ws4j/

Song, Henry, Doreen Cheng, Alan Messer, and Swaroop Kalasapur (2007). “Web service
discovery using general-purpose search engines”. In: Web Services, 2007. ICWS 2007.
IEEE International Conference on. IEEE, pp. 265–271.

Spanoudakis, George, Khaled Mahbub, and Andrea Zisman (2007). “A Platform for
Context Aware Runtime Web Service Discovery.” In: ICWS, pp. 233–240.

Srinivasan, Naveen, Massimo Paolucci, and Katia Sycara (2006). “Semantic web service
discovery in the OWL-S IDE”. In: System Sciences, 2006. HICSS’06. Proceedings of
the 39th Annual Hawaii International Conference on. Vol. 6. IEEE, 109b–109b.

Steinmetz, Nathalie et al. (2009). “Web service search on large scale”. In: Service-Oriented
Computing. Springer, pp. 437–444.

Steinmetz, Nathalie, Mick Kerrigan, Holger Lausen, Martin Tanler, and Adina Sirbu
(2008). “Simplifying the Web Service Discovery Process.” In: SeMMA, pp. 31–45.

Stoica, I, R Morris, D Liben-Nowell, DR Karger, MF Kaashoek, F Dabek, and
H Balakrishnan (2001). “Chord: A scalable P2P lookup protocol for Internet
applications”. In: Proc. of ACM SIGCOMM.

Stoica, Ion, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan (2003). “Chord: a scalable peer-to-peer lookup
protocol for internet applications”. In: Networking, IEEE/ACM Transactions on 11.1,
pp. 17–32.

Stollberg, Michael, Martin Hepp, and Jorg Hoffmann (2007). A caching mechanism for
semantic web service discovery. Vol. 4825. Lecture Notes in Computer Science.
Springer.

Stroulia, Eleni and Yiqiao Wang (2005). “Structural and semantic matching for assessing
web-service similarity”. In: International Journal of Cooperative Information Systems
14.04, pp. 407–437.

Swain, Philip H and Hans Hauska (1977). “The decision tree classifier: Design and
potential”. In: Geoscience Electronics, IEEE Transactions on 15.3, pp. 142–147.

Sycara, Katia et al. (2003). “Automated discovery, interaction and composition of
semantic web services”. In: Web Semantics: Science, Services and Agents on the
World Wide Web 1.1, pp. 27–46.

Sycara, Katia and Massimo Paolucci (2004). “Dynamic discovery and coordination of
agent-based semantic web services”. In: Internet Computing, IEEE 8.3, pp. 66–73.

Torres, Romina, Hernan Astudillo, and Rodrigo Salas (2011). “Self-adaptive fuzzy QoS-
driven web service discovery”. In: Services Computing (SCC), 2011 IEEE International
Conference on. IEEE, pp. 64–71.

Toutanova, Kristina and Christopher D Manning (2000). “Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger”. In: 38th Annual Meeting

of the Association for Computational Linguistics-Volume 13. Association for
Computational Linguistics, pp. 63–70.

Universal Description, Discovery and Integration (UDDI). http://uddi.xml.org/.
Accessed: 1-5-2013.

Varguez-Moo, Martha, Francisco Moo-Mena, and Victor Uc-Cetina (2013). “Use of
Classification Algorithms for Semantic Web Services Discovery”. In: Journal of
Computers 8.7, pp. 1810–1814.

Verma, Kunal, Karthik Gomadam, et al. (2005). “The METEOR-S approach for
configuring and executing dynamic web processes”. In: Technical Report.

Vu, Le-Hung, Manfred Hauswirth, and Karl Aberer (2006). “Towards p2p-based
semantic web service discovery with QoS support”. In: Business Process
Management Workshops. Springer, pp. 18–31.

Wagstaff, Kiri, Claire Cardie, Seth Rogers, Stefan Schrodl, et al. (2001). “Constrained
k-means clustering with background knowledge”. In: ICML. Vol. 1, pp. 577–584.

Wang, Hongbing. et al. (2010). “Web service classification using Support Vector
Machine”. In: Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE
International Conference on. Vol. 1. IEEE, pp. 3–6.

Wang, Lijuan, Jun Shen, and Jianming Yong (2012). “A survey on bio-inspired algorithms
for web service composition”. In: Computer Supported Cooperative Work in Design
(CSCWD), 2012 IEEE 16th International Conference on. IEEE, pp. 569–574.

Wang, Shuying et al. (2006). “An agent-based Web service workflow model for inter-
enterprise collaboration”. In: Expert Systems with Applications 31.4, pp. 787–799.

Wang, Y and E Stroulia (2003). “Flexible interface matching for web-service discovery”.
In: Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the
Fourth International Conference on. IEEE, pp. 147–156.

Weka 3 - Data Mining Software in Java. Visited: Jan 2015.
Wu, Chen and Elizabeth Chang (2007). “Searching services ‘on the web’: A public web

services discovery approach”. In: Signal-Image Technologies and Internet-Based
System, 2007. SITIS’07. Third International IEEE Conference on. IEEE,
pp. 321–328.

Wu, Chen, Elizabeth Chang, and Ashley Aitken (2008). “An empirical approach for
semantic web services discovery”. In: Software Engineering, 2008. ASWEC 2008.
19th Australian Conference on. IEEE, pp. 412–421.

Wu, Yaowu, Chun-Gang Yan, Zhenyang Ding, Guo-Ping Liu, Peng Wang, Chao Jiang,
and MengChu Zhou (2015). “A Multilevel Index Model to Expedite Web Service
Discovery and Composition in Large-Scale Service Repositories”. In: Services
Computing, IEEE Transactions on 99, pp. 1–10. issn: 1939-1374.

http://uddi.xml.org/

Xiao, Hua, Ying Zou, Joanna Ng, and Leho Nigul (2010). “An approach for context-
aware service discovery and recommendation”. In: Web Services (ICWS), 2010 IEEE
International Conference on. IEEE, pp. 163–170.

Xie, Fei, Haitao Gong, Donghua Deng, Shu Wang, George Wang, Jicheng Hu, and Phillip
Sheu (2006). “Integrating semantic web services for declarative accesses in natural
language”. In: Multimedia, 2006. ISM’06. Eighth IEEE International Symposium on.
IEEE, pp. 201–208.

Xie, Ling-li, Fu-zan Chen, and Ji-song Kou (2011). “Ontology-based semantic web services
clustering”. In: Industrial Engineering and Engineering Management (IE&EM), 2011
IEEE 18Th International Conference on. IEEE, pp. 2075–2079.

Xu, Jiuyun and Stephan Reiff (2008). “Towards heuristic web services composition using
immune algorithm”. In:Web Services, 2008. ICWS’08. IEEE International Conference
on. IEEE, pp. 238–245.

Xu, Ziqiang et al. (2007). “Reputation-enhanced QoS-based web services discovery”. In:
Web Services, 2007. ICWS 2007. IEEE International Conference on. IEEE,
pp. 249–256.

Ye, Lei and Bin Zhang (2006). “Discovering web services based on functional semantics”.
In: Services Computing, 2006. APSCC’06. IEEE Asia-Pacific Conference on. IEEE,
pp. 348–355.

Yu, Jian, Quan Z Sheng, Jun Han, Yanbo Wu, and Chengfei Liu (2012). “A semantically
enhanced service repository for user-centric service discovery and management”. In:
Data & Knowledge Engineering 72, pp. 202–218.

Zapater, Samper, Dolores Escriva, Francisco Garcia, Juan Dura, and Jose Martinez
(2015). “Semantic web service discovery system for road traffic information services”.
In: Expert Systems with Applications 42.8, pp. 3833–3842.

Zhang, Liang-Jie, Rama Kalyani Tirumala Akkiraju, Henry Chang, Tian-Jy Chao, Jen-
Yao Chung, David B Flaxer, Jun-jang Jeng, Pooja Yadav, and Qun Zhou (2007).
Method and structure for federated web service discovery search over multiple registries
with result aggregation. US Patent 7,177,862.

Zhang, Yilei, Zibin Zheng, and Michael Lyu (2010). “WSexpress: A QoS-aware search
engine for web services”. In: Web Services (ICWS), 2010 IEEE International
Conference on. IEEE, pp. 91–98.

— (2011). “WSPred: A Time-Aware Personalized QoS Prediction Framework for Web
Services”. In: Proceedings of IEEE Symposium on Software Reliability Engineering
(ISSRE’11).

Zhao, Ben Y, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and
John D Kubiatowicz (2004). “Tapestry: A resilient global-scale overlay for service
deployment”. In: Selected Areas in Communications, IEEE Journal on 22.1, pp. 41–53.

Zheng, Zibin, Yilei Zhang, and Michael R Lyu (2014). “Investigating QoS of real-world
web services”. In: Services Computing, IEEE Transactions on 7.1, pp. 32–39.

Zhou, Yang, Ling Liu, Chang-Shing Perng, Alfons Sailer, Ignacio Silva-Lepe, and Zhiyuan
Su (2013). “Ranking services by service network structure and service attributes”. In:
Web Services (ICWS), 2013 IEEE 20th International Conference on. IEEE, pp. 26–33.

Bio-data

Name: Sowmya Kamath S

Address: Assistant Professor
Department of Information Technology,
NITK Surathkal

Email: sowmyakamath@nitk.ac.in

Mobile No: +91 824 247 3557

Qualification: Ph.D. in Information Technology, NITK
Surathkal

M.Tech. in Computer Science & Engineering,
Manipal University

B.Tech. in Electronics & Electrical Engineering,
Manipal University

	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations and Nomenclature
	Introduction
	Web Services
	Semantics for Web Services
	Need for Semantics
	A Motivating Example
	Major Challenges

	Web Service Discovery
	Basic and Composite Services
	Current Scenario
	Prevalent Issues in Web Service Discovery

	Summary
	Organization of the Thesis

	Literature Review
	Web Service Discovery - A Review
	Web Service Discovery Architectures
	Centralized Architectures
	Decentralized Architectures
	Centralized vs. Decentralized Approaches
	Hybrid Architectures

	Web Service Discovery Techniques
	Functional Aspects based Discovery
	Non-functional Aspects based Discovery
	Functional vs. Non-functional Service Discovery

	Remarks

	Adding Semantics to Web Service Descriptions
	Using Semantic Web Service Formalisms
	Generating Service Metadata
	Remarks

	Review of Web Service Categorization Approaches
	Taxonomy based
	Clustering based
	Classification based
	Hybrid Approaches
	Remarks

	Understanding User Requirements
	Using Limited Vocabulary Requests
	Using Semi-structured Queries.
	Using Natural Language Interfaces.
	Remarks

	Composite Web Service Discovery - Review
	Indexing based
	Semantics/Ontology based
	Graph based
	Remarks

	Research Directions
	Summary

	Problem Description
	Problem Definition
	Scope of the Work
	DWDS – Distributed Web service Discovery Framework using Semantics
	Summary

	Finding Distributed Web Services
	Introduction
	Problem Statement
	The Proposed Framework - DWDS
	Building the Service Repository
	SSC Crawling Modes

	Autonomic Repository Management
	The DWDS Change Propagation Strategy
	Event Driven Change Propagation

	Experimental Results and Discussion
	SSC Performance
	Theoretical Analysis of SSC Performance

	Volume Statistics of the Service Collection
	Quality Statistics of the Service Collection
	Temporal Statistics of the Service Collection

	Summary

	Generating Metadata for Web Services
	Introduction
	Problem Statement
	Background
	Natural Language Documentation of a Service
	Functional Semantics of a Service

	Capturing the Functional Semantics of Services
	Feature Extraction
	Automatic Service Tagging
	Service Similarity Computation

	Service Categorization using Similarity
	Similarity based Clustering
	Cluster Tagging

	Similarity based Classification

	Experimental Results and Discussion
	Quality of Service Tagging
	Service Clustering Performance
	Service Classification Performance
	Web Service Retrieval Performance

	Summary

	Dynamic Clustering of Web Services
	Introduction
	Problem Statement
	Background
	Proposed Dynamic Clustering Approach
	Bird Intelligence based Incremental Clustering (BI^2C)
	The BI^2C Algorithm
	The Basic Flocking Model
	The Extended Flocking Model
	Model Constraints
	Flocking Methodology
	Web Services as a Multi-agent Framework
	Optimizing the Clustering Process
	Clustering Phases

	Automatic Cluster Tagging

	Experimental Results & Discussion
	Incremental Clustering Performance
	Goodness of Clustering
	Evaluating the Cluster Tagging Process
	Visualizing the Clustering Process

	Summary

	Semanticising the User Query
	Introduction
	Problem Statement
	Proposed Methodology
	Query Analysis Engine
	A Sample Query Resolution Scenario

	Query-Service Similarity
	Service Selection and Ranking

	Experimental Results
	Web Service Retrieval
	Serving Complex Queries
	Serving Simple Queries.

	Web Service Retrieval Time

	Summary

	Composite Service Discovery
	Introduction
	Problem Statement
	Proposed Methodology
	Capturing Service Dependencies
	Representing Service Dependencies
	Serving Complex Queries

	Experimental Results and Analysis
	Web Service Retrieval
	Composite Service Discovery - An Example Scenario
	Composite Template Generation Accuracy
	Theoretical Analysis

	Summary

	Conclusions and Future Work
	Future Scope

	Publications based on Research Work
	References

