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ABSTRACT 

Aluminium-based metal matrix composites (MMCs) reinforced with ceramic particles 

are the advanced materials known for their good damping properties, high specific 

strength and high wear resistance. MMCs are increasingly used in aeronautical and 

automobile industries and in military applications. In addition, the sporting goods 

industry has also been in the forefront of MMCs development to capitalise on the 

materials high specific properties.  

Despite many advantages, full implementation of MMCs is cost-prohibitive. 

This is partially due to the poor machinability of the materials. Although near-net-

shape MMC components can be produced, finishing is still required for obtaining the 

desired dimensional accuracy and surface finish. Significant cost and fabrication 

problems, including machining, must be overcome for the successful application of 

these composites. Surface finish and surface integrity are important for surface 

sensitive parts subjected to fatigue. Unconventional processes produce better surface 

finish but they results in subsurface damage during the machining of MMCs. Hence, 

finishing processes such as grinding and allied abrasive machining are used to 

improve the surface integrity of machined MMCs. 

The grindability of aluminium-based MMCs reinforced with ceramic particles 

is investigated in this dissertation. By the analysis of variance, a complete realization 

of the grinding process and their effects was achieved. Mathematical model is 

established for specific energy, metal removal rate and surface roughness from 

Response surface methodology (RSM). The main objective of this research is to 

determine the favourable grinding conditions for aluminium-based MMCs reinforced 

with ceramic particles. Not many researchers have attempted the optimisation of the 

surface grinding process by considering the specific energy as a performance 

parameter during grinding of MMCs. A novel approach of multi-objective 

optimization based on Genetic Algorithm and Desirability function approach was 

conducted to achieve the desired objective. Very few research works have been 

attempted towards multi objective optimisation involving surface roughness, metal 

removal rate and specific energy as the performance parameters in total. 

The first part of the presented research concentrates on influence of process 

variables on specific energy, metal removal rate and surface roughness obtained in 



 
 

grinding of Al6061-SiC35P composites using Taguchi’s design of experiments. From 

the above investigation, it is observed that feed is the dominant factor affecting the 

specific energy. Depth of cut is the dominant factor affecting the Metal removal rate 

and volume percentage of SiC is the dominant factor affecting the surface roughness.   

The second part of presented research concentrates on mathematical modelling 

RSM. From the study, it is revealed that the second order RSM model developed for 

the performance parameters indicates good fit with the experimental results. 

Desirability function approach for multi-objective optimisation is adopted to choose 

the process variables that are favourable to achieve the optimal values of specific 

energy, metal removal rate and surface roughness. 

The third part of the research involves the application of novel genetic 

algorithm on multi objective optimisation of specific energy (u), metal removal rate 

(Qw) and surface roughness (Ra). The results obtained from this novel genetic 

algorithm were compared with RSM and the results obtained were in fairly close 

agreement.  

Finally, the confirmatory experiments were carried out to validate the results 

obtained from RSM and novel genetic algorithm. From the experiments, it was 

observed that, deviation between the experimental and predicted responses were 

within 14%.  However novel genetic algorithm compilation consumes less amount 

time in comparison to conventional non-dominated genetic algorithm (NSGA-II). 

Hence from the study, it can be concluded that the developed novel genetic algorithm 

model can be effectively used for the prediction of specific energy, metal removal rate 

and surface roughness. 

The understanding gained from Taguchi’s design of experiments, RSM, 

Desirability function approach and novel genetic algorithm in this research can be 

used to develop future guidelines for grinding of aluminium-based MMCs reinforced 

with ceramic particles. 

Key words: discontinuously reinforced aluminium composites (DRACs), Specific 

energy, Metal removal, rate, surface roughness, Taguchi design of experiments, 

Response surface methodology, Novel genetic algorithm. 
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Chapter 1 

 
INTRODUCTION 

The term “composite” widely refers to a combination of two or more distinct materials 

having interface between them. It is a system composed of a discrete constituent (the 

reinforcement) distributed in a continuous phase (the matrix), and which derives its 

distinguishing characteristics from the properties of its constituents, from the shape, size 

and orientation of the constituents, and from the properties of the boundaries (interfaces) 

between different constituents. Metal matrix composites (MMCs) are composed of an 

element or an alloy matrix in which a second phase is embedded and distributed to 

achieve some property improvement. MMCs are a class of materials with a wide variety 

of structural, wear, and thermal management applications. Metal-matrix composites are 

capable of providing higher-temperature operating limits than their base metal 

counterparts, and they can be tailored to give improved strength, stiffness, thermal 

conductivity, abrasion resistance, creep resistance, or dimensional stability [ASM Hand 

book, Vol 21, 2001]. Unlike polymer-matrix composites, they are nonflammable, do not 

outgas in a vacuum, and suffer minimal attack by organic fluids such as fuels and 

solvents. MMCs tend to have higher strength to weight and stiffness to density ratios, as 

compared to monolithic metals [ASM Hand book, Vol 21, 2001]. 

In Aluminium Matrix Composites (AMCs) one of the constituents is 

aluminium/aluminium alloy, which forms percolating network and is termed as matrix 

phase. The other constituent is embedded in this aluminium/aluminium alloy matrix and 

serves as reinforcement, which is usually non-metallic such as SiC, TiC, TiB2, fly ash 

Al2O3 etc.  AMCs are intended to substitute monolithic materials including aluminium 

alloys, ferrous alloys, titanium alloys steel and polymer based composites in several 

applications. It is now recognised that in order to substitute monolithic materials for 

AMCs in engineering system, there is a compelling need to redesign the whole system to 

gain additional weight and volume savings. In fact according to the UK Advisory Council 
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on Science and Technology, AMCs can be viewed either as a replacement for existing 

materials, but with superior properties, or as a means of enabling radical changes in 

system or product design [Surappa 2003].   

First section of this chapter explains the properties, characteristics, and production 

of MMCs. Second section describes the basic grinding variables and grinding of MMCs. 

A brief introduction about multi objective optimisation is cited in third section.  

1.1 PROPERTIES OF MMCs 

Properties of MMCs can be varied by altering the nature of constituents and their volume 

fraction. Particle-reinforced Aluminium Matrix Composites (PMACs), often called as 

discontinuously reinforced Aluminium metal matrix composites (DRACs), constitute 5 – 

20 % of the new advanced materials [El-Gallab and Sklad 1998]. These composites 

generally contain equiaxed ceramic reinforcements with an aspect ratio less than 5. 

Ceramic reinforcements are generally oxides or carbides or borides (Al2O3 or SiC or 

TiB2) and present in volume fraction less than 30% when used for structural and wear 

resistance applications. However, in electronic packaging applications reinforcement 

volume fraction could be as high as 70% [Surappa 2003]. In general, DRACs are 

manufactured either by solid state (Powder Metallurgy processing) or liquid state (stir 

casting, infiltration and in-situ) processes. The microstructure of the processed composites 

influences and has a great effect on the mechanical properties. Based on the size, shape 

and amount of the second phase, the property of the composite varies. Generally, 

increasing the weight fraction of the reinforcement phase in the matrix leads to an 

increased stiffness, yield strength and ultimate tensile strength. However, the low ductility 

of particulate reinforced MMCs is the major drawback that prevents their usage as 

structural components in some applications. 

1.1.1 Basic properties of composite materials 

In the field of metal matrix composite (MMC), particle reinforced matrix materials are 

considered to be a replacement for steel in the automobile and machine industry. Useful 
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performance characteristics of these composites have been gradually recognised and many 

MMC components are produced in these industries. The inclusion of hard particles in the 

ductile matrix material strengthens the composite with excellent mechanical properties 

such as increased yield and tensile strength. The mechanical properties of the metal matrix 

composite can be engineered by varying the shape, the size, the volume fraction, and the 

orientation of the reinforced particles [Huda et al. 1996]. 

The reinforcement of metals can have many different objectives. The 

reinforcement of light metals opens up the possibility of application of these materials in 

areas where weight reduction has first priority. There are several other property 

improvements due to reinforcement. They are;  

• Greater strength 

• Improved stiffness 

• Improved high temperature properties 

• Controlled thermal expansion coefficient 

• Thermal/heat management 

• Enhanced and tailored electrical performance 

• Improved abrasion and wear resistance 

• Control of mass (especially in reciprocating applications) 

• Improved damping capabilities 

• Improved corrosion resistance. 

Determination of the basic properties of composite materials was conducted by 

many of the researchers in science and engineering. J.C. Maxwell in 1873 and Lord 

Rayleigh in 1892 computed the effective conductivity of composites consisting of a 

matrix and certain distribution of spherical particles [Broutman et al. 1967].  A fiber 

composite is highly anisotropic and has many stiffness and strength parameters. The 

strength and stiffness in the fiber direction are higher than those in the transverse 

direction.  Furthermore, the matrix properties may be strongly influenced by 
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environmental changes such as heating, cooling and moisture absorption.  It results in 

enormous varieties of property changes making the analytical modeling more complex. 

One of the most important factors determining the properties of composite is the 

relative proportion of the matrix and the reinforcing phases.  The relative proportions can 

be given as the weight fractions or the volume fractions.  Among these, the volume 

fractions are extensively used in the theoretical analysis of composite materials  

Volume fraction of the fiber, f
f

c

v
V

v
=            (1.1)  

Volume fractions of the matrix, Vm= vm / vc = 1 - Vf                 (1.2) 

where, vf, vm and vc are the volumes of the fiber, matrix and the composite respectively 

[Jones1992, Kaw 1997]. 

1.1.2 Characteristics of the composite materials 

Composites consist of one or more discontinuous phases embedded in a continuous phase. 

The discontinuous phase is usually harder and stronger than the continuous phase and is 

called the ‘reinforcement’ or ‘reinforcing’ material, where as the continuous phase is 

termed as the ‘matrix’. 

Properties of composites are strongly dependent on the properties of their 

constituents, their distribution and the interactions among them. Apart from the above said 

properties, the size, density, type of reinforcing particles, and its distribution have a 

pronounced effect on the performance of particulate composites. The variables affecting the 

distribution of particles are solidification rate, fluidity, type of reinforcement, and the method 

of incorporation. The concentration and orientation of the reinforcement will also affect 

the properties of composites [Das et al., 1989]. 

The shape of the discontinuous phase (which may by spherical, cylindrical, or 

rectangular cross-sanctioned prisms or platelets), the size and size distribution (which 

influence the texture of the material) and volume fraction determine the interfacial area, 

which plays an important role in determining the extent of the interaction between the 
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reinforcement and the matrix. Concentration, usually measured as volume or weight 

fraction, determines the contribution of a single constituent to the overall properties of the 

composite. It is not only the single most important parameter influencing the properties of 

the composite, but also an easily controllable manufacturing variable used to alter its 

property. The orientation of the reinforcement affects the isotropy of the system. 

1.2 CLASSIFICATION OF COMPOSITE MATERIALS 

Composite materials can be classified in different ways [Agarwal and Broutman 1980]. 

Classification based on the geometry of a representative unit of reinforcement is 

convenient since it is the geometry of the reinforcement which is responsible for the 

mechanical properties and high performance of the composites. The two broad classes of 

composites are (1) Particulate composites and (2) Fibrous composites. 

1.2.1 Particulate composites 

Among all the AMCs, particle reinforced AMCs constitute largest quantity of composites 

produced and utilised on volume and weight basis[Surappa 2003].These composites are 

often called as discontinuously reinforced composites. As the name indicates, the 

reinforcement is of particle nature (platelets are also included in this class). It may be 

spherical, cubic, tetragonal, a platelet, or other regular or irregular shapes, but it is 

approximately equiaxed. In general, particles are not very effective in improving the 

fracture resistance but they enhance the stiffness of the composite to a limited extent. 

Particle fillers are widely used to improve the properties of matrix materials such as to 

modify the thermal and electrical conductivities, improve performance at elevated 

temperatures, reduce friction, increase wear and abrasion resistance, improve 

machinability, increase surface hardness and reduce shrinkage. These composites are 

isotropic in nature and can be subjected to a variety of secondary forming operations such 

as extrusion, rolling and forging.  
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1.2.2 Fibrous composites 

A fiber is characterised by its length being much greater compared to its cross-sectional 

dimensions. Fibrous composites contain reinforcements with an aspect ratio of greater 

than 5, but are not continuous. These composites are either short-fibre composites or 

whisker-reinforced composites. The dimensions of the reinforcement determine its 

capability of contributing its properties to the composite. Fibers are very effective in 

improving the fracture resistance of the matrix since a reinforcement having a long 

dimension discourages the growth of incipient cracks normal to the reinforcement that 

might otherwise lead to failure, particularly when reinforced with brittle matrices. 

Fibers, known for their small cross sectional dimensions, are not used directly in 

engineering applications. Hence they are embedded in matrix materials to form fibrous 

composites. The matrix will bind the fibers together, transfer loads to the fibers, and 

protect them against environmental degradation and damage due to handling. 

Mechanical properties of whisker reinforced composites are superior compared to 

particle or short fibre reinforced composites. However, in the recent years usage of 

whiskers as reinforcements in AMCs is fading due to perceived health hazards and, hence 

of late commercial exploitation of whisker reinforced composites has been very limited. 

Short fibre reinforced AMCs display characteristics in between that of continuous fibre 

and particle reinforced AMCs. 

Man-made filaments or fibers of non polymeric materials exhibit much higher 

strength along their length since large flaws, which may be present in the bulk material, 

are minimised because of the small cross-sectional dimensions of the fiber. In the case of 

polymeric materials, orientation of the molecular structure is responsible for high strength 

and stiffness. 

1.3 PRODUCTION OF METAL MATRIX COMPOSITES 

Metal matrix composite materials are produced by casting, powder metallurgy, 

atomisation and reactive processing methods. By means of casting methods, composite 
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materials reinforced by dispersion particles, platelets, non-continuous (short) fibres and 

continuous (long) fibres [Kainer 1997] as well as composite materials with hybrid 

reinforcement composed of particles and fibres are produced. By powder metallurgy 

methods, composite materials reinforced by dispersion particles, platelets, non-continuous 

fibres and continuous fibres are manufactured. Atomisation is a spray forming method and 

reactive processing involves exothermic dispersion. 

1.3.1. Production of composite materials by casting methods 

Composites are produced through casting method by blending of reinforcing elements in 

molten alloy matrix reinforced with dispersion particles and short fibres [Corbin and 

Wilkinson1994]. Normally mixing process is performed under atmospheric pressure and 

reinforcing elements should be characterised by good wettability by the molten metal 

alloy. Reinforcing particles showing poor wettability with the molten alloy can be covered 

with layers improving the mutual wettability; for instance in the case of graphite 

strengthening particles in A356 aluminium alloy, they were covered with nickel to 

improve the mutual wettability [Ames and Alpas 1995].  

1.3.1.1 Stir casting process (Al6061Composites):  

In this method Al6061 alloy in the form of ingots were used for the preparation of 

MMC’s. The cleaned metal ingots were melted to the desired super heating temperature of 

7500C- 800°C in graphite crucibles under a cover of flux in order to minimise the 

oxidation of molten metal. 3-phase electrical resistance furnace shown in Figure 1.1 is 

used for melting. The super heated molten metal was degassed at a temperature of 780°C. 

SiC particulates, preheated to around 600°C were then added to the molten metal and 

stirred continuously by using mechanical stirrer shown in Figure 1.1. The stirring time 

varies between 5 – 8 minutes at an impeller speed of 250-300 rpm. During stirring, 

Magnesium is added in small quantities to increase the wettability of SiC particles. The 

dispersion of the preheated SiC particulates was achieved in accordance with the vortex 

method. The melt with the reinforced particulates were poured into the dried, coated, 

cylindrical permanent metallic moulds to produce the desired castings. 
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Figure 1.1 Schematic of Stir casting process 

1.3.1.2 Squeeze casting process:  

Currently, the most common production method of composite materials is infiltration of 

porous preforms made of ceramic fibres under pressure with molten light alloys. There are 

direct squeeze casting and indirect squeeze casting of preliminary heated preforms, and 

these processes are shown schematically in Figure 1.2.  

Direct squeeze casting is applied for the production of composite elements 

characterised by relatively simple shapes, and casting dies for direct squeeze casting are 

relatively simple and of reasonable price. The application of indirect squeeze casting 

makes possible the production of more complex composite parts, but it results in more 

expensive casting dies. 
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1Figure 1.2.  Production of cast composite materials by (a) direct squeeze casting 

method and (b) indirect squeeze casting method. 

1.3.2 Production of composite materials by powder metallurgy methods 

Powder metallurgy methods are based on the classical blending of matrix powders and 

reinforcing elements (dispersion powders, platelets and ceramic fibres) and further cold 

pressing and sintering followed by plastic working (forging, extrusion). Cold plastic 
                                                 
1 Courtesy: Kaczmar J.W.  “The production and application of metal matrix composite materials”, 

Journal of Materials Processing Technology 106 (2000) 58-67 
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working is normally applied when a green part is preliminary sintered and hot plastic 

working occurs when only cold pressing is applied. 

The method described above, on account of its simplicity, is applied widely for the 

production of composite materials with magnesium alloys matrix, aluminium alloys 

matrix, and copper matrices [Kaczmar J.W. 1989]. 

Mechanical alloying is nowadays one of the most widely applied methods for the 

production of composite materials reinforced by dispersion particles. The process is 

performed in a high-energy ball mill (attritor), making possible the introduction of hard 

dispersion particles into a relatively soft metal matrix. The composite powders, so 

produced are then pressed and consolidated by hot plastic working (extrusion, forging or 

hot isostatic pressing) or cold pressed, sintered and cold plastic worked. The mechanical 

alloying technique is applied for the production of composite materials, materials 

characterised by very fine grains, amorphous materials and magnetic materials [Bowman 

et al. 1995]. 

1.3.3 Spray forming 

The idea of the spray forming process is based on the atomisation of metal matrix 

powders with simultaneous injection of dispersion powders on the substrate and is 

nowadays increasingly more widely applied for the production of large size elements from 

composite materials and is shown schematically in Figure 1.3. 

By means of the spray forming process, composite powders reinforced with 

dispersion particles can also be manufactured. Further, by powder metallurgy methods 

(pressing, sintering, hot plastic working) composite materials can be manufactured. This 

process has such advantages as the possibility of introduction of different reinforcing 

particles, and makes it possible to have an effect on the chemical reactions between matrix 

and reinforcement. This leads to production of in situ composite materials. 
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 2Figure 1.3 Spray forming process 

Due to the relatively low heat convection during the atomisation process, it can be 

realised at relatively low temperatures, which is due to the limited chemical reactions at 

the interphases. This makes possible the production of such combinations of metal matrix 

and ceramic particles that would react intensively at elevated temperatures (for instance 

during the squeeze casting process) when harmful chemical compounds would be formed 

at the interphases. 

                                                 
2 Courtesy: Kaczmar J.W. “The production and application of metal matrix composite materials”, 

Journal of Materials Processing Technology 106 (2000) 58-67 
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On account of the high cooling rate, the materials produced are characterised by 

relatively small grains, increased solid state solubility, and the possibility of forming non-

equilibrium phases and the lack of macro segregation. 

1.3.4. XDTM process (Reactive Processing) 

The XDTM (Exothermic Dispersion) process was developed by Martin Marietta 

Corporation (1987) for fabricating in-situ composites. It is a rather different approach to 

MMC manufacture than the methods mentioned in the previous sections. In this process, 

the matrix metal is mixed with compounds with which it reacts exothermally. When this 

mixture is heated to a high temperature (usually above the melting point of the matrix or 

to a point where a self-propagating reaction takes place), the constituent components react 

exothermally to form a dispersion of submicroscopic reinforcing particles in the matrix. 

Hence the name "XD", since the particles of the reinforcing phase are formed 

exothermally at high temperatures, they tend to be very stable during subsequent 

processing and use at elevated temperatures. A wide range of ceramic compounds can be 

formed by the XDTM process [Martin Marietta Corporation 1987]. However, the two that 

have received wide attention are TiB2 and TiC. These can be formed by the following 

reactions. 

AlTiBAlTiB yields + →++ 22  

and 

AlTiCAlTiC yields + →++  

 

There is little information in the open literature regarding (i) the cost of materials 

produced by the XDTM process, (ii) the porosity levels in the as-reacted materials, and (iii) 

the control of the size and spacing of the reinforcing particles. The production of a variety 

of MMCs by this process has been reported. These include matrices of Ai, Ti, Fe, Cu, Pb, 

and Ni as well as inter-metallics such as TiAl, Ti3AI, and NiAl [Lewandowski et al. 1988, 

Christodoulou et al. 1988]. 
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1.4. ENGINEERING PROPERTIES AND APPLICATIONS OF MMCs  

A brief discussion of some engineering properties of particle-reinforced MMCs is 

presented here to show how these properties are influenced by the addition of ceramic 

particles to aluminum alloys. The enhancement of specific stiffness, specific strength, 

wear and creep resistance, and the reduction of density and coefficient of thermal 

expansion are some of the most attractive features of MMCs. Table 1.1 lists the 

engineering property of the prominent alloys and the Al-SiC composites. The correct 

selection of reinforcement is very important in yielding desired resultant material 

properties. An improper reinforcement selection may lead to less-than-desirable 

composite materials properties, difficulty in fabrication of end product, and high 

cost.Stiffness is a critical design parameter for many engineering components because the 

avoidance of excessive elastic deflection in service is the principal overriding 

consideration. A typical potential application of improved creep resistance is in the 

development of high-temperature components, such as turbine engine parts where the aim 

is to replace some heavy components with components made of much lighter substitute 

materials. 

Table 1.1 Mechanical Properties of SiC particle-Reinforced Aluminium [Kutz 2008] 

Property Aluminium 

(6061-T6) 

Titanium 

(6Al-4V) 

Steel 

(4340) 

Composie particle volume fraction  

25 55 70 

Modulus (GPa) 69 113 200 114 186 265 

Tensile yield 
strength (MPa) 275 1000 1480 400 495 225 

Tensile ultimate 
strength (MPa) 310 1100 1790 485 530 225 

Elongation (%) 15 5 10 3.8 0.6 0.1 

Density g/cm3 2.77 4.43 7.76 2.88 2.96 3.00 

Specific 
modulus GPa 

5 26 26 40 63 88 
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1.4.1 Stiffness 

Elastic modulus is one mechanical property that is always significantly increased by the 

addition of ceramic particles into a metallic alloy. The enhancement of stiffness achieved 

by the addition of the reinforcement is retained at high temperatures and this is of great 

benefit in the design of rotating parts, support members, and structural bodywork. 

Examples of applications that depend primarily on stiffness include drive shafts, 

electronic instrument racks, bicycle frames, and inertial guidance spheres for missiles.  

The elastic modulus of composite increases with the volume fraction of the 

reinforcing phase and can be calculated from the rule of mixtures (ROM) expression. It 

should be noted that the ROM is appropriate for estimating the Young's modulus of 

continuous reinforcement, but it overestimates that of discontinuous reinforcement. Hence 

this has been modified in the Halpin-Tsai equation, [Halpin et al. 1967]  
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and Ec, Em, Ep are the elastic moduli of the composite, matrix, and particle, respectively, s 

is the particle aspect ratio, and Vp, the volume fraction of the particle. The elastic modulus 

can also be calculated using the Eshelby equivalent inclusion method, and this approach is 

also known to be in good agreement with experimental data. 

1.4.2 Elongation 

It can be seen from Table 1-1 that a major limitation in the engineering properties of 

aluminium alloys is the rather high ductility (as quantified by percent elongation). The 

tensile elongation decreases with increasing particle content. Similarly, tensile elongation 

decreases with increased aging time in heat treatable alloys [ASM Hand Book Vol. 2, 
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2000]. The increase in stiffness and decrease in ductility with increasing particle content 

reflect the interactions between particles and the intervening matrix within MMCs. 

Previous work has demonstrated that composite failure is associated with particle 

cracking and voids formation in the matrix within clusters of particles. Lloyd, 1994 

Manoharan et al. 1990 and Whitehouse and Clyne 1993 have suggested that, particle 

fracture is more prevalent in coarser particles than in the finer ones due to the higher 

probability of finding crack-initiating defects in the former than in the latter particles. The 

failure associated with particle clusters is attributed to the higher stress generated in such 

regions. It has been reported that matrix deformation between closely spaced elastic 

particles would be highly constrained resulting in local stress levels which are many times 

the matrix flow stress [Miracle and Donaldson 2001]. This behavior has been confirmed 

by continuum modeling [Whitehouse et al. 1992; Christman et al. 1989]. Further, larger 

the particle size, more the load due to conventional fiber loading and end loading 

mechanisms. For Al-SiCp composites, it has been observed that particle cracking is an 

important failure mechanism for composites containing particles of size greater than 20 

microns [Lloyd, 1989].The geometry of the reinforcement in MMCs has been shown to 

markedly affect matrix deformation behavior [Lloyd, 1989, Whitehouse and Clyne 1993, 

Brockenbrough et al. 1991, Padkin et al. 1987]. This is largely due to the fact that, the 

matrix stress and strain fields developed in response to external loads vary appreciably 

with the geometry of the reinforcing phase [Christman et al.1989, Brockenbrough et al. 

1991, Tvergaard 1990]. This has, in turn, been shown to alter fracture behavior 

particularly near the matrix/reinforcement interface. Song et al. (1996) studied the effects 

of particle shape on the fracture and ductility of a spherical and an angular particle-

reinforced 6061Al composite using scanning electron microscope (SEM) and transmission 

electron microscope (TEM). It was found that although the spherical particulate 

composite showed a slightly lower yield strength and work hardening rate, the ductility 

was significantly higher than the angular counterpart. The SEM fractography examination 

showed that during tensile loading, the spherical composite failed via void nucleation and 
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linking in the matrix near the reinforcement matrix interface whereas the angular 

composite failed through particle fracture and matrix ligament rupture. 

Experimental evidence in the literature shows that voids nucleate preferentially at 

the sharp corners of the reinforcements [Manoharan et al. 1990, Christman et al.1989, 

Nutt et al. 1987, Dragone and Nix 1990]. Fisher and Gurland (1981) have discussed the 

factors that tend to favor the formation of voids, which results in premature failure of the 

composite. FEM modeling has predicted that composites with spherical reinforcements 

have a higher ductility due to the lower matrix triaxiality [Song et al. 1996, Llorca et al. 

1991]. Therefore, a feasible way to improve composite ductility is to use spherical 

reinforcements to reduce stress concentrations and thereby bring about changes in the 

stress distribution throughout the composite. 

The stress distributions created around and within hard particles in a deforming 

matrix have been studied [Watt et al. 1996]. The way a particle gathers stress to itself 

depends on the elastic misfit between the two phases. The stress concentrations at sharp 

corners of the reinforcements give rise to intense localised plastic flow [Manoharan et al. 

1990, Dragone and Nix 1990, Christman et al. 1989]. The onset of local plastic 

deformation leads at first to plastic relaxation, but with further deformation, localised 

strain hardening once again leads to high stresses next to the particles [Watt et al. 1996]. 

Due to the complexity of the stress fields, dislocation glide, void nucleation, and 

growth in the matrix during plastic deformation proceed differently from those commonly 

found in unreinforced alloys [Shi et al. 1994]. The particles are known to carry much 

higher stresses than the matrix. This transfer of stress to the particles and the associated 

near-particle perturbations affect the failure modes, stiffening, and strength observed in 

MMCs. 
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1.4.3 Strength 

Mc Danels, (1985) carried out the first extensive study of the strength of several 

discontinuous MMCs reinforced with SiC whisker, particle and reported up to 60% 

increase in yield and ultimate tensile strengths. The exact value depended on the volume 

fraction of reinforcement, the type of alloy and its temper, and processing of the 

composite. Although subsequent work by different authors essentially confirmed these 

findings, the reported experimental data show a large degree of scatter due to differences 

in the material quality, processing routes, and testing parameters.  

Numerous strengthening mechanisms that may operate in particle-reinforced 

MMCs have been discussed in the literature and the behavior has been extensively 

modeled mathematically [Christman et al. 1989, Arsenault et al. 1991, Levy and 

Papazian1991, Humphreys 1998]. The strengthening process in the composite has been 

modeled based on two different approaches, namely, the continuum approach and the 

micromechanics approach. The continuum shear lag model, originally developed by Cox 

in 1952 and later modified by many researchers [Piggot, 1980, Nardone and Prewo1986], 

gives the composite strength )( cσ for a particulate composite as: 

                                        

4
4c m p m

SV Vσ σ
 + = +  

  
                            (1.4) 

where )( mσ  is the matrix yield stress, Vm, and Vp, are the volume fractions of the matrix 

and particle respectively, and S is the particle aspect ratio. The aspect ratios typically used 

for particulate MMCs vary from 1.0-1.5. The major difficulty with the continuum 

approach lies with its inability to account for the influence of the particles on the 

micromechanics of deformation. These include the very high work hardening at low 

strains as well as modification in microstructure such as grain size and dislocation density. 

In the micromechanics approach the micro structural effects arising from the 

presence of the particles are considered. The possible strengthening mechanisms reported 
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by Clyne and Withers1993, Arsenault et al. 1991, Levy and Papazian 1991 and 

Humphreys 1998 are: (i) dislocation strengthening due to difference in coefficient of 

thermal expansion between the matrix and the reinforcing particles (ii) dispersion 

strengthening caused by the resistance of closely spaced hard particles to the passing of 

dislocations (iii) strengthening from grain size refinement (iv) work-hardening due to the 

strain misfit between the elastic reinforcing particles and the plastic matrix. The extent to 

which the different mechanisms operate will depend on the microstructure and processing 

of the particular composite. 

In general, there are relatively few applications where the main attraction of using 

the MMCs stems from the greater strength offered, especially at room temperature. While 

the presence of ceramic particles improves the modulus at higher temperatures, they do 

not add significantly to the high temperature strength. Only a small improvement in 

strength over the monolithic alloy is retained at higher temperatures. The reason for this 

behavior is that the strengthening mechanisms operating in MMCs at low temperatures 

are relaxed at high temperatures. Thus the composite strength is primarily controlled by 

the high temperature strength of the matrix. 

1.4.4 Wear resistance 

Although different wear applications require different reinforcement types to achieve 

optimal wear rate reduction, there are many situations where wear rates are reduced by 

factors of up to ten by the introduction of the reinforcement. This property makes MMCs 

very attractive for bearings, bushings, cylinder liners, and brake rotors. In some cases, it is 

advantageous to control the distribution of reinforcement so as to provide material of high 

wear resistance in selected surface areas while other regions are suitably tough, strong, or 

thermally conducting. This can be done by selective reinforcement of critical areas 

through spray deposition or some other route. In general, it is important for wear 

resistance to be combined with other properties such as high thermal conductivity (to 

dissipate frictional heat) and high stiffness (to avoid wear from excessive deflections). 
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1.4.5 Applications of MMCs 

Aluminum alloys are preferred engineering material for automobile, aerospace and 

mineral processing industries for various high performing components that are being used 

for variety of applications owing to their lower weight, higher strength and excellent 

thermal conductivity. Among several series of aluminum alloys, heat treatable Al6061 and 

Al7075 are much explored. Among them Al6061 alloy are highly corrosion resistant and 

are easily available in nature [Rohatgi 1993]. 

Mechanical properties of DRACs are inferior compared to whisker/short 

fibre/continuous fibre reinforced AMCs but far superior compared to unreinforced 

aluminium alloys. These composites are isotropic in nature and can be subjected to a 

variety of secondary forming operations including extrusion, rolling and forging. 

Discontinuously reinforced metal-matrix composite (DRMMC) materials systems are 

commonly used in applications that require high specific materials properties, enhanced 

fatigue resistance, improved wear resistance, controlled expansion, or the ability to absorb 

neutron radiation (boron carbide). Additionally, DRMMC may be designed to yield a 

materials system that offers multiple roles. Some examples of multiple roles are DRMMC 

material systems that offer high strength and fatigue resistance for aerospace and 

mechanical applications, thermal management coupled with expansion control for space-

borne applications, moderate strength and neutron absorption capabilities for nuclear 

applications, high strength and wear resistance for heavy equipment applications, and 

impact/energy dissipation for armor applications.  

1.5. BASIC GRINDING PROCESS VARIABLES 

In the current century grinding is still often involved in the manufacturing of many 

products and components not only because the shaping technology such as sintering is not 

as accurate as required by the size specifications but also the economics involved 

[Marinescu et al. 2007]. The grinding process is almost chosen exclusively for finishing 

purposes since grinding has a high material removal rate combined with a moderate 

precision in comparison with other abrasive machining processes. However, it is well 
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known that the process may induce damage at the machined surface and specific energy 

involved is much higher compared to other machining processes. The surface damage 

may affect the functional properties of the material being ground. The integrity of the 

material at the machined surface may not always be obvious but is vitally important in 

many situations. The cracks may reduce the mechanical strength of a component. It may 

also be important to avoid tensile residual stresses that reduce strength and shorten service 

life. All these aspects of quality require careful design and control of the grinding process 

variables. 

 

 

Figure 1.4 Major process elements of surface grinding 

Figure 1.4 shows the major elements for a surface grinding process. Prior to 

selecting a fabrication process, the engineer usually knows the workpiece requirements – 

the desired size, shape, dimensions, tolerances, surface finish, and other elements related 

to the form and function of the workpiece. The required production rate is also usually 
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finish, mechanical 
properties 
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known. These elements, combined with the budget, strongly influence the engineer’s 

selection of an appropriate grinding machine, tooling, etc. These process elements are 

fixed based on design criteria and production requirements. 

There are many parameters in grinding that influence each other. A problem that 

continues to confront the manufacturing industry is establishment of efficient grinding 

conditions. This includes choosing a suitable grinding conditions and establishing the 

values of grinding parameters such as grinding ratio, material removal rate, specific 

energy, surface roughness and establishing dressing parameters.  

The basic grinding variables may be divided into four categories [Rowe 2009] 

(i) The output variables of the system comprise the work piece quality, 

productivity and cost, which should meet the design and manufacturing requirements. The 

output variables are therefore the main variables to be controlled. 

(ii) The process variables include power, force, temperature and vibration. The 

process variables are affected by the grinding conditions and affect the output variables. 

For example, higher the forces applied during the grinding process, the faster is the 

material removal rate. But the force also affects the other output variables such as surface 

roughness, the dynamic structure of the system and the onset of thermal damage etc.  

(iii) The input conditions may be divided in to the grinding conditions which are 

selectable and other conditions which are uncontrolled. Uncontrolled variables, e.g. 

material properties, cannot be changed by the operator but have a significant effect on the 

grinding process and output variables. The grinding conditions consist of the grinding 

wheel, the coolant, the dressing conditions and the grinding kinematics conditions. The 

kinematic variables affecting the process and output variables are: 

a. wheel speed vs m/s 

b. work speed vw, m/s 

c. feed rate f, mm/s 

d. depth of grind a, mm 
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(iv) Grinding conditions: The criterion for the selection of the grinding 

conditions is that the output variables must meet the requirements of design and 

manufacturing. The grinding conditions selected by the selection system may be 

considered as the solution to the grinding problem, where the operator presents the 

description of the grinding problem to the system.  

  (v) Grinding wheel: The grinding wheel characteristics have a direct effect on 

process efficiency, accuracy, surface roughness and surface integrity. It is therefore 

essential to select an appropriate grinding wheel. The best wheel for an application is a 

compromise between the ability to cut rapidly and the ability to hold form, maintain the 

surface roughness requirements and last a long time before dressing is required [ASM 

Handbook Vol. 21, 2000]. The specification of the grinding wheel consists of five parts: 

(a) abrasive type 

(b) abrasive grit size 

(c) grade 

(d) structure 

(e) bond 

The engineer has more latitude when it comes to the selection of an appropriate 

grinding wheel, truing and dressing method, and coolant. These choices are based largely 

on prior experience, machinability data handbook and recommendations from the 

manufacturers of grinding wheels and coolants. Once these process elements are chosen, 

they are usually held constant for convenience. 

Perhaps the most difficult part of planning the process is making intelligent 

decisions regarding appropriate values for material removal rate, wheel speed, table 

speed, down feed and cross feed. It requires the understanding of factors affecting 

grinding conditions.  

Grinding involves a large number of interacting variables. Before designing the 

selection system, it is necessary to decide which variables should feature in the selection 
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process. Consideration is therefore given to the relationships and interactions between 

these variables.  

1.6. GRINDING OF DISCONTINUOUSLY REINFORCED ALUMINIUM 

COMPOSITES (DRACs) 

Grinding is a complex process as there are several parameters in grinding that influence 

each other [malkin and Guo 2008]. These include the type of the grinding wheel, type of 

workpiece, wheel speed, cross feed, in-feed, depth of cut, dressing parameters, etc. Many 

of these parameters in grinding will influence each other [Li  1999]. A problem that 

continues to confront the manufacturing industry is establishment of efficient grinding 

conditions. This includes choosing a suitable grinding wheel, establishing the values of 

grinding process variables that are suitable for given conditions. The search for higher 

productivity, cost reduction, production systems flexibility, better surface and /or 

dimensional quality, besides development of new materials, is becoming more and more 

important in machined products industries, aiming to keep, or even increase their market 

share, in the global world. 

The aluminium alloy reinforced with discontinuous ceramic reinforcements is 

rapidly replacing conventional materials in various automotive, aerospace and automobile 

industries. But Al/SiC-MMCs machining is one of the major problems, which resist its 

wide spread engineering application [Allison and Cole 1993]. Though DRAC’s are 

produced to near net shaped products, final finishing is still required for obtaining the 

desired finish and dimensional accuracy. Therefore finishing processes such as grinding 

are used to improve the performance parameters of machined discontinuously reinforced 

aluminium composites. Grinding of DRACs is still a challenge for an industry. It is 

mainly because of the reason that when Al/SiC-MMC specimen slides over a hard 

grinding wheel during grinding, it always presents a newly formed surface to the same 

portion of the cutting edge and consequently due to friction, high temperature and 

pressure the particles of the Al/SiC-MMC adhere to the grinding wheel. In this way more 
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particles will join up with those already adhering and results in poor surface finish, lower 

material rate and higher specific energy [Manna and Bhattacharya 2003]. 

1.7. PERFORMANCE PARAMETERS IN GRINDING PROCESS 

Performance of any machining process is depending on the output that is obtained from 

the process. The performance parameters in grinding process are specific energy, surface 

roughness, material removal rate, grinding ratio, surface integrity, residual stresses etc. 

All these parameters depends on the type of material to be ground, type of grinding wheel, 

type of lubricants used, machine dynamics and grinding conditions[Rowe 2009]. 

Dominant Performance parameters in grinding are grinding ratio, surface finish, specific 

energy, and material removal rate.  

Specific energy is an important performance parameter in grinding, because it 

defines the temperature at the wheel-work interface [Ren et al. 2009]. It is defined as 

energy consumed per unit volume of metal removed. Typically, the specific energies 

involved in grinding are much larger than in other metal-cutting operation. In other metal-

cutting operations the shearing accounts for about 75% of the total chip formation energy 

and for chip-tool friction the remaining 25% [Allison and Cole 1993]. But in grinding, 

virtually, all the energy expended is converted into heat. Since the chip-formation process 

in grinding is extremely rapid, owing to the high grinding speed and large strains, the 

process should be nearly adiabatic. This means that there is no sufficient time for any 

significant amount of the heat generated by plastic flow to be conducted away during 

deformation. Any change in grinding parameters such as depth of cut, feed rate, or 

grinding speed, or the characteristics of the grinding wheel such as grit size, bonding, and 

porosity, can have a great influence on heat generation and hence the specific 

energy[Tawakoli et al. 2007].  

Choudhury and El-Baradie (1999) noted that the grinding force is highly affected 

by feed rate and slightly by grinding speed. This shows that the feed rate is a dominant 

parameter and it plays a very important role on the grinding force and hence the specific 
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energy. Any plausible physical model of the grinding process should be able to 

quantitatively account for the magnitude of the specific grinding energy and its 

dependence on the operating parameters. A combination of low grinding speed with low 

depth of grind leads to high specific energy [Brinksmeier et. al. 2006]. This effect can be 

used for a controlled subsurface work-hardening. Chen et al (1996) concluded that a fine 

dressing condition produces a high density of cutting edges which results in a reduced 

chip size and hence a higher grinding power. Likewise, a coarse dressing condition will 

often result in a lower grinding power. Blunt grains on the wheel surface result in higher 

sliding friction and ploughing forces and accentuate the increase of specific energy at 

small depths of cut. [Malkin and Guo 2008] 

In a more practical sense, the specific energy is also related to the grinding power 

and the force components. The grinding power, which is equal to the product of the force 

component tangential to the wheel surface and the wheel velocity, is especially important 

for calculating specific energy in grinding [Shaw 1996]. 

Specific energy (u) also called as specific grinding energy is defined as the amount 

of spindle power required to remove a unit volume of work piece material. The operating 

conditions that give the lowest value of specific grinding energy are desirable. Specific 

grinding energy ‘u’ is given by;  

 

*t s

w

F v
u

Q
=  J/mm3          (1.5) 

where, Ft is grinding force in N, vs is the wheel speed in m/s, and Qw is the material 

removal rate in mm3/s. 

Specific energy is an important performance parameter in grinding, because it is 

directly related to the temperature at the wheel-work interface. Typically, the specific 

energies involved in grinding are much larger than in other metal-cutting operation. Hence 
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in order to achieve the improved productivity specific energy should be kept as low as 

possible. 

Surface roughness and material removal rate are the other two performance 

parameters in grinding. Surface roughness of a component will define the corrosion 

resistance, surface texture and integrity of a finished product. Machined surface roughness 

is an important research topic relating to the quality of manufacturing process. In recent 

past, tremendous advancement in precision of products is envisaged [Allison and Cole 

1993]. Hence more attention was attracted towards surface roughness in every stage of 

design and manufacturing of a product.  

Material removal rate on the other hand defines the productivity of a process. 

Higher the material removal rate, better the productivity. Any machining process demands 

better surface roughness (Ra), higher material removal rate (MRR) lower cutting forces 

while keeping the energy consumption to the minimum. Excessive forces acting on 

grinding surfaces cause defects on specimen during grinding [Inasaki 1980]. Removal 

depth and table feeding rate are the only controlling factors for a conventional grinding 

system. It is a well-known fact that high MRR and very good surface finish while keeping 

the energy consumption at minimum can never be achieved simultaneously in a grinding 

process. This is an age-long problem and continuous efforts are being made by different 

researchers all over the world to fulfill such an objective. A compromise is always sought 

between the performance parameters so that an optimal solution is obtained during the 

process.  

Hence in this present work an attempt is made for multi objective optimisation of 

the performance parameters such as specific energy, material removal rate and surface 

roughness based on the grinding process variables during surface grinding of Al6061-

SiC35p composites. 
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1.8 MULTI OBJECTIVE OPTIMISATION 

Performance characteristics of a process are often characterised by a group of responses 

which are measurements of one or several characteristics of quality. These responses are 

generally correlated and can be expressed in different measuring units. In embodiment 

design stage, the problem is to find the optimal levels of the parameters by combining the 

different responses. Several criteria were developed by different authors in order to define 

a global optimisation function of the responses (for example: loss function, desirability 

function, performance index of production). 

In a general way, the optimisation criteria are based on:  

• the distance to the target value (to minimise the deviations compared to the target 

values)  

• the variance of the responses (to minimise variability or to maximise the 

robustness with the noise). 

• sensitivity of the response to the weak variations (to maximise the robustness with 

the fluctuations of the parameters of control). 

Development of logical methodologies to optimise the grinding parameters 

requires a fundamental knowledge of the prevailing grinding mechanisms and their 

influence on the resulting surface damage and mechanical properties. Process modeling 

and optimisation are two important issues in grinding [Brinskmeier et al 1998]. The 

grinding processes are characterised by a multiplicity of dynamically interacting process 

variables. Surface finish, material removal rate and specific energy are considered to be 

the important factors in predicting performance of grinding operation. Hence in the 

present work, multi objective optimisation by desirability function approach and a novel 

genetic algorithm approach are applied. 

1.8.1 Desirability function 

Desirability function is a mathematical method to find the optimum values of input 

parameters and performance parameters (response) concurrently by using the optimum 
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input parameters levels. It is an effective tool for multi objective optimisation. The 

desirability function approach to simultaneously optimise the multiple equations was 

originally proposed by Harrington (1965) and later improved by Derringer and Suich 

(1980). Essentially, the approach is to translate the functions to a common scale [0, 1], 

combine them using the geometric mean and optimise the overall metric. The method 

involves transformation of each predicted response, iŷ to a dimensionless partial 

desirability function id , which includes the researcher’s priorities and desires when 

building the optimisation procedure. One or two-sided functions are used, depending on 

whether each of the n responses has to be maximised or minimised, or has an allotted 

target value. 

1.8.2 Genetic Algorithm 

Genetic algorithms (GAs) have been extensively used to optimise complicated production 

systems. GAs are known for their robustness and effective overall search capabilities It  is 

a global optimisation algorithm, and the objective function does not need to be 

differentiable. This allows the algorithm to be used in solving difficult problems, such as 

multimodal, discontinuous or noisy systems. As no single solution can be considered as 

the best in a multi objective optimisation problem, the single solution reported has limited 

use.  

The GA generally preferred for large and complex cutting process parameter 

optimisation problems, is based on three basic operators, viz., reproduction, crossover, 

and mutation, in order to offer a population of solutions [Holland 1975]. The mechanics 

of GA is simple, involving copying of binary strings and the swapping of the binary 

strings. The simplicity of operation and computational efficiency are the two main 

attractions of the GA approach.  

GA is very appealing for single and multi objective optimisation problems and 

some of its advantages are as follows [Deb 2008]:  
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(i) As it is not based on gradient-based information, it does not require the continuity 

or convexity of the design space.  

(ii) It can explore large search space and its search direction or transition rule is 

probabilistic, not deterministic, in nature, and hence, the chance of avoiding local 

optimality is more. 

(iii) It works with a population of solution points rather than a single solution point as 

in conventional techniques, and provides multiple near-optimal solutions.  

(iv) It has the ability to solve convex multiple objectives and non-linear response 

function problems, and it may be applied to both discrete and continuous objective 

functions. 

The algorithm creates new population from an initial random population (obtained 

from different feasible combination of process decision variables) by reproduction, 

crossover, and mutation in an iterative process. The selection, crossover and mutation on 

initial population create a new generation, which is evaluated with pre-defined 

termination criteria. The procedure continues by considering current population as initial 

population till the termination criteria are reached. 

1.9 OBJECTIVES 

The primary aim of the present work is to study the performance parameters such as 

material removal rate, specific energy and surface roughness during surface grinding of 

DRACs. The emphasis of the study is on the influence of various grinding variables on 

machining of DRACs using Design of experiments, since the performance parameters are 

greatly affected by type of workpiece and grinding variables. Besides this, the other 

objectives of this dissertation are 

• Application of Analysis of Variance (ANOVA) for overall understanding of 

variables affecting the grinding process. 

• Application of response surface methodology for developing a multi objective 

second order regression equation for performance parameters such as surface 
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roughness, material removal rate and specific energy during grinding of Al6061-

SiC35p composites by varying the volume percentage of SiC, feed and depth of cut. 

• Checking the adequacy of the model by Analysis of variance. 

• Optimisation of process parameters using desirability function principles. 

• Application of novel genetic algorithm, a multi objective genetic algorithm 

approach for optimisation of the process parameters. 

Therefore the scope of the dissertation encompasses study on the influence of 

various grinding process variables and optimisation of performance parameters during 

grinding of DRACs. The research work involves four phases 

• Studying the influence of various grinding process variables on grinding of 

DRACs. 

• Developing the mathematical model for the performance parameters. 

• Multi objective optimisation of grinding process parameters using desirability 

function approach. 

• Application of novel genetic algorithm for optimisation of grinding process 

parameters. 

1.10 ORGANISATION OF THE THESIS 

The report begins with introduction to the topic in Chapter 1. It is followed by Chapter 2, 

discussing the state-of-art of work pertaining to grinding of the DRACs. A number of 

‘technology voids’ or ‘areas for further work’ were identified based on the literature 

review, from which subsequently, the statement of objectives and detailed action plan of 

this work was evolved. The details of experimental procedures conducted are discussed in 

Chapter 3. These include description of workpiece material, grinding tests, grinding force 

measurement, volume of metal removed, ground work-piece surface, Design of 

experiments and Response surface methodology. The effect of grinding process variables 

on specific energy, material removal rate and surface roughness using Taguchi’s design of 

experiments are discussed in chapter 4. A complete realisation of the process is discussed 

in this chapter.  
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Application of response surface methodology for specific energy, MRR and 

surface roughness is discussed in chapter 5. In this chapter the regression models were 

developed for each of the performance parameters and they were further analysed and 

optimised by employing desirability function approach. Chapter 6 is devoted for the 

optimisation of the performance parameters based on novel genetic algorithm. This novel 

method requires less number of computations compared to the conventional non-

dominated genetic algorithm (NSGA-II). In Chapter 7 the report concludes with the 

overall conclusions and future scope of work. 

 



Chapter 2 
 
 
 

LITERATURE REVIEW 
 

The literature review on the grinding of discontinuously reinforced aluminium 

composites (DRACs) is categorised into two parts:  

• Experimental Studies  

• Analytical and Numerical Investigation 

A summary of the literature review is given at the end of the chapter. 

2.1 EXPERIMENTAL STUDIES 

Many engineering applications involve the usage of advanced aerospace composites 

such as Al-SiC composites. These materials feature a high strength to weight ratio, 

resistance to chemical degradation, wear resistance and low density. The effective use 

of composites in aerospace and other applications demands the grinding of ceramic 

components with good surface finish and low surface damage. Although near-net-

shape Al-SiC components can be produced, final finishing is still required for 

obtaining the desired final dimensions and surface finish. Relatively soft aluminium 

matrix reinforced with hard ceramic fibres poses a challenge to the researchers in 

obtaining the satisfactory performance characterises.  

The main problem concerning the use of composites in industries is the 

complexity involved in machining because of the high hardness and low fracture 

toughness of the reinforcing materials. Machining of these composites is characterised 

by high specific energy, poor surface roughness, high grinding zone temperature, 

higher surface degradation and lower productivity.  

Di Ilio et al. (1996) investigated the machining characteristics of Al2009-

SiC15P, Al2009-SiC20P and Al2009-SiC25P. The results show that the presence of the 

reinforcement enhances the machinability in terms of both surface roughness and 

particle size. Reinforced Al alloys exhibit lower tendency to clog the grinding wheel, 

when compared to a non-reinforced Al alloy. They observed that, surface roughness is 
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lower with composite having a lower particle size and surface roughness and 

tangential force shows decreasing trend with increasing hardness.  

Ronald et al. (2009) conducted experiments with powder compacted 2124 

aluminium alloy reinforced with SiC particles (5μm 30% by vol.). They considered 

wheel speed and depth of cut as variables. Two types of wheels viz, electroplated and 

Resonoid bonded were used. They observed that, the electroplated wheel experiences 

higher temperature with low depth of grinding, while a visible reduction in 

temperature can be seen with higher depth of grinding. Resin bonded wheel gave a 

better surface finish compared to the electroplated wheel. As a whole, resin bonded 

wheel performed better than electroplated wheel.  

In another investigation on grinding of Al2009-SiC and Al6062-SiC with 

32A46 IV grinding wheel, Di Ilio et al. (2009) developed a modelling of the grinding 

process based on empirical relations and observed that sliding component of the 

specific grinding energy is almost negligible with respect to  the cutting component, 

which shows a decreasing exponential trend as the removal rate increases and the 

workpiece surface roughness can be related with the equivalent chip thickness through 

a power relationship; it shows a decreasing linear trend as the hardness of workpiece 

material increases. 

Di Ilio and Paoletti (2000) conducted an experimental study on the grindability 

of metal matrix composites. Machining by abrasive tools different types of grinding 

wheels, made with both conventional abrasives and superabrasives are used. It has 

been found that the decrease in cutting ability of the grinding wheels is mainly caused 

by clogging of the active surface due to chip adhesion rather than by flattening of the 

grits caused by the abrasion of the hard reinforcement. Among the types of grinding 

wheels employed in experimental tests, the ones manufactured with conventional 

abrasives and open structure have given better performances than those with 

superabrasives in terms of low clogging, low grinding forces and better surface finish. 

  Zhong (2003) presented results obtained from the grinding of aluminium-based 

metal matrix composites reinforced with either aluminium oxide (Al2O3) or silicon 

carbide (SiC) particles using grinding wheels made of SiC in a vitrified matrix or 
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diamond in a resin-bonded matrix. Grinding using a 3000-grit diamond wheel at 

depths of cut of 1 μm and 0.5 μm produced ductile streaks on the Al2O3 particles and 

the SiC particles, respectively. There was almost no subsurface damage except for rare 

cracked particles when fine grinding with the diamond wheel. 

Zhong and Hung (2002) in another investigation concluded that rough grinding 

with SiC wheel followed by fine grinding with a fine grit diamond wheel will produce 

no ductile streak on the alumina/aluminium composites.  

Agarwal and Rao (2005) investigated the grinding characteristics, surface 

integrity and material removal mechanisms of SiC ground with diamond wheel on 

surface grinding machine. The surface and subsurface characteristics of the ground 

silicon carbide showed that the material removal associated with this material was 

primarily due to the dislodgement of individual grains, resulting from microcracks 

along the grain boundaries. They concluded that the grinding force and specific 

grinding energy could be, therefore, considerably reduced. 

Agarwal and Rao (2008) in another work developed a new analytical surface 

roughness model on the basis of the stochastic nature of the grinding process, 

governed mainly by the random geometry and the random distribution of cutting 

edges. This model has been validated by the experimental results of silicon carbide 

grinding. 

Abdullah et al. (2007) studied wheel wear and workpiece surface roughness in 

creep-feed grinding of tungsten carbide with 20% cobalt binder using a resin-bonded 

nickel-coated diamond wheel. Experiments have shown that the wheel wear increased 

and surface roughness decreased with increased feed rate, on the other hand, wheel 

wear and surface roughness decreased with increased wheel speed. 

Veeresh Kumar et al. (2010) aimed to present the experimental results of the 

studies conducted regarding hardness, tensile strength and wear resistance properties 

of Al6061-SiC and Al7075-Al2O3 composites. The composites are prepared using the 

liquid metallurgy technique, in which 2-6 wt. % of particulates were dispersed in the 

base matrix. The increased percentage of these reinforcements contributed to increased 
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hardness and density of the composites. The dispersed SiC in Al6061 alloy and Al2O3 

in Al7075 alloy contributed to enhancing the tensile strength of the composites.  

Monici et al. (2006) have investigated the effect of  type and amount of cutting 

fluid on tangential cutting force, specific grinding energy, acoustic emission, 

diametrical wear, roughness, and residual stress. To analyse the influence of these 

variables, an optimised fluid application methodology was developed to reduce the 

amount of fluid used in the grinding process and improve its performance in 

comparison with the conventional fluid application. The results revealed that, in every 

situation, the optimised application of cutting fluid significantly improved the 

efficiency of the process, particularly the combined use of neat oil and CBN grinding 

wheel.  

Ling Yin et al. (2005) conducted experiments with high removal rate (up to 

16.6 mm3/s per mm) grinding of alumina and alumina–titania with respect to material 

removal and basic grinding parameters using a resin-bonded 160 mm grit diamond 

wheel at the speeds of 40 and 160 m/s, respectively. There were no distinct differences 

in surface roughness and morphology for both materials ground at either conventional 

or high speed. An increase in specific removal rate caused more rapid increases in 

normal and tangential forces obtained at the conventional grinding speed than those at 

higher speed.  

The research from Brinksmeier and Giwerzew (2003) deals with the 

quantification of the size effect in grinding. Main physical quantity characterising the 

size effect is specific grinding energy. Since higher specific grinding energy values 

were found to increase the absolute values of compressive residual stresses and their 

penetration depth, low cutting speeds and low depth of cut are considered to be 

promising for advanced investigations aimed at further development of this new 

technology. 

Reddy and Rao (2006) investigated the role of solid lubricant assisted 

machining with graphite and molybdenum disulphide lubricants on surface quality, 

cutting forces and specific energy while machining AISI 1045 steel using cutting tools 

of different tool geometry. The performance of solid lubricant assisted machining has 
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been studied in comparison with that of wet machining. The results indicate that there 

is a considerable improvement in the process performance with solid lubricant assisted 

machining as compared to that of machining with cutting fluids. The use of solid 

lubricants has been successful in reducing cutting forces, specific energy, surface 

finish, and chip size.  Experimental findings reveal that the friction generated between 

tool and workpiece has been significantly reduced in molybdenum disulphide assisted 

machining as compared with graphite and wet assisted machining. 

Ramesh et al. (2001), conducted high speed grinding experiments on Al2O3, 

SiC and ZrO2 materials using diamond grinding wheel. Authors conclude that 

grinding force decreased and surface finish is improved with increase in wheel speed. 

They also found that specific energy decreased with increase in specific material 

removal rate. 

Wilk and Barbara (2008) carried out cut-off tests of aluminium composites 

reinforced with Al2O3 and Si3N4 particulates. The result indicates that, wear of resin 

bonded diamond wheels was large, with a good finish on the cut-off surfaces. In 

contrast, in the case of metal bonds, the wheel wear was insignificant, but there was a 

tendency to gumming up of the grinding wheel active surface. 

Malkin and Ritter (1989) in their research presented grinding mechanisms for 

ceramic materials and their influence on the finished surface and mechanical 

properties. The machining approach has typically involved measurement of the 

grinding forces and specific energy coupled with microscopic observations of the 

surface morphology and grinding detritus. This study gives an insight in to grinding 

behaviour and strength degradation while grinding ceramics. 

 

Bifano and Fawcett (1991) considered specific grinding energy as an in-

process measurement to monitor the ductile grinding of ceramics. The specific energy 

was shown to remain relatively constant for ductile regime grinding but decreased 

according to a power law relationship with increasing material removal rate for brittle 

regime grinding. 
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Chiu and Malkin (1993) simulated cylindrical plunge grinding operations. The 

simulation does not predict the exact performance of the grinding process but instead 

captures the main effects during the grinding cycle. The grinding model consists of 

analytical and empirical mathematical models and predicts the grinding forces and 

power, actual material removal, thermal damage, thermal expansion, wheel wear, 

workpiece roughness and roundness. 

Comley et al. (2006) demonstrated the application of high efficiency deep 

grinding to cylindrical plunge grinding cycle for an automotive steel and cast iron. 

Author used thermal modelling to optimise the grinding process. Both thermal 

modelling and experimental measurements have established that low workpiece 

temperatures are possible even when specific material removal rates of 2000 

mm3/mm-s are achieved. Surface integrity studies based on microstructural analysis 

and Barkhausen noise have also demonstrated the effectiveness of the process 

Shih et al. (2003) presented the results of grinding zirconia using wheels with 

fine grain size SiC and dense vitreous bond. Wheel wear results demonstrated that this 

type of SiC wheel could grind fully and partially stabilised zirconia (PSZ) very 

effectively. X-ray diffraction showed no monoclinic phase in the PSZ debris. This 

suggests that, during grinding, the low thermal conductivity of zirconia and SiC, 

compared to that of diamond, facilitates heat retention in the chip and softens the 

work-material. This makes the efficient grinding of PSZ possible.  

El-Gallab and Sklad (1998) explain the surface integrity of machined Al-

20%SiC particulate metal-matrix composites (PMMC). Dry high speed turning tests, 

at different cutting speeds, feed rates and depths of cut were conducted.  The cutting 

tests were carried out using PCD. Surface roughness measurements show that the 

surface roughness improves with an increase in the feed rate and the cutting speed, but 

slightly deteriorates with an increase in the depth of cut. It is also found that 

machining this type of composites is most economical and safe at a speed of 894 

m/min, a depth of cut of 1.5 mm and feed rates as high as 0.45 mm/rev, when the 

surface roughness, did not exceed 2.5 μm. 
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Kannan Kishawy (2006) investigated the effect of cutting parameters and 

particulate properties on the microhardness variations. It is found that lower the 

reinforcement volume fraction and the coarser the particulates, the higher are the 

variations in matrix microhardness. The microhardness measurements on the 

aluminium matrix beneath the machined layer showed higher values when machining 

under wet conditions with reduced depth of plastically deformed zone. 

2.2 ANALYTICAL AND NUMERICAL INVESTIGATION 

Analysis of an experimental work is an important aspect of study among the 

researchers. The experimental work supported by modelling and analysis can help an 

experimenter to visualise the process more closely and to conclude the outcome of his 

experimental work. There are several stochastic and deterministic techniques for 

analysing a machining process. 

The experimenter is always interested in finding the solution for optimisation 

of the process which gives the maximum yield at minimum cost. In grinding process 

the experimenter will try to develop a model of the grinding process and to optimise 

the performance parameters such as surface roughness, material removal rate, specific 

energy, temperature, grit ratio etc. Manufacturing industries are interested in 

simultaneous optimisation of several parameters and to establish the control on the 

process. 

The research work from Krajnik (2006) describes a systematic methodology 

for empirical modelling and optimisation of the plunge centreless grinding process. 

The central composite response surface design has been employed to develop a 

second-order surface roughness model. The final goal of experimental study focuses 

on determination of optimum centreless grinding system set-up and operating 

conditions for minimisation of surface roughness. The analysis of variance proved that 

the grinding wheel dressing condition most significantly affects the ground surface 

roughness. It is also observed that surface roughness is affected by the geometrical 

grinding gap set-up factor and the control wheel speed. The computer-aided single-

objective optimisation, solved by non-linear programming and genetic algorithm, is 
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applied. The results of two different optimisation approaches for determination of 

optimal operating conditions are compared.  

Kwak and Kim (2008) developed a second order response surface model for 

surface roughness and grinding force. The author used AC8A Aluminium alloy with 

SiC and Mg powder as reinforcing material. The grain size of the grinding wheel, 

specimen table speed and depth of cut were taken as parameter to study the surface 

roughness on the specimen. The second-order response surface models were 

developed and the usefulness of the developed models was verified. It is observed that 

the decreased value of table feed and depth of cut will result in better surface 

roughness. They also concluded that the optimum content of SiC and Mg in AC8A 

aluminium alloy is30wt % and 9wt% respectively. 

Kwak J.S. (2005) made an attempt to apply Taguchi and response surface 

methodologies for the geometric error. The effect of grinding parameters on the 

geometric error was evaluated and optimum grinding conditions for minimising the 

geometric error were determined. A second-order response model for the geometric 

error was developed and the utilisation of the response surface model was evaluated 

with the constraints of the surface roughness and the material removal rate. It is 

observed that the depth of cut was a dominant parameter for geometric error followed 

by the grain size. 

Hung et al. (1997) studied the grindability of metal matrix composites 

reinforced with SiC particles. A two-level factorial experiment was set up to 

investigate the effects of reinforcement volume, grinding parameters, and grinding 

wheel materials. While increasing the force and specific energy in grinding, the SiC 

particles are fractured along cleavage planes rather than being machined by grinding 

grains. Smearing of aluminum matrix masks the effect of grinding parameters on 

surface finish measurement. Increasing material removal rate causes an increase in 

grinding forces but a decrease in of specific energy. Diamond wheels are 

recommended for both rough- and fine-grinding of the tested composites.  

Shetty R. et al. (2009) presented the study on Taguchi’s optimisation 

methodology, which is applied to optimise cutting parameters in turning of age 
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hardened Al6061-15% vol. SiC 25 μm particle size metal matrix composites with 

Cubic boron nitride inserts (CBN) KB-90 grade using steam as cutting fluid. The 

turning parameters evaluated are speed, feed, depth of cut, nozzle diameter and steam 

pressure. A series of experiments are conducted to relate the cutting parameters on 

surface roughness, tool wear, cutting force, feed force, and thrust force. From the 

analysis using Taguchi’s method, results indicate that among the all-significant 

parameters, steam pressure is the most significant parameter. 

Shetty R. et al. (2008) in another work discussed the use of Taguchi’s design of 

experiments and response surface methodology (RSM) for minimising the surface 

roughness in turning of discontinuously reinforced aluminium composites (DRACs) 

having aluminum alloy 6061 as the matrix and containing 15 vol. % of silicon carbide 

particles with a mean diameter of 25μm under dry cutting condition. The effect of 

cutting parameters on surface roughness is evaluated and the optimum cutting 

condition for minimising the surface roughness is determined. A second-order model 

is established between the cutting parameters and the surface roughness using RSM. 

The experimental results reveal that the most significant machining parameter for 

surface roughness is feed, followed by cutting speed.  

Wattanutchariya and Pintasee (2006) applied RSM for optimisation of milling 

parameters for surface finishing. The two controlled parameters were spindle speed 

and feed rate. Three materials: aluminum, brass and cast iron were tested. It was found 

that at the significant level of 95% the suitable production factors (spindle speed and 

feed rate) for CNC milling of Aluminum with optimal 0.25 μm surface roughness were 

1,400 rpm and 50 mm/min, whereas the 1.31 μm of brass were 1,000 rpm and 100 

mm/min; and the conditions for cast iron with 2.57 μm were 800 rpm and 20 mm/min, 

respectively. 

Ginta et al. (2009) developed an approach to establish models for tool life in 

end milling of titanium alloy Ti–6Al– 4V using uncoated carbide inserts under dry 

conditions. Central composite design (CCD) was employed in developing the tool life 

model in relation to primary cutting parameters such as cutting speed, axial depth of 

cut and feed. Flank wear has been considered as the criteria for tool failure and the 
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wear was measured. The first-order and the second-order model were established and 

contour plots were developed. The adequacy of the predictive model was verified 

using analysis of variance (ANOVA) at 95% confidence level. 

Brinksmeier (2006) in his study explains about model developed by Lippock 

wherein the author compared his regression analysis based model, for grinding forces 

and surface roughness in cylindrical precision grinding, with vitrified bonded CBN 

grinding wheels with his model based on neural networks. Author detected only little 

differences concerning the simulation quality regarding surface roughness. In contrast 

the regression analysis based model performed significantly better regarding the 

simulation of grinding forces 

Choudhury and Baradieb (1999) describe machinability assessment of nickel 

base super alloy (inconel 718) in turning operations using coated and uncoated carbide 

inserts under dry conditions.  Response models (tool life, surface roughness, and 

cutting force) were developed utilising the factorial design of experiment and RSM. 

The adequacy of the different response models has been judged by analysing the 

variance. From the plot of dual response (surface roughness and material removal rate) 

contours, one can choose cutting parameters for higher material removal rates without 

sacrificing surface finish. Dual response contours of tool life and surface roughness 

have also been presented. For a given surface finish, these contours help to predict the 

cutting conditions for maximum tool life. 

In another finding Brinksmeir et al. (1998) built up two different regression 

models for the computation of the specific normal and tangential force in external and 

internal plunge grinding of 100Cr6 with vitrified bonded CBN wheels. Both contain 

cutting speed as the input variable. One is additionally calculated by transversal feed 

rate and radial feed, the other by speed ratio and material removal rate. The correlation 

coefficient is best for a full factorial design of experiment and decreases if it is 

partially factorial. Afterwards he compares his regression models for specific normal 

and tangential forces to other methods finding that they can compete with results from 

artificial neural networks and are superior to models based on fuzzy logic. Modeling 
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of roughness and residual stresses resulted in insufficient correlation coefficients for 

all model types, whereby regression models show the least. 

Sivasakthivel et al. (2010) developed a mathematical model for machining 

Al6063 alloy to predict the tool wear in terms of machining parameters such as helix 

angle of cutting tool, spindle speed, feed rate, axial and radial depth of cut. Central 

composite rotatable second order RSM was employed to create a mathematical model 

and the adequacy of the model was verified using analysis of variance.  

Slowik and Slowik (2008) used an evolutionary algorithm for multi-objective 

optimisation of a surface grinding process in order to minimise production cost and 

surface roughness or to minimise production cost and maximise production rate. 

Factors such as wheel speed, workpiece speed, depth of dressing and lead of dressing 

were the variables considered. 

Venu Gopal et al. (2003) carried out experiments to study the effect of wheel 

parameters; grain size, grain density and grinding parameters; depth of cut and feed on 

the surface roughness and surface damage. The significance of the grinding parameters 

on the selected responses was evaluated using analysis of variance. Mathematical 

models were developed using the experimental data considering only the significant 

parameters. A genetic algorithm (GA) code has been developed to optimise the 

grinding conditions for maximum material removal, using a multi-objective function 

model, by imposing surface roughness and surface damage constraints. The choice of 

including manufacturer’s constraints on the basis of functional requirements of the 

component for maximising the production rate was also embedded in the GA code. 

Saravanan and Sachidanandam (2001) developed a GA based optimisation 

procedure to optimise grinding conditions, viz. wheel speed, workpiece speed, depth 

of dressing and lead of dressing, using multi-objective function model with a weighted 

approach for surface grinding process. The procedure evaluates the production cost 

and production rate for the optimum grinding condition, subjected to constraints such 

as thermal damage, wheel wear parameters, machine tool stiffness and surface finish.  
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Saravanan et al. (2002) in another investigation developed a GA based 

optimisation procedure to optimise the surface grinding process using a multi-

objective function model. Ten process variables are considered in this work. The 

procedure evaluates the production cost and production rate for the optimum grinding 

conditions, subject to constraints such as thermal damage, wheel-wear parameters, 

machine-tool stiffness and surface finish. A worked example is used to illustrate how 

this procedure can be used to produce an optimum production rate, low production 

cost, and fine surface quality of the surface grinding process. 

Suresh et al. (2002) presented their work which deals with the study and 

development of a surface roughness prediction model for machining mild steel, using 

RSM. The experiment was carried out with TiN-coated tungsten carbide (CNMG) 

cutting tools, for machining mild steel work-pieces covering a wide range of 

machining conditions. A second order mathematical model, in terms of machining 

parameters, was developed for surface roughness prediction using RSM. This model 

gives the factor effects of the individual process parameters. The two-stage effort of 

obtaining a surface roughness model by surface response methodology, and 

optimisation of this model by GAs, has resulted in a fairly useful method of obtaining 

process parameters in order to attain the required surface quality. 

Palanikumar (2008) discussed the use of Taguchi and response surface 

methodologies for minimising the surface roughness in machining glass fiber 

reinforced (GFRP) plastics with a polycrystalline diamond (PCD) tool. The 

experiments have been conducted using Taguchi’s experimental design technique. The 

cutting parameters used are cutting speed, feed and depth of cut. A second-order 

model has been established between the cutting parameters and surface roughness 

using RSM. The experimental results reveal that the most significant machining 

parameter for surface roughness is feed followed by cutting speed.  

Sidda Reddy et al. (2009) performed studies to deal with the development of 

surface roughness prediction model for machining of aluminum alloys, using adaptive 

neuro-fuzzy inference system (ANFIS). The ANFIS model has been developed in 

terms of machining parameters for the prediction of surface roughness using trained 
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data. The Experimental validation runs were conducted for validating the model. The 

RSM is also applied to model the same data. The ANFIS results are compared with the 

RSM results. Comparison results showed that the ANFIS results are superior to the 

RSM results 

Jeyapaul et al. (2006) in their approach take advantage of both the Taguchi 

method and GA, which forms a robust and practical methodology in tackling multiple 

response optimisation problems. The work also presents a case study to illustrate the 

potential of this powerful integrated approach for tackling multiple response 

optimisation problems. The variance analysis is also an integral part of the study, 

which identifies the most critical and statistically significant parameters. The model is 

validated with gear hobbing process with multiple response characteristics. It has been 

demonstrated that a multiple response optimisation problem can be effectively tackled 

by using GA to generate a single weighed S/N ratio as a performance indicator. 

The aim of the study by Kwak et al. (2006) was to analyse effectively the 

grinding power spent during the process and the surface roughness of the ground 

workpiece in the external cylindrical grinding of hardened SCM440 steel using the 

response surface method. The surface roughness was also measured and evaluated 

according to the change of the grinding conditions. Response surface models were 

developed to predict the grinding power and the surface roughness using the 

experimental results. Based on experimental results, increasing the depth of cut 

affected the grinding power more than increasing the traverse speed. In addition, 

increasing the depth of cut changed the maximum height of the surface roughness 

more than the centerline average height. 

Johnson et al. (2008) in their work developed a grinding force model to predict 

the forces during the face grinding of cast iron and aluminum alloy 319. Design of 

experiments method is used to create a response surface of four process parameters: 

feed rate, inclination angle of the grinding wheel profile, offset angle between the 

grinding wheel and the workpiece, and the peripheral speed of the wheel. For each 

material, three polynomial equations are determined by regression analysis to 

represent the forces in three directions. The model shows better accuracy for cast iron 



45 
 

than aluminium alloy. The feed rate and inclination angle have the most significant 

effect on the grinding forces.  

Tawakoli et al. (2007) presents some of the very good results of the systematic 

research works that were done to reduce heat generation by special conditioning using 

a single-point diamond dressing tool. A new idea is based on the T-Tool and T-Tool 

profile concept is introduced. Based on this concept, the reduction of cutting edges by 

definite conditioning of the grinding wheel produces a specific structure on the wheel 

surface, giving more chance to each cutting edge to do real cutting action. This paper 

focused on the heat generation and chip formation and showed that with special 

conditioning, it is possible to reduce the static cutting edges as a source of rubbing and 

to optimise chip formation, which both have a significant influence on heat generation 

and on workpiece surface integrity. A reduced contact layer can lower cutting forces, 

heat generation, and temperature in the contact zone. 

Lee et al. (2007) in their work, carried out optimisation based on the available 

model to obtain optimum parameters for silicon carbide grinding via particle swarm 

optimisation (PSO) based on the objective of maximising MRR with reference to 

surface finish and damage. The effect of parameters such as feed rate, depth of cut and 

grit size has been studied in silicon carbide grinding. In this work, optimal machining 

conditions were obtained for the maximisation of the MRR subject to some 

constraints. Based on statistical analysis of various constraint values of surface 

roughness and number of flaws, simulation results obtained in this machining process 

for PSO are comparatively better to GA approach.  

Hooda et al. (2007) in their work utilised 2 separate L9 Taguchi fractional 

factorial arrays to study the creep-feed grinding process of gamma titanium alloy (γ-

TiAl) and burn resistant titanium alloy (BuRTi). It is concluded that γ -TiAl alloy was 

easier to grind than the BuRTi alloy with an average, a 10 times higher G-ratio, 10% 

lower maximum power, 25% lower maximum specific energy, 28% lower tangential 

force and 15% lower average workpiece surface roughness for the same operating 

parameter levels. The results point to the use of diamond superabrasive wheels with 
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improved grit thermal conductivity in order to minimise workpiece surface burn and 

cracking while possibly reducing wheel wear. 

Hwang and Malkin (1999) in their work made an attempt to account for the 

specific grinding energy and its dependence on the grit depth of cut by modifying a 

previous upper-bound plowing model to include the effect of rounding at the tip of the 

triangle-shaped cutting tool. Using this approach, the shape of the cross-sectional 

cutting profile is calculated which matches the upper bound solution to experimental 

measurements of the specific grinding energy. 

In another investigation Hwang et al. (1999) reported about the ‘size effect’ for 

specific energy in grinding of silicon nitride. Experimental measurements over a wide 

range of operating parameters using two different grit size diamond wheels show an 

increase in specific energy as the grit depth of cut (uncut chip thickness) is reduced. A 

plot of dimensionless specific grinding energy (specific energy divided by workpiece 

hardness) vs. dimensionless depth of cut (depth of cut divided by tip radius) yields a 

single inverse linear relationship whereby the dimensionless specific grinding energy 

increases steeply as the dimensionless grit depth of cut decreases below about 0.5. 

This would indicate that the ‘grit size effect’ is mainly due to rounding at the abrasive 

cutting points 

Xu and Shin (2007) implemented a multi-level fuzzy control (MLFC) 

technique for a creep-feed grinding process. The grinding force is maintained at the 

maximum allowable level under varying depth of cut, so that the highest material 

removal rate is achieved. The control rules are generated heuristically without any 

analytical model of the grinding process. Experimental results show that the cycle time 

has been reduced by up to 25% over those without force control and by 10–20% 

compared with the conventional fuzzy logic controller, which indicates its 

effectiveness in improving the productivity of actual manufacturing processes. The 

effect of grinding wheel wear is also considered in the creep-feed grinding process.  

Gopala Krishna and Rao (2006) proposed scatter search based optimisation 

approach to optimise the grinding parameters of wheel speed, work piece speed, depth 

of dressing and lead of dressing using a multi-objective function model with a 
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weighted approach for the surface grinding process. The production cost and 

production rate are evaluated for the optimal grinding conditions, subject to the 

constraints such as thermal damage, machine tool stiffness, wheel wear parameters and 

surface finish. The results are compared with the results obtained by the ants-colony 

algorithm, GA and quadratic programming techniques. 

 

Ting et al. (2005) optimised the surface grinding process using particle swam 

optimisation. The optimisation based on the available model has been carried out to 

obtain optimum parameters for silicon carbide grinding via Particle Swarm 

Optimisation (PSO) based on the objective of maximising MRR with reference to 

surface finish and damage. Authors concluded that the results obtained by PSO are 

superior in comparison with Genetic Algorithm (GA) approach. 

Krajnik et al. (2006) investigated the efficiency of ANN and the related 

metamodels (Radial basis function ANN) to simulate the centreless grinding process. 

They found that the quality of multimodal highly depends on prediction accuracy and 

concluded that ability of the multimodal is comparable to the accuracy of the response 

surface regression model. 

Zhou and Xi (2002) developed a numerical solution for surface roughness 

based on the random distribution of grain protrusion height of the abrasives 

Kilickap et al. (2010) focused their study on the influence of machining 

parameters on the surface roughness obtained in drilling of AISI 1045. The matrices of 

test conditions consisted of cutting speed, feed rate, and cutting environment. A 

mathematical predictive model of the surface roughness was developed using RSM. 

The effects of drilling parameters on the surface roughness were evaluated and 

optimum machining conditions for minimising the surface roughness were determined 

using RSM and GA.  

Zhang et al. (2005) developed and evaluated response surface models based 

both on feed-forward, back-propagation neural networks as well as linear regression 

models for predicting the fatigue life of solder joints in area array packages. There are 

two physical models which are executed in sequence as part of the analysis procedure. 
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The first is a droplet shape prediction code developed as part of this project, which 

predicts the shape of the solder joint given the input pad sizes, package weight and 

mask definition, and the second is a commercial nonlinear finite element analysis 

code, which determines the inelastic dissipation for a given shape. The predicted 

inelastic dissipation is then used to determine the fatigue life of the joints. The 

response surface models developed in this study are shown to perform very well in 

capturing the non-linear relationship between the inputs and output. Also, using the 

same training data, the linear regression models are shown to be marginally better in 

accuracy than the neural network models. 

Correia et al. (2005) compares RSM and GA techniques in the optimisation of 

a Gas Metal Arc Welding (GMAW) process application. The situation was to choose 

the best values of three control variables (reference voltage, wire feed rate and welding 

speed) based on four quality responses (deposition efficiency, bead width, depth of 

penetration and reinforcement). For the RSM, an experimental design was chosen and 

tests were performed in order to generate the proper models. In the GA case, the 

search for the optimal was carried out step by step, with the GA predicting the next 

experiment based on the previous, and without the knowledge of the modeling 

equations between the inputs and outputs of the GMAW process. Results indicate that 

both methods are capable of locating optimum conditions, with a relatively small 

number of experiments 

Anjum et al. (1997) adopted the procedure of implementing RSM via neural 

networks. Two neural networks are trained: one for the unknown function and the 

other for derivatives of this function which are computed using the first neural 

network. These neural networks are then used iteratively to compute parameters for an 

equation which is ultimately used for optimising the function. The model is 

demonstrated with an example. 

Davidson et al. (2008) applied design of experiments to study the effects of the 

main flow-forming parameters such as the speed of the mandrel, the longitudinal feed, 

and the amount of coolant used on the surface roughness of flow-formed AA6061 

tube. A mathematical prediction model of the surface roughness has been developed in 
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terms of the above parameters. The effect of these parameters on the surface roughness 

has been investigated using RSM. The developed prediction equation shows that the 

longitudinal feed rate is the most important factor that influences the surface 

roughness. The surface roughness was found to increase with an increase in the 

longitudinal feed and it decreased with decrease in the amount of the coolant used. The 

verification experiment carried out to check the validity of the developed model 

predicted surface roughness within 6% error. 

Castillo et al. (1996) demonstrated a modified version of the Derringer and 

Suich's desirability functions for the linear case based on polynomial approximations 

of the individual desirability functions at their nondifferentiable points. Then, the 

optimisation problem of the overall desirability function obtained from the geometric 

mean of the smoothed functions is solved by a generalised reduced gradient method.  

Ch'ng et al. (2008) proposed a new formula to compute the overall desirability 

function other than the geometric mean together with a change of variables in the 

individual desirabilities in such a way that no nondifferentiable points occur in the 

functions. There are many other studies with desirability functions focusing on other 

drawbacks than nondifferentiability such as those in the studies of Khuri and Conlon 

(1980), Kim and Lin (2000) and Jeong and Kim (2008). 

Bas et al. (2010) applied desirability functions in RSM and neural network 

approaches to study multiple response optimisation using desirability functions and 

artificial neural networks. The results of this study indicate that in RSM there is the 

potential of over-fitting the responses. Although similar arguments are also true for 

artificial neural networks, it can be seen that they may be a useful alternative method 

for multiple response optimisation 

Mukherjee and Ray (2008) presented the study on application of empirical 

modelling technique based on direct observations, for prediction of two-stage grinding 

process (rough honing and finish honing) behaviour. The study proposes an integrated 

approach using multivariate regression, desirability function, and metaheuristic search 

technique. Three different metaheuristic search techniques, viz. real-coded GA, 

simulated annealing, and a modified Tabu search based on novel Mahalanobis 
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multivariate distance approach, are employed to determine near optimal path 

conditions for an industrial case study of two-stage CNC grinding (honing) 

optimisation problem. Computational study results based on different metaheuristics, 

and applied to the same two-stage optimisation problem, show that the modified Tabu 

search performs better.  

Seeman et al. (2010) in their study, made an attempt to model the 

machinability evaluation through the RSM in the machining of homogenised 20% 

SiCp LM25 Al MMC manufactured through stir cast route. The combined effects of 

four machining parameters including cutting speed (s), feed rate (f), depth of cut (d), 

and machining time (t) on the basis of two performance characteristics of flank wear 

and surface roughness were investigated. The process parameters are optimised using 

desirability-based approach RSM. Cutting speed and feed rate of the regression 

models are found to be more significant when compared to other parameters. The 

proposed models for flank wear and surface roughness are found to be adequate and 

can be used to predict the characteristics within the experimental range. 

Kodali et al. (2008) presented a truly multi-objective optimisation of the 

grinding process by considering both the objectives involved simultaneously. The 

problem involves two conflicting objectives subjected to four constraints and ten 

process variables. The elitist non-dominated sorting genetic algorithm (NSGA II) is 

used to solve this multi-objective optimisation problem. The Pareto-optimal front 

obtained is compared with earlier reported results, obtained using various non 

traditional optimisation approaches. It is observed that all solutions in the Pareto- 

optimal fronts obtained by NSGA II dominate those reported earlier. Also the Pareto-

optimal fronts obtained provide a wide range of trade-off operating conditions from 

which an appropriate operating point can be selected by the decision maker. On 

investigation it is observed that the Pareto-optimal solutions are affected by only four 

of the total ten process variables considered in the optimisation study. 

Xi-Ping et al. (2009) applied desirability function to achieve uniform 

temperature distribution on the cavity surface of the stationary mould insert. The 

design variables were optimised by using GA. The distances between the neighbour 



51 
 

heating channels were considered as the main design variables. An objective function 

for optimising the temperature distribution uniformity was proposed. The experiment 

samples for calculating the objective function were selected by using the Latin 

Hypercube Design experiment method. A quadric response surface equation for 

calculating temperature distribution uniformity was established.  

Jones et al. (2004) in their work describe the application of two multiobjective 

optimisation techniques for high efficiency deep grinding process. The process is 

modelled using a fuzzy expert system. The objective is to simultaneously minimise the 

surface temperature and specific grinding energy. A problem constraint is represented 

within the fuzzy model. It forms an objective representing the degree of infeasibility of 

the solution. Strength Pareto Evolutionary Algorithm (SPEA) and NSGA-II are used 

for optimisation. NSGA-II produces a near-optimum Pareto front with good 

diversification in all cases. SPEA's results are generally inferior but still competitive. 

The codes for SPEA and NSGA-II were developed using MATLAB. 

2.3 SUMMARY 

From the above literature review it is evident that considerable work in the area of 

performance evaluation of grinding process has been done by various researchers. But 

studies on the grinding of Metal matrix composites have been carried out by only a 

few authors [Di Ilio et al. 1996, Di Ilio and Palloti 2000, Di Ilio et al. 2009, Anand 

Ronald 2009, Zhong 2003, and Kwak and Kim 2008] as reported. It may be due to the 

complex nature of the process [Malkin and Ritter 1989] and random orientation of the 

particulates inside the metal matrix [Hung et al. 1997] 

Specific energy is the function of material removal rate and grinding force 

when the wheel speed is constant. It is noted by many of the authors [Di Ilio et al. 

2009, Hwang et al. 1999 and Hwang and Malkin 1999] that, specific energy increases 

with decrease depth of grind. Hwang et al. (1999) made an attempt to develop a model 

for specific energy based on uncut chip thickness. But specific energy is also affected 

by many of the factors such as feed, the type of material to be ground etc. But, not 

much focus has been given to those factors so far. 
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The effect of grinding process parameters on performance parameters such as 

material removal rate, surface roughness is addressed by many of the authors [Agarwal 

and Rao2005, Agarwal and Rao2008, Ling Yin et al. 2005, Comley et al. 2006, Kwak 

2005, Kwak and Kim 2008]. Increase in material removal rate will decrease specific 

energy. The multi optimisation model for material removal rate, surface roughness, 

surface integrity are developed for various machining process, either by RSM, ANN, 

or GA[Saravanan et al. 2002, Savaranan and Sachidanandam 2005, Kodali et al. 2008, 

VenuGopal et al. 2003]. As per the knowledge of the author, hardly any significant 

work is done for the simultaneous optimisation of specific energy, material removal 

rate and surface roughness.  

Several researchers have used RSM and GA [Correia et al. 2005, Suresh et al. 

2002], RSM and ANN [Bas et al. 2010] Taguchi and RSM [Davidson et al. 2008] for 

optimisation of the different manufacturing process including grinding and compared 

the results thus obtained. Many of their works reveal that GA is a better optimisation 

technique. But there is no evidence of using NSGA-II and RSM as the optimisation 

technique for surface grinding of Al6061-SiC composites. 

NSGA-II is a novel method for multi-objective optimisation which is gaining a lot of 

importance among the researchers. Jones et al. 2004 developed codes for GA using 

MATLAB. Kodali et al. 2008 used two objectives (workpiece removal parameter, 

Total production cost) for optimisation of grinding process. Authors have used 

empirical relations in their work. 

In the current study an attempt is made to apply RSM and a novel genetic 

algorithm, an improved version of elitist NSGA-II for the multi objective optimisation 

of three performance parameters namely, surface roughness, material removal rate and 

specific energy during the surface grinding of Al6061-SiC composites. 

             



Chapter 3 
 
 
 

EXPERIMENTAL METHODOLOGY 
 

3.1 INTRODUCTION 

Though near-net shaped products can be prepared from MMCs, they often need to be 

formed into the desired shapes and finished to the required dimensions and tolerances. 

Metal matrix composites are given their required shape by brazing, bonding, powder 

metallurgy techniques, casting, metal spraying and forming operations such as 

bending, swaging, drawing and extrusion. Although advances have been made in near-

net shape technology, finishing operations are often required to obtain dimensional 

tolerance as well as good surface finish. Machining of these new materials requires 

tool materials of very high wear resistance because the reinforcement is extremely 

abrasive [Lin et al. 1995]. Among traditional machining processes, grinding is 

important for MMCs, since it could be applied also in heavy-duty machining, in 

addition to obtaining desired dimensional tolerances and surface quality. 

Up to the present, a lot of work has been carried out to understand the 

mechanisms of grinding conventional materials by analysing the process as an 

interactive system between the surface of the wheel and the workpiece [Tonshoff et al. 

1992, Binachi et al. 2002]. On the contrary, there are only a few investigations on the 

grindability of metal matrix composites, most of them concerning the role of 

reinforcement and the influence of grinding wheel abrasive in the process have been 

discussed [Zhong and Hung 2002, Ronald et al. 2009].  

This chapter deals with experimental study required for finding the effect of 

process variables such as volume percentage of SiC in Al6061-SiC composites, feed 

and depth of grind on performance parameters such as specific energy, material 

removal rate and surface roughness during grinding of Al-SiC composites.  

First part of this chapter describes the preparation of the workpiece material. 

Second part is devoted to the procedure followed for grinding of workpiece material. 
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Measurement and calculation of performance parameters is discussed in third section. 

Fourth section explains the Taguchi method adopted in this study. 

3.2 WORKPIECE MATERIAL 

Aluminium is the most dominant matrix for MMC for both structural and electrical 

applications. This is because of the low cost of aluminium and its low melting point 

(6600C). Al-SiC specimens having aluminum alloy 6061 as the matrix and containing 

8 vol. %, 10 vol. % and 12 vol. % of silicon carbide particles of mean size 35µm were 

manufactured at Vikram Sarbhai Space Centre (VSSC) Trivandrum by Stir casting 

process. Figure 3.1 shows the schematic of rheocasting or stir casting set up for the 

composite processing.  

 

 
 

Figure 3.1 stir casting set-up 

In general, stir casting of MMC involves producing a melt of selected matrix 

material followed by the introduction of reinforcement material into the melt and the 

dispersion of the reinforcing material through stirring. Stirring is carried out 

vigorously to form a vortex where the reinforcing particles are introduced through the 
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side of the vortex. The formation of the vortex will drag all the reinforcement particles 

into the melt, thus enhancing the proper mixture of matrix and the reinforcement.  

About 2 kilograms of the Al 6061 alloy was cleaned and loaded in the silicon 

carbide crucible (inner dimension 200mm dia x 300 mm height with conical bottom of 

50mm dia) and heated above its liquidus temperature (700-710°C) in an electrical 

furnace (600 x 600 x 600 mm). The heating elements of the furnace generated a 

temperature of 10000C while consuming 6kW of power. The temperature was 

recorded using chromel-alumel thermocouple. The specially designed mechanical 

graphite stirrer was introduced into the melt and stirred at 195 rpm to produce vortex 

motion. The depth to which the impeller was immersed is 1/3rd of the height of the 

molten melt from the bottom of the crucible [Aniban et al. 2002].  

The preheated (3000C) SiC particulates of average size 35μm were added 

through a preheated pipe by manually tapping into the slurry, while it being stirred. 

Stirring produces an uniform suspension of solid particles in the melt due to the 

centrifugal acceleration. After addition of SiC particles the mixture was degassed by 

purging hexachloro ethane tablets. 

A post-addition stirring time of 15 min was allowed to enhance the maximum 

dissolution (wetting) of particulates by the metal. Now the crucible containing the melt 

and SiC particles was taken out and kept on a hot refractory brick. The melt was hand 

stirred with graphite rod and then tapped into permanent steel mould through bottom 

pouring. The temperature of the slurry was raised sufficiently above the melting range 

of the matrix alloy before pouring. 
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(a) 

 
(b) 

 

 
(c) 

Figure 3.2 Microstructure of Al-SiC composites (a) 8 vol% (b) 10 vol % and (c) 12 

vol % SiC 

Al-6061 

Al-6061 

SiC Particles  

SiC Particles  
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The specimens were extruded at 457°C, with extrusion ratio 30:1, and direct 

extrusion speed 6.1m/min to produce Ø22mm cylindrical bars. The machined 

specimens were solution treated for 2 hours at a temperature of 540oC in a muffle 

furnace. The temperature of the furnace is kept within the accuracy of ±2oC.  

After solution treatment, the samples were water quenched to room 

temperature. Figure 3.2 shows the microstructure of Al6061 MMC specimens captured 

with a magnification of 500X. Chemical composition of Al 6061 alloy is given in 

Table 3.1. In several instances aluminium matrix reacts with the SiC reinforcement 

forming aluminium carbide. This reaction can be inhibited by adding silicon in the 

aluminium alloy.  

Table 3.1 Chemical composition of Al 6061 alloy 

Element Al Cu Mg Si Cr Fe 

Weight % 

 

97.3 0.25 1 0.6 0.25 0.2 

Further the specimen was machined on conventional shaper with carbide tool 

to 17mm square cross-section. Figure 3.3 shows the specimen used for grinding 

process. 

 

 
 

Figure 3.3 Specimen used for experimental purpose 
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3.3 GRINDING PROCEDURE 

Down-cut surface grinding method was selected for grinding of MMCs.  Experiments 

were conducted on 2kW, 25.6 m/s, conventional surface grinding machine 8J-1020 

(Bhuraji make) with the hydraulic table feed arrangement. Figure 3.4 shows the 

schematic of grinding machine. The machine specifications are given in Table 3.2.  

The surface grinding machine is provided with magnetic table. Al-SiC 

specimens being non-magnetic a special fixture is fabricated to mount the specimen on 

the grinding table. The fixture consists of a circular base with two holes drilled and 

tapped to mount it on the Kistler dynamometer. The circular base is mounted with two 

jaws. One of the jaws is fixed and the other is movable. The specimen is mounted 

between these two jaws and further located and clamped in position.  

 

 
Figure 3.4 A typical grinding machine 
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Table 3.2 Grinding machine Specification 

SPECIFICATION 8J-1020 

 Working Surface or Grinding Area 225 x 500mm 

 Max. Magnetic Table Travel Lx B 250 x 525mm 

 Max. Ground height under Wheel 240 mm 

 Vertical Feed Graduation 0.01 mm 

 Cross Feed Graduation 0.05 mm 

 Elevator movement with MICROFEED 0.002 mm 

 Grinding Speed 25.6 m/s 

 Grinding Wheel Size (Dia x Bore x Width) 175mm x 31.75 mm x 12.7 mm  

 Electric Motor Recommended 2kW-3 PHASE 

  
The experiments were conducted with three levels and three factors.  Vol % of 

SiC, table feed and depth of grind are the chosen independent factors. Wheel speed 

does not contribute significantly for surface roughness in grinding [Ling Yin et al. 

2005] and Resin bonded grinding wheel is best suited for grinding MMCs. [Ronald et 

al. 2009, Hung et al. 1997]. Hence these two factors were not been studied in this 

thesis. The selected factors and their levels for the experimentation are given in Table 

3.3. Selection of factors for optimisation was based on the known machine and 

instrument limitations.  

Table 3.3 Levels of independent Factors 

Factors 
Levels 

Low(-1) Medium(0) High(1) 

Percentage  SiC (X1) 8 10 12 

Feed (mm/s)  (X2) 60 70 80 

Depth of grind(μm) (X3) 8 12 16 

 



60 
 

3.3.1 Grinding Wheel 

Diamond holds a unique place in the grinding industry. Being the hardest material 

known it is not only the abrasive choice for grinding the hardest, most difficult 

materials, but also it is the only material that can truly address all abrasive wheels 

effectively. Although synthetic diamond dominates in wheel manufacture, natural 

diamond is preferred for specific applications [Abdullah et al. 2007]. Diamond 

materials are also used increasingly as wear surfaces for applications such as end stops 

and work-rest blades on grinding machines. In these types of applications, diamond 

can give 20 to 50 times the life of tungsten carbide. 

Metal matrix composites reinforced with carbides are better ground with 

diamond wheels. They come in several bond types: Resin, vitrified, metal and electro-

plated.  Resin is used in most tool room and production applications.  Vitrified and 

metal bonds are newer bond types with specific applications.  Electro-plated wheels 

are very common and are typically found in cut-off wheels and low demanding 

abrasive grinding such as for plastics. 

Resin wheels are made much like a traditional grinding wheel with a thick 

bond/grit layer usually between 1/16" and 1/4".  Electroplated wheels are much 

thinner.  In both cases, the bond layer is applied to a hub which is either aluminum or 

steel made to the specific profile required. Like traditional grinding wheels, diamond 

wheels are used in a variety of processes and with a variety of materials.  Typically, 

diamond wheels are used strictly on carbides.   

Diamond wheels are classified by their shape, grit size, concentration and the 

bond.  A typical diamond wheel specification might be D1A1-D151R100-B4 where 

D1A1 is the wheel shape, D151 is the average grain size in microns, 100 is the 

concentration, R is the resin bond and B4 is this particular manufacturer's bond.  

Smaller the grain size the finer will be the wheel is. Hence for rough grinding 

larger mesh size is used and for finish grinding smaller mesh size is used.  The 

concentration is, in layman's terms, simply the amount of grit in the mix.  

Concentrations of 75 or higher are preferred but it also depends on the specific 
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application.  Some jobs may do better with less concentration.  Generally, the higher 

the concentration, the longer will be the life of wheel and the more expensive it will 

be. 

There are various types of bonds.  But most common are vitrified and resin 

bonds.  Vitrified is basically a vitreous glass much like pottery or glassware fired in a 

kiln.  Resin wheels are plastic resins mixed and cured at lower temperatures.  Vitrified 

wheels are commonly used for bench, surface and tool room applications while resin 

wheels are commonly seen in cut-off wheels, centerless wheels and superabrasive 

wheels (diamond & Cubic Boron Nitride). Bonds can be either weak or strong 

depending on the application. Exotic bonds like copper and polyamide are very 

expensive and are utilised in precise operations. Resin is one of the most sought after 

bonding material for general applications [Ronald et al. 2009].   

In the current research, Norton make diamond abrasive grinding wheel having 

specification ASD76R100B2 with outer diameter of 175mm, width 12.5mm, thickness 

5mm and inner diameter of 31.75 is chosen for the grinding purpose. In the wheel 

specification ASD represents synthetic diamond abrasives with Nickle coating, 76 

represents the grit size R100 is the wheel concentration and B2 represents a type of 

resin bond. This type wheel is generally used for finishing operation.  

The honing stick having specification GN0390220K7V7 is used for dressing 

the wheel. This product is manufactured by Grindwell Norton. In this specification G 

represents the series number, N represents the type of abrasive 0390220 is the 

manufacturers number, K is the structure, 7 is the grain size, V is the bond and 7 is the 

grade. The experiments conducted under dry conditions. The wheel was dressed after 

each test run. Truing of the wheel is done twice during the whole experimentation. 

3.4 MEASUREMENT OF PERFORMANCE PARAMETERS 

Dominant Performance parameters in grinding process are wheel wear, specific 

energy, surface finish and material removal rate. Specific energy (u) is an important 

performance parameter in grinding, because it defines the temperature at the wheel-

work interface. Specific energy is defined as energy consumed per unit volume of 

metal removed. Typically, the specific energies involved in grinding are much larger 



62 
 

than in other metal-cutting operation. In other metal-cutting operations, shearing 

accounts for about 75% of the total chip formation energy, and remaining energy for 

chip-tool friction [Allison and Cole 1993]. But in grinding, virtually, all the energy 

expended is converted into heat. Since the chip-formation process in grinding is 

extremely rapid, owing to the high cutting velocities and large strains, the process 

should be nearly adiabatic. That means, there is no sufficient time for any significant 

amount of the heat generated by plastic flow to be conducted away during 

deformation. Following are the reason for high specific energy during grinding [Rowe 

2009]. 

 

(i) Size effect - small chip size causes energy to remove each unit volume of 

material to be significantly higher  

(ii) Individual grains with extremely negative rake angles result in low shear 

plane angles & high shear strains 

(iii) Not all grits are engaged in actual cutting. 

Apart from above reasons specific energy is also affected due to the change in 

machining parameters such as wheel speed, feed, depth of cut, type of wheel and the 

type of workpiece. Choudhury and Baradieb (1999) noted that the cutting force is 

highly affected by feed rate and slightly by cutting speed. This shows that the feed rate 

is a dominant parameter and it plays a very important role on the cutting force and 

hence the specific energy. Any plausible physical model of the grinding process 

should be able to quantitatively account for the magnitude of the specific grinding 

energy and its dependence on the operating parameters. The grinding power, which is 

equal to the product of the force component tangential to the wheel surface and the 

wheel velocity, is especially important for calculating specific energy in grinding. 

Surface roughness and material removal rate are the other two important 

performance parameters in grinding. Any machining process demands better surface 

finish (Ra), higher material removal rate (MRR), lower cutting forces yet keeping the 

energy consumption to the minimum. It is well known fact that a high MRR and a very 

good surface finish while keeping the energy consumption at minimum can never be 

achieved simultaneously in a grinding process. This is an age-long problem and 
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continuous efforts are being made by different researchers all over the world to fulfill 

such an objective. A compromise is always sought between these performance 

parameters so that an optimal solution is obtained within the given range of 

independent variables. 

3.4.1 Material Removal Rate  

Material removal rate is defined as the volume of metal removed per unit time. It is 

specified in mm3/s. Some time the specific material removal rate is used for 

calculation purpose. It is the volume of metal removed per unit width per unit time. In 

the present study the method followed for calculation of material removal rate is 

explained below. 

Initially the specimen is weighed on an electronic balance having the accuracy 

of one mg. The grinding process is then performed on the specimen. The time required 

to grind the specimen is noted. The specimen is weighed in the electronic balance after 

the completion of the grinding process. The difference in weight divided by the time 

taken for grinding and the density of the material gives the material removal rate. In 

this study specific material removal rate, the material removal rate per unit width of 

the wheel is used. Hence the specific material removal rate or material removal rate 

(MRR) is 

'

* *w
c

mQ
w sρ

=  mm3/mm ⋅ s 

 

where m is the mass of the material removed in grams, cρ  is the density of the 

composite material in g/mm3, w is the width of the grinding wheel in mm and s is the 

time for grinding the specimen in seconds. 

The density of the composite material is calculated using the relation 

[Arsenault et al. 1991] 

)**( mmffc VV ρρρ += g/mm3. 

where fρ is the density of the reinforcing material in g/mm3, Vf  is the volume fraction 

of the reinforcing material and mρ and Vm are the density and volume fraction of the 

matrix material respectively. In the current study the density of Al6061 matrix material 
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is taken as 0.00268g/mm3 and density of reinforcing SiC material is taken as 

0.00321g/mm3[Clyne and Whithers 1993]. 

3.4.2 Specific Energy 

Specific energy is defined as the energy consumed per unit volume of material 

removal. It is an important performance parameter to be considered for any machining 

process. Higher the specific energy, higher the amount of heat generated at the work 

tool interface which results in surface damage and hence poor surface finish on the 

workpiece. In the present study specific energy is measured based on the relation                                                               
'

'
*

(3.1)
*

t s

w

F v
u

Q w
=

 
where '

tF is the specific tangential grinding force in N/mm, Q’w is the volume of metal 

removed in mm3/mm ⋅ s and vs is the peripheral speed of the grinding wheel in m/s. 

The rotational spindle speed N is 2880rpm and it is constant. The wheel diameter D is 

0.175m. Hence wheel speed is calculated using the relation 

sm

smNDvs

/65.25
60

2800*175.0*

/
60

**

==

=

π

π

 

The specific tangential grinding force necessary to calculate the specific energy 

is measured using Kistler dynamometer type 9272. The dynamometer set up is shown 

in Figure 3.5 along with the axis of the dynamometer. It is a four component quartz 

dynamometer, which can measure four components of forces namely the tangential 

force (Fy), the normal force (Fz), the transverse force (Fx) and the moment about Fz. 

In the current experiment the grinding force in y-direction is acquired. The signals are 

further amplified using 8-channel charged amplifier type 5070A. The amplifier is 

connected to the computer through a RS-232 cable. The signals are filtered at 1MHz 

and stored in the computer through A/D card reader type PCIM-DA1602/16. 

Dynoware software type 2825A is used to read the force signal from A/D card.   
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Figure 3.5 Kistler dynamometer setup 

A sample reading of force pattern from the dynamometer is shown in Figure 

3.6. The signals were obtained while grinding Al-6061 8 vol% SiC with feed 80mm/s 

and depth of grind 16 μm. The negative reading of the cutting force indicates that the 

signals are acquired in the direction opposite to the direction of grinding force from 

the point of view of the safety of Kistler dynamometer. Set of force readings acquired 

from dynamometer are given in Appendix-I  
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Figure 3.6 Sample cutting force in grinding  

3.4.3 Surface roughness  

It is one of the important performance parameters as it will define the surface texture 

on the ground surface. Surface roughness is defined as the deviation of the surface 

waviness from the mean position. The surface roughness is measured in microns ( mµ ) 

and it is desired to be maintained as minimum as possible. Higher the surface finish 

better will be the machining quality on the machined surface. The surface finish of 

machined parts plays a considerable role in the wear resistance and fatigue strength.  

The surface profile traces of the ground specimen were obtained using 

Taylor/Hobson Surtronoic 3+ surface roughness measuring instrument with the 

following specifications: Traverse Speed: 1mm/sec, Cut-off values 0.25mm, 0.80mm 

and 2.50mm. Figure 3.7 shows the Surtronoic 3+ surface roughness measuring 

instrument. The device consists of a stylus stand, profile recorder and a measuring 

instrument that operates as follows: The stylus is allowed to slide on the ground 

surface. A motor and a gearbox, which control the speed of the stylus, provide the 

movement of the stylus. The stylus itself is mounted on an arm that is pointing at the 

contact limit of an "E-shaped" iron head. The outer limbs of the iron head have two 

induction coils. A small gap exists between the arm and the outer limbs of the head. 

Upon the movement of the stylus (as a result of changes in the surface topography) the 

air gap in the coil changes, and consequently the displacement of the stylus is recorded 
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as proportional to the impedance of the coil (which is proportional to the air gap). The 

roughness is measured at four different locations and average values are noted.  

 

 
 

Figure 3.7 Roughness measuring Instrument  

A sample result of the surface roughness obtained by using the software 

surftron 3+ is shown in Figure 3.8. This reading was taken after grinding the Al-SiC 12 

vol % at 60mm/s feed and 8 μm depth of grind. The average Ra value obtained is 0.62 

microns. The set of roughness profiles recorded for the present work is given in 

Appendix-II 

 

 
 

Figure 3.8 Roughness profile  
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3.4.4 Machined workpiece surface analysis  

The workpiece damage during surface grinding process was studied using eMPower 

Image Analyser shown in Figure 3.9. The images were taken at a magnification of 

100X. A sample image captured by the image analyser is shown in Figure 3.10. 

 

 
Figure 3.9 eMPower image analyser 

 

 

 

 

 

 

 

 

 

Figure 3.10 (a) Optical micrograph of Al6061-SiC 12 vol % specimen with 

magnification factor 100 (a) depth of grind8 microns (b) depth of grind16 microns 

(a)                                                                             (b) 
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3.5 DESIGN OF EXPERIMENTS 

In manufacturing processes, it is often of primary interest to explore the relationships 

between the key input process variables (or factors) and the output performance 

characteristics (or quality characteristics). For example, in a metal cutting operation, 

cutting speed, feed rate, type of coolant, depth of cut, etc. can be treated as input 

variables and surface finish of the finished part can be considered as an output 

performance characteristic. 

One of the common approaches employed by many engineers today in 

manufacturing companies is One-Variable-At-a-Time (OVAT), where one variable 

(factor) is varied at a time keeping all other variables in the experiment fixed. But this 

method does not consider the interaction effects between the main factors. Moreover, 

this type of experimentation requires large resources to obtain a limited amount of 

information about the process. OVAT experiments are often unreliable, inefficient, 

time consuming and may yield false optimum condition for the process. 

In a designed experiment, the engineer often makes deliberate changes in the 

input variables (or factors) and then determines how the output functional performance 

varies accordingly. It is important to note that all the variables do not affect the 

performance in the same manner. Some may have strong influences on the output 

performance, some may have medium influences and some have no influence at all. 

Therefore, the objective of a carefully planned designed experiment is to understand 

which set of variables in a process affects the performance most and then determine 

the best levels for these variables to obtain satisfactory output functional performance 

of products. 

Design of experiments (DOE) is an efficient procedure for planning 

experiments so that the data obtained can be analysed to yield valid and objective 

conclusions. The analysis is made using the popular software specifically used for 

design of experiment applications known as MINITAB 15. Before any attempt is made 

to use this simple model as a predictor for the measures of performance, the possible 

interactions between the control factors must be considered. In order to understand a 

concrete visualisation of the impact of various factors and their interactions, it is 



70 
 

desirable to develop analysis of variance (ANOVA) table to find out the order of 

significant factors as well as of interactions. 

3.5.1 Taguchi’s method 

Taguchi techniques have been used widely in engineering design [Ross 2004 and 

Phadke, 1989]. The main thrust of the Taguchi techniques is the use of parameter 

design, which is an engineering method for product or process design that focuses on 

determining the parameter (factor) settings producing the best levels of a quality 

characteristic (performance measure) with a minimum variation. Taguchi designs 

provide a powerful and efficient method for designing processes that operate 

consistently and optimally over a variety of conditions. To determine the best design 

requires the use of a strategically designed experiment which exposes the process to 

various levels of design parameters. 

Experimental design methods were developed in the early years of 20th 

century and have been extensively studied by statisticians since then, but they were not 

easy to use by practitioners [Phadke, 1989]. Taguchi’s approach to design of 

experiments is easy to adopt and apply for users with limited knowledge of statistics; 

hence it has gained a wide popularity in the engineering and scientific community. 

There have been plenty of recent applications of Taguchi techniques to materials 

processing for process optimisation [Lin, 2002; Davim, 2003; Ghani et al. 2004; 

Jeyapaul et.al. 2006; Palanikumar 2008]. In particular, it is recommended for 

analysing metal cutting problems for finding the optimal combination of parameters 

[Ghani et al. 2004]. Further depending on the number of factors, interactions and their 

level, an orthogonal array is selected by the user. Taguchi has used Signal–Noise [S/N] 

ratio as the quality characteristic of choice. S/N ratio is used as measurable value 

instead of standard deviation due to the fact that as the mean decreases, the standard 

deviation also deceases and vice versa. In other words, the standard deviation cannot 

be minimised first and the mean brought to the target. In practice, the target mean 

value may change during the process development. Two of the applications in which 

the concept of S/N ratio is useful are the improvement of quality through variability 
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reduction and the improvement of measurement. The S/N ratio for continuous 

characteristics can be divided into three categories given by eqs. (3.2) – (3.4). 

        Nominal is the best characteristic      210 log
y

S y
N s
=                                         (3.2) 

 

        Smaller is the best characteristic     ( )2110logS y
N n
= − ∑                               (3.3) 

 

 

        And larger the better characteristic  2

1 1logS
N n y

 
= −  

 
∑                                 (3.4) 

where y  the average of observed data, 2
ys  is the variation of y , n  is the number of 

observations, and y is the observed data.  

 
Figure 3.11 Linear graph L27(313) 

 

For each type of the characteristics, with the above S/N ratio transformation, 

larger the S/N ratio better is the r. For the elaboration of experiments plan, we used the 

method of Taguchi for three factors at the response.  By levels we mean the values 

taken by the factor indicates the factors to be studied and the assignment of the 

corresponding levels. The array chosen was the L27 (313) which has 27 rows 

corresponding to the number of tests(26 degree of freedom) with 13 columns at three 

levels, as shown in Table 3.4. 
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Table 3.4 Orthogonal array L27 (313) of Taguchi 

 
L27 (313) 

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 3 3 3 3 3 3 3 3 3 
4 1 2 2 2 1 1 1 2 2 2 3 3 3 
5 1 2 2 2 2 2 2 3 3 3 1 1 1 
6 1 2 2 2 3 3 3 1 1 1 2 2 2 
7 1 3 3 3 1 1 1 3 3 3 2 2 2 
8 1 3 3 3 2 2 2 1 1 1 3 3 3 
9 1 3 3 3 3 3 3 2 2 2 1 1 1 
10 2 1 2 3 1 2 3 1 2 3 1 2 3 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 
13 2 2 3 1 1 2 3 2 3 1 3 1 2 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 
16 2 3 1 2 1 2 3 3 1 2 2 3 1 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 
19 3 1 3 2 1 3 2 1 3 2 1 3 2 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 
21 3 1 3 2 3 2 1 3 2 1 3 2 1 
22 3 2 1 3 1 3 2 2 1 3 3 2 1 
23 3 2 1 3 2 1 3 3 2 1 1 3 2 
24 3 2 1 3 3 2 1 1 3 2 2 1 3 
25 3 3 2 1 1 3 2 3 2 1 2 1 3 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 

 

The plan of experiments is made of 27 tests (array row) in which first column 

was assigned to the first input parameter and the second column to be second input 

parameter and the fifth column to be the third input parameter and the remaining were 

assigned to the interaction (Figure 3.11). The response to be studied is the output 

parameter. In order to obtain the desired response each test for MRR and Ra were 

repeated three times and that for specific energy is repeated two times. The obtained 

results are tabulated in Appendix-III. Table 3.5 represents the design matrix containing 

27 set of experiments and the average response obtained therein. 
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Application of Taguchi’s orthogonal array to study the influence of grinding process 

variables on the performance parameters during the grinding of DRACs is discussed in 

the next chapter. 
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Table 3.5 Experimental Results 

Sr.No 

Coded Values Actual values Average Response 

X1 X2 X3 SiC Vol % 
Feed 

(mm/s) 

Depth of 

grind  ( a, 

μm) 

y1      (u,   

J/mm3) 

y2  ( '
wQ ,  

mm3/mm ⋅ s) 

y3 

(Ra, μm) 

1 -1 -1 -1 8 60 8 145.585 0.498 1.08 
2 -1 -1 0 8 60 12 126.052 0.581 1.09 
3 -1 -1 1 8 60 16 135.641 0.675 1.14 
4 -1 0 -1 8 70 8 114.220 0.431 1.13 
5 -1 0 0 8 70 12 88.625 0.605 1.16 
6 -1 0 1 8 70 16 84.263 0.746 1.22 
7 -1 1 -1 8 80 8 95.882 0.556 1.17 
8 -1 1 0 8 80 12 76.361 0.748 1.25 
9 -1 1 1 8 80 16 71.530 0.870 1.30 
10 0 -1 -1 10 60 8 130.266 0.498 0.86 
11 0 -1 0 10 60 12 119.907 0.608 0.86 
12 0 -1 1 10 60 16 115.271 0.727 0.91 
13 0 0 -1 10 70 8 116.596 0.555 0.87 
14 0 0 0 10 70 12 93.517 0.655 0.93 
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Sr.No 

Coded Values Actual values Average Response 

X1 X2 X3 SiC Vol % 
Feed 

(mm/s) 

Depth of 

grind  ( a, 

μm) 

y1      (u,   

J/mm3) 

y2  ( '
wQ ,  

mm3/mm ⋅ s) 

y3 

(Ra, μm) 

15 0 0 1 10 70 16 84.575 0.829 0.95 
16 0 1 -1 10 80 8 86.501 0.780 0.95 
17 0 1 0 10 80 12 71.379 0.926 0.98 
18 0 1 1 10 80 16 70.676 1.144 1.04 
19 1 -1 -1 12 60 8 124.449 0.518 0.66 
20 1 -1 0 12 60 12 119.567 0.636 0.75 
21 1 -1 1 12 60 16 122.177 0.772 0.81 
22 1 0 -1 12 70 8 82.276 0.530 0.69 
23 1 0 0 12 70 12 77.048 0.667 0.79 
24 1 0 1 12 70 16 68.603 0.805 0.84 
25 1 1 -1 12 80 8 78.005 0.714 0.72 
26 1 1 0 12 80 12 62.848 1.007 0.78 
27 1 1 1 12 80 16 65.516 1.067 0.87 

 



Chapter 4 
 
 
 

PERFORMANCE EVALUATION OF GRINDING PROCESS VARIABLES ON 

SURFACE GRINDING OF DRACs- TAGUCHI’S DESIGN OF EXPERIMENTS 

APPROACH 

The main objective of this chapter is to study the influence of grinding process 

variables such as volume percentage of SiC, feed and depth of grinding on 

performance parameters namely specific energy, MRR and surface finish.  

4.1 OVERVIEW 

It is well known, the grinding process does not perform very well for soft materials due 

to the tendency of the chips being clog to the wheel. However, the grinding process 

plays an important role in secondary machining operations on MMC parts due to the 

free cutting tendency of these materials [Cronjager and Meister 1992]. Material 

removal rate (MRR) is an important aspect in productivity enhancement for grinding 

process. For very low values of MRR, rubbing and ploughing dominate, but as MRR 

increases so does the proportion of energy consumed in chip formation [Shen et al. 

2002]. It is a well known fact that a high MRR and a very good surface finish can 

never be achieved simultaneously in a machining process. This is an age-long problem 

and continuous efforts are being made by different researchers all over the world to 

fulfill such an objective. [shen et al. 2002]. 

This chapter discusses the influence of process variables such as volume 

percentage of SiC feed and depth of grinding on specific energy, MRR and surface 

roughness on grinding of DRACs using Taguchi’s orthogonal array. Focus of the study 

here is on understanding the influence of process variables on the grindability of 

DRACs. Specific energy, MRR and surface roughness on grinding of DRACs were 

studied for this purpose. The performance evaluation of the process variables on 

surface grinding of DRACs is proposed based on the analysis of  
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• Specific energy 

• MRR 

• Surface roughness  

First part of this chapter explains the procedure for the experimental design and 

analysis of variance. Second part describes the effect of process variables on 

performance parameters namely, specific energy, MRR and surface roughness. Third 

part of this chapter is devoted for the results and discussions based on Taguchi design 

of experiments. 

4.2 EXPERIMENTAL DESIGN 

In general, experiments are used to study the performance of processes and systems.  

The process or system can be represented by the model shown in Figure 4.1. Some of 

the process variables x1,x2,….,xk are controllable, whereas other variables y1,y2,….,yn 

are uncontrollable. 

 
 

Figure 4.1 General model of process or system 

 

The objectives of the experiment may include the following: 

•  Determining which variables are most influential on the response y. 
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•  Determining where to set the influential x’s so that y is almost always near the 

desired nominal value. 

•  Determining where to set the influential x’s so that variability in y is small. 

•  Determining where to set the influential x’s so that the effects of the 

uncontrollable variables y1, y2,…yp are minimised. 

 

4.2.1 Guidelines for designing the experiments  

Following are the guidelines for designing an experiment. 

• Recognition and statement of the problem: A clear statement of the problem 

often contributes substantially to a better understanding of the phenomena and 

final solution of the problem. 

•  Choice of factors, levels and ranges: The experimenter must choose the 

factors to be varied in the experiment, the ranges over which these factors will 

be varied and the specific levels at runs will be made. Selection of factors and 

their levels require the process knowledge. 

•  Selection of the response variable: It includes the variable to be measured 

which gives useful information about the process. 

•  Choice of experimental design: It involves the consideration of sample size, 

the selection of suitable run order for the experimental trials, and determination 

of whether or not blocking or other randomisation restrictions are involved. 

•  Performing the experiment: when running the experiment, it is vital to 

monitor the process carefully to ensure that everything is being done according 

to plan.  

•  Statistical analysis of the data: Statistical methods are used to analyse the data 

so that the results and conclusion are objective. Residual analysis and model 

adequacy checking are important analysis techniques. 

• Conclusions and recommendations: Once the data have been analysed the 

experimenter must draw practical conclusion about the result and 

recommended course of action. 

• Confirmation Test: Before presenting the results to the others and taking a 

practical course of action the experimenter needs to carry out confirmation tests 

to evaluate the conclusions. 
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4.3 INFERENCES ABOUT THE DIFFERENCES IN MEANS, RANDOMISED 

DESIGN 

This section will explain how the data from this simple comparative experiment can be 

analysed using hypothesis testing and confidence interval procedures for comparing 

two treatment means. 

Let yi. denote the total of all observations under the ith level of factor A, yj 

denote the total of all observations under the jth level of factor B, yij denote the total of 

all observations in the ijth cell, and y… denote the grand total of all the observations. 

Define ,,, .... jiji yyy  and ...y  as the corresponding row, column, cell, and grand 

averages. Expressed mathematically, 
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where a and b are the levels of the factors A and B respectively and n is the number of 

factors in the experiment. 

The total corrected sum of squares may be written as 
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The total sum of squares has been portioned in to  sum of squares due to 

“rows” or factor A, (SSA); a sum of squares due to “columns” or factor B, (SSB); a 

sum of squares due to the interaction between A and B, (SSAB); and a sum of squares 

due to error , (SSE).  

The eq. 4.2 can be written as 

SST = SSA + SSB + SSAB + SSE              (4.3) 

The number of degrees of freedom associated with each sum of squares is 

depicted in Table 4.1 

Table 4.1 Degrees of freedom 

Effect Degrees of Freedom 

A a – 1 

B b– 1 

AB interaction (a-1)(b-1) 

Error ab(n-1) 

Total abn-1 

 

Each sum of squares divided by its degrees of freedom is a mean square. 

Table 4.2 The analysis of variance for the two-factor factorial, fixed effects model 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 

A treatments SSA a-1 
1−

=
a
SSMS A

A  
E

A

MS
MSF =0  

B treatments SSB b-1 
1−

=
b
SSMS B

B  
E

B

MS
MSF =0  

Interaction SSAB (a-1)(b-1) 
)1)(1( −−

=
ba

SSMS AB
AB  

E

AB

MS
MSF =0  

Error SSE ab(n-1) 
)1( −

=
nab

SSMS E
E   

Total  abn-1   
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To test the significance of both main effects and their interaction, the 

corresponding mean square is divided by the error mean square. Large values of this 

ratio imply that the data do not support the null hypothesis. 

The test procedure is usually summarised in an analysis of variance table, as 

shown in Table 4.2. 

The total sum of squares is computed as 

abn
y

ySS
a

i

b

j

n

k
ijkT

2
...

1 1 1

2 −= ∑∑∑
= = =

                          (4.4) 

The sums of squares for the main effects are 
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It is convenient to obtain the SSAB in two stages. First, the sum of squares is 

computed between the ab cell totals, which are called the sum of squares due to 

“subtotals”: 
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This sum of squares also contains SSA and SSB . Therefore, the second step is to 

compute SSAB as 

BASubtotalsAB SSSSSSSS −−=               (4.7) 

SSE is computed by subtraction as 

E T AB A BSS SS SS SS SS= − − −                          (4.8) 

or 

E T SubtotalsSS SS SS= −  

4.4 MODEL ADEQUACY CHECKING 

Before the conclusions from the analysis of variance are adopted, the adequacy of the 

underlying model must be checked. As before, the primary diagnostic tool is residual 

analysis. The residuals for the two-factor factorials model are 
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                    jkiijkijk yye ˆ−=                                                 (4.9) 

and since the fitted value .ˆ ijijk yy = ( the average of the observations in the ijth cell). 

Equation 4.9 becomes 

.jiijkijk yye −=                        (4.10) 

4.4.1 Hypothesis testing  

A statistical hypothesis is a statement about a set of parameters of a population 

distribution. This may be stated formally as [Ross 2004]  

H0: µ1=µ2 

H1:µ1≠µ2 

where µ1&µ2 are the mean value of two different samples. 

The statement H0: µ1=µ2 is called the null hypothesis and  H1:µ1≠µ2 is called 

the alternate hypothesis. We can determine whether or not to accept the null hypothesis 

by computing, first, the value of the test statistics and, second, the probability that a 

unit normal would exceed that quantity [Motorcu 2010]. This probability is called p-

value of the test. 

The p-value is the probability that the test statistic will take on a value that is at 

least as extreme as the observed value of the statistic when the null hypothesis H0 is 

true and the hypothesis would be rejected at any significance level greater than equal 

to the test statistic.  Thus, a p-value conveys much information about the weight of 

evidence against H0, and so a decision maker can draw a conclusion at any specified 

level of significance. 

4.4.2 Analysis of Variance (ANOVA) 

ANOVA is a process concerning to hypothesis test of multiple population means. The 

main objective of ANOVA is to extract from the results how much variation each 

factor (or interaction assigned to the column) causes relative to the total variation 

observed in the result. The term variation is indicated by several mathematical 

descriptions. Perhaps, for a study with factors X1, X2, X3, and so on, the total variation 
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in the results of experiments (all trail result) can be shown by a larger distribution and 

the individual factor influence distributions contained within it (Figure 4.2). 

 
Figure 4.2 Total and individual factor influence distribution. 

 

The assumptions needed for ANOVA are;   

 1) Random, independent sampling from the k populations;  

 2) Normal population distributions; 

 3) Equal variances within the k populations.   

To express the influence of an individual factor to the total amount, the 

influence by the individual factor is expressed as a fraction (%) of the total variation. 

The calculation of individual factor influence is similar to finding the percentage of 

individual contributions in a group project when the total output is known. 

For a set of data, yl, y2, . . . , yn the total variation can be calculated by adding 

deviations of the individual data from the mean value. If the deviations were collected, 

as is, deviation from a data point that falls on the left of the average will be canceled 

by another equally away from the average on the right. To assure that all deviations are 

counted, the individual deviations are squared, which forces all deviation squared 

values to be positive (Figure 4.3). 
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Figure 4.3 Calculation of total sum of squares 

   
 

In the current study the evaluation of performance parameters is conducted 

using MINITAB 15 software, specifically used for design of experiment applications. 

Before making any conclusion regarding the effect of process variables on 

performance parameters, the effect of main factors and the possible interactions 

between them must be considered. Analysis of variance (ANOVA) is an effective 

method to find the variation of the process and to determine the effect of process 

variables on the performance parameters.  

4.5 EFFECT OF GRINDING VARIABLES ON PERFORMANCE 

PARAMETERS 

The orthogonal array for two factors at three levels was used for the elaboration of the 

plan of experiments the array L27 was selected, which has 27 rows corresponding to 

the number of tests (26 degrees of freedom) with 13 columns at three levels as give in 

Table 3.4. The factors and the interactions are assigned to the columns. The first 

column was assigned to the SiC volume percentage (X1), the second column to feed in 

mm/s (X2), the fifth column to the depth of grinding in μm (X3) and remaining were 

assigned to interactions. The outputs to be studied were the specific energy, MRR and 

surface roughness. The selected levels and factors in machining of DRACs are given in 

Table 3.3. 
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Experiments are conducted with three factors at three different levels and with Taguchi 

L27 array. Experimental results for specific energy, MRR and surface roughness are 

shown in Table 3.5 of Chapter 3. The effect of grinding variables on specific energy, 

MRR and surface roughness are discussed in this section. 

Figure 4.4 indicates the effect of feed on specific energy. It can be seen from 

the figure that specific energy decreases with increase in feed. It may be due to the 

reason that the energy consumed in the grinding process is spent on deforming and 

cutting new surfaces in the workpiece material. The new surface area produced is 

therefore a measure of the energy required. Increasing feed at constant depth of 

grinding, chip surface area decreases exponentially with increase in feed thus 

decreasing the specific energy [Rowe 2009].  

Figure 4.5 shows that specific energy decreases with increase in depth of grind. 

It is because of the reason that increase in depth of grinding will increase the uncut 

chip thickness. Increase in uncut chip thickness results in increased material removal 

rate and hence there is decrease in specific energy.  

From Figure 4.6, it is envisaged that material removal rate is higher at larger 

depth of grind. It is due to the reason that at increased depth of grind large number of 

grinding abrasives will assist in material removal thus increasing the MRR. 

Figure 4.7 shows the effect of change in feed on MRR. From the figure, it is 

noted that MRR increases with increase in feed. Further, for different depth of grinding 

and 8vol% of SiC content, feed of 60mm/s it was observed that MRR increased up to 

1.6 times.  

Figure 4.8 shows the effect of depth of grinding on surface roughness at 

specified feed. From the figure, it is observed that surface finish is poor with increase 

in depth of grind. It is mainly due to the reason that, at increased depth of grind, 

grinding forces increase. Increase in grinding force will induce vibration of the 

grinding table thus resulting in poor surface finish. 
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Figure 4.9 shows that surface finish improves with increase in SiC vol% 

irrespective of feed. It is mainly due to the reason that, increase in SiC vol% will 

increase the hardness of the workpiece [Swamy et al. 2011] thus resulting in improved 

surface finish [Di Ilio et al. 1996]. It is also observed that MRR decreases with 

improvement in surface finish. It is mainly due to the reason that surface finish is 

better with low depth of grinding, which is associated with lower MRR. 
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Figure  4.4. Effect feed on specific energy for different vol % of Al6061-SiC (a) 8 vol% (b) 10 vol % (c) 12 vol% 
 

 

 
 

Figure 4.5 Effect depth of grind on specific energy for different vol % of Al6061-SiC (a) 8 vol% (b) 10 vol % (c) 12 vol% 
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Figure 4.6 Effect of depth of grind on MRR for different vol % of Al6061-SiC (a) 8 vol% (b) 10 vol % (c) 12 vol% 

 

 
 

Figure 4.7 Effect of feed on MRR for different vol % of Al6061-SiC (a) 8 vol% (b) 10 vol % (c) 12 vol% 
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Figure 4.8 Effect of depth of grind on surface roughness for different feed (a) 60mm/s (b) 70mm/s (c) 80mm/s 

 
 

 
 

Figure  4.9 Effect of SiC vol% on surface roughness for different feed (a) 60mm/s (b) 70mm/s (c) 80mm/s 
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4.6 RESULT AND DISCUSSION 

The Taguchi’s design of experiment is applied in this work for the identification of the 

best levels of grinding process variables. The grinding of DRACs is performed with 

the factors and levels of the process variables given in Table 3.3. The performance 

parameters to be studied are specific energy, MRR and surface roughness. 

The results of the ANOVA for Specific energy, MRR and surface roughness, 

are discussed in the following sections. This analysis was carried out for a significance 

level of α = 0.05, i.e. for a confidence level of 95%. Tables below shows the P-values, 

that is, the realised significance levels, associated with the F-tests for each source of 

variation. The sources with a P-value less than 0.05 are considered to have a 

statistically significant contribution to the performance measures. Also, the last 

columns of the tables show the percent contribution of each source to the total 

variation indicating the degree of influence on the result.  

4.6.1 ANOVA for specific energy 

Table 4.3 shows the analysis of means for specific energy. The P-values of the feed 

X2, depth of grinding X3 and interaction of factors SiC vol % X1 and feed X2 are less 

than 0.05. The column for percentage contribution (P %) shows that factor X2 has 

highest contribution (78.31%) followed by factor X3 (11.36%) and factor X1 (7.77%). 

A significant contribution (1.31%) is also found from the interaction between X1 and 

X2. In physical sense it means that, feed (X2) is the dominant factor in analysing the 

specific energy for grinding Al-SiC composites. Depth of grinding (X3), SiC vol % 

(X1)and interaction of SiC vol% and feed (X1* X2) also contribute in analysing the 

specific energy. But interaction of SiC vol% and depth of grinding (X1* X3) and 

interaction of feed and depth of grinding (X2* X3) have the p-value greater than 0.05.  

Hence those factors neither have statistical significance, nor a percentage of physical 

significance of contribution to the specific energy. 
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Table 4.3. Analysis of variance for means of specific energy 

Source 
Degrees of 

Freedom 

sum of 

square 

Mean 

square 
F-ratio P-value P% 

X1 2 9.608 4.804 85.28 0.000 7.77 

X2 2 97.414 48.707 864.71 0.000 78.31 

X3 2 14.134 7.067 125.46 0.000 11.36 

X1* X2 4 3.268 0.817 14.5 0.001 1.31 

X1* X3 4 0.853 0.213 3.79 0.052 0.34 

X2* X3 4 2.339 0.585 10.38 0.003 0.94 

Residual Error 8 0.451 0.056    

Total 26 128.066     

Figure 4.10 shows the main effect plot for specific energy. It can be seen that 

specific energy decreases with increase in SiC vol%, (X1), feed (X2) and depth of 

grinding (X3). Hence it can be concluded that minimum specific energy can be 

achieved by grinding Al-SiC specimen having 12 vol% of SiC, at feed of 80mm/s and 

depth of grinding of 12 μm. However the specific energy is also affected by interaction 

effect of different input variables as shown in Figure 4.11.  The interaction is 

significant between SiC vol% X1and feed X2and feed X2and depth of grinding X3.  
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Figure 4.10 Main effect plot for specific energy 
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Figure 4.11 Interaction effect plot for specific energy 
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4.6.2 ANOVA for material removal rate 

On the examination of the percentage contribution (P %) of the different factors (Table 

4.4), for MRR, it can be seen that depth of grinding X3 (P=49.33%) and feed, X2 

(P=39.26%) have the highest contribution. Thus feed and depth of grinding are the 

important factor to be taken into consideration while grinding DRACs. It can be seen 

that SiC vol % X1 (P=9.34%) has statistical and physical significance on MRR. The 

interaction between the factors neither presents a statistical significance, nor a 

percentage of physical significance of contribution to the MRR 

Table 4.4 Analysis of variance for means of MRR 

Source 
Degrees of 

Freedom 

sum of 

square 

Mean 

square 
F-ratio P-value P% 

X1 2 10.844 5.422 38.96 0.000 9.34 

X2 2 45.608 22.804 163.84 0.000 39.26 

X3 2 57.297 28.647 205.83 0.000 49.33 

X1* X2 4 3.433 0.858 6.17 0.014 1.48 

X1* X3 4 0.571 0.143 1.02 0.450 0.24 

X2* X3 4 0.817 0.204 1.47 0.298 0.35 

Residual Error 8 1.113 0.139    

Total 26 119.683     

Figure 4.12 shows the main effect plot for MRR. It is observed for the figure 

that, MRR increases with increase in feed (X2) and increase in depth of grinding (X3). 

A marginal increase in MRR is observed with increase in Sic vol % (X1). Hence it is 

economical to ground the Al-SiC specimen having 12 vol% of SiC with high feed and 

high depth of grind. The interaction effect plot for the performance variables shown in 

Figure 4.13 indicates that there is significant interaction between vol % of SiC and 

feed and feed and depth of grind. 
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Figure 4.12 Main effect plot for MRR 
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Figure 4.13 Interaction effect plot for MRR 
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4.6.3 ANOVA for surface roughness 

The percentage contribution for surface roughness is given in Table 4.5. It can be seen 

from the table that, SiC vol% (X1) has the highest contribution of 85.78%. Hence SiC 

vol% (X1) is a predominant factor to be considered while grinding DRACs. It can be 

seen that depth of grinding X3 (P=7.7%) feed X2 (P=5.76%) and the interactions (X1* 

X2, X1* X3) have statistical and physical significance on surface roughness. The 

interaction (X2* X3) presents neither a statistical significance, nor a percentage of 

physical significance of contribution to the surface roughness. 

Table 4.5 Analysis of variance for means of surface roughness 

Source 
Degrees 

of 

Freedom 

sum of 

square 

Mean 

square 
F-ratio P-value P% 

X1 2 0.764 0.382 1671.1 0.000 85.78 

X2 2 0.051 0.026 112.3 0.000 5.76 

X3 2 0.069 0.034 149.99 0.000 7.70 

X1* X2 4 0.008 0.002 8.3 0.006 0.43 

X1* X3 4 0.005 0.001 5.6 0.019 0.29 

X2* X3 4 0.001 0.0002 0.75 0.587 0.04 

Residual 

 

8 0.002 0.0002 
  

 

Total 26 0.899 
   

 

Figure 4.14 is the main effect plot for surface roughness. It can be concluded 

from the figure that surface roughness decreases with increase in SiC vol%, decrease 

in feed and decrease in depth of grind. The interaction between SiC vol% and feed and 

feed and depth of grinding is significant as shown in Figure 4.15. 
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Figure 4.14 Main effect plot for surface roughness 
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Figure 4.15 Interaction effect plot for surface roughness 
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In the above discussion an attempt is made to understand the effect of process 

parameters on grindability in surface grinding of DRACs. From the above analysis it is 

evident that, the grinding condition which are suitable for obtaining minimum surface 

roughness are not suitable for obtaining maximum material removal rate and vice 

versa. Similarly the grinding condition suitable for obtaining minimum specific energy 

is not suitable to obtain minimum surface roughness and vice versa. Hence it is 

necessary to strike a break even between MRR and surface finish so as to obtain the 

best possible setting of process variables.  

The next chapter discusses on the application of response Surface Methodology 

for the best possible solution. 



Chapter 5 
 
 
 

RESPONSE SURFACE MODEL FOR OPTIMISATION OF SPECIFIC 

ENERGY, MATERIAL REMOVAL RATE AND SURFACE ROUGHNESS IN 

GRINDING OF DRACs 

In this chapter the regression models for specific energy, material removal rate and 

surface roughness were developed form the principles of response surface 

methodology. Further, the models were optimised simultaneously from the desirability 

function approach. 

5.1 INTRODUCTION 

Response surface methodology (RSM) was originally developed by Box and Wilson in 

1951 to aid the improvement of manufacturing processes in the chemical industry. The 

purpose was to optimise chemical reactions. In recent years, the RSM is gaining wide 

popularity in all the engineering and service industries. The reason for its popularity is 

being that the methodology is very simple and the model developed from RSM can 

easily be optimised quantitatively [Hood et al 2007]. Development of the RSM model 

is accomplished through the use of sequential experimentation involving factors 

affecting the process. The developed model can further be optimised either by 

desirability function approach, genetic algorithm or any other optimisation techniques. 

The current chapter comprises of four sections. First section of the chapter 

explains the process of fitting the regression model and estimation of least square 

coefficients. An introduction to Response surface methodology is given in second 

section. Third section explains the desirability function approach. Results are 

discussed in the fourth section. 

 

5.2 FITTING REGRESSION MODEL 

In general, suppose that there is a single dependent variable or response y that depends 

on k independent of repressor variables, for example, x1,x2, . …... xk. The relationship 

between these variables is characterised by a mathematical model called a regression 

model. The regression model is fitted to a set of sample data. Regression models are 



99 
 

frequently used to analyse data from unplanned experiments. To understand the basic 

concepts of regression model a linear regression model is discussed in this section. 

5.2.1 Linear regression models  

Consider an empirical model relating the response y to factor x1 and x2. A model that 

might describe this relationship is  

                                         ∈+++= 22110 xxy βββ                               (5.1) 

where y represents the response and  x1 and x2 represents the variables in coded form. 

We often call the independent variables are often called as predictor variables or 

regressors. 

The model describes a plane in the two-dimensional x1,x2 space. The 

parameter β 0 defines the intercept of the plane. We sometimes call β 1 and β 2 

partial regression coefficients, because β 1 measures the expected change in y per unit 

change in x1 when x2 is held constant and β 2 measures the expected change in y per 

unit change in x2 when x1 is held constant.  

In general, the response variable y may be related to k regressor variables. The model 

                               +++= 22110 xxy βββ ……..+ εβ +kk x                               (5.2) 

is called a multiple linear regression model with k regression variables. The 

parameters ,,,1,0, kjj =β are called the regression coefficient. This model describes 

a hyperplane in the k-dimensional space of the regressor variables {x}. The parameter 

β j represents the expected change in response y per unit change in xj when all the 

remaining independent variables xi ( i ≠ j) are held constant. 

5.2.2. Estimation of the parameters in linear regression models  

The method of least squares is typically used to estimate the regression coefficients in 

a multiple linear regression model [Montgomery 2005]. Suppose that n > k 

observations of the response variable are available, say y1, y2, . . . . , yn. Along with 

each observed response yi, we will have an observation on each regressor variable and 

let xij denote the ith observation or level of variable xj. The data will appear as given in 

Table 5.1. We assume that the error term ε in the model has E (ε) = 0 and V (ε) = σ2 

and that the {εi} are uncorrelated random variables. 
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iikkiii xxxy ∈+++++= ββββ ......22110  

                             
∑
=

∈++=
k

j
ijij x

1
0 ββ          i= 1,2, . . . . , n                    (5.3) 

We may write the model eq. 5.3 in terms of the observations as shown in Table 5.1  

Table 5.1 Data for Multiple Linear regression 

y x1 x2 . . .  xk 

y1 x11 x12 . . . x1k 

y2 x12 x22 . . . x2k 

. . . . . 

. . . . . 

. . . . . 

yn xn1 xn2 . . . xnk 

   

The method of least squares chooses the β ’s in Eq. 5.3 so that the sum of the squares 

of the errors, εi, is minimised. The least squares function is  

                                                        
∑
=

∈=
n

i
iL

1

2                 (5.4) 

∑ ∑
= =

−−=
n

i

k

j
ijji xy

1 1

2
0 )( ββ  

The function L is to be minimised with respect to β 0, β 1, . . . ., β k. The least 

squares estimators, say ,ˆ,....,ˆ,ˆ
10 kβββ must satisfy 

                        
∑ ∑
= =

=−−−=
∂
∂ n

i

k

j
ijji xyL

k
1 1

0ˆ,....,ˆ,ˆ
0

0)ˆˆ(2
10

ββ
β βββ

              (5.5) 

and 

       
∑ ∑
= =

=−−−=
∂
∂ n

i

k

j
ijijji xxyL

k
1 1

0ˆ,....,ˆ,ˆ
0

0)ˆˆ(2
10

ββ
β βββ

 j= 1,2, . . . . . ., , k       (5.6) 

It is simpler to solve the normal equations if they are expressed in matrix notation. The 

model in terms of the observations, Eq. 5.3, may be written in matrix notation as  

                                                    ∈+= βXy                         (5.7) 

where 
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In general, y is an (n x 1) vector of the observations; X is an (x X p) matrix of 

the levels of the independent variables and p=k+1. β  is a (p X 1) vector of the 

regression coefficients, and ∈  is an (n X 1) vector of random errors.  

We wish to find the vector of least squares estimators, β̂  that minimizes, 

)()'('
1

2 ββ XyXyL
n

i
i −−=∈∈=∈=∑

=

 

L may be expressed as 

ββββ XXXyyXyyL '''''' +−−=  

                                         βββ XXyXyy ''''2' +−=               (5.8) 

Since  is a scalar, and its transpose ( ββ XyyX ')'' = is the same scalar. 

The least squares estimates must satisfy. 

0ˆ'2'2 =+−=
∂
∂ β
β β XXyXL  

which simplifies to 

                                                  yXXX 'ˆ' =β                 (5.9) 

yX ''β
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Eq (5.9) is the matrix form of the least squares normal equations. To solve the 

normal equations multiply both sides of Eq 5.9 by the inverse of XX ′ . Thus the least 

squares estimators of β is 

                                                     yXXX ')'(ˆ 1−=β                                  (5.10) 

In this form it is easy to see that XX ′  is a (p X p) symmetric matrix and yX ′  is 

a (p X 1) column vector. Note the special structure of the X’X matrix. The diagonal 

elements of XX ′  are the sums of squares of the elements in the columns of X, and the 

off-diagonal elements are the sums of cross-products of the elements in the columns of 

X. Furthermore, note that the elements of yX ′  are the sums of cross-products of the 

columns of X and the observations {yi}. 

The fitted regression model is  

                                               β̂ˆ Xy =                               (5.11) 

In scalar notation, the fitted model is  

∑
=

+=
k

i
ijji xy

1
0

ˆˆˆ ββ   i= 1,2,. . . . ., n 

The difference between the actual observation yi and the corresponding fitted 

value iŷ  is the residual, say iii yye ˆ−= . The (n X 1) vector of residuals is denoted by 

                                                       yye ˆ−=                         (5.12) 

5.2.3 Estimating variance  

It is also usually necessary to estimate the variance (σ2). To develop an estimator of 

this parameter, consider the sum of the squares of the residuals, say 

∑
=

−=
n

i
iiE yySS

1

2)ˆ(  

∑
=

=
n

i
ie

1

2  

ee'=  

Substituting ,ˆˆ βXyyye −=−= we have 

ββββ

ββ
ˆ''ˆˆ'''ˆ'

)ˆ()'ˆ(

XXXyyXyy

XyXySSE

+−−=

−−=
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βββ ˆ'ˆ''ˆ2' XXyXyy +−=  

Because yXXX 'ˆ' =β , this last equation becomes 

yXyySSE ''ˆ' β−=              (5.13) 

Eq.5.13 is called the error or the residual sum of squares, and it has n - p 

degrees of freedom associated with it. It can be shown that 

)()( 2 pnSSE E −= σ  

so an unbiased estimator of 2σ is given by 

    pn
SSE

−
=2σ̂                          (5.14) 

5.2.4 Tests for significance of regression 

The test for significance of regression is a test to determine if there is a linear 

relationship between the response variable y and a subset of the regression variables 

x1, x2, .  . . .,xk. The appropriate hypotheses are 

0.........: 210 ==== kH βββ  

       0:1 ≠jH β    for at least one j           (5.15) 

Rejection of H0 in Eq. 5.15 implies that at least one of the regressor variables 

x1, x2, .  . . .,xk contributes significantly to the model. The test procedure involves an 

analysis of variance portioning of the total sum of squares SST into a sum of squares 

due to the model (or to regression) and a sum of squares due to residual (or error), say 

ERT SSSSSS +=               (5.16) 

Now if the null hypothesis 0.........: 210 ==== kH βββ is true, then 2/σRSS

is distributed as 2
kX  where the number of degrees of freedom for X2 is equal to the 

number of regressor variables in the model. The test procedure for  

0.........: 210 ==== kH βββ  is to compute 

     E

R

E

R

MS
MS

knSS
kSSF =
−−

=
)1/(

/
0             (5.17) 
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and to reject H0 if F0 exceeds 1,, −−knkFα . Alternatively, we could use the p-value 

approach to hypothesis testing and thus, reject H0 if the p-value for the statistic F0 is 

less than α.  

A computational formula for regression sum of square (SSR) may be found 

easily. We have derived a computational formula for SSE in Eq. 5.16 that is, 

yXyySSE ''ˆ' β−=  

where  yX ''β̂  is SSR  

The coefficient of multiple determination R2 is defined as  

T

R

SS
SSR =2  

Coefficient of multiple determination (R2) is a measure of the amount of 

reduction in the variability of y obtained by using the regression variables 

x1,x2,……….xk in the model. R2 varies between 0 and 1. The value of R2 should be 

nearer to 1 for the best fit of the model. However larger a value of R2 does not 

necessarily imply that regression model is a good one. Adding a variable to the model 

always increases the R2, regardless whether the additional variable is significant or not. 

Hence many a times it is preferred to use adjusted R2, defined as  

                                        
( )2 211 1adj

nR R
n p

 −
= − − − 

            (5.18) 

5.3 RESPONSE SURFACE METHODOLOGY 

Response surface methodology (RSM) is a collection of mathematical and 

statistical techniques that are useful for the modelling and analysis of problems in 

which a response of interest is influenced by several variables and the objective is to 

optimise this response [Montgomery 2005]. 

In many engineering fields, there is a relationship between an output variable 

of interest ‘y’ and a set of controllable variables {x1, x2 . . . . xn}. In some systems, the 
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nature of the relationship between y and x values might be known. Then, a model can 

be written in the form [Puri and Bhattacharya 2005]  

 

1 2( , ,...., )ny f x x x ε= +                                     (5.19) 

 

where ε represents noise or error observed in the response y. If we denote the expected 

response be  

     1 2 ˆ( ) ( , ,...., )nE y f x x x y= =                        (5.20) 

 then the surface represented by 

 

                               1 2ˆ ( , ,...., )ny f x x x=                                   (5.21) 

is called response surface. In most of the RSM problems, the form of relationship 

between the response and the independent variable is unknown. Thus the first step in 

RSM is to find a suitable approximation for the true functional relationship between y 

and a set of independent variables employed. Usually a second order model is utilised 

in response surface methodology [Li et al 2009, Kwak 2005, Montgomery 2005]. 

                           

2

1 1

ˆ
k k

o i i ii i ij i j
i i i j

y x x x xβ β β β ε
= =

= + + + +∑ ∑ ∑ ∑                    (5.22) 

The β coefficients, used in eq. 5.22 can be calculated by least square method. 

The second-order model is normally used when the response function is not known or 

nonlinear.  

The necessary data for building the response models are generally collected by 

the experimental design. In this study, the collections of experimental data were 

adopted using central composite design (CCD). The factorial portion of CCD is a full 

factorial design with all combinations of the factors at two levels (high, +1 and low, 

−1) and composed of the six axial points and six central points (coded level 0) which 

is the midpoint between the high and low levels[Montgomery 2005]. The star points 

are at the face of the cubic portion on the design which corresponds to a value of α =1 

and this type of design is commonly called the face-centered CCD.  A total 20 

different combinations (including six replicates of centre point each sighed the coded 
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value 0) were chose in random order according to a CCD configuration for three 

factors. The coded values of independent variables were found from equation 
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Face-centred central composite design is a useful variation of the central 

composite design, in which the axial distance α=1. This type of design is used when 

the ranges of design variables are specified and these ranges are strict. The obvious 

region for the design is a cube. The experiment includes three controllable process 

factors (k = 3), whose levels are presented in Table3.3. Here, we follow the convention 

of coding the factor levels so the design points have coded levels for each factor. The 

region of interest, coded {−1, 1}, is a region determined by lower and upper limits on 

factor level setting combinations that are of major interest. 

 

 

Figure 5.1  Representation of a 23 central composite design. 

In this proposed work, face centered composite design (CCD) having 20 sets of 

experiments are sorted using the standard ordering and are carried out according to 
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experimental design matrix. The design is shown schematically in Figure 5.1. It is a 

two-level full factorial design with 8 factorial points (1-8), augmented with additional 

6 centre (15-20) and 6 axial points (9-14) as shown in Figure 5.1.  

5.4 DESIRABILITY FUNCTION 

Until a few years ago, several objective functions were combined into a single scalar 

objective function, using arbitrary weightage factors, so that the problem could 

become computationally tractable.  This  ‘scalarisation’  of  a  vector  objective  

function  suffers  from  several  drawbacks.  One is that the results are sensitive to the 

values of the weighting factors used, which are difficult to assign on a-priori basis. 

What is even more important is that there is a risk of losing some optimal solutions.  

The  desirability  function  approach  [Derringer and Suich 1980;  Deming,  1991]  is  

a most  widely  used  methods  in  the industry for the optimisation of multiple 

response processes. It is based on the idea that the "quality" of a product or  process  

that has the multiple quality  characteristics, with one of  them outside of  some  

"desired"  limits,  is  completely  unacceptable. The method finds operating conditions 

that provide the "most desirable" response values.  

The desirability function approach is based on the idea that when one of the 

quality characteristics of an industrial process or product with many characteristics are 

not in the desired limits, then the overall quality of the industrial process or the 

product is not desirable. By this approach the process (and/or product) variables which 

yield the most desirable responses are found. The desirability function approach for 

the optimisation of the multi response problems was originally introduced by 

Harrington [1965]. Then another version was developed by Derringer and Suich 

[1980] which has been the one widely used in the literature. In their study, the overall 

desirability function, delivered as the geometric mean of linear individual desirability 

functions, is optimised by a univariate search technique which does not use any 

derivative information of the function. The desirability functions continue to be a 

commonly preferred method because it easily converts a multi response problem into a 

single response one.  
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A product performance is a function of responses associated with multiple 

quality characteristics. Each response has its own effect on the performance where one 

response may have a stronger influence on product performance than another [Raissi 

and Farsani 2009]. Also each response may be measured in different units. Hence it 

becomes difficult to combine all the different types of responses into a single entity 

that would indicate the level of product performance. The desirability function 

achieves this task by transforming the responses into dimensionless variables called as 

desirability index di. The range of a desirability index falls in the closed interval [0, 1]. 

A higher value of the desirability index for a response implies a higher contribution to 

the product performance by the particular response. The overall assessment of product 

performance is accomplished by multiplying all desirability indices to yield an 

aggregate desirability index D. 

The desirability functions considered in this study are of Derringer and Suich’s 

type. In a multi response optimisation problem each response can be expressed as   

Y j (x) : Rn →R ( j =1,2,....m) , 

where x∈ Rn ( R denoting the real numbers) are the decision variables or controllable 

factors. An individual desirability function dj (Yj (x)) : R→R assigns a number 

between 0 and 1; 0 being a completely undesirable and 1 being a completely desirable 

or ideal response value. One or two-sided desirability functions are used, depending on 

whether each of the n responses has to be maximised or minimised, or has an allotted 

target value.  

For maximisation of the response di  can be defined as[Derringer and Suich 

1980] 
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and for minimisation di is 
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In Eq.-5.23 and 5.24, L, H and T are respectively the lowest, highest and the 

target values and wt is the weight. The value of weight wt can be varied between 0.1 

and 10. The value of one creates a linear ramp function between the low value, goal 

and the high value. Increased weight moves the result towards the goal or its decrease 

creates the opposite effect [Jing et al. 2008]. The partial desirability function di ranges 

between 0, (for a completely undesired response), and 1, (for a fully desired response). 

The partial desirability functions are then combined into a single composite 

response, the global desirability function D, defined as the geometric mean of the 

different di-values [Nguyen et al. 2009]: 

                                         
1 2

1

1 2( * * ) nn vvv v
nD d d d= ∑             (5.25) 

In eq (5.25) v1, v2, etc., are the relative importance assigned to the response 1, 

2, etc. respectively and n is the number of response. The relative importance is a 

comparative scale for weighting each of the resulting di in the overall desirability 

product and it varies from the least important (vi = 1) to the most important (vi = 5). It 

is noteworthy that the outcome of the overall desirability D depends on the importance 

value that offers users flexibility in the definition of desirability functions 

In this formulation of desirability functions, possible correlations between the 

responses are not taken into account [Islam et al. 2010]. 

5.4.1 Optimisation of desirability functions 

The optimisation of overall desirability function becomes a complicated task when 

there are two sided individual desirability functions in the problem. In the two-sided 

desirability function formulation, the target value is a non-differentiable point and 
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hence the function is not smooth at this point. To optimise the overall desirability 

function given in eq-(5.25) involving two-sided desirabilities, one way is to use the 

optimisation techniques that do not employ the derivative information to find the 

optimum. Another way is to modify the individual desirability functions by 

approximation approaches to smooth it and then use the gradient based methods. 

In the study of Derringer and Suich [1980], firstly second degree polynomials 

are fit by regression to some data collected through experimentation to model the 

relations between the responses and the factors. Then, the individual desirabilities of 

these responses are calculated and used to calculate the overall desirability. Hence, for 

each set of factor levels, an overall desirability value is obtained. Then, all factor 

levels are searched to find the optimal D by a direct search method similar to that of 

Hooke and Jeeves [1960]. 

5.5 RESULTS AND DISCUSSIONS  

5.5.1 Response surface model 

Experiments were conducted on Al-SiC composites with SiC volume percentage, feed 

and depth of cut as the factors in the experimentation. Each of factor was studied at 

two different levels   to analyse the response of the desired output. In the present study 

specific energy, MRR and surface roughness have been selected as the responses to be 

optimised. A response surface model is developed for each of the response based on 

the full factorial experimentation. It is observed that the use of full factorial 

experimentation guarantees a uniform data distribution over the entire design space but 

is practical only when the number of variables is small. In the underlying study, full 

factorial, Face-centered central composite design (CCD) in which α=1 is adopted. The 

design is a two-level full factorial with 8 factorial points, augmented with additional 6 

centre and 6 axial points. Table 5.2 shows the design matrix along with experimental 

results. These experiments are the subset of experiments depicted in Table 3-5 with 6 

cente point experiments performed at random. 

The development and the analysis of response surface model are carried out 

using MINITAB15 software. Eq. (5.26) –eq. (5.28) represents the response surface 
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model developed for specific energy, specific material removal rate and surface 

roughness respectively.  

Table 5.2 Experimental Results 

Test No 
SiC Vol 

% 

Feed 

(mm/s) 

a 

(μm) 

u 

(J/mm3) 

'
wQ  

(mm3/mm ⋅ s) 
Ra (μm) 

1 8 60 8 145.585 0.498 1.04 
2 12 60 8 124.449 0.518 0.66 
3 8 80 8 95.881 0.556 1.17 
4 12 80 8 78.005 0.714 0.72 
5 8 60 16 135.640 0.675 1.14 
6 12 60 16 122.177 0.772 0.81 
7 8 80 16 71.529 0.870 1.30 
8 12 80 16 65.516 1.067 0.87 
9 8 70 12 88.625 0.605 1.16 
10 12 70 12 77.047 0.667 0.79 
11 10 60 12 119.907 0.608 0.86 
12 10 80 12 71.379 0.926 0.98 
13 10 70 8 116.596 0.555 0.87 
14 10 70 16 84.575 0.829 0.95 
15 10 70 12 91.937 0.655 0.91 
16 10 70 12 95.097 0.708 0.95 
17 10 70 12 84.498 0.660 0.89 
18 10 70 12 94.436 0.708 0.91 
19 10 70 12 88.498 0.659 0.92 
20 10 70 12 95.543 0.707 0.93 

The regression equation for specific energy is 
2

1 1 2 3 1
2 2
2 3 1 2 1 3 2 3

ˆ 683.819 15.727 12.608 18.043 1.379

0.0729 0.765 0.067 0.305 0.077

y X X X X

X X X X X X X X

= + − − −

+ + + + −
        (5.26) 

The regression equation for specific material removal rate is 

 

2 2
2 1 2 3 1 2

2
3 1 2 1 3 2 3

ˆ 3.555 0.173 0.120 0.380 0.016 0.00007

0.0001 0.015 0.002 0.0007

y X X X X X

X X X X X X X

= + − − − +

+ + + +
        (5.27) 

The regression equation for surface roughness is 
2 2

3 1 2 3 1 2
2
3 1 2 1 3 2 3

ˆ 2.096 0.311 0.015 0.013 0.014 1.1 09

6.25 04 0.001 0.001 9.38 05

y X X X X E X

E X X X X X E X X

= − + + + − −

− − − + + −
      (5.28) 
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where 32,1 ˆˆˆ yandyy are the predicted responses for specific energy, specific material 

removal rate and surface roughness respectively and X1, X2 and X3 are the volume 

percentage of SiC, feed and depth of grind respectively. 

5.5.2 Model adequacy checking 

Before the conclusions from the analysis of variance are adopted, the adequacy of the 

underlying model should be checked. Proceeding with exploration and optimisation of 

a fitted response surface will likely give poor or misleading results unless the model 

has an adequate fit. Residual analysis is one of the techniques for checking the model 

adequacy.   

A check of the normality assumption can be made by constructing a normal 

probability plot of the residuals. If the residuals plot is approximately along a straight 

line, then the normality assumption is satisfied. In the residual plot if the residuals are 

randomly scattered, then it suggests that the variance of original observations is 

constant for all values of y.   
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(b) 

Figure 5.2 (a) Normal probability plot and (b) Residual plot for specific energy. 
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(b) 

Figure 5.3 (a) Normal probability plot (b) Residual plot for MRR. 
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Figure 5.4 (a) Normal probability plot (b) Residual plot for surface roughness. 

The normal probability plot, histogram plot and residual plot of residuals are 

the means of checking the adequacy of the developed model. Figure 5.2-5.4 shows the 
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normal probability and residual plot for the specific energy, MRR and surface 

roughness respectively. The residual plot for all the three responses does not reveal 

anything particularly troublesome as the residual plot for each of the response does not 

follow any particular pattern.  

5.5.3 Analysis of variance for regression 

Analysis of Variance (ANOVA) is a statistical technique to compare two or more 

means. By performing ANOVA on the available experimental data it is possible to 

understand a concrete visualisation of the impact of various factors and their 

interactions on the response. That is, ANOVA will signify the relative importance of 

each factor on the response. 

In the present study ANOVA is performed to find the lack of fit in the 

developed model. ANOVA is also performed to identify the significant factors and 

their interaction which affects the performance parameters namely, specific energy, 

MRR and surface roughness. Table 5.3- Table 5.5 shows the results of ANOVA for 

Specific energy, MRR and surface roughness respectively.
 

 

Table 5.3 ANOVA for specific energy 

Source Degrees of 
Freedom 

Seq Sum of  
Square 

Adj Mean  
Square F-value P-value 

Regression 9 9387.67 1043.07 33.94 0.000 

Linear 3 8194.64 2731.55 88.89 0.000 

Square 3 1055.2 351.73 11.45 0.001 

Interaction 3 137.83 45.94 1.5 0.275 

Residual Error 10 307.3 30.73 
  

Lack-of-Fit 5 211.34 42.27 2.2 0.203 

Pure Error 5 95.97 19.19 
  

Total 19 9694.97 1043.07 33.94 
 R2=96.83%   R2

adj =93.98% 
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Table 5.4 ANOVA for material removal rate 

Source Degrees of 
Freedom 

Seq Sum of 
 Square 

Adj Mean  
Square F-value P-value 

Regression 9 0.365 0.041 32.75 0.000 

Linear 3 0.330 0.110 88.8 0.000 

Square 3 0.019 0.006 5.22 0.020 

Interaction 3 0.016 0.005 4.24 0.035 

Residual Error 10 0.012 0.001 
  

Lack-of-Fit 5 0.009 0.002 2.31 0.190 

Pure Error 5 0.004 0.001 
  

Total 19 0.378 0.041 
  R2 = 96.78%   R2

adj =93.88%
 

 

Table 5.5 ANOVA for surface roughness 

Source Degrees of 
Freedom 

Seq Sum of  
Square 

Adj Mean  
Square F-value P-value 

Regression 9 0.466 0.0518 138.76 0.000 

Linear 3 0.449 0.1498 401.39 0.000 

Square 3 0.012 0.0041 11.01 0.002 

Interaction 3 0.004 0.0014 3.87 0.045 

Residual Error 10 0.004 0.0004 

  Lack-of-Fit 5 0.002 0.0003 0.79 0.598 

Pure Error 5 0.002 0.0004 

  Total 19 0.470       

R2=  99.21%   R2
adj = 98.49% 

5.5.4 Test for lack of fit 

A first-order design allows the experimenter to determine, when the first-order model 

is no longer adequate, provided that there are more design points than first-order 



118 
 

model parameters, and the design includes replication at one or more points. There is 

said to be model lack-of-fit when the model does not adequately represent the mean 

response as a function of the factor levels. Lack of fit of the first-order model occurs 

when the local response surface is no longer a plane. Hence the designer will go for 

higher order model adequacy checking. The ratio of sum of square of lack of fit to sum 

of square of pure error is used to check the lack of fit. The null hypothesis is rejected 

at confidence level α if this ratio exceeds 
dd nnpn

F
−−− ,1,α  where n is the total number of 

trreatments, p is the number of design factor and nd is the number of distinct coded 

treatment combinations [Dean and Voss 1999] 

It can be observed from Table 5.3-5.5 that, F-test value for lack-of-fit of the 

model developed for specific energy, MRR and surface roughness are respectively 2.2, 

2.31 and 0.79. The F-value for lack-of-fit (F 0.05, 5, 5) from standard F-distribution is 

5.05. Since the F-value of lack-of-fit for the developed model is less than the 

theoretical value, it indicates that lack-of fit is insignificant and developed model is 

adequate [Seeman et al. 2010]. Further, ANOVA for the regression reveals that, R2 

value for all the model is greater than 95%. It indicates that the developed model fits 

very well with the experimental results. 

5.5.5 Response surface plots 

 Response surface plots such as contour and surface plots are useful for establishing 

desirable response values and operating conditions. In a contour plot, the response 

surface is viewed as a two-dimensional plane where all points that have the same 

response are connected to produce contour lines of constant responses. A surface plot 

generally displays a three-dimensional view that may provide a clearer picture of the 

response. If the regression model (i.e. first-order model) contains only the main effects 

and no interaction effect, the fitted response surface will be a plane (i.e. contour lines 

will be straight). If the model contains interaction effects, the contour lines will be 

curved and not straight. Both contour and surface plots help experimenters to 

understand the nature of the relationship between the two factors and the response. 
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Based on the model developed in Eq-(5.26) – eq-(5.28) for the responses 

namely specific energy, MRR and surface roughness, the contour plots and surface 

plots were drawn to visualise the effect of process variables on the response. Figure 

5.5-5.7 shows the contour plots and surface plot for specific energy, MRR and surface 

roughness respectively. 

 
(a)  

 

 

Figure 5.5 (a) Contour plot for specific energy (b) surface plot for specific energy 

(b) 
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Contour plot for specific energy from Figure 5.5 reveals that specific energy 

decrease with increase in feed. It is also observed that specific energy decrease 

gradually with increase in depth of cut and further increases.   

 

 
(a) 

 

 
(b) 

Figure 5.6 (a) Contour plot for MRR (b) Surface plot for MRR 
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Figure 5.6 shows the contour plot for MRR. It is observed that, MRR increases 

with increase in feed and depth of cut. 

 
(a) 

 
(b) 

Figure 5.7 (a) Contour plot for surface roughness. (b) Surface plot for surface 

roughness 

Figure 5.7 shows the contour and surface plot for surface roughness. It is 

observed from the plot that, surface finish improves with increase in SiC vol % and 
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deteriorates with increase in dept of cut. Hardness of the MMCs increases with 

increase in reinforcing material [Swamy et al. 2011]. In MMCs grinding, the 

morphology of the ground surfaces is characterised by the presence of side flow 

ploughing marks and scratches and by areas which evidence high plastic deformation 

and lack of ridges. It has been noted that the zones with high plastic deformation 

decrease for materials which exhibit higher hardness values thus improving the surface 

finish [Di Ilio et al. 2009].  

It is evident from the micrograph (Fig. 5.8) that, ploughing is more significant 

on the specimen with less SiC volume content which results in poor surface finish [Di 

Ilio et al. 2009].  

Figure 5.8 Ground surface of (a) 8 vol% SiC and (b) 12 vol% SiC at 60mm/s feed and 

12μm depth of grinding at 100X magnification. 

5.5.6 Process Optimisation 

The regression model developed for the specific energy, material removal rate and 

surface roughness is given in eq. (5.26) - eq (5.28). The optimisation process was 

performed using desirability function, the option available in MINITAB 15 software. 

A prediction profile for the performance parameters consists of a series of graphs, one 

for each process variable, of the performance parameters at different levels of one 

process variable, holding the levels of the other process variables constant at specified 

values, called target values. If appropriate target values for the independent variables 

have been selected, inspecting the prediction profile it is possible to explain which 

                (a)                            (b) 
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levels of the process variables produce the most desirable predicted response on the 

performance variable. In the current study, the objective is to minimize the specific 

energy, maximize the material removal rate and to minimize the surface roughness. 

As mentioned in eq. (5.23) and eq. (5.24) it is necessary to specify the lower 

limit and target value of the response for the maximisation problem and target value 

and minimum value for the minimisation problem. The CCD design matrix results 

represent maximum specific energy (145.785 J/mm3), minimum material removal rate 

(0.45 mm3/mm ⋅ s) and maximum surface roughness (1.3 μm). The target values for 

Specific energy, MRR, and surface roughness were assigned as 60 J/mm3, 0.95 

mm3/mm ⋅ s and 0.7 μm respectively. These target values were assigned based on the 

goal to achieve the desirability score of 1.0. Afterwards, the predicted responses at 

each level of each factor, holding all other factors constant at their current setting are 

calculated, and the individual desirability scores for the predicted values for each 

performance parameters are then combined by computing their geometric mean 

according to eq.(5.25).  

 
Figure 5.9 Desirability function plot 

On the basis of the above calculations the optimal conditions were found to be 

specific energy of 59.752 J/mm3, surface roughness of 0.86 μm and MRR of 1.025 



124 
 

mm3/mm ⋅ s. The respective individual desirability function values are 1.000, 1.000 and 

0.887. The composite desirability is 0.961.  The details are shown in Figure 5.9. 

5.6 VALIDATION OF RESULTS 

Experiments were conducted to validate the results obtained from the developed 

statistical optimisation model.  The response surface models given by eq. 5.26 –5.28 

were validated by the set of test runs. Table 5.6 gives the results obtained from 

experimental test, and the predicted results obtained from the developed response 

surface model. Test No. 1 refers to the comparison of the results obtained from 

experiment, and RSM for the factors (process variables) listed in Table 5.2. Test No.2-

test no 5 refers to the process variables other than listed in Table 5.2 and test no. 6 and 

7 is performed at the optimal conditions obtained from the desirability function 

approach.  

The percentage error between the experimental results and developed model is 

calculated as 

100*
valuealExperiment

valuePredictedvaluealExperimenterrorPercentage −
=

 
 
 

It can be observed from the Table 5.6 that the experimental results and the 

predicted results are in close agreement. Fig. 5.10 shows the plot of error between the 

predicted and experimental results of specific energy, MRR and surface roughness. 

The percentage error for specific energy is within 8.0%, for MRR is within 7.0% and 

for surface roughness the error is within 6.0%. Hence it can be concluded that, RSM 

can effectively be used for predicting the performance parameters of the surface 

grinding process. 
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Table 5.6 Validation of experimental results 

Test 

No. 

Process variables 

Method 

Performance Parameters Percentage error 

SiC vol 

% 

Feed 

(mm/s) 
a (μm) u (J/mm3) 

MRR 

(mm3/mm

⋅ s) 

Ra (μm) u  MRR  Ra  

1 10 70 8 
Experimental 116.596 0.555 0.87 5.06 0.79 2.3 
RSM 110.686 0.550 0.85 

2 
 
8 

 
80 

 
12 

Experimental 77.173 0.784 1.19 
7.77 6.73 4.2 

RSM 71.172 0.731 1.24 

3 10 80 10 
Experimental 82.338 0.806 0.89 

3.15 2.43 -5.6 
RSM 79.742 0.786 0.94 

4 8 80 14 
Experimental 68.740 0.846 1.31 

1.82 4.47 3.05 
RSM 67.488 0.808 1.27 

5 12 70 10 
Experimental 89.11 0.579 0.77 

6.05 -5.3 3.89 
RSM 83.713 0.610 0.74 

6 12 80 14 
Experimental 55.443 1.052 0.87 

-5.68 6.03 3.45 
RSM 58.593 0.989 0.84 

7 12 80 14 
Experimental 63.296 1.058 0.89 

7.43 6.5 5.61 
RSM 58.593 0.989 0.84 
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Figure 5.10 Percentage error plot 

Figure 5.11 shows the ground surface of the specimen Al 6061 SiC 12 vol% ground at 

feed 80mm/s and depth of grinding 14 μm. The micrograph was taken with eMpower 

optical microscope with 100X magnification. The surface roughness obtained for this 

ground condition is 0.82μm. The feed mark observed in the micrograph is a natural 

defect because of infeed. Additionally, a ground surface may be characterized by clean 

cutting paths and ploughed materials to the sideway [Hecker and Liang 2003]. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Optical micrograph of ground surface Al 6061 SiC 12 vol% ground at 

feed  80mm/s and depth of grinding 14 μm and magnification  100X. 
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In the next chapter, the regression models obtained through RSM for specific 

energy, material removal rate and surface roughness in surface grinding of DRACs 

were simultaneously optimized by novel genetic algorithm approach. 



Chapter 6 
 
 
 

MULTI OBJECTIVE OPTIMISATION OF SURFACE GRINDING PROCESS 

BY NOVEL GENETIC ALGORITHM 

This chapter discusses the multi objective optimisation strategy for finding the optimal 

solution for the performance parameters in surface grinding of DRACs. A novel and 

time saving method of non-dominated sorting genetic algorithm called enhanced non-

dominated sorting genetic algorithm-II is employed for the study. 

6.1 INTRODUCTION 

A multi objective optimisation problem arises when two or more objective functions 

are simultaneously optimised. Generally such problems consist of conflicting 

objectives so that it is not possible to obtain a single solution which is optimum in all 

the objectives. Instead of a single optimum solution, a set of optimum solutions exists 

in such cases. Members of the solution set are such that there exist no solution in the 

set which is better than the others in all the objectives; neither does a solution exist in 

the set which is worse than the others in all the objectives.  

Since the pioneering work of Schaffer (1985) in the field of vector evaluated 

genetic algorithm, multi-objective genetic algorithms have been attracting increased 

interest. These algorithms process a set of solutions, the population, in parallel which 

makes them particularly suited to this task. They naturally generate a set of solutions 

approximating the Pareto front.  

Multi objective optimisation problems can prove very difficult. Objectives can 

be conflicting and incomparable [Hwang et al. 1980]. This prohibits the use of 

aggregation methods[Jones 2004]. In such situations a single optimum can rarely be 

identified. Instead, a set of non-dominated or efficient solutions are required. These 

sets are also known as the Pareto optimal set. 

In the first part of this chapter, a brief study of basics of genetic algorithms and 

non-dominated sorting genetic algorithms (NSGA-I and NSGA-II) are discussed. 
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Second part discusses the novel genetic algorithm adopted in the thesis. Final part of 

the chapter is devoted for results and discussion.  

6.2 ALGORITHMS FOR MULTI OBJECTIVE OPTIMISATION 

Extensive research has been reported on the algorithms used for generating the multi 

objective optimisation. The  algorithms  include:  vector evaluated GA  (VEGA), 

[Schaffer, 1985], vector-optimised evolution strategy (VOES), weight-based GA, 

multiple-objective GA  [Fonseca  and  Fleming,  1993], distance-based  Pareto GA  

[Osyczka  and Kundu,  1995],  non-dominated  sorting genetic algorithm-I  (NSGA-I),  

[Srinivas  and Deb,  1993], random-weighted GA [Ishibuchi and Murata 1996], 

strength Pareto evolutionary  algorithm  (SPEA), [Zitzler  et al.  1998], Pareto-

archived evolution strategy [Knowles and Corne, 2000] and NSGA-II [Deb et al. 

2002]. These algorithms have been extensively reviewed in the recent books by Deb 

(2008) and the advantages and disadvantages of the different algorithms have been 

pointed out, using simple examples.  

Process modeling and optimisation are two important issues in grinding. The 

grinding process is characterised by a multiplicity of dynamically interacting process 

variables. Surface finish, material removal rate and specific energy are considered to 

be the important factors in predicting performance of grinding process. Several authors 

have developed the mathematical model for grinding process using RSM [Kwak, 

2005, Shetty et al. 2008, Seeman et al. 2010]. Wen et al. (1992) applied quadratic 

programming (QP) to solve the problem by formulating the problem as a multi 

objective function model. The optimisation problem has also been solved applying 

various non-traditional optimisation methods including genetic algorithms (GA) 

[Saravanan et.al. 2002], particle swarm optimisation (PSO) [Asokan(2005)], scatter 

search (SS) [Bhaskar et. al. 2001], and differential evolution (DE) [Gopala Krishna 

2007]. However, the classical multi objective optimisation technique, the method of 

weighted sum has been used in all these earlier works reported. Suresh et.al (2002) 

applied genetic algorithm for optimisation of surface roughness while machining mild 

steel using TiN-coated tungsten carbide tool. Saravanan et.al (2001) applied multi 

objective GA approach for optimisation of grinding process and compared the results 

with quadratic programming and observed that improved results were obtained by GA 
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approach. Hsu (2004) demonstrated the superiority of GAs over other network 

capability in terms of its optimised search. 

6.3 BASIC GENETIC ALGORITHM  

Genetic Algorithms are a family of computational models inspired by evolution. These 

algorithms encode a potential solution to a specific problem on a simple chromosome 

like data structure and apply recombination operators to these structures so as to 

preserve critical information. Genetic algorithms are often viewed as function 

optimisers, although the range of problems to which genetic algorithms have been 

applied is quite broad. 

The genetic algorithm (GA), inspired by concepts of natural selection and 

evolutionary processes [Goldberg, 1989], is a derivative-free, population-based 

optimisation method. 

 

 
Figure 6.1 Overview of genetic algorithm evolution 
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The problem-specific knowledge is translated into the GA framework by the 

encoding scheme, which transforms points in the solution space into binary bit strings 

or chromosomes. Each chromosome is associated with fitness values. The GA stores a 

set of points as a population, representing the gene pool for the solution. A group of 

randomly generated chromosome forms the first generation, from which successive 

generations are repeatedly evolved through genetic operators – namely selection, 

crossover, mutation and elitism – towards populations with better fitness values 

(Figure 6.1). 

In GA terminology, a solution vector is called an individual or a chromosome. 

Chromosomes are made of discrete units called genes. Each gene controls one or more 

features of the chromosome. In the original implementation of GA, genes are assumed 

to be binary numbers.  

6.3.1 Genetic algorithm operators  

GA operates with a collection of chromosomes, called a population. The population is 

normally randomly initialised. GA uses two operators to generate new solutions from 

existing ones: crossover and mutation [Konak et al., 2006].  

6.3.1.1 Crossover: The crossover operator is the most important operator of GA. It is a 

genetic operator used to vary the coding of chromosomes from one generation to the 

next. In crossover, two parent chromosomes, are combined together to form new 

chromosomes, called offspring. The parents are selected among existing chromosomes 

in the population with reference towards fitness so that offspring is expected to inherit 

good genes which make the parents fitter. By iteratively applying the crossover 

operator, genes of good chromosomes are expected to appear more frequently in the 

population, eventually leading to convergence to an overall good solution. The 

mutation operator introduces random changes into characteristics of chromosomes. 

6.3.1.2 Mutation: Mutation is generally applied at the gene level. It is a genetic 

operator used to maintain genetic diversity by triggering small random changes in the 

bits of a chromosome.  The prime purpose of mutation is to allow the algorithm to 

avoid local minima by preventing the population of chromosomes from becoming too 

similar to each other, thus slowing or even stopping evolution. In typical GA 
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implementations, the mutation rate is very small, typically less than 1%. However, the 

mutation plays a critical role in GA. As discussed earlier, crossover leads the 

population to converge by making the chromosomes in the population alike. Mutation 

reintroduces genetic diversity back into the population and assists the search escape 

from local optima. Reproduction involves selection of chromosomes for the next 

generation. In the most general case, the fitness of an individual determines the 

probability of its survival for the next generation. 

There are different selection procedures in GA depending on how the fitness 

values are used. Roulette wheel selection, proportional selection, ranking, and 

tournament selection are the most popular selection procedures.  

6.3.2 Procedure for basic genetic algorithm 

The procedure for genetic algorithm is shown in Fig 6.1 and the same is explained the 

following section: 

1. Initialisation: Randomly generate the initial population of size N and set i = 

0. 

2. Fitness Evaluation: Evaluate the fitness value for each population based on 

its objective function value. 

3. Termination criteria: If the stopping criterion is satisfied, terminate the 

search and display the result else, go to Step 4. 

4. (i) Crossover: To generate the offspring using crossover, randomly select 

two parents solution from the initial population and then generate the two 

offspring using crossover operator. 

(ii) Mutation: This operator randomly selects one parent solution from the 

initial population and applies the mutation operator to generate a single 

offspring. 

5. Selection: Select N solutions from generated population and the old 

population, based on their fitness. Set generation i = i+1. Go to step 2. 
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6.4 MULTI OBJECTIVE OPTIMISATION USING GENETIC ALGORITHM 

Being a population based approach, GAs are well suited to solve multi objective 

optimisation problems. A generic single-objective GA can be easily modified to find a 

set of multiple non-dominated solutions in a single run. The ability of GA to 

simultaneously search the different regions of a solution space makes it possible to 

find a diverse set of solutions for difficult problems with non-convex, discontinuous, 

and multi-modal solutions spaces [Carlos et al. 2002].  

As there is rarely a case that a single point in solution space simultaneously 

optimises all objective functions, trade-off solutions are instead sought after.  For 

example if objective functions are to be minimised, a vector of decision variable 

Fxi ∈ is Pareto optimal if )()( *
ijij xfxf ≤ for all j and 

)()( *
ijij xfxf < in at least one j. 

This concept gives a set of solutions called Pareto optimal set. The *
ix

corresponding to the solution in the Pareto optimal set is named non-dominated 

vectors. The plot of the objective functions of the non-dominated vectors is called the 

Pareto front. 

The crossover operator of GA may exploit structures of good solutions with 

respect to different objectives to create new non-dominated solutions in unexplored 

parts of the Pareto front. In addition, most multi objective GA do not require the user 

to prioritise, scale, or weight objectives. Therefore, GA has been the most popular 

heuristic approach to multi objective design and optimisation problems. Jones et al. 

(2002) reported that 90% of the approaches to multi objective optimisation aimed to 

approximate the true Pareto front for the underlying problem. A majority of these used 

a meta-heuristic technique, and 70% of all meta-heuristics approaches were based on 

evolutionary approaches.  

Mainly there are four approaches for multi objective optimisation in genetic 

algorithm [Ishibuchi and Murata 1996]: plain aggregating approaches, population-



134 
 

based non-Pareto approaches, niched induction approaches, and Pareto-based 

approaches. 

i) Plain aggregating approaches apply a weighted aggregating method to 

convert the multi objective optimisation problem into a single objective 

problem, and then use the single function genetic algorithm to get solutions. 

Aggregation methods combine multiple objectives into a higher scalar function 

that are used for fitness calculation. An aggregation approaches have the 

advantage of producing one single solution. On the contrary, defining the goal 

function in this way requires profound domain knowledge that is often not 

available. Popular aggregation methods are the weighted-sum approach, target 

vector optimisation, and the method of goal attainment. 

ii) Population-based non-Pareto approaches are able to evolve multiple non-

dominated solutions because the population is monitored for non-dominated 

solutions concurrently in a single simulation run by changing the selection 

criterion during the reproduction phase. The search is guided in several 

directions at the same time then they cannot make direct use of the concept of 

Pareto dominance or Pareto optimality. A vector evaluated genetic algorithm 

(VEGA) [Schaffer, 1985] is a population-based non-Pareto approache. 

iii) Niching approach is suggested to keep GA from convergence to the single 

point on the front and a niching mechanism such as fitness sharing that allows 

GA to maintain individuals along the non-dominated frontier. The use of 

fitness sharing was proposed to prevent the genetic drift and to promote the 

sampling of the Pareto set [Schaffer, 1985]. 

iv) Pareto-based fitness assignment uses the non-dominated ranking and 

selection to move a population to the Pareto front in multi objective 

optimisation problems (MOOP). The basic idea is to find a set of individuals 

that are the non-dominated solutions to the rest of the population. These 

individuals are assigned the highest rank and eliminated from further 

contention. Another set of Pareto non-dominated individuals are determined 

from the remaining individuals and are assigned the next highest rank. This 

process continues until the individuals are suitably ranked. 
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6.4.1 Non-Dominated Sorting Genetic Algorithm-I (NSGA-I) 

The Non-dominated Sorting Genetic Algorithm-I (NSGA-I) was proposed by Srinivas 

and Deb (1993), and is based on the front which is obtained from several layers of 

individual sorting. Before the selection is performed, the population is sorted on the 

basis of Pareto ranking domination: all non-dominated individuals are classified into 

one category called rank 1 and all these ranks are assigned front 1. To maintain the 

diversity of the population, these classified individuals are shared with their dummy 

fitness values. Then this group of classified individuals are removed from the 

population and another layer of non-dominated individuals from the remainder of the 

population are obtained and assigned the next front. The process continues until all 

individuals in the population are classified. Figure 6.2 shows the flow chart for 

member classification by front.  

 

Figure 6.2 Flow chart of Member classification by front 

Since individuals in the first front have the maximum fitness value, they 

always get more copies than the rest of the population. This allows searching for non-
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dominated regions, and results in quick convergence of the population toward such 

regions. Sharing by its part helps to distribute it over this region. The efficiency of 

NSGA lies in the way in which multiple objectives are reduced to a dummy fitness 

function using a non-dominated sorting procedure. With this approach, any number of 

objectives can be solved, and both maximisation and minimisation problems can be 

handled. 

The main strength of this technique is that, it can handle any number of 

objectives and does the sharing in the parameter value space instead of the objective 

value space, which ensures a better distribution of individuals, and allows multiple 

equivalent solutions exist. Its main weakness is that it is more inefficient (both 

computationally and in terms of quality of the Pareto fronts produced) than MOGA, 

and more sensitive to the value of the sharing factor σshare. NSGA uses non dominated 

sorting procedure, which compare each solution in population with every other to find 

the first non dominated front. 

6.4.2 Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) 

Multi objective evolutionary algorithms which use non-dominated sorting and sharing 

(NSGA-I) have been mainly criticised for the following reasons [Deb et al. 2008]:  

 

i) High computational complexity of non-dominated sorting: The non-

dominated sorting algorithm in use uptill now is O(mN3) computations, where 

m is the number of objective functions and N is the population size. In case of 

large population sizes the computation is very expensive, especially since the 

population needs to be sorted in every generation. 

ii) Lack of elitism: Recent results show clearly that elitism can speed up the 

performance of the GA significantly; also it helps to prevent the loss of good 

solutions once they have been found. 

iii) Need for specifying the sharing parameter σshare.: Traditional mechanisms 

of insuring diversity in a population so as to get a wide variety of equivalent 

solutions have relied heavily on the concept of sharing. The main problem with 

sharing is that it requires the specification of a sharing parameter (σshare.). 
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Though there has been some work on dynamic sizing of the sharing parameter, 

a parameter less diversity preservation mechanism is desirable. 

The solution set in NSGA-II is based on their crowding distances and no 

niching parameter is required here, as needed in the MOEA, NSGAs & NPGAs. In the 

absence of the crowding comparison operator, this algorithm also exhibits a 

convergence proof to the Pareto-optimal solution set, but the population size would 

grow with the generation counter. The elitism mechanism does not allow an already 

found Pareto-optimal solution to be deleted. However, when the crowded comparison 

is used to restrict the population size, the algorithm loses its convergence properly. 

6.4.2.1 Description of NSGA-II: Two distinct entities are calculated in the NSGA-II 

to validate the quality of a given solution. The first is a domination-count where the 

numbers of solutions that dominate a given solution are tracked. The second keeps 

track of how many sets of solutions a given solution dominates. In the process, all the 

solutions in the first non dominated front will have their domination count set to zero. 

The next step is to select each solution in which the non-domination count is set to 

zero and visit all other solutions in the solution set and reduce the domination count by 

one. In doing so, if the domination count of any other solution becomes zero, this 

solution is grouped in a separate list. This list is flagged as the second non- dominated 

front. This process is then continued with each member of the second list until the next 

non-dominated front is identified. The process is continued until all fronts are 

identified. Based on the non-domination count given to a solution, a non-domination 

level will be assigned. Those solutions that have higher non-domination levels are 

flagged as non-optimal and will never be visited again. 

One of the key requirements of a successful solution method is ensuring that a 

good representative sample from all possible solutions is chosen. Introduction of a 

density estimation process and a crowded-comparison operator has helped NSGA- II 

to address the above need. 

The crowding-distance computation requires sorting of a given population 

according to each objective function value in ascending order of magnitude. Once this 

is done, the two boundary solutions with the largest and smallest objective value are 
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assigned distance values of infinity. All other solutions lying in between these two 

solutions are then assigned a distance value calculated by the absolute normalised 

distance between each pair of adjacent solutions. After each population member is 

assigned a crowding distance value, a crowded-comparison operator is used to 

compare each solution with the others. This operator considers two attributes 

associated with every solution which is the non-domination rank and the crowding-

distance. Every solution is rated with others based on the non-domination rank. 

Solutions with lower ranks are deemed better in this attribute. Once solutions that 

belong to the best front are chosen based on the non-domination rank, the solution that 

is located in a lesser-crowded region is considered better and forms the basis of the 

NSGA-II algorithm. 

In this approach, the sharing function approach is replaced with a crowded 

comparison. Initially, an offspring population Qt is created from the parent population 

Pt at the tth generation. After, a combined population Rt is formed. 

ttt QPR =  

Rt is sorted into different non domination levels Fj as shown in the NSGA approach. 

So, we can write: 



r

j
jtt FPR

1=

=  

The main objective of NSGA-II is to find multiple Pareto-optimal solutions in 

one single simulation run. Since NSGA-II work with a population of solutions [Deb, et 

al. 2002], a simple multi objective genetic algorithm (MOGA) can be extended to 

maintain a diverse set of solution. Elitism helps to keep the best solution of the current 

population and does not allow it to deteriorate in the next generation. Major 

advantages of using NSGA-II technique are given below: 

• It uses non dominated sorting techniques to provide the solution as close to 

the Pareto-optimal solution as possible. 

• It uses crowding distance techniques to provide diversity in solution. 

• It also uses elitist techniques to preserve the best solution of current 

population in next generation. 
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6.4.2.2 Procedure for Non-Dominated Sorting Genetic Algorithm-II (NSGA-II): A 

brief procedure for NSGA-II is given below. 

1) Population Initialisation: The population contains a set of chromosomes. Each 

chromosome is initialised randomly with binary bits having length same as the code 

length. 

2) Non-Dominated sort: The initialised population is sorted based on non-domination 

• for each individual p in main population P perform the following 

– Initialise the set of individuals dominated by p 

ϕ=pS  

– Initialise the number of individuals that dominate p i.e. np = 0. 

– for each individual q in P 

* if p dominates q then 

{ }qSS pp =  

* else if q dominates p then 

1+= pp nn  

– if np = 0 then p belongs to the first front and rank of individual p i.e. 

prank = 1. Update the first front F1 by adding p to front one i.e. F1 =F1 ∪ {p} 

• This is carried out for all the individuals in main population P. 

• Initialise the front counter i = 1 

• perform the following if ith front is nonempty i.e. ϕ≠iF  

– Q = φ. The set Q is used to store the members of the next front. 

– for each individual p in front Fi 

*for each individual q in Sp 

1−= qq nn  

 decreament the domination count for individual q 

 if nq = 0, set qrank = i + 1. Update Q i.e. qQQ =  

– i = i + 1. 

– set Q is the next front and hence Fi = Q. 

3) Crowding Distance Assignment: Once the non dominated sorting is complete, the 

crowding distance is assigned. Since the individuals are selected based on rank and 
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crowding distance, all the individuals in the population are assigned a crowding 

distance value, front wise. 

4) Selection: The individuals are selected using a binary tournament selection. The 

selection is carried out as follows. 

a) An individual is selected if its non domination rank is smaller than the other. 

b) If both the individuals belong to the same front i.e both has same non 

domination rank then the individual having higher crowding distance is 

selected 

5) Genetic Operators: Single point crossover and mutation operations as used in GA 

[Srinivas and Deb1993] are also employed in NSGA-II. 

6) Recombination and Selection: The offspring population is combined with the 

current generation population and the total population is sorted based on 

nondomination. 

The new generation is filled by chromosomes from each front subsequently 

until the population size exceeds the current population size N. If by adding all the 

individuals in front Fj the population exceeds N then individuals in front Fj are 

selected based on their crowding distance sorted in the descending order until the 

population size is N 

In NSGA-II, first the offspring population Qt (of size N) is created using the 

parent population Pt (of size N), as shown in Figure 6.3. The usual genetic operators 

such as single-point crossover and bit-wise mutation operators are used in this process. 

Next, the two populations are combined to form an intermediate population Rt of size 

2N. Thereafter, the fitness of each offspring in the 2N population is evaluated using 

the multiple objective functions 

At this stage, the non-dominated sorting procedure is carried out over the 2N 

population to rank and divide the individuals into different non-dominated fronts. 

Thereafter, the new parent population Pt+1 is created by choosing individuals of the 

non-dominated fronts, one at a time. The individuals of best ranked fronts are chosen 

first, followed by the next-best and so on, till N individuals are obtained. 
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Since the intermediate population Rt has a size of 2N, those fronts which could 

not be accommodated are discarded. In case there is space only for a part of a front in 

the new population, the individuals as per existing order are selected, so as to complete 

the new parent population.  

 

 
Figure 6.3 Working principle of NSGA-II 

The complete NSGA-II procedure can be written in condensed form as 

explained below: 

BEGIN 

While generation count is not reached 
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Begin Loop 

• Apply selection, crossover and mutation to new parent population Pt+1 and 

obtain the new offspring population Qt+1. 

• Combine parent Pt and offspring population Qt to obtain population Rt of size 

2N. ttt QPR =  

• Perform Non-dominated Sorting on Rt and assign ranks to each Pareto front 

with fitness Fi. 

• Starting from the Pareto front with fitness F1, add each Parato-front Fi to the 

new parent population Pt+1 until a complete front Fi cannot be included. 

• From the current Pareto-front Fi, add individual members to new parent 

population Pt+1 until it reaches the size N. 

• Increment generation count. 

 

End Loop 

END. 

 

6.4.3 Novel Genetic Algorithm 

In the current enhanced version of genetic algorithm [D’souza et al. 2010], sorting of 

individuals based on each of the objectives is performed, one after the other, till all 

objectives are considered. During this sort, the index of each individual is tracked so 

that the position value of any given individual in each sorted array is known. This 

information is critical since it helps in ranking the fronts in the next step. 

 Each individual is ranked by summing up the position value of that individual in 

all the objectives. Since similar position values were assigned to individuals having 

similar objective values, the sum of the position values becomes equivalent to the rank 

which the individual would have obtained through non-dominated comparison. Hence 

the non-dominated sort is completed in a single iteration of the sorted individuals, 

thereby reducing the time required for processing each generation. 
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Figure 6.4 Flowchart for novel genetic algorithm 

The flow chart for optimisation of the grinding of MMC using novel genetic 

algorithm is shown in Figure 6.4. In this figure, generate initial population means the 

possible solutions of the optimisation problem, and each possible solution is called an 

individual. The possible solution is formed by binary strings of Vol % of SiC, feed and 

depth of cut. Later these binary strings are converted in to decimals to obtain the 
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output. Thus generated population is selected based on roulette wheel selection and 

they are arranged depending on the dominance of one solution over the other.  

The crossover and mutation genetic operators are applied on the selected 

population in a manner similar to that used during single objective GA. For real 

parameter implementations, binary crossover and mutation operator are used. Further 

an elitist recombination strategy is used by combining the current population and the 

offspring population. For an initial population size of N, the combined population 

contains 2N members. The new population is obtained by picking members from each 

front successively until the size exceeds N. The members from the last added front are 

then sorted in descending order of crowding distance. A suitable number of members 

from this front are then picked so that a total of N members are obtained. All the steps 

starting from non–dominated sorting are repeated until the desired number of 

generations is completed. 

6.5 RESULTS AND DISCUSSION 

Although several conventional optimization methods have been applied to solve 

grinding optimization problems, their application is often limited because of getting 

struck at a local optima and lack of robustness. Since the problem of grinding 

optimization is complex involving highly nonlinear multiple objectives and many 

constraints, the application of meta-heuristic techniques seems to be very useful. The 

single optimal solution reported in earlier works is not of much use to the decision 

maker, considering the fact that the two objectives involved are conflicting. 

Hence in the present study, the objective is to minimse specific energy, maximise 

material removal rate and to minimise the surface roughness during surface grinding 

DRACs. The objective functions were developed based on the planned set of 

experiments as explained in section 5.4.1. The regression equations developed by 

response surface model thus developed as given by eq. (5.26) –eq. (5.28) along with 

the constraints is as given below. 
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The regression equation for specific energy is 

               
2

1 1 2 3 1
2 2
2 3 1 2 1 3 2 3

ˆ 683.819 15.727 12.608 18.043 1.379

0.0729 0.765 0.067 0.305 0.077

y X X X X

X X X X X X X X

= + − − −

+ + + + −
       (6.1) 

The regression equation for material removal rate is 

                     

2 2
2 1 2 3 1 2

2
3 1 2 1 3 2 3

ˆ 3.555 0.173 0.120 0.380 0.016 0.00007

0.0001 0.015 0.002 0.0007

y X X X X X

X X X X X X X

= + − − − +

+ + + +
      (6.2) 

The regression equation for surface roughness is 

 

          
2 2

3 1 2 3 1 2
2
3 1 2 1 3 2 3

ˆ 2.096 0.311 0.015 0.013 0.014 1.1 09

6.25 04 0.001 0.001 9.38 05

y X X X X E X

E X X X X X E X X

= − + + + − −

− − − + + −
            (6.3) 

 

Subject to the constraints 

                                                       

1

2

3

8 12
60 80
8 16

X
X
X

≤ ≤
≤ ≤
≤ ≤

      (6.4) 

A multi objective algorithm was implemented using novel genetic algorithm 

for performing the evolutionary optimisation. Java (Version 2.0) programming 

language was used to code the algorithm. The developed algorithm is given in 

Appendix-IV. 

Each of the objective function was coded along with the parameters used for 

RSM Optimisation. The constraints on each parameter were also specified in the 

program. As described in the novel genetic algorithm algorithm in the previous 

section, a population of 100 individuals was generated with various initial values of 

parameters which were initialised randomly, keeping appropriate minimum and 

maximum ranges in view. Thereafter the program was allowed to iterate over 500 

generations and the final optimised parameter values of the non-dominated solutions 

resulting from this run were noted. After several such runs, results were tabulated and 

analysed. A sample result obtained from novel genetic algorithm is given in Table 6.1. 
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Table 6.1 The Sample result of novel genetic algorithm 

Solution  
 No 

SiC  
(vol %) 

Feed 
 (mm/s) 

a 
(μm) Q’w (mm3/mm ⋅ s) u (J/mm3) Ra (μm) 

Sol 44 >> SIC: 8 F: 69 DOC: 11 >> MRR: 0.546 SE: 98.33 RA: 1.14 
Sol 45 >> SIC: 8 F: 77 DOC: 15 >> MRR: 0.782 SE: 73.57 RA: 1.25 
Sol 46 >> SIC: 11 F: 71 DOC: 15 >> MRR: 0.831 SE: 84.68 RA: 0.87 
Sol 47 >> SIC: 8 F: 73 DOC: 8 >> MRR: 0.482 SE: 108.24 RA: 1.12 
Sol 48 >> SIC: 11 F: 66 DOC: 9 >> MRR: 0.571 SE: 108.41 RA: 0.75 
Sol 49 >> SIC: 12 F: 80 DOC: 14 >> MRR: 0.997 SE: 58.98 RA: 0.82 
Sol 50 >> SIC: 9 F: 69 DOC: 11 >> MRR: 0.611 SE: 98.59 RA: 1.0 
Sol 51 >> SIC: 11 F: 70 DOC: 12 >> MRR: 0.706 SE: 85.76 RA: 0.82 
Sol 52 >> SIC: 12 F: 77 DOC: 13 >> MRR: 0.869 SE: 62.93 RA: 0.8 
Sol 53 >> SIC: 12 F: 68 DOC: 13 >> MRR: 0.706 SE: 82.91 RA: 0.77 
Sol 54 >> SIC: 11 F: 71 DOC: 11 >> MRR: 0.683 SE: 85.84 RA: 0.81 
Sol 55 >> SIC: 9 F: 78 DOC: 14 >> MRR: 0.850 SE: 72.89 RA: 1.1 
Sol 56 >> SIC: 8 F: 79 DOC: 11 >> MRR: 0.676 SE: 77.18 RA: 1.21 
Sol 57 >> SIC: 8 F: 75 DOC: 13 >> MRR: 0.674 SE: 77.8 RA: 1.21 
Sol 58 >> SIC: 8 F: 78 DOC: 11 >> MRR: 0.656 SE: 78.63 RA: 1.2 
Sol 59 >> SIC: 9 F: 67 DOC: 14 >> MRR: 0.691 SE: 100.37 RA: 1.03 
Sol 60 >> SIC: 10 F: 69 DOC: 13 >> MRR: 0.716 SE: 92.15 RA: 0.92 
Sol 61 >> SIC: 11 F: 67 DOC: 10 >> MRR: 0.609 SE: 100.22 RA: 0.77 
Sol 62 >> SIC: 8 F: 77 DOC: 9 >> MRR: 0.566 SE: 92.74 RA: 1.16 
Sol 63 >> SIC: 8 F: 70 DOC: 15 >> MRR: 0.676 SE: 91.04 RA: 1.19 

 

The novel genetic algorithm generates a set of multiple optimal points. The 

best solution among the multiple solutions is chosen as the optimal solution. Figure 

6.5-figure 6.7 shows the result of novel genetic algorithm developed from java for 

specific energy, material removal rate and surface roughness respectively. It can be 

observed that novel genetic algorithm gives multiple optimum results as marked by   

and subsequently tabulated in Table 6.2. 
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                          Figure 6.5 Result of novel genetic algorithm for specific energy 

 
                   Figure 6.6 Result of novel genetic algorithm for material removal rate 
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                     Figure 6.7 Result of novel genetic algorithm for surface roughness 
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Table 6.2 Multiple Optimal Results from Novel Genetic Algorithm 

Result 

Number 

Process Variables Novel Genetic Algorithm Results 

SiC vol 

% 

Feed 

(mm/s) 

Dept of 

grinding 

u 

(J/mm3) 

MRR 

(mm3/mm ⋅ s) 
Ra (μm) 

82 12 79 15 61.95 1.012 0.84 

87 12 80 15 60.60 1.043 0.85 

109 12 79 13 60.10 0.922 0.81 

152 12 71 14 78.11 0.785 0.80 

275 11 73 14 77.80 0.992 0.86 

271 12 80 14 58.98 1.013 0.82 

6.5.1 Validation of results 

The response surface models given in Eq. (6.1) –Eq. (6.3) were validated by the set of 

test runs. Table 6.3 gives the results obtained from experimental test and the results 

obtained by novel genetic algorithm.  

In Table 6.3 the results shown from the first row to the seventh row are the test 

results that are compared with response surface table of chapter 5 (Table 5.2) and the 

novel genetic algorithm results. It is observed from the results that the maximum 

deviation of the RSM and novel genetic algorithm results are within 6%. The 

remaining results of Table 6.3 are compared with experimental results of chapter 3 

(Table 3.5).  The maximum deviation between the results of specific energy obtained 

from novel genetic algorithm and form the experiments are limited to 14.5%. However 

the average deviations for material removal rate and surface roughness are within 6%. 

Process variables in the last row of Table 6.3 reefer to the optimal results obtained 

from the desirability function approach of chapter 5. The experimental results are in 
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close agreement with the predicted results of novel genetic algorithm. It is also 

observed that the deviation of the predicted results of RSM and the results obtained 

from novel genetic algorithm are limited to ± 0.5%. The percentage error between 

predicted RSM results for the set of experiment from Table 5.2 and the novel genetic 

algorithm results are shown in Fig.6.8. 

 
Figure 6.8 Comparison between RSM and novel genetic algorithm results 
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automatic process monitoring. With the known boundaries of input variables, the 

surface grinding process could be performed with relatively higher productivity. 
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 Table 6.3 Validation of experimental results 

Sr.  

No 

Process Variables Experimental Results Novel genetic algorithm Results Percentage Error 

   SiC   

(Vol %) 

 Feed 

(mm/s) 

a 

(μm) 

u 

(J/mm3) 

Qw 

(mm3/mm ⋅ s) 

Ra 

(μm) 

     u  

(J/mm3) 

        Qw  

(mm3/mm ⋅ s) 

 Ra  

(μm) 
u  Qw  Ra  

1 >> SIC: 10 F: 70 DOC: 8 106.596 0.513 0.86 SE:107.24 >>MRR: 0.511 RA: 0.85 -0.60 -0.39 1.16 

2 >> SIC: 10 F: 80 DOC: 12 71.379 0.926 0.98 SE:71.79 >>MRR: 0.920 RA: 0.97 -0.58 -0.69 1.02 

3 >> SIC: 12 F: 60 DOC: 8 124.449 0.518 0.66 SE: 125.39 >>MRR: 0.513 RA: 0.66 -0.76 -1.05 0.00 

4 >> SIC: 8 F: 60 DOC: 8 145.585 0.498 1.04 SE: 146.97 >>MRR: 0.491 RA: 1.03 -0.95 -1.52 0.96 

5 >> SIC: 8 F: 70 DOC: 12 88.625 0.605 1.16 SE:92.13 >>MRR: 0.582 RA:1.16 -3.95 -3.97 0.00 

6 >> SIC: 10 F: 70 DOC: 12 91.937 0.660 0.91 SE:90.64 >>MRR: 0.692 RA:0.91 1.41 4.64 0.00 

7 >> SIC: 12 F: 70 DOC: 12 77.047 0.667 0.79 SE:78.12 >>MRR: 0.693 RA:0.76 -1.39 3.74 3.80 

8 >> SIC: 12 F: 60 DOC: 12 119.567 0.636 0.75 SE: 110.5 >>MRR: 0.633 RA: 0.73 7.58 -0.46 2.67 

9 >> SIC: 8 F: 70 DOC: 8 114.22 0.431 1.13 SE:114.99 >>MRR: 0.461 RA:1.1 -0.67 6.43 2.65 

10 >> SIC: 8 F: 80 DOC: 12 76.361 0.748 1.25 SE: 71.67 >>MRR: 0.735 RA: 1.23 6.14 -1.82 1.60 

11 >> SIC: 8 F: 60 DOC: 12 126.052 0.581 1.09 SE: 127.19 >>MRR: 0.583 RA: 1.09 -0.90 0.29 0.00 

12 >> SIC: 12 F: 70 DOC: 8 82.276 0.530 0.69 SE:94.09 >>MRR: 0.543 RA:0.68 -14.36 2.31 1.45 

13 >> SIC: 12 F: 80 DOC: 12 62.848 1.007 0.78 SE:63.31 >>MRR: 0.959 RA:0.77 -0.74 -5.01 1.28 

14 >> SIC: 12 F: 80 DOC: 14 63.296 1.058 0.89 SE:58.98 >>MRR: 0.997 RA:0.82 6.82 -6.13 5.62 

 



 
 

Chapter 7 
 
 
 

CONCLUSION AND FUTURE SCOPE 
 
 
 
7.1 CONCLUSION 

 
Experiments were conducted with three factors at three levels. Taguchi’s L27 array is 

used for the experimentation. Following conclusions can be drawn from the analysis of 

the experiments. 

• Specific energy decreases with increase in vol % of SiC, increase in feed and 

increase in depth of grinding. This phenomenon is attributed to the fact that 

specific grinding energy associated with the ductile material removal process is 

much higher than that with a brittle removal mode.  

• It is observed that specific energy decreases gradually from average value of 

145 J/mm3 to 59 J/mm3 with increase in depth of grind from 8μm to 14μm and 

further increases to an average value of 65 J/mm3 for a depth of grind of 16μm.  

This may happen because of blunt grains on the wheel surface which result in 

higher sliding friction and ploughing forces and accentuate the increase in 

specific energy. A solution for the same can be attained by continuous dressing 

of the grinding wheel.[Rowe 2009] 

• Decrease in specific energy with increase in feed may be due to the reason that 

the energy consumed in the grinding process is spent on deforming and 

grinding new surfaces in the workpiece material. The new surface area 

produced is therefore a measure of the energy required. Increasing feed at 

constant depth of cut, ground surface area decreases exponentially with 

increase in feed thus decreasing the specific energy [Rowe 2009].  

• MRR increases with increase in depth of grind and increase in feed. Increase in 

depth of grind will increase the uncut chip thickness thus increasing the 

material removal rate.  
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• Surface roughness decreases from average value of 1.30μm to 0.69μm with 

increase in vol % of SiC from 8 vol% to 12 vol%. It is primarily due to the 

reason that, with increase in vol % of SiC, hardness of the workpiece will 

increase thus resulting in improved surface finish [D Ilio et al. 2009]. It is also 

observed that surface roughness increase with increase in depth of grinding. It 

may be due to the reason that increase in dept of grinding will result in 

increased cutting forces and vibrations thus resulting in poor surface finish. 

• Response surface methodology is applied for analysing specific energy, MRR 

and surface roughness in the surface grinding of DRACs. Face central 

composite design is used for the analysis.  

• Second order regression model for specific energy, MRR and surface 

roughness in terms of the process variables were developed form response 

surface methodology. It is observed that fitted value is very close to the 

experimental value. (R2 > 0.95) 

• From the analysis of the response surface plots it can be observed that 

o Specific energy is largely affected by feed followed by depth of grinding. 

o MRR is predominantly affected by feed followed by depth of grinding and 

volume % of SiC.  

o Surface roughness is more dependent on volume % of SiC, followed by 

depth of grinding and feed. 

• Multi objective optimisation based on desirability function approach is 

performed to find the desired process variables such as SiC vol%, feed and 

depth of grinding so as to obtain optimal values of specific energy, material 

remival rate and surface roughness.  

• From Desirability function approach, optimal cutting conditions were 

determined for obtaining maximum MRR, minimum surface roughness and 

minimum specific energy. The optimal conditions were obtained while 

grinding Al6061-12vol %SiC under constant feed of 80mm/s and depth of 

grinding 14μm.   
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• Second order model developed from RSM were used for optimisation based on 

novel genetic algorithm. Java codes were written for maximisation of MRR, 

minimisation of specific energy and surface roughness. A population of size 

100, with cross-over probability of 0.8, mutation probability of 0.02, were 

adopted. It was observed during the analysis that this combination of 

population, cross-over and mutation gives better results. Further the parato 

front is obtained for 500 generations. Larger the number of generations more 

the number of parato fronts and better the results.  It is observed that largest 

deviation of the results obtained by genetic algorithm and those obtained by 

RSM are within 2%. It indicates that the results obtained by NSGA-II are in 

conformance with the results obtained by RSM.  

• Confirmation tests were conducted to validate the second order response 

surface model for specific energy, material remival rate and surface roughness. 

The predicted test results are in conformance to the experimental test results. 

Maximum deviation of 7% is observed between experimental results for RSM 

and predicted response. But a maximum deviation of 14% is obtained between 

the experimental results of Table 3.5 and predicted response. However the 

average deviation for all other experiments is within 6%. An error of 12% 

between RSM and experimental results is acceptable [Krajnik et 2005]. 

• Therefore, from this study, it may be concluded that the novel genetic 

algorithm can effectively be used to optimise the model developed from RSM.  

 

7.2 SCOPE FOR FUTURE WORK 

To begin with, only few variables were selected for the design of experiments. In order 

to investigate the effects of other variables, further study is required. Though the 

values and methods recommended in the literature were selected, some of the 

important factors such as wheel speed, grinding wheel and coolant were treated as 

constant input factors in the design of experiments. An experiment designed to 

investigate the influence of these parameters, would be ideal. Research work 

investigating the effect of these variables on DRACs would be very informative. This 
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would result in many test runs, which was not possible in the present study due to the 

cost of the material and time involved in the process. With more replicates for each 

test condition, comprehensive knowledge about the grinding of DRACs can be 

achieved. 

In the present study the MMCs were prepared by stir casting method. In order 

to accomplish the better distribution of reinforcement material in to the matrix, novel 

method of manufacturing MMCs such as powder metallurgy can be used. 

In this investigation the study on specific energy material remival rate and 

surface roughness during machining of DRACs did not include the effects of cutting 

fluids, dressing conditions and infeed. A good extension of this research work could be 

used by taking all these factors into account.  

The mathematical model developed in this investigation can further be used to 

develop a mechanistic model so that the predicted results are for a wider range of 

workpiece material, cutting conditions and will include other factors such as machine 

dynamics and tool geometry.  

The optimisation process adopted in this investigation was limited to 

desirability function approach and novel genetic algorithm. The same can be extended 

to ant colony optimisation, simulated annealing and tabu search and also for prediction 

of the responses using artificial neural network. 

The research conducted and the methodology developed in the present work is 

limited to Al-SiC composites. But it can be extended for different advanced materials 

and different machining processes such as milling, drilling, cylindrical grinding and 

un-conventional machining processes. Further, the novel genetic algorithm being time 

efficient, could conveniently be adopted in adaptive control system for real-time 

operations.  
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Validation test result Table 5.6, Test No.3 
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SURFACE ROUGHNESS PROFILE OF THE RTEST SPECIMEN 
 

1. Test No. 4 
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Parameters calculated on the profile mvk1

* Parameters calculated by mean of all the 
sampling lengthes.
* A microroughness filtering is used, with a 
ratio of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 1.1 µm
Rq = 1.39 µm
Rz = 7.14 µm
Rt = 9.64 µm
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2. Test No.  2 
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Parameters calculated on the profile mvk1

* Parameters calculated by mean of all the 
sampling lengthes.
* A microroughness filtering is used, with a 
ratio of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 1.07 µm
Rq = 1.38 µm
Rz = 6.94 µm
Rt = 10.2 µm
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3. Test No 19 
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Parameters calculated on the profile mvk1

* Parameters calculated by mean of all the 
sampling lengthes.
* A microroughness filtering is used, with a 
ratio of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 0.624 µm
Rq = 0.768 µm
Rz = 3.27 µm
Rt = 4.93 µm
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4. Test No. 21 
µm
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Parameters calculated on the profile mvk1

* Parameters calculated by mean of all the 
sampling lengthes.
* A microroughness filtering is used, with a 
ratio of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 0.804 µm
Rq = 1.09 µm
Rz = 5.44 µm
Rt = 14.8 µm
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5. Test No 8 
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Parameters calculated on the profile mvk1

* Parameters calculated by mean of all the 
sampling lengthes.
* A microroughness filtering is used, with a 
ratio of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 1.25 µm
Rq = 1.59 µm
Rz = 8.45 µm
Rt = 11.6 µm
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6. Test No 12 
µm
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Parameters calculated on the profile mvk1

* Parameters calculated by mean of all the 
sampling lengthes.
* A microroughness filtering is used, with a 
ratio of 2.5 µm.

Roughness Parameters, Gaussian filter, 0.8 mm

Ra = 0.884 µm
Rq = 1.11 µm
Rz = 5.14 µm
Rt = 7.74 µm
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Experimental Results 

 
Sr.

No 

Coded 
Values 

Actual values Mass of workpiece 
(grams) 

Mass of 

workpiece  

Material 

removed 

(grams) 

Volume 

of 

material 

removed 

(mm3) 

Grindin

g time 

(s) 

Specific 

Tangential 

grinding 

force 

(N/mm) 

Response 

X1 X2 X3 SiC 

Vol 

% 

Feed 

(mm/s) 

Depth of 

grind     

( a, μm) 

Before 

grinding 

After 

grinding 

y1   (u,   

J/mm3) 

y2  ( '
wQ

mm3/ 

mm.s) 

y3 

(Ra, 

μm) 

1 -1 -1 -1   8 60 8 
37.098 36.941 0.157 57.634 9.52 2.71 

2.64 
148.772 
142.398 

0.477 1.05 
36.906 36.747 0.159 58.231 9.52 0.482 1.1 
36.327 36.151 0.176 64.636 9.52 0.535 1.08 

2 -1 -1 0 8 60 12 
37.006 36.809 0.197 72.362 9.52 2.98 

2.82 
129.642 
122.461 

0.599 1.07 
36.634 36.455 0.179 65.849 9.52 0.598 1.12 
36.89 36.693 0.197 72.359 9.52 0.545 1.09 

3 -1 -1 1 8 60 16 
36.863 36.630 0.232 85.318 9.52 3.63 

3.55 
134.849 
136.432 

0.706 1.13 
36.708 36.485 0.223 81.822 9.52 0.677 1.18 
36.135 35.924 0.211 77.640 9.52 0.642 1.14 

4 -1 0 -1 8 70 8 
32.595 32.455 0.141 51.658 9.60 1.84 

1.83 
113.064 
115.376 

0.424 1.1 
32.175 32.024 0.152 55.711 9.60 0.412 1.22 
32.439 32.302 0.137 50.190 9.60 0.457 1.18 

5 -1 0 0 8 70 12 
33.753 33.547 0.206 75.782 9.60 2.17 

2.09 
90.908 
86.342 

0.622 1.13 
33.633 33.424 0.209 76.607 9.60 0.628 1.22 
33.324 33.137 0.188 68.962 9.60 0.566 1.16 

6 -1 0 1 8 70 16 
 

32.508 32.257 0.251 92.179 9.60 
2.46 
2.56 

84.603 
83.923 

0.756 1.19 
31.910 31.682 0.228 83.883 9.60 0.793 1.26 
32.362 32.099 0.263 96.660 9.60 0.688 1.22 
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Sr.

No 

Coded 
Values 

Actual values Mass of workpiece 
(grams) 

Mass of 

workpiece  

Material 

removed 

(grams) 

Volume 

of 

material 

removed 

(mm3) 

Grindin

g time 

(s) 

Specific 

Tangential 

grinding 

force 

(N/mm) 

Response 

X1 X2 X3 SiC 

Vol 

% 

Feed 

(mm/s) 

Depth of 

grind     

( a, μm) 

Before 

grinding 

After 

grinding 

y1   (u,   

J/mm3) 

y2  ( '
wQ

mm3/ 

mm.s) 

y3 

(Ra, 

μm) 

7 -1 1 -1 8 80 8 
32.834 32.649 0.184 67.674 9.24 2.20 

1.84 
99.044 
92.719 

0.577 1.15 
32.727 32.562 0.165 60.631 9.24 0.517 1.22 
32.562 32.379 0.183 67.300 9.24 0.574 1.17 

8 -1 1 0 8 80 12 
32.788 32.537 0.251 92.021 9.24 2.33 

2.17 
77.173 
75.548 

0.784 1.24 
32.407 32.179 0.228 83.739 9.24 0.745 1.29 
32.645 32.407 0.238 87.449 9.24 0.714 1.25 

9 -1 1 1 8 80 16 
36.785 36.485 0.300 110.095 9.24 2.54 

2.28 
70.485 
72.574 

0.938 1.29 
36.602 36.341 0.261 95.998 9.24 0.818 1.3 
36.341 36.068 0.273 100.186 9.24 0.854 1.3 

10 0 -1 -1 10 60 8 
35.573 35.405 0.168 61.585 9.52 2.56 

2.64 
128.909 
131.623 

0.509 0.81 
35.303 35.150 0.153 56.042 9.52 0.521 0.88 
35.475 35.303 0.172 62.998 9.52 0.464 0.86 

11 0 -1 0 10 60 12 
35.801 35.595 0.206 75.465 9.52 2.79 

3.00 
116.272 
123.542 

0.624 0.85 
35.68 35.471 0.209 76.334 9.52 0.631 0.92 

35.328 35.141 0.188 68.673 9.52 0.568 0.86 

12 0 -1 1 10 60 16 
36.024 35.777 0.247 90.488 9.52 3.41 

3.45 
115.960 
114.582 

0.733 0.89 
35.523 35.303 0.220 80.611 9.52 0.783 0.90 
35.88 35.621 0.259 94.617 9.52 0.667 0.91 

13 0 0 -1 10 70 8 
37.514 37.336 0.178 65.270 9.60 2.34 

2.46 
113.850 
119.342 

0.535 0.86 
37.41 37.232 0.178 65.254 9.60 0.535 0.95 

37.232 37.034 0.198 72.432 9.60 0.594 0.87 

14 0 0 0 10 70 12 
36.551 36.331 0.220 80.438 9.60 2.33 

2.58 
91.937 
95.097 

0.660 0.91 
35.769 35.569 0.200 73.199 9.60 0.706 0.99 
36.187 35.952 0.235 86.090 9.60 0.600 0.93 
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Sr.

No 

Coded 
Values 

Actual values Mass of workpiece 
(grams) 

Mass of 

workpiece  

Material 

removed 

(grams) 

Volume 

of 

material 

removed 

(mm3) 

Grindin

g time 

(s) 

Specific 

Tangential 

grinding 

force 

(N/mm) 

Response 

X1 X2 X3 SiC 

Vol 

% 

Feed 

(mm/s) 

Depth of 

grind     

( a, μm) 

Before 

grinding 

After 

grinding 

y1   (u,   

J/mm3) 

y2  ( '
wQ

mm3/ 

mm.s) 

y3 

(Ra, 

μm) 

15 0 0 1 10 70 16 
37.444 37.185 0.259 94.819 9.60 2.56 

2.63 
85.551 
83.598 

0.778 0.95 
37.186 36.913 0.273 99.723 9.60 0.818 1.0 
36.564 36.267 0.297 108.698 9.60 0.892 0.95 

16 0 1 -1 10 80 8 
35.525 35.276 0.249 91.079 9.24 2.56 

2.51 
85.726 
87.276 

0.776 0.92 
35.147 34.885 0.262 95.712 9.24 0.748 0.98 
35.387 35.147 0.240 87.809 9.24 0.816 0.95 

17 0 1 0 10 80 12 
37.692 37.381 0.311 113.744 9.24 2.63 

2.57 
70.565 
72.192 

0.969 0.97 
37.503 37.206 0.297 108.819 9.24 0.927 1.01 
37.206 36.923 0.283 103.507 9.24 0.882 0.98 

18 0 1 1 10 80 16 
37.810 37.440 0.370 135.403 9.24 3.04 

3.13 
68.605 
72.746 

1.154 1.04 
36.648 36.276 0.373 136.352 9.24 1.117 1.09 
37.342 36.984 0.358 131.107 9.24 1.162 1.04 

19 1 -1 -1 12 60 
8 37.428 37.254 0.174 63.251 9.52 2.57 

2.31 
127.501 
121.398 

0.523 0.62 
 37.084 36.920 0.164 59.944 9.52 0.496 0.67 
 36.346 36.168 0.178 64.740 9.52 0.535 0.66 

20 1 -1 0 12 60 
12 37.558 37.344 0.214 78.074 9.52 2.96 

3.08 
116.802 
122.334 

0.646 0.73 
 37.102 36.901 0.201 73.389 9.52 0.654 0.83 
 37.433 37.216 0.217 79.112 9.52 0.607 0.76 

21 1 -1 1 12 60 16 
37.322 37.072 0.250 90.945 9.52 3.52 

3.33 
121.956 
122.397 

0.752 0.8 
37.177 36.942 0.235 85.542 9.52 0.708 0.85 
36.734 36.450 0.284 103.506 9.52 0.856 0.81 

22 1 0 -1 12 70 8 
37.361 37.181 0.180 65.750 9.60 1.76 

1.54 
84.657 
79.895 

0.539 0.65 
36.909 36.726 0.183 66.743 9.60 0.502 0.71 
37.257 37.089 0.168 61.232 9.60 0.547 0.69 
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Sr.

No 

Coded 
Values 

Actual values Mass of workpiece 
(grams) 

Mass of 

workpiece  

Material 

removed 

(grams) 

Volume 

of 

material 

removed 

(mm3) 

Grindin

g time 

(s) 

Specific 

Tangential 

grinding 

force 

(N/mm) 

Response 

X1 X2 X3 SiC 

Vol 

% 

Feed 

(mm/s) 

Depth of 

grind     

( a, μm) 

Before 

grinding 

After 

grinding 

y1   (u,   

J/mm3) 

y2  ( '
wQ

mm3/ 

mm.s) 

y3 

(Ra, 

μm) 

23 1 0 0 12 70 12 
39.239 39.013 0.225 82.157 9.60 1.98 

1.87 
76.603 
77.492 

0.674 0.75 
39.109 38.899 0.210 76.659 9.60 0.629 0.86 
38.539 38.305 0.233 85.092 9.60 0.698 0.79 

24 1 0 1 12 70 16 
37.536 37.269 0.267 97.190 9.60 2.14 

1.98 
69.877 
67.328 

0.797 0.82 
37.126 36.841 0.285 103.698 9.60 0.766 0.89 
37.382 37.126 0.256 93.422 9.60 0.851 0.84 

25 1 1 -1 12 80 8 
37.750 37.514 0.236 85.867 9.24 2.15 

2.28 
76.436 
79.573 

0.732 0.69 
37.619 37.380 0.239 87.252 9.24 0.744 0.76 
37.315 37.100 0.214 78.139 9.24 0.666 0.72 

26 1 1 0 12 80 12 
37.698 37.368 0.330 120.148 9.24 2.54 

2.32 
64.305 
61.391 

1.024 0.76 
37.201 36.875 0.326 118.905 9.24 0.984 0.85 
37.518 37.201 0.317 115.442 9.24 1.013 0.78 

27 1 1 1 12 80 16 
37.251 36.894 0.357 130.302 9.24 2.81 

2.58 
66.105 
64.926 

1.103 0.85 
36.053 35.720 0.333 121.367 9.24 1.034 0.96 
37.518 37.201 0.317 115.442 9.24 1.065 0.87 
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NSGA-II CODES FOR MULTI OBJECTIVE OPTIMISATION 

 

/*********   **********************    ****************** 

               Multiobjective Genetic Algorithm: Modified Dec 2011 

        *********   **********************    ******************/ 

import java.io.*; 

 

class Individual  //class for each individual 

 { 

 private int Chrom1[], Chrom2[], Chrom3[]; 

 private double Rank; 

 private int maxBits1, maxBits2, maxBits3, maxRange1, maxRange2, maxRange3; 

 private double MRR, SE, RA; // CF 

 private int SIC, F, DOC; 

    

 Individual() 

  { 

  maxBits1 = 4; 

  maxBits2 = 7; 

  maxBits3 = 4; 
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  maxRange1 = 4; 

  maxRange2 = 20; 

  maxRange3 = 8; 

  Chrom1 = new int[maxBits1]; 

  Chrom2 = new int[maxBits2]; 

  Chrom3 = new int[maxBits3]; 

  SIC = (int) (maxRange1 * Math.random() + 8.0); 

  F = (int) (maxRange2 * Math.random() + 60.0); 

  DOC = (int) (maxRange3 * Math.random() + 8.0); 

       

  Chrom1 = DecToBin(SIC, maxBits1); 

  Chrom2 = DecToBin(F, maxBits2); 

  Chrom3 = DecToBin(DOC, maxBits3);    

 

  ComputeObjectives(); 

  } 

 void ComputeObjectives() 

  { 

  SIC = BinToDec(Chrom1, maxBits1); 

  F = BinToDec(Chrom2, maxBits2); 

  DOC = BinToDec(Chrom3, maxBits3); 

     

  MRR=-15.0+3.555+0.1727*SIC-0.1205*F-0.0380*DOC-0.0136*SIC*SIC+0.0008*F*F+0.0001 

*DOC*DOC+0.0015*SIC*F+0.0018*SIC*DOC+0.0007*F*DOC; 
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//  CF=-25.159+0.756574*SIC+1.11635*F+2.35111*DOC-0.0959259*SIC*SIC-0.00749259*F*F-

0.0174537*DOC*DOC+0.00897222*SIC*F-0.01875*SIC*DOC-0.00247222*F*DOC; 

 

  SE=841.217+13.045*SIC-16.5058*F-19.0852*DOC-

1.29902*SIC*SIC+0.100311*F*F+0.707089*DOC*DOC+0.050053*SIC*F+0.428645*SIC*DOC-0.0581*F*DOC; 

   

  RA=1.94077-0.23832*SIC+0.012329*F-0.00403*DOC+0.008739*SIC*SIC+0.000000455*F*F-0.000315*DOC*DOC-

0.000881*SIC*F+0.001891*SIC*DOC+0.000128*F*DOC; 

  } 

 static int[] DecToBin(int DeciVal, int maxB) 

  { 

  int j, chr[] = new int[maxB]; 

  int Decimal = DeciVal; 

 

  for(j=0; j<maxB; j++)      

   chr[j] = 0; 

  j = maxB-1; 

 

         while(Decimal>0) 

   { 

   chr[j] = Decimal%2; 

          Decimal = Decimal/2; 

   j--; 
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          } 

  return chr; 

  } 

 static int BinToDec(int chr[], int maxB) 

  { 

  int j=0, Sum; 

  Sum = chr[j]; 

 

  for(j=1; j<maxB; j++)      

   Sum = Sum*2 + chr[j]; 

 

  return Sum; 

  } 

 double getFitness() 

  { 

  return Rank; 

  } 

 void setFitness(double r) 

  { 

  Rank = r; 

  } 

 int[] getChromosome1() 

  { 

  int newChrom1[] = new int[maxBits1]; 
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  for(int i=0; i<maxBits1; i++) 

   newChrom1[i] = Chrom1[i]; 

  return newChrom1; 

  } 

 int[] getChromosome2() 

  { 

  int newChrom2[] = new int[maxBits2]; 

  for(int i=0; i<maxBits2; i++) 

   newChrom2[i] = Chrom2[i]; 

  return newChrom2; 

  } 

 int[] getChromosome3() 

  { 

  int newChrom3[] = new int[maxBits3]; 

  for(int i=0; i<maxBits3; i++) 

   newChrom3[i] = Chrom3[i]; 

  return newChrom3; 

  } 

 double getObj1() 

  { 

  return MRR; 

  } 

   

/* double getObj2() 
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  { 

  return CF; 

  } 

*/ 

   

 double getObj3() 

  { 

  return SE; 

  } 

   

 double getObj4() 

  { 

  return RA; 

  } 

 String displayParameters() 

  { 

  String param = " SIC: " + Integer.toString(SIC) + "\tF: " + Integer.toString(F) + "\tDOC: " + Integer.toString(DOC); 

  return param; 

  }  

  

 void putChromosome(int chr[], int which) 

  { 

  if(which == 1) 

   Chrom1 = chr; 
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  if(which == 2) 

   Chrom2 = chr; 

  if(which == 3) 

   Chrom3 = chr; 

  ComputeObjectives(); 

  }  

 

 Individual makeCopy() 

  { 

  Individual offsp = new Individual(); 

   

  for(int i=0; i<maxBits1; i++) 

   { 

   offsp.Chrom1[i] = Chrom1[i]; 

   } 

    

  for(int i=0; i<maxBits2; i++) 

   { 

   offsp.Chrom2[i] = Chrom2[i]; 

   } 

  for(int i=0; i<maxBits3; i++) 

   { 

   offsp.Chrom3[i] = Chrom3[i]; 

   } 
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  offsp.Rank = Rank; 

  offsp.MRR = MRR; 

//  offsp.CF = CF;  

  offsp.SE = SE; 

  offsp.RA = RA; 

  offsp.SIC = SIC;  

  offsp.F = F; 

  offsp.DOC = DOC;  

 

  return offsp; 

  }  

 }   //end of Individual class 

 

class MultiObjGA  // class for Multiobjective Genetic Algorithm using Non-dominated Sorting of solutions 

 { 

 private Individual Pop[]; 

 private Individual NextPop[]; 

 private int N, ROUL; 

 private int n1, n2, n3, gencount, maxGen; 

 private int min1 = 8, min2 = 60, min3 = 8; 

 private int max1 = 12, max2 = 80, max3 = 16; 

 private double Pc; 

 private double Pm;  

 int RoulWheel[]; 



179 
 

 int noOfSol; 

 Individual nonDomSol[]; 

 WriteResults writer; 

    

 MultiObjGA(String commandLine, String resultsFilename, int popsize, int maxgen, double Pcross, double Pmute) 

  { 

  N = popsize; 

  n1 = 4; 

  n2 = 7; 

  n3 = 4; 

  gencount = 0; 

  maxGen = maxgen; 

  Pc = Pcross; 

  Pm = Pmute; 

  ROUL = 1080; 

  RoulWheel = new int[ROUL]; 

  noOfSol = 0; 

  nonDomSol = new Individual[2*N]; 

  Pop = new Individual[N]; 

  NextPop = new Individual[N]; 

  for(int i=0; i<N; i++)  

   Pop[i] = new Individual(); 

  writer = new WriteResults(resultsFilename); 

  writer.writeToFile("RSMOptimaztion Program\n"); 
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  writer.writeToFile("Parameters passed: Results Filename, Population Size, Limit for Generations, Crossover Prob, Mutation 

Prob\n\n"); 

  writer.writeToFile(commandLine); 

  } 

 

 public void PerformEvolution() 

  { 

  int result; 

  double avMRR, avSE, avRA; //avCF 

  System.out.println("Processing started...."); 

  System.out.println("Average values of Objectives:"); 

  writer.writeToFile("Results of program run with above parameters: \n\n"); 

  ComputeFitness(); 

  result = EvalGen(); 

  gencount++;   

  while(gencount < maxGen && result < 0.8*N) 

   { 

   NewGen(); 

   ComputeFitness(); 

   result = EvalGen(); 

   gencount++; 

   if(gencount%100 == 0) 

    { 
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    writer.writeToFile("The NonDominating Solutions at Generation " + gencount + " (Parameters followed by 

Objectives):\n"); 

    avMRR = 0; 

//    avCF = 0; 

    avSE = 0; 

    avRA = 0;  

    for(int k=0; k<noOfSol; k++) 

     {  

     nonDomSol[k].ComputeObjectives(); 

     if((k+1) < 10) 

      writer.writeToFile("Sol "+(k+1)+"\t\t>>"); 

     else 

      writer.writeToFile("Sol "+(k+1)+"\t>>"); 

     writer.writeToFile(nonDomSol[k].displayParameters()); 

     writer.writeToFile("\t>> MRR: "+round2((15+nonDomSol[k].getObj1()))+ 

"\tSE: "+round2(nonDomSol[k].getObj3())+"\tRA: "+round2(nonDomSol[k].getObj4())+"\n");  // "\tCF: 

"+round2(nonDomSol[k].getObj2())+ 

     avMRR += (15 + nonDomSol[k].getObj1()); 

//     avCF += nonDomSol[k].getObj2(); 

     avSE += nonDomSol[k].getObj3(); 

     avRA += nonDomSol[k].getObj4(); 

     } 

    System.out.println("At Gen "+gencount+" --> AvMRR: "+round2(avMRR/noOfSol)+"\tAvSE: 

"+round2(avSE/noOfSol)+"\tAvRA: "+round2(avRA/noOfSol));     // "\tAvCF: "+round2(avCF/noOfSol)+ 
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    writer.writeToFile("At Gen "+gencount+" --> AvMRR: "+round2(avMRR/noOfSol)+"\tAvSE: 

"+round2(avSE/noOfSol)+"\tAvRA: "+round2(avRA/noOfSol)+"\n");  // "\tAvCF: "+round2(avCF/noOfSol)+ 

    writer.writeToFile("\n"); 

    } 

   } 

  System.out.println(); 

  writer.closeFile(); 

  } 

 

 public int EvalGen()       // to evaluate the population at specific generation 

  { 

  double temp; 

  int ind, Maxcount=0, Currcount=1; 

  double fitPop[] = new double[N]; 

 

  for(int i=0; i<N; i++) 

   fitPop[i] = Pop[i].getFitness(); 

       

  for(int i=0; i<N; i++) 

   { 

   for(int j=1; j<(N-i); j++) 

    {  

    if(fitPop[j] > fitPop[j-1]) 

     { 
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     temp = fitPop[j]; 

     fitPop[j] = fitPop[j-1]; 

     fitPop[j-1] = temp;   

     } 

    } 

   } 

 

  // find the largest number of similar values 

  for(ind=1; ind<N; ind++) 

   { 

      if(fitPop[ind] == fitPop[ind-1])  

       Currcount++; 

   else 

    { 

            if(Currcount > Maxcount)  

     Maxcount = Currcount; 

    Currcount = 0;   

       } 

   } 

  if(ind == N) 

   { 

      if(Currcount > Maxcount)  

    Maxcount = Currcount; 

   } 
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  return Maxcount; 

  } 

 public void ComputeFitness()     // to compute fitness of an individual 

  { 

  double fit; 

  double[][] First, Second, Third, Fourth; 

   

  First = new double[N][2]; 

//  Second = new double[N][2]; 

  Third = new double[N][2]; 

  Fourth = new double[N][2]; 

  for(int i=0; i<N; i++) 

   { 

   First[i][0] = i; 

   First[i][1] = Pop[i].getObj1(); 

//   Second[i][0] = i; 

//   Second[i][1] = Pop[i].getObj2(); 

   Third[i][0] = i; 

   Third[i][1] = Pop[i].getObj3(); 

   Fourth[i][0] = i; 

   Fourth[i][1] = Pop[i].getObj4(); 

   } 

    

  int k=0; 
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  while(k<N) 

   { 

   fit = (double) dominateCount(k, First, Third, Fourth); //Second 

   Pop[k].setFitness(fit); 

   k++; 

   } 

  } 

 public void NewGen()        //Creating the next generation 

  { 

  int newSize=0; 

  Individual MatePool[]; 

  Individual NewPop[] = new Individual[N]; 

     

  SetRoulette(); 

    

  while(newSize < N) 

   { 

   MatePool = Selection(); 

   MatePool = CrossOver(MatePool); 

   MatePool = Mutation(MatePool); 

   NewPop[newSize] = MatePool[0].makeCopy();   

   newSize++; 

   NewPop[newSize] = MatePool[1].makeCopy(); 

   newSize++; 
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   } 

  nonDominatedSort(NewPop);  

  for(int i=0; i<N; i++) 

   Pop[i] = NewPop[i].makeCopy();   

  }  //end of  function NewGen 

 void SetRoulette()    //Setup Roulette wheel 

  { 

  int val, index=0;  

  double sum=0.0; 

  double temp[] = new double[2]; 

  double Fit[][] = new double[N][2]; 

   

  for(int i=0; i<ROUL; i++) 

    RoulWheel[i] = 0; 

     

  for(int i=0; i<N; i++) 

   { 

   Fit[i][0] = i; 

   Fit[i][1]= Pop[i].getFitness(); 

   sum = sum + Fit[i][1]; 

   } 

  if(sum == 0.0) 

   sum = 1.0; 
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  for(int i=0; i<N; i++) 

   { 

   for(int j=1; j<(N-i); j++) 

    {  

    if(Fit[j][1] > Fit[j-1][1]) 

     { 

     temp = Fit[j]; 

     Fit[j] = Fit[j-1]; 

     Fit[j-1] = temp;   

     } 

    } 

   } 

   

  for(int i=0; i<N; i++) 

   {  

   val = (int) ((Fit[i][1]/sum)*ROUL); 

   for(int j=0; j<val; j++) 

    { 

    if((index+j) < ROUL) 

     RoulWheel[index+j] = (int) Fit[i][0]; 

    else 

     break; 

    } 

   index = index + val; 



188 
 

   }  

  } 

   

 Individual[]  Selection()    //Selection operator for reproduction       

  { 

  Individual MatePool[] = new Individual[2]; 

    

  for(int i=0; i<2; i++) 

   { 

   int randNo = (int) (ROUL*Math.random());  

   int chr = RoulWheel[randNo]; 

   MatePool[i] = Pop[chr].makeCopy(); 

   } 

    

  return MatePool;     

  }  // end of func selection 

   

 Individual[]  CrossOver(Individual MatePool[])    //to implement crossover operator 

  { 

  int Dec1, Dec2, r, count, temp; 

 

        if (Math.random() < Pc) 

   { 

   int Chrom11[]; 
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   int Chrom12[]; 

   count = 0; 

   do  { 

    Chrom11 = MatePool[0].getChromosome1(); 

    Chrom12 = MatePool[1].getChromosome1(); 

    r=(int)((n1-1)*Math.random());      

 

    for(int k=r; k<n1; k++) 

     {           

     temp = Chrom11[k]; 

     Chrom11[k] = Chrom12[k]; 

     Chrom12[k] = temp; 

     } 

    Dec1 = Individual.BinToDec(Chrom11, n1); 

    Dec2 = Individual.BinToDec(Chrom12, n1); 

    count++; 

    } while(((Dec1 < min1) || (Dec1 > max1) || (Dec2 < min1) || (Dec2 > max1)) && (count < 5)); 

    

   if(count < 5) 

    {  

    MatePool[0].putChromosome(Chrom11, 1); 

    MatePool[1].putChromosome(Chrom12, 1);  

    } 
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   int Chrom21[]; 

   int Chrom22[]; 

   count = 0; 

   do  { 

    Chrom21 = MatePool[0].getChromosome2(); 

    Chrom22 = MatePool[1].getChromosome2(); 

    r=(int)((n2-1)*Math.random());   

     

    for(int k=r; k<n2; k++) 

     {           

     temp = Chrom21[k]; 

     Chrom21[k] = Chrom22[k]; 

     Chrom22[k] = temp; 

     } 

    Dec1 = Individual.BinToDec(Chrom21, n2); 

    Dec2 = Individual.BinToDec(Chrom22, n2); 

    count++; 

    } while(((Dec1 < min2) || (Dec1 > max2) || (Dec2 < min2) || (Dec2 > max2)) && (count < 5)); 

    

   if(count < 5) 

    {  

    MatePool[0].putChromosome(Chrom21, 2); 

    MatePool[1].putChromosome(Chrom22, 2);  

    } 
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   int Chrom31[]; 

   int Chrom32[]; 

   count = 0; 

   do { 

    Chrom31 = MatePool[0].getChromosome3(); 

    Chrom32 = MatePool[1].getChromosome3(); 

    r=(int)((n3-1)*Math.random());     

    

    for(int k=r; k<n3; k++) 

     {           

     temp = Chrom31[k]; 

     Chrom31[k] = Chrom32[k]; 

     Chrom32[k] = temp; 

     } 

    Dec1 = Individual.BinToDec(Chrom31, n3); 

    Dec2 = Individual.BinToDec(Chrom32, n3); 

    count++; 

    } while(((Dec1 < min3) || (Dec1 > max3) || (Dec2 < min3) || (Dec2 > max3)) && (count < 5)); 

    

   if(count < 5) 

    {  

    MatePool[0].putChromosome(Chrom31, 3); 

    MatePool[1].putChromosome(Chrom32, 3);  
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    } 

   }  

 

  return MatePool; 

  }          //end of function CrossOver 

 

 Individual[] Mutation(Individual MatePool[])   //Function to perform mutation 

  { 

  int r, Dec, count; 

   

  for(int i=0; i<2;  i++) 

   { 

   if (Math.random() < Pm) 

    { 

    int Chrom1[]; 

    count = 0; 

    do  { 

     Chrom1 = MatePool[i].getChromosome1(); 

     r = (int)(n1*Math.random());  

     if(Chrom1[r] == 0) 

      Chrom1[r] = 1; 

     else 

      Chrom1[r] = 0; 

     Dec = Individual.BinToDec(Chrom1, n1); 
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     count++; 

     } while(((Dec < min1) || (Dec > max1)) && (count < 5)); 

    

    if(count < 5) 

     MatePool[i].putChromosome(Chrom1, 1); 

         

    int Chrom2[]; 

    count = 0; 

    do { 

     Chrom2 = MatePool[i].getChromosome2(); 

     r = (int)(n2*Math.random());  

     if(Chrom2[r] == 0) 

      Chrom2[r] = 1; 

     else 

      Chrom2[r] = 0; 

     Dec = Individual.BinToDec(Chrom2, n2); 

     count++; 

     } while(((Dec < min2) || (Dec > max2)) && (count < 5)); 

    

    if(count < 5) 

     MatePool[i].putChromosome(Chrom2, 2);   

          

    int Chrom3[]; 

    count = 0; 
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    do { 

     Chrom3 = MatePool[i].getChromosome3(); 

     r = (int)(n3*Math.random());  

     if(Chrom3[r] == 0) 

      Chrom3[r] = 1; 

     else 

      Chrom3[r] = 0; 

     Dec = Individual.BinToDec(Chrom3, n3); 

     count++; 

     } while(((Dec < min3) || (Dec > max3)) && (count < 5)); 

    

    if(count < 5) 

     MatePool[i].putChromosome(Chrom3, 3);    

    } 

   }  

 

  return MatePool; 

  } //end of func mutation 

   

 void nonDominatedSort(Individual[] newPop)   // Non dominated sorting of combined population  

  { 

  int i=0, j, index=0; 

    

  noOfSol = 0; 
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  while(i < N) 

   { 

   j = 0; 

   while(j < N) 

    { 

    if(i != j) 

     { 

     if(isNonDominated(Pop[i], Pop[j])) 

      { 

      if(!Contains(nonDomSol, noOfSol, Pop[i])) 

       nonDomSol[noOfSol++] = Pop[i].makeCopy(); 

      if(!Contains(nonDomSol, noOfSol, Pop[j])) 

       nonDomSol[noOfSol++] = Pop[j].makeCopy(); 

       

      if(index < N) 

       NextPop[index++] = Pop[i].makeCopy(); 

      if(index < N) 

       NextPop[index++] = Pop[j].makeCopy();   

      } 

     } 

    j++; 

    } 

   j = 0; 

   while(j < N) 
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    { 

    if(isNonDominated(Pop[i], newPop[j])) 

     { 

     if(!Contains(nonDomSol, noOfSol, Pop[i])) 

      nonDomSol[noOfSol++] = Pop[i].makeCopy(); 

     if(!Contains(nonDomSol, noOfSol, newPop[j])) 

      nonDomSol[noOfSol++] = newPop[j].makeCopy(); 

        

     if(index < N) 

      NextPop[index++] = Pop[i].makeCopy(); 

     if(index < N) 

      NextPop[index++] = newPop[j].makeCopy(); 

     } 

    j++; 

    } 

   i++;  

   } 

   

  i=0; 

  while(i < N) 

   { 

   j = 0; 

   while(j < N) 

    { 
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    if(i != j) 

     { 

     if(isNonDominated(newPop[i], newPop[j])) 

      { 

      if(!Contains(nonDomSol, noOfSol, newPop[i])) 

       nonDomSol[noOfSol++] = newPop[i].makeCopy(); 

      if(!Contains(nonDomSol, noOfSol, newPop[j])) 

       nonDomSol[noOfSol++] = newPop[j].makeCopy(); 

        

      if(index < N) 

       NextPop[index++] = newPop[i].makeCopy(); 

      if(index < N) 

       NextPop[index++] = newPop[j].makeCopy();  

      } 

     } 

    j++; 

    } 

   i++;  

   } 

  } 

     

 boolean isNonDominated(Individual first, Individual second) 

  { 

  boolean flag=false; 
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  if((first.getObj1() >= second.getObj1()) && (first.getObj3() < second.getObj3()) && (first.getObj4() < second.getObj4()))  

 // (first.getObj2() < second.getObj2()) && 

   flag = true; 

  if((first.getObj1() < second.getObj1()) &&  (first.getObj3() < second.getObj3()) && (first.getObj4() < second.getObj4()))  

 // (first.getObj2() >= second.getObj2()) && 

   flag = true; 

  if((first.getObj1() < second.getObj1()) && (first.getObj3() >= second.getObj3()) && (first.getObj4() < second.getObj4()))  

 // (first.getObj2() < second.getObj2()) &&  

   flag = true; 

  if((first.getObj1() < second.getObj1()) &&  (first.getObj3() < second.getObj3()) && (first.getObj4() >= second.getObj4()))  

 // (first.getObj2() < second.getObj2()) && 

   flag = true;  

      

  return flag;  

  } 

   

 boolean Contains(Individual[] array, int size, Individual ind) 

  { 

  boolean flag=false; 

   

  for(int i=0; i<size; i++) 

   { 
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   if(isIdentical(array[i].getChromosome1(), ind.getChromosome1()) && isIdentical(array[i].getChromosome2(), 

ind.getChromosome2()) && isIdentical(array[i].getChromosome3(), ind.getChromosome3())) 

    flag = true; 

   } 

   

  return flag;   

  } 

 

 boolean isIdentical(int[] chro1, int[] chro2) 

  { 

  boolean flag=true; 

 

  for(int i=0; i<chro1.length; i++) 

   { 

   if(chro1[i] != chro2[i]) 

    flag = false; 

   } 

 

  return flag; 

  }  

  

 int dominateCount(int k, double[][] First,  double[][] Third, double[][] Fourth) // double[][] Second, 

  { 

  int dcount=0; 
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  int j=0; 

  while(j < N) 

   { 

   if((First[k][1] < First[j][1]) ||  (Third[k][1] < Third[j][1]) || (Fourth[k][1] < Fourth[j][1])) 

    dcount++;    // (Second[k][1] < Second[j][1]) || 

   j++; 

   }  

     

  return dcount; 

  } 

 double round2(double num) 

  { 

  double numfloor; 

  double numround; 

   

  numfloor = Math.floor(100*num); 

  numround = numfloor/100; 

   

  return numround; 

  }   

 } //end of MGA class 
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