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                                                            ABSTRACT 

Wastewater treatment is adopted from ages but the efficiency, time constraint, environmental 

friendliness and cost-effectiveness are the key aspects for applicability of any technique. 

Globally, large amounts of wastewater containing organic pollutants from various industries 

are being discharged into the environment. These emerging contaminants are persistently 

released into the oceanic environment majorly from manufacturing industries, consumers 

utility and effluent treatment plants. In this aspect naophotocatalysis with the amalgamation of 

a biological source has been explored where ZnS nanoparticles have been synthesized by 

endophytic fungal isolate Aspergillus flavus via a medicinal plant Nothapodytes foetida. 

Significant findings from the characterization study include the formation of spherical particles 

with an average diameter of about 18 nm by TEM and hydrodynamic diameter of 58.9 nm. 

Optical properties confirm the quantum confinement effect and the functional groups present 

on the surface of the nanoparticles, further the stability of nanoparticles is accessed by UV–Vis 

spectrometer, zeta potential and cyclic voltammeter. XRD reveals the phase structure and the 

crystallinity indicating the hexagonal phase of ZnS and diffraction peaks at 28.45o, 47.54o, 57o 

(2θ). The degradation efficiency of ZnS nanoparticles for methyl violet/ 2,4- 

dichlorophenoxyacetic acid / paracetamol are 87 % in 2 h, 33 % in 4.5 h and 51 % in 4 h 

respectively and the impact of various parameters on the photocatalytic activity is also 

investigated. The experimental results of COD and TOC are 78 % and 74 % for methyl violet; 

55.5 % and 57.2 % for 2,4- dichlorophenoxyacetic acid; 47.6% and 44.5% for paracetamol 

respectively. Moreover, the plausible mechanism on the radical generation from ZnS 

nanoparticles upon irradiation for the degradation process is hypothesized based on the mass 

spectrum. In addition, the interaction between organic pollutants and ZnS nanoparticles is also 

elucidated based on AFM and fluorescence spectrum. Investigations reveal that the mechanism 

involved is extracellular based on micrographs/chromatogram and the peaks at 149, 301 and 

579 (m/z) corresponds to proteins such as metallothioneins and phytochelatins. The formation 

of nanoparticles production is obtained at optimum inoculum volume of 10 % (w/v) at working 

volume of 1 L and agitation speed 80 rpm. XRD and TEM analysis confirmed the hexagonal 

phase of nanoparticles with the average diameter of 10-15 nm at an optimum concentration of 

30 mM for 72 h. 

Keywords: 2,4- dichlorophenoxyacetic acid, Aspergillus flavus, endophytic fungi, methyl 

violet,  Nothapodytes foetida, paracetamol, ZnS nanoparticles 
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CHAPTER 1 

1.   INTRODUCTION 

1. 1.   Background 

Pollution can be characterized as an undesirable change in the aspects of physical, chemical 

and biological characteristics of the environment. The introduction of harmful substances into 

the environment by man’s activities cause ecological damage or interfere with legitimate use 

of the environment. Due to the Industrial Revolution, innovation grew rapidly, science became 

advanced, technological age came into view and humans were able to advance further into the 

21st century. This led to an increase in the environmental pollution over years inflicting an 

irreparable damage to the world.  Waterborne contaminants entering rivers and streams are one 

of the most crucial environmental problems which are causing tremendous devastation. Despite 

the water contamination occurred by natural phenomenon through characteristic procedures, it 

is generally a consequence of human activities resulting in health risks for millions of people. 

As quoted by Alanis Obomsawin “When the last tree is cut, the last fish is caught and the last 

river is polluted; when to breathe the air is sickening, you will realize, too late, the wealth is 

not in bank accounts and that you can’t eat money" this statement gives a view that there is a 

urgent need to mitigate the pollution. 

Industries generate huge quantities of wastewaters containing dyes, detergents, 

petrochemicals, fertilizers, pesticides, plasticizers, pharmaceuticals, etc. which pose a major 

threat to the ecosystems as they contain chemicals which are highly toxic and structurally 

complex. Most of the industrial wastewaters that are released into the environment without any 

appropriate treatment had resulted in adverse effects on aquatic biota and human life. These 

lead to a drastic change in many of the aquatic systems across the world. Effluents generated 

from various industries contain complex organic pollutants out of which synthetic dyes 

contribute around 7,00,000 tons annually around the world and 20 % of them are unloaded as 

industrial wastes without proper treatment (Nezamzadeh-Ejhieh and Banan 2012; El-Gamal et 

al. 2015; Bogireddy et al. 2016). Significant quantities of triarylmethane dyes such as crystal 

violet and malachite green were found in the sediments and water of Buffalo River, New York, 

USA. These chemicals have been suggested to be responsible for the promotion of tumor 

growths in several scavenger species of fishes. Methyl violet (MV) dye is classified as cationic 

triarylmethane dye and it is a major ingredient of inks used in printings, ballpoint pens, paints, 
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cartridges, etc. MV has high color intensity causing inhibition of sunlight penetrating through 

water (Shamsipur and Rajabi 2014). The dye waters are impervious to aerobic biodegradation 

and their half-lives under sunlight are more noteworthy than 2000 h affecting the development 

of aquatic plants (Singh et al. 2011; Jafari et al. 2012; Soltani and Entezari 2013).  Prolonged 

exposure of dyes causes numerous problems such as damage to organs, skin cancer, cell lysis 

etc. due to their mutagenic nature (Jeyasubramanian et al. 2015). 

Similarly, effluents from agricultural residues and pharmaceutical industries containing 

phenols are considered as hazardous pollutants as they include endocrine disrupting chemicals 

due to the presence of chlorinated and nitro-substituted phenolic compounds (Akpan and 

Hameed 2011; Chauhan et al. 2013). Phenolic components are one of the priority pollutants 

present in the water bodies and are considered as major toxic pollutants by United State 

Environmental Protection Agency (USEPA) (Boruah et al. 2017) with a permissible limit less 

than 0.5 mg/L.  

In the agricultural lands, there is a need to eradicate undesirable herbs/pests which destroy 

the farmland to protect the crop harvests, in this regard, pesticides/herbicides are the commonly 

used industrial chemicals to protect them. Reports demonstrated that herbicide, 2,4-

dichlorophenoxyacetic acid (2,4-D) is one of the primary ingredients among 1500 pesticides 

for specific control of weeds in yard nurseries and farmlands. 2,4-D is one of the globally used 

herbicide since 1968 which is often present in soil, food and water resources due to their large 

applications in agricultural fields (Conte et al. 2016; Luna et al. 2012). The 2,4-D is used in 

Brazilian farming to dispense with wide leaf weeds in sugar cane crops and it is further regarded 

as the second most utilized herbicide in Argentina. As these herbicides are used regularly, their 

concentration in the water bodies is increasing tremendously. Moreover, at any point of rainfall, 

it is eroded into the water channels and groundwater damaging the horticultural zones and ends 

up scattered in the oceanic condition by means of horticultural streams or leaching. In view of 

the medical issues related to 2,4-D, Environmental Protection Act (EPA) reported it as a toxin 

and the World Health Organization (WHO) considered this it as a class II sensibly destructive 

herbicide. It is evaluated that the normal yearly pesticide used in Organisation for Economic 

Co-operation and Development (OECD) part nations is 0.22 t/km2. Furthermore, International 

Agency for Research on Cancer (IARC) declared 2,4-D as class 2B carcinogen, due to its lethal 

dosage (LD50) of 100 and 500 mg/kg (Chen et al. 2016; Samir et al. 2015).  

The presence of active pharmaceuticals ingredients in aquatic environments was reported 

in the 1980’s (Juan et al. 2010). Phenol is a vital industrial crude material utilized as often as 

possible in the production of pharmaceutical compounds, such as diclofenac, amoxicillin and 
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paracetamol. Pharmaceuticals are subclasses of organic contaminants that have been 

recognized as emerging pollutants in wastewaters and surface waters all through the world 

which are consistently brought into the aquatic environment by several emissions from 

manufacturing facilities, consumer utility and hospital disposal sites. Despite the fact that the 

identified fixations are regularly in the range of ng to µg per L, it cannot be excluded that the 

molecules designed to be biologically active affect the sensitive aquatic organisms even at such 

low concentrations. Most of these substances are suspected to have adverse environmental and 

health effects, additionally, some pharmaceutical compounds create multi-resistant strains in 

microorganisms, causing toxic effects on the endocrine system of aquatic organisms. 

Paracetamol (PARA) is recorded as the widely used analgesic/anti-inflammatory all over the 

world. The average consumption rate of pharmaceuticals containing PARA is reported to be 

15 g per capita per year globally and 50-150 g per capita per year specifically in the developed 

countries. PARA is often found in the hospital sewages accounting to 6 gL-1 in European 

sewage treatment plant effluents and 10 gL-1 in natural waters in USA (Jallouli et al. 2017; Rad 

et al. 2015).  Table 1.1 gives the details summarizing the properties of three organic pollutants  

 

Table 1.1: Summary of the details of the organic pollutants MV, 2,4-D and PARA 

 

 MV 2,4-D PARA 

Full forms  Methyl violet  2,4-dichlorophenoxyaceti 

acid  

Paracetamol  

Classification dye herbicide drug 

Scientific name Pentamethyl 

pararosaniline 

chloride 

(2,4-Dichlorophenoxy) 

acetic acid 

acetaminophen 

Major uses Used for textiles, 

colors in paint and 

ink 

To inhibit uncontrolled 

growth of many 

terrestrial and aquatic 

broadleaf weeds  

Widely used 

antipyretic 

Molecular formula C24H28N3Cl C8H6Cl2O3 C8H9NO2 

Molecular weight 393.9 g/mol 221 g/mol 151 g/mol 
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Molecular 

structure 

   

Peak wave length 570 nm 280 nm 248 nm 

 

The treatment methods for water treatment include mixing, flocculation, coagulation, 

sedimentation, filtration and disinfection. Most of the conventional methods are ineffective due 

to the large degree of aromatics/phenols present in dye molecules and phenolic compounds. 

Advanced oxidation processes (AOPs) are extensively used in wastewater treatment techniques 

where the persistent chemicals are degraded into smaller molecular weight compounds by 

means of reactive oxygen species (ROS). AOPs such as fenton oxidation, catalytic ozonation, 

electrochemical processes, ozonation, ozone/ ultraviolet light (UV) irradiation, hydrogen 

peroxide/UV irradiation and photocatalytic process can effectively eliminate emerging 

contaminants without producing secondary waste in the environment. Existing methods require 

high operational and maintenance costs, therefore concern lies with the treatment of effluents 

by economically viable methodologies (Han et al. 2015; Saharan et al. 2015).  

With the advent of nanoscience and technology, various strategies of nanophotocatalysis 

came into picture implementing the role of molecular machinery. Nanotechnology is an 

interdisciplinary field of science combining biology, chemistry, physics and material science 

where the size of the material is designed such that it is smaller than 100 nm or at least one of 

its dimension is in nm range (Kim 2013). In 1986 Kim Eric Drexler in his book, Engines of 

Creation: The Coming Era of Nanotechnology, introduced the fundamental technology 

objective about using machines that work at the molecular scale to structure matter from the 

bottom up. These materials offer new solutions in various fields by manipulating certain 

characteristic of nanoparticles (NPs) by improving the surface, stability, homogeneity and 

surface to volume ratio (Moritz and Geszke-moritz 2013).  

When the particle size is reduced to the atomic level, the energy levels are broken into 

various discrete levels leading to the increase in the band gap of the material. In this scenario, 

the emission and absorption wavelength become limited therefore as the size of the particle 

decreases the band gap increases. To reduce the surface energy, the surface has to reconstruct, 

which leads to the formation of energy levels in the forbidden gap of the semiconductor, 

further, electrical and optical properties of the material are changed by these traps. The 
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absorption peak corresponding to the threshold for the absorption of light in the nanoparticles 

(NPs) is blue shifted on decreasing size. Similarly, the photoluminescence peak position of 

NPs also shows a blue-shift with respect to that of bulk materials (Sandana and Rose 2014).    

Solar photocatalysis is one type of AOPs driven by natural sunlight and has been 

demonstrated to be a promising technology for degradation and inactivation of hazardous 

chemical compounds in water (Ayodhya et al. 2016; Velmurugan et al. 2013) where the light 

source activates the oxidation and reduction process to degrade the contaminants. In the 

photocatalytic pathway, the NPs are activated by a certain light source that initiates a series of 

chemical reactions and establishes a redox atmosphere in aqueous solutions containing highly 

ROS that eventually mineralize the pollutants. The degradation mechanism involves the utility 

of the light source where the electrons are excited by the electrons leaving holes in the valence 

band as they tend to move from valence band to conduction band. The efficiency of the catalyst 

is determined when water reacts with the holes in the valence band and it generates the electron-

hole pairs. These are further converted to free radicals (•OH) which are capable of undergoing 

secondary reactions. The electrons can be absorbed by oxygen to form superoxide or they can 

react with oxygen along with hydrogen to create hydrogen peroxide. Subsequently, these 

electrons react with hydrogen peroxide to create hydroxyl radicals and ions (Ibhadon and 

Fitzpatrick 2013; Qutub et al. 2015) (Figure 1.1).   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic diagram of the degradation reaction mechanism over the surface 

of ZnS NPs 

 

Among the most extensively studied Group II–VI semiconductor NPs, ZnS is well-known 

for its nontoxic multifunctional semiconductor property which is capable of rapidly generating 
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surplus amounts of electron-hole pairs on photoexcitation due to its direct wide band gap. It 

has high negative reduction capability of energized electrons because of its higher conduction 

band position in aqueous solutions when compared with other broadly studied semiconductor 

photocatalysts and it shows great photocatalytic activity because of trapped holes emerging 

from surface defects on the sulphides (Mansur et al. 2014). Zinc sulphide (ZnS) has enormous 

consideration among II–VI semiconductors due to their  applications in distinct fields such as 

catalyzators (catalytic agent), optical sensitizers, optical sensors, UV sensors, chemical 

sensors, biosensors, nanogenerators, electroluminescent materials, field emitters and field 

effect transistors (Onwudiwe et al. 2014; Prasanth et al. 2015). It is considered to be a suitable 

candidate because of its distinguishing properties such as  crystalline phosphor and  finds its 

role in environmental applications as an absorbent for the uptake of pollutants, photo catalyst 

for the degradation of organic pollutants and solar energy conversion (El-Kemary and El-

Shamy 2009).  

Encapsulation of the proteins to the NPs help in providing stability and enhancing their 

characteristics. Fungi compared to other biological entities such as plant and bacteria, secrete 

huge amounts of proteins which directly influence their productivity. They exhibit 

monodispersity with well-defined dimensions utilizing minimal media requirements and ease 

to scale up becomes an added advantage to this fungi synthesized NPs (Mohanpuria et al. 

2008). The microbes residing in the internal parts of plant tissues called Endophytes constitute 

a group of plant symbionts of microbial diversity. They are known to secrete rich source of 

metabolites and reported to perform multiple activities in the field of medicine, agriculture and 

industry potentials. The utility of endophytes for the synthesis of nanomaterials is explored for 

the production of NPs (Baker and Satish 2015). Owing to the above advantages, an attempt has 

been made to detect and degrade organic pollutants using biologically synthesized ZnS NPs 

from an endophytic fungus Aspergillus flavus to perform dual role of sensing and 

photocatalysis. 

1. 2.   Scope and objectives of the study 

The aim of the present research work is to biologically synthesize ZnS NPs using an endophytic 

fungus isolated from a medicinal plant Nothapodytes foetida that is tolerant to precursor 

solutions containing zinc and sulphides. These ZnS NPs potential will evaluated for it detection 

and degradation potentials on certain common and hazardous pollutant in aquatic systems will 

be evaluated.  
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The following are the specific objectives: 

1. To isolate, identify and screen zinc and sulphide tolerant endophytic fungal species from a 

medicinal plant, Nothapodytes foetida. 

2. To synthesize, optimize and postulate the possible mechanism involved in the synthesis of 

zinc sulphide NPs by the endophytic fungus (Aspergillus flavus). 

3. To study the structural, morphological, optical, electrochemical and stability characteristics 

of the biologically synthesized ZnS NPs. 

4. To estimate the degradation potential of ZnS NPs for common environmental organic 

pollutants such as MV, 2,4-D and PARA at different concentrations. 

5. To study the fundamental mechanism involved in the degradation process of MV, 2, 4-D 

and PARA. 

6. To produce the ZnS NPs in a stirred tank reactor and to optimize the parameters like 

inoculum volume, precursor concentration and incubation time that influence the yield of the 

ZnS NPs. 

1. 3.  Organization of the thesis 

The research study is presented and explained in five chapters as given below: 

Chapter 1 introduces about the scenario of water pollution and highlights the utility of 

nanomaterials for the wastewater treatment. Further, it explains the importance of endophytic 

fungi in biological nanomaterials. 

Chapter 2 encompasses the literature review that includes the overview of the synthesis of NPs 

and biosynthesis through endophytic fungi. The importance of the biological synthesis in 

general and synthesis of ZnS NPs were discussed. Moreover, the studies on degradation 

potential of ZnS NPs on MV, 2, 4-D and PARA were discussed in addition, the production of 

NPs in bioreactors is also illustrated. 

Chapter 3 includes the materials and methods required to achieve the objectives followed in 

the synthesis and analysis of the ZnS NPs. This section includes the collection of samples, 

isolation, screening and identification of metal tolerant fungal species from endophytic fungi. 

Further, it comprises of the preparation of the stock solutions for the synthesis and optimization 
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of ZnS NPs, reaction concentrations and measurement techniques of the pollutants MV, 2, 4-

D and PARA under study. 

Chapter 4 The results confirming the significant characteristic properties like optical, structural, 

morphological thermal and stability were illustrated. Synthesis, possible mechanism and 

optimization of ZnS NPs protocol for the extracellular biosynthesis of ZnS NPs were 

demonstrated. The results confirming the degradation of MV, 2,4-D and PARA utilizing ZnS 

NPs as catalyst, the degradation mechanism and their characterization were demonstrated. This 

section includes the large-scale production of NPs in the stirred tank reactor.  

Chapter 5 gives a summary of this dissertation as well as discusses directions for future work. 

The encapsulation on ZnS NPs via endophytic fungi isolated from the medicinal plant 

Nothapodytes foetida offered a promising scope for fungal nano-catalysts to exploit their 

degradation potential. Thus, it can be concluded that these biological nano-catalysts provided 

a novel catalytic and biological model in the field of material science that could help to mitigate 

environmental pollution. 
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CHAPTER 2 

2.    REVIEW OF LITERATURE 

2. 1.  Endophytic fungi 

In 1866, De Bary introduced the term “Endophyte” which means, microorganisms that 

reside in the intercellular / intracellular regions of healthy plants at a particular time of their 

life cycle (Ryan et al. 2008; Pimentel et al. 2011; Devi and Joshi 2015). Usually, endophytes 

have a symbiotic relationship with their plant host and act as induced systemic resistance 

defense for the plants against foreign phytopathogens. It is reported that more than a million 

different endophytic strains inhibit in 3,00,000 different plant species. Endophytic fungi are 

the ecological and polyphyletic group of exceptionally various organisms, for the most of it 

belonging to ascomycetes and anamorphic fungi. They can colonize in internal plant tissues of 

healthy leaves, petioles, stems, twigs, bark, root, fruit, flower and seeds without causing any 

damage or pathogenic to disease their host plants. The plant host is likewise profited by the 

endophytes by their natural resistance from soil contaminants, their ability to degrade 

xenobiotics or their action as vectors to present degradative qualities with plants, which 

significantly assist in phytoremediation (Pimentel et al. 2011; Kaul et al. 2012). 

They have been accounted for their co-production of the bioactive compounds. Two of 

the most contemplated and biggest classes of optional metabolites are the polyketides and non-

ribosomal peptides. Various bioactive compounds are co-produced which include anticancer 

drug camptothecin, podophyllotoxin and natural insecticide azadirachtin. Numerous 

extracellular compounds like pectinases, cellulases, lipases, amylases, laccases and proteinases 

are produced by fungal endophytes (Jalgaonwala et al. 2011; Saikkonen et al. 2016). Different 

mechanisms have been proposed for the simultaneous generation of the biological compounds 

for instance, in case of gibberellins, the biosynthetic system of a similar compound evolves 

independently in plants and their microbial counterparts, on the other hand, the quality 

exchange between the plant host and its endophytes have been speculated, though this 

procedure has just been appeared to happen with microbial endophytes (Alvin et al. 2014; Nisa 

et al. 2015). Natural products such as taxoids, alkaloids, color curcumin, betulinic and betulonic 

acids were examined for their capacity to biotransformation. The vast majority of the 

endophytes have the ability to experience xenobiotic degradation; moreover, they can likewise 

be utilized as degradative characteristics which help in enhancing phytoremediation. The 

endophytic protection from metals/antimicrobials might be because of their introduction to 

various associates in the plant/soil species and these help in the natural degradation process. 
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Bjerkandera sp, Ceratobasidium stevensii Neotyphodium coenophialum and Neotyphodium 

uncinatum were subjected for wood and polyaromatic compounds biodegradation and for 

bioaugmentation of total petroleum hydrocarbons and polycyclic aromatic compounds 

removal.  

The interference of endophytes and nanomaterials is a moderately new research zone 

that has pulled in unequivocal consideration. Owing to the fact that the endophytic fungi 

provide a broad variety of bioactive secondary metabolites with unique structures they could 

be the explored for their ability to the biosynthesis of NPs to develop an efficient environment 

friendly process. Synthesis of NPs from endophytic fungi have been quoted for various species 

and reported in Table 2.1 gives an overview of synthesis of NPs from endophytic fungi. 

Table 2.1: Overview of synthesis of NPs from endophytic fungi 

 

Sl. No Fungal 

species  

Source Characteristics Reference 

1. Pestalotia sp.  

 

Leaves of 

Syzygium 

cumini 

The absorption peak is at 

observed 415 nm. Silver NPs 

of TEM diameter 10-40 nm 

are synthesized and its 

antimicrobial activity is 

studied. 

(Raheman et al.  

2011) 

 

2. Pencillium 

sp.  

 

Curcuma 

longa 

Surface plasmon peaks were 

also located at 425 nm. Silver 

NPs of TEM diameter 25 nm. 

Antimicrobial activity is 

studied. 

(Singh et al. 

2013) 

3. Epicoccum 

nigrum 

- TEM results indicate that 

silver NPs size from 1 to 25 

nm.  The absorption peak is 

at 424 nm. Activity against 

pathogenic fungi is studied. 

(Qian et al. 

2013) 
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4. Fusarium 

solani 

Nothapodytes 

foetida 

TEM results indicate that 

silver NPs size as 10 nm 

further optimization is carried 

out based on mathematical 

models 

(Musavi and 

Balakrishnan 

2014) 

5. Penicillium 

sp. 

 

Curcuma 

longa 

The absorption peak is at 

observed 420–425 nm. Silver 

NPs of TEM diameter 25 nm 

and 30 nm. Antimicrobial 

activity is also studied. 

(Singh et al. 

2013) 

 

6. Aspergillus 

niger PFR6 

Potentilla 

fulgens L 

 

Silver NPs synthesized TEM 

results indicate that A. tamarii 

PFL2, A. niger PFR6 and P. 

ochrochloron PFR8 was 

found to have the particle size 

3.5 nm ,8.7 nm and 7.7 nm and 

the absorbance peak at around 

420 nm. 

(Devi and Joshi 

2015) 

 

Penicillium 

ochrochloron 

PFR8  

Aspergillus 

tamarii PFL2 

7. Pseudomonas 

veronii AS 

41G 

 

Annona 

squamosa L 

Maximum absorption was 

seen at 560 nm. TEM results 

indicate that gold NPs size 5-

25 nm and its antibacterial 

activity is studied. 

(Baker and 

Satish 2015) 

2. 2.  Biological synthesis of NPs 

Fungal strains such as Fusarium, Penicillium and Aspergillus species have been reported 

multiple times for the synthesis of several different kinds of nanoparticles. Fungal cultures 

possess some additional attributes with respect to their bacterial counterparts. For instance, the 

optimization for scale-up of fungal cultures has revealed that fungal mycelia can withstand the 

culturing fluctuations of the scale-up treatment in the bioreactor which perhaps plant and 

bacterial based extracts cannot. Moreover, fungal species also possess a fastidious nature of 

growth and this is a very vital aspect in the nanoparticle formation through the use of fungal 

species. This is so because this enables the release of very vital enzymes and proteins in 
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sufficient concentrations that in turn enables easier bioreduction of corresponding metal salts 

to form the biochemically reduced metallic ions as zero-valent nanoparticles. Their fast growth 

and prompt participation in the overall nanoparticle synthesis also eliminate the technical 

hurdles of the downstream processing involved. Fungal species, till date, have been explored 

for both extracellular and intracellular synthesis of nanoparticles. For large-scale biogenesis of 

nanoparticles, fungi possess unique advantages over other microorganisms. They have several 

advantages over bacteria for biosynthesis as they secrete large amounts of extracellular proteins 

with diverse functions. The so-called secretome includes all of the secreted proteins into the 

extracellular space. Most fungi also have a very high wall-binding capacity as well as 

intracellular metal uptake capacities (Mohanpuria et al. 2008). They produce large amount of 

enzymes per unit biomass. The use of specific enzymes such as reductase secreted by fungi 

opens up exciting possibilities of designing a rational biosynthesis strategy for metal 

nanoparticles of different chemical compositions. A number of different genera of fungi have 

been investigated for biotechnological process research, and it has been shown that fungi are 

extremely good candidates in the synthesis of nanoparticles (Sadhasivam et al. 2010). The high 

concentration of the fungal secretome has been used for industrial production of homologous 

and heterologous proteins. For example, the expression of a functionally active class I fungal 

hydrophobin from the entomopathogenic fungus Beauveria bassiana has been reported 

(Kirkland et al. 2011). The tripeptide glutathione is a well-known reducing agent involved in 

metal reduction and is known to participate in cadmium sulfide (CdS) biosynthesis in yeasts 

and fungi. Since the nanoparticles are produced outside the cell extracellularly in most of the 

cases, they are easy to purify and can be directly used in various applications. Fungal mycelial 

mesh can withstand flow pressure and other conditions in bioreactors or other chambers as 

compared to plant material or bacteria. Recently, fungi have gained much importance, as the 

extracellular secretion of enzymes has an added advantage in the downstream processing and 

handling of biomass (Gade et al. 2008), when compared to the bacterial fermentation process 

which involves use of sophisticated instruments to obtain clear filtrate from the colloidal broth 

(Sastry et al. 2003). Moreover, fungi are excellent secretors of protein compared to bacteria 

and actinomycetes, results into higher yield of nanoparticles (Rai et al. 2009).  

Several fungi have already been exploited for the synthesis of silver, gold, zirconium, silica, 

titanium, iron and platinum nanoparticles (Krumov et al. 2009). Fungi have a number of 

advantages for both intra- or extracellular synthesis of nanoparticle over other organisms 

including plants (Narayanan et al. 2010). Due to slower kinetics, they offer better manipulation 

and control over crystal growth and their stabilization (Vaidyanathan et al. 2009). Fungal 
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mycelia can withstand flow pressure, agitation and other conditions in bioreactors or other 

chambers compared to plants and bacteria (Saha et al. 2010). Many of the enzymes secreted by 

fungi are capable of reducing metal ions quickly through non-hazardous processes and allow a 

controlled synthesis of nanoparticles with well defined size and shape (Moaveni et al. 2011). 

Moreover, large scale extracellular secretions of their reductive proteins helps in outside 

precipitation of nanoparticles, minimizes the unnecessary cellular components and hence, 

aiding direct use in various applications. Therefore, fungi could be regarded as natural 

biofactories for biosynthesis of nanoparticles. In 2012, Ahmad and Syed showed that 

extracellular platinum nanoparticles with the size ranged between 5-30 nm were obtained when 

the Fusarium oxysporum incubated with hexachloroplatinic acid (H2PtCl6). The nanoparticles 

were stabilized by proteins (Syed et al. 2012). They also investigated for the first time the 

biosynthesis of CdTe nanoparticles by Fusarium oxysporum. The CdTe quantum dots were 

highly fluorescent and capped by proteins secreted by the fungus. They showed antibacterial 

activity against Gram negative bacteria and Gram positive bacteria (Syed et al.  2013). Almost 

the same time, Bakhtiari’s group reported the biosynthesis of spherical ZnS nanoparticles with 

the average size of 42 nm using the Fusarium oxysporum (Mirzadeh et al 2013). Some other 

Fusarium sp. such as Fusarium acuminatum and Fusarium semitectum (Ingle et al., 2008) 

could be used to synthesize extracellular silver nanoparticles. There are also reports about the 

biosynthesis of gold nanoparticles by fungi. In 2014, Castillo’s group achieved the formation 

of gold nanoparticles using the fungus Botrytis cinerea for the first time. The nanoparticles 

were in different shapes such as spherical, pyramidal, hexagonal, triangular and decahedral of 

sizes ranging between 1-100 nm. They confirmed the molecules secreted by the fungus 

participated in the production of gold nanoparticles, but the specific mechanism remains to be 

elucidated (Castro et al., 2014). Others such as Verticillium (Mukherjee et al., 2001), 

Aspergillus fumigates (Gupta et al., 2013), Aspergillus flavus (Das et al., 2009) and 

Copidosoma floridanum (Narayanan et al., 2013) have also been reported about the ability to 

biosynthesize gold nanoparticles. 

2.3.    Quantum confinement effects 

For a semiconducting material, a quantum dot structure is a small box with sides 

comparable to or smaller than the de Broglie wavelength which is surrounded by a wider band-

gap semiconductor material. This box behaves as a three-dimensional potential well for carriers 

(electrons in the conduction band and the holes in the valence band) (Figure 2.1). In a quantum 

dot, carriers are narrowly confined in all three directions along each side of the box lx, ly, and 

lz along the x- axis, the y- axis, and the z-axis, respectively. Therefore, the energy is quantized 
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along all three directions and can be written for electrons in the conduction band as equation  

2.1 and for holes in the valence band as equation 2.2 (Klaus et al. 2011) 

 

Type equation here. 

 

 

 

 

 
 

 

Figure 2.1: A typical geometry of a quantum dot  

 

 

 

 

nx  ,ny  ,nz = 1, 2, 3,…, h is Planck’s constant and m* is the mass of the carriers (the electrons 

in the conduction band and the holes in the valence band). 

 

The energy levels are discrete and well separated. As the carrier (the electrons in the 

conduction band and the holes in the valence band) motion is restricted, the conduction band 

and the valence band split into sub bands which become narrower with the increasing 

restriction in more dimensions. Finally, the density of states will be represented by the delta 

functions where, the carrier motion is restricted in all three directions as in the case of the 

quantum dot. 

The quantum confinement effects in low dimensional semiconductor systems were 

studies based on quantum confinement effects of various semiconductors with emphasis on the 

optical properties, including absorption and luminescence. Obviously, the confinement of an 

electron and hole in nanocrystals significantly depend on the material properties, namely, on 

the Bohr radius aB. One of the most important consequences of the spatial confinement effect 

is an increase in the energy of the band-to-band excitation peaks (blue shift), as the radius ‘R’ 

of a microcrystalline semiconductor is reduced in relation with the Bohr radius ‘aB’. 

E = EC  + Enx +  Eny +  Enz  ……..(2.1)                

E = Ev   - [Enx +  Eny +  Enz]……..(2.2) 

Where Enx = n2
x ∏ h2/2 m* l2

x, Eny = n2
y ∏ h2/2 m* l2

y, Enz = n2
z ∏ h2/2 m* l2

z 
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Theoretically, the regimes of quantum confinement differ in their main electron-hole 

interaction energy, i.e., the Coulomb term and the confinement energy of the electron and hole 

and kinetic energy. (Sagadevan et al. 2013; Koole et al. 2014). 

2.3.1.      Weak Confinement Regime 

To observe this regime, the radius R of a crystallite should be greater than the bulk 

exciton Bohr radius aB. In this region of weak confinement, the dominant energy is the Coulomb 

term and there already occurs a size quantization of the exciton motion. The exciton energy 

states are shifted to higher energies by confinement and the shift in energy ∆E is proportional 

to 1/R2. The shift ‘∆E’ of the exciton ground state is given approximately by 

 

 

where, M is the mass of the exciton and it is given by M= me* +  mh*with me* and mh* being 

the effective masses of the electron and hole respectively. 

2.3.2.      Moderate Confinement Regime 

The moderate confinement regime occurs when R≈ aB and ah < R < ae, where, ah and 

ae are the hole and electron Bohr radii, respectively. In II-VI semiconductors, this region is well 

observable in small QDs. Its characteristic feature is the well restricted motion of a 

photoexcited hole. 

 2.3.3.      Strong Confinement Regime 

Finally, the size of a QD can be decreased in such a way that R<< aB and R << ah and 

ae in the strong confinement regime. The Coulomb term of electron-hole interaction is now 

small and can be ignored or treated as perturbation. The electrons and holes can now be thought 

of as confinement independent particles. So excitons are not formed and the separate size 

quantization of an electron and hole is the dominant factor. The optical spectra consist also of 

a series of lines due to the transition between sub-bands. This factor was confirmed 

experimentally and the simple model gives the shift in energy as a function of crystallite size 

as 

 

 

in which the exciton mass M is replaced by the reduced exciton mass µ, where,  

1/µ= 1/ me* + 1/ mh* .The electrons and holes in QDs are treated as independent particles and 

for the excited state there exists a ladder of discrete energy levels, as in molecular systems. 

ΔE ≈ [ ∏2 h2/ 2MR2]………(2.3) 

ΔE ≈ [ ∏2 h2/ 2 µ R2]……..(2.4) 
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Quantum dots are semiconductor NPs which have quantum confinement property. They 

are crystalline structures whose dimensions are sufficiently small enough that its electronic 

states begin to resemble like those of an atom or particle instead of those of the bulk crystal. 

For a semiconducting material, a quantum dot structure is a small box with sides similar to or 

smaller than the de Broglie wavelength which is encompassed by the extensive band-gap 

semiconductor material. Energy levels are discrete and well separated when the carrier motion 

is restricted where the conduction and valence band is split into sub-bands which narrows down 

with the increased limitations in most of the dimensions (Figure 2.2).  

By reducing the particle size of the catalyst one could see an increase in surface area in 

Figure 2.1 deduces that the diminishing in the size brought about increment in the surface area. 

Because of the quantum confinement effect, quantum dots showed diverse behavior in the 

electronics, optical and magnetic behavior by size tuning. The essential two major 

differentiation between the bulk size and the nanomaterial is that large surface area to volume 

ratio of NPs and the three-dimensional quantum confinement of their charge carriers this 

happens when NPs size is smaller than the exciton Bohr range of the bulk semiconductor. In 

quantum dots, as the electrons are limited to a point in space, they have no change in any 

measurement and electrons are said to be restricted at a point, suggesting that every direction 

changes their properties. When the size of the material reduces to the atomic level, they tend 

to breakdown into discrete levels therefore, it can be concluded that the size of the nanoparticle 

is the function of the band gap of the material. Further, it can be inferred that the size and 

composition of the materials can be altered by manipulating the size of the material. 

 

Figure 2.2:  Schematic representation of decreasing size with the increasing band gap 
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2.4.     ZnS NPs chemical and biosynthesis 

Among the most comprehensively considered II–VI semiconductors, ZnS is a 

remarkable multifunctional material in view of the wide band gap. This material has been 

shown as a prevalent photocatalyst as a result of the rapid generation of electron-hole pairs 

with photoexcitation as it is a direct wide band gap semiconductor material. Further, it has high 

negative reduction capability of energized electrons because of its higher conduction band 

position in aqueous solution when related to other broadly examined photocatalysts. Likewise, 

this material shows great photocatalytic activity because of trapped holes emerging from 

surface defects on the sulfides. It has additionally been used in UV detectors because of its high 

resistivity at encompassing conditions and quick switching time upon UV light enlightenment, 

along these lines showing the most astounding potential for a UV light illumination. Therefore, 

cadmium-free nanomaterials, for example, zinc (Zn2+) compounds, are extremely encouraging 

options because of their ecological wealth and natural presence in the human body. The 

increased concern over the toxicity of cadmium has brought about numerous groups searching 

for less harmful metals such as zinc chalcogenides (Mansur et al. 2014). 

In 1994, Bhargava et al for the first time detailed the nanosize luminescent ZnS 

materials and manganese-doped nanocrystals of ZnS by synthetic precipitation technique 

system. Due to the huge surface to volume ratio, ZnS NPs recently showed progress as a result 

of their quantum size effect, size and shape-dependent photoemission and superior luminescent 

characteristics. Biological synthesis has not been explored, hence, these procedures have 

gained significance in the amalgamation of NPs. Therefore, a wide array of biological entities 

such as microorganisms, yeast, parasites, plant biomass and extracts have been utilized for 

synthesis of NPs (Moritz and Małgorzata 2013).  In 2002, Dubertret et al. have used NPs as 

biological probes in clinic examinations, this inspired the researchers to synthesize biological 

ZnS NPs. Later in 2006, Mandal et al. synthesized 2–5 nm sphalerite ZnS particles form 

sulfate-reducing bacteria under anaerobic conditions. In the recent years, various bacterial 

sources such as Rhodobacter sphaeroides, Serratia nematodiphila and Shewanella oneidensis 

were employed for synthesis and the TEM diameter is recorded to be 8 nm, 80 nm and 5 nm 

respectively (Bai et al. 2006; Malarkodi et al. 2013; Xiao et al. 2015). NPs synthesized from 

fungal source Fusarium oxysporum, showed TEM diameter of 42 nm and it exhibited surface 

plasmon resonance at 280– 320 nm (Mirzadeh et al. 2013). Saccharomyces cerevisiae yeast 

yielded NPs of diameter 30– 40 nm and indicated surface plasmon resonance band at 302.6 nm 
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(Sandana and Rose 2014). Further Jatropha latex and Corymbia citriodora plant source 

produced NPs of diameter 10 nm and 45 nm respectively (Hudlikar et al. 2012; Chen et al. 

2016). 

Due to large surface to volume ratio ZnS nanoparticles in recent years are becoming 

more and more attractive due to their quantum size effect, size- and shape-dependent 

photoemission and superior luminescent characteristics. One of the important properties of ZnS 

nanoparticles is the luminescence property. For ZnS nanoparticles to have wider applications 

in optoelectronics, they must possess a strong luminescence property. One of the methods to 

improve the luminescence property of ZnS nanoparticles is to introduce certain dopants into 

ZnS nanoparticles. Elements such as Mn, Cu , Al , Te , Eu, Mg, Fe, Pb  and Cr have been doped 

into ZnS nanoparticles and improved luminescence has been observed. (Chen et al. 2014). 

During the last two decades, number of synthesis methods has been reported in the literature 

for the preparation of semiconductor nanoparticles namely chemical method, 

mechanochemical method, hydrothermal process, sol–gel method, electro-spinning technique, 

reverse micelle method and ultrasonic radiation method etc. Recently nanomaterials are of 

great interest because of their electro-optical properties and applications as reported by the 

researchers (Onwudiweet al. 2014). 

The first report on nanosize luminescent ZnS materials was given by Bhargava et al in 

1994. Manganese-doped nanocrystals of zinc sulfide were synthesized by chemical 

precipitation method. The nanomaterials had external photoluminescence quantum efficiency 

of 18 %. The synthesis involved reaction of diethyl zinc with hydrogen sulfide in toluene. The 

dopant manganese is added as ethylmanganese in tetrahydrfuran solvent to the parent solution 

of zinc salt before precipitation reaction. Surfactant methacrylic acid was used to maintain 

separation between the particles formed. The dried material was further subjected to ultraviolet 

curing for possible polymerization of surfactant methacrylate capping film on the surface of 

Mn doped ZnS nano cluster for imparting true quantum confinement. The enhancement of 

efficiency has been explained on the basis of surface passivation of the nanocrystals due to 

photopolymerization of the surfactant. The photoluminescent (PL) and photoluminescence 

excitation (PLE) spectra of the nanophosphor have been compared with bulk ZnS: Mn. The PL 

is slightly shifted and there is a larger linewidth in the nanophosphor as compared to bulk. 

Table 2.2 gives an overview of the 
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Table 2.2: Overview of the synthesis of ZnS nanoparticles 

 

S. 

no 

Method of 

preparation 

Characteristics Reference 

1. Glycoside in the 

aqueous crude 

extract of Stevia 

rebaudiana 

TEM diameter size 8.35 nm. The peaks are 

observed at 3414.82 cm−1 which corresponds to 

-OH groups 

Alijani et al. 

2019 

2.  Low-cost aqueous 

method using 

solvent oxalic acid 

Photoluminescence peak is observed at 370 nm 

exhibiting blue-green emission. TEM diameter 

size 8–20 nm  

Florence and 

Can, 2018 

3. Solid state 

reaction method 

TEM diameter size 15.32–19.04 nm. ZnS:Ni 

nanoparticles, a green emission peak around 

585 nm was observed 

Jothibas et al. 

2018 

4. Chemical bath 

deposition, co-

precipitation  

and spin coating 

Cubic phase of ZnS thin films crystallized 

nanoparticles with an average size of 150 nm 

and pores of 40 nm 

Akhtar et al. 

2017 

5. Hydrothermal 

process in 

combination with 

the co-

precipitation 

route. 

Hybrid reduced graphene oxide 

(RGO)/CoFe2O4/ZnS nanocomposites 

ZnS quantum dots and cobalt ferrite 

(CoFe2O4) nanoparticles with an average 

diameter of 3–8 nm and 10–20 nm.  

Zhang et al. 

2017 

6. Hydrothermal 

method 

 Cubic sphalerite phase with an average size is 

about 20 nm 

Yin et al 2016 

7. Hydrothermal 

process 

Cubic sphalerite phase with asize 20–60 nm  Younes et al 

2016 

8. Chemical 

Precipitation 

method 

Ni doped ZnS quantum dots of TEM size 2.3 – 

3.6 nm. Absorption edge is located around 

320–340 nm. Photoluminescence spectrum 

emission peak centered at around 612nm  

Kumar  

et al. 2015 

https://www.sciencedirect.com/topics/physics-and-astronomy/glucosides
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stevia
https://www.sciencedirect.com/topics/physics-and-astronomy/coprecipitation
https://www.sciencedirect.com/topics/physics-and-astronomy/coprecipitation
https://www.sciencedirect.com/topics/materials-science/spin-coating
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12. Hydrothermal 

process 

TEM diameter of diameter 200 nm. 

Crystalline hollow ZnS nanospheres  

Han et al. 2015 

13. Solvothermal 

method 

ZnS of wurzite with the particle size of 

about 3 to 10 nm 

Prakasam 

et al. 2015 

14. Wet chemical 

synthesis 

Fe doping TEM diameter of 5–10 nm. 

Photoluminescence spectra is exhibited at 290 

nm with excitation wavelength 330 nm on 

doping Fe ions that the pristine ZnS NPs 

showed at 275 nm, on doping it is red shifted in 

between 285 and 290 nm.  

Dixit 

et al. 2015 

 

15. Chemical 

precipitation 

Absorption spectra is exhibited inbetween 250– 

500 nm. Photoluminescence emission spectra 

of Mn doped ZnS NPs in the range 350–800 

nm.  

Kaur 

et al. 2015 

 

16. Electro deposition 

method 

Zinc sulfide thin films are polycrystalline with 

cubic crystal structure. Absorption peak at 

320–340 nm. From XRD the average crystallite 

size of zinc sulfide was found to increases from 

21 to 54 nm 

Patil et al. 

2015 

17. One-step 

Chemical Vapor 

Deposition 

method 

ZnS nanobelts -The thickness difference 

between the two segments is about 45 nm. 

UV emission at approximately 338 nm 

and a weak and broad green emission band 

centered at 524 nm. 

Wang et al. 

2014 

 

18. Laser assisted 

solid state reaction  

from metal 

xanthate 

TEM diameter is 4.8 nm 

Laser pulses with a peak wavelength of 355 nm 

Onwudiwe 

 et al. 2014 

19. Solid-state 

reaction 

Chlorine and oxygen co-doped ZnS NPs 

Average crystallite size of about 4.28–5.08 nm. 

Two excitation bands in 

the ultraviolet (UV) range with their maxima at 

about 270 and 323 nm can be clearly seen. 

Chen et al. 

2014 
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20. Microwave 

irradiation 

ZnS with cubic structure  and  absorption peak 

at 310 nm 

 

Rasoul et al. 

2014 

 

 

 

2.5. Mechanism of synthesis of NPs 

There are two possible mechanisms for the biosynthesis of NPs, postulated as: (i) 

biomolecules discharged by fungal mycelium into the outer medium help in the reduction of 

ions to NPs and/or (ii) NPs formed inside the cell are secreted outside. In the extracellular 

synthesis of NPs, the proteins and reducing agents are secreted by the fungi where a minimum 

of four high molecular weight proteins released into the biomass for the formation of NPs. One 

of these was strain particular NADH-subordinate reductase, further, the reduction of metal ions 

and surface binding of the proteins to the NPs were caused by the tertiary structure of the 

proteins. Ahmad et al. (2003) and Bhainsa and D'Souza (2006) detailed the extracellular 

combination of silver NPs using Fusarium oxysporum and Aspergillus fumigatus individually. 

Extracellular synthesis of both live and dead fungal biomass has been shown by numerous 

scientists. Silver NPs were integrated extracellularly by cell-free filtrate of the marine organism 

Penicillium fellutanum by Moteshafi et al. (2012). In this work, a single prominent protein band 

with a molecular weight of 70 kDa, was detected in the culture filtrate secreted from the fungal 

biomass. However, in case of intracellular synthesis, reduction of metal ions by fungal 

mycelium to its nanoform has been one of the survival strategies to detoxify the toxic metal 

ions. For example, the gold NPs were synthesized intracellularly by Verticillium sp. after 

exposing to chloroauric acid (HAuCl4) solution. In a similar process, the Ag+ ions are reduced 

intracellularly by the enzymes secreted due to metal toxicity in vivo and the formation of silver 

NPs resulted by the bio capping of these proteins (Mohanpuria et al. 2008). 

To address this research gap, the biogenesis of nanoparticles was initiated. Although 

cleanup is necessary to prevent any further discharge of contaminated wastes into the 

environment, a cost-effective technology needs to be developed for industry to use.  The 

fundamental reason for the treatment of wastewater is to circumvent the effect of pollution of 

water sources and protect public health through safeguarding of water sources against the 

spread of diseases. This is carried out through a variety of treatment systems, which could be 

onsite treatment systems or offsite treatment systems. The trafficking of extracellular 

membrane vesicles (MVs) and their biological roles are well-studied processes 

in eukaryotes and an increasing number of new studies are being carried out in diverse bacteria. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/eukaryote
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In archaea, the production of MVs has been mainly studied in species of the 

genus Sulfolobus and Thermococcus.  In eukaryotes and bacteria, several studies have shown 

that MVs can play a role in detoxification. This phenomenon was first observed in 

eukaryotic marine organisms such as mollusks and crustaceans which accumulate cadmium. 

Notably, numerous bacteria produce vesicles containing sulfur. Sulfur is an important element 

for microbial life present in deep-sea environments and is metabolized by a wide variety of 

microorganisms, which transiently store sulfur in intracellular vesicles. The cellular structure 

of a microorganism can trap heavy metal ions and subsequently sorb them onto the binding 

sites of the cell wall. This process is called biosorption or passive uptake, and is independent 

of the metabolic cycle. The amount of metal sorbed depends on the kinetic equilibrium and 

composition of the metal at the cellular surface. The mechanism involves several processes, 

including electrostatic interaction, ion exchange, precipitation, the redox process, and surface 

complexation. The process is fast and can reach equilibrium within a few minutes. Biosorption 

can be carried out by fragments of cells and tissues, or by dead biomass or living cells as passive 

uptake via surface complexation onto the cell wall and other outer layers. The other method is 

a process in which the heavy metal ions pass across the cell membrane into the cytoplasm, 

through the cell metabolic cycle. This is referred to as bioaccumulation or active uptake. Metal 

uptake mechanisms by various biosorbents depend on the cellular surface of the microbes, as 

well as the exchange of metal ions and complex formations with the metal ions on the reactive 

chemical sites of the cell surface. The rigid cell wall of fungi is made up of chitin, inorganic 

ions, lipids, nitrogen-containing polysaccharide, polyphosphates, and proteins. They can 

tolerate and detoxify metal ions by active uptake, extracellular and intracellular precipitation, 

and valence transformation, with many absorbing heavy metals into their mycelium and spores. 

The surface of their cell wall acts as a ligand for binding metal ions, resulting in the removal 

of metals. The first barrier includes excreted substances like organic acids or/and proteins with 

an ability to immobilize heavy metals. The second barrier includes the (unspecific) binding of 

heavy metals by the cell wall and melanins located in the cell wall. Toxic heavy metals that 

could not be detained outside the cell must be detoxified inside the cell. 

2.6.    ZnS NPs for Photocatalysis 

Exploitation of the renewable sources such as solar energy for the alternate energy 

source led to the utilization of solar energy for photocatalysis. It is considered as an effective 

and rapid technique to removal/degrade pollutants from water. ZnS NPs could be utilized as 

photocatalysts because of their rapid generation of the electron-hole pairs by photo excitation 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/archaeon
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sulfolobus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/thermococcus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/detoxification
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/marine-species
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mollusc
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/crustacea
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cadmium
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and profoundly negative reduction potentials of the energized electrons; as conduction band 

position of ZnS in aqueous solution is higher than that of other semiconductors, such as TiO2 

and ZnO. Semiconducting NPs engaged in photo conversion systems present a temperately 

wide energy gap between the conduction band (CB) and the valence band (VB) and this 

separation is known as the band-gap energy (E gap). The absorption of energy by a 

semiconductor results in electron transfer from the valence band to the conduction band and 

leave vacancies in the valence band termed as holes. The photo generated electron-hole pair 

encourages the reduction and oxidation of species adsorbed at the surface of the 

semiconducting NPs and encourages oxidative degradation of species in solution through 

radical reactions.  

2.7.   Cationic dye degradation 

Numerous industries create enormous amounts of profoundly shaded wastewaters 

which are normally poisonous and impervious to regular treatment systems. The utilization of 

engineered colours in the textile and food industries constitutes serious dangers to general 

wellbeing. About 60-70 % of colours utilized as a part of the materials enterprises contained 

azo colours with at least one azo bond. The extreme utilization of azo colours is identified with 

their high solubility, stability, colour variety and simple dyeing procedure. A portion of these 

colours are dangerous, mutagenic and cancer-causing compounds, as well as are resistant to 

oxygen consuming biodegradation and their half-lives under daylight are more prominent than 

2000 h (Soltani and Entezari 2013). Discolouration of colour containing effluents is 

consequently vital and has received expanding consideration amid the most recent decade. 

Persistent introduction of inappropriately or halfway treated or untreated colouring dyes cause 

different health hazards to mankind, for example, harm to organs, dangerous to amphibian life, 

skin malignancy, cell lysis and so forth (Jeyasubramanian et al. 2015; Li et al. 2015). MV is 

one of the high shading extreme cationic colours, which can grab the attention of the public 

and the experts. MV absorbs and reflects sunlight into water resulting obstruction on the 

photosynthesis of oceanic plants (Jafari et al. 2012; Singh et al. 2011; Shamsipur and Rajabi 

2014). It was important to degrade MV as it is considered as a potential cancer-causing agent, 

mutagen and miotic toxic substance and thusly, concerns exist in regards to the biological effect 

of the presence of MV on to the earth. Therefore, photo degradation is one of the essential 

techniques for the expulsion of MV from wastewater (Sinha et al. 2014).  

Subsequently, the textile industries are an imperative source of contamination of the 

aquatic framework. Of late, there has been substantial consideration for the expulsion of 
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colours by various strategies. They are frequently degraded/removed by adsorption which is a 

physical technique, chlorination, ozonation as synthetic strategies and biodegradation. These 

evacuation strategies are not successful for an entire degradation and at times just give 

detachment of the colours with no degradation and creating a secondary waste problem. From 

the handy perspective, photodegradation of toxins utilizing semiconductor and solar light is an 

economical process.  Since, the solar energy vitality is an abundant energy source, which can 

be utilized rather than counterfeit light sources that is expensive and hazardous (Akpan and 

Hameed 2009; Chauhan et al. 2013). Table 2.3 gives a summary of the NPs used for the dye 

degradation. 



25 
 

Table 2.3: Summary of the use of NPs for degradation of dyes 

NPs 
Method of 

Preparation 
Dye 

Light 

Illumination 
Degradation Efficiency Reference 

ZnS and cadmium 

doped ZnS NPs 

Co-

precipitation 

method 

Alizarin red S 
Solar light 

(300 W/m 2) 

Degradation efficiency of 50 % and 96.7 % were 

achieved for ZnS and Cd-ZnS (Cd 0.5 M) NPs 

respectively within a span of 120 min for a dye 

concentration of 5 *10 −5 M.  

(Jabeen et al. 2017) 

ZnO NPs synthesis 

in the presence of 

polyacrylamide 

grafted guar gum 

polymer (pAAm-g-

GG) 

Precipitation 

method 
Acridine orange  

UV light 

(4.0 * 103 

µW/cm2) 

 Maximum of 98 % dye degradation was obtained 

for catalyst dosage of 0.2 g/L, AO dye 

concentration of 10 mg/L and contact time of 210 

min. 

(Dhiman et al. 2017) 

Biological zinc 

oxide NPs 

Lagerstroemia 

speciosa leaf 

extract 

 

Methyl orange 

Solar light 

(1250-1300 

W/m2) 

93.5 % degradation of 10 mL of dye is achieved 

with in 2 h and a significant decrease in the COD 

values is observed from 5600 mg/L to 374 mg/L. 

(Saraswathi et al. 

2017) 

ZnO NPs 

Co-

precipitation 

method 

Rhodamine B 
Visible light 

(> 420 nm) 

Efficiency achieved for degrading 5*10-6 M dye 

concentration is 84 %, 78 % and 75 % for spherical 

NPs, nanosheets, hexagonal NPs respectively in 2 

h. 

(Akir et al. 2016) 
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NPs 
Method of 

Preparation 
Dye 

Light 

Illumination 
Degradation Efficiency Reference 

Se-ZnS NPs 

wet 

impregnation 

method 

Methyl orange 

dye 
UV irradiation 

Degradation efficiency of 95 % is achieved for 

methyl orange using Se-ZnS NPs under UV light 

irradiation in 160 min. 

(Ahluwalia et al. 

2016) 

 

ZnO NPs 

Carissa edulis 

extract 
Congo red 

UV-Vis light 

(365 nm) 

97 % of photocatalytic degradation is recorded for 

1mM Congo red. 
(Fowsiya et al. 2016) 

ZnO NPs 
Chemical 

precipitation 
Methyl violet Solar 

1.25 mg of methyl violet was sonicated by ZnO 

NPs, when exposed to solar light it showed 100 % 

degradation in 80 min. 

(Jeyasubramanian et 

al. 2015) 

ZnS/chitosan NPs 

Green colloidal 

chemical 

method 

Methylene blue 

and Methyl 

orange 

UV light 

(6 W,  = 254 

nm) 

ZnS–CHI nano-conjugates showed degradation 

potential of 87 % for MB and 68 % for MO in 120 

min. 

(Mansur et al. 2014) 

Fe3+ doped ZnS 

quantum dots 

Co-

precipitation 

method 

Methyl violet 
UV light  

(40 W) 

95 % degradation of MV is achieved in 90 min for 

80 mg/L of quantum dot particles 

(Shamsipur and 

Rajabi 2014) 

Core CuS/ZnS 

core/shell 

nanocrystals 

Hydrothermal 

method 
Rhodamine B 

Visible light 

(20 mW/cm2) 

50 % degradation of Rhodamine B (1×10−5 M) is 

reported in 2 h. 
(Thi et al. 2014) 
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2.8. Phenolic compounds degradation 

Persistent organic contaminants such as phenolic compounds, pose serious risks to the 

environment which show low biodegradability once discharged into natural waters. Probably 

the most dangerous compounds of this class are those chlorinated and nitro-substituted 

phenolic compounds (Du et al. 2006). Many of the water pollutants are from industrial and 

municipal wastes and are toxic, persistent and not readily biodegradable. In most of the 

industries, phenol and phenolic compounds are widely used and have become common 

pollutants in wastewater bodies. Phenol finds itself in many applications such as disinfectant, 

chemical reagent, manufacture of organic compounds and also present as a threat in wastes 

released from oil refineries, steel industries, pharmaceuticals, plastics, textiles, coal conversion 

plants. In water bodies, phenolic compounds are considered as priority organic pollutants by 

USEPA considered due to their toxic, carcinogenic and mutagenic nature, further, it contains 

endocrine disrupting chemicals. 

2.8.1. 2,4-D Herbicide 

 The herbicide 2,4-D is globally used since 1968 and it is reported as one of the main 

ingredients among 1500 pesticides. Further, it is considered a toxic and persistent matter and it 

causes various health impacts on human and animals. Moreover, due to its relatively high 

solubility in water, 2,4-D was detected in river and drainage water. Several methods including 

adsorption of hydrogen peroxide/UV irradiation, electrochemical oxidation, a combination of 

ozonation and photocatalysis have been employed to remove 2,4-D from water (Maltseva et al. 

1996; Alfano et al. 2001; Akpan and Hameed 2011; Tang et al. 2013; Schenone et al. 2015). 

According to previous reports, various microbes such as Pseudomonas cepacia AC110, 

Pseudomonas putida UWC3, Alcaligenes eutrophus JMP134 (Sandmann 1984; Ogram et al. 

1985; Haugland et al. 1990, Greert and Shelton 1992; Dejonghe et al. 2000) were utilized for 

degradation of 2,4-D. Sun and Pignatello (1993) reported the ability of eubacteria 

Halomonadaceae isolated from Lake site in Southwestern Oregon has a degradation capability 

of 3000 mg 2,4-D L-1  in 3 days due to the presence of tfd A gene. Table 2.4 focuses on the 

herbicide degradation by NPs. 
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Table 2.4:  Summary of the use of NPs for degradation of the herbicide 

NPs 
Method of 

Preparation 
Herbicide 

Light 

Illumination 
Degradation Efficiency Reference 

Magnetic copper 

ferrite nano-

particles 

(MCFNs) 

Co-

precipitation 

method 

2,4-D 

Ozone / 

peroxymono- 

sulfate (PMS) 

system was used 

for degradation 

 

MCFNs were used for the complete 

degradation of 20.0 mg/L 2,4-D at pH = 6.0 

for a reaction time of 40 min. 

 

(Jaafarzadeh et al. 

2017) 

Pt/TiO2 

NPs 

Sol–gel 

method 

2,4-D and 

2,4-DP 

Mercury-lamp of 

illumination 400 

W =365 nm 

The reactor was loaded with 20 mg/L 

concentration of 2,4-D and 120 mg of the 

Pt/TiO2 photocatalyst. 

(Abdennouri et al. 

2015) 

FeS NPs 
Precipitation 

method 
2,4-D UV light 

10 mg/L of 2,4-D and FeS NPs dose of 0.5 

g/L showed 100 % degradation within 300 

min. 

(Chen et al. 2015) 

TiO2 photocatalyst 

films 

Chemical 

Vapour 

Deposition 

method 

2,4-D UV light 

The deterioration rate of 2,4-D expanded with 

increasing microwave intensity, UV intensity 

and the auxiliary oxidant dosage was 

considered.  

(Lee et al. 2015) 
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NPs 
Method of 

Preparation 
Herbicide 

Light 

Illumination 
Degradation Efficiency Reference 

ZnO–Fe2O3 

coupled oxide 

NPs 

Sol gel 

method 

Dicamba 

and 

2,4-D 

Solar light 

Complete degradation was achieved at an 

initial pollutant concentration of 10 mg/L 

using 0.5 g/L of catalyst loading after 300 min 

(Maya-treviño et 

al. 2014) 

 

Soil, Biochar plus 

from maize straw 

and Fe0 NPs 

Laser 

induced CVD 
2,4-D - 

Fe0 NPs in addition to biochar degraded 2,4-

D completely with loading rates of 0.33 and 

0.17 g/L within 72 h. 

(Bo et al. 2015) 
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2.8.2.         PARA Drug 

In view of huge production and quantitative use of PARA, it has been frequently found 

in the environment, particularly in the aquatic environment with 0.01‐0.03 mg/L leading to 

hazardous effect proving that it is not an absolutely safe drug. PARA or para-

acetylaminophenol-acetaminophen is a broadly utilized pain relieving/antipyretic 

pharmaceutical and set among the main 200 prescriptions in the USA. Regardless of its safety 

at therapeutic dosages, the medicine might be lethal at higher measurements through an 

oxidative change of the parent compound to N-acetyl p- benzoquinone-imine (NAB), which is 

a dangerous compound driving to hepatic necrosis (Ziylan-Yavas et al. 2015). 

Several methods for paracetamol degradation were noted such as ozonation, H2O2 

photolysis, solar photoelectro-Fenton (SPEF) method, β-cyclodextrin/TiO2 suspension under 

visible irradiation, sonolysis, photocatalysis and sonophotocatalysis, heterogeneous (TiO2) 

photocatalysts (Andreozz et al. 2003; Almeida et al. 2010; Jagannathan et al. 2013; Zhang et 

al. 2015). The degradation of PARA was reported using Corynebacterium 

pseudodiphtheriticum, Penicillium species, Pseudomonas sp. strain ST-4, Stenotrophomonas 

sp., Pseudomonas sp., Delftia tsuruhatensis, Penicillium sp., Cupriavidus necator and 

Burkholderia sp. Delftia tsuruhatensis, Pseudomonas aeruginosa (Grant et al.,1970; Hart and 

Orr 1974; Gusseme et al. 2011; Wu et al. 2012; Li et al. 2012; Zhang et al. 2013; Khan et al. 

2014) were utilized for paracetamol degradation. Table 2.5 focuses on the summary of NPs 

used for drug degradation. 
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NPs 
Method of 

Preparation 
Drug 

Light 

Illumination 
Degradation Efficiency Reference 

Lanthanum 

(La) doped 

ZnO NPs 

Precipitation 

method 
Paracetamol Visible light 

La-doped ZnO photocatalysts were utilized to treat 100 

mg/L paracetamol in aqueous solution under visible light 

illumination after 3 h. 1.0 wt% La doped ZnO 

photocatalyst demonstrated the most elevated 

photocatalytic action for the degradation of paracetamol 

with a degradation proficiency of 99 % and 85 % TOC 

removal. 

(Viet and Lee 

2017) 

ZnO NPs 

Hydro 

thermal 

method 

Metronidaz

ole 

Ultrasound 

irradiation 

Complete degradation of pharmaceuticals waste, 

metronidazole under ultrasound light was achieved using 

ZnO NPs of quasi-cylindrical sizes 20–50 nm as a catalyst 

for the degradation. 

(Bhuyan et 

al. 2016) 

n-platinum-

loaded 

TiO2 

Ultra 

sonication Paracetamol 
Ultrasound, 

UV and both 

Paracetamol showed 100 % degradation using sonolytic 

oxidation of PCT during catalysis with Pd–TiO2 and 

Pd/Au–TiO2 

(Ziylan-

Yavas and 

Ince 2016) 

  Table 2.5: Summary of the use of NPs for degradation of the drug 
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NPs 

 

Method of 

Preparation  

Drug 
Light 

Illumination 
Degradation Efficiency Reference 

NaX 

nanozeolites 

and cobalt 

ferrite NPs 

 

 

 

Microwave 

heating 

method 

Phenol and 

paracetamol 
UV light 

The exploratory outline exhibited that the pH of 3.5, H2O2 

concentration of 50 mmol/L and cobalt nanoferrite 

estimations of 0.2 g/L enlarge the adequacy of phenol and 

paracetamol degradation rates at the time in photo-Fenton 

process. The most extraordinary preliminary phenol and 

paracetamol degradation efficiencies for initial 

concentration of 20 mg/L of phenol and paracetamol were 

seen to be 95 % and 85 %, independently. 

(Rad et al. 

2015) 

ZnO NPs 

 

 

Mechano-

chemical 

method 

Acet 

aminophen 

and 

Chloramphe

nicol 

UV-light 

The ZnO powders annealed at 100 oC demonstrate most 

astounding photocatalytic effectiveness and rate constant 

of dye degradation, which is because of the smaller size of 

nanocrystallites and their better created surface. The 

degradation rate of acetaminophen and chloramphenicol 

increments with a time of mechanical initiation up to 30 

min. 

(Kaneva et al. 

2015) 
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2.9. Synthesis of NPs in Bioreactor 

The accessibility of a substantial large-scale production technique is essential for the 

acquaintance of any product with the market. Recently, industrial demands for NPs have 

increased as the number of potential applications for the material has grown. Because of the 

expanded request of quantum dots for different applications, researchers have started to 

investigate the large-scale synthesis of nanocrystal quantum dots by different means. Table 2.6 

gives an overview of NPs production in various types of reactors. 

Table 2.6: NPs production in various types of reactors 

 

            Method Type of   NPs Production rate Reference 

Bioreactor 

(Geobacter 

sulfurreducens) 

Magnetite NPs 

10 and 15 nm 

120 g from 50 L 

bioreactor 

(Byrne  

et al. 2015) 

Membrane bioreactor 

 (Citrobacter braakii) 

Palladium NPs - (Hennebel 

 et al. 2011) 

Fermentation 

(Thermoanaerobacter 

sp. TOR-39) 

Zn-substituted 

Magnetite 5–90 nm 

1 kg (wet weight) 

recovered from  

30 L fermentations 

(Moon 

 et al. 2010) 

Microchannel reactor Barium sulphate NPs 

30 to 150 nm 

9 L/min (Wang et al. 

2010) 

Fixed-bed flow 

reactor by CVD 

Multiwalled carbon 

nanotubes 

100 g/day (Couteau 

et al. 2003) 

Aerosol flame 

reactors 

Titania NPs 5 nm 150 g/h (Stark et al. 

2002) 

Fluidized-bed reactor 

produced by catalytic 

CVD 

Carbon nanotubes 50 kg/day (Wang et al. 

2002) 

Fluidized bed reactor 

via chemical reaction 

Tungsten disulfide 

hollow onion-like 

NPs100 nm 

0.5 µm 

0.4 g per batch (Feldman et 

al. 2000) 
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The state of the art reveals the constraints involved in the chemical synthesis as this 

process requires high temperature, pressure and produce toxic byproducts. Therefore, 

biological sources such as bacteria, fungi, yeast and plant extract are exploited. According to 

the state of the art, it is evident that the use of endophytic fungi is limited to metallic NPs 

synthesis such as gold and silver. Recent years have evinced the integration of nanomaterials 

of biological origin in nano-engineered devices where ZnS NPs are proven to be the potential 

candidates for various advanced applications such as biosensors, catalyst, microbial studies 

etc., Endophytic fungi have the capability to secrete enzymes which are efficient in 

degrading of xenobiotics, wood and phenanthrene, owing to these advantages, NPs synthesized 

from endophytes have been explored. The present research aims for the degradation of organic 

pollutants from the aqueous phase using biological NPs synthesized from the endophytic 

fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida and their large-

scale production of ZnS NPs. 
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CHAPTER 3 

3. EXPERIMENTAL DETAILS 

3.1  Collection of samples, isolation, screening and identification of metal tolerant        

fungal species from endophytic fungi 

Healthy and fresh leaves of a medicinal plant, Nothapodytes foetida, were collected 

from Agumbe forest, Western Ghats, Daksina Karnataka, India located at 13o 30 N and 75o 2 

E. Nothapodytes foetida is a renowned for its pharmacological properties and belongs to the 

Icacinaceae family.  The explants (leaves) were cut into small pieces with a sterile scalpel and 

stored in a sterile polythene bag (Musavi and Balakrishnan, 2013). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (a) Location of sampling sites; (b) Leaves of the medicinal plant 

Nothapodytes foetida 

 

Firstly, the leaf segments were subjected to surface sterilization using ethanol (75 %) 

and sodium hypochlorite (2.5 %) followed by water rinsing. Small pieces of the leaves were 

placed on the Potato Dextrose Agar (PDA) media containing petri plates such that the internal 

tissues are in contact. These plates were periodically checked to observe fungal growth. The 

completely grown cultures were taken and sub cultured periodically. After the incubation 

period, the isolates were streaked on to the plates. Further, the identification of these isolates 

was carried out at Agharkar Research Institute, Pune, India (Singh et al. 2013; Devi and Joshi 

2015).  
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The isolated fungal strain’s growth and tolerance studies were conducted by adding 2 

x 5 mm mycelia discs in shake flasks containing Potato Dextrose Broth (PDB). These flasks 

were kept in a shaker at 115 rpm at 28 oC. At different time intervals the flasks containing the 

broth were withdrawn at different time intervals and the biomasses were separated by filtering 

with Whatman filter No.42. paper. These biomasses were rinsed with distilled water for more 

than three times to remove the media. The biomasses are collected in petri plate and kept in a 

hot air oven at 70 oC for drying and their dry weights were used for evaluating growth curve. 

For screening the most tolerant fungal isolate, along with mycelial discs 1mM zinc 

heptahydrate solution was added to the broth and the biomass was collected periodically. 

Further, their biomass dry weights were measured and compared with the biomass without 

adding precursor solution which is the control. Based on the screening, the most tolerant fungal 

isolate was subjected to precursor zinc hepta hydrate solutions of various concentration range 

0.5-3 mM to find the optimal concentration for the synthesis of NPs (Mary et al. 2014).  

3.2.Synthesis and optimization of ZnS NPs protocol 

3.2.1.  ZnS NPs extracellular biosynthesis 

Fungal mycelial discs of Aspergillus flavus (dia 2 mm × 5 mm) were added to 250 ml 

PDB and kept in an orbital shaker at 28 oC, 115 rpm. After two days of fungal growth, the 

biomass was separated from the media and added to 3 mM zinc sulfate heptahydrate to facilitate 

the synthesis process (Mirzadeh et al. 2013). 

3.2.2. Optimization of ZnS biosynthesis process 

The synthesis of NPs was investigated by different process parameters using central 

composite design (CCD) of response surface methodology (RSM). In order to evaluate the 

influence of operating parameters on the synthesis of NPs, three main factors were chosen: 

biomass dry weight (g/L) (𝛽1 ), precursor concentration (mM) (𝛽2 ) and reaction time (days)  

(𝛽3), containing 20 runs with eight factorial points, six axial points and six replicates at the 

center point (Table 3.1) and the experimental data were fitted to a second-order polynomial 

model as follows: 

𝑦 =  𝛽0 + 𝛽1 𝐴 +  𝛽2 𝐵 +  𝛽3𝐶 +  𝛽11𝐴2 + 𝛽22𝐵2  + 𝛽33𝐶2 +  𝛽12𝐴𝐵 +  𝛽23𝐵𝐶 +

 𝛽31𝐶𝐴……. (3.1) 

where, 𝑦 represents the response variable, 𝛽0 the intercept, 𝛽1, 𝛽2, 𝛽3 coefficients of the 

independent variables, 𝛽11, 𝛽22, 𝛽33  quadratic coefficients, 𝛽12, 𝛽23, 𝛽31 interaction  
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coefficients and 𝐴, 𝐵, 𝐶 are the independent variables studied. Design Expert software version 

7 was used for multi variate regression analysis and optimization process (Musavi  and 

Balakrishnan 2014). 

Table 3.1: Experimental range and levels of the independent variables 

 

 

 

 

The statistical software package Design Expert (Version 8.0.7.1, Stat-Ease Inc., 

Minneapolis, USA) statistical package was used to analyze the experimental data. The optimal 

values of the critical variables were obtained by analyzing the contour plots and the statistical 

analysis in the form of variance (ANOVA). The effect of a particular component on the 

response was considered significant only if p value ≤ 0.05 was obtained. 

3.3. Studies on the mechanism of ZnS NPs 

In order to investigate the mechanism involved in the synthesis process, the biomass 

and supernatant were characterized by Scanning Electron Microscope (SEM) (JSM-6380, 

Tokyo), Atomic Force Microscope (AFM) (WITec GmbH, Ulm, Germany). Moreover, protein 

estimation is carried out by Lowry’s assay and identified through total ion chromatogram/ mass 

spectrum. 

3.3.1. Protein precipitation 

Cool the required volume of acetone to -20 °C, add four times the sample volume of 

cold acetone to the tube. Further, incubate for 60 min at -20 °C and centrifuge for 10 min at 

12000 rpm.  Decant the supernatant and collect the pellet. Allow the acetone to evaporate from 

the tube at room temperature for 30 min. The protein was lyophilized at -80 oC and incubated 

overnight at 37 oC. 

Variables                               Ranges and levels 

 -1.68 -1 0 1 1.68 

Biomass dry 

weight (g/L) 

10.23 9.7 7.5 6.3 6 

Precursor 

concentration 

(mM) 

1 2 3 4 5 

Reaction time 

(days) 

3 4 5 6 7 
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In order to investigate the role of proteins in NPs formation, Lowry’s method was 

adopted to estimate the extracellular crude protein concentration from the fungal supernatant. 

A calibration curve was plotted using standard protein Bovine Serum Albumin (BSA) ranging 

from 0.1 to 1 mg/ml (Figure 3.2). The total protein concentration is exhibited by a colour 

change of the sample solution in proportion to protein concentration, which is then measured 

using colorimetric techniques. Absorbance of the test samples were recorded at 660 nm using 

Ultraviolet-visible (UV-Vis) spectrophotometer (UV-2450, Shimadzu, Japan) and the total 

protein content was analysed using the linear fit equation of the calibration plot (Waterborg 

and Matthews 1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Calibration plot of the BSA protein 

3.3.2. HPLC and LC-MS 

The retention time of the proteins present in the NPs were estimated by High-

performance liquid chromatography (HPLC) (Shimadzu LC-10, HPLC system, USA) and 

Liquid chromatography-Mass spectrometry (LC-MS) method (Shimadzu LC-MS model, 

LCMS-8040, USA). The system consisted of C-18 guard column (4.6 × 250 mm, 5 µm size) 

and the system was operated using acetonitrile/water in binary mode with isopropanol and 

water in the ratio of 60:40. These components were filtered through 0.2 μ membrane 

filter before use and were pumped from the solvent reservoir at a flow rate of 1 ml/min at an 

ambient temperature (25–28 °C). The sample injection volume was 20 µl and the wavelength 
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of the UV–Vis detector was set at 254 nm. The conditions involve an oven temperature of 26 

oC, carrier gas N2 and pump pressure of 100 bar.  

3.3.3. Morphological characterization 

During the biosynthesis process, both the biomass and supernatant were characterized 

using SEM and AFM in order to investigate the distribution of the NPs in both the regime. The 

fungal biomass before and after the addition of the precursor was oven dried at 70 oC for 4 h 

and further characterized using SEM. The pretreated samples were sputtered with gold particles 

using a sputter coater under vacuum at an accelerating voltage of 12 kV to capture images and 

observed under SEM (JEM-2100, JOEL, Tokyo). The NPs were immobilized on a glass slide 

for 6 h at room temperature and allowed to be dried. The samples were studied using contact 

mode with a cantilever tip at 150 Hz and 70 mW. Scan rates were set in the 0.5–1 Hz range 

depending on the size of the scanned area; it consists of Diode-pumped solid-state (DPSS) laser 

(Alpha300RA AFM, WITec GmbH, Ulm, Germany). 

3.4. Characterization of synthesized NPs 

3.4.1. Morphological characterization 

The biosynthesized product was characterized based on Transmission Electron 

Microscopy (TEM) (JEM-2100, JOEL, Tokyo) operating at 200 kV, a drop of lyophilized 

(FD5-series Freeze Dryer) cell-free filtrate-containing ZnS NPs was placed on the carbon-

coated copper grids and kept under vacuum desiccation overnight before loading them onto a 

specimen holder. For the analysis, the NPs sample of the desired concentration was flushed 

through a folded capillary cell and the measurement was carried out; a sufficient sample 

volume was used to completely cover the electrodes of the cell. To avoid air bubbles in the 

cell, the samples were injected slowly and analysis was only carried out if there were no visible 

air bubble inclusions present. Then the cell was placed in the sample holder and the 

corresponding Dynamic light scattering (DLS) (Horiba, nanopartica SZ-100, Japan) 

measurements were taken. Preliminary characterization for the formation of ZnS NPs was 

checked by analysis under SEM (JSM-6380, JOEL, Tokyo) and the composition is given by 

Energy Dispersive Analyses of X-rays (EDAX). X-ray diffraction (XRD) (JOEL, DX GE-2P 

vertical goniometer, Japan) patterns were recorded on a Riga KuC/max-2500 diffractometer 

using graphite filtered Cu Kα radiation at 30 kV and 20 mA with a scanning rate of 4° min−1 

from 2θ = 20° to 70° angles. The diffraction angles obtained for the samples were compared 
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using ‘X’pert high score software with search and match facility and compared with the data 

by the International Center for Diffraction Data (ICDD).  

3.4.2. Optical characterization 

Samples were withdrawn from the 5-day-old fungal cultures, for measuring the 

absorbance it is taken in a cuvette and measured using UV-Vis spectroscopy (UV-2450, 

Shimadzu, Japan). The band gap was determined by Tauc plot and the crystallite size was 

calculated based on Scherrer equation as follows: 

                   D = k λ / β cosθ………………. (3.2) 

where, D, λ, θ, β and k size of the crystalline, wavelength and Bragg angle line broadening at 

half the maximum intensity (FWHM) dimensionless factor close to unity. 

For diffuse reflectance spectroscopy (DRS) experiments were taken using a UV-Vis 

spectroscopy Varian, Cary 5000 in a diffuse reflectance mode within a spectral range of 175 – 

3300 nm. The optical band gap energy (𝐸𝑔) is calculated by the Kubelka and Munk method 

(Reddy et al. 2014, Poornaprakash et al.  2013).  

                                          (αhυ) α (hυ – Eg)
n/2……………..(3.3) 

where, A is the absorbance (a.u), ℎʋ is the energy of the photon and 𝐸𝑔is the band gap energy 

of the material, n = 1 for direct band gap material. 

𝐹(𝑅) = (1 − 𝑅2)/2𝑅 

                       [𝐹(𝑅)ℎʋ]2 = 𝐴(ℎʋ − 𝐸𝑔] ………. (3.4) 

where, 𝑅 is the absolute reflectance of the material, ℎʋ is the photon energy and  𝐸𝑔 is the 

optical band gap. 

Photoluminescence spectra were achieved through fluorescence measurement 

(Fluorolog 3 TCSPC, Horiba, Japan), xenon lamp as an excitation source and at an excitation 

wavelength of 315 nm and grating 1200 g/mm. All measurements were performed at room 

temperature.  

                             
∅𝑆

∅𝑅
= 𝐼𝑆𝐴𝑅𝑛𝑆

2/𝐼𝑅𝐴𝑆𝑛𝑅
2   ………………. (3.5) 

where, ∅ is the quantum yield (%), A is the absorbance in (a.u), I is the intensity of the 

fluorescence peak in (a.u) at the excitation wavelength, 𝑛 is the refractive index of the solvent 

used for dissolving the NPs, S and R refers to sample and reference (Rhodamine-6G) 

respectively 

In order to investigate the crystallization, structural disorder and defects of the ZnS 

NPs, Raman measurements were performed at room temperature. The instrument used for this 
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spectroscopy was a Confocal RAMAN Imaging System (WITec GmbH, Ulm, Germany) alpha 

300RA. A fiber coupled DPSS laser 532 nm with maximum output power after single mode 

fiber coupling of 70 mW, grating 600 g/mm, an integration time of 10 sec.  

                                     Δω =  −3ȣ𝜔𝑜Δ𝑎/𝑎𝑜 ……………….(3.6) 

where 𝜔𝑜 is Raman frequency of bulk ZnS, 𝑎𝑜 is the bulk ZnS lattice constant, Δ𝑎 is the change 

in lattice constant, and ȣ is the Gruneisen constant with a value of 1.28 for ZnS. 

For, Fourier Transfer Infra-Red (FTIR) Spectrometer (JASCO spectrometer 4100, 

Perkin–Elmer, USA) for the spectral range of 4000 – 600 cm-1 with resolution of 4 cm-1 

attenuated total reflection (ATR) mode. 

3.4.3. Thermal characterization 

The thermal stability of the samples was studied using the thermal analysis technique, 

for the recording of Thermo-Gravimetry (TG), Derivative Thermo gravimetric Analyzer 

(DTG) (Model: Perkin Elmer, Diamond) and Differential Scanning Calorimeter (DSC) 

(Mettler Toledo DSC 822e) analyses under airflow. 35 mg of samples were heated at the 

heating rate of 10 oC/min in the temperature range of 35–800 oC in TGA-DTG and heating rate 

at room temperature to 700 °C in 7 min in case of DSC. The specimens were heated from room 

temperature to 900 oC with an increment of 10 oC/min in air. Samples analyzed were contained 

within alumina crucibles and heated at a rate of 10 oC min−1 under flowing air flow 

(Darezereshki et al. 2011; Mirzadeh et al. 2013). 

3.4.4. Stability studies 

To study the stability of NPs, initially spectrum was recorded based on UV 

measurements and it is noted that stability is decreased with time. The results were analyzed at 

λmax of 315 nm for ZnS NPs for 30 days (Sadeghi et al. 2014; Ray et al. 2015) and these values 

determine the stability for NPs based on the absorbance values. 

For this zeta potential analyzer, the temperature is set at 25 oC and at scattering angle 

equal to 90o (Horiba, nanopartica SZ-100). For the analysis, the NPs sample of the desired 

concentration was flushed through a folded capillary cell and the measurement was carried out; 

a sufficient sample volume was used to completely cover the electrodes of the cell. To avoid 

air bubbles in the cell, the sample was injected slowly and analysis was only carried out if there 

were no visible air bubble inclusions present. Then the cell was placed in the sample holder 

and the corresponding zeta-potential measurements were taken (Tantra et al. 2010). 
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The Electrochemical workstation was employed for the electrochemical 

characterization of the ZnS NPs samples (VERTEX Ivium I.A.E.I.S, Netherlands). It consists 

of three electrodes namely the working electrode (Pt electrode), the reference electrode 

(calomel electrode) and the counter electrode (Pt wire). The cyclic voltammetry curve was 

obtained by sweeping the potential at a rate of  25 mV/s  between -2.5 V and 2.5 V (Murugadoss 

et al. 2016).  

3.5. Degradation of organic pollutants using ZnS NPs 

3.5.1. Degradation studies 

To study the catalytic activity of ZnS NPs for the degradation process, three model 

pollutants MV (C24H28N3Cl, 393.9g/mol), 2,4-D (C8H6Cl2O3, 221g/mol), PARA (C8H9NO2, 

151g/mol) was used for the study. The experiments were carried out using natural sunlight 

from 11 A.M. to 4 P.M. with the average solar intensity of 1.4 x 105 lx using lux meter (KM-

LUX-100K, India).  

The experimental system was loaded with MV/2,4-D/ PARA along with the catalyst 

and it was placed on a magnetic stirrer to ensure homogeneous agitation. Aliquots of samples 

were taken for the analysis at regular intervals of time and centrifuged at 8000 rpm for 10 min. 

The progress of the photocatalytic reaction was observed by recording optical density (OD) at 

570 nm wavelength for dye using UV-Vis spectrophotometer (UV-2450, Shimadzu, Japan). 

The same protocol was followed for 2,4-D and PARA samples and OD was recorded at 280 

nm and 248 nm respectively. Effect of pH was studied by varying the pH of NPs solution from 

3-13 at pollutant concentration of 100 mg/L at constant time (Bokare et al.  2008;  Soltani et 

al. 2013; El-Gamal et al. 2015). 

Prior to irradiation, the mixture was maintained in dark for 30 min under stirring 

conditions to reach adsorption equilibrium. The percentage degradation efficiency (η) at a 

reaction time t (min) is calculated as follows: 

                   η = (𝐶0   −   𝐶𝑡   )/𝐶0 * 100 ………..(3.7) 

where, 𝐶0   is the initial concentration (mg/L) and 𝐶𝑡   is the final concentration (mg /L) at a 

reaction time t. 
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3.5.2. Kinetics of degradation 

The kinetics of degradation was studied based on the pseudo first-order kinetic equation and 

the rate constants (k1) were determined from the slope. The equation for pseudo first-order 

kinetic model given as follows: 

                                                                 ln 𝐴𝑜/𝐴𝑡 =  𝑘1𝑡………………...(3.8) 

where 𝐴𝑜 and 𝐴𝑡 are the initial and final absorbance (a.u) at time 𝑡 (min); k = pseudo first-order 

rate constant respectively (El-Zomrawy 2013; Tiya-Djowe et al. 2015). 

3.5.3. Thermodynamic studies 

The Gibbs free energy (ΔG0) equation of chemical reactions is suitable to analyse the 

closed systems that exchange energy, with the outside, therefore it can be used to describe 

photocatalytic reactions. The ΔG0 after light excitation forms the thermodynamic cause of 

photocatalysis. Generally, the ΔG0 of interfacial transfer of electrons in photocatalysis is 

smaller than the change of internal energy.  Batch experiments were conducted both in dark 

and in the presence of light at 306 K and 312 K respectively, to evaluate thermodynamics of 

the photocatalysis process. A negative Gibbs free energy change indicates that the adsorption 

is favourable. The G value is determined using equations (3.9) and (3.10) as follows: 

 G = Gdark - Glight………………... (3.9) 

 

  G0 = -RT ln (kc)…………………. (3.10) 

where, Gdark and Glight, G change of a semiconductor in the dark and under light excitation, Kc 

= CAe/Ce is the equilibrium constant, CAe and Ce are the concentration (mg/L) of pollutant on 

NPs and in solution, respectively, R is the universal gas constant (8.314 J/mol/K) and T is the 

temperature in Kelvin. 

Based on the UV-Vis spectroscopy /DRS results, the band edge positions of the valence 

band and the conduction band of ZnS can be found out using the following equation: 

 

                                         EVB= χ - Ee + 0.5 Ebg…….....................(3.11) 

                                                ECB= EVB – Ebg…………………... (3.12) 

where EVB and ECB are the valence band and conduction band edge potentials of the ZnS, χ 

isthe electronegativity of ZnS, which can be calculated as the geometric mean of the absolute 

electro negativities of the sulfur and zinc and found out to be 5.26 eV. Ee is the energy of the 
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free electrons on the free scale, i.e. 4.5 eV and Ebg is the calculated band gap of the ZnS, i.e. 

3.75 eV. 

3.6. Analysis to study the interaction of pollutant and NPs 

3.6.1.              AFM and FT-IR analysis 

To confirm the interaction of ZnS NPs and pollutants, AFM analysis was carried out. 

Samples were immobilized on a glass slide for 6 h at room temperature for adherence on to the 

slide. The instrument was operated at contact mode with a cantilever tip at 150 Hz and 70 mW, 

scan rates were set in the range of 0.5–1 Hz depending on the size of the scan area, DPSS laser 

(Alpha300RA AFM, WITec GmbH, Ulm, Germany). The samples before and after degradation 

were recorded to analyze the functional groups and the structural changes. FTIR spectral 

analysis was carried out at ATR mode in the range of 4000–400 cm−1 in order to find the 

presence of functional groups before and after degradation of organic pollutants (JASCO 

spectrometer 4100, Perkin–Elmer, USA). 

3.6.2.             Fluorescence analysis 

To test the quenching/enhancement efficiency of organic pollutants on ZnS NPs with 

respect to time at a given excitation wavelength of 315 nm. At periodic intervals of time, 

aliquots of the sample were withdrawn and the intensity of the emission spectra were recorded 

by fluorescence spectrometer (Fluorolog 3 TCSPC, Horiba, USA). The fluorescence emission 

and absorption spectra determine the interaction of organic pollutants with nanoparticle 

fluorophores. In order to understand energy transfer the distance between NPs and organic 

pollutants molecules was calculated using Forster mechanism of non-radiative energy transfer 

(Kavitha et al. 2014; Bhavani and Sivasamy 2016). According to Forster theory, the energy 

transfer effect is related not only to the distance (ro) between the acceptor and donor but also 

to the critical energy transfer distance (Ro), i.e. 

  𝐸 = 1 −
𝐹

𝐹𝑜
=

𝑅𝑜
6

𝑅𝑜
6+ 𝑟𝑜

6………………. (3.13) 

where, 𝐹 is the fluorescence intensity of the donor in the presence of the acceptor, 𝐹𝑜 is the 

fluorescence intensity of the donor in the absence of the acceptor and Ro is the critical distance 

at which the efficiency of energy transfer is 50 %, given as: 

𝑅𝑜
6 = 8.8 𝑋10−25𝑘2𝑛−4∅𝐽(λ)………….(3.14) 

        𝑟𝑜
6 = (1 −

1

∅
) 𝑅𝑜

6…………………….(3.15) 
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where, 𝑘2 is the spatial orientation factor of the dipole, n is the refractive index of the medium, 

φ is the fluorescence quantum yield of the donor and J is the overlap integral of the fluorescence 

emission spectrum of the donor and absorption spectra of the acceptor, given by the equation: 

       𝐽(𝜆) =
∫ 𝐹(𝜆) 𝜀(𝜆) 𝜆4 𝑑𝜆

∞
0

∫ 𝐹(𝜆) 𝑑𝜆
∞

0

………….......(3.16) 

where, F (λ) is the fluorescence intensity of the fluorescence donor at wavelength λ and ε (λ) is 

the molar absorptivity of the acceptor at wavelength λ. 

3.7. Mineralization studies 

The total organic carbon (TOC) is one of the most important composite parameters in 

the assessment of the organic pollution of water. It employs the catalytic oxidation method via 

combustion by oxidizing the organic molecules in an aliquot of sample water to CO2, 

measuring the resultant CO2 concentration and expressing this response as carbon 

concentration. These measurements were carried out by TOC analyzer (Shimadzu TOC 

analyzer, Japan). The chemical oxygen demand (COD) was also determined in the supernatant 

samples using the standard open reflux method. The COD determines the amount of oxygen 

required for chemical oxidation of organic matter using a strong chemical oxidant, such as 

potassium dichromate (K2Cr2O7) under reflux conditions. The organic matter present in sample 

gets oxidized completely by K2Cr2O7 in the presence of sulphuric acid, silver sulphate and 

mercury sulphate to produce CO2 and H2O. The sample was refluxed with a known amount of 

K2Cr2O7 in the sulphuric acid medium and the excess K2Cr2O7 was determined by titration 

against ferrous ammonium sulphate, using ferroin as an indicator. The dichromate consumed 

by the sample is equivalent to the amount of O2 required to oxidize the organic matter. The 

inorganics such as nitrates, nitrite and chloride ions concentration were measured by the 

standard spectroscopic, colorimetric method and an argentometric method respectively. The 

C(org) in mol CxHyOz m-3 and COD/TOC (mol O2 m
-3) is calculated using the equation below 

for MV, 2,4-D and PARA. 

C(org) = (4/(4x + y - 2z))TOC/COD………………(3.17) 

3.8. Degradation pathway analysis 

The intermediates formed during the process of degradation were analysed by liquid 

chromatography-mass spectrometry (LC-MS) method (Shimadzu LC-MS model, LCMS-8040, 

USA). Samples were collected and stored in clean sample bottles. The LC-MS consisted of a 

C-18 guard column (4.6 × 250 mm, 5 µm size) and the system was operated using 
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acetonitrile/water in binary mode using isopropanol and water in the ratio of 60:40. The sample 

injection volume was 1 mL. The column was flushed with acetonitrile at the equilibration stage, 

and operated at a flow rate of 1 mL/min and washing and elution were carried out using 

isopropanol and acetonitrile, respectively. These components were filtered through 

0.2 μm membrane filter before use and were pumped from the solvent reservoir at a flow rate 

of 0.5 mL/min, at ambient temperature (25-28 °C). The sample injection volume was 20 µL 

and the wavelength of the UV-Vis detector was set at 570 nm, 280 nm and 248 nm for MV, 

2,4-D and PARA, respectively (Chen et al., 2010; Gan et al., 2014). The oven temperature was 

set at 26 oC, pump pressure at 100 bar and N2 was used as the carrier gas. In order to determine 

the lowest detectable concentration all the organic pollutants, quality control stock solutions 

were prepared and calibration standards and serial dilutions were made at different ranges and 

tested individually. The LC-MS system was operated in full scan mode (m/z 50-500). From the 

electropherograms, the limits of detection were calculated using the peak height (i.e. the signal) 

and the standard deviation of the baseline (i.e. noise) (S/N=1). All the control and experimental 

samples were analyzed in duplicates. (Chen et al. 2010; Gan et al. 2014). 

3.9. Production of NPs in a stirred tank reactor 

3.9.1. Reactor specifications 

The stirred tank reactor is one of the most important types of bioreactor for industrial 

production processes. There are various advantages of stirred tank reactor such as low capital/ 

operating costs, efficient oxygen transfer to growing cells and flexible operating conditions. 

The reactor used in this study is made up of a double jacketed borosilicate glass vessel with the 

top driven magnetic coupled motor having variable rpm for microbial fermentation mode. The 

bioreactor consists of four baffles and aeration is provided through an external air pump 

connected via glass metered needle valve rotameter with ring type air sparger. Various ports 

for pH, dissolved oxygen (DO) and temperature probe had been setup. Inoculation/sample ports 

for sampling are available. Polytetrafluoroethylene (PTFE) (0.22 micron) filter is fitted on the 

top of the condenser with inlet and outlet nozzles (Figure 3.3).  
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Figure 3.3: Schematic representation of the stirred tank reactor 

3.9.2. Culture conditions 

To set the seed culture, Aspergillus flavus was inoculated into the PDB medium and 

incubated at 30 oC. After cultivation, 48 h spore suspension was obtained by rinsing the 

biomass with distilled water (Lu et al. 2015). The stock spore suspension was prepared and 

was added to the PDB media along with tween 80 (0.1 % v/v). Based on the growth curve,100 

mL of 48 h culture was taken as seed culture and transferred into the reactor (Byrne et al. 2016). 

After preliminary studies, the culture conditions such as size of the inoculum (2 % - 20 

% (w/v)), working volume (1- 2 L), agitation speed (70-120 rpm), precursor solution (10-50 

mM) and reaction time (1-3 days) were optimized for 3 L bioreactor. The agitation rate was 

calculated using the equation (3.18) and (3.19), 

      𝑉 =
𝜋

4
𝐷𝑡

2𝐻 ….…………… (3.18) 

      𝑁 𝛼 (
1

𝐷
 )2/3  ….…………… (3.19) 

where, V is the volume of the tank; 𝐷𝑡 is the diameter of the tank; H is the height of the reactor, 

N is the agitation speed and D diameter of the tank.  

There was no pH control after inoculation and temperature are maintained at 30 oC.  

DO and flow rate was maintained at 6.8 mg/L and 1.5 LPM respectively.  

To estimate the dry biomass weight, the homogeneous broth was filtered using 

Whatman filter paper (Whatman filter No.42) and the cells were weighed after being washed 

with distilled water and dried in a hot air oven at 40 oC overnight (Mantzouridou and Naziri, 

2017).  
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3.9.3. Characterization of synthesized NPs 

To evaluate the formation of NPs, aliquots of samples from the bioreactor were 

withdrawn and the absorbance were noted at 315 nm by UV-Vis spectrometer (UV-2450, 

Shimadzu, Japan). ZnS NPs synthesis under optimum conditions were confirmed using XRD 

(JOEL, DX GE-2P vertical goniometer, Japan) and TEM (JEM-2100, JOEL, Tokyo) (Moon et 

al. 2010) measurements. 
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CHAPTER 4 

4. RESULTS AND DISCUSSION 

The current section deals with the outcomes of the methodologies for synthesis, 

mechanism, characterization and degradation studies of ZnS NPs with appropriate justification 

from the literature. Initially, the results related to isolation of tolerant fungal strains from 

endophytic fungi by the growth, optimization of the ZnS tolerant fungus and the mechanism 

involved in the biosynthesis of ZnS NPs are briefed. Subsequently the structural, 

morphological, optical, thermal and stability are detailed. The degradation studies of MV, 2,4-

D and PARA are discussed based on the degradation efficiency by optimizing the parameters 

further the interaction between ZnS NPs and pollutants, mineralization studies and the 

degradation mechanism are reported. Finally, their large-scale production and process variables 

responsible for the NPs formation are assessed in the reactor. 

4.1. Isolation of fungus from collected samples and their tolerance studies 

Medicinal plants provide a unique environment for endophytes where it receives 

nutrition and protection from the host plant, in turn, the endophytes protect the host plant from 

various biotic and abiotic stresses. In the present study, three endophytic fungi were isolated 

from the leaves of medicinal plant Nothapodytes foetida and were identified as Aspergillus 

flavus, Aspergillus ficuum and Trichoderma parcermosum based on the report given by 

Agharkar Research Institute, Pune, India (Figure 4.1). The growth studies reveal that 

Aspergillus flavus, Aspergillus ficuum and Trichoderma parcermosum attained maximum 

biomass on the 5th day of their growth cycle and remained at the stationary phase later. Figure 

4.2 (a) reveals that the biomass dry weight was 20 g/L, 8.6 g/L and 2.5 g/L respectively based 

on their growth cycle. The acclimatization studies with 1 mM zinc heptahydrate solution, all 

three fungi found to be tolerant and their biomass yields were 19.6 g/L, 9.8 g/L, 1.6 g/L for 

Aspergillus flavus, Aspergillus ficuum and Trichoderma parcermosum respectively. As shown 

in Figure 4.2 (b), Aspergillus flavus was found to have the highest tolerance level, therefore it 

was considered for the synthesis of ZnS NPs.  
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Figure 4.1: Isolated endophytic fungal species on PDA plates (a) Aspergillus flavus, (b) 

Aspergillus ficuum and (c) Trichoderma parcermosum 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (a): Biomass yield of endophytic fungi Aspergillus flavus, Aspergillus ficuum 

and Trichoderma parcermosum with respect to incubation time 
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Figure 4.2 (b) : Biomass yield of endophytic fungi Aspergillus flavus, Aspergillus ficuum 

and Trichoderma parcermosum in presence of 1mM zinc heptahydrate solution 

precursor solution 

4.2. Optimization of ZnS NPs synthesis process 

The adequacy of the model was checked using analysis of variance (ANOVA) which 

was tested using Fisher’s statistical analysis (Table 4.1). The model F value of 6.90 implied 

that the model was significant and also showed that there was 0.29 % chance that the model F 

value could occur due to noise. We obtained the number 7.1 of adeq precision (greater than 4 

is desirable) indicates that the experiments performed were highly reliable. The results obtained 

from the CCD were fitted to a second-order polynomial equation below to explain the 

dependence of Aspergillus flavus growth and biomass production on the medium components. 

𝑦 = 1.20 - 0.020 𝐴  + 0.035 𝐵  + 0.061 𝐶  + 0.014 𝐴𝐵 + 0.014 𝐵𝐶 + 0.024 𝐴𝐶 - 0.091 𝐴2 - 

0.10 𝐵2  - 0.074 𝐶2………..(4.1) 

where,  𝑦 represents the response variable and  𝐴, 𝐵, 𝐶 are the independent variables 

The maximum predicted absorbance was found to be 1.19 (a.u) which is comparable to the 

experimental value of 1.2 (a.u) (Table 4.2) at biomass dry weight (g/L), precursor concentration 

(mM) and reaction time (days) concentrations of 7.5 (g/L), 3 mM and 5th day respectively for 

20 runs (Figure 4.3: (a), (b) and (c)). Based on these results, growth curve and the effect of 
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different salt concentrations of zinc precursor on Aspergillus flavus growth is depicted in Figure 

4.4 (a) and Figure 4.4 (b). 

            

Table 4.1: ANOVA for Response Surface Quadratic model 

Source 

Sum of 

Squares 

Mean 

Square F Value 

p-value  

Prob> 

F  

Model 0.374 0.041 6.895 0.002 Significant 

A-A 0.005 0.005 0.912 0.361  

B-B 0.016 0.016 2.815 0.124  

C-C 0.051 0.051 8.545 0.015  

AB 0.001 0.001 0.250 0.627  

AC 0.001 0.001 0.250 0.627  

BC 0.004 0.004 0.748 0.407  

A^2 0.120 0.120 19.976 0.001  

B^2 0.149 0.149 24.881 0.0005  

C^2 0.078 0.078 12.996 0.004  
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Table 4.2: Central Composite Design matrix for in dependent variables in uncoded 

units along with experimental and predicted values of biomass 

 

 

 

 

Biomass dry 

weight (g/L) 

Precursor 

concentration 

(mM) 

Reaction 

time (days)  

Experimental 

value 

Absorbance 

(a.u) 

Predicted 

value 

Absorbance 

(a.u) 

1 0 0 1.681 1.1 1.091 

2 1.681 0 0 0.85 0.904 

3 -1 -1 -1 0.96 0.903 

4 -1 1 -1 1 0.899 

5 0 -1.681 0 0.8 0.848 

6 0 1.681 0 0.89 0.967 

7 0 0 0 1.2 1.196 

8 0 0 0 1.2 1.196 

9 0 0 0 1.2 1.196 

10 -1 1 1 1.05 1.042 

11 0 0 -1.681 0.75 0.884 

12 1 1 1 1.09 1.057 

13 1 -1 -1 0.89 0.967 

14 0 0 0 1.2 1.196 

15 0 0 0 1.2 1.196 

16 -1 -1 1 0.98 0.951 

17 0 0 0 1.2 1.196 

18 1 -1 1 0.9 0.911 

19 1 1 -1 0.92 0.859 

20 -1.681 0 0 0.9 0.911 

 

Runs 
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Figure 4.3: Surface and Contour plot of absorbance (a.u) vs (a) precursor concentration (mM); (b) biomass dry weight (g/L); (c) 

reaction time (days) 
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      Figure 4.4 (a): Growth curve of endophytic fungi Aspergillus flavus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 4.4 (b): Effect of zinc precursor concentrations on Aspergillus flavus growth 
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4.3. Biosynthesis and mechanism of ZnS NPs using endophytic fungi Aspergillus 

flavus 

Fungal spores in basal PDB medium at the onset of the exponential phase, i.e, after 48 h of 

growth, were utilized for initiating biosynthesis of ZnS NPs. After the addition of precursor 

solution to the biomass, the reaction mixture was incubated at 72 h for the NPs formation; later the 

biomass was separated and further subjected to characterization to confirm the biosynthesis of ZnS 

NPs. 

4.3.1. Morphological analysis based on SEM and AFM 

The understanding of a plausible mechanism involved in the biosynthesis of NPs is the 

key step to scale-up the process for mass level production. It is evident that there is a significant 

change in the cross-section of fungal mycelium in presence of precursor solution (Figure 4.5: 

(b)-(d)), compared to the cells cultured in the control PDB medium (Figure 4.5: (a)) as 

demonstrated by SEM results. A characteristic change in the morphology-curling and 

formation of hyphal coils in response to metal stress is observed. Moreover, dense growth and 

thickening of the hyphae are also observed in response to the metal precursor solution. Such 

modifications on the surface of fungi indicate the production of intracellular compounds due 

to heavy metals stress and result in the increase in pressure within the mycelia leading to the 

outward growth of the cell wall structures (Paraszkiewicz et al. 2010). The cell wall protrusions 

increased the formation of intracellular vacuoles that serve as storage compartments for thiol-

containing compounds. These compounds might be responsible for the binding of metal ions 

into the intracellular regions and accumulate them in the vacuoles. The extent of these changes 

reflected the metal stress further causing the rupture of mycelium.  

The AFM analysis further confirmed the extracellular formation of ZnS NPs. From, 

Figures 4.6: (a)-(c) and 4.7 (a)-(c) it can be observed that the surface of the slide changed with 

respect to time in case of the supernatant which indicates that the formation and growth of the 

NPs in the media. Whereas, the AFM analysis of biomass revealed that the surface of the 

biomass remained unchanged with respect to time further confirming that the proteins are 

responsible for NPs synthesis with the involvement of the cytoplasmic material from the 

mycelia (Cao and Wang 2004; Georgiev et al. 2013; Nomura et al. 2015; Salvadori et al. 2014).  
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 Figure 4.5: SEM images of the surface of Aspergillus flavus biomass (a) before the addition of precursor solution; 

(b) 15 min (c) 30 min and (d) 1 hr after the addition of precursor solution 
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Figure 4.6: AFM 3D micrographs of fungal biomass (a) day 1 (b) day 2 and (c) day 3 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: AFM 3D micrographs of supernatant (a) day 1 (b) day 2 and (c) day 3 
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4.3.2. Quantification of the total protein and LC–MS analysis 

 The total protein concentration was estimated as 0.11 (mg/ml) from the standard curve 

obtained from Lowry protein assay (Figure 3.2). It is evident that the proteins released help in 

stabilization of the NPs that act as capping material on the surface of NPs. The values of various 

retention times attained by HPLC are 6.33, 6.42, 6.55, 6.93, 7.29, 7.42 and 7.70 min (Figure: 

4.8) and these values between 6-10 min corresponds to residues of glutathione. The LC–MS 

chromatogram of the major residue for the retention time 6.93 is depicted in Figure: 4.9. m/z 

peaks of the samples at 149, 301 and 579 are correlated to the m/z peaks of residual glutathione 

units (GSH) and phytochelatins. The phytochelatins which are the linear polymers of the γ-

glutamylcysteine (γ−Glu− Cys)n a portion of glutathione, could be enzymatically produced by 

stepwise condensation of γ-Glu-Cys moieties to growing phytochelatin chain (PC). The PCs 

are the principal heavy metal detoxifying components in both plants and fungal kingdom. The 

PC plays a key role in maintaining cell homeostasis under heavy metal stress by binding to 

heavy metals and trafficking them to vacuoles or periplasmic space for storage (Damodaran et 

al. 2013; Mary et al. 2015).  

 

 

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: HPLC profile of acetone precipitated crude protein extract 
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 Figure 4.9: LC-MS mass spectrum at retention time 6.9 (min) depicting m/z ratio 

 

4.3.3. Possible mechanism governing the biosynthesis 

Biologically NPs are synthesized by exploiting the detoxification mechanisms involved 

in fungi (Figure 4.10). The detoxification systems allow the fungus to counteract the 

accumulation of ROS directly or indirectly, as a part of the detoxification response (Colpaert 

et al. 2011). Metal or its compound, after coming in contact with the microbe, is generally dealt 

with at the nanoscale because it is a scale natural to biological systems. Once the metal ions 

enter the cytosol, the metal might also have triggered the family of oxygenases held in the 

endoplasmic reticulum, chiefly intended for cellular level detoxification through the process of 

oxidation/oxygenation (Ballottin et al. 2016; Jha and Prasad 2012). During the ZnS NPs 

synthesis, initially the sulphate ions are taken in (SO4
2−) from the extracellular environment 

and get reduced to sulphide ions (S2−) with the help of sulphite reductase which later gets 

coupled with zinc metal ions in the solution which resulted in the formation of ZnS NPs.  

The fungal cells exposed to metal ions clearly revealed phytochelatin induction (Gekeler et al. 

1988; Mehra and Winge 1991; Perales-Vela et al. 2006; Singh et al. 2016; Singh and Bishnoi 

2015). Phytochelatins are produced in cells and tissues after exposure to a range of heavy metal 
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ions (Durán et al. 2005; Hulkoti and Taranath 2014; Jain et al. 2011; Kitching et al. 2015; 

Mittal et al. 2013; Mohanpuria et al. 2008; Salvadori et al. 2014; Sandana and Rose 2014; 

Thakkar et al. 2010). The major molecules that contribute to the detoxification mechanisms in 

fungal cells are glutathione (γ-Glu-Cys-Gly) and two groups of metal binding ligands: 

metallothioneins and phytochelatins. When the fungal mycelium is challenged with metal ions, 

it triggers its membrane bound as well as cytosolic metabolites in order to circumvent the 

oxidative stress manifested in the form of ROS generation. Quinones at the membrane level of 

the detoxification system of fungi which readily undergo tautomerization; cytoplasmic 

metabolite weaponry such as phytochelatin, heavy metal tolerance factor 1 (HMT-I), 

glutathione and membrane bound mono- oxygenases, etc., which tend to detoxify such changes. 

 

Figure 4.10: Schematic of the probable mechanism involved in the biosynthesis of NPs 

 

4.4. Morphological characterization 

The morphology and particle diameter of the synthesized ZnS NPs were examined 

using TEM. Figure 4.11: (a, b) reveals that the ZnS NPs were of size range 12–24 nm (Sandana 

and Rose 2014) and the prominent lattice fringes in the TEM image at magnification 5 nm 

reveal that the NPs are crystalline in nature (Onwudiwe and Strydom 2015) (Figure 4.11: (c)). 

The attained crystallite size of 0.5 nm was estimated using Scherrer formula (equation: 3.2), 
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this difference in the particle size diameter and the crystallite size indicate that the NPs are 

polycrystalline in nature. Further, the selected area electron diffraction (SAED) patterns by the 

ZnS NPs showed concentric rings confirming the polycrystallinity of the material (Hudlikar et 

al. 2012) (Figure 4.11: (d)).  

 

 

 

Particle size histogram of ZnS NPs affirms that the average particle diameter as 18 nm 

(Figure 4.12) and the mean diameter via DLS as 58.9 nm with a particle size distribution of 

D20 (Figure 4.13). Due to the presence of the ionic layer around the NPs, the mean diameter 

Figure 4.11: (a, b) TEM micrographs (c) Lattice -fringe finger print image and 

(d) SAED pattern with concentric rings 



63 
 

in DLS is observed to be larger than TEM. As far as DLS is concerned, the theory states that 

when a dispersed NPs moves through a liquid medium, a thin electric dipole layer of the solvent 

adheres to its surface. This layer influences the movement of the particle in the medium, thus 

the hydrodynamic diameter gives the information of the inorganic core along with any coating 

material and the solvent layer attached to the particle as it moves under the influence of 

Brownian motion. While estimating size by TEM, this hydration layer is not present, hence, 

the information reveal that inorganic core is known and the coating layer is not present. 

Therefore, the hydrodynamic diameter is always greater than the size estimated by TEM 

(Vicentini et al. 2014; Nikitin et al. 2015). Further, the elemental analysis of the samples by 

EDAX (Figure 4.14) revealed that the atomic ratio of Zn:S is 0.98:1.00, a very close value to 

the theoretical expectation (Bai et al. 2006). 

The d-spacing (Å) and percentage intensities of the NPs were determined by XRD 

which recorded from 20o to 60o angles. The XRD data indicates that the diffraction peaks 

centered at 28.45o, 38.9o, 47.54o, 57o (2θ) can be well-indexed to the hexagonal phase of ZnS 

which are in good agreement with standard ICDD data (ICDD card No. 01-089-2195) with 

maximum intensity (Chen et al. 2014) (Figure 4.15).  

 

 

 

 

 

 

  

  

 

 

 

 

Figure 4.12: Particle size histograms evaluated by TEM image 
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Figure 4.13: Size distribution measured by the DLS technique 

Figure 4.14: Elemental analysis of ZnS NPs by EDAX graph  

 

Figure 4.15: XRD pattern of the ZnS NPs 
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4.5. Optical properties 

UV–Vis and DRS spectrum exhibited a strong surface plasmon resonance, due to their 

quantum size effect. UV–Vis spectrum recorded from the biosynthesized ZnS NPs exhibit the 

appearance of the absorption peak at 315 nm and a blue shift is observed compared to the bulk 

values of ZnS (345 nm) as shown Figure 4.16: (a). In the case of the DRS, the wavelength 

range of 200–2000 nm is recorded at room temperature. A similar phenomenon is observed in 

the case of DRS spectrum, where the absorption edge of the samples slightly shifted to lower 

wavelength compared to the bulk (Figure 4.17: (a)). Band gap value of ZnS NPs is estimated 

to be 3.75 eV (3.6 eV for bulk ZnS) from the Tauc plot drawn using equation (3.3) from UV-

visible spectrum values as shown in the Figure 4.16: (b). The DRS spectrum was analyzed 

using Kubelka - Munk (Figure 4.17: (b)) method as given in the equation (3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 4.16 (a): UV–visible spectrum of ZnS NPs 
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            Figure 4.16 (b): Tauc plot for band gap of ZnS NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

         

 

                    Figure 4.17(a): Diffuse Reflectance Spectrum of ZnS NPs 
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          Figure 4.17 (b): Kubelk–Munk plot for band gap estimation of ZnS NPs 

 

The presence of functional groups on the surface of the ZnS NPs is confirmed by FT-

IR spectrum as shown in Figure 4.18. The spectral peaks are found to be at 1641, 1507, 1410, 

794 cm−1 that corresponds to -C-C- stretching, -N-O- asymmetric stretch, -C-C- stretching, -

C-H- bending due to the presence of amine groups of proteins, respectively (Onwudiwe et al. 

2015). The FTIR peak at 3202 cm−1 may be ascribed to -O-H- stretching vibrations of the 

surface adsorbed moisture (Baker and Satish 2012) and peak at 657 cm−1 corresponds to -C-S- 

stretch. The presence of protein capping on the surface of NPs is confirmed by the thiol groups 

which are sulfur-bearing proteins’ residues such as cysteine and methionine (Sanghi and Verma 

2009). These protein molecules act as surface coating molecules which avoid internal 

agglomeration which in turn increases the stability of the NPs. These FTIR results justify the 

role of bioactive compounds responsible for mediating and stabilizing the NPs which has been 

well demonstrated in scientific literature.  
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Figure 4.18: FTIR spectrum of ZnS NPs 

 

To vibrational and rotational frequency modes of ZnS NPs using Raman spectrum 

analysis is given in Figure 4.19. The peak at 219 cm−1 corresponded to second order 

longitudinal acoustic mode (LA phonon mode), in this case, there was a shift in energy from 

bulk ZnS 224 cm−1 (Radhu and Vijayan 2011). The vibrational properties of bulk ZnS were 

measured at 304 cm-1 and 312 cm-1  which are second order ZnS Raman peaks, in this case, due 

to the quantum confinement effect a shift in the peak is observed i.e., at 295 cm-1 (Trajić et al. 

2015). Emission peak around 432 cm-1 in ZnS NPs corresponded to sulfur vacancies (Kumar 

et al. 2013). The peak at 563 cm-1 corresponds to second-order spectrum of wurtzite ZnS and 

this value corresponds to the high-frequency region (540-600 cm-1) formed by optical 

overtones and combinations (Anand 2015). These size-induced optical mode softening (red 

shift) and acoustical mode hardening (blue shift) effects can be related to bond-order length-

strength (BOLS) correlation mechanism and these effects are known to occur in several 

semiconductor nanostructures such as CdS, InP, CeO2 and ZnO, the electron–phonon 

interaction is different from the bulk due to the reduced symmetry, different surface strains as 

well as the different number of nearest neighbors (Wesselinowa and Apostolov 1997; 

Goharshadi et al. 2013). The observed shift is a consequence of the combined effect of 
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confinement as well as the strain in the lattice due to defects. The relationship between the 

Raman shift and the change of the lattice parameter can be calculated by equation 3.6. The 

calculated shifts in the lattice position are Δ𝑎1 = −0.005 nm and Δ𝑎2 = −0.0042 nm. 

 

         Figure 4.19: Raman spectrum of ZnS NPs 

 

Photoluminescent spectrum is an effective tool to evaluate the defects and optical 

properties of ZnS NPs as a photonic material. Broadening of the emission peak could be 

attributed to both size distribution and an increase in the surface states owing to the increase in 

surface to volume ratio for ZnS NPs (Naeimi and Foroughi 2015). Figure 4.20 shows the 

photoluminescence spectrum of ZnS NPs at an excitation wavelength of 315 nm and the 

emission peak is noted at 420 nm. This photoluminescence spectrum exhibits size-dependent 

quantum confinement effects with a broad peak at 420 nm indicating surface irregularity 

attributed to the presence of sulphur vacancies in the lattice (Hudlikar et al. 2012;  Sandana and 

Rose 2014; Li et al. 2013). We speculate that the emissions correspond to the electron or holes 

hollow traps which act as recombination centers for photogenerated charge carriers and this 

phenomenon  may be due to photo-oxidation process which occurs on the surface of ZnS NPs 

in the presence of UV light (Frasco and Chaniotakis 2009). Based on our findings, the quantum 
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yield of the biogenic ZnS NPs was calculated as 14 % which is the probability of a photon 

being emitted after one photon has been absorbed. (Gaunt et al. 2005; Zehentbauer et al. 2014).  

              

  

 

 

 

 

 

 

 

 

 

 

           

 

              Figure 4.20: Fluorescence spectra of ZnS NPs 

 

4.6. Thermal stability 

To determine the thermal stability of the ZnS NPs, TGA, TGA-DTG and DSC 

characterization studies were carried out. According to TGA data plots given in figure 4.21 (a), 

it is evident that the decomposition started around 100 oC and continued upto 620 oC. The 

weight loss was recorded to be approximately 72 % with respect to mass change. In TGA-DTG 

graph maximum rate of decomposition and change of mass as a function of temperature was 

recorded at 292 oC and 53.9 % respectively (Figure 4.21 (b)). DSC curve (Figure 4.21 (c)) 

exothermic peaks at 80 oC, 120 oC, 250 oC and an endothermic peak at 280 oC (Mirzadeh et al. 

2013). The exothermic peak exhibited at 450 oC can be attributed to the crystallization of ZnS 

NPs (Chen et al. 2008)
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Figure 4.21: (a) TGA; (b) TGA-DTG and (c) TGA-DSC curves of the ZnS NPs 
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4.7. Stability studies 

Cyclic voltammetry (CV) measurements demonstrated the stability of the NPs, where 

the shift in the oxidation/reduction peak is correlated to the stability of NPs. The analysis is 

performed at a fixed scan rate of 25 mV/s for 4 cycles and it was observed that the curves 

overlap with each other indicating that the samples have cyclic stability, this phenomenon may 

be due to the stability provided by the biocapping by proteins around the NPs (Figure 4.22). In 

the four cycles, the long-term structural stability was determined by continuous CV cycles from 

−2.5 V and 2.5 V at room temperature. It is observed that in one of the cycles, the oxidation 

voltammogram showed open circuit potential from −0.016 V to a potential of 0.031 V, 

indicating the absence of surface available ZnS0 or ZnS1 which can be oxidized into ZnO. The 

voltammetry curves for the sample showed one anodic peak in the forward scan and one 

cathodic peak in the reverse scan. The total area of reduction and oxidation peaks are observed 

to be similar, thus indicating the stability of NPs (Hedberg et al. 2016; Du et al. 2013). Further, 

based on the intensity of the absorbance curve, it is evident that there is a drastic shift in the 

absorbance on the 15th day, this may be due to the degeneration of proteins engulfing the NPs 

(Figure 4.23). The zeta potential of the ZnS NPs for different pH values, viz 3, 5, 7 and 9 are 

recorded to be −7.4, −12.7, −18.6 and −22.3 mV respectively as shown in Figure 4.24 and a 

maximum value away from the isoelectric point was found to be -22.3 mV at pH 9 (Suganthi 

and Rajan 2012; Mehta et al. 2011). 

 

 

 

 

 

 

 

 

       Figure 4.22:  Cyclic voltammetry studies of ZnS NPs 
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Figure 4.23: Photo stability of the ZnS NPs 

Figure 4.24: Zeta potential values of the ZnS NPs at different pH 
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4.8. Parameters affecting degradation process 

4.8.1. Effect of time and their rate kinetics 

Figure 4.25: (a) depicts that the degradation efficiency of MV is calculated based on 

equation (3.7) and it is observed that it (Soltani and Entezari 2013) is more in presence of solar 

radiation compared to the absence of solar light. In the presence of light source, the photons 

excite the surface electrons of the catalyst, whereby these electrons move from the valence 

band to the conduction band leaving positive holes in the valence band, which further reacts 

with water to release hydroxyl ions that degrade the chemical structure of the dye. From figure 

4.15: (a) it is evident that in the presence of solar irradiation the degradation efficiency of about 

87       % is achieved. However in absence of solar irradiation, the degradation efficiency had 

dropped to 29 % and remained almost constant after 120 min due to the competitiveness of the 

parent dye molecules with intermediates/short chain aliphatics during the photocatalytic 

degradation process (Chauhan et al. 2014; Velmurugan et al. 2013). The kinetic rate constant 

for degradation of the dye (kMV) was estimated to be 0.46 min-1 with a R2 value 0.95 as shown 

in Figure: 4.26 (a) (Gupta and Bhattacharyya 2008; Kooh et al. 2017). A degradation efficiency 

of 17 % was also observed under solar irradiation in absence of ZnS NPs. 

Figure: 4.25 (b) represents the degradation (%) of ZnS NPs on 2,4-D (pH 11), both in 

presence and absence of solar irradiation. The efficiencies are found to be 33 % and 25 % 

respectively and in absence of both ZnS NPs it is found to be 19 % after 270 min of solar 

radiation. For PARA % degradation it is found to be 51 % and 35 % in presence and absence 

of solar irradiation respectively after 240 min and in the absence of ZnS NPs it is found to be 

23 % under solar irradiation (Figure: 4.25 (c)). However, the degradation efficiencies of ZnS 

NPs over 2,4-D and PARA is less compared to MV due to their complex phenolic structure. 

The calculated rate constants (k2,4-D and kPARA) are 0.089 min-1 and 0.0023 min-1 with R2 values 

0.98 and 0.96 for 2,4-D and PARA respectively (Figure: 4.26 (b) and Figure: 4.26 (c)). 
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Figure 4.25:  Photo degradation of (a) MV (b) 2,4-D and (c) PARA with time       

comparing the effect of catalyst and the light source 
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Figure 4.26:  Pseudo first-order kinetics plot for (a) MV, (b) 2,4-D and (c) PARA in 

presence of ZnS NPs 

4.8.2. Effect of pH 

The effect of pH on the photocatalytic degradation is related to surface properties of 

NPs since most of the semiconductor NPs exhibit amphoteric behaviour.  The degradation 

efficiency of ZnS NPs was found to increase from 43.2 % to 87 % with increase pH from 3 to 
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9 for 100 mg/L of dye concentration within 120 min as shown in figure 4.27. The maximum 

efficiency was observed at pH 9 below the isoelectric point of ZnS NPs which is between pH 

7.0–7.5 (Ahluwalia et al. 2016).The surface of ZnS photocatalyst NPs is positively charged in 

acidic solutions and negatively charged in alkaline solutions. At acidic pHs, surplus amount of 

H+ ions compete with the cations of the dye molecule showing little/low degradation 

efficiencies whereas, at alkaline pH values, higher concentrations of hydroxyl ions are 

produced to form hydroxyl radicals under photo-excitation and helps cleaving the bonds in 

higher order molecules (Benzene rings). Moreover, MV falls in the category of 

triphenylmethane dye, adding an OH- ion in central carbon converts the cation into carbinol 

base nonresonant. The conjugation between the benzene nuclei is disturbed and the molecule 

becomes colourless. However, for pHs > 9 there is a decrease in the degradation of MV dye 

which may be due to increase in the availability of hydroxyl ions and these ions compete among 

themselves and lead to the decrease in degradation process. Hence, pH 9.0 was selected as the 

optimum value for further studies (Shamsipur and Rajabi 2014). 

The photocatalytic degradation of 2,4-D under acidic conditions, between pH 3 – 4 

found to be significant and dropped towards the neutral pH 7. Further increase in degradation 

efficiency, was observed above pH 8 to 11 and it remained unchanged for the rest. The reason 

for this trend might be because of the 2,4-D is an anionic compound which can react with the 

free radicals that are produced in the strong acidic medium, pH 3 to 4 supported by the ZnS 

photocatalytic activity with the involvement of functional groups carboxy groups -C-C-, -C=C, 

-C-S- and -O-H- that are active in acidic medium.  Whereas similar degradation efficiencies 

where observed even for pHs above 10 in the alkaline medium where -C-H- and -N-O- 

functional groups are active. A maximum degradation efficiency of approximately 33 % was 

observed  at both pH 3 and 11 (Akpan and Hameed 2011). At alkaline pH, 2,4-D takes an 

ionized form which is water-soluble that changes its properties and remains in the water 

column. Even in the case of PARA, the experiments showed better results under alkaline 

conditions and a maximum is observed at pH 9 (Fang et al. 2011; Khataee et al. 2015). Under 

alkaline conditions, degradation is enhanced this is due to improved interaction of the 

hydroxylated photocatalyst surface and negatively charged PARA. The enhancement of the pH 

value from 3 to 9 finally leads to an increase of the photocatalytic abatements from 18 % to 51 

% (Choina et al. 2015). 
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Figure 4.27: Effect of varying pH on degradation (%) of MV, 2,4-D and PARA 

4.8.3. AFM studies 

The presence of organic pollutants onto NPs was confirmed by AFM characterization. 

The results indicate that physical interactions during the sorption process of organic pollutants 

on the surface of NPs (Pal et al. 2015; Bhavani and Sivasamy 2016). Figure. 4.28: (a) reveal 

that the average roughness (Sa) and root mean square roughness (Sq) to be 50 nm and 65 nm 

respectively for MV whereas the average roughness for 2,4-D and PARA are 11 nm (Sa), 20 

nm (Sq) as and 23 nm (Sa), 42 nm (Sq) respectively as obtained from Figure. 4.28: (b) and (c). 

Thus, from the above results it is evident that the surface roughness of MV is comparatively 

greater than the rest indicating that higher amount of organic pollutant molecules attached to 

the surface of the ZnS NPs. 
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Figure 4.28: Topography showing adsorption of pollutants on ZnS NPs on the surface of 

pollutants (a) MV; (b) 2,4-D; (c) PARA 
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4.8.4. Fluorescence characteristics 

From the results it is evident that the FRET efficiency decreases with increase in time 

for MV and PARA (Figure: 4.29 (a) and Figure: 4.29 (c)).  The probability of the energy 

transfer depends on the overlap of the emission band of the fluorophore molecules with the 

absorption spectra of the organic pollutant molecules. For MV and PARA, ZnS NPs act as a 

quencher, this fluorescence quenching may be due to photo induced electron transfer process 

between the excited MV/PARA molecules and the ZnS NPs. Their E values vary from 5 % to 

36 %; 65 % to 86 % and its corresponding J(λ) values are 0.2 x 10-17 to 1.7 x 10-17 cm3 L g-1; 

9.6 x 10-17 to 4.7 x 10-17 cm3 L g-1 for MV and PARA respectively. 

For 2,4-D fluorescence increases with a decrease in time (Figure: 4.29 (b)) this 

enhancement of fluorescence is probably due to (i) the spectral changes which might be 

because of the formation of ion-pair complex between NPs and 2,4-D (ii) the ROS enhances 

the radical’s formation, which subsequently dissociates/breaks the complex resulting in colour 

enhancement. The E values varies from 28 % to 98 % and their J(λ) values are  9.3 x 10-17 to 

6.4 x 10-17 cm3 L g-1  for 2,4-D (El-Kemary and El-Shamy 2009; Kavitha et al. 2014; Liu et al. 

2016; Asif et al. 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 4.29: Fluorescence quenching effect of (a) MV by ZnS NPs 
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                    Figure 4.29: Fluorescence enhancement effect of (b) 2,4-D by ZnS NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        Figure 4.29: Fluorescence quenching effect of (c) PARA by ZnS NPs 
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4.8.5. COD, TOC and other trace elements measurements 

The samples at different time intervals of MV, PARA and 2,4-D undergoing 

degradation process were analyzed for COD and TOC in order to estimate the organic contents. 

The MV dye belonging to triarylmethane class of dye undergoes mineralization involving the 

breakdown of chromogenic group i.e., the azo group, cleaving the triazine moiety of the 

aromatic ring molecule. The methyl group attached to the aromatic ring under goes oxidization 

and further de-amination of amino groups so that the dye molecules breakdown into their 

simpler compounds. The mineralization of N present in the dye may yield to NO3−/ NO2− / N2, 

chloride (Cl) to Cl- ions and carbon, hydrogen, oxygen (C, H, O) to CO2 / H2O. A significant 

decrease of 78 %, 55.5 %, 47.6 % and 74 %, 57.2 %, 44.5 % is observed  with respect to COD 

and TOC for MV, 2,4-D and PARA respectively, thus confirming the mineralization process 

(Figure: 4.30 (a), (b) and (c)) (Kuo and Chen 2012; Cai et al. 2016). It is notable that even 

though there is a significant decrease in the TOC values the mineralization process is not 

complete, indicating the presence of highly recalcitrant small organic molecules which 

remained in the solution due to intermediates formation (Sakthivel et al. 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 4.30: Mineralization of pollutants based on COD and TOC for (a) MV 
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      Figure 4.30: Mineralization of pollutants based on COD and TOC for (b) 2,4-D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 4.30: Mineralization of pollutants based on COD and TOC for (c) PARA 

 

The photocatalytic degradation mechanism of the pollutants using ZnS NPs under solar 

irradiation is usually initiated by generation of charge carriers (Kaur et al. 2016). Based on this 

phenomenon EVB and ECB values were calculated to be 2.63 and -1.12 respectively. The ΔG0 
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(kJ/mol) values are  -0.7 kJ/mol, -1.153 kJ/mol and -2 kJ/mol for MV, 2,4-D and PARA 

respectively (El-kamash et al. 2005; Sheela et al. 2012; Liu et al. 2014). The amount of oxygen 

required is calculated for each of the organic pollutants to complete the reaction by the 

stoichiometric equations given in equations below.  Figure. 4.31: (a), (b) and (c) depicts the 

C(org) in mol and the amount of oxygen required for the reaction is 276.3 g, 114.36 g and 456 

g for MV, 2,4-D and PARA respectively. The stoichiometric equations are written based on 

the end products generated i.e., CO2, H2O are the inorganics. Further, these equations are 

balanced. 

 C24H28N3Cl + 34.5 O2 + 3e- → 24 CO2 + 2 NO2
- + NO3

- + Cl- + 14 H2O …….(4.2) 

 

C8H6Cl2O3 + 8 O2 + e-
 → 8 CO2 + 2 Cl- + 3 H2O   ………….(4.3) 

 

2 C8H9NO2+ 20.5 O2 + e-
 → 16 CO2 + 2 NO2

- + 9 H2O ……….(4.4) 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

    Figure 4.31:  C(org) in molCxHyOz m-3 and COD/TOC (mol O2 m-3) for (a) MV 
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        Figure 4.31:  C(org) in molCxHyOz m-3 and COD/TOC (mol O2 m-3) for (b) 2,4-D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 4.31:  C(org) in molCxHyOz m-3 and COD/TOC (mol O2 m-3) for (c) PARA 

 

The inorganics content such as nitrates, nitrites and chlorides present in the samples are 

estimated and it is found that there is an increase in the nitrates from 0.96 to 1.98 mg/L, nitrites 
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from 0.24 to 0.32 mg/L and chlorides from 8.87 to 35.5 mg/L for MV as shown in Figure 4.32: 

(a) and (b). Similarly, for 2,4-D the chlorides ions are present in the range of 0.46 to 0.7 mg/L 

whereas for PARA nitrites it is from 0.45 to 0.64 mg/L and nitrates concentration is negligible 

(Tichonovas et al. 2013) (Figure 4.33 and Figure 4.34).  

 

 

 

 

 

 

 

 

 

 

          

 

 

        Figure 4.32: Estimation of (a) nitrates/nitrites for MV dye 

  

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 4.32: Estimation of (b) chlorides for MV dye 
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               Figure 4.33: Estimation of chlorides from 2,4-D herbicide 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 4.34: Estimation of nitrites from PARA drug 
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4.9. Degradation mechanism 

4.9.1. FTIR analysis 

FTIR spectral peaks for MV before degradation is interpreted as 1575 cm-1, 1470 cm-1, 

1344 cm-1, 1157 cm-1 corresponding to -C=C- stretching, -C-H- bending, -C-C- stretching and 

–C-N- stretching due to presence of amines and the peaks at 936 cm-1, 908 cm-1 and 826 cm-1 

corresponds to –C-H- out of plane bend as shown in Figure 4.35: (a). However, after the 

degradation process spectral peaks at 1581 cm-1, 1345 cm-1, 1159 cm-1, 1066 cm-1, 825 cm-1 

and 699 cm-1 are comparable with -C=C- aromatic ring stretch, -C-C- stretching, -C-N- 

stretching, -C-H- aromatic in plane bending and –C-H- out of plane bend whereas peak at 3249 

cm-1 is identical to -O-H- stretch of hydroxyl group as given in Figure 4.35: (b).  For 2,4-D the 

spectral peaks at 703 cm-1, 787 cm-1, 835 cm-1, 870 cm-1, 1072 cm-1, 1225 cm-1 represents -C-

C- bonding, 1306 cm-1,1484 cm-1 and 1700 cm-1 corresponds to -C-H-, -N=O- and -C=C- before 

degradation as per Figure 4.36: (a). On the other hand, Figure 4.36: (b) depicts the spectral 

peaks at 969 cm-1, 1083 cm-1, 1114 cm-1 and 1633 cm-1 identical to -C-H- bending and 

stretching, -C-O- carboxyl group, -C=C- aromatic ring in phenyl group after degradation. In 

Figure 4.37: (a) the spectral peaks of PARA before degradation are observed at 842 cm-1 and 

870 cm-1 corresponding to -C-H- aromatic ring, 1021 cm-1, 1109 cm-1, 1147 cm-1 corresponds 

to -C-C- bending, 1248 cm-1 and  1371 cm-1 -C-O- aromatic ring in phenyl group, 1431 cm-1 -

C-N- stretch of primary, 1516 cm-1 and 1548 cm-1 -N-H- bend secondary aromatic amine, 1658 

cm-1 -C=C- aromatic ring in phenyl group. After degradation, the spectral peaks at 680 cm-1, 

805 cm-1, 836 cm-1 corresponds to -C-H-, 1015 cm-1, 1105 cm-1, 1225 cm-1, 1433 cm-1 similar 

to -C-O- bonding and the peaks at 1323 cm-1, 1368 cm-1, 1506 cm-1, 1557 cm-1 ,1608 cm-1 and 

1649 cm-1 is relative to -N=O-, -C=N-, -C=C-  as given in Figure 4.37: (b). A shift in peak 

position and reduction in peak intensity is observed in the degraded product is compared to the 

pure samples due to the substitution/breaking down of the functional groups (Baker and Satish 

2012; Onwudiwe et al. 2014; Shah 2014). 
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         Figure 4.35: FTIR spectra of MV (a) before degradation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Figure 4.35: FTIR spectra of MV (b) after degradation 
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              Figure 4.36: FTIR spectra of 2,4-D (a) before degradation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 4.36: FTIR spectra of 2,4-D (b) after degradation 
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          Figure 4.37: FTIR spectra of PARA (a) before degradation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

 

                              Figure 4.37: FTIR spectra of PARA (b) after degradation 
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4.9.2. LC-MS analysis 

The mechanism involved in the degradation process of the MV dye is initiated by the 

intermediates formed by N-de-methylation process (Figure 4.38 (a)). Initially MV (m/z=379) 

gives rise to leucomethyl violet (m/z= 373) by removal of hydrogen molecules (Figure 4.38 

(a)) further, leucomethyl violet degradation mechanism follows two routes, in the first route 

leucomethyl violet (m/z= 373) is reduced to pararosaline (m/z=287) and benzo(g)indazole 

(m/z=167), benzo(g)indazole is formed by removal of a methyl groups from pararosaline and 

the remaining elements are eluted out of the column. In the second route the intermediates 

obtained are 2-(4-formylphenyl)-6-methoxy-1-methylimidazo[1,2-a] pyridin-1-ium 

(m/z=237), 2-phenylquinoline-4-ol(m/z=222), 2-methylamino-phenol (m/z=123), 2,2-

dimethyl-2,3-dihydro-1H-pyrrol-1-olate (m/z=112). 2-(4-formylphenyl)-6-methoxy-1-

methylimidazo[1,2-a] pyridin-1-ium produced by removal of methyl groups from the 

leucomethyl violet structure. Later the hydroxyl radicals attack the conjugated structure 

resulting in other two intermediates containing phenolic groups. Due to the stronger 

auxochromic moieties cleavage of the central benzene ring is not observed which might be the 

reason for not obtaining 100% removal even after reaching an equilibrium state. Therefore, the 

conclusion drawn is that methylation is favoured over cleavage of the MV chromophore ring 

structure. This phenomenon indicate that the N-de-methylation process predominates and that 

the cleavage of the conjugated structure occurs at a slower rate (Gupta et al. 2006; Fan et al. 

2009; Hisaindee et al. 2013; Bhattacharjee et al. 2015). 

2,4-Dichlorophenol (m/z = 221) decomposition is favoured by the presence of electron-

withdrawing groups located at the ortho, para and meta positions to the chlorine atoms, which 

facilitate the dehalogenation reaction (Figure 4.39 (b)). In Figure 4.38 (b) the first step in the 

photocatalytic degradation mechanism of 2,4-D involved the attack of the hydroxyl radicals on 

the chlorine positions forming 2,4-dichlorocatechol (m/z = 179). The major decay pathway of 

2,4-D upon hydroxyl radical attack is via the homolysis of the -C1-O- bond on the aromatic 

ring to yield 2,4-dichlorophenol (2,4-DCP) (m/z = 162). In a subsequent step, the hydroxyl 

radical may predominantly replace the chlorine atom of 2,4-DCP to form 2-chloroethyl 

benzene (m/z = 140). Finally, the oxidation of the aromatic intermediates by oxidation of the 

aromatic ring leads to the formation of short linear compound succinic acid (m/z = 117)  (Maya-

Treviño et al. 2014; Jaafarzadeh et al. 2017; Lee et al. 2016). 

For PARA, the mechanistic options can be envisaged for hydroxyl radical-dependent 

ortho hydroxylation. A general mechanism for the reaction of dissociated phenol involving the 
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initial formation of the phenoxyl radical, leading to the formation of quinone, biphenols and p-

benzoquinone are identified as a major product (Figure 4.40 (c)). It involves a direct 

substitution reaction to give N-acetyl-p-benzoquinone imine (m/z = 149) which would 

decompose to yield hydroxy benzoquinone (m/z = 123) and hydroquinone (m/z = 110). The 

other pathway would probably be conversion of the primary radical adduct to 4-

acetylaminocatechol (m/z = 167)  as reported in Figure 4.38 (c) (Vogna et al. 2002; Graham et 

al. 2004; Wu et al. 2009; Moctezuma et al. 2012; Jallouli et al. 2017). 
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Figure 4.38: LC–MS chromatogram obtained from degraded (a) MV sample after  

120 min, (b) 2,4-D sample after 270 min, (c) PARA sample after 240 min 

 

           Figure 4.41: Intermediate products of (a) MV sample after 120 min degradation 
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Figure 4.39: Intermediate products of (b) 2,4-D sample after 270 min degradation 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39: Intermediate products of (c) PARA sample after 240 min degradation 
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4.10. Stirred tank reactor studies 

4.10.1. Effect of on biomass growth rate 

From Figure: 4.40 it is evident that 2 % (w/v) inoculum volume settled at the bottom of 

the reactor and 20 % (w/v) culture inhibits the agitation process and 72 h culture yielded better 

results. The decrease in the growth rate with an increase in inoculum size can be attributed to 

the limitation of key nutrients including oxygen, for cells at higher densities (Lee et al. 2011). 

Looking into the second parameter, working volume of the reactor has a significant was varied 

as 1 L, 1.5 L and 2 L for which biomass dry weight of 40 g/L, 33 g/L, 24 g/L is obtained. The 

increase in the volume, lead to an improved mixing condition and oxygen transfer and found 

to have increased host cell growth. However, the increase in the working volume to 2 L showed 

an effect on biomass growth indicating the possibility of decrease in the oxygen transfer to 

cells (Collins et al. 2013; Schiefelbein et al. 2013). Although the biomass concentration profiles 

as shown in Figure: 4.41 are not affected by the agitation speed significantly, stirring at 120 

rpm had a negative impact on growth due to the shear stress and ultimately reduced the 

formation of NPs which reflected in the measured absorbance values. However, the reduction 

in agitation speed resulted in the formation of biofilm in the bioreactor, therefore a minimal 

stirring of 80 rpm is considered (Rodríguez et al. 2005; Byrne et al. 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40:  Biomass dry weight (g/L) with respect to the age of the inoculum 

for different inoculum volume 
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                Figure 4.41:  Biomass dry weight (g/L) with respect to agitation speed 

 

4.10.2. Effect of precursor concentration and incubation time on NPs formation 

 

From the above studies it is concluded that 72 h biomass, inoculum volume 10 % (w/v), 

working volume 1 L and agitation speed of 80 rpm are optimum. Based on these results, the 

effect of concentration of precursor and reaction time are studied. From Figure: 4.42 (a) the 

optimum concentration of precursor was found to be 30 mM. Even though the ratio of active 

nucleation sites to the number of atoms decreased with increasing concentration of ionic zinc, 

the intensity remained constant at 40 mM and 50 mM. At 10 mM and 20 mM, did not exhibit 

higher intensities suggesting an insufficient amount of reducing bio-molecules against 

available metal ions (Bhargava et al. 2016). The higher intensity is found on the 3rd day after 

the addition of precursor as given in Figure: 4.42 (b) this might be because of the metal 

reduction and eventual NPs synthesis are time-dependent reactions, longer incubation times 

allow the reaction equilibrium to shift towards the reduced form of metals and results in the 

formation of more nucleation sites leading to higher numbers of particles (Erasmus et al.  2014) 

however, the intensity remained constant on 4th and 5th day .  
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                          Figure 4.42: Effect of (a) precursor concentration on NPs formation 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 4.42:  Effect of (b) reaction time on NPs formation 

 

The diffraction peaks with maximum and minimum intensity is centered at 26o, 28o, 

30o, 47o (2θ) can be attributed to (100), (002), (101) and (110) respectively, this is well-indexed 

to the hexagonal phase of ZnS, which are in good agreement with standard (Figure: 4.43 (a)) 

(ICDD card No. 00-036-1450). The synthesized ZnS NPs has a diameter range of 10-15 nm as 
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shown in Figure: 4.43 (b). Compared to batch studies, the crystallite size is observed to smaller 

which may be due to large medium volume as justified by Moon et al. 2010, in a study on 

crystallite size with respect to reactor volumes. The prominent lattice fringes observed in 

Figure: 4.43 (c), TEM image with 5nm magnification reveals the crystalline nature of the NPs 

and the SAED pattern exhibiting concentric rings confirm the polycrystallinity of the material 

supported by Figure: 4.43 (d). The SAED patterns are indexed to correspond with the (100), 

(101) and (110) planes in accordance with the hexagonal wurtzite structure and diffraction 

rings matched well with corresponding XRD patterns of the ZnS NPs reported by Bai et al. 

2006; Chen et al. 2014. 

 

    

 

Figure 4.43: (a) XRD (b) TEM images (c) SAED pattern and (d) Lattice -fringe finger 

print image of ZnS NPs 
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CHAPTER 5 

5. CONCLUSIONS 

5.1. Summary and significant findings 

The fungal species Aspergillus flavus, isolated from a medicinal plant Nothapodytes 

foetida, collected from Agumbe forest of Karnataka, India was used in the biosynthesis of ZnS 

NPs. Aspergillus flavus was selected as the most suitable fungus for the biosynthesis of ZnS 

NPs based on screening studies. Optimization of the operating variables for the biomass growth 

rate of Aspergillus flavus was done. The effects of precursor concentration and reaction time 

for the biosynthesis of ZnS NPs were assessed using a statistical method, CCD of RSM. The 

characterisation studies of the ZnS NPs (quantum dots) for its, morphology, optical, 

electrochemical and stability properties were carried out using various characterization studies 

such as TEM, DLS, EDAX, UV-Vis, DRS, FT-IR and Raman spectroscopy. The degradation 

potential of ZnS NPs under natural solar irradiation was evaluated for Methyl Violet (dye), 2,4-

D - pesticide and pharmaceutical drug (PARA) for 120 min, 270 min and 240 min, respectively. 

To confirm the interaction of ZnS NPs with organic pollutants, fluorescence and AFM studies 

were conducted. COD, TOC and LC-MS studies for confirmation of mineralization of these 

pollutants and the intermediates formed in the degradation process was done. The mechanism 

of the NPs synthesis process was studied and the results suggest that the machinery required 

for the synthesis was similar to fungal metal detoxification. The NPs synthesis in the stirred 

tank reactor is assessed by various parameters such as inoculum volume, the age of the 

inoculum, working volume, agitation speed, precursor concentration and reaction time.  

In summary, the biologically synthesized ZnS NPs isolated from an endophytic fungus 

Aspergillus flavus from a medicinal plant Nothapodytes foetida was evaluated for its 

photocatalytic degradation and mineralization potential over three different classes of organic 

pollutants under solar irradiation. The following conclusions are derived from the degradation 

studies of MV, 2,4-D and PARA: 

• Initial studies revealed appreciable ZnS tolerance towards endophytic fungus 

Aspergillus flavus on this basis, the fungus was utilized for the extracellular 

biosynthesis of ZnS NPs.  

• TEM and DLS images revealed that the average diameter of NPs to be 18 nm and 58.9 

nm respectively.  

• The biosynthesized ZnS NPs was found to have a hexagonal phase with peaks centered 

at 28.45o, 47.54o, 57o. 
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• UV and DRS spectrum revealed that there is a shift in the peak position compared to 

the bulk and the band gap thus obtained is found to be 3.75 eV  

• FTIR revealed the functional groups present on the NPs which corresponds to amine 

groups of sulphur bearing proteins and the Raman spectroscopy reveals the vibrational, 

rotational and frequency modes  

• ZnS NPs exhibited a strong photoluminescence peak at 420 nm which can be ascribed 

to the high-level energy transition in the ZnS semiconductor.  

• From, the thermal properties it is concluded that TGA and TGA-DTG to be 72 % and 

53.86 % respectively.  

• As per DSC analysis, exothermic and endothermic peaks are found to be at 80 °C, 120 

°C, 250 °C and 280 °C respectively.  

• The cyclic voltammetry (CV) analysis obtained by sweeping the potential rate of  25 

mV/s  showed similar reduction and oxidation peaks indicating the stable state of the 

NPs.  

• The zeta potential examination further confirmed the maximum stability at pH 9 i.e., at 

−22.3 mV.  

• The degradation efficiency of ZnS NPs for degradation of MV, 2,4-D and PARA is 87 

%, 33 % and 51 % respectively. 

• COD and TOC analysis confirmed that the percentage of mineralization of the above 

organic pollutants as 78 % and 74 % for MV; 55.5 % and 57.2 % for 2,4-D; 47.6 % and 

44.5 % for PARA respectively.  

• The fluorescence studies revealed that MV/PARA had a quenching effect on the ZnS 

NPs whereas 2,4-D had fluorescence enhancement with time. 

• The major intermediate products generated during the photocatalytic reaction for MV, 

2,4-D and PARA were assessed by Mass Spectrophotometer. 

• Investigations of SEM and AFM micrographs revealed that an extracellular mechanism 

being involved in the biosynthesis process of ZnS NPs. 

• The retention time, 6-10 min and the peaks at 149, 301 and 579 of the filtrate free from 

NPs and biomass under the chromatogram analysis confirmed the presence of residual 

proteins such as metallothioneins and phytochelatins that are responsible for the 

formation of the ZnS NPs.  

• For the stirred tank reactor studies, an optimum biomass growth yield was obtained at 

inoculum volume of 10 % (w/v), working volume of 1 L and agitation speed 80 rpm.  
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• XRD and TEM analysis confirmed the hexagonal phase of NPs with the average 

diameter of 10-15 nm at an optimum concentration of 30 mM for 72 h. 

In conclusion, the isolated species endophytic fungus Aspergillus flavus can effectively 

synthesize NPs by an ecofriendly/economical one-step synthesis method. It has the ability to 

produce a narrow size range diameter of ZnS NPs and the synthesized NPs exhibited strong 

quantum confinement effect. The presence of functional groups and the mass chromatogram 

indicated the presence of thiol bearing compounds which are the residues of cysteine and 

methionine, moreover, the morphological studies revealed the extracellular synthesis 

mechanism of NPs. These bioactive compounds sustain the stability and it is affirmed by 

voltammetry studies. The encapsulation on ZnS NPs via endophytic fungus isolated from the 

medicinal plant Nothapodytes foetida offered a promising scope for fungal nano-catalysts to 

exploit their degradation potential. The present findings elucidate the catalytic activity towards 

pollutant degradation and mineralization using ZnS NPs and in presence of solar irradiation 

their activity enhanced because of its oxidized state during the reaction by enhancing their 

electron transfer capacity and the plasmonic effects. Hence, this work provided new insights 

for understanding the degradation of organic pollutants using biological ZnS 

nanophotocatalyst. In the stirred tank reactor, the work presented demonstrates the operation 

of the bioreactor systems for the scale-up of the NPs further the process variables were found 

to play a major role for enhancing the biomass growth and the NPs formation. 

5.2. Scope of the work 

The nano-biosynthesis of NPs from endophytic fungi Aspergillus flavus could be used in 

developing catalysts which may find potential applications in the wastewater treatment and 

heavy metal removal. Moreover, the challenges for redressal include optimal production and 

minimal time to obtain the desired size and shape, to enhance the stability of NPs and 

optimization of specific microorganisms for a specific application. In the context of the energy 

crisis, environmental considerations such renewable energy sources are rapidly increasing their 

contribution globally, for sustainable technologies such as the utility of solar energy for solar 

desalination/detoxification/disinfection to solve energy and water scarcity. Direct reuse 

systems envisioned, treatment of industrial wastewater seems to be one of the most promising 

fields of application of solar photocatalysis. The present work can be extended for degradation 

of various aromatic compounds such as benzene, toluene, phenol, catechol, volatile organic 

compounds (VOCs) and decontamination of benzene, degradation of benzene, toluene, and 

xylene (BTX), alkanes, haloalkanes, aliphatic alcohols, carboxylic acids, alkenes, aromatics, 
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haloaromatics, polymers, surfactants, herbicides, pesticides and dyes (Blanco et al. 2009; 

Soonchul et al. 2009; Malato et al. 2009). The synthesized ZnS NPs can be modified by 

encapsulation in silica shell and immobilized by a polymer matrix, composites of ZnS and rare 

earth metals doped ZnS which can be used as efficient entities for degradation, further, these 

can be immobilized in hydrogel-based catalytic systems. The scale-up is a procedure for 

designing and building a large-scale system on the basis of the results of experiments with 

small-scale models. To improve the cost of production the configuration and the design 

parameters should be optimised based on the simulation and computational methods. 

Additionally, fungal-biofilm based methods can be adopted for the synthesis of nanoparticles 

to avoid stirring. Thus, the future studies can explore the potential of these biological nano-

catalysts as a novel catalytic and biological model in the field of material, energy and 

environmental science. 
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