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Abstract

The single central controller of Software Defined Network (SDN) eases network

management, but leads to scalability problems. It is therefore ideal to have a

logically centralized but physically distributed set of controllers. As part of this

work we developed a novel placement metric called subgraph-survivability and

designed an algorithm for controller placement using this metric, such that the

control plane is not only scalable but also resilient to failure of the controller itself.

The controller collects the network statistics information and also communicates

the forwarding rules to the switches. This lead to the Edge-Core SDN architecture,

where the edge and core network have their own edge and core controller. For

such networks, we have developed a separate edge and core controller placement

algorithms using suitable metrics for each. The scalability problem of the data

plane is due to the limited switch memory and increased size of SDN forwarding

rule. Using source routing to forward packets, not only alleviates this problem but

also complements the Edge-Core SDN model. Here, we have proposed a source

routing mechanism that is scalable, is fair to both elephant and mice traffic, and

is resilient to link failures, thus making the data plane scalable and resilient.

The algorithm and routing mechanism are validated, through both analytical

and empirical methods. The performance metrics of Average Inverse Shortest

Path Length (AISPL) and Network Disconnectedness (ND) are used to evaluate

our placement algorithms. An improvement of 55.88% for the AISPL metric and

49.22% for ND metric, was observed with our proposed algorithm as compared to

the random controller placement. With our source routing mechanism we observe

a reduction, in the number of flow table entries and the flow set up time, that is

proportional to the number of hops along the path of the packet.



Keywords: SDN, Edge-Core SDN, Controller Placement, Source

Routing, Scalability, Reliability, Fairness.
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Chapter 1

Introduction

You can’t cross the sea merely by standing and staring at the water.

-Rabindranath Tagore

This chapter introduces the need for a change, in the present networking

architecture, that led to the development of Software Defined Network (SDN).

This is followed by a description of the SDN architecture and how packet

forwarding is carried out therein. This chapter also covers the advantages,

challenges and applications of SDN.

1.1 Traditional Networks

In the late 1960s Advanced Projects Research Agency (ARPA) stated a research

project to enable communication between its military installations and scientific

research centres. Later in mid 1970s they began designing the Internet

architecture and communication protocols. Internet refers to the interconnection

of thousands of networks around the world, using different technologies. Such an

architecture is possible since the Internet is based on an abstraction that is

independent of the physical hardware. The Internet, as we know it today, began

when Defence Advanced Research Projects Agency (DARPA), originally known

as ARPA, started using the Transmission Control Protocol/Internet Protocol

(TCP/IP) stack.
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Networking technologies underlie all IT activities. The last few years have

seen an increase in the number of applications that depend on communication

networks, which are fast, scalable, reliable and easy to manage. Consequently,

the size of networks has also increased. Current networking architectures only

partially meet the requirements of these applications. This is largely because,

current networks consist of a set of ad hoc protocols which are developed in

isolation; to address one problem at a time. Since, this approach is not built on

any fundamental abstraction, the complexity has increased. For example, if an

IT administrator wants to add or remove a device from a network, then multiple

software and hardware entities must be reconfigured using network level

management tools. Also a knowledge of the topology, vendor switch model,

switch version etc. are required. New applications have also caused the present

day network characteristics, in terms of networking devices used and network

traffic generated, to be different from that of the Internet. These developments

highlighted the shortcomings of traditional networks and led researchers to

redefine at the networking architecture.

Although the shortcomings of traditional networks were known since long, it

was difficult to fix them because of the tight integration of the networking devices.

Generally, the networking devices operate on two planes. The control decisions

that a device has to take, regarding how packets are to be forwarded and managed,

are carried out in the control plane. The actual forwarding of packets, based on

the forwarding decisions of the control plane, are carried out in the data plane.

Traditional networking devices, integrate these two planes in a single networking

device. This vertical integration hinders quick development and deployment of

new protocols and services, as it would require rebuilding of the entire device.

Such an architecture is therefore not suited for the present applications which try

to address fast changing user demands related to the network services.

The advent of virtualization, cloud computing and software defined

networking, though different technological entities, led to a paradigm shift in the

way infrastructure is managed and services are orchestrated. Present day data
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centers are among the first where this change is happening.

1.2 Data Center Networks

A traditional data center consolidates the storage equipment, networking

hardware, and physical servers in one location, in order to provide security,

energy efficiency and ease of management. Development of virtualization

technologies enabled data centers to host servers and networks that have been

virtualized and optimized for cloud applications. Compute virtualization has

seen a lot of advancement in the recent years and has proven to be an efficient

technology, that the data centers (DC) have benefited from.

Cloud computing allows tenants to use the resources they need, pay only for

what they use and scale out on demand i.e. expand with a ’pay-as-you-go’ model.

Cloud providers have already hugely benefited by leveraging the virtualization

technology. Virtualization is the key enabler of cloud computing, since it allows

the creation of an abstraction layer which hides the complexity of hardware and

software, for example it allows different operating systems to run on the same

hardware.

However, the modern day networking has not taken into account the

challenges posed by the compute virtualization and cloud based applications

(Hamilton, 2009). This is because the networking concepts deployed here were

meant for the Internet. Some of these challenges are thus presented.

1.2.1 Challenges and Opportunities

The unique and complex nature of virtualized cloud data center poses certain

challenges to data center networking that has not been an issue in traditional

networking. Some of these challenges are as follows:

• Multiple virtual machines on a single host: The old assumption that

each end node is connected to a port and is running a single instance of an

OS is no longer a reality. Virtualization has created a new access layer that
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resides on the physical host machine (Benson et al., 2010). Virtual software

switches are developed and are also present inside this physical host machine.

These switches connect the Virtual Machines (VM) that are co-located. This

ensures that the network traffic between these VMs can pass through the

software switch and need not leave the physical host machine. The virtual

switch also connects VMs to internet at large.

• VM migration: VMs may be moved from one host system to another. This

is called VM migration (Zhang et al., 2018). VM migration may be required

so as to pack VMs into as few physical machines as possible, to accommodate

a different bandwidth requirement of an application running on the VM or

to keep the VM running in the event of problems with the host systems. It

is necessary to complete this VM migration without disrupting the ongoing

communications. This is called live migration. Today, live migration is

one of the essential services to be ensured in order to make networks more

practical and efficient.

• Multi-tenancy: Cloud computing has enabled a single data center to host

many tenants. These tenants share the data center network. Each of these

tenants may have their own networking requirements and hence each must

have its own network management system. These multiple networks must

be isolated from each other, such that, one flow does not take up all the

resources (bandwidth or forward table space) and the failure of one network

should not affect the other (Heng et al., 2012).

• East West movement of data: Unlike the traditional client-server data

traffic, data centers have movement of data between servers. This is

because most applications in data centers are multi-tier in nature i.e. many

components of an application may run on back-end servers. For example, a

web search application which may access an inverted index spread across

1000 back-end servers.

• Scale of data center: A data center is estimated to roughly have up to
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1,20,000 VMs with over 20 VMs on each server (Benson et al., 2010). The

network must support VMs at such scales in terms of the forwarding table

space on the switches, bandwidth management etc.

• Visibility: Since, VM to VM communication within a host, does not leave

the host, it is not visible to the physical switch which is outside the host,

where most of the traffic monitoring applications reside. However, on host

network traffic, visibility is essential in order to adhere to the networking

policies and the networking technologies must allow this.

• Dynamic nature of cloud computing: Tenants in a cloud environment

are constantly requesting for new resources or configurations, bringing down

existing ones on demand (Wuhib et al., 2012). The network must support

the dynamic nature of cloud computing.

• Dynamic nature of cloud network: The cloud data traffic is

unpredictable and volatile because of its dynamic nature. This may lead to

break in service due to overload and the network must be capable of

managing it.

Some of the implications of these challenges on the network design are: VM

migration is efficient only when location independent MAC address is used for

forwarding; multidomain network management is essential for multi-tenant

environment; east west movement of data and scale of data center implies that

scalability is a serious concern; end point policy enforcement within the host is

essential to make on host network visible; dynamic nature of cloud makes traffic

predictions difficult in data centers.

On the other hand, Networking in virtual cloud data centers can benefit

because of some of its characteristics, such as

• Single owner The data center is owned and managed by a single

organization unlike the Internet.

• Central control There is central control over the host system and the

network, again unlike the Internet.
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• Well defined events Since most events in the data centers are catering to

cloud operations they are well defined. Ex. when a VM joins and leaves the

network, the network topology and configurations are well defined.

The implications of these opportunities on the network design are: Single

ownership and central control creates a possibility of a centralized network

management. Well defined events imply optimization of operations like path

computation, bandwidth utilization etc. which can now be implemented with

greater accuracy.

Widespread use of data centers and the inherent challenges therein, forced

researchers to re-look at how networks have been built, leading to some radical

solutions.

1.3 Software Defined Networking

The networking challenges presented in the previous section show, the need for

present day networks to evolve, in order to adapt to the changes brought about

by virtualization and cloud computing. However, current networking switches are

vertically integrated where the application specific hardware chips, the hardware

and the entire software stack are singly sourced. This tight coupling makes it hard

to program the switches. It causes vendor lock-in, leading to the monopoly of a

switch manufacturer, making it difficult for the switches to evolve fast enough to

keep up with the changing demands of the applications. Further, any change to

the network switch configurations has to be done manually on a switch by switch

basis. This normally leads to an increase in the OPerational EXpenditure (OPEX)

The above reasons made the network inordinately complex with a lot of

manual configurations. Due to this, there was a need to rethink the way in which

the network has been architected. Traditional networking devices consist of two

planes, namely the control plane and the data plane. The control plane is

responsible for taking decisions about how to forward packets that the device

receives. The data plane is responsible for forwarding these packets according to
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the decisions that the control plane takes. The control plane requires better

programmability and the data plane requires more speed. This difference in

requirements has led to the revolutionary idea of removing the control plane

from all the switches and placing them on a central server; while the data plane

will continue to reside on the networking device. In other words, the network

control (software, protocol and state) is decoupled from the network hardware.

This is similar to the separation between the applications, operating systems and

hardware on a x86 machines. This separation of the control and data planes is

the central idea of Software Defined Networking (SDN) (Kim and Feamster,

2013) and is depicted in Figure 1.1

(a) Traditional network architecture (b) SDN network architecture

Figure 1.1: Traditional vs SDN network architecture

This implies, that the forwarding of packets is still carried out by the switch.

However, the routing decisions take place in the centralized controller and these

decisions are then communicated to the switches. A protocol is necessary to

facilitate the communication between the controller and the switch. The most

common protocol used currently is OpenFlow (McKeown et al., 2008). In this

regard a SDN switch equipped with OpenFlow or a similar protocol is the need

of the hour. The functionality of the controller is thus synonymous to that of an

operating system, since it controls and manages the network. Due to the complete
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access to global network elements and resources, the network behaviour is flexible

and can be changed in real time. Using automated SDN programs, it is possible

to flexibly optimize / manage / configure and secure the network.

SDN architecture is characterized by:

• Separation of control plane from the data plane; the control plane residing

on a central controller.

• The SDN controller can collect the entire networks traffic statistics and

topology information by communicating with the switches. This, unlike

traditional networks, enables centralized configurations and management.

• The network can be programmed by external applications via the controller

eliminating the time consuming and human error prone configuration of the

network.

Switch

Miss in FT

Controller

Packet in

Processing

Update FT

Packet out 

Flow Request

Flow Rule

Figure 1.2: Communication between switch and controller to route packets in SDN

In SDN the brain of the switch i.e. the control plane, is moved out and put into

the central controller. This makes the switches mere forwarding devices. Hence,

they need to communicate with the controller in order to know how and where to

forward the packets. The controller with its central view of the networks topology

and traffic statistics, can decide the path that the packet has to take in order
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to reach the destination without fail. When an incoming packet does not have a

matching flow entry in the Flow Table (FT), the packet header is encapsulated and

sent to the central controller; the controller runs the required routing module in

order to identify the path for the flow. It then installs this forwarding information

on all the switches along the flow path as shown in Figure 1.2

The forwarding decisions may be done on the basis of all fields like source and

destination MAC address, destination protocol etc., and not just based on the

source and destination IP address. These additional header information however,

increase the size of flow entries to about 356 bits (Kannan and Banerjee, 2013)

If an incoming packet has a matching flow entry, then it is forwarded

accordingly, without contacting the controller. This style of packet forwarding

must ensure that the first packet of every new flow has to contact the controller.

This causes a slight delay in packet forwarding as compared to traditional

networks. This shortcoming is negligible when compared to the benefits that

SDNs provide. Similar delay is not experienced by subsequent packets of a flow,

since, the flow rule is already installed. The delays are mainly introduced due to

the communication between the different layers, hence, a standardization of

these communication API is essential.

North bound API vs South bound API: The SDN architecture may be

considered to have three distinct layers namely, the application plane, the control

plane and the data plane. The application layer runs network applications like

load balancers, firewalls etc. and use the services of the control plane. The control

plane manages the entire network from a central location. The data plane is

responsible for actually forwarding the packets. The API used for communication

between the application and control plane is referred to as the north bound API.

The south bound API is used to communicate between the control plane and the

data plane (Klaedtke et al., 2014). Presently not much work has been carried

out to standardise the abilities of north bound API. However south bound APIs

have seen significant research and development and OpenFlow is an example of a

standard south bound API.
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In-band vs Out-of-band communication: The control communication

between a switch and a controller (i.e. south bound API) may be carried out

over the links of the same network, used for data communication between the

switches. Such a network is referred to as an in-band communication network.

On the other hand, if the control communication is carried out over a

separate network links between the two, then it is referred to as an out-of-band

communication network. Currently most deployments of SDN use out-of-band

communications.

Ternary Content Addressable Memories: The packets arrive at the data

plane of a switch at a very high speed. In order to forward these packets effectively

without any packet drops, the flow table look ups must be quick. This requires

high speed memories such as Ternary Content Addressable Memories (TCAM).

A TCAM is a memory chip where each entry can store a packet classification

rule that is encoded in ternary format. Given a packet, the TCAM hardware can

compare the packet with all the stored rules in parallel and return the decision

of the first rule that the packet matches. TCAM allows matching on masked

bit value and not just strict binary matching and this special feature facilitates

rich policy based forwarding with wild card matches, paving the way for custom

forwarding models.

TCAM has become the de facto standard for high-speed routers on the

Internet (Lakshminarayanan et al., 2005) and SDN by design uses TCAM.

However, TCAMs are expensive and power hungry memory devices. This

severely limits the amount of TCAM memory available on the switches. Hence,

limited TCAM memory especially in large networks is a serious concern for SDN

implementations.

1.3.1 Advantages of SDN

Distributed architecture of the legacy networks is scalable, autonomous, robust

and proven. But it has certain disadvantages like difficulty to add new features,
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forwarding by destination address only, limited external configuration, closed and

eventual consistency. SDN on the other hand has the following advantages

• Centralized decisions can be made, in response to the changing state of the

network, allowing flows to be managed in real time.

• It is possible to centrally program and manage the network rather than

configure it on a device by device basis(Casado et al., 2007).

• The decoupling of the software dependent control plane, from the hardware

dependent data plane, facilitates quick innovation at both these layers.

Although the SDN concept may be used in the Internet, it is most appropriate

for large data centers like Google (Jain et al., 2013). Large data centers are single

owned and it requires direct control and programmability of the network in order

to meet the specific requirements fo the application it runs.

1.3.2 Issues in SDN

SDN is an emerging technology and it promises to address many problems that are

hard or time consuming to solve with traditional networking tools. But, as with

any emerging idea, for SDN to be widely accepted, its basic architecture needs to

be reexamined and tweaked.

Centralized controller A central controller has many advantages, however, it

does not scale well and may cause single point failure. A controller communicates

with its switches to;

• obtaining the network updates regarding the traffic status and topology

information

• installing the forwarding rules on the switches to enable forwarding of

packets.

As the number of switches in a controller domain increases, the controller becomes

less responsive and does not scale well. Additionally, if the central controller fails,
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its network will be rendered non functional, even though the switches themselves

are working fine. Hence, there is a need to tweak the SDN architecture so that

it retains the benefits of the centralized controller approach while also making it

scalable.

Packet forwarding The forwarding information in a SDN flow table includes

header from all layers, unlike the traditional forwarding entries which are restricted

to only layer three headers of TCP/IP. Therefore each forwarding rule takes up

more space in the flow table TCAM memory. The size of TCAM memory on the

switches is small because they are power hungry and expensive. The combined

effect of an increased flow entry size and a small flow table size (Kannan and

Banerjee, 2013) in SDN enabled switches, severely limits the number of forwarding

rules that can be stored on them. If a switch cannot store adequate number of

forwarding rules, then, it will have to frequently contact the controller in order

to obtain the forwarding rules. Frequent communications impose a burden on

both, the switch and the controller, and thus poses a serious scalability concern

to packet forwarding as the size of the network grows. Therefore, there is a need

for a packet forwarding mechanism on the data plane that is scalable and at the

same time, benefits from the centralized controller approach.

1.3.3 Applications of SDN

Programmable networks which are implemented using SDN find several

applications because of its central control over all the switches and dynamic

control of the traffic. Some of the applications are: dynamic access control as a

single point operation; load balancing that is dynamic and includes path

balancing; real time energy efficient networking is achievable as centralized view

is available; network management becomes easier because of network

programmability; rich, dynamic policy based routing is possible as routing is not

distributed. SDN is fast becoming the chosen networking solution in more recent

domains too. The flexible nature of SDN can handle the heterogeneous and
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dynamic nature of IoT devices and traffic.

1.3.4 Why SDN?

Generally computer networks consist of a bunch of protocols developed to solve

problems as and when they arise. SDN on the other hand moves away from this

approach and aims to give a clean slate approach to networking, by rethinking the

way in which the network is architected. With the fast growth in compute and

storage domains, the networks needs to adapt quickly. This can be achieved only

by SDN. Traditional networks obviously find it hard to cater to the dynamic and

complex needs of present day networks. All of these reasons imply that SDN will

play an important role in the next generation networks.

1.3.5 Outcome of the research

Presented below are the outcomes of this research work. It also details the chapters

where the work leading to these outcomes are discussed and the challenges of

section 1.2.1 that are addressed.

1. Proposed a new metric called subgraph-survivability for controller

placement in Chapter 3, which ensures connectedness of the network even

after the failure of one of the controllers. This is especially applicable in

multi-tenancy environments where failure of one domain should not affect

the others. Further, this addressed the challenge of uninterrupted VM

migration.

2. Developed an edge-core SDN model as presented in Chapter 4, with a

separate controller for the edge and core of the network. Here, the host and

the first switch it is connected to, form the edge of the network. The

remaining switches form the core of the network. The core controller is

responsible for continuously collecting information regarding, the network

topology and the shortest paths between any two hosts. The edge

controller is responsible for embedding this path information in the packets
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so that packet forwarding can be carried out without intervention of the

core controller. This research outcome increases the visibility of the edge

traffic by incorporating a separate controller.

3. Proposed a dynamic core controller placement algorithm based on

controller load and latency in Chapter 4. Such a placement algorithm

ensures scalability as the size of the data center increases.

4. Proposed a scalable and fair forwarding mechanism for both elephant and

mice traffic by combining source routing with flow splitting in Chapter 5.

This will make the data plane scalable, fair and capable of handling a variety

of flows, owing to the dynamic nature of cloud computing.

5. Developed a path restoration mechanism which takes local corrective actions

in the event of link failure without contacting the controller and presented

it in Chapter 6. This effectively handles the changes to the topology that

arise due to the dynamic nature of the cloud network.

1.4 Outline of the Thesis

SDN, due to its clean slate approach, is fast becoming the de facto network

architecture in many domains like data centers, IoT, smart cities etc. The work

presented here, aims to find solutions to some of the problems that are inherent

in SDN, thereby making it an ideal networking solution in the years to come.

The issues chosen and addressed as part of this work are, scalability and

resiliency in both the control plane and the data plane. The thesis is organized

as follows.

Chapter 1 discusses the drawback of traditional networks that has led to

the development of SDN. This is followed by a look at SDN architecture and it

is compared with the traditional networks. Some of the issues, challenges and

applications of SDN are also presented. It covers the motivation and essence of

the research work undertaken.
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Chapter 2 reviews related literature followed by the identification of

research gaps, that motivated this work. Next, the problem statement and

research objectives are presented.

Chapter 3 presents a scalable and resilient control plane. This is

accomplished using a new metric we propose called sugraph-survivability. The

controller placement algorithm is designed using this metric.

Chapter 4 presents a controller placement algorithm for the edge-core SDN

model. Since the nature of packet forwarding in the core network differs

significantly from that in the edge network, the metrics used here are also

different.

Chapter 5 contains a scalable and fair forwarding mechanism, used in the

data plane, that combines source routing with flow splitting.

Chapter 6 presents a resilient data plane solution based on graph theoretic

approach.

We conclude and present some future work in Chapter 7

1.5 Summary

This chapter began with a discussion of some of the problems that traditional

networks face, in view of the fast changing demands of applications. This was

followed by an introduction to the important concepts of SDN, its architectural

features and, its advantages and disadvantages. Some of the probable

applications of SDN were presented, followed by an analysis of why SDN is best

suited networking solution for the demanding modern day applications. A

justification of why this research work on SDN is the need of the hour was

presented next. Chapter 2 reviews the literature related to SDN, scalability and

resiliency issues with regard to the control and data plane, followed by the

outcome of literature review.
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Chapter 2

Literature Review

If we can really understand the problem, the answer will come out of it, because

the answer is not separate from the problem

-Jiddu Krishnamurti

The last few years have seen considerable work being carried out in the area

of Software Defined Networks (SDN). Since it is a relatively new area of research,

a major portion of the previous work has focused on formalizing the idea, on

developing the controllers and protocols, necessary for the functioning etc.

Simultaneously, serious effort is also put to overcome some of the problems

inherent in SDN architecture. Important technical hiccups in SDN are mainly

because of a single centralized controller and limited memory in the switches on

the data plane as is discussed in Chapter 1. The following sections summarize

the literature review, pertaining to the scalability and reliability of both the

control and the data plane.

2.1 Evolution of SDN

Ethane project (Casado et al., 2007), carried out at Stanford University, defined

a new architecture, specifically for enterprise networks. It comprises of two

abstraction planes: the control plane, comprising of the the centralized

controller, that manages the policy and security issues of the network; and the

data plane, consisting of the ethane switches with a secure communication
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channel to the controller, that is used to enforce the controllers’ decisions. This

work demonstrates that, such a split architecture eases network management.

The promise that the Ethane project has shown, led to the development of

OpenFlow (McKeown et al., 2008); a generic protocol that has allowed a

controller to communicate with OpenFlow enabled switches in the network.

Specifically, OpenFlow allows the controller to insert, modify or delete

forwarding entries in the switch flow table, thereby controlling the network

behavior. This protocol is currently standardized by Open Networking

Foundation (ONF) and is one of the most widely used protocols. Ethane is built

for a specific purpose and it therefore lacks general programmatic control of the

network. To address this, the Ethane team has developed Nox (Gude et al.,

2008), a general purpose network controller, which made use of the OpenFlow

protocol. Nox has a user interface that allows the network administrator to

program the Nox controller. It is the first of the many general purpose network

controllers, such as Ryu, Difane (Yu et al., 2010) etc, paving the way for software

defined networks.

2.2 The Control Plane

A centralized controller is a single entity that manages all the switches in the

network. It poses the problem of single point of failure and scalability

limitations. Addressing these problems has become imperative, if SDN is to be

widely deployed.

The emergence of new applications shows that there is a need for separating

the control and data planes of the network and its success is demonstrated with

the Ethane project. However, as the size of the network grows, it has become

evident that centralized controllers are not scalable. Onix (Koponen et al.,

2010), is the first controller to propose a distributed hierarchical control plane

wherein the lower tier onix controllers take local decisions with regard to the

network that they have managed. The localized data and control decisions are

aggregated, and this information is made available to the root controller,
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enabling it to take global decisions. Another approach to solve the scalability

problem is to offload some of the work of the controller to the switches, as in (Yu

et al., 2010). However, this requires modifications of the switch hardware. This

approach is not widely adopted, since changes in the switch hardware take at

least a couple of years to design and build. At the same time that Onix was

developed, another logically centralized, physically distributed controller called

Hyperflow was introduced (Tootoonchian and Ganjali, 2010). Unlike Onix, this

has a flat architecture for the controller distribution, with each controller having

a global view of the network, but taking local decisions. The control events are

communicated to each other using the subscribe publish paradigm. It is built

using the Nox controller, developed earlier. They further show that such

architectures utilize small control channel bandwidth, keeping a clear room for

expansion, making it scalable. Although, this has addressed the single point of

failure problem, the latency introduced by the inter controller communication,

between the two tiers, need to be addressed. The solutions, that have been

proposed until this point, have made the control plane scalable, by distributing

the controller functionality across multiple controllers or to the switches. These

works have not specifically taken a call on; which switch is to be assigned to

which controller. Such questioning is now known as the controller placement

problem. It is evident from the above literature that multiple controllers are

necessary to make the control plane scalable. Heller et al. (2012) wrote the first

paper that puts forth the problem of controller placement i.e. how many

controllers are required in a network and where these controllers should be

placed. They analyse the controller placement problem especially for the WAN

topologies. Latency was chosen as the placement metric. After the researchers

run their algorithms on various topologies they conclude that a single controller

is enough for moderate service level agreements, but do not adequately handle

failure in the network. Further, they also conclude that randomly placing

controllers in the network is not ideal for large WAN like networks and hence the

location of the controllers must be carefully chosen, such that it is optimized for
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the given metric, such as latency, reliability etc. Zhang et al. (2011) has not only

distributed the controllers but has also considered reliability as the criteria for

controller placement, using metric such as valid control paths and resiliency

protection. These metrics ensure reliable connectivity between the switch and

the controller. Also, the network is divided into multiple domains, such that,

there are many edges between the switches within a domain and few edges

connecting the switches between domains. These controllers reside on a switch

belonging to a domain, such that reliability is increased. Another contemporary

paper (Levin et al., 2012) has reported the work on eventual and strong

consistency of the network views or network state information that is maintained

by the controllers. They also discuss how the application level programs need to

be tweaked based on the type of consistency. They show that, inconsistent global

view can lead to routing loops and other suboptimal performance of the

application program. Ensuring consistent global view, entails higher

communication costs. The trade off here is between two types of application

programs. The first is a complicated but robust application program that knows

that the controller data could be stale and takes corrective action accordingly.

The second is a simple but less robust application program that does not take

into account the fact that the controller data could be stale.

Several placement metrics have since been formally defined, such as, the

expected percent of valid paths to the controller, for the WAN environment (HU

et al., 2012). The expected percent of valid paths is the percentage of operational

paths between the switches and the controller after a network component fails,

such as a node or link failure. The authors propose a greedy approach for placing

controllers in the network. In order to do this they calculate the probability of

failure of a networking component. Hierarchical multi controller architecture has

been used to make SDN network scalable (Hassas Yeganeh and Ganjali, 2012).

The top tier controllers maintain global network level information and lower tier

controllers maintain local domain level information only. Lower tier controllers

are enabled to take local decisions (eg. identify elephant or mice flows), without
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requiring contact to top tier controller. Here, the top tier controllers subscribe to

the lower tier controllers, in order to obtain a global network view.

The resilient network problem (Beheshti and Zhang, 2012) is formulated and

a metric for protecting resiliency is developed, for the links between the switches

and the controller. A switch is said to be protected if it has path to the

controller, other than the controllers routing tree. Two algorithms are proposed

for controller placement. The first algorithm does a brute force search of all

possible controller placements, and then selects a placement, which creates least

number of unprotected switches. The second one is heuristic based algorithm,

that identifies a densely connected switch as its controller location, so as to

increase the switches protection metric.

Work till now focused on static controller placement, but Bari et al. (2013)

went a step beyond the controller placement problem by dynamically allocating

controllers as the state of the underlying network changes. The monitoring

module monitors the controllers and allocates / deallocates switches to the

controllers while trying to minimize the flow set up time and communication

overhead. Similarly, (Hock et al., 2014) analyse the effect of controller failure on

the switches in terms of, how they have to be reassigned to a new controller.

They employ a set of secondary controllers that are used when the primary

controller fails. Here, the controller placement makes use of a metric which is

based on the communication delays between a switch and its primary as well as

secondary controller. They prove their placement is pareto-optimal.

The latency and load are both considered as a metric for controller placement

by UlHuque et al. (2015). As the load of switches vary, they have dynamically

reassigned the switches to controllers so as to equally distribute the load. Kreutz

et al. (2013) develop a SDN failure model to describe network failures in SDN

and formalize two optimization problems, i.e., Controller Placement under

Comprehensive Network States (CPCNS) problem and Controller Placement

under Single Link Failure (CPSLF) problem. They have then propose optimal

controller placement algorithms for these failure models. A specialized heuristics,
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which takes into account a particular set of optimization objectives, is developed

by Lange et al. (2015a) and used for controller placement. Lange et al. (2015b)

present POCO, a framework for Pareto-based Optimal Controller placement that

provides operators for Pareto optimal placements with respect to different

performance metrics. For large networks they use a heuristic approach that is

less accurate, but yields faster computation. A recent paper by Zheng et al.

(2017), is based on a core-edge separated architecture and the control tasks are

implemented in a hybrid fashion. The edge switches are clustered into local

control groups according to locality of traffic. Frequent coarse grained control

tasks are assigned to the network edge. The central controller is only in charge of

a very limited number of intergroup or other fine-grained control events. The

central controller keeps adapting the grouping of edge switches to maintain its

laziness. UlHuque et al. (2017) have partitioned the entire network into

sub-regions; based on a maximum latency bound sub-region, it finds out the

optimal location of the controller module so that a maximum number of switches

can be operated while minimizing the maximum latency. Dynamic controller

placement is resource intensive and suitable only in networks that are highly

dynamic in nature.

Recent work (Wang et al., 2018) on controller placement in wide area networks,

have partitioned the network using a clustering algorithm, such that end to end

delay is minimized. Presently, works on controller placement are focusing a wide

array of networks such as wireless networks (Dvir et al., 2018), 5G networks (Liu

et al., 2018) etc. Also, these works devise complex placement metrics that take

into account the specific characteristics of these networks such as higher packet

loss or hidden terminal problem of wireless networks of reliability concerns of 5G

networks.

2.3 The Data Plane

Destination based routing may lead to scalability issues in SDN as is discussed in

Chapter 1. One solution to this problem is to use source routing. Here, the path of
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the packet from the source to the destination is stored in the packet itself and the

switches simply forward the packet based on this information. Source routing is

not widely used in traditional network due to absence of a central decision making

entity and network wide information. SDN provides both of these approaches and

hence source routing is gaining popularity.

Although Secondnet (Guo et al., 2010) is not deployed in SDN it is one of the

first work that uses port switching to carry out source routing in data centers. Port

switching use the egress port number to store the path information rather than use

the link details. They show that source routing is scalable since the servers take

the routing decisions and the switches are basically stateless. Soliman et al. (2012)

is one of the first papers to discuss source routing in SDN. They have enhanced

source routing with reverse path calculation. As the packet enters a switch, the

egress port number is replaced by the ingress port number, thereby indicating

the reverse path for the packet. Further, they have also showen how link failure

can be locally handled, wherein the switch chooses another outgoing link, based

on the alternate link information stored in the switch. Source routing frees the

controller of the task of installing forwarding information on the switches. Source

routing alleviates the scalability problem, but it is not resilient to link failure,

since the switches are not actively involved in forwarding packets. In (Stephens

et al., 2013), the researchers have focused on making source routing resilient to

failure. The main tasks here are; path computation on the controller, source

routing, computing the reverse path using the ingress port number of each switch

and the Plinko forwarding function. This last function stores alternate routes in

the packet, that is to be used when primary path fails. Their algorithm begins by

implementing source routing. When a packet encounters link failure, the switch

that is local to the failure, finds and stores an alternate path. This information is

used to forward the current and all subsequent packets, if the link fails. In (Ramos

et al., 2013a)the authors have done extensive work on source controlled routing.

A resilient source routing algorithm has been developed as part of this work.

Here, they have computed a primary route and have then found secondary
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route between source and destination and store them both in the packet. The

secondary route is to be used in case of primary route failure. They also ensure

none of this lead to loops. Efforts are made to keep the length of secondary route

minimal. The experiments were run on Fat tree topology. They have further

improved on this work in Ramos et al. (2013b), to support arbitrary topologies.

sci propose that latency can be reduced significantly by removing fields in packet

headers that are unnecessary in the SDN environment. In (Alizadeh et al., 2013)

the authors discuss scalability issues in SDN. They propose the separation of

edge and core controllers. Here the edge controller carries out path installation

functionality and the core controller carries out the network status collection

functionality. Such an approach can improve scalability since the edge controller

can quickly install paths as it is not burdened with network status collection

functionality. Although sci; Alizadeh et al. (2013) are not about source routing

they suggest how source routing is effective by using the unused header bits of

packets and separating the status collection from path installation.

Katta et al. (2016) address the scalability problem on the data plane due to

limited switch memory, by having a switch that tracks the congestion level for

identifying the best path to the destination and not all paths to the destination.

They implemented this solution by programming the switch data plane using the

P4 programming language (Bosshart et al., 2014). Zhang et al. (2016) develop

a switch memory aware routing scheme that reduces TCAM space usage. They

aggregate flows between different source and destination pairs and use subnet

masks to reduce the number of entries in each table. Another important constraint

to the scalability of the data plane is the time it takes to install the long flow

table entries onto TCAM memory. Bifulco et al. (2017) use a hybrid approach of

hardware and software switches to address this problem, based on the observation

that it is faster to install flow rules on software and delete from hardware. Hence,

forwarding table updates always happen in software first. Eventually, entries are

moved to the TCAM based forwarding tables, to achieve higher overall throughput,

and delete from there eventually.
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A recent paper (Shirali-Shahreza and Ganjali, 2018) proposed a novel technique

of identifying TCP flow that will terminate shortly by looking at FIN packets.

This information is then used to expedite the flow rule eviction, thereby reducing

the average table occupancy. Judiciously using software tables, that have higher

capacity but lower look up times, in conjunction with TCAM memory is another

recent solution being proposed (Kentis et al., 2018).

We summarize the controller placement solution in the Table 2.1
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2.4 Outcome of Literature Review

The motivation for the work reported in this thesis on building a scalable and

resilient control plane and data plane is derived from the available literature.

Control plane scalability has been achieved using multiple controllers. One of the

areas, where we felt, there is scope for considerable contribution is the controller

placement problem when the controller itself fails. This will make the control

plane more resilient. Majority of the previous works, we have reviewed so far,

consider only node or link failure not the controller failure.

• Control plane

– Functionality of an SDN controller belongs to one of the two distinct

categories namely, collection of network topology information and

setting up forwarding paths on the switches. It is a scalability

concern, to expect a single controller to perform both these functions.

Separation of control plane based on these functionalities, which will

lead to a scalable architecture, is desirable and has not been fully

explored in the literature.

– Several failure models have been considered, including link failure,

switch failure etc. One of the areas, with scope for significant work is,

the effect of failure of the controller itself on the rest of the network.

– Latency is the most common metric that has been used to decide the

placement of controllers in a multi controller SDN environment.

Connectedness of the network or survivability is an important metric,

especially on networks that require high availability.

– SDN architecture inherently supports the end to end communication

principle, but this has not been fully harnessed. Attempting an edge-

core separation in SDN architecture is an important challenge.

• Data plane
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– Although some of the prior works do implement source routing, it’s

merits especially in SDN have not been fully demonstrated. Since the

entire path that a packet has to take to reach a destination in SDN, is

known aprior, source routing is an ideal solution. It requires further

investigation in conjunction with the end to end communication

principle.

– One of the major scalability problems on the data plane is due to the

limited memory on the switches. Scalability solutions, taking into

account this aspect of SDN, need to be developed.

– Data center traffic comprises of elephant and mice traffic. Mechanisms,

to ensure that SDN technology is fair to both in addressing the related

issues, is missing in the literature.

– Responding to link failure in source routed networks requires additional

effort as the switches are mere forwarding devices. A local corrective

measure without contacting the controller would be ideal and needs to

be studied.

Table 2.2 gives the issues and the solution methodology we propose to address the

issues considered in this work.
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2.5 Motivation for Further Investigation

A review of the literature in the area of SDN and related fields has led us to the

observation that, if capability of SDN is to be widely and completely harnesed,

its architecture must be modified so that it becomes more scalable and resilient

to failures in the context of both control and data planes. This is especially true

when we consider SDN in large data center networks.

Given below are the specific problems we tried to address in this thesis.

• On the control plane:

1. Employing a single controller, to manage the entire network, does not

adequately address the issues of diverse nature and latency

requirements of the applications. This also does not cater to the

varying traffic characteristics within different domains.

2. When a controller fails, the switches under its control may not

forward packets reliably. This may also affect the transmission of

packets between switches that are fully functional in other controller

domains.

• On the data plane:

1. The data plane has scalability issues due to (i) limited TCAM memory

on SDN switches and (ii) larger size of forwarding flow rules. This limits

the number of flow rules that can be stored on these switches.

2. In the event of a failure occurring in the data plane, the packet

forwarding imposes additional computation and communications

overhead on the control plane. Ideally, the control plane must enable

the data plane to handle failures locally.

2.6 Problem Statement

On the control plane, an edge core separation, ensures scalability. In terms of

network survivability, the network must be resilient to controller failure. On the
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data, plane the forwarding mechanisms must enable the end to end principle,

while being fair to all traffic and also being resilient to link failure. Here, the most

important design issue, is to ensure, that the control and data plane solutions, are

coherent and work well together.

With this understanding the following problem is addressed in this thesis

Design, implement and evaluate a scalable and resilient control plane and data

plane, in a software defined data center network.

Our research objectives are

• Scalable and resilient control plane Given a network consisting of

switches, and links connecting these switches, assign a switch to one of the

controllers {C1, C2 . . . Cn} such that

1. Ci can manage the communication, between the switches under its

control, without contacting any other controller.

2. If controller Ci fails then

(a) Switches managed by Ci are rendered non functional.

(b) All other switches are up and can communicate.

• Scalable control plane for the edge-core SDN model Given an edge-

core SDN network, to develop separate edge and core placement metrics and

design algorithms, for controller placement using these metrics.

• Scalable and resilient data plane Given a network consisting of switches,

and links connecting these switches, route packets from the source to the

destination such that

1. Scalability:

(a) The number of forwarding entries in the intermediate switches are

reduced .

(b) The controller to switch communication is reduced.

2. Fairness: The routing must be fair to both the elephant and the mice

traffic.
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3. Resiliency: In the event of node-link failure re-route the packets, with

as little communication with the controller as possible.

2.7 Scope of Work

Networks under a single administrative entity, forms the basis of the network

model used in this work. Large data center models are normally of this kind.

The controller placement problem can be analyzed with respect to various failure

models, however in this work, only survivability of the network when the

controller fails is, considered. Inter controller communication models are not

studied. Source routing is best suited for networks which are centrally monitored

and controlled. Therefore, the scope of this work is restricted to data center

networks that use source routing, with multiple controller domains. We focus on

the scalability and resiliency issues, with respect to both source routing and

controller placement problems, when we consider controller failures. The network

topologies in data centers are usually densely connected, in order to ensure, that

there are no oversubscribed links. Hence it is safe to assume that, in a data

center network, there exist switch disjoint paths between any pair of switches.

In the network model model considered for this work, the controller is placed

on a dedicated server. It is not collocated on any of the switches. An out of band

connection is assumed between the switches and controllers.

In this model, existing network connectivity among switches is considered and

it does not add or remove any switch or link to the network, in order to optimize

the solution of the problem considered.

2.8 Framework of the Proposed Work

As mentioned in the previous discussion the research contributions are limited to

the domains of the control and data planes. The research framework adopted has

been presented below.
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2.8.1 Control Plane

Scalability through edge and core separation: SDN uses a central controller

to handle multiple switches. This poses scalability issues since the controller has

two distinct functions namely.

i To continuously collect the network topology information and the traffic

statistics.

ii To install the forwarding rules in the switches along the path a packet has to

take, every time the first packet of a new flow is encountered.

Here, the controllers are divided, as edge controllers and core controllers. The

edge controller handles computations that need to be completed fast at the edge

itself. The core controller handles the core switches in the cloud or data centers.

The issue involved and addressed this regard is, optimizing the number of the edge

controllers and core controllers

Scalability through controller placement: The second issue addressed

in this thesis is to assign an edge switch to an edge controller and a core switch

to a core controller. In order to do this efficiently a placement metric has to be

chosen. The chosen metric may be different for edge and core controllers, as their

functionalities differ. Once a placement metric is chosen an algorithm has to be

developed to assign the switches as per the metric. This involves:

1. Formulating an edge controller placement metric, based on the functionality

of the edge controller. The metric must ensure data plane resiliency without

deteriorating the latency.

2. Formulating a core controller placement metric, based on the functionality

of the core controller. The metric must ensure data plane resiliency without

deteriorating the latency.

3. Designing and implementing an algorithm for edge switch assignment, to

edge controller using the developed edge metric.
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4. Designing and implementing an algorithm for core switch assignment, to

core controller using the core metric developed.

Resiliency of network during failure of a controller means that the switches

under its control, are no longer reliable, since it has lost contact with the controller,

even though all switches are functional. However, we would like to ensure that

this surely does not affect connectedness of the rest of the network. This involves

1. Evaluating the effect of edge and core controller failure on the network in

terms of connectivity, packet forwarding capability etc.

2. Ensuring that the network is resilient to controller failures.

2.8.2 Data plane

Scalability of data plane: The limited TCAM memory available on the SDN

switches and the increased size of the SDN flow rules, restrict incorporation of

more flow rules. Based on earlier motivating results, it can be said that source

routing provides an elegant solution to the scalability problem. This is because,

with source routing the path information is stored in the packet itself and not

on the switches. The switches therefore behave as simple forwarding elements

that look at the packet header and forward the packet accordingly. Definitely this

increases the packet overhead; however the overhead is within control for short

path lengths. This issue involves

1. Devising encoding schemes to ensure that the overhead imposed due to

insertion of path information into the packet, is minimized.

2. Developing a mechanism for multi controller forwarding, that takes care of

how the packet is routed between two controller domains, such as from the

edge to the core domain.

Resiliency of data plane: Data plane resiliency ensures that packets that are

in transit would not be dropped when a link on the path fails. Additionally,

corrective measures can be taken locally, at the switch level, without contacting
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the controller. This will reduce the latency, however, it is also a challenge since

the switches have limited intelligence in SDN. This issue involves:

1. Designing of a mechanism using which the switch can handle link failure; by

taking local corrective measures, using minimal resources of the switch and

with minimal controller communication overhead.

2.9 Summary

This chapter reviewed the literature that was published in the area of SDN;

focusing especially on the scalability and resiliency issue therein. The findings of

the review were summarized and some important lacunae which needed to be

addressed were listed. Based on these lacunae the research problem statement

and the objectives were developed and presented. This was followed by a section

on the scope of work and assumptions made. The detailed framework of the

research work was also discussed. Chapter 3 discusses the approach taken and

solution designed, to address the scalability and resiliency problems of the

control plane.
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Chapter 3

Building Scalable and Resilient
Control Plane

If you’re not prepared to be wrong, you’ll never come up with anything original.

-Sir Ken Robinson

3.1 Overview

This chapter addresses the controller placement problem i.e. the problem of

assigning a switch to a controller based on carefully chosen metrics, in a

multi-controller environment. A controller placement metric known as

subgraph-survivability and a controller placement algorithm, that uses this

metric, is presented in this chapter. We thoroughly analyses the survivability of

the software defined network in the event of a few a switch being non-functional

as a result of controller failure. The controller placement algorithm ensures that

rest of the network remains connected even when some switches become non

functional. The correctness of the algorithm is demonstrated using formal

proofs. Further the algorithm is evaluated against the random controller

placement algorithm, based on the Average Inverse Shortest Path Length and

Network Disconnectedness. The proposed algorithm is run on real topologies and

some synthetic topologies. The results obtained show that the proposed

subgraph-survivable controller placement algorithm performs better, especially

when large networks are considered.
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3.2 Logically Centralized, Physically

Distributed Controllers.

A centrally controlled network has many advantages as discussed in Chapter 1.

However, such an architecture is not scalable, has a single point of failure and a

weak response times as the number of switches grows. Hence, physically

distributing the controllers, while still maintaining a logically centralized control

gives the best of both worlds. The introduction of these multiple controllers gives

rise to the question of how the switches are assigned to a controller or in other

words the controller placement problem (Heller et al., 2012). The placement

metrics chosen depends on the network topology and the application domain.

There are two techniques by which the control plane can be made resilient.

One is through replication and the other is using partitioning. In the first

technique, a cluster of controllers is used to manage the network. Here, the

failure of one controller, makes the other redundant controller take over.

Although, this approach gives better resilience, it is still not scalable. The

second technique, partitions the network into multiple domains, each one

managed by its own controller. This method is scalable. Further, replicating the

controller in each of the domains makes it resilient too. This work focuses on

partitioning the network, rather than replicating the controllers.

3.3 Motivating Scenario

Randomly assigning switches to the controllers, especially in a data center, where

the network is expected to be up and available at all times, may lead to the

following problems

1. Although two switches that want to communicate, may belong to a single

domain, the intermediate switches on the path connecting them might belong

to different domains. This necessitates inter controller communication, to

ensure two switches under a single domain can communicate.
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Figure 3.1: Comparison of Different Controller Placement Scenarios

2. When a controller fails, the switches under its control cannot forward packets

reliably, since they do not obtain the forwarding rules. These non functional

switches may disconnect rest of the network.

This problem is illustrated in Figure 3.1. Figure 3.1(a) shows network topology,

with six switches s1 to s6. C1, C2 and C3 are three controllers and each can handle

up to two switches. The problem is to assign a switch to any one of the three

controllers, such that;

1. If the source and destination switch belong to a single domain, then all

switches along the path between them, must also belong to the same domain

2. If any controller fails, then the switches under other controllers can still

communicate or in other words the network is not disconnected.

In Figures 3.1(b), 3.1(c) and 3.1(d), the dotted blocks indicate controller

assignment. The switches within a dottted block are allocated to the same

controller. Considering that the switches are assigned to the controllers as shown

in Figure 3.1(b) where C1 = {s1, s3}, C2 = {s2, s5}, C3 = {s4, s6}. The removal

of any controller due to failure will not break the connectivity between the
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domains. However, it fails to satisfy the first condition given above. In order for

switches s1 and s3 under the controller C1 to communicate, s2, a switch under

C3, has to be contacted.

Considering the next scenario where the switches are assigned to the controllers

as shown in Figure 3.1(c) where C1 = {s1, s4}, C2 = {s2, s5}, C3 = {s3, s6}.

Although this satisfies the first condition, it fails to satisfy the second condition.

This is because, if controller C2 is removed, then s2 and s5 switches are unable

to forward packets and this causes the network to disconnect. Switches under the

control of C1 and C3 cannot communicate with each other.

Considering the third assignment of switches, as shown in Figure 3.1(d) where,

C1 = {s1, s2}, C2 = {s3, s6}, C3 = {s4, s5}. Here, if C2 controller fails, then

switches s3 and s6 are non functional. However, this does not cause the network to

disconnect. Switches under the control of C1 can still communicate with switches

under the control of C3. This holds true when any of the controllers fails.

Therefore, the switches must be assigned to controllers such that, removal of

any one controller does not cause the network to disconnect. This holds true,

only if the clusters of switches under different controllers are biconnected. The

proposed work discussed in this thesis is restricted to the case where only one

controller fails at any given time. One approach, to mitigate failure, is to build a

redundant cluster of controllers. This approach although expensive allows for

failover mechanism. However, in this work, the network is made more resilient in

the event of targeted attack on the cluster of controllers. Such a solution

complements the redundant controllers approach and makes the system more

robust.

3.4 Scalable and Resilient Control Plane

Placement Metric: The network under consideration here is a large densely

connected network under a single administrative control, such as data center

networks. Although, the controller placement algorithms can be designed for

different failure models, this work is confined to the network survivability on

40



controller failures.

Although latency is a commonly used placement metric, it is not relevant in

the data center models. As the average number of hops between a switch and the

controller is about 8 (Benson et al., 2010). Latency is therefore not a significant

factor for controller placement.

Data centers run applications that require high availability and fault

tolerance. Such networks are survivable if they continue to operate in the

presence of targeted attacks. In the proposed work, survivability is considered as

one of the performance metric. Survivability is ensured by providing diversity, so

that fate sharing does not occur. In networks this can be accomplished by

providing path diversity.

Data center networks are densely connected to ensure high availability and also

to make sure that the links are not oversubscribed. It is therefore safe to assume,

that switch disjoint paths between any source and destination switch exists. Two

paths are switch disjoint if they do not share any switches. The SDN model

that is proposed in this work, places the controller on a server and not on one

of the switches. The communication between the switch and the controller may

be carried out in two ways; using the existing network infrastructure or having

a separate set of links between the switches and the controller. The former is

referred to as in band connection while the later is referred to as out of band

connection. In our work we consider only out of band connection from the switch

to the controller. Further, the controller placement problem is solved, without

changing the existing network topology i.e. without adding or removing any new

link or switch, to or from the network.

Controller Placement Model: Given a network consisting of switches, and

links connecting these switches, assign a switch to one of the controllers

{C1, C2 . . . Cn} such that

1. Ci can manage the communication, between the switches under its control,

without contacting any other controller.
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2. If controller Ci fails then

(a) Switches managed by Ci are rendered non functional.

(b) All other switches are up and can communicate.

The Network Model: The network is represented as an undirected graph

G = (V,E), wherein node vi belonging to the vertex set V = {v1, v2, . . . , vn}

represents a switch and n = |V | gives the total number of switches and the edge

set E represents the links connecting the switches. Vertices which are incident

with a common edge are said to be adjacent. Two distinct adjacent vertices are

neighbours. The set of neighbours of a vertex v is given by N(v). Let

C = {c1, c2, . . . , ck} denote the set of controllers.

Subgraph: Given a graph G = (V,E) and set of vertices S s.t. S ⊆ V , then the

subgraph of G induced by S is denoted as G[S] = (S,ES) where

ES = {uw, s.t.E : {u,w} ⊆ S}.

Connected Subgraph: Given a graph G = (V,E) and a set of vertices S where

S ⊆ V , then the subgraph G[S] induced by S is connected if there exists a path

P = {u, vi, vj, . . . , w} between every pair of vertices {u,w} of S such that all

vertices of P ⊆ S.

Reduced Graph: Given a graph G and a set of subgraphs

SS = {S1, S2, . . . , Sk} such that
⋃

1≤i≤k V [Si] = V [G], G is reduced to R by

contracting the edges within each subgraph Gi, such that all vertices and edges

in a subgraph collapses to a single super vertex. The number of vertices in the

reduced graph is equal to the number of subgraphs in SS which is k .

Subgraph-Survivability: Given graph G is to be reduced to R, let Pi,j denote

the path between any two super vertices i and j of R. Let P k
i,j denote the kth

path between i and j. Then C(P k
i,j) = cx such that cx is the controller, to which

nodes on path Pij are connected . Subgraph-survivability is ensured if
⋂

(C(P k
i,j))

for any two k = ∅

Problem Definition Given a connected, undirected graph G(V,E) where

n = |V | is the total number of nodes in the graph, m is the maximum number of
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nodes in a subgraph, the problem is to find a set of subgraphs

SS = {S1, S2, . . . , Sk} such that,

i. |Si| ≤ m

ii. k is minimal and k > 0

iii. S1 ∪ S2 ∪ . . . ∪ Sk = G

iv. ∀i, jSi ∩ Sj = ∅

v. for any node w ⊂ Puv if (u, v) ⊂ Si then w ⊂ Si

vi. G is subgraph-survivable

3.4.1 Subgraph-Survivable Controller Placement

Algorithm

Subgraph-Survivable Controller Placement (SSCP) approach is given in Algorithm

1. It groups the switches of a given data center network and assigns switches within

each group to a controller such that it is subgraph-survivable. The algorithm

proceeds as follows

• Step 1: Depth First Search (DFS) traversal of the graph is carried out and

the tree edges and back edges are labelled. Let T be the DFS tree thus

obtained.

• Step 2: In this DFS tree T , m or less number of adjacent nodes are grouped

together into subgraph Si such that the following are true

– S0, the root group of the DFS tree has a single child

– Si, the non root group of the DFS tree, which has a child group Sj such

that some group belonging to the subtree rooted at Sj, has a back edge

to an ancestor group of Si. In other words if the graph G is reduced on

the basis of the subgraphs obtained above, the resulting graph R will

have no articulation point.
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Figure 3.2: SSCP algorithm output for the example scenario

Thus, if any subgraph, i.e. controller domain, is rendered non-functional as a

result of its controller failing, the remaining subgraphs are still connected.

fbnGlobal in the algorithm is a pointer that points to the farthest child node

which has a back edge to an ancestor node of the current node. The DFS tree,

obtained previously is traversed and the nodes are grouped together, as long as

fbnGlobal points to a descendant node. This ensures that the group formed is not

an articulation group. When the node pointed to by fbnGlobal is reached, a new

group is started and fbnGlobal is updated as in line 14 of Algorithm 1. Further,

a new group is started when a node with two or more children are reached, as this

may disconnect the graph G. Also, the unexplored branches in the tree are next

traversed, as shown in line 18 to 25. The algorithm stops once the entire tree is

explored.

For the example topology given in Figure 3.1(a), the DFS tree and the

subsequent subgraphs S1, S2 and S3 are obtained by Algorithm 1 as shown in

Figure 3.2.

The algorithm takes linear time since it involves:

1. obtaining the DFS tree from the input graph G, whose complexity is O(|V |+

|E|)

2. a traversal of the DFS tree itself, step 2 through 28
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Algorithm 1 Subgraph-Survivable Controller Placement algorithm

Input: The graph G(V,E); m the maximum number of nodes allowed in a
subgraph

Output: S the subgraphs
1: u← DFS(G)
2: fbnGlobal←∞ {fbnGlobal is a pointer the farthest back edge node}
3: fbnLocal ← 0 {fbnLocal is a pointer to the farthest back edge node

encountered in the current subgraph grouping}
4: repeat
5: while (!fbnGlobal)and(u.child 6= null)and(count(u.child) < 2)or(n <

m)or(u 6= null) do
6: Si ← Si

⋃
{u}

7: fbn ← max(fbn,max(u.fbn)) {u.fbn is an array with the depth of the
node which has a back edge to u}

8: path← u.path
9: n+ +

10: u← u.child
11: end while
12: n← 0
13: fbni ← fb
14: fbnGlobal← maximum(fbnGlobal, fbn)
15: fbn← 0
16: i+ + {subgraph index}
17: if u == null then
18: u← unexplored branch
19: fbnGlobal← maximum(unexplored fbn, unexplored fbn i)
20: end if
21: if (u.child) > 1 then
22: if path = left then
23: unexploredbranch = right child(u.child)
24: end if
25: else
26: unexploredbranch = left child(u.child)
27: end if
28: unexploredfbn = maximum(u.fbn)
29: until unexplored = null
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The time complexity of this algorithm is therefore O(|V |+ |E|)

3.4.2 Correctness Proof

Lemma 1. The subgraph Si of G obtained using the SSCP algorithm is connected.

Proof. The subgraph Si is obtained by picking adjacent nodes, which are connected

by tree edges in the DFS tree T of graph G, in lines 5 to 11. Since the tree edges

of T represent adjacent nodes in graph G, Si is also connected.

Lemma 2. G obtained by the SSCP algorithm is subgraph-survivable

Proof. The following loop invariant is used:

In the DFS tree T , at the start of the while loop, the nodes of the subgraph Si

under consideration, have a descendent node k. This node has a back edge to a

node which is an ancestor of nodes in subgraph of Si. This is true in all cases

except for the root and leaf subgraph.

Initialization

Prior to the first iteration of the loop, subgraph i = 1 is empty

Maintenance

Safenode: This refers to a node which has a child node with a back edge to one

of the subgraph that is obtained thus far, i.e. a parent subgraph.

In the DFS tree T , a Farthest Back Edge (fbn) node is the farthest node, from

which, there is a back edge to any of the subgraphs Sa that is obtained thus

far. The DFT is traversed down, until the fbn node. The traversed nodes, called

safenodes, are added to the current subgraph Si, except for fbn, provided the size

of subgraph is not greater than maximum allowed. This ensures that an ancestor

of current subgraph Si has a back edge from a descendent node of Si as shown in

Figure 3.3.

The loop in line 4 to 28, of Algorithm 1, ensures loop invariance by adding only

safenodes to the subgraph.

Termination

Except for the root and leaf subgraph node, all subgraphs have a child node

pointing to a parent subgraph.
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FBE

Si

Sa

Not an articulation subgraph

Figure 3.3: Creation of subgraphs by grouping nodes in SSCP

Theorm 3. Given a graph G the SSCP algorithm gives a set of connected

subgraphs S = {G1, G2, Gk} s.t.
⋃

(1<=i<=k) V [Gi] = V [G] and G is

subgraph-survivable.

Proof. The algorithm is run until all nodes of the graph G are included in some

graph Si as indicated in the while loop in line 4 to 28. Hence based on Lemma 1

and Lemma 2, the Theorm 3 is proved.

3.4.2.1 Connected-Random Controller Placement Algorithm

In random controller placement algorithm, a node is randomly assigned to a

controller, such that, nodes belonging to a controller are all connected to each

other.

The algorithm begins with a subgraph consisting of a randomly chosen node.

Next, one of the neighbors of the subgraph is chosen and included in the subgraph.

This ensures the nodes of the subgraph are connected. This process is repeated
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until a maximum size of subgraph is reached or there are no more nodes in the

neighborhood

The process is repeated starting from any unassigned node in the graph, until

all nodes are assigned.

Algorithm 2 Connected-Random Controller Placement algorithm

Input: The graph G(V,E); m the maximum number of nodes allowed in a
subgraph; random node u.

Output: S the subgraphs
1: i = 0
2: n = 0
3: repeat
4: while (n < m)and(u 6= null) do
5: i = Si

⋃
{u}

6: n+ +
7: assigned(u) = true
8: updateNi {include unassigned neighbours of u into Ni}
9: u = random(Ni)

10: end while
11: i+ +
12: until assigned(V ) = true

The Connected-Random Controller Placement (CRCP) algorithm, given in

Algorithm 2 begins by assigning a vertex u to the subgraph Si. A neighbour set

Ni maintains all the neighbours of the subgraph Si. The next node to be added

to the subgraph Si is chosen randomly from the neighbour set Ni. The subgraph

formation stops when it has the required number of nodes or there are no more

nodes to be added. The next subgraph formation starts with any unassigned node

and continues till there are no more unassigned nodes in the graph G.

3.5 Evaluation

The algorithm is implemented and analyzed in Matlab. The performance of the

SSCP algorithm is evaluated by comparing it with the CRCP based on proposed

evaluation metric Network Disconnectedness.

We define Network Disconnectedness as
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Figure 3.4: Network Topologies used for Evaluation

ND =
DP

CP
(3.1)

Here, DP is the number of disconnected pairs of nodes after a subgraph is

removed and CP is the total number of connected pairs of nodes in the graph G

before the subgraph is removed. This metric is a direct measure of how many paths

in the graph are disconnected, as a result of a controller failing or in other words

a subgraph removal. If ND has a value 1, then it indicates total disconnection

and a value of 0 indicates no disconnection.

The algorithm is also studied using the widely used measure such as, Average

Inverse Shortest Path Length (AISPL) (Latora and Marchiori, 2001), which is

obtained using the formula

AISPL =
1

N(N − 1)

∑
i 6=j

1

Lij

(3.2)

49



Table 3.1: Comparison of CRCP and SSCP Algorithms
Legend: CRCP: Connected-Random Controller Placement; SSCP: Subgraph-
Survivable Controller Placement; AISPL: Average Inverse Shortest Path Length;
ND: Network Disconnectedness

Topology No. of
Nodes

No. of
Edges

CRCP SSCP % Improvement

AISPL ND AISPL ND AISPL ND

ATT
North
America

25 56 0.2958 0.3669 0.4069 0.2300 37.5 37.2

Sprint 10 17 0.2685 0.5333 0.5593 0.2000 73.5 62.4

Telecordia 15 28 0.2933 0.7429 0.4849 0.2571 65.3 65.39

Topology 1 11 16 0.2564 0.7091 0.3818 0.3455 48.9 51.2

Topology 2 12 20 0.2816 0.4545 0.4343 0.3182 54.2 29.9

where N is the number of nodes and Lij is the shortest path length between

nodes i and j

It must be noted that, non-existent path between disconnected nodes

contributes a zero to the final value and hence, AISPL gives information about

degree of disconnectedness along with average shortest path. A high value of

AISPL indicates connectedness and a low value indicates higher

disconnectedness.

The proposed algorithm is run on network topologies like Sprint, TelCordia,

ATT North America (Knight et al., 2011) and two other synthetic topologies which

are shown in Figure 3.4a-e. However, the proposed work can be applied to any

network that needs to be partitioned and therefore some Internet topologies are

considered along with data center topologies.

Table 3.1 compares the values of AISPL and ND, obtained when using the

CRCP and SSCP algorithms, for various topologies. The table shows that the

value of AISPL is more for CRCP when compared to that for SSCP. This indicates

that with CRCP we have more disconnectedness and longer average path lengths

It may also be observed that the value of ND is less for CRCP when compared to
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that for SSCP. Both these changes in the values show that the network is better

connected with the SSCP. Hence, it may be concluded that with SSCP the nodes

that get disconnected from each other are the ones that belong to the removed

subgraph only and the rest of the network remains better connected. Hence,

the proposed algorithm helps make the network scalable by assigning switches to

multiple controllers. It also makes the network resilient, since the removal of a set

of switches whose controller has failed, will not disconnect the rest of the network.

3.6 Summary

In order to ensure scalability, multi-controller SDNs are steadily gaining

importance. Ensuring the survivability of such networks, in the event of a

controller failing, is also critical to modern applications. Motivated by this need

for scalability and resiliency in the control plane, a placement metric called

subgraph-survivability and an algorithm for controller placement was proposed in

this chapter. The algorithm ensures scalability and resiliency in the SDN

multi-controller scenario. Apart from this intended application, the algorithm is

significant in other domains too, such as, road transport system and social

networks. Theoretically, this research proposed an algorithm to obtain k

subgraphs of maximum size m such that k is minimal and there exists

biconnectivity between the subgraphs. This algorithm can be used in any

networked domains such as social networks etc. to ensure that the removal of a

subgraph does not fragment the rest of the network. Chapter 4 extends the

solution presented here to the Edge-core SDN model.
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Chapter 4

Scalable Controller Placement in
Edge-Core SDN

Being out on the edge, with everything at risk, is where you learn and grow the

most.

-Jim Whittaker

4.1 Overview

SDN when deployed in networks that includes, a large number of networking

elements and heavy traffic flow volume, does not scale well. A single centralized

controller can not efficiently manage the networks requirements. Distributed

controller architectures are recommended in such cases. The edge-core SDN is an

extension to this classical SDN architecture. Here, the data plane is divided into

edge and core networking components which are being managed by edge and

core controllers on the control plane. Classical SDN architectures generally use

static mapping of switches to controllers. When traffic conditions change, such

static allotment may lead to unbalanced assignment of load among the

controllers. This chapter presents a dynamic controller placement algorithm for

the edge-core SDN architecture, using a different set of metrics for the edge and

core of the network. The switch migration procedure for transfer of switch from

one controller to another, necessary for dynamic load balancing is discussed next.

Further, mechanisms by which source routing helps to better establish the
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Figure 4.1: Edge-Core SDN architecture

edge-core SDN architecture, is also presented.

4.2 Edge-Core Model

The network can be categorised into three components, namely: the end hosts,

edge switches and core switches. The end hosts send and receive packets. The

edge switches are connected to the end hosts and they form the ingress and egress

switches. The remaining switches are the core switches and they form the network

fabric. Complex network services and policies are usually implemented at the edge

switches, while basic packet forwarding is carried out at the core switches. Since,

the functionalities carried out by these two sets of switches are different, ideally

they should be managed by different controllers. This is the idea behind edge-core

SDN architecture, i.e. it separates the edge of the network from the core, while

also decoupling the control and data plane, as in regular SDN. The edge-core SDN

architecture is shown in Figure 4.1

In the classic SDN architecture, a single controller that has a complete view

of the network topology, manages the data plane on all the switches. Such an

arrangement might lead to reduced controller performance and scalability
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concerns, especially in large-scale networks such as data centres or wide area

networks. For example, a controller might not be able to handle the heavy traffic

flows initiated within the network, due to its limited processing capacity. As a

consequence some packets might be discarded without being processed. At the

same time, the controller is also burdened by the responsibility of collecting the

network and traffic status information, in order to maintain an up to date

network view. Additionally, a single centralized controller has a single point of

failure problem. All these factors necessitate a logically centralized but

physically distributed control plane. Although placing multiple controllers can

overcome the above limitations, new challenges arise, such as how many

controllers are required and how the switches are assigned to these controllers.

Most of the available literature discusses the static controller placement.

Load balancing schemes in multi controller scenarios are largely unexplored.

Dynamically adjusting the controller placement in accordance with the changing

traffic load on each switch is desirable. This is a motivation to develop a

dynamic controller placement algorithm that balances the load between the

controllers, by choosing the optimal switch for migration, while also avoiding

packet loss. Further, different and appropriate parameters, for the edge and core

of SDN, are chosen, depending on their functionalities.

4.3 Controller Placement in Edge-Core SDN

Architecture

The network topology of an edge-core SDN that uses source routing, is modelled as

an undirected graph G(V,E) where vertex set V represents the set of switches and

edge set E represents the set of links between these switches. Here V = Sc ∪ Se

where Sc is the set of core switches and Se is the set of edge switches. Let C

represents the set of controllers, where C = Cc ∪ Ce where Cc is the set of core

controllers and Ce is the set of edge controllers. Switches in Sc have to be assigned

to one of the controllers in Cc and the switches in Se have to be connected to a
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controller in Ce. Once this initial switch allocation is done, the next step is to

balance the load on the edge controllers according to the varying traffic conditions.

Core Subgraph: Given an undirected graph G = (V,E) and a set of vertices

Sc s.t. Sc ⊆ V , then the subgraph of G induced by Sc is denoted as G [Sc] =

(Sc, ESc) where ESc = {uw, s.t.E : {u,w} ⊆ Sc}.

Edge Subgraph: Given an undirected graph G = (V,E) and a set of

vertices Se s.t. Se ⊆ V , then the subgraph of G induced by Se is denoted as

G [Se] = (Se, ESe) where ESe = {uw, s.t.E : {u,w} ⊆ Se}. The controller

placement problem in an edge-core SDN architecture can be described using the

following steps

• In the core network, given a set of core controllers Cc = Cc1, Cc2, . . . , Ccn, a

switch in Sc must be assigned to any one of the controllers Cci using a metric

that is relevant to the core network.

• In the edge network given a set of edge controllers Ce = Ce1, Ce2, . . . , Cen,

a switch in Se must be assigned to any one of the controllers Cei using a

metric that is relevant to the edge network

• Dynamically balance the load among the edge controllers in accordance with

the changing traffic pattern by

– Choosing the best candidate switch Sei to be migrated

– Formulating a switch migration procedure to migrate a switch sei from

cei to cej

4.4 The Edge-Core SDN architecture

The edge-core SDN architecture is an attempt to overcome the shortcomings of

SDN, by adopting the insight underlying Multiprotocol Label Switching (MPLS).

The first issue is that the SDN hardware switches in the data plane, must support

look up over multiple fields in order to look for matching entries. This makes

the switch hardware design more complex which is against the promise of a simple
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hardware in an ideal network. The second issue is that the end host characteristics

and network core characteristics are not treated differently. For example, if the

external network protocol has changed from IPV4 to IPV6, there will be a change

in the corresponding behaviour of the core network too. Also implementation of

network services and policies must ideally be carried out in a location which is as

close to the origin of data as possible i.e. the edge of the network. The edge-core

SDN architecture aims to address these issues by separating the edge from the

core network and at the same time it retains the flexibility of centralized control

plane provided by regular SDN.

In the edge-core SDN architecture the edge and core are controlled by different

controllers.The responsibility of edge switch is to provide complex services such

as network security and policy implementation.The core on the other hand has

only one duty, that of carrying out basic packet forwarding. As shown in the

4.1 when a host h1 sends a packet it first reaches the edge switch s1, which then

contacts the edge controller Ce.The controller installs the flow rule on the switch,

after taking into consideration the policies defined for that flow. Now the edge

switch sends the packet to the core.The core switches contact the core controller,

which install the forwarding rules on all the switches along the path the packet

has to take. However, if forwarding is carried out in this manner, then the core

switch has to carry out the matching action on its forwarding table for all packets.

To avoid this we use the source routing which allows the path information to be

embedded in the packet header itself. For example in Figure 4.1 if h1 has to send

a packet to h2, then the egress edge switch s1 will contact the edge controller Ce

which will obtain the entire path information from the core controller Cc. This

path information is passed to the edge switch s1, which will then embed it in the

packet header and forward the packet. When this packet reaches the switch s2

and all the subsequent switches along its route to h2, the switch need not contact

the controller nor perform a forwarding table match action. It can simply forward

the packet using the path information embedded in the packet header. Source

routing is ideal in such networks, where a central entity has the view of the entire
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network, and can take decisions regarding the path along which the packet has

to be forwarded. Delegating this decision to the switch is counter intuitive to

the design philosophy of SDN, but provides an elegant solution to the edge-core

design.

4.5 Controller Placement

The controller placement problem addresses the questions of how many controllers

are required for a given network and how the switches are managed between these

controllers. Here, we extend this to the edge-core SDN with respect to edge and

core controllers. The choice of a good metric for controller placement is critical

for the efficient transfer of packet in the network. Some of the characteristics

of SDN architecture that might influence the choice of a metric are switch to

controller latency and PacketIn messages. An increase in the latency between

the switch and controller degrades the performance, which is undesirable, since

this is a communication cost that is peculiar to SDN and is absent in traditional

networks. PacketIn are sent from the switch to the controller, when the switch

encounters a packet for which it has no forwarding information available. This

happens when the first packet of a flow hits the ingress switch. PacketIn messages

constitute a large portion of the load on the controller.

4.5.1 Controller placement in Core

As discussed earlier we choose source routing as the forwarding mechanism for the

edge-core architecture. Consequently, the core switches need not contact the core

controllers to forward these packets, since the path information is embedded in the

packet header. The switch to controller latency therefore is not relevant in core

network. Also the PacketIn messages are not generated by the core switches for the

same reason. The core controllers function is to collect and maintain information

about the core network, such as topology and switch status information. Hence,

the appropriate metric to use in the core network is a load on the controller, in
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terms of the number of switches assigned to it.

Algorithm 3 Core Controller Placement

1: Th = n/k

2: Availableset = Cc

3: i = 1

4: sci.color = GRAY

5: sci.π = Cci

6: Ci.load = 1

7: for scj ∈ Sc − sci do

8: scj = WHITE

9: scj.π = Nil

10: ENQUEQUE(Q, scj)

11: end for

12: while Q not empty do

13: sx = DEQUEQUE(Q)

14: for sx. ∈ ADJ‖sci‖ do

15: if sx.Color == WHITE then

16: sx.Color = GRAY

17: sx.π = Cci

18: ENQUEQUE(Q, sx)

19: Cci = Cci + 1

20: if Cci .load ≥ Th then

21: Availableset = Availableset− Cci

22: i+ +

23: end if

24: end if

25: sx.Color = BLACK

26: end for

27: end while

Algorithm 3 presents the Core Controller Placement algorithm. Here given a
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core network represented as a graph G [Sc], with k core controllers in the set Cc

and n core switches, the algorithm does a the breadth first search of the graph,

assigning switches to a controller until it reaches the controllers threshold Th,

after which the switches are assigned to the next controller until all switches are

assigned to a controller as shown in Algorithm 3.

4.5.2 Controller placement in Edge Network

The edge network comprises of those switches that are connected directly to the

end host and therefore are the first hop physical switches that a packet will hit.

On receiving the first packet of a flow, for which the edge switch has no

forwarding information, it contacts the edge controller in order to get the flow

rules. The latency between the switch and controller is therefore an important

metric. Also the PacketIn messages generated as a result of this switch to

controller communication constitutes a significant load on the controller. This

depends on the traffic pattern and changes over time. Hence, the load on the

controller is another metric for controller placement. Given an edge network

represented as a graph G [Se], with k edge controllers and n edge switches we

assign switches to controller such that the metric of switch to controller latency

and controller load are optimised as shown in Algorithm 4

4.5.2.1 Dynamic Controller Load balancing in Edge

Algorithm 4 assigns switches to the controllers initially without considering the

varying load on controllers due to PacketIn messages. However, once the traffic

flow starts, over a period of time, one of the controller may be heavily loaded while

the others remains under utilized, due to the variations in network traffic volume

in different parts of the network. Algorithm 5 presents a method to dynamically

balance the load among controllers depending on the traffic load on the controller.

The algorithm finds an optimal switch that has to be migrated from the heavily

loaded controller. A proper switch migration algorithm which ensures that no

packets are dropped during the migration is also suggested in Algorithm 6.
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Algorithm 4 Controller Placement in Edge

1: Th = n/k

2: Availableset = Ce

3: i = 1

4: for sei ∈ Se do

5: for cei ∈ Availableset do

6: if Latency(sei, cei) == MIN then

7: sei.π = cei

8: cei.load = cei.load+ 1

9: if cei.load ≥ Th then

10: Availalbeset = Availabeset− cei
11: i+ +

12: end if

13: end if

14: end for

15: end for

A SDN enabled switch may have multiple controller connections at the same

time. The controller can play three different roles with respect to switches, namely

Master, Slave and Equal. A master controller will have full control over the switch.

It receives all the messages from the switches and it can install flow rules on the

switch flow tables. A switch can have only one master controller at any given time.

Equal controller is similar to a master except that a switch can have multiple equal

controllers at the same time. A slave controller on the other hand can monitor the

network topology status, but it cannot edit the flow tables. Controllers operating

in these three roles enable a switch to seamlessly migrate from one controller to

another. The switch migration is carried out using the following steps

1. The target switch sends equal role message to current controller to initiate

the migration

2. Upon receiving confirmation from the current controller, the switch sends
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master role request to target controller

3. Finally the switch sends slave role request to current controller

Algorithm 5 Dynamic Load Balancing

1: for each PacketIn message from sei do

2: Toti = Toti + 1

3: if 100th PacketIn message at controller then

4: for edge switch sei do

5: Ri = (1− w) ∗Ri + w ∗ Toti
6: end for

7: if c.load ≥ Tc then

8: for cej ∈ neighbour[c] do

9: Getload(cej)

10: if cej.load == MIN then

11: Ctarget = cej

12: end if

13: end for

14: for edge switch sei do

15: sei.weight = B ∗ (sei.degree/Maxdegree) ∗ (Ri) ∗ 10 + a ∗ sei.latency

16: if sei.weight == MAX then

17: Starget = sei

18: end if

19: end for

20: SwitchMigration(c, Starget, Ctarget)

21: end if

22: end if

23: end for

Algorithm 5 begins with a load statistics collection module, that runs on the

controller, which collects the information about switch load. The load on the

edge controller is mainly due to the PacketIn messages from the switches. A list
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data structure is maintained in the controller module where the switch-id along

with the running average of the number of PacketIn message received is stored.

Running average is used since instantaneous average will not reflect the arrival

rate of PacketIn messages in the past and focuses only on the present load and

this may lead to unnecessary switch migrations. The degree of switch in terms of

connections, is an important parameter since more packets will flow through a

switch with higher degree. The algorithm calculates the load on the controller

after every 100th packet it receives. If the controller load is above the threshold

Tc, then the switch migration procedure will be initiated. For this the controller

selects a target switch. The controller then collects the load information from its

neighbouring controllers. The controller with the least load will be taken as the

target controller. Finally the target switch is assigned to the target controller

without affecting the ongoing packet transfers in the network as shown in

Algorithm 6

Algorithm 6 SwitchMigration(C, S, Ct)

1: S sends equal role message to current controller C
2: S sends master role request to target controller Ct

3: S sends slave role request to C

4.6 Results and Analysis

The algorithms presented above are evaluated in a simulation environment built

using Mininet (min, 2014) for the data plane and FloodLight (flo, 2014) for the

control plane. The network topology considered is a jelly fish topology (Singla

et al., 2012) with 250 switches and 300 end hosts. Since Mininet does not have

a built in traffic generation tool, iperf and ping commands were used to generate

traffic. Additionally, a FTP server is run on one host and clients on the other

host.

Load on Controller: The load on the controller is measured as the number of

PacketIn messages reaching the controller per second. The threshold load is set

at 600 PacketIn messages. Figure 4.2, shows that at 70 second, the PacketIn
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Threshold line

Figure 4.2: Effect of excess load on controllers with and without dynamic load
balancing

arrival rate is made to exceed the threshold. In the case of a single controller

represented by the blue line, the packet arrival rate remains in this state and this

may degrade the controller performance. A multiple controller scenario,

consisting of Controller A and controller B, are represented by red and yellow

lines respectively. At 70 second the load on controller A exceeds the threshold at

which point the migration procedure starts. This procedure transfers some

switch from heavily loaded controller A to lightly loaded controller B. This

results in the flow request rate at controller A gradually decreasing and the load

getting more or less balanced between the two controllers at 90 sec. The switch

migration procedure reduces the overloading of the controller gives a stable

controller performance.

Response Time: In order to evaluate the algorithms effect on the response time

of the controller, it is evaluated against a growing number of network switches.

From the experiments it is observed that the response time increases when the

number of flows and network elements increase, as is shown in Figure 4.3. It

can be seen that the response time of a single controller represented by blue line

increased, as the number of switches and hence the traffic in the network increased.

This is because an increase in the number of switches and packet flows means, that
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Figure 4.3: Response time of controller with and without dynamic load balancing
as network size grows

the controller is busy collecting the network state information and updating the

flow tables, leading to degraded response time. The growth rate of response time

of controller A in a multi controller scenario, where dynamic load balancing is

carried out, is observed to be slower. This is because the load on the controller

A is shared with controller B. However, it is not exact half of the value obtained

with a single controller, because of the overhead caused by the switch migration

procedure and the fact that the load is approximately balanced.

Effect of switch migration: The switch migration requires multiple round of

communication between the target switch, and the current and target

controllers. Response times of 50 PacketIn messages for controller A, are plotted

before and after migration. Figure 4.4 shows the increase in response time just

before migration at 60 seconds, after which it stabilizes. This is due to the

additional packets exchanged between the controllers and the switches. But no

loss of message or duplication was observed. The migration procedure had

minimal impact on response time.
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Figure 4.4: Effect of switch migration on response time of controllers

4.7 Summary

This chapter presented the controller placement algorithms for the edge-core

SDN architecture. Having two sets of controllers, one each for the edge of the

network and the core of the network, was found to be a better design since the

the functionality of these two controllers are different. Accordingly, having a

different set of metrics for these two domains was also essential. Source routing,

wherein the path computation is carried out at the edge, became a good fit for

the edge-core SDN. Since source routing was used, the load on the core controller

was fairly stable. However, it varied with time at the edge controller. A dynamic

load balancing controller placement algorithm with switch migration, so that

there was no disruption to the ongoing packet transfers, was also presented. The

algorithms were evaluated using the jelly fish topology in Mininet using the

FloodLight controller. The results show that the algorithms performed good

load balancing between controllers with minimal interruption due to migration.

Although source routing proved to be beneficial in this scenario, it can be further

harnessed to provide a scalable and fair forwarding of packets in the data plane,

as is presented in Chapter 5
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Chapter 5

Scalable and Fair Forwarding of
Elephant and Mice Traffic

If one ox could not do the job they did not try to grow a bigger ox, but used two

oxen. When we need greater computer power, the answer is not to get a bigger

computer but to build systems of computers and operate them in parallel.

-Rear Admiral Grace Hopper

This chapter presents a source routing based forwarding mechanism which ensures

minimum memory utilization on the switches, making it scalable. It provides

equal priority to both elephant and mice traffic. The chapter begins with an

analysis of the reasons for choosing source routing as the forwarding mechanism

for data packets. Subsequently, the challenges and opportunities in making the

flows scalable and fair are presented. This chapter also discusses the use of labels

for the purpose of conveying policy information. Use of labels allows routing

decisions to be made at the edge of the network, making the network core simple.

Based on these observations an elegant solution, which combines source routing

with flow splitting is presented. This algorithm splits large elephant flow into

smaller mice flows and distributes them on multiple paths. Further, it ensures

that latency sensitive mice flows are not slowed down by elephant flows. The

proposed solution is analyzed, with regard to flow table memory requirement,

processing time on switches and the number of communications between controller

and switch. Later in the chapter the experimental set up, results and analysis are

presented.
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5.1 Overview

SDN controllers contain information about the topology and traffic of the entire

network. The controller can hence take centralized decisions about packet

routing. It can also react dynamically, to changes in the network traffic and

redirect flows accordingly. SDN routing is significantly different from the

distributed routing algorithms used in traditional networks, wherein forwarding

decisions are taken locally by the switches. Routing algorithms, which are

essentially distributed across switches in traditional networks, are now executed

in the central controller. Path computations are done, even before the actual

flow begins, using the information available at the controller namely; the

network topology and traffic status information. In traditional networks, policy

enforcement is carried on a switch by switch basis, mostly in the form of

configuration changes. However, SDN allows policies enforcement from a central

location. Absence of switch by switch configuration reduces the Operational

Expenses (OPEX) in networks. Replacing manual configuration by programs

reduces the error rate.

Although, SDN has a centralized view of the network and supports network

programmability, it faces scalability issues. Figure 5.1 shows an example network,

wherein a packet is routed from source host s to destination host d. Since the

switches are decoupled from their control planes, when the first packet of a flow

arrives at a switch, the switch does not have the necessary information to handle

the packet. Hence, the switch has to contact the controller to obtain the forwarding

information. Once this forwarding rule is obtained, it can be stored on the switches

flow table, to be used by subsequent packets of the same flow.

In order to forward the packets of a flow, five communications, depicted by

dotted lines in the Figure 5.1, between the controller and switch, are necessary.

Switch s1 first contacts the controller in order to obtain the flow rules. Since the

controller is aware of the entire path the packet has to take, in order to reach the

destination d, it establishes contact with the switches S2, S3 and S4, that are along

the path of the packet, and proactively installs the forwarding rule. This avoids
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the switches from having to contact the controller. In spite of these intelligent

measures by SDN, the following two issues persist and cause scalability concerns:

(i) Excessive communication between the controller and the switch.

(ii) Space requirement on TCAM based flow table, to store the forwarding rules.

Figure 5.1: Scalability issues in the data plane of SDN

The traffic characteristics of the data center network is significantly different

from that of the Internet. In data centers, less than 10% of all flows are elephant

flows and the rest are mice flows. However, elephant flows account for more than

80% of the entire traffic volume i.e. majority of flows in the data center, are

short, but a large number of the packets belong to a few long lived flows (Benson

et al., 2010). Care must be taken to ensure that, the routing algorithm designed

for data center, must cater to both latency sensitive mice flow and throughput-

sensitive elephant flows. Hence, any routing algorithm must take into account the

unique characteristics of data center network topology and traffic patterns. In this

work we propose to make routing in SDN scalable and at the same time making

it fair for both mice and elephant traffic.
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5.2 Scalability in SDN: Destination Based

Routing vs. Source Routing

5.2.1 Challenges

Switches, in networks that separate the control plane from the data plane and use

destination based forwarding, need to update their flow tables when a new packet

arrives. This situation is encountered when the switch receives the first packet of

every flow. A new flow table entry is then done by the controller, for every switch

along the path of the packet. Such a scenario results in the following scalability

issues.

• R1: Forwarding table size: Limited size of TCAM based flow tables on the

switches.

• R2: Forwarding entry size: The size of forwarding entries are individually

large, measuring around 15 field tuples, thus requiring approximately 356

bits. (sci).

• R3: Scalability of the controller: In order to maintain a centralized view, the

controller has to periodically collect information about network statistics. It

is further burdened with having to install the flow rules on the switches.

5.2.2 Opportunities

A routing algorithm which stores very little information in the switches and

requires minimal communication between the switch and controller is highly

desirable. This requirement can be handled by using labels to route packets.

Since the entire path, from source to destination, is computed in the controller

before the flow begins, the path information can be stored in the packet header

and need not be stored as forwarding rules on the switches along the path. This

implies that routing decisions are carried out at the edge, while keeping the core

network simple. The path information is conveyed only to the ingress switch and
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not to all the switches along the path. This essentially addresses the above

scalability issues R1 and R2, as no information is stored in the switches. In

addition it fulfils requirement R3, since the controller does not install flow rules

in intermediate switches.

Traditionally, source routing has not been widely accepted, due to the following

reasons.

• Overhead incurred as a result of embedding path information in the packet.

• The impracticality of having a single server, which has the entire network

topology information and can calculate the route accordingly.

These challenges are however, overcome in an SDN enabled data center

because,

• The packet overhead incurred is limited, since the average number of hops

in a data center is 68 (Benson et al., 2010).

• The central controller is a convenient location to store network information

and compute the routes.

An additional advantage is that, source routing speeds up packet forwarding at

the switches, since flow table lookups are not required.

5.3 Fairness: Elephant and Mice Flows

5.3.1 Challenges

Elephant flows are large flows, that are generated by operations like virtual

machine migration, virtual machine cloning, data backup, large file transfer etc.

These flows are throughput sensitive. Mice flows, are generated by applications

that use distribute/aggregate functions in their computations. These flows are

bursty and latency sensitive. Elephant flows, which are essentially long lived,

tend to fill the network buffers, introducing queuing delays to the latency
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sensitive mice flows, which share the same buffers. Such delays occur inspite of

the presence of alternate paths.

Adaptive routing algorithms are ineffective in the presence of mice traffic, as

they are bursty and transient, thus denying the algorithms time to act on them.

Therefore, routing in data centers often use stateless, hash based multipathing such

as Equal Cost MultiPathing (ECMP), which randomly distributes flows across the

available equal cost paths. However, using the same approach for elephant flows

can cause some paths to be overloaded, as several elephant flows may get hashed

onto the same path, while other paths may be lightly loaded.

5.3.2 Opportunities

The above observations led us to design a routing algorithm that caters to both

types of flows, by splitting up an elephant flow into several mice flows. This

facilitates packet level load balancing, which ensures fairness to both elephant

and mice traffic.

5.4 Policy Enforcement

The data center traffic has to follow strict service level agreement with its

tenants. This may involve latency constraints, bandwidth constraints, security

constraints such as avoiding certain paths, or application level constraints such

as permitting certain high priority applications taking high bandwidth paths etc.

Network policies can be categorised as: end point policy and routing policy. This

categorization is helpful, as the endpoint policies can be easily converted into

flow entries, which can be stored at the edge switches. However, the routing

policies have to be encoded in the packet header, since there is no control

information exchange between the intermediate switches and the controller. The

intermediate switches are to be made intelligent enough to understand this

encoded information to achieve network policy implementation.

An example of routing policy, is priority levels of the packet. This information
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Table 5.1: Source Routing with Flow Splitting

Without flow
splitting

With flow
splitting

Without source routing Not scalable Not scalable
Not fair Fair

With source routing Scalable Scalable
Not fair Fair

is used by the intermediate switches, to decide which packets are to be dropped

when a switch buffer is full. The packets marked as low priority may be dropped.

Hence, we find that most of the routing policies can be handled at the edge, but

some policies have to be implemented at the switch and this policy information

must therefore be embedded in the packet itself.

5.5 Solution Methodology

Source routing makes SDN scalable, while splitting elephant flows ensures fair

forwarding of both elephant and mice traffic. Together, they give an elegant

solution for scalable and fair routing.

When flow splitting is used with destination based routing, packets of a flow

are forwarded along multiple paths. This requires forwarding rules to be stored on

all switches, along all the multiple paths, for each flow. This increases the switch

TCAM utilization, causing a serious scalability concern. On the other hand, if flow

splitting is used with source routing, the forwarding rules need not be stored on

the switches and the overhead, in terms of flow table entries, remains a constant,

irrespective of the path chosen. Flow splitting may lead to packet reordering at

end nodes. This is not a major concern if symmetric topologies, like the ones

widely deployed in data centers, are used. Table 5.1 shows how flow splitting and

source routing work together, facilitating scalable and fair routing.

The framework that is presented here, addresses the data plane scalability and

fairness challenges of SDN.
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5.5.1 Policy Database and Proactive Path Computation

As described in previous section, network policies can be divided into endpoint

policy and routing policy. Endpoint policies can be handled by the edge switches.

Routing policies on the other hand concern intermediate switches. Hence the

routing policy information has to be encoded in the packet headers.

Overhead of header The Overhead O of the header, is defined as a measure

of how much additional information needs to be stored in the header per hop,

when source routing is used.

O(h) =
B(h)

H(h)
(5.1)

B(h) is the number of additional bits used in the header to encode the information

about the policy compliant path P that the packet has to take.

H(h) is the number of hops the packet with header h has to take from source s to

destination d i.e. the length of the path

Traditional L1 and L2 headers are not used in source routed SDN core network.

However, present day SDN still maintain these headers. Hence, these already

existing headers, like the Mac header, can be rewritten with the source route

information, instead of introducing an additional header for the same. This implies

that in such cases, the B(h) in Equation 5.1 is 0 and we get a zero overhead.

All source to destination paths are proactively computed and these paths are

compliant with the user defined end point policies that are stored in the policy

database. The path information may be stored as a sequence of switches-ids of the

switches along a packets path. It can also be stored as a sequence of output ports,

through which the packet leaves the switches in order to reach the destination. In

the later case, the number of ports on a switch is constant whereas the number of

switches in a network can vary over time. Also, the number of ports is much lesser

than the number of switches in the network. The output port number needs to

be unique only to a switch, whereas a switch identification must be unique across

the entire network. Therefore, output port numbers are a better choice than the

switch identification, for specifying the path information as is shown in Equation

5.3.
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The network model The data center network is modeled as an undirected

graph G = (S,E), where each node si in the vertex set S = {s1, s2, . . . , sn}

represents a core physical switch and n = |S| is the total number of nodes; the

edge set E represents the links between these switches.

Each switch si of S has a set of ports

POi = {poi,0, poi,1, . . . poi,n} (5.2)

RC is the route controller of the SDN network G under consideration.

The policy compliant path

Given the network G, the policy R; the path P between the source and

destination pair (s, d), we formally define the encoded path in the packet h as

follows.

P (s, d) = {ps,a, . . . , pd,b} (5.3)

such that O(h) is minimized.

Here px,y gives the output port y of switch x that the packet has to traverse

along path P

5.5.2 Obtaining the Path from Controller

When an edge switch encounters the first packet of a new flow, it checks its local

cache, to see if path information is stored for this source destination pair, with the

given policy requirement. If such an entry is not cached, then the packet is sent to

the controller. The controller responds with k equal cost, policy compliant paths

to the edge switch. The edge switch caches these routes. Cache hit is likely to be

high because, in a data center, most of the flows are destined to a few destinations.
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5.5.3 Flow Splitting

The edge switch embeds the packet with one of the k paths, chosen in a round

robin manner. This approach is essentially turning the elephant flows into mice

flows and performing per-packet forwarding. By splitting the flow across available

k paths, it ensures that long flows do not fill the network buffers along a single

path and adversely affect the latency sensitive short flows, while also ensuring a

high throughput.

Figure 5.2 compares flow table based forwarding in SDN, with the proposed

flow splitting based source routing. Figure 5.2a shows the initial architecture where

flow table based forwarding is used. Here, flows are hashed onto different paths.

This incurs an additional overhead as a result of storing forwarding rules for the

multiple paths. This approach is neither scalable nor fair, as two elephant flows

are hashed onto a single path. Figure 5.2b shows the proposed architecture, which

uses source routing with flow splitting. It can be observed that source routing does

not require an update in the flow tables of intermediate switches. Flow splitting

ensures fair bandwidth utilization of multiple paths with no additional overhead

on memory.

5.5.4 Forwarding by Intermediate Switches

The intermediate switches forward the packet by looking at only the forwarding

port number embedded in the packet. This approach solves the scalability

problem that has been encountered with destination based forwarding because,

no information is stored in the switches and the controller does not have to push

forwarding information to the intermediate switches. This keeps the core

switches simple and they can operate fast. The reverse path is not computed at

each switch, while the packet is being forwarded, as is the case in some previous

work (Soliman et al., 2012), for two reasons. The first reason being that, the

all-to-all paths have already been proactively computed and second reason being

that this slows down the forwarding process. The aim here is to keep the core

switches as simple as possible. Once the packet reaches the egress switch, it is
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overwritten with the original Mac header and sent to the destination host.

5.6 Analysis

This section presents an analyses of source routing with flow splitting in SDN

environments, with respect to the flow table memory requirements, the

processing time on intermediate switches and the number of communications

between controller and switches. We compare it with traditional routing and

source routing.

Let n be the number of switches in the network, p be the path length described

as hop count between a source s and destination d, let f be the size of forwarding

rules, k the number of equal cost multiple paths, t the time required to lookup the

flow table, r the time required to forward a packet at a switch and pl the packet

header look up time.

5.6.1 Flow Table Memory Utilization

Traditional routing requires that the flow rules be stored on all the switches along

the path of the flow. Therefore, the memory required on the flow tables for a flow

between a source s and destination d is given as

MFT (s, d) = p · f (5.4)

For multipath traditional routing the memory requirement is

MFT (s, d) = p · f · k (5.5)

In contrast source routing does not utilize the flow table memory, since it does

not require flow rules to be stored.
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5.6.2 Total Processing Time on Intermediate Switches

In traditional routing, at each switch, the packet header has to be looked up,

followed by flow table look up, in order to find matching flow rule. This is followed

by the actual packet forwarding. This is repeated on all the intermediate switches.

Hence, the processing time on intermediate switches for a flow from source s to

destination d is given as

PT (s, d) = pl · t · r · p (5.6)

On the other hand, source routing with flow splitting do not require a flow table

lookup, since the path information is stored in the packet itself. Hence, processing

time on intermediate switches is given as

PT (s, d) = pl · r · p (5.7)

5.6.3 Number of Communications between Controller and

Switch

In traditional routing, the controller must insert the forwarding rule on all the

switches along the path of the packet. Hence, the number of controller to switch

communications is

C(s, d) = p (5.8)

In source routing, only two communications take place i.e., between the controller

and the ingress and egress switches. In source routing, with flow splitting across

multiple paths, the number of updates is two for every path, hence

C(s, d) = k · 2 (5.9)

5.7 Implementation and results

This section presents the performance evaluation of the proposed routing with

respect to traditional SDN routing. The data plane of the SDN network has been
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emulated, using the Mininet (min, 2014) emulator. Floodlight (flo, 2014) is used

as the SDN controller. A synthetic topology with 256 nodes and 30 hosts is built

and iperf is used to generate the traffic.

In order to evaluate the number of communications between the controller

and the switches, the reduction in the number of forwarding rules or flow mods,

distributed by the controller is measured. This is done for various flow path

lengths. In order to do this, several flows are generated, that each have a different

path length between their source and destination nodes. In traditional SDN, when

a new flow is encountered by the controller, all the switches along the flow path

have to be notified with the appropriate flow entries by the controller. However,

with the proposed implementation of source routing in SDN as described in Section

5.5.1, it can be seen that only the edge switches are required to be notified. The

required number of flow mods remains at two for only these end nodes, irrespective

of the path length. Therefore, we see a reduction in the number of flow modes for

the intermediate switches. Figure 5.3 gives the percentage decrease in flow mods.

It can be observed that when path length is two, there is no reduction since both,

destination based and source routing, require two flow mods. But, as the path

length increases, the destination based forwarding requires flow mods proportional

to the number of intermediate switches.

Figure 5.3: Percentage reduction in number of flow entries in the switches
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Forwarding of packets by the switches is faster with source routing, since flow

table look ups are not required. Instead forwarding action on the packet can

be taken by referring the header entries itself. HTTP files of varying size are

transferred between two hosts, with a path length of eleven between them. Figure

5.4 shows the impact of source routing on the delay experienced by the flow.

Initially due to TCP bursts, the small files are transferred very fast and not much

difference can be observed in those cases. However, as file size increases beyond

500MB, i.e. the number of packet look ups increase, change in delay can be

clearly seen and is maintained throughout. This is because for large files, the

number of time consuming table look ups increases in traditional SDN. However,

in the proposed approach table lookups are not required at all.
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Figure 5.4: Delay experienced by the packet flow

Although decrease in delay is observed by the flows in the presence of source

routing, the edge switches see a decrease in the performance due to increase in

the number of actions to be carried out per flow as discussed in Section 5.5.2, at

these switches. Figure 5.5 shows the decrease in throughput at the edge switches,

when source routing is used.
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Figure 5.5: Performance of edge switch

In order to evaluate the efficiency of the algorithm, the time taken by the

controller to set up a flow under constant minimum workload is measured. The

time taken in the destination based SDN to push all the flow mods and set up

the flow increases, as the number of flow mods to be pushed increases with path

length. On the other hand, in source routed SDN, the length of the path to be

encoded in the packet increases with the increase in flow path length. Since the

encoding work is pure CPU based and the input output work remains the same,

the increase of flow setup time with path length is comparatively lower. This can

be seen in Figure 5.6. Only in the case of the path length being two, the time taken

is more than the previous case, since more number of actions is to be inserted in

the edge switch flow mods.
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Figure 5.6: Time taken to set up flow

Next the controller throughput is compared as the path lengths of the flows

are varied. From Figure 5.6 it is seen that the traditional controller represented by

the red line takes more time to set up flows as the path length increases. This is

because the number of intermediate switches increases, meaning an increase in the

number of flow table entries. SDN controllers also take more time to compute the

path, but not as much as traditional SDN controllers. A similar effect can be seen

on the controller throughput as well. Figure 5.7 shows the decrease in controller

throughput as the path length decreases. This is because, under traditional SDN

routing, the intermediate switches are to be programmed by the controller for

each and every control decision to be implemented as discussed in Section 5.5.1.

Additional controller resources are used in updating the switches regarding route

and policy information in traditional controllers. In order to evaluate the overhead

incurred, the number of flow entries required and also the number of bytes required

to encode the path and policy information, is measured. From Figure 5.8, it can

be seen that, to implement various routing policies in traditional routing, equal

number of flow entries are to be pushed to each intermediate switch. However,

with source routing, no flow entries are put on the switches. The path and policy

information are carried in the packet header itself.
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Figure 5.7: Performance of the controller

Figure 5.8: Number of flow entries required on the switches

Although, source routing shows a decrease in the flow entries required to

implement the policies, it consumes a few bytes in the packet header to achieve

the same. From Figure 5.9 it can be seen that, in the worst case, the number of

bytes required to implement a single policy increases linearly with path length.
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Figure 5.9: Overhead due to inclusion of policy

5.8 Summary

SDN that used destination based forwarding, faced the problems of limited flow

table size and the additional communication between switch and controller that

was required to disseminate forwarding information to switches. It can also have

major design issues if intermediate switches had to identify and handle short and

long flows differently. When the routing algorithm used labels, to encode path and

policy information and perform routing decisions at the edge, it was essentially

separating the edge and core functionality and making the network data plane

scalable. It also followed the end to end principle in general. In this regard this

chapter presented a mechanism to ensure fairness to both elephant and mice flow.

Chapter 6 proposes various techniques of path restoration for source routing in

the event of a failure.

85



86



Chapter 6

Path Restoration in Source
Routed SDN

The work of restoration cannot begin until a problem is fully faced.

-Dan B Allender

6.1 Overview

Software defined networks have a central controller and central view of the

network, allowing for source routing to be used as a scalable routing technique

instead of the traditional destination based forwarding. However, with source

routing the switches are reduced to simple forwarding devices, incapable of

finding alternate paths in the event of link failures. In this chapter we look at

techniques to provide resiliency when packets are in transit and a network link

failure occurs. Path restoration is one such mechanism, where a bypass path for

the failed link is used. Such bypass paths are stored locally on each of the

switches, for all of its outgoing links. This mechanism ensures that the recovery

mechanism is scalable, since it avoids contacting the controller and takes local

corrective measures. Two approaches are proposed here, for storing the bypass

paths. In the first method, the bypass path is stored between all pairs of nodes.

In the second method the bypass path is stored between few selected nodes.

These node are the chosen two hop neighbours, using either the two colourable

graph approach or the vertex cover approach. The analysis shows that the
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second method; using the vertex cover approach reduces the total number of

bypass paths stored, without compromising the resiliency. Also the solutions are

topology dependent and not path dependent, allowing for most of the

computations to be done proactively.

6.2 Link Failure and Source Routing

A basic requirement of SDN, deployed in data center networks, is high availability

and resilience to failures. In order to cater to this the network must remain

connected in the event of networking element failure and packet forwarding must

be carried out with as little disruption as possible. As presented in the previous

section, source routing, in software defined data center networks, is scalable in

terms of both, the packet overhead and switch memory requirement. One of the

issues with source routing is the fate of packets in transit when a link failure

occurs. This is because unlike destination based forwarding where the switches

learn the alternate paths on reconvergence, in source routing the switches are dumb

forwarding devices which simply forward packets as per the next hop information

in the packet. Hence, for source routing to be a viable solution, the issue of packet

forwarding, in the event of link failure, must be addressed.

There are two main techniques by which networks can handle packet forwarding

when a link failure occurs, as follows:

I Path protection: Resend the packet from the source on an alternate, link

disjoint path. The packet which has been in transit is dropped.

II Path restoration: Continue to forward the packet in transit, without dropping

it, via a path which bypasses the failed link, to a subsequent node along the

path.

In this work the second technique is explored. The information about the path

which bypasses the broken link can be obtained using either of the following:

i The switch which detects one of its adjacent link has failed, contacts the

controller and gets the bypass path
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ii The switch stores the bypass paths for all of its neighbours in its local memory

The problem in method (i) is that, it takes time to contact the controller and

also places extra load on the controller and therefore is not a scalable option.

On the other hand method (ii) requires storage space on the memory constrained

switches. However, the second option of path restoration is faster and a solution

based on it is proposed and evaluated in the following sections. Also simultaneous

multiple link failures are not considered.

The following requirement for resilient source routing is identified

R1 In the event of link failure, packets in transit are re-routed correctly without

having to retransmit them i.e. ensure path restoration.

R2 Take local corrective measures so as to minimize the communications between

the switch and the controller.

R3 Minimize the average memory requirement of the switches in the network.

R4 The solution that we propose must be topology dependent and not path

dependent

6.2.1 The Network Model

A data center network is modeled as an undirected graph G = (V,E) where each

node vi in the vertex set V = {v1, v2, . . . , vn} represents a physical switch, n = |V |

is the total number of switches and the edge set E represents the links between the

switches. Two vertices which are incident with a common edge represent adjacent

switches.

6.2.2 Notations

Shortest Path: Given a graph G (V,E) let P (s, d) the shortest path from the

source s to the destination d be a vertex set

P (s, d) = {v1, v2, . . . , vm} (6.1)
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where vi is the ith node in the path and m is the total number of nodes in the

path.

Second Shortest Path: Given a graph G (V,E) let SP (s, d) the second

shortest path from the source s to the destination d be a vertex set

SP (s, d) = {v1, v2, . . . , vl} (6.2)

where vi is the ith node in the path and l is the total number of nodes in the

path.

One Hop Neighbour Set: The one hop neighbour set of a node vi be defined

as

ON (i) = {v1, v2, . . . , vd} (6.3)

where vk ∈ ON (i) is an adjacent node of vi and d = |ON (i)| is the degree of the

node vi.

Two Hop Neighbour Set: The two hop neighbour set of a node vi be defined

as where vk ∈ TN (i) is a node at a distance of two hop from vi and t = |TN (i)|

is the total number of nodes at a distance of two hop from vi.

TN (i) = {v1, v2, . . . , vt} (6.4)

Vertex Cover Neighbour Set: The vertex cover neighbour set of a node vi

be defined as

V N (i) = {v1, v2, . . . , vc} (6.5)

where vk ∈ V N (i) is a vertex cover node reachable from vi without crossing

another vertex cover node and c = |V N (i)| is the total number of such
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neighbouring vertex cover nodes of vi.

One Hop Bypass Path: Given a node vi and its one hop neighbour vk ∈

ON (i) then the one hop bypass path OB (i, k) is given by

OB (i, k) = SP (i, k) (6.6)

where SP is the second shortest path from i to k i.e. the shortest path from i to

k without considering the direct link.

Two Hop Bypass Path: Given a node vi and its two hop neighbour vk ∈

TN (i) then the two hop bypass path TB (i, k) is given by

TB (i, k) = SP (i, k) (6.7)

where SP is the second shortest path from i to k i.e. the shortest path from i to

k without considering the direct two hop link.

Vertex Cover Bypass Path: Given a node vi and its one hop neighbour

vk ∈ V N (i) then the vertex cover bypass path V B (i, k) is given by

V B (i, k) = SP (i, k) (6.8)

where SP is the second shortest path from i to k i.e. the shortest path from i to

k without considering the shortest link to the vertex cover neighbour

6.2.3 Problem Definition

Given an edge l between two nodes vi and vj as vi < − > vj along the path P (s, d)

has failed, the problem is defined as finding an alternate path between (s, d) which

bypasses the link l without contacting the controller. This alternate path is used

to forward the packets that have already left the egress switch before the controller
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can update the new path information at the egress switch. The solution must also

minimize the amount of information stored in the switches.

6.3 Path Restoration

In order to meet the requirements 1 and 2, set in the previous section, the

bypass path has to be stored in the intermediate switches, in order to enable

local corrective measures that can be taken. The challenge is to use as little of

the switches memory as possible and to ensure that these bypass paths are

topology dependent and not path dependent as per requirement 3 and 4.

We propose three approaches to solve this problem. In first approach the

bypass path information is stored on all switches. The information stored is the

bypass path to all its neighbouring switches. In the second approach the bypass

information is stored on only the two hop distance switches. The information

stored is the bypass path to the two hop neighbour switches only. In third

approach the bypass path information is stored only on the vertex cover nodes.

The information stored is the bypass path to only the neighbouring vertex cover

nodes.

6.3.1 Bypass Path to One Hop Neighbour

Consider the example topology shown in Figure 6.1. Here the bypass routes stored

in switch a are:

1. <a, c, d, b> to the adjacent node b if link ab fails

2. <a, b, d, c> for the adjacent node c if link ac fails

Node a threfore stores two entries which are the same as its degree.

Every node vi ∈ V [G] stores the one hop bypass path OB (i, k) for all

k ∈ ON (i).

Packet arriving at switch Consider a packet is at node vi on its path from

source node s to destination node d. Consider the edge vi to vk is down as a result
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Figure 6.1: Bypass route to one hop neighbour example

of link failure. In such a case the bypass path OB (i, k) stored at vi is copied to

the packet header, and may be used for source routing.

Figure 6.2 shows the header format. v1, . . . vk, vl, . . . represents the hop

information along the primary path and m its length. vk1, vk2, . . . represents the

hop information along the bypass path and l its length. p is the pointer to the

next hop information along the primary path. sp is the pointer to the next hop

information along the bypass path. m is decremented by, every time the packet

makes a hop along the primary path and a value of 0 indicates the packet has

reached the destination. l is decremented by one, every time the packet makes a

hop along the bypass path and a value of 0 means the packet has taken the

bypass and is now back on the primary path.

Figure 6.2: Header format with bypass route

This ensures the packet reaches node k via the bypass path. Thereafter, it

follows the original path embedded in the packet from node k to destination node

d. The controller eventually notes that the link is down and identify an alternate

path between s and d. For packets yet to be dispatched, this alternate path is

used.

6.3.2 Bypass Path to Two Hop Neighbour

In order to reduce the total number of bypass path entries stored on the switches,

we explore the idea of storing bypass path between only a few select nodes. This

would imply that the packet may have to crank back along its path before it takes

a bypass path. However, if the number of hops the packet would have to crank
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back is bounded, then efficiency is maintained while we reducing the number of

bypass paths stored.

Consider the example topology shown in Figure 6.3. Here we choose only

the two hop neighbours to store the bypass path information between them. We

represent them as black nodes a, c, e.The second shortest path between a and c is

represented as bp1 and the second shortest path between c and e is represented as

bp2. The bypass path information stored on node a:

1. <a, bp1, c> to the two hop neighbour c if link ab or ac fails

The bypass path information stored on node b:

1. <c, bp1, a> to the two hop neighbour a if link cb or ba fails

2. <c, bp2, e> to the two hop neighbour e if link cd or de fails

The bypass path information stored on node e:

1. <e, bp2, c> to the two hop neighbour c if link ed or dc fails

Figure 6.3: Bypass route to two hop neighbour example

If the link coming after the black node along the path fails then the packets can

directly take the bypass path to the two hop neighbour along the path. However,

if the link is not preceded by the black node along the path fails then the packet

has to crank back to the black node and then take the bypass path. For example

in Figure 6.3, for a packet at node a along the path a to e if link ab fails, then the

packet can take the bypass path <a, bp, c> to node c. However, if the packet is at

node b, and link bc fails, the packet may have to crank back to node a and then

take the bypass path <a, bp, c> to node c, since node b does not store any bypass

paths.
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Identifying the two hop neighbours, in a graph, is essentially identifying if a

graph is two colourable. If it is, then we choose all the nodes with one colour

as the two hop neighbours Thus identifying these two hop neighbours is topology

dependent and not path dependent, and this can be done proactively by the SDN

controller.

The above approach involves carrying out the following steps proactively by

the SDN controller

1. Identify if a graph is two colourable.

2. If step 1 is true, label the nodes of the graph with colours black and white.

3. Store the bypass path information only between the black nodes which are

two hop neighbours

6.4 Analysis

Source routing does not burden the switch by storing forwarding rules in it.

However, as discussed in previous sections, in order to introduce resiliency the

bypass path information is stored locally in the switches. In this section the

overhead, due to information stored, is analyzed.

6.4.1 Bypass Path to One Hop Neighbour

Switch Memory

The one hop bypass paths on all the nodes for each of its neighbours is stored.

This memory requirement across the entire network MOB (G) is given by

MOB (G) =
n∑

i=1

d∑
k=1

|OB (i, k)|+ 1 (6.9)

where |OB (i, k) |+ 1 gives the bypass path length in terms of number of hops.

Since we consider a software defined data center network, the bypass path has a
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minimum length of 2 hops and a maximum length of 8 hops. Hence

2 ∗ n ∗ d ≤MOB (G) ≤ 8 ∗ n ∗ d (6.10)

Packet Header Space

Source routing introduces an overhead on each packet since it has the path

embedded in it. This overhead is increased when fault tolerance is provided, as

discussed in the proposed technique. However, this technique shows that this

overhead is minimal.

This header requirement on the packets POB (s, d):

4 ≤ POB (s, d) ≤ 16 (6.11)

since now the packet has to carry both the shortest path from s to d and the

bypass path from i to k

Latency

The overall latency of source routing is reduced because of two reasons.

1. The controller does not have to install the forwarding rule on all the switches

along the path, rather it passes the path information to the ingress switch

so that it can replace the MAC header of packet. It later contacts the egress

switch in order to restore the MAC header.

2. The forwarding itself is faster, as the switch can forward packet just based

on header content and it does not have to do a flow table lookup.

The latency for packet forwarding can be analyzed as follows: Given that m

is the number of nodes in the path between a source s and destination d, p is the

probability of one link failing along the path, l is the length of the bypass path

across the broken link, t is the time it takes to extract and act upon the next hop

information from the packet and u is the time it takes to copy the bypass route

to the packet header from the bypass table in the switch, then the latency L (s, d)
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is given as follows

L (s, d) = p ∗ ((m− 1 + l) ∗ t+ u) + (1− p) ∗m ∗ t

= p ∗ ((l − 1) ∗ t+ u) +m ∗ t
(6.12)

6.4.2 Bypass Path to Two Hop Neighbour

Switch Memory

The two hop bypass paths are stored on the black nodes for each of its neighbours

This memory requirement across the entire network can be analyzed as follows

If Ew and Eb give the number of two hop bypass path entries which are stored

in the white and black nodes respectively, then the total number of entries E in

the network is given by

E = Ew + Eb

= 0 + Eb

(6.13)

as no entries are stored on the white nodes. The number of black nodes in the

graph G with n nodes is

Nb = v1, v2, . . . , vn
2

(6.14)

Similarly the number of white nodes is

Nw = v1, v2, . . . , vn
2

(6.15)

The number of two hop neighbours of a black node vi, TN (i) is dependent on the

number of one hop neighbours or degree of vi’s white node neighbours.

TN (i) = ON (j) exceptvi∀vj ∈ ON (i) (6.16)

t =
d∑

j=1

|ON (j)| − 1∀j ∈ ON (i) (6.17)

where t is the number of entries in black node.

Equation 6.17 implies that the number of entries in a black node is directly
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proportional to the degree of its white neighbour nodes in |ON (j)| or degree of

j. This in turn implies that the number of bypass entries on a black node are also

directly proportional to the degree of its white neighbour nodes.

The total number of entries in the network is given by

E = Eb =

n
2∑

k=1

t∀k ∈ Nb (6.18)

Hence, the number of bypass entries reduces if the nodes with lower degree are

chosen as white nodes. However, this cannot be ensured with two color algorithms.

The packet header space and latency experienced by the packet is similar to

that of one hop bypass path method which has been discussed in previous section.

From the above observation, choosing high degree nodes as black nodes, reduces

the number of entries in the switches. Therefore, the chosen minimum vertex cover

nodes are identified as the black nodes, because minimum vertex cover nodes are

generally, nodes of high degree.

So, instead of using TN (i) in Equation 6.16, V N (i) is used as given in

Equation 6.5.

6.5 Summary

In this chapter a solution to ensure resilient source routing in software defined

networks was proposed. The solution aimed to provide a backup path for packets

in transit when a link failure occurred The aim was been to enable the switches

to take local corrective measures without having to consult the controller. Also, it

was necessary to ensure that the solution was scalable with respect to the switch

memory space and the packet overhead. The proposed approach catered to these

requirements by storing a bypass path for the failed link at the switches. The

number of such bypass paths was limited by the number of neighboring switches

and the bypass path length itself was limited to 6 - 8 hops. Chapter 7 presents a

detailed conclusion and possible future work stemming out of this research work.
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Chapter 7

Conclusion and Future Work

The end of a melody is not its goal: but nonetheless, had the melody not reached

its end it would not have reached its goal either.

-Friedrich Nietzsche

7.1 Conclusion

In this work, a scalable and resilient edge-core SDN framework was presented.

As the number of networking elements and traffic flows increased, a single

centralized controller could neither manage the large network, nor handle the

diverse functional requirements of the core and edge switches. Therefore, there

was a need for multiple controllers in large SDN deployments. Distributed

controller architecture was recommended to resolve scalability issues. The model

considered in this work had an edge controller that was responsible for routing

packets and a core controller responsible for collecting network topology

information. The control plane, at both the core and edge, had been further

divided into multiple domains, each managed by a controller. This research

proposed controller placement algorithms for both the edge and the core

networks, in the edge-core SDN model.

The core controllers are placed in such a way that, the network was not

partitioned as a result of controller failure, by using a novel placement metric

called subgraph-survivability. The controller placement algorithm used this

metric to ensure that the controller domains are biconnected. This guaranteed
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that the failure of a controller did not disconnect the rest of the network,

although its own domain was rendered non functional. The correctness of this

algorithm was shown using formal proofs. The algorithm was evaluated against

the random placement algorithm, using the performance metrics Average Inverse

Shortest Path Length and Network Disconnectedness. These algorithms are run

on real topologies and also some random topologies. The performance metrics of

Average Inverse Shortest Path Length (AISPL) and Network Disconnectedness

(ND) were used to evaluate our placement algorithms. An improvement of

55.88% for the AISPL metric and 49.22% for ND metric, was observed with our

proposed algorithm as compared to the random controller placement. The

results obtained show that the subgraph-survivable controller placement

algorithm performs better, especially when considering large networks. The work

that is presented here, is significant both in theory and practice. Theoretically

an algorithm has been proposed to obtain k subgraphs of maximum size m such

that k is minimal and there exists biconnectivity between the subgraphs. In

practice this solution ensures scalability in the multi controller SDN.

The edge controllers were placed such that they could efficiently handle the

changing network traffic loads. A dynamic load balancing controller placement

algorithm was developed, that identifies the switch which is to be migrated and also

the controller to which it is to be migrated. A switch migration procedure followed

such that there was no disruption to the ongoing packet transfers. Although an

increase of 2ms in the response time, of the Packet In messages at the time of

migration was observed, no packet losses were incurred. This work showed that it

was ideal to have two sets of controllers with unique controller placement metrics,

one for the edge network and the other for the core network, because of the

difference in the controller functionality.

On the data plane, it was observed that, destination based forwarding does

not scale well because of the increased number of switch to controller

communications, limited size of flow tables and increased size of flow table

entries in the switches. Therefore, in this work labels were used within packets to
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convey control information regarding path and policy. This made the core of the

network simple; while all routing and policy decisions could be taken at the edge.

Further, the routing algorithms split the elephant traffic into mice traffics and

distributed them across multiple paths. The entire mechanism used here was

topology independent. With our source routing mechanism we observe a

reduction in the number of flow table entries and the flow set up time that is

proportional to the number of hops along the path of the packet.

Source routing made the data plane scalable, however, the switches were

reduced to simple forwarding devices, incapable of finding alternate paths in the

event of link failures. The solution presented in this work aimed to provide a

backup path for packets in transit, when a link failure occurred The aim was to

enable the switches to take local corrective measures without having to consult

the controller. Also, there was a need to ensure that the solution was scalable

with respect to the switch memory space and the packet overhead. The proposed

approach catered to these requirements by storing a bypass path, for the failed

link, at the switches. Two methods were presented for storing the bypass paths.

In the first method the bypass path was stored for all pairs of nodes. In the

second method the bypass paths were stored for only a few selected nodes.

These node are the two hop neighbours, chosen using either the two colorable

graph algorithm or the vertex cover algorithm. The analysis showed that the

second method, using the vertex cover approach reduced the total number of

bypass paths to be stored, without compromising the resiliency. Also, the

solutions presented are topology dependent and not path dependent, allowing for

most of the computations to be carried out proactively.

Through this work, it was observe that, separating the edge and core of the

SDN network makes the control plane scalable and also allowed for routing

decisions to be carried out at the edge, thereby enforcing the end to end

networking principle. Intelligent placement of multiple controllers made the

control plane scalable and also resilient to controller failure. The placement

algorithm performed better when it was compared to random placement
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algorithm. The novel proposed approach of packet forwarding was fair to both

elephant and mice flow. This also made the data plane scalable by reducing the

number of flow table entries. Further, the load on the controller ws reduced,

when the switches took local corrective measures without consulting the

controller. The dynamic load balancing of controllers using a switch migration

algorithm, ensured that there was no disruption to the ongoing packet transfers.

7.2 Future work

In this section, suggestions are made for some future research work that can be

carried out with regard to scalability and resiliency of the control plane and data

planes in SDN.

The framework that is presented in this work ensures scalability of the control

plane, by placing multiple controllers and clearly separating the functionality of

the edge and core controllers. This concept of edge and core separation may be

extended to other networks such as IoT networks. Such networks extensively use

computation and aggregation at the edge, in order to reduce the traffic in the core

network. Building an edge-core SDN network, that understands and supports

such edge computation can make the network scalable. Another possible future

work can be, to dynamically adjust the number of controllers in the network in

response to the load. As the load increases new controllers may be included and

load balancing algorithms can be run to redistribute the load. Similarly, when the

load decreases some controllers may be shut down and the load may be optimally

distributed among the remaining controllers.

By implementing sub-graph survivability this work has ensured that, the

failure of one controller shall not lead to failure of entire network. However,

there are several other failure models that can be examined, and failure

protection or management can be provided. One such failure scenario, is that of

the link to the controller. These links are critical because their failure causes the

failure of entire network, even though the switch and controllers are working

correctly. As future work, in such a scenario, probability of failure of the link can
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be computed and back up paths can be introduced. The placement metrics can

be developed accordingly, along with the placement algorithms. Another option

for future work is considering the failure models of other SDN domains, such as

SDN for wide area networks and SDN for IoT networks. These networks have

failure models which are significantly different from that of regular SDN. For

example, software failures that may be introduced by SDN applications. SDN

controller code is highly reused and optimized to minimize failure, however SDN

application codes, like the ones that have been used for traffic shaping etc., are

highly prone to failures.

In this work, the data plane has been made scalable by reducing the number of

flow table entries in the switches. This is accomplished by adopting source routing.

Future work on this can explore reducing the size of the flow table entries. SDN

based forwarding may not require all the header fields used in traditional networks,

such as time to live etc. and such information may be removed. Such a study can

not only make the data plane scalable but also make it faster and more streamlined,

by removing redundant unused information. Further, flow table utilization can be

improved by implementing intelligent eviction rules for the table entries. These

rules may be based on the traffic patterns that have been identified using machine

learning techniques. Our work on the data plane has shown that flow splitting

allows better utilization of the links and fairness to both the elephant and mice

traffic. However, if large networks are considered, the split packets may have to

be reordered. A study of the effect of such reordering and mechanisms, in order

to prevent it, may be the future research scope. Source routing and flow splitting

together give better scalability and network utilization. In order to make the

source routing resilient to link failure, bypass paths are stored on the switches.

This work can be extended so that the space required for storing such back up

paths can be reduced. One idea could be to encode the back up paths or design new

data structures. Normally, encoding forwarding information on the switches makes

forwarding packets slow. However, in this case only rarely used back up paths

are encoded, thereby reducing memory utilization without adversely effecting the
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speed of packet forwarding.
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