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ABSTRACT

Robotic manipulators are used in a wide variety of applications. In all the

applications, the end-effector or the tool of the manipulator needs to be moved

along a desired trajectory in its workspace. In this thesis we present model-based

control schemes for robotic manipulators using a distributed architecture.

Inspired by multi-agent/robotic systems, first we perceive a manipulator,

which is MIMO multi-body system, as a multi-agent system with the joints (or

the joint-link pairs) as sub-systems or agents, which interact with each other in

a distributed manner. Here, the interaction between the joint-link agents is in

the form of interactive forces and moments that lead to dynamic coupling. As

the adjacency graph formed by the joint-link agents as nodes and links between

two joints as edges is connected, the direct interactions between the immediate

neighbors result in interaction (in the form of dynamic coupling) between any two

joint-link agents.

We carry out an analysis of the computational cost associated with the

model-based control law for planar serial-link manipulators with

degrees-of-freedom varying from 2 to 6 using Maple. Using this analysis, we

establish the fact that the total computational cost associated with the

model-based control law increases with the degrees-of-freedom. Toward

mitigating the computational overhead associated with the conventional

model-based control scheme, we propose a distributed architecture for the

motion control of manipulator exploiting its multi-agent nature. Here, each

joint-link agent is controlled by a dedicated controller, and the joint-level

controllers communicate and cooperate among themselves. Though one of the

primary motivation for the proposed distributed control scheme is to reduce the

computational overhead, in this thesis we rely on the natural distributed nature

of the manipulator dynamics rather than the program optimization or operation

optimization techniques that are used at the algorithmic level.

We propose a simple distributed control scheme based on the conventional

model-based control law and show that it can be implemented using the



distributed control architecture. Here, apart from the reduced computational

lead time due to distributed computation of the control law at the joint-levels,

unlike the decentralized or independent joint control schemes, the proposed

control scheme fully utilizes the knowledge of the system dynamics, leading to a

feedback linearized closed-loop error dynamics. Though the proposed distributed

control scheme is suitable for a general serial-link manipulator, in this thesis, we

focus on planar manipulators with revolute joints. We prove, that the proposed

distributed control scheme makes the links of the manipulator, and hence the

end-effector, follow the desired trajectory, asymptotically. We define a quantity

called distribution effectiveness to quantify how the distributed control schemes

share the computational load among the individual joint-level controllers. We

also provide a discussion on implication of the discrete-time implementation of

the proposed distributed control scheme in contrast to the conventional

model-based control scheme. We design a distributed model-based controller for

a planar 3R manipulator, to illustrate the proposed distributed control scheme

and the distributed control architecture for a manipulator. For the case of planar

manipulators with degrees-of-freedom 2 − 6, we provide a method to reduce the

computational cost associated with dynamic equations used in the control law by

identifying repetitive terms, which may be generalized for any other manipulator

in principle.

In an attempt to further improve the distribution effectiveness and reduce

the computational lead time, we propose a cooperative control scheme for a

manipulator using the distributed control architecture. While in the basic

distributed control scheme proposed, joint-level controllers interact amongst

themselves in terms of exchanging desired and measured states (and their

derivatives), in the case of the cooperative control scheme the joint-level

controller cooperate by exchanging certain computed terms between them. Even

in this case, we provide a discussion on implication of the discrete-time

implementation. We prove, that the proposed cooperative control law makes the

links of the manipulator, and hence the end-effector, follow the desired



trajectory, asymptotically. We design a cooperative distributed model-based

controller for a planar 3R manipulator, to illustrate the proposed cooperative

manipulator control scheme implemented in the distributed control architecture.

We also provide a discussion on computational effectiveness of the proposed

cooperative distributed control scheme along with a method to further reduce

the computational lead time by identifying repetitive terms in the control law.

We present a detailed analysis of computational cost associated with the

dynamic equation of planar manipulators with degrees-of-freedom from 2 to 6,

where we analyze the cost involved in the proposed distributed control schemes

in contrast to that in the conventional centralized model-based control scheme,

using Maple. We provide results which indicate that the distribution effectiveness

of the proposed simple distributed control schemes improves with degrees-of-

freedom of the manipulator. We also provide a detailed discussion on reducing

the computational cost by identifying repetitive terms in the dynamic equations

at each joint-level, for planar manipulators with degrees-of-freedom from 3 to 6.

We then present simulation results demonstrating the proposed control

schemes. We present results which show how the trajectory tracking

performance of the model-based control law degrades with increase in the

sampling time. Then we present results which demonstrate that with the

proposed distributed control schemes every joint tracks the desired trajectory

satisfactorily, in comparison with the independent-joint PID control scheme. We

present details of implementation of the proposed distributed manipulator

control scheme using Simulink-ROS hybrid platform based on Matlab’s Robotics

toolbox, which provides a more realistic simulation result and it is also amenable

for hardware implementation. Finally, we present a discussion to compare

decentralized control schemes presented in the literature with the distributed

control schemes presented in this thesis.

Keywords: Manipulator control, distributed control, nonlinear systems, feedback

linearization
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CHAPTER 1

Introduction

Robotic manipulators are used in a wide variety of applications. In all the

applications, the end-effector or the tool of the manipulator needs to be moved

along a desired trajectory in its workspace. Thus, the motion control of the

individual links, and hence of that of the end effector, is one of the fundamental

problems addressed in the field of robotics. Designing a stabilizing controller for

a highly nonlinear and coupled dynamic system such as a robotic manipulator is

a challenging task and this problem is attracting researchers to this date, in spite

of theoretical and technological advancement in the field of the control system

design. Further, the complexity of the manipulator dynamics increases with the

degrees-of-freedom or the number of links and joints, increasing the computational

complexity of the control law in general. In this Chapter, we preview concepts

from manipulator dynamics and control (Craig 2005, Spong & Vidyasagar 2008,

Asada & Slotline 1986, Ghosal 2013, Saha 2008), highlighting the issues involved

in the manipulator control relevant to the thesis. We introduce the concepts

of multirobotic/agent systems, centralized, decentralized, and distributed control

architectures.

1.1 Manipulator dynamics

A robotic manipulator is made up of a sequence of links connected by joints.

Links are rigid members and the joints allow relative motion between the links.

Joints can be prismatic, cylindrical, spherical, screw, and revolute. Most widely

used joints in manipulators are prismatic, which allow a linear motion between

the connected links, and revolute, which allows a rotary motion between them.

Prismatic and revolute joints have one degree of freedom. Owing to ease of

actuation by an electric motor, revolute joints are typically most preferred joints.

Based on the arrangements of the links, a manipulator may be a serial-link

configuration, a parallel-link configuration or a hybrid of these two. In this thesis,
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we focus on serial-link manipulators which are most widely used in industries.

The degrees-of-freedom of a serial link manipulator is equal to the number of

joints, assuming that the joints have single degree of freedom (such as prismatic

or revolute). The first link of a manipulator is typically fixed to a work table, and

the last link carries a tool or end effector which performs the actual task. End

effector could be a gripper, for pick and place tasks, a welding torch to carry out

welding operation, or any other tool depending on the task the robot needs to

perform.

For the purpose of manipulating the work (sometimes a tool), the end effector

needs to be moved in a desired manner. Movement of end effector is achieved by

actuation provided at the joints, which move individual links. Motion of links leads

to that of the end effector (the last link). In order to move the end effector in a

specified manner or along a desired trajectory, control input should be provided

at joints as torques (or force in the case of a linear motion). Dynamics of the

manipulator which relates torque/force provided at the joints to the motion of

links is very important to design a motion controller for achieving desired tool

motion. Tool motion (trajectory) is related to motion at the joint level is related

by the (inverse and forward) kinematics of the manipulator.

The dynamic equation of serial-link manipulator with N degrees-of-freedom

has the following standard form,

τ = M(θ̇)θ̈ + V (θ, θ̇) +G(θ) (1.1)

where, M(θ̇) is n×n mass matrix,V (θ, θ̇) is n×1 velocity vector, G(θ) is n×1

gravitational vector, and τ is n×1 joint torque (actuation) vector. A manipulator

is a lumped parameter (rigid body assumption), time-invariant (the parameters

such as mass, inertia, damping (if considered), etc, are constants), autonomous,

and nonlinear system.

For example, dynamics of a two-link planar manipulator with revolute joints

(2R) shown in Figure 1.1, where for simplicity, we assume that mass of each

link is concentrated at the end of links, may be obtained using Newton-Euler or
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Figure 1.1: A Two-link robot with revolute joints and point masses

Lagrangian formulation methods as:

τ1 = m1l1l2c2θ̈1 +m2l1l2s2θ̇
2
1 +m2l2gc12 +m2l

2
2(θ̈1 + θ̈2) +m1l

2
1θ̈1 +m1l1gc1

+m2l
2
1θ̈1 +m2l1l2s2(θ̇1 + θ̇2)

2 +m2l1gs2s12 +m2l1l2c2(θ̈1 + θ̈2)

+m2l1gc2c12

τ2 = m1l1l2c2θ̈1 +m2l1l2s2θ̇
2
1 +m2l2gc12 +m2l

2
2(θ̈1 + θ̈2)

(1.2)

Which can be re-written as: τ1

τ2

 =

 m2l
2
2 +m22l1l2c2 + (m1 +m2)l

2
1 m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

 θ̈1

θ̈2



+

 −m2l1l2s2θ̇
2
2 − 2m2l1l2s2θ̇1θ̇2

m2l1l2s2θ̇
2
1

 +

 m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12


(1.3)

Thus,

M(θ) =

 m2l
2
2 +m22l1l2c2 + (m1 +m2)l

2
1 m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2


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V (θ, θ̇) =

 −m2l1l2s2θ̇
2
2 − 2m2l1l2s2θ̇1θ̇2

m2l1l2s2θ̇
2
1


and

G(θ) =

 m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12


Here, mi and li are mass and lengths of the ith link, ci = cos(θi), si = sin(θi), c12 =

cos(θ1 + θ2), and s12 = sin(θ1 + θ2). Also note that we have not considered effect

of friction here. There are three important observations to be made here:

1. The manipulator dynamics is nonlinear in nature.

2. The manipulator dynamics is coupled in the sense the motion of and

force/momnet on one link will affect motion of the other link.

3. Even for a simple two-link manipulator, we may observe that the equations

modeling the dynamics are complex and computationally intense.

1.1.1 Implication of nonlinearity

Nonlinearity of the dynamics affects the control system design for a

manipulator. As we know for a linear system, the response depends on the

location of poles. Thus, the control system design involves locating the

closed-loop poles at the locations as dictated by the performance specifications.

For example, desired performance may be indicated using the time domain

specifications such as rise time, settling time and maximum peak overshoot based

on step response of the system (Franklin, Powell & Emami-Naeini 2002). A step

response of a second order linear system along with the standard time domain

specifications are shown in Figure 1.2. Each of these time domain specifications

provide a region in the S-plane within which the poles have to be located.

As the principle of superposition does not hold for a nonlinear system,

standard test signals such as impulse, step, and sine and the system’s response

for these signals do not make much sense in the context of nonlinear systems. For

example, the response to sin(ωt) is not twice of that for 2 sin(ωt) for a nonlinear
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Figure 1.2: Step response of a typical under-damped second order system and the
time domain specifications.

system. The standard practice for designing a controller for a nonlinear system

is to linearize it about an operating point (state be precise) and then deciding

on controller gains so as to locate the poles as such as those dictated by the

time domain specifications. For example controlling an inverted pendulum is a

classical problem which finds many practical applications such as segways, rocket

launching, etc. Here, the nonlinear dynamics of the pendulum is linearized about

the unstable equilibrium state (θ, θ̇) = (π, 0) (open-loop pole is on the RHP of

the S -plane) and a controller (such as a PD control law) is designed such that

the closed-loop is in the LHP of the S-plane. Further the controller gains (such

as kp, the proportional gain and kv, the derivative gain) may be selected based on

the time domain specification such as, say settling time and response (rise) time

and allowable maximum overshoot. Note that a pendulum from the perspective of

the mechanism and dynamics, may be seen as one degree-of-freedom manipulator

with revolute joint. The limitations of linearization are primarily two. First, the

closed-loop linearized equation is valid only for small errors. Thus, the control

system may not restore the stability if the pendulum has deviated too much from

the desired vertical position. For example, if a rocket deviates too much from the
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vertically upward position at the time of launch, and controller fails to restore it,

eventually it will fall (as the other equilibrium state is stable in this case). Second,

if the operating point is not fixed (such as in trajectory following problem), then

one cannot resort to the linearization technique as the linearized equation is valid

only in the vicinity of the operating point used for linearization. Thus, in the case

of a manipulator which has to move the end effector anywhere in the workspace,

there is no single operating point about which the dynamics can be linearized, as

the control problem is a servo (trajectory tracking) problem rather than a regulator

problem in the context of manipulator.

If the manipulator is actuated by stepper motors and the speed at which it

needs to operate is on the slower side, the dynamic (inertial) coupling effects may

not be prominent and the manipulator may be controlled in open-loop. Another

practical scenario is when servo motors with high gear reduction are used to

actuate the manipulator, again, the dynamics of the manipulator may not appear

prominently at the actuator level, and hence a simple independent-joint linear

controller such as PID controller may be used. However, linear controllers cannot

be used in general situations. Two approaches used in such a scenario are: gain

scheduling, robust control techniques, etc.

1.1.2 Implication of coupled dynamics

As we have seen using a simple 2R planar manipulator, the dynamics are

coupled in the sense that motion of one link affects the other link and also actuation

at one joint affects the other link. Thus, a control system designed has to account

for the coupling affect. Any independent joint control scheme, however advanced

it may, cannot truly account for the coupled dynamics. An independent joint

control scheme using adaptive techniques may account for only the non-coupled

component of the manipulator dynamics.
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1.1.3 Implication of higher computational cost

Being a nonlinear coupled dynamic system, a nonlinear model-based control

scheme, which uses the dynamic model in the control law, is ideally suited for

the manipulator motion control problem. Now as the manipulator dynamics is

computationally intense, it affects the sampling rate at which the control law can

be implemented depending on the time required to complete the computation of

the manipulator dynamics as part of the control law. We shall discuss this issueS

in detail later as this is one of the main motivation for this thesis.

1.2 Manipulator Control

Designing a stabilizing controller for a highly nonlinear and coupled dynamic

system such as a robotic manipulator is a challenging task. As we have discussed in

the previous section, simple control schemes such as open-loop control scheme (in

the case of stepper motors and slower motion requirement), simple independent-

joint PID control (when the motors have high gear ratio), or more complex

techniques such as robust control techniques, gain scheduling, etc. have been

used for manipulator control.

Though a manipulator has coupled nonlinear dynamics, in many practical

applications, each joint is independently controlled using PID controllers. Such

a strategy is called independent joint PID control. The independent joint PID

control law trajectory following is:

τ(t) = θ̈d +KvĖ +KpE +Ki

∫
Edt (1.4)

Here Kv, Kp, and Ki are controller gain matrices and they are diagonal matrices

with positive entries. For example Kp = diag(kp1, kp2, . . . , kpN), with kpi being

the proportional gain corresponding to controller of the ith joint and N is the

degrees-of-freedom of the manipulator. Here, the actual dynamics of the

manipulator is not considered in the controller. Hence, nonlinearity and coupling

effects are neglected. The controller performs reasonably well when the speeds
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and acceleration are small, as the inertial effects and hence the effect of

nonlinearity and coupling small, and as the feedback control can handle

reasonable model uncertainty and disturbances. However, as we discussed in the

previous section, the control performance will not be uniform across the state

space.

Now we shall preview a model-based nonlinear control scheme for a

manipulator. Figure 1.3 shows a block diagram of the model-based manipulator

control scheme.

Figure 1.3: Block diagram of a model-based control scheme.

Consider the control law:

τ = M(θ)(θ̈d +KvË +KpE) + C(θ, θ̇) +G(θ) (1.5)

Now the closed-loop dynamics of the manipulator whose dynamics is given by

Eqn. (1.1) with the model-based control law given in Eqn. (1.5) may be obtained

by substituting for τ from (1.5) in (1.1):s

Ë +KvĖ +KpE = 0 (1.6)

Note that the error dynamics given by Eqn. (1.6) is independent of the

manipulator dynamics and more importantly de-coupled and linear. This process

of lineralization is called feedback linearization. Unlike the standard linearization
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process, there is no approximation here. It can be shown that (as the

corresponding poles are on LHS):

E → 0, as t→∞

for positive controller gains. The controller gains can be chosen to ensure the

closed loop system performs as desired, by meeting the time domain specifications

such as rise time, overshoot, and settling time. Note that the performance is

uniform over the entire state-space, unlike with the independent-joint linear (PID)

controller. Though we are controlling a nonlinear system (a manipulator) here,

using a nonlinear controller, the tools used for a second order linear time invariant

(LTI) SISO system are sufficient to design (that is, chose the controller gains) and

analyze the system for stability and its performance.

1.3 Multi-agent/robot systems

Nature uses either an individual with high level of skills/capabilities or use

a group of cooperating creatures with rudimentary capabilities to solve a complex

problem or accomplish a complex task. In the second category, the nature solves

problems by using simple behavior patterns. Several living beings such as ants,

birds, fish etc., which have limited capabilities. Their simple local behavior leads

to a useful collective behavior such as swarms, schools, flocks, etc. Developments

in areas such as wireless communication, autonomous robots, computation, and

sensors, facilitate the use of large number of agents (UAVs, mobile robots, or

autonomous vehicles), which are equipped with necessary sensors, communication

capabilities, and computation ability, to cooperatively achieve various tasks in a

distributed manner.

Such distributed multi-agent systems (MAS) or multi-robotic systems

(MRS) have been shown to achieve and maintain formations, move as flocks

while avoiding obstacles. These multi-robotic systems are increasingly being

used to solve many complex problems, such as autonomous lawn mowing(Cohen,

Sirotin & Rave 2008), vacuum cleaning(Doty & Harrison 1993), search and
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rescue (Guruprasad & Ghose 2011), landmine detection (Guruprasad, Wilson &

Dasgupta 2012),(Dasgupta, Baca, Guruprasad, Munoz-Melendez &

Jumadinova 2015), surveillance, signal source identification, etc. The major

advantages of distributed systems are adaptability to failure of individual agents,

their versatility in accomplishing multiple tasks, simplicity of agents’ hardware,

and requirement of only minimal local information.

1.4 Centralized, decentralized and distributed control

In the context of multi-agent or networked systems, we may have primarily

two possible control architectures. First a centralized control architecture and

second, a decentralized control architecture. In the case of centralized architecture,

a single central controller controls all the individual plants. A central controller

may not be suitable in many applications due to several disadvantages, main

among them being the failure of the central controller makes the entire system

fail. This architecture also requires complete communication between the central

controller and all the individual agents/plants, and hence the, communication

overhead of the centralized system is high.

In a decentralized control architecture each plant/agent has its own

dedicated controller. This architecture may not suffer in a major way when some

of the agents fail. Further, one can also have a distributed system architecture

which is somewhere between the centralized and decentralized architectures,

where controllers communicate among themselves and exchange information,

while the decision is taken locally. Figure 1.4 illustrates these architectures. In

this thesis, though we address the problem of control of a single system (the

manipulator), we will use the concepts of decentralized and distributed control

architecture.

1.5 Contribution of the thesis

Inspired by multi-agent/robotic systems, first we perceive a manipulator,

which is MIMO multi-body system, as a multi-agent system with the joints (or
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Figure 1.4: (a) Centralized (b) decentralized, and (c) distributed control
architecture used in multi-agent or networked systems.

the joint-link pairs) as sub-systems or agents, which interact with each other in

a distributed manner. Here, the interaction between the joint-link agents is in

the form of interactive forces and moments that lead to dynamic coupling. As

the adjacency graph formed by the joint-link agents as nodes and links between

two joints as edges is connected, the direct interactions between the immediate

neighbors result in interaction (in the form of dynamic coupling) between any two

joint-link agents.

We carry out an analysis of the computational cost associated with the
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model-based control law for planar serial-link manipulators with this analysis,

we establish the fact that the total computational cost associated with the model-

based control law increases with the degrees-of-freedom. We propose a distributed

architecture for the control of manipulator now considered as a multi-agent system

of joint-link agents, with the primary motivation of reducing computational cost

associated with the centralized control scheme. Here, each joint-link agent is

controlled by a dedicated controller, and the joint-level controllers communicate

and cooperate among themselves. Though one of the primary motivation for the

proposed distributed control scheme is to reduce the computational overhead, in

this thesis we rely on the natural distributed nature of the manipulator dynamics

rather than the program optimization or operation optimization techniques that

are used at the algorithmic level.

We propose a simple distributed control scheme based on the conventional

model-based control law and show that it can be implemented using the

distributed control architecture. Here, apart from the reduced computational

lead time due to distributed computation of the control law at the joint-levels,

unlike the decentralized or independent joint control schemes, the proposed

control scheme fully utilizes the knowledge of the system dynamics, leading to a

feedback linearized closed-loop error dynamics. Though the proposed distributed

control scheme is suitable for a general serial-link manipulator, in this thesis, we

focus on planar manipulators with revolute joints. We prove, that the proposed

distributed control scheme makes the links of the manipulator, and hence the

end-effector, follow the desired trajectory, asymptotically. We define a quantity

called distribution effectiveness to quantify how the distributed control schemes

share the computational load among the individual joint-level controllers. We

also provide a discussion on implication of the discrete-time implementation of

the proposed distributed control scheme in contrast to the conventional

model-based control scheme. We design a distributed model-based controller for

a planar 3R manipulator, to illustrate the proposed distributed control scheme

and the distributed control architecture for a manipulator. For the case of planar
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manipulators with degrees-of-freedom 2 − 6, we provide a method to reduce the

computational cost associated with dynamic equations used in the control law by

identifying repetitive terms, which may be generalized for any other manipulator

in principle.

In an attempt to further improve the distribution effectiveness and reduce

the computational lead time, we propose a cooperative control scheme for a

manipulator using the distributed control architecture. While in the basic

distributed control scheme proposed, joint-level controllers interact amongst

themselves in terms of exchanging desired and measured states (and their

derivatives), in the case of the cooperative control scheme the joint-level

controller cooperate by exchanging certain computed terms between them. Even

in this case, we provide a discussion on implication of the discrete-time

implementation. We prove, that the proposed cooperative control law makes the

links of the manipulator, and hence the end-effector, follow the desired

trajectory, asymptotically. We design a cooperative distributed model-based

controller for a planar 3R manipulator, to illustrate the proposed cooperative

manipulator control scheme implemented in the distributed control architecture.

We also provide a discussion on computational effectiveness of the proposed

cooperative distributed control scheme along with a method to further reduce

the computational lead time by identifying repetitive terms in the control law.

We present a detailed analysis of computational cost associated with the

dynamic equation of planar manipulators with degrees-of-freedom from 2 to 6,

where we analyze the cost involved in the proposed distributed control schemes

in contrast to that in the conventional centralized model-based control scheme,

using Maple. We provide results which indicate that the distribution

effectiveness of the proposed simple distributed control scheme improves with

degrees-of-freedom of the manipulator. We also provide a detailed discussion on

reducing the computational cost by identifying repetitive terms in the dynamic

equations at each joint-level, for planar manipulators with degrees-of-freedom

from 3 to 6.

13



We then present simulation results demonstrating the proposed control

schemes. We present results which show how the trajectory tracking

performance of the model-based control law degrades with increase in the

sampling time. Then we present results which demonstrate that with the

proposed distributed control schemes every joint tracks the desired trajectory

satisfactorily, in comparison with the independent-joint PID control scheme. We

present details of implementation of the proposed distributed manipulator

control scheme using Simulink-ROS hybrid platform based on Matlab’s Robotics

toolbox, which provides a more realistic simulation result and it is also amenable

for hardware implementation. Finally, we present a discussion to compare

decentralized control schemes presented in the literature with the distributed

control schemes presented in this thesis.

1.6 Organization of the thesis

The rest of the Thesis is organized as follows. We discuss the relevant

literature in chapter 2. Chapter 3 provides the research gap, motivation for the

thesis and the objectives of this. A control scheme for a manipulator implemented

in distributed architecture is presented in the Chapter 4. Chapter 5 presents a

cooperative, distributed manipulator control scheme. Results and discussions are

provided in Chapter 6, and the thesis is concluded in Chapter 6 with a summary

and a discussion on scope for further work.
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CHAPTER 2

Literature survey

In this chapter, we provide a survey of representative literature on

manipulator control. A large number of work is available on the manipulator

control as it is practically relevant and theoretically challenging problem.

As robotic manipulator is made up of several links coupled with joints which

allow relative constrained motion between the connected links. Each joint-link pair

may be considered as a subsystem. Thus, a manipulator can be considered as a

networked system. In this perspective, the control scheme may have a centralized

archtecture, where the manipulator is considered a single ‘multi-body/MIMO

system’, or decentralized architecture, where manipulator is considered a network

of SISO systems.

2.1 Centralized control Schemes

First we preview a few representative control schemes that can be grouped

under the centralized architecture. Traditionally these control schemes are not

called centralized schemes as, a manipulator here are not considered as

networked or distributed system, rather as a single nonlinear coupled MIMO

system. However, in contrast to the decentralized manipulator control schemes

proposed in the literature, we call these control scheme as centralized control

scheme, or more precisely, control schemes implemented using the centralized

architecture. Figure 2.1 shows a centralized manipulator control architecture,

where all the subsystems (that is, the joint-link pairs) are controlled by a single

central controller.

The traditional nonlinear model based controller (Craig 2005, Asada &

Slotline 1986, Spong & Vidyasagar 2008), discussed in the previous chapter,

utilizes the dynamic model of the manipulator into the control law and achieves

linear error dynamics through feedback. As discussed in the previous chapter,

such a model-based control scheme is an ideal control scheme because of its
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Figure 2.1: A centralized manipulator control architecture. Each of the joint-link
pairs considered as a subsystem.

guaranteed performance, in terms of satisfying the time domain specifications

uniformly across the state-space, or for any desired trajectory on the entire

workspace. Though typically the model-based control law uses the joint-level

trajectory, the control law may be redesigned to use the trajectory in task space

directly. These schemes are called model-based control in Cartesian space

(Ghosal 2013). The authors in (Yuan 1988) present a closed-loop manipulator

control using quaternion. Feedback linearization is achieved using quaternion or

Euler parameters, which are used to represent the orientation. Here, the desired

trajectories are provided in the task space. The control is achieved directly in

the task space by using the inverse of the Jacobean matrix. In (Yun 1988), the

author considers a problem of simultaneous motion and force control robotic

manipulator. Here, the authors achieve exact linearization and decoupling of the

motion and force control loops using a dynamic nonlinear state feedback and a

nonlinear state transformation.

In these model-based control schemes which use feedback linearization
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technique, the control gains can be tuned to achieve desired performance level

and the performance is uniform in the entire state-space. However, main

disadvantage is that the system dynamic equation need to be computed online.

As we have discussed in the previous chapter, the robot dynamics in general is

computationally expensive. One solution proposed to reduce the computational

load is the computed torque control (Paul 1972, Markiewicz 1973). A

model-based computed torque control law is:

τ = M(θd)(θ̈d +KvË +KpE) + V (θd, θ̇d) +G(θ) (2.1)

Here the dynamics is pre-computed based on the planned trajectory (that is,

θd, θ̇d, and θ̈d, in place of the current states/derivatives θ, θ̇, and θ̈) and a feed-

forward loop is added. The performance approaches that of the model-based

controller when the robot is following trajectory accurately. However, when the

tracking error is high (initially), nonlinear terms do not cancel and hence the

performance may be poor. Further, this scheme requires large memory to store

the pre-computed dynamics along the entire trajectory. Moreover, this scheme

can not be used when the trajectory is generated online.

Another limitation of the model-based (and the computed torque scheme)

is that the dynamic model of the robot should be known exactly. In the absence

of a complete knowledge of the system dynamics, or even when known, to reduce

computation, techniques such as robust control (Yim & Park 1999, Essakki,

Bhat & Su 2013) adaptive control (Sastry 1984, Craig 1986, Slotine &

Weiping 1988), model predictive control (Poigent & Gautier 2000), model

identification based control (Paul 1972), etc., are used. Approaches based on

Artificial Neural Networks (Li, Wang & Rafique 2018, Jin, Li, Yuc & inbo

He n.d.), Fuzzy logic controllers, or a combination known as Adaptive Network

based Fuzzy Inference System (ANFIS) (Guruprasad & Ghosal 1999), etc., are

also used to account for the model uncertainty. There is a vast literature on such

control schemes. However, the focus of this thesis is on control of a manipulator

when the dynamic model is known. Hence, we have provided only a few
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representative works on control schemes that address model uncertainty.

In a recent work, (Andreev & Peregudova 2017) authors propose a control

scheme using the dynamic position-feedback controller with feedforward. By using

Lyapunov vector function and comparison principle, authors construct a non-linear

controller with variable gain matrices and first-order linear dynamic compensator

to achieve a closed-loop system that is uniformly asymptotically stable. Authors

also show that controller is robust with respect to parameters uncertainties.

2.2 Decentralized Control Schemes

In contrast to the centralized control architecture, in the decentralized

control schemes, each subsystem (joint-link pair) is controlled independently by

a dedicated controller. This scheme is also known as independent joint control.

This is illustrated in Figure 2.2. The actual system (that is, the manipulator)

Figure 2.2: Decentralized manipulator control architecture

has physical interactions between the subsystems in terms of dynamic coupling.

However, the controllers do not communicate or cooperate among themselves. A

simplest decentralized control is the independent joint PD/PID control

(Craig 2005), where each joint is controlled by an independent controller. As we

discussed earlier, the trajectory tracking performance with such a controller will

not be uniform in the entire state-space.

In (Seraji 1989) the author proposed an adaptive independent joint control
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scheme for a manipulator. Here, each joint is controlled using a PID control law

along with a position, velocity, and acceleration feed-forward loop with adaptive

gains. The authors in (Hsia & Gao 1990) proposed a decentralized linear control

using the control input computed in previous time instance to estimate the

coupling terms in the manipulator dynamics. Their control law approaches the

model-based control law as the time delay (sampling time) approaches zero. An

adaptive version of this control law (Hsia & Gao 1990) is presented in (Cho, Lee,

Kim, Kuc, Chang & Jin 2016). An asymptotically stable decentralized adaptive

control scheme for trajectory tracking by a manipulator has been presented in

(Tarokh 1996). In (Tang & Guerrero 1998) authors provide a simple controller

using linear state-feedback, with an additional signal which compensates for the

coupling terms, uncertainty in parameters, and bounded disturbances. A

nonlinear adaptive decentralized controller is proposed in (Liu 1997), where the

author attempts to account for nonlinear coupling by using decentralized cubic

feedback. In (Liu 1999) the author uses a robust nonlinear feedback term in

addition to a decentralized cubic feedback, to a decentralized PD control law. In

(Wang & Wend 1999) authors subdivide the dynamics of the subsystems as

nominal system and uncertainties. The Riccati equation approach is used to

control manipulator based on the nominal system with bounds on the

uncertainties. The authors in (Narendra & Oleng 2002) provide a theoretical

analysis of a strictly decentralized adaptive control systems, and show that it is

possible to track the desired outputs with zero error. In (Hsu 2006) an adaptive

decentralized controller using adaptive variable structure compensations has

been proposed. Authors in (Yang, Fukushima & Qin 2012) proposed a

decentralized robust control for a manipulator. Here, the low pass coupled

uncertainties are considered as disturbances, and a disturbance observer (DOB)

is introduced to compensate for the same. In (Leena & ray 2012) the authos

proposed a class of stabilizing decentralized PID controllers for a general n-link

robot manipulator. Authors obtain the controller gains using Kharitonov

theorem (Huang & Wang 2000) and stability boundary equations. They use the
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concept of gain-phase margin (Franklin et al. 2002) used in control system

design. In (Senda, Nishibu & Mano 2003) a decentralized control (though

authors refer to it a distributed in the title) for a redundant fault tolerant

manipulator using visual serving is proposed.

Manipulator Control Schemes

Centralized/System-level Decentralized/Joint-level

Model known/utilized
 fully

Model uncertain/not
utilized  fully

Computational Sensor-based

Model-based control
(Craig 2005)
Yuan 1988
Yun 1988

Computed torque/
Feedforward
Markiewiz 1973

Adaptive:
  Sastry 1984
  Craig 1986
  Slotine & Weiping 1988

Robust:
  Yim & Park 1999

Model predictive
  Poigent & Gautier 2000

Model identification
  Paul 1972

Intelligent control 
(ANN, FLC, etc.)
  Guruprasad & Ghosal
 1999
  Li et al 2018
  Jin et al 2018

Seraji 1989
Hsia & Gao 1990
Tarokh 1996
Liu 1997
Liu 1999
Wang & Wend 1999
Narendra & Oleng 2002
Hsu 2006
Yang et al 2012
Leena & Ray 2012
Cho et al 2016

Torque feedback

Preffer et al 1989
Hashimoti 1989
Kosuge et al 1990
Aghili 2007

Figure 2.3: Summary of representative manipulator literature.

A class of manipulator control schemes that use torque feedback have been

presented in the literature (Preffer, Khatib & Hake 1989, Hashimoti 1989, Kosuge,

Takeuchi & Furuta 1990, Aghili 2007). These control scheme rely on joint torque

measurement using torques sensors mounted at each joint. In principle, measured

torque values replace the computation and hence the control scheme may be

implemented in a purely decentralized architecture, with provable performance

guarantee. However, as these schemes require torque sensors to measure the
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motor torques at each joint, these are not suitable for a large number of existing

manipulators which lack such a sensing capability.

A few work in the literature such as (Morit, Nayat, Osatot &

Kawaokatt 1996, Bohner & Luppen 1997, Jia, Zhuang, Bai, Fan &

Huang 2007, Tsuji, Nakayama & Ito 1993), use concepts from MAS for

manipulator control. We shall discuss them in more detail in Chapter 4, except

to state that these work do not address a dynamic control of manipulators. We

have summarized the manipulator control literature previewed here in Figure 2.3.

In this chapter, we previewed relevant literature in manipulator control as

centralized and decentralized schemes. We identify the gap in the research that

motivates the work carried out in thesis in the next chapter.
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CHAPTER 3

Motivation and Objectives

In this chapter we identify the research gap based on the literature survey

carried out in the previous chapter, provide motivation for the work and present

the objectives of the research.

3.1 Research gap and motivation

First we make a few observations based on the literature review presented

in the previous chapter.

1. Though the problem of motion control of a serial-link rigid manipulator is

very old (earliest reference provided in the previous chapter dates back to

the year 1972), it is relevant even today as the most recent papers we

referred are from the year 2018.

2. Various decentralized control scheme have been reported in the literature

indicating the importance of joint-level control schemes for a manipulator,

particularly to address the computational overhead involved in traditional

centralized schemes. Further, recent literature in the decentralized schemes

(latest work referred in previous chapter is from the year 2016) also indicate

that problem of joint-level control of a manipulator is not saturated and is

relevant to date.

3.1.1 Disadvantages of the centralized control schemes

In the literature we grouped the manipulator control schemes into two major

architectures, namely, centralized control architecture and decentralized control

architecture. The focus of this thesis is on the scenarios where the dynamic model

of a manipulator is available. This is true in most practical situations. Motivation

for control schemes that consider model uncertainty are two. First, an exact model
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Sl No Operation\DOF 2 3 4 5 6

1 Trigonometric (NT ) 108 373 1015 2478 5451

2 Multiplication (NM) 239 798 2109 6458 11250

3 Addition (NA ) 122 484 1430 3704 8353

Table 3.1: number of computations serial-link manipulator

may not be available. The model uncertainty is typically at the parametric level,

such as frictional coefficients, which are difficult to model. Variation in load may

also be the cause of model uncertainty. Second is the high computational cost

associated with the model-based control schemes. Here, instead of incorporating

the complete model into the control law, a simpler control law may be used and the

controller parameters (such as gains) may be tuned on the go (adaptively) so as to

achieve a balance between performance and computational cost of implementing

the controller.

In this work as we consider a situation where the manipulator model is

known completely, a centralized nonlinear controller such as model-based control

law is most suitable because of its guaranteed performance across the state space.

However, the computational overhead is an important issue to be addressed

while implementing it in realtime. This disadvantage of high computational cost

involved in the computer implementation of such a centralized control law is

apparent from the literature as it has motivated a large quantum of research into

manipulator control, mainly into the decentralized control schemes.

Major component of computational cost involved in the model-based

control law comes from the manipulator dynamic equations. We made an

analysis of number of arithmetic operations involved in computation of

manipulator dynamic equations. Table 3.1 shows the number of arithmetic

operations (NT , trigonometric operations; NA, addition/subtraction; and NM

multiplication) involved in computation of manipulator dynamics for serial-link

planar manipulators with revolute joints with degrees-of-freedom from 2 to 6,

using Maple. Figure 3.1 shows how the number of addition, multiplication, and
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Figure 3.1: Number of arithmetic operations in the dynamic equation of planar
serial-link manipulators vs the degrees-of-freedom.

trigonometric operations involved in the computation of manipulator dynamics

increase with the degrees-of-freedom for planar serial manipulators.

Exact cost of computation of addition, multiplication, and trigonometric

operations depend on the processor and the computational method used.

However, for the purpose of obtaining a comparative cost, we considered cost of

addition as 1 unit, that of multiplication as 4 units and that of trigonometric

operations as 60 units, in the order of their respective computational complexity.

Table 3.2 shows the computational cost associated with dynamic equation for

different degrees of freedom planar manipulators. Figure 3.2 shows how the cost

of addition, multiplication, and trigonometric operations involved in the

computation of manipulator dynamics increase with the degrees-of-freedom for

planar serial manipulators. The computational analysis carried out here is only

representational and for the purpose of establishing the fact that the

computational cost associated with the dynamic equations of a manipulator, and

hence that of the model-based control law (in centralized architecture) is high
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Sl No cost\DOF 2 3 4 5 6

1 CT 6480 22380 60900 148680 327060

2 CM 956 3192 8436 25832 45000

3 CA 122 484 1430 3704 8353

Table 3.2: computational cost associated with the dynamics equation of of serial-
link manipulators.
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Figure 3.2: computational cost associated with dynamics of serial-link
manipulators. vs degrees-of-freedom.
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and also increases with the degrees-of-freedom.

Even when the model is not known (or used) completely, techniques such

as adaptive control schemes can be used to estimate the model (in terms of

the system parameters) or tune the control parameters to provide the desired

performance level. For example, in the ANFIS based model-reference learning

control scheme proposed in (Guruprasad & Ghosal 1999), the ANFIS corrector

uses the function approximation characteristics of the Adaptive networks, and can

learn the model by comparing the difference between the desired performance and

actual performance and account for the model uncertainty including the coupling

effect. In fact the results shown in (Guruprasad & Ghosal 1999) demonstrate that

even when the assumed model is linear and decoupled, the ANFIS corrector was

able to account for the complete model. This is achieved as the control scheme

has provision to account for nonlinearity and dynamic coupling. However, even in

such situations, the control schemes are expected to be computationally expensive.

Though the centralized architecture has provision for incorporating

provisions to account for nonlinearity and dynamic coupling, many of the control

scheme reported in the literature over simplify the control law and do not

provide provisions for incorporating the nonlinearity and/or dynamic coupling

effects, instead rely on robustness property of the feedback control schemes. Here

by robustness we mean the feedback control schemes in general are less sensitive

to the model uncertainty, particularly with higher gains.

3.1.2 Concerns with the decentralized control schemes

Though decentralized control laws typically result in lower computational

lead time, being one of the primary motivation, they do not consider the

dynamic coupling between links, instead, use either robust control techniques or

adaptive control techniques. Theoretically, a purely decentralized architecture

cannot account for the dynamic coupling effects.

Consider the manipulator dynamics provided in Chapter 1, neglecting
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gravity.

τ = M(θ̇)θ̈ + V (θ, θ̇) (3.1)

We may rewrite Eqn. (3.1) for a two-link manipulator as:

τ1 = M11(θ)θ̈1 +M12θ̈2 + V1(θ, θ̇)

τ2 = M21(θ)θ̈1 +M22θ̈2 + V2(θ, θ̇)
(3.2)

Here, θ = (θ1, θ2)
′, V = (V1, V2)

′, and

M =

 M11 M12

M21 M22


Here,

M11 = m2l
2
2 +m22l1l2c2 + (m1 +m2)l

2
1

M12 = m2l
2
2 +m2l1l2c2

M21 = m2l
2
2 +m2l1l2c2

M22 = m2l
2
2

V1 = −m2l1l2s2θ̇
2
2 − 2m2l1l2s2θ̇1θ̇2

V2 = m2l1l2s2θ̇
2
1

(3.3)

Note that the τ1 equation contains cos(θ2), sin(θ2), θ̇2, and θ̈2, the states

corresponding the second link. Similarly the τ2 equation contains θ̇1 and θ̈1. Let

X1 = (θ1, θ̇1)
′ and X2 = (θ2, θ̇2)

′, the states of the two link manipulator. We may

write Eqn. (3.2) as:

τ1 = F1(X1, X2, Ẋ1, Ẋ2)

τ1 = F1(X1, X2, Ẋ1, Ẋ2)
(3.4)

Consider a control law of the form to control the two-link manipulator:

τ = K(G,X1, X2, Ẋ1, Ẋ2) (3.5)

Here, τ is the joint torque vector. A suitable control law K(·) and controller

parameters/gain G may be used in principle to approximate the manipulator

dynamics, including the coupling terms. Centralized adaptive controllers use such
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a model, where the controller parameters are tuned to improve a suitably defined

performance metric.

Now consider a pure decentralized control of the form:

τ1 = k1(G1, X1, Ẋ1)

τ2 = k2(G2, X2, Ẋ2)
(3.6)

In this case the control laws cannot account for coupling terms in the dynamics

given in Eqn. (3.4), with any form of ki and any value of control parameters Gi.

Here τ1 depends on only the states of the first joint, X1 and its derivative, and

hence it cannot approximate the effect of X2 (and Ẋ2), the states of the second

joint. The success of the such a controller depends purely on robustness properties

of the corresponding control laws, such as gain/phase margins they provide.

Thus, we observe here that though the decentralized control scheme may

successfully reduce the computational overhead and guarantee satisfactory

performance, they cannot replicate the ideal performance a model-based control

achieves. Their performance level depends on the states, and hence the control

system designer has to ensure that the worst possible performance should be

better than that desired. In fact purposefully neglecting the available nonlinear

dynamics, particularly the dynamic coupling effects, and using additional

techniques to account for them, may also lead to additional computational

overhead.

3.1.3 Summary of research gap

To summarize, when the dynamic model of the manipulator is fully available,

as is assumed in this work, the centralized control schemes though guarantee best

possible trajectory tracking performance, are computationally expensive. Also,

as discussed earlier using the control scheme presented in (Guruprasad & Ghosal

1999), even in the situation where the model is not fully known (or utilized), it is

possible in the case of the centralized architecture to have provisions to account

for the nonlinearity and dynamic coupling. The decentralized control architecture

29



suffers from its inability to truly account for the dynamic coupling between the

links of a manipulator, though it can have provision for incorporating nonlinearity.

Both centralized control schemes that do not utilize the manipulator dynamic

model into control law and the decentralized control schemes, rely on robustness

properties of feedback control and concepts such as gain margins, and focus on

worst case performance level.

3.2 Objective

The objective of the research work is to envisage a computationally

efficient joint-level control architecture for the manipulator control, fully utilizing

its dynamic model, and without compromising on the performance as compared

to that with the traditional feedback linearizeation based model-based control

scheme.

In the following chapters we provide control architecture and control schemes

that attempt to achieve the objective of this work.
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CHAPTER 4

Distributed control of manipulator

In this chapter, we present a distributed control architecture for manipulator

control and provide a simple model-based control scheme that is implemented in

the proposed distributed control architecture.

4.1 Manipulator as a multi-agent system

A serial-link manipulator consists of several links with joints which allow

motion between them. Links physically interact with each other in terms of

interactive forces and moments between them through these joints. As illustrated

in Figure 4.1, the link (i − 1) exerts a force fi and a moment ni on the link i.

Similarly, the link (i + 1) exerts a force −fi+1 and a moment −ni+1 on the link

i. With these interactive forces and moments from connected links, the ith link

experiences a net force of Fi and a net moment of Ni. The actuator applies a

moment (or force in the case of prismatic joints) about (along) the joint axes Zi.

We may consider a ‘joint-link pair’ as a subsystem or an agent, interacting with

other subsystems/agents. In this sense, a serial-link robot is a multi-agent system.

However, unlike in a typical multi-agent system, where the coupling between any

two agents is at the behavioral level, interactions between the agents (joint-link

pairs) in a manipulator at the physical level.

Note that the ith link directly interacts only with the neighboring links i−1

(through the joint i) and i + 1 (through the joint i + 1). However, interaction of

link i+ 2 with i+ 1 is experienced on the link i through the link i+ 1. In this way,

motion of (and the force/torque on) every link affects every other link. Such an

indirect interaction is also seen in distributed multi-agent systems. Here, direct

local interactions lead to interaction between every (connected) agents.

31



Zi

Zi+1

Oi

Oi+1

{i}

{i+1}

iPi+1

fi

ni

fi+1

ni+1

Ci

Fi

Ni

Figure 4.1: Connected links exert forces and moments through the joints. The
axis of motion between links (i− 1) and i is Zi. A force fi, and a moment ni, are
exerted by (i− 1)th link on the ith link. Fi and Ni are the net force and moment
acting on the link i.

4.2 Computational cost of manipulator dynamics

The equation modeling the dynamics of a serial-link manipulator has the

form

τ = M(θ)θ̈ + V (θ, θ̇) +G(θ) (4.1)

Here, τ is the vector of joint torques with size N×1; M(·) is the mass matrix with

size N×N ; θ, θ̇, and θ̈ are joint angle, joint velocity, and joint acceleration vectors,

respectively, all of size N × 1; V (θ, θ̇) is the vector involving centrepetal/coriolis

accelerations, of size N × 1; and G(θ) is the vector of gravity terms of size N × 1.

Here, N is the degrees-of-freedom of the manipulator. The standard model-based

control law is (as given in Chapter 1):

τ = M(θ)(θ̈d +KvË +KpE) + V (θ, θ̇) +G(θ) (4.2)
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Here, θd is the vector of desired joint angles, E = θd− θ is the tracking error, and

Kp and Kv are diagonal matrices of controller gains.

The model-based nonlinear control law uses the dynamic model of the

manipulator for computing the control input. Thus, computational cost of the

dynamic equations dictates the frequency at which the control input can be

updated. Higher the computational cost, higher is the computational lead time.

The computational cost associated with the dynamic equations of a manipulator

increases with degrees-of-freedom.

We carried out a simple analysis to find out how the number of computations

and hence the computational cost depends on the degrees-of-freedom, using Maple.

We considered planar manipulators with degrees-of-freedom from 2 to 6. We used

iterative Newton-Euler formulation method to obtain the manipulator dynamics

using Maple. The details of the process of obtaining manipulator dynamics is given

in Appendix A1 using the Maple output for the case of a 3R planar manipulator.

Similar process was used for planar manipulators with degrees-of-freedom 2 − 6.

Manipulator dynamics as obtained by Maple for degrees-of-freedom 4 and 5 are

provided in Appendix A21. In computing computational cost, we have considered

cost of addition/subtraction as 1 unit. Multiplication operation is definitely

computationally more expensive than addition, though the actual relative cost

depends on the algorithm used and the processor itself. Here, for the purpose

of comparative cost analysis, we have assumed the computation of multiplication

operation is 4 times more expensive than the addition. As trigonometric terms

appear at most twice per degree of freedom, in form of cosine and sine, we have not

considered them, though they are computationally more expensive. The number

of arithmetic operations and the corresponding cost involved in computation of

the dynamic equation of a planar manipulator with revolute joints for different

degrees-of-freedom are plotted in Figure 4.2. The number of arithmetic operations

too were obtained using Maple. Based on these results, we may obtain an empirical

relationship for number of arithmetic operations (NArith) in the dynamic equation

1Dynamics of 2R and 3R manipulators are provided in the body of thesis. Dynamics of 6R
manipulator is not given as it runs into several pages.
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Figure 4.2: Variation of number of arithmetic operations (shown with dashed line)
and total cost of computation (shown with solid line) of the dynamic equations of
a planar manipulator with the degrees-of-freedom.

of a planar manipulator as a function of the degrees-of-freedom N as,

NArith = 35.583N4 − 370.5N3 + 1676.9N2 − 3424N + 2605 (4.3)

which is polynomial in N . A similar trend is expected in a general serial

manipulator, or even parallel and hybrid manipulators, though the dynamic

coupling (between neighboring links) effect is maximum in the case of a planar

serial manipulator. The computational issues may not be very crucial for control

of manipulators with small degrees-of-freedom or those which can use high

performance processors for the implementation of control law. However, as the

degrees-of-freedom increases, particularly in redundant or hyper redundant

manipulators, higher computational effort may start affecting trajectory tracking

performance.
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Figure 4.3: Distributed manipulator control architecture

4.3 Distributed manipulator control architecture

Now we propose a distributed control architecture as illustrated in Figure

4.3 for a manipulator, exploiting the distributed nature of manipulator dynamics

as discussed earlier. Here, each joint-link agent is controlled by a dedicated joint-

level controller. While the joint-link agents interact (directly) with neighboring

agents (and indirectly with other agents), the joint-level controllers interact in

form of communication with the neighboring controllers (and indirectly with all

other controllers).

There has been some attempt in the literature to perceive manipulator as

a multi agent system. In (Morit et al. 1996) the authors consider a joint-link

pair as an agent and use the multi-agent system concept for manipulator control.

These agents are software agents rather than physical agents. Further, this paper

addresses kinematics rather than dynamic control of the manipulator. The inverse

kinematic problem is solved using a distributed architecture which provided input

to a high level control. The authors in (Bohner & Luppen 1997) present a reactive

planning and control system for redundant manipulators. Here a ‘joint-agent’ is

responsible for planning and controlling the motion of one joint, by integrating

sensor data, such as tactile sensors. In (Jia et al. 2007), the authors proposed

distributed architecture for a light space manipulator. However, they do not
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consider manipulator dynamics. The authors in (Tsuji et al. 1993) presented

a distributed control for redundant manipulators based on a concept of virtual

arms. Though the authors present control at dynamic level, the subsystems here

are virtual arms rather than the join-link pairs.

4.3.1 A simple distributed control scheme

Now we present a simple model-based distributed control scheme based on

the proposed distributed architecture, without use of any additional sensors.

The model-based control law given in Eqn. (4.2) represents a control law

using the centralized control architecture, where a single central controller

computes control inputs, τi, i = 1, . . . , N , for all the joints. Note that here all the

variables τ, θ, θ̇, θ̈, E, Ë, etc. are obtained in time t. Consider a simple

distributed control law for the ith joint-level controller as:

τi = ΣN
j=1Mij(θ)(θ̈jd +KvjĖj +KpjEj) + Vi(θ, θ̇) +Gi(θ) (4.4)

Here, the index j (or i) is used to indicate the corresponding component of a

vector, and Mij is the jth element in ith row of M . Note that the Eqn. (4.4) is

the ith component of the model-based control law as given in Eqn. (4.2). Let Ki

be a controller using the control law given in the Eqn. (4.4). For the model-based

control law given in Eqn. (4.4), i = 1, . . . , N , we make following observations:

1. Output of each controller Ki is τi, the control input to the ith joint of the

manipulator or Gi, the ith joint-link agent.

2. Controller Ki requires inputs from joint-link agents j 6= i, which it may

receive through the corresponding joint-level controllers Kj, j 6= i.

3. The controller Ki, i = 2, . . . N − 1 is connected to neighboring controllers

Ki−1 and Ki+1, in the sense that it can send and receive signals.

4. Now the adjacency graph of Ki, i = 1, . . . N is connected.
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5. Thus, the controller Ki can receive (send) signals from (to) any controller

Kj, j 6= i through a distributed (multi-hop, if required) communication.

6. The adjacency graph formed by the joint-level controllers is identical to that

formed by the joint-link agents.

Thus, the control architecture, where each joint-level controller Ki controls the

ith joint while obtaining necessary information (such as feedback values of joint

states and the desired states), has a natural distributed architecture, which in fact

is the result of the distributed nature of the manipulator dynamics.

Thus, though the control law corresponding to Ki may contain terms

corresponding to every joint/link, not only those corresponding to the immediate

neighboring agents, the control scheme based on the Eqn. (4.4) is naturally

amenable for a distributed implementation. As observed, the joint-level

controllers are allowed to communicate directly with the immediate neighbors,

and as every joint-level controller is indirectly connected to every other

controller, the required information may be obtained through (multi-hop)

distributed communication between the joint-level controllers.

Theorem 1 The control law given by the Eqn. (4.4), with positive gains, makes

the links of the manipulator whose dynamics is given by the Eqn. (4.1), follow the

desired trajectory θd(t), asymptotically.

Proof. The closed-loop error dynamics may be obtained from Eqn (4.4) and Eqn.

(4.1) as,

Ëj +KvjĖj +KpjEj = 0 ∀j ∈ 1, 2....N (4.5)

Thus, we have Ej → 0, as t→∞,∀j ∈ {1, 2, . . . , N}, for positive gains. �

Remark 1 Here, the closed-loop error dynamics is identical to that obtained using

the conventional model-based control scheme given by Eqn. (4.2). This is not

surprising for two reasons: First, the joint-level controllers Ki and the distributed

control scheme presented here is based on the control laws given in Eqn (4.4),

which itself is based the control law given in Eqn. (4.2); Second, any control
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law that cancels the nonlinear and coupled dynamics using feedback, or in other

words, feedback linearization, should lead to linear decoupled closed-loop error

dynamics as given in Eqn. (4.5). The contributions here are: identifying a

natural distributed nature of the model-based control law given in Eqn. (4.2),

presenting a control scheme that is amenable for implementation in the distributed

control architecture, and obtaining feedback linearization leading to guaranteed

state independent trajectory tracking performance, unlike the decentralized (or

independent joint) control schemes presented in the literature.

Remark 2 The distributed control scheme given by the Eqn. (4.4), is only a

simple example of a control scheme/law that can be implemented in the proposed

distributed manipulator control architecture. In principle, several model-based

control schemes may be designed within the proposed distributed architecture.

4.3.2 Distribution effectiveness

The main objective of a distributed control law for a manipulator being

reduction in the cost of computation involved in the control law, Here we introduce

a quantity called distribution effectiveness to quantify how the distributed control

schemes share the computational load among the individual joint-level controllers.

Let CT i be the computational cost associated with the ith joint-level controller,

and CT c be that associated with the corresponding centralized controller. We

define the distribution effectiveness for N degree of freedom robot as:

ηd =
CT c/N

maxi(CT i)
(4.6)

In an ideal situation, when the computation is distributed uniformly among the

N joint-level controllers, we get ηd = 1.

4.4 Discrete-time implementation: Effect of time delay

The model-based (centralized) control law as given in Eqn. (4.2) is in

continuous time domain. However, in realty, this control law is realized in discrete

38



time. The model-based control law in discrete time is given by,

τ(t) = M(θ(t− Td)θ̈d(t− Td) +Kv(t− Td)Ė(t− Td) +KpE(t− Td))
+V (θ(t− Td), θ̇(t− Td)) +G(θ(t− Td))

(4.7)

Where, Td is the time delay introduced due to the sampling time Td. The

sampling time depends on the time required to compute the control law Eqn.

(4.7), along with any other processing required. Note that with the discrete

control law given in Eqn. (4.7), feedback linearization is not achieved. We can

achieve the feedback linearization only when Td = 0. However, due to continuity

of the dynamics of the manipulator and the model-based control law, tracking

performance is expected to degrade gracefully with increasing Td.

Now consider the discrete-time distributed control law based on that given

in Eqn. (4.4),

τi(t) = ΣN
j=1Mij(θ(t− T d

d ))(θ̈jd(t− T d
d ) +Kvj(t− T d

d )Ėj(t− T d
d )

+KpjEj(t− T d
d )) + Ci(θ(t− T d

d ), θ̇(t− T d
d )) +Gi(θ(t− Td))

(4.8)

Here, T d
d is the time delay (due to sampling time) in the discrete-time

distributed model-based control law. Note that it is expected that T d
d < Td as

the computational effort associated with the control law is now shared among

the individual controllers. Hence, it is expected that the trajectory tracking

performance of manipulator with the discrete time distributed model-based

control law (4.8) is superior to that with the centralized, discrete-time

model-based control law given in Eqn. (4.7).

4.5 Distributed control for a 3R planar manipulator

Now we shall illustrate the control scheme given by Eqn. (4.4) (or (4.8))

implemented in the proposed distributed control architecture using a simple 3R

(three link manipulator with revolute joints) planar manipulator. Figure 4.4 shows

a schematic of a 3R planar manipulator with joint axes fixed using the standard

convention (Craig 2005). The D-H parameters are listed in Table 4.1.
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Figure 4.4: Schematic of a 3R planar manipulator with joint axes and D-H
parameters.

i αi−1 di θi ai−1

1 0 0 θ1 0
2 0 0 θ2 l1
3 0 0 θ3 l2

4/T 0 0 0 l3

Table 4.1: D-H parameters for a 3R planar manipulator shown in Figure 4.4.
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We consider a 3R planar manipulator for several reasons: First, most

manipulators use revolute joints, which result in nonlinearities and also dynamic

coupling; second, serial planar manipulator has maximum dynamic coupling

between its links; third, it is a simplest (in terms of degrees-of-freedom)

manipulator with at least one intermediate link, and fourth, it is a simplest (in

terms of degrees-of-freedom) redundant manipulator (considering only tool

position in a plane without considering its orientation). Figure 4.5 shows the

Dynamic

Coupling

Dynamic

Coupling

θ1

θ1d θ2d
θ3d

θ2

θ3
θ1,θ1d θ2,θ2d

θ3,θ3dθ2,θ2dK1 K2 K3

Joint-link 1 Joint-link 2 Joint-link 3

Manipulator

τ1 τ2 τ3

θ1,θ1d

θ3,θ3d

)

)

(

(

Figure 4.5: Block diagram of proposed model-based control of a 3R planar
manipulator in the proposed distributed architecture. Joint-level controllers
K1, K2, and K3 communicate among themselves while the dynamically coupled
three joint-link agents form the 3R manipulator. Each joint level controller Ki

provides the control input τi to corresponding joint-link agent/motor.

block diagram of the control law (Eqn. (4.4)) implemented in the proposed

distributed architecture. The communication links, along with the information

exchange between the neighboring controllers is also shown in the diagram.

Controller Ki receives θi (and its first derivative) as feedback from the joint-link

agent i, θid (and its first and second derivative) as the desired value. Controllers

communicate the values of corresponding joint variable (feedback) and desired

joint variable (along with necessary derivatives not shown in the figure), that
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they received, to the immediate neighbors (K1 ↔ K2, K2 ↔ K3). The

intermediate controller K2 communicates the values of θ1 (feedback it received

via K1, along with derivatives) and θ1d (desired value it received via K1) to K3

(shown as (θ1, θ1d) in bracket) and the values of θ3 (feedback it received via K3,

along with derivatives) and θ3d (desired value it received via K3) to K1 (shown

as (θ3, θ3d) in bracket), through the multi-hop communication. Now with this

distributed communication between the individual joint-level controllers, each of

them has all the necessary data to compute the corresponding control law.

Finally, the controller Ki provides the control input τi to the ith joint (or the

joint-link agent) using Eqn. (4.4) or (4.8).

Remark 3 The control scheme provided in Figure 4.5 may be implemented in

hardware. Each joint-level controller Ki may be implemented on an embedded

hardware with provision for necessary communication between them. In the case

of distributed control of a manipulator, unlike in a typical multi-agent/robotic

system, it is possible to use wired communication between the joint-level controllers.

However a detailed discussion on the hardware implementation is beyond the scope

of this thesis.

4.5.1 Computational cost and distribution effectiveness

As one of the motivation for the distributed control scheme is high

computational cost associated with the conventional model-based control

scheme, in this section we discuss the computational effectiveness of the

proposed distributed control scheme. Table 4.2 shows the number of additions

(NA), multiplications (NM), corresponding costs (CA, CM), and the total cost

(CT ), involved in computation of the dynamics at each joint. We obtain a

distribution effectiveness of 0.66 in this case, as against an ideal value of 1. The

(maximum) computational cost with the distributed implementation now

reduces from 944 units to 480 units (corresponding to the first joint controller),

that is about 50% of the cost of centralized implementation. This implies that

the sampling time of a discretized implementation of the control law in the
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Link # NA NM CA CM CT

1 64 104 64 416 480
2 50 78 50 312 362
3 14 22 14 88 102
Total 128 204 128 816 944

Table 4.2: Number of additions (NA), multiplications (NM), corresponding costs
(CA, CM), and the total cost (CT ), involved in computation of the dynamics at
each joint.

DOF ηd
2 0.64
3 0.66
4 0.69
5 0.72
6 0.75

Table 4.3: Distribution effectiveness with the degrees-of-freedom of planar
manipulators.

distributed architecture is about half that in the centralized architecture. If the

computational load were distributed equally among the joint-level computations,

then the computational cost, and hence the sampling time, with the distributed

implementation would have been 33% of that with the centralized

implementation. Thus, though the model-based control law implemented in both

centralized architecture (Eqn. (4.2)) and the proposed distributed architecture

(Eqn. (4.4) are identical theoretically, in reality when the control law is

implemented in discrete time, the performance of the trajectory performance

with the control law in distributed architecture is expected to be superior

compared to that in the centralized architecture as T d
d = 0.5Td. If we carefully

design the distributed control law such that ηd = 1, then we get T d
d = 0.33Td, the

least possible sampling time. As shown in Table 4.3, the distribution

effectiveness ηd improves with degrees-of-freedom of the manipulator. It may be

observed that manipulator control in distributed architecture is more useful for

higher degrees-of-freedom manipulator due to higher computational cost of the

centralized control law and better distribution effectiveness.
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Sl:no
Repeating
terms

Joint 1 Joint 2 Joint 3

1 −l1θ̇1
2

+ S1g 9 7 2

2 l1θ̈ + C1g 10 7 2

3 −l2(θ̇1 + θ̇2)
2 4 3 1

4 l2(θ̈1 + θ̈2) 5 4 1

5 l3(θ̈1 + θ̈2 + θ̈3) 2 2 1

6 −l3(θ̇1 + θ̇2 + θ̇3)
2 1 1 0

Table 4.4: Terms appearing multiple times in 3R manipulator dynamic equation

Remark 4 We may observe that the distributed control scheme based on Eqn.

(4.4) presented here is based on identification of a natural distributed nature of

the manipulator dynamics itself and that of the model-based control law (4.2).

The reduction in computational lead time with the distributed control scheme is

achieved purely because of the distribution of the computational effort among the

joint-level controllers, based on the natural distributed nature of the dynamics,

rather than the program optimization or operation optimization techniques that is

used at the algorithmic level.

4.5.2 Reducing computational cost

With a careful observation, we can identify several repetitive terms in the

dynamics of a 3R planar manipulator. We have used Maple to aid in this exercise.

Such repetitive terms are shown in Table 4.4 along with the number of repetitions.

For example the term l1θ̈+C1g repeats 10 times in the equation corresponding to

the first joint, 7 times in that corresponding to the second joint, and twice in that

corresponding to the third joint.

Now if we compute each of the terms that are listed in the Table 4.4 only

once, we may further reduce the computation cost associated with dynamics (and

hence the control law) at each joint. Note that this reduction is achieved without

neglecting any of the terms. Table 4.5 shows number of addition, multiplication,

along with the corresponding computational cost and total computational cost

associated with the dynamics at each joint level after this refinement. It may be
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Link ID NA NM CA CM CT

1 30 40 30 160 190
2 24 32 24 12 152
3 6 8 6 32 38
Total 60 80 60 320 30

Table 4.5: Number of addition and multiplication, corresponding computational
cost after avoiding repetitive computation of terms shown in Table 5.4.

observed that the computational cost at each joint level is now reduced by about

60% compared to that shown in Table 4.2. However, the distribution effectiveness

ηd = 0.66 even in this case, indicating this exercise of reducing computations by

avoiding repeated computation of certain repetitive terms does not affect how

the computation load is shared among the individual controllers. We provide a

detailed analysis of computational cost in Chapter 6.

Remark 5 Apart from the reduction in computational overhead due to the natural

distribution of the computational effort among the joint-level controllers, we have

achieved further reduction in the computational load here by identifying repetitive

terms in the manipulator dynamics/control law. As demonstrated by the fact that

the distribution effectiveness is unaffected by this exercise, this process of reduction

in computational load is independent of the distributed property of the manipulator

dynamics or the proposed distributed control scheme.
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CHAPTER 5

Cooperative control of manipulators

In this Chapter, we present a cooperative control scheme for a planar

manipulator within the proposed distributed manipulator control architecture.

We consider a 3R planar manipulator to illustrate the proposed scheme.

5.1 Cooperative nature of planar manipulator dynamics

First we revisit the manipulator dynamic equation and observe a special

distributed and cooperative structure in planar manipulators with revolute joints,

As we know the dynamics of a N degrees of freedom serial link manipulator has

the form,

τ = M(θ)θ̈ + V (θ, θ̇) +G(θ) (5.1)

Here, τ is a N×1 joint torque vector; M(·) is the N×N mass matrix; θ, θ̇, and θ̈ are

is N × 1 joint vector, joint velocity, and joint acceleration vectors, respectively;

V (·, ·) is a N × 1 vector of centrepetal/coriolis accelerations, gravity and other

terms such as frictional forces1.

Consider the dynamics of a two-link planar manipulator with revolute joint

having concentrated mass at the end of the links: τ1

τ2

 =

 m2l
2
2 + 2m2l1l2c2 + (m1 +m2)l

2
1 m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

 θ̈1

θ̈2



+

 −m2l1l2s2θ̇
2
2 − 2m2l1l2s2θ̇1θ̇2

m2l1l2s2θ̇
2
1

 +

 m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12


(5.2)

1Though we have provided these equation in earlier chapters, we provide them here for sake
of completeness and ease of presentation.
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Let us define:

τ1 = τ̃2 + τ̃1 (5.3)

τ2 = τ̃2 (5.4)

Now from the Eqn. (5.2) we obtain:

 τ̃1

τ̃2

 =

 m2l1l2c2 + (m1 +m2)l
2
1 m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

 θ̈1

θ̈2



+

 −m2l1l2s2θ̇
2
1 −m2l1l2s2θ̇

2
2 − 2m2l1l2s2θ̇1θ̇2

m2l1l2s2θ̇
2
1

 +

 (m1 +m2)l1gc1

m2l2gc12


(5.5)

or

τ̃ = M̃(θ))θ̈ + Ṽ (θ, θ̇) + G̃(θ) (5.6)

We have analyzed the dynamic equations of planar manipulators with

revolute joints for degrees-of-freedom from 2 to 6 using Maple. A sample output

is provided the results obtained from Maple in Appendix A4. We have obtained

similar form of dynamic equations as observed for the 2R manipulator given in

Eqn. (5.3). Thus, for 2 ≤ N ≥ 6 we have:

τN = τ̃N

τN−1 = τ̃N + τ̃N−1
...

τj = τ̃j + τ̃j−1 + · · ·+ τ̃1
...

τ1 = τ̃N + τ̃N−1 . . . τ̃2 + τ̃1

(5.7)

We expect that the observation provided in Eqn. (5.7) may be generalized for a

planar manipulator with revolute joints, with any degrees-of-freedom.
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5.2 Distributed cooperative control scheme

Using the special structure of dynamics of planar manipulators discussed in

the previous section, we now develop a distributed cooperative control scheme for

a 3R planar manipulator.

For a 3R planar manipulator, the dynamics (Eqn. (5.1)) may be now re-

written as,

τ3 = τ̃3 (5.8)

τ2 = τ̃3 + τ̃2

τ1 = τ̃3 + τ̃2 + τ̃1

Or

τ̃3 = M̃3(θ)θ̈ + Ṽ3(θ, θ̇) + G̃3(θ)

τ̃2 = M̃2(θ)θ̈ + Ṽ2(θ, θ̇) + G̃2(θ)

τ̃1 = M̃1(θ)θ̈ + Ṽ1(θ, θ̇) + G̃1(θ)

(5.9)

Here M̃j(θ) is the jth row of M̃(θ) and Ṽj(θ, θ̇) is the jth element of the vector

Ṽ (θ, θ̇), and G̃j is the jth element of the vector G̃(θ)

Where,

τ̃3 = m3l3θ̈1 +m3l3θ̈2 +m3l3θ̈3 +m3s3l2θ̇
2
1 + 2m3s3l2θ̇1θ̇2 +m3s3l2θ̇

2
2

+m3s3c2l1θ̇
2
1 −m3s3c2s1g −m3s3s2l1θ̈1 −m3s3s2c1g +m3c3l2θ̈1

+m3c3l2θ̈2 +m3c3s2l1θ̇
2
1 −m3c3s2s1g +m3c3c2l1θ̈1 +m3c3c2c1g(5.10)

(5.11)
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τ̃2 = −m3l3s3l2θ̇
2
1 −m3l3s3l2θ̇

2
2 − l2s3m3l3θ̇

2
3 + s3

2m3l2
2θ̈1 + s3

2m3l2
2θ̈2

+m3l3c3l2θ̈1 +m3l3c3l2θ̈2 + l2c3m3l3θ̈3 + c3
2m3l2

2θ̈1 + c3
2m3l2

2θ̈2

−2m3l3s3l2θ̇1θ̇2 − 2l2s3m3l3θ̇1θ̇3 − 2l2s3m3l3θ̇2θ̇3 + l2s3
2m3s2l1θ̇

2
1

−l2s32m3s2s1g + l2s3
2m3c2l1θ̈1 + l2s3

2m3c2c1g + l2c3
2m3s2l1θ̇

2
1

−l2c32m3s2s1g + l2c3
2m3c2l1θ̈1 + l2c3

2m3c2c1g

(5.12)

τ̃1 = c2
2m2l1

2θ̈1 + s22m2l1
2θ̈1 + l1c2

2m2c1g + l1s2
2m2c1g −m2l2s2l1θ̇

2
1

−2l1s2m2l2θ̇1θ̇2 − l1s2m2l2θ̇
2
2 +m2l2c2l1θ̈1 + l1c2m2l2θ̈2

+m1l1
2θ̈1 +m1l1c1g (5.13)

Now consider the conventional model-based control law

τ = M(θ)(θ̈d +KvĖ +KpE) + V (θ, θ̇) (5.14)

Here, θd is the desired joint angle value and E = θd − θ is the tracking error, and

Kp and Kv are diagonal matrices of controller gains.

As we have seen earlier, in the conventional model-based control scheme, a

single (central) controller will compute control torques τi(t) to be applied at all the

joints. In the simple distributed manipulator control scheme we had proposed in

the previous chapter, each joint level controller computes only the corresponding

torque τi.

Now we propose a distributed cooperative control law based on the model-

based control law (5.14) as,

τ3 = τ̃3

τ2 = τ̃3 + τ̃2

τ1 = τ̃3 + τ̃2 + τ̃1

(5.15)
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Where,

τ̃3 = M̃3(θ)(θ̈d +KvĖ +KpE) + Ṽ3(θ, θ̇) + G̃3(θ)

τ̃2 = M̃2(θ)(θ̈d +KvĖ +KpE) + Ṽ2(θ, θ̇) + G̃2(θ)

τ̃1 = M̃1(θ)(θ̈d +KvĖ +KpE) + Ṽ1(θ, θ̇) + G̃1(θ)

(5.16)

Note that the cooperative distributed control law (5.15) is also a

distributed implementation of the conventional model-based control law (5.14).

The proposed cooperative distributed control law has two major advantages.

Firstly, the computation load associated with the control law is now distributed

amongst the joint-level controllers leading to faster computation and hence

decreased computation lead time. Second, as observed in Eqns (5.16), certain

terms appear in computation of more than one joint torque. τ̃3 appears thrice (in

all three joint torques) and τ̃2 appears twice (in first and second joint torque

equations). However, in the proposed cooperative control law, each terms, that

is, τ̃i is computed exactly once by the ith joint controller, and communicated to

all other joint-level controllers (Controllers i − 1, . . . , 1). Each joint level

controller computes the total control input (that is the joint torque) at the

corresponding joint by simply adding all relevant τ̃js. The latter advantage is

due to the cooperative nature of the control law in contrast to the distributed

control scheme proposed in previous chapter. Here we have exploited the

structure of dynamic equation (as shown in Eqn. (5.8)) so that the joint-level

controllers cooperate amongst themselves in computing the corresponding joint

control torques more efficiently, unlike inn the basic distributed control scheme

proposed in the previous chapter where each joint-level controller only

communicates the state variables with the neighboring joint-level controllers.

The block diagram illustrating the architecture of the proposed cooperative

distributed control strategy for a 3R manipulator is shown in Figure 5.1.

Theorem 2: The proposed cooperative distributed control law given by the

Equations (5.15) and (5.16) makes the manipulator with dynamics given by the

Eqn. (5.1) follow the desired trajectory θd(t) asymptotically, for positive controller

gains.
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Figure 5.1: Architecture of proposed cooperative control scheme for a planar 3R
manipulator.

Proof. From the control law as given in Equations (5.15) and (5.16), and the

distributed dynamics given by Eqn. (5.1) we obtain the closed loop equation,

Ëj +KvjĖj +KpjEj = 0 (5.17)

For all j ∈ {1, 2, . . . , N}. Thus we have

Ej → 0, as t→∞, ∀j ∈ {1, 2, . . . , N}

for positive gains. �

This result is not surprising as the proposed control law given in Equations

(5.15) and (5.16) is a cooperative and distributed implementation of the nonlinear

model-based control law, which achieves linearization through feedback and leads

to asymptotically stable trajectories for positive control gains, irrespective of the

system dynamics/parameters. Remark 1 in Chapter 4 is also valid here.
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Link # NA NM CTC CTD

1 14 26 118 480
2 50 56 260 260
3 14 22 102 102
Total 480 944

Table 5.1: Number of additions (NA), multiplications (NM), the total cost (CTC),
involved in computation τ̃i, and total cost CTD involved in computation of τi is
distributed control scheme presented in Chapter 4.

5.3 Computational effectiveness of the cooperative control scheme

Now we shall examine the computational effectiveness of the proposed

distributed cooperative control scheme. Table 5.1 shows the number of addition

(NA), multiplication (NM), the corresponding computational cost CTC involved

in computation of τ̃i used in the cooperative control scheme along with the

joint-level total cost (CTD) in computing τi using the distributed control scheme

presented in Chapter 4. We may observe that the maximum computational cost

with the cooperative control scheme presented here is reduced to 260 units from

480 units with the distributed control scheme presented in Chapter 4 and from

944 units with the conventional (centralized) model-based control scheme. That

is, the maximum computational cost (which decides the sampling time) with the

proposed cooperative control scheme is 54% of the distributed control scheme

presented in Chapter 4 and 27.5% of the conventional model-based control

scheme. Observe that this reduction in computation is achieved purely by nature

of the manipulator dynamics as given in Eqn. (5.8). The distribution

effectiveness ηd with proposed cooperative control scheme is 0.615, which is

marginally less than that with the distributed control scheme presented in

Chapter 4.

Now consider a six degrees of freedom serial link planar (6R) manipulator

with revolute joints. The computation associated with the dynamic equation,

corresponding to each joint torque is shown in Table 5.2. For the purpose of

comparison of computational cost, we use an unit cost of 1 for computation of

addition and 4 for multiplication operation. Note that a centralized model-based
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controller has to perform 3846 additions and 4950 multiplications, expending

23646 units of computational cost. For the simple distributed control scheme

presented in Chapter 4, we obtain a distribution effectiveness ηd = 0.75, and a

reduction in maximum computation to 5241 (corresponds to the first joint) from

23646, as compared to the centralized implementation of the model-based control

law, that is a reduced to 22%.

Link ID NA NM CTD

1 841 1100 5241
2 827 1074 5123
3 791 1018 4863
4 708 902 4316
5 528 666 3192
6 151 190 911

Total 3846 4950 23646

Table 5.2: Number of computations involved in each degree of freedom. Here NA

number of additon/substraction, NM is number of multiplications, CTC = NA+4×
NM , the total computational cost, and CTD is the cost of computing corresponding
joint torque (τi) using the distributed control law presented in chapter 4.

Now we consider computation effort associated with the proposed distributed

cooperative control scheme. Table 5.3 shows the number of arithmetic operations

at each joint level controller using the proposed control scheme. We may observe,

that in contrast to the simple distributed scheme (as shown in Table 5.2), with the

proposed distributed cooperative control scheme (as shown in Table 5.3), there

is a substantial reduction in computation at each joint level. The maximum

computation cost (maxi(CT i)) is 2281 units (corresponds to 5th joint) against 5241

units with the distributed control scheme (43.5%) and against 23646 units with

the centralized model-based control scheme (9.6%). The distribution effectiveness

ηd = 0.39. Thus, though the distribution effectiveness of the proposed cooperative

control scheme is considerably lower than that of the simple distributed control

scheme, we obtain considerable reduction in maximum computation cost and hence

in the lead time with the proposed cooperative control law in contrast to the simple

distributed and the centralized control schemes.

If we carefully look at the equations corresponding to τ̃i, we can identify a
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Link ID NA NM CTC

1 14 26 118
2 36 56 260
3 83 116 547
4 180 236 1124
5 377 476 2281
6 151 190 911

Total 841 1100 5304

Table 5.3: Number of computations involved in each degree of freedom (τ̃i). Here
NA number of additon/substraction, NM is number of multiplications, CTC =
NA + 4×NM , the total cost, associated with computing τ̃ .

Sl:no
Repeating
terms

τ̃1 τ̃2 τ̃3

1 −l1θ̇1
2

+ gs1 2 5 2

2 l1θ̈ + gc1 3 5 2

3 −l2(θ̇1 + θ̇2)
2 1 2 1

4 l2(θ̈1 + θ̈2) 1 3 1

5 l3(θ̈1 + θ̈2 + θ̈3) 0 1 1

6 −l3(θ̇1 + θ̇2 + θ̇3)
2 0 1 0

Table 5.4: Repetitive terms in a 3R cooperative manipulator dynamic equation

few computational terms repeating several times. For example, the term l1θ̈1 +

cos(θ1)g repeats thrice in τ̃1, 5 times in τ̃2, and twice in τ̃3 equation in a 3R planar

manipulator. If we identify these terms and avoid repetitive computation, we can

reduce the computation cost associated with each of the joints. Table 5.4 lists a

few terms which appear multiple times in the dynamic equation.

Link CTd CTC C ′TC

1 480 118 38
2 362 260 114
3 102 102 38

Total 944 480 190

Table 5.5: Number of computation involved in each degree of freedom of a 3R
planar manipulator with distributed control, cooperative control, and cooperative
control with reduced computation by identifying repetitive terms.

Table 5.5 shows computational cost associated with each joint level

controllers for a 3R manipulator, with the simple distributed control scheme
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D.O.F CC CTC C ′TC

2 208 118 (57%) 51 (24.5%)
3 916 260 (28%) 106 (11.5%)
4 3147 547(17.4%) 194 (6%)
5 9104 1124 (12.3%) 401(4.4%)
6 23646 2281 (9.7%) 801(3.4%)

Table 5.6: Comparative computational cost: Centralized vs cooperative model
based control schemes

(CTD), cooperative control scheme proposed in this paper (CTC), and with the

cooperative control scheme by avoiding duplicate computation of identified

repetitive terms (C ′TC). Here, the maximum computational cost (which decides

the sampling time) with the basic cooperative control scheme is 260 units, (that

is, 54.1% ) as against 480 units with the basic distributed control scheme) and

further reduces to 114 units (that is 23.75%) after the exercise of avoiding

repeated computation. Thus, we can successfully reduce the computational cost

of control, first by exploiting the nature of manipulator dynamics, and then by a

careful computational optimization technique of identifying repetitive terms and

avoiding duplicate computations.

Table 5.6 provides a comparison of computational cost with the centralized

model-based control scheme and the proposed cooperative control scheme, for

planar manipulators with different degrees of freedom. Here CC is the

computational cost involved with computation of system dynamics for

centralized (conventional) model-based control scheme, CTC = maxi(CT i), with

the proposed cooperative control scheme, and C ′TC = maxi(C
′
TCi

), that with

cooperative control scheme after avoiding repetitive computation. It may be

observed that cooperative control scheme leads to substantial reduction in the

computation cost, which is further reduced by the exercise of identifying

repetitive terms and avoiding duplicate computation.
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5.4 Discrete implementation of cooperative control scheme

As discussed in Chapter 4, in reality, a control law is implemented using a

computer digitally. Thus the control law now takes the discrete form while the

robot dynamics remains a continuous time system. The model-based control law

in discrete time is given by,

τ(t) = M(θ(t− Td)θ̈d(t− Td) +Kv(t− Td)Ė(t− Td)+
KpE(t− Td)) + C(θ(t− Td), θ̇(t− Td))

(5.18)

Where, Td is the time delay introduced due to the sampling time. The sampling

time Td depends on the time required to compute the control law Eqn. (4.7) along

with any other processing required. Note that with the discrete control law given

in Eqn. (4.7), feedback linearization is not achieved unless Td = 0. However, due

to continuity of the dynamics of the manipulator and the model-based control law,

tracking performance is expected to degrade gracefully with increasing Td.

Now consider the discrete version of the proposed cooperative control law

(5.15) and (5.16)

τ3(t) = τ̃3(t)

τ2(t) = τ̃3(t) + τ̃2(t)

τ1(t) = τ̃3(t) + τ̃2(t) + τ̃1(t)

(5.19)

Where,

τ̃3(t) = M̃3(θ((t− T c
d ))(θ̈d(t− T c

d ) +KvĖ(t− T c
d )

+KpE(t− T c
d )) + Ṽ3(θ(t− T c

d ), θ̇(t− T c
d )) + G̃3(θ((t− T c

d ))

τ̃2(t) = M̃2(θ(t− T c
d ))(θ̈d(t− T c

d ) +KvĖ(t− T c
d )

+KpE(t− T c
d )) + V 2̃(θ(t− T c

d ), θ̇(t− T c
d )) + G̃2(θ((t− T c

d ))

τ̃1(t) = M̃1(θ(t− T c
d ))(θ̈d(t− T c

d ) +KvĖ(t− T c
d )

+KpE(t− T c
d )) + Ṽ1(θ(t− T c

d ), θ̇(t− T c
d )) + G̃1(θ((t− T c

d ))

(5.20)

Here, T c
d is the time delay due to sampling time in the discrete time
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implementation of the distributed cooperative control law given by Equations

(5.15) and (5.16). As in the case of the discrete time implementation of the

(centralized) model-based control law (Eqn. (5.18), the discrete time distributed

control law (Equations (5.19) and (5.20)) too fail to achieve feedback

linearization, unless the sampling time (T c
d ) is zero. Further as noted in the case

of the model-based control scheme, the performance with the discrete time

distributed cooperative control scheme degrades gracefully with the increase in

T c
d . With the distribution of computational load in the proposed distributed

control scheme, it is expected that T c
d < Td. Thus, we may expect the trajectory

tracking performance with the proposed control scheme to be at least marginally

better than the conventional (centralized) model-based control scheme, when

implemented digitally.

58



CHAPTER 6

Results and discussions

In this chapter we present the results of analysis and simulation

experiments carried out and discuss their implications. First we provide results

of analysis of the computational cost associated with model-based control law in

centralized and distributed architectures, carried out using Maple, and establish

the advantage of the proposed distributed control schemes. Then we present the

results of simulation experiments carrier out to demonstrate the trajectory

tracking performance of the distributed model-based control schemes.

6.1 Computational cost: Centralized vs Distributed control

Now we provide results of analysis of the computational cost associated

with the model-based control law for planar manipulators with revolute joints,

comparing the cost with the centralized and the distributed control architectures.

The analysis was carried out using Maple, and sample results obtained from

the Maple is provided in the Appendix. In this chapter, we provide the results

comprehensively, though some of the results have already been presented in earlier

chapters for the purpose of illustrations.

First we consider a two-link (2R) planar manipulator. We illustrate the

details of the analysis for this 2R manipulator. The dynamics of a 2R manipulator

is:

τ1 = m2l2(l
2
2(θ̈1 + θ̈2)− s2(−l1θ̇21 + s1g)2 + c2(l1θ̈1 + c1g))

+m1l1(l1θ̈1 + c1g +m2l1s2((−l2θ̇1 + θ̇2)
2

+c2(−l1θ̇2 + s1g) + s2(l1θ̈1 + c1g)) + c2m2(l2(θ̈1θ̈2)

−s2(−l1θ̇21 + s1g) + c2(l1θ̈1 + c1g))

τ2 = m2l2(l
2
2(θ̈1 + θ̈2)− s2(−l1θ̇21 + s1g)2 + c2(l1θ̈1 + c1g)

(6.1)

Here, mi and li are the mass and length of the ith link, ci = cos(θi) and si = sin(θi).

Now let us find NA, the number of additions, and NM , the number of

multiplications, involved in computing τ1 and τ2 in Eqn. (6.1). Here, we do
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Torque NA NM CT

τ1 19 36 163
τ2 5 10 45
Total 208

Table 6.1: Number of computations in a two-link planar Manipulator

not consider trigonometric operations as they appear exactly once or at most

twice in form of cosine and sine of the joint variables. Further, for the purpose

of comparison, as discussed earlier, we assume that the computational cost of

addition is 1 unit and that of multiplication is 4 units. Table 6.1 shows the

number NA, NM , and CT , the computational cost (CT = NA + 4NM) for links 1

and 2. From the Table 6.1, we observe that the computational cost associated with

the first joint, CT1 = 163 units and that of the second joint, CT2 = 45 units, and

total cost associated with computation of the dynamics CTc = 208 units. Now, if

the control law is implemented by a classical central controller the cost involved

in computation is 208 units. If the controller is implemented in the distributed

architecture (Chapter 4), cost associated with the first joint-level controller K1

is 163 units and that with second joint-level controller K2 is 45 units. Now the

distribution effectiveness ηd = 208/2
163

= 0.64. With the use of the distributed

architecture, ideally we expect the total computational cost to be 104, half that

with the centralized architecture, thus reducing the computational lead time by

half. However, actual lead time is now that corresponding computational cost of

163 units (in the place of 104 units), which is 78% of that of the centralized control

scheme.

Now we carry out similar analysis for planar manipulators with degrees-of-

freedom 3−6. Table 6.2 shows the number of addition (NA), multiplication (NM),

and the corresponding computational cost (CT ) associated with a three-link planar

manipulator (3R). The distribution effectiveness (ηd) for the 3R manipulator is

obtained as 0.66.

Table 6.3 shows the number of addition (NA), multiplication (NM), and

the corresponding computational cost (CT ) associated with a four-link planar

manipulator (4R). In the case of a 4R manipulator we obtain ηd = 0.69
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Torque NA NM CT

τ1 64 104 480
τ2 50 78 362
τ3 14 22 102
Total 944

Table 6.2: Number of computations in a three-link planar Manipulator

Torque NA NM CT

τ1 166 244 1142
τ2 152 218 1024
τ3 116 162 764
τ4 33 46 217
Total 3147

Table 6.3: Number of computations in a four-link planar Manipulator

The number of addition (NA), multiplication (NM), and the corresponding

computational cost (CT ) associated with a five-link planar manipulator (5R) are

shown in the Table 6.4. We obtain ηd = 0.72 for the 5R manipulator.

Finally, Table 6.5 shows the number of addition (NA), multiplication (NM),

and the corresponding computational cost (CT ) associated with a six-link planar

manipulator (6R). For the 6R manipulator we obtain ηd = 0.75. As we considered

planar manipulators which operates in R2, the 2-dimensional Euclidean space,

the tool requires two spacial degrees of freedom and one orientational degree-of-

freedom. Thus, a 6R planar manipulator, in fact any planar manipulator with

degrees-of-freedom more than 2, is a redundant manipulator.

Table 6.6 summarizes the results for computational cost associated with

Torque NA NM CT

τ1 385 528 2497
τ2 371 502 2379
τ3 335 446 2119
τ4 252 330 1572
τ5 72 94 448
Total 9015

Table 6.4: Number of computations in a five-link planar Manipulator
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Torque NA NM CT

τ1 841 1100 5241
τ2 827 1074 5123
τ3 791 1018 4863
τ4 708 902 4316
τ5 528 666 3192
τ6 151 190 911
Total 23646

Table 6.5: Number of computations in a six-link planar Manipulator

N τ1 τ2 τ3 τ4 τ5 τ6 CT ηd

2 163 45 208 0.63
3 480 362 102 944 0.66
4 1142 1024 764 217 3147 0.69
5 2497 2379 2119 1572 448 9015 0.72
6 5241 5123 4863 4316 3192 911 23646 0.75

Table 6.6: Computational cost in planar manipulators with different degrees-of-
freedom.

the dynamics of manipulators with degrees-of-freedom from 2 − 6. One

important observation from the above analysis, as shown in Table 6.7, is that the

distribution effectiveness ηd monotonically improves with N , the

degrees-of-freedom of the manipulator. We may expect that in the limit ηd → 1,

the ideal value. Further, note that the distributed control architecture is useful

for higher degrees-of-freedom manipulators. The analysis carried out here

justifies the distributed control architecture for a redundant or hyper-redundant

manipulator (such as a snake robot, for example), as the computational lead

time is gets drastically reduced due to higher distribution effectiveness, where

the computational load is shared more uniformly among multiple joint-level

controllers.

Now we present consolidate result for computational cost with the

cooperative control scheme presented in Chapter 5. Table 6.8 shows the cost at

each joint for planar manipulators with degrees-of-freedom varying from 2 to 6.

We may observe that relative maximum computational cost with the cooperative

control scheme presented in Chapter 5 as compared with that with the
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DOF ηd
2 0.64
3 0.66
4 0.69
5 0.72
6 0.75

Table 6.7: Distribution effectiveness with the degrees-of-freedom of planar
manipulators.

N τ̃1 τ̃2 τ̃3 τ̃4 τ̃5 τ̃6 maxCTD maxCTC

2 118 45 163 118 (72%)
3 118 260 102 480 260 (54%)
4 118 260 547 217 1142 547 (47%)
5 118 260 547 1124 448 2497 1124 (45%)
6 118 260 547 1124 2281 911 5241 2281 (43%)

Table 6.8: Computational cost in planar manipulators with different degrees-of-
freedom.

distributed control scheme presented in Chapter 4, reduces monotonically with

increase in the degrees-of-freedom of the manipulator (from (72%) for 2R

manipulator to (43%) for the 6R manipulator). This indicates that the

cooperative control scheme proposed in Chapter 5 is more effective for the

manipulators with higher degrees-of-freedom.

6.1.1 Reducing the computational cost

In this section we discuss reduction in computation cost associated with

the manipulator dynamics in the model-based control law (4.4) without any

approximation.

If we carefully observe the dynamic equations of a manipulator, we can

identify several terms that appear repetitively. Here, we try to identify such

terms and avoid repetitive computation of these terms thereby reducing the

computational cost involved with dynamic equations in the control laws Eqn.s

(4.2) and (4.4). We perform this exercise for planar manipulators with

degrees-of-freedom ranging from 3 to 6 with aid of Maple.
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Repeating terms τ1 τ2 τ3
l1θ̇

2 + s1g 9 7 2

l1θ̈ + c1g 10 7 2

l2(θ̈1 + θ̈2)
2 4 3 1

l2(θ̇1 + +θ̇2)
2 5 4 1

l3(θ̈1 + θ̈2 + θ̈3) 2 2 1

l3(θ̇1 + θ̇2 + θ̇3)
2 1 1 0

Table 6.9: Repetitive terms in 3R Manipulator.

Equation NA NM CT Rel CT

τ1 30 40 190 0.4
τ2 24 32 152 0.42
τ3 6 8 38 0.37
Total 380 0.4

Table 6.10: Number of computations and total cost after avoiding repetitive
computation in 3R Manipulator

The terms that repeat in the dynamic equation of a 3R along with the

number of times they appear in equation corresponding to each joint level equation

are shown in Table 6.9. Here for example, the term l1θ̇
2 + s1g appears 9 times in

the τ1 equation, 7 times in the τ2 equation and twice in the τ3 equation. The term

l3(θ̇1 + θ̇2 + θ̇3)
2 appears twice, once in equation corresponding to τ1 and once in

that corresponding to τ2. If instead of computing these terms multiple times, we

compute them once and reuse whenever they appear, we can reduce both total

(centralized architecture) computational cost an that at the joint level (distributed

architecture). Table 6.10 shows the computational cost at each joint level with this

exercise of avoiding repetitive computation. The computational cost at each joint

level and also the total computational cost is about 40% (37− 42%, to be precise)

of the corresponding cost without this exercise of avoiding repetitive computation

as shown in Table 6.2. However, in spite of reduction in computational cost the

distribution effectiveness (0.67) does not change significantly.

Result of a similar exercise carried out for a 4R manipulator is shown in

Tables 6.11 and 6.12. The repetitive terms and number of times they appear in

each of the four joint torque equations are listed in Table 6.11. Corresponding

cost is shown in Table 6.12. Even in this case the cost in Table 6.12 is about 40%
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Repeating terms τ1 τ2 τ3 τ4
l1θ̇

2 + s1g 21 19 14 4

l1θ̈ + c1g 22 19 14 4

l2(θ̈1 + θ̈2) 11 10 7 2

l2(θ̇1 + +θ̇2)
2 10 9 7 2

l3(θ̈1 + θ̈2 + θ̈3) 5 5 4 1

l3(θ̇1 + θ̇2 + θ̇3)
2 5 5 4 1

l4(θ̈1 + θ̈2 + θ̈3 + θ̈4) 2 2 2 1

l4(θ̇1 + θ̇2 + θ̇3 + θ̇4)
2 1 1 1 0

Table 6.11: Repetitive terms in 4R Manipulator

Equation NA NM CT Rel CT

τ1 75 89 431 0.38
τ2 68 78 380 0.37
τ3 51 57 279 0.37
τ4 17 17 85 0.39

Total 1175 0.37

Table 6.12: Number of computations and total cost after avoiding repetitive
computation in 4R Manipulator

(37− 39%, to be precise) of that in Table 6.3, and ηd = 0.68.

Table 6.13 shows the identified repetitive terms in a 5R manipulator and

the corresponding reduced computational cost is listed for each joint in the Table

6.14. The cost shown in Table 6.14 is about 36− 37% of that shown in Table 6.4,

with ηd = 0.71.

Finally we show results for the 6 degrees-of-freedom planar manipulator

in Tables 6.15 and 6.16. We found 12 repetitive terms in this case appearing

418, 419, 210, 208, 105, 102, 52, 50, 24, 21, 11, and 5 times. The exercise of avoiding

repetitive computation of these terms leads to a cost reduction as shown in Table

6.16. The cost as shown in Table 6.16 was found to be 35− 36% of that shown in

Table 6.5. The value of distribution effectiveness was found to be 0.75. We have

provided the detailed results obtained with the aid of Maple program to identify

repetitive terms in computing τ1 for equation corresponding to the first joint (τ1)

for degrees-of-freedom 2− 6, in Appendix A3.

The result after the exercise of reduction in computational cost by avoiding
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Repeating terms τ1 τ2 τ3 τ4 τ5
l1θ̇

2 + s1g 45 43 38 28 8

l1θ̈ + c1g 46 43 38 28 8

l2(θ̈1 + θ̈2) 23 22 18 13 4

l2(θ̇1 + +θ̇2)
2 22 21 19 14 4

l3(θ̈1 + θ̈2 + θ̈3) 11 11 10 7 2

l3(θ̇1 + θ̇2 + θ̇3)
2 10 10 9 7 2

l4(θ̈1 + θ̈2 + θ̈3 + θ̈4) 5 5 5 4 1

l4(θ̇1 + θ̇2 + θ̇3 + θ̇4)
2 4 4 4 3 1

l5(θ̈1 + θ̈2 + θ̈3 + θ̈4 + θ̈5) 2 2 2 2 1

l5(θ̇1 + θ̇2 + θ̇3 + θ̇4 + θ̈5)
2 1 1 1 1 0

Table 6.13: Repetitive terms in 5R Manipulator

Equation NA NM CT Rel CT

τ1 168 186 912 0.37
τ2 161 175 861 0.36
τ3 144 154 760 0.36
τ4 107 113 559 0.36
τ5 30 32 158 0.35

Total 3250 0.36

Table 6.14: Number of computations and total cost after avoiding repetitive
computation in 5R Manipulator

Repeating terms τ1 τ2 τ3 τ4 τ5 τ6
l1θ̇

2 + s1g 93 91 86 76 56 16

l1θ̈ + c1g 94 91 86 76 56 16

l2(θ̈1 + θ̈2) 47 46 43 38 28 8

l2(θ̇1 + +θ̇2)
2 46 45 43 38 28 8

l3(θ̈1 + θ̈2 + θ̈3) 23 23 22 19 14 4

l3(θ̇1 + θ̇2 + θ̇3)
2 22 22 21 19 14 4

l4(θ̈1 + θ̈2 + θ̈3 + θ̈4) 11 11 11 10 7 2

l4(θ̇1 + θ̇2 + θ̇3 + θ̇4)
2 11 11 10 9 7 2

l5(θ̈1 + θ̈2 + θ̈3 + θ̈4 + θ̈5) 5 5 5 5 3 1

l5(θ̇1 + θ̇2 + θ̇3 + θ̇4 + θ̈5)
2 4 4 4 4 4 1

l6(θ̈1 + θ̈2 + θ̈3 + θ̈4 + θ̈5 + θ̈6) 2 2 2 2 2 1

l6(θ̇1 + θ̇2 + θ̇3 + θ̇4 + θ̇5 + θ̇6)
2 1 1 1 1 1 0

Table 6.15: Repetitive terms in 6R Manipulator
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Equation NA NM CT Rel CT

τ1 357 379 1873 0.36
τ2 350 368 1822 0.36
τ3 333 347 1721 0.35
τ4 296 306 1520 0.35
τ5 219 225 1119 0.35
τ6 62 64 318 0.35

Total 8373 0.35

Table 6.16: Number of computations and total cost after avoiding repetitive
computation in 6R Manipulator

repetitive computation is summarized in Table 6.17 for planar manipulators with

degrees-of-freedom 3 − 6. The observation based on this table is that the

computational cost after the exercise of avoiding repetitive computation is about

40% that without it, in general. Also, the distribution effectiveness does not

change significantly. Thus, though this exercise leads to a substantial reduction

in computational cost, does not affect how the computational load is distributed

among the joint-level controllers.

DOF τ1 τ2 τ3 τ4 τ5 τ6 CT Rel CT ηd

3 190 152 38 380 0.4 0.67
4 431 380 279 85 1175 0.37 0.68
5 912 861 760 559 158 3250 0.36 0.71
6 1873 1822 1721 1520 1119 318 8373 0.35 0.75

Table 6.17: Computational cost in planar manipulators with different degrees-of-
freedom after avoiding repetitive computation.

Similar results as in Table 6.17 is shown in Table 6.18 for the cooperative

control scheme presented in Chapter 5. Here too, as observed in Table 6.8, we may

observe that relative maximum computational cost with the cooperative control

scheme presented in Chapter 5 as compared with that with the distributed control

scheme presented in Chapter 4, reduces monotonically with increase in the degrees-

of-freedom of the manipulator (from (60%) for 3R manipulator to (43%) for the

6R manipulator).
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N τ̃1 τ̃2 τ̃3 τ̃4 τ̃5 τ̃6 maxCTD maxCTC

3 38 114 38 190 114 (60%)
4 51 101 194 85 431 194 (45%)
5 51 101 201 401 158 912 401 (44%)
6 51 101 201 401 801 318 1873 801 ((43%)

Table 6.18: Computational cost in planar manipulators using the cooperative
control scheme with different degrees-of-freedom after avoiding repetitive
computation.

6.2 Matlab simulations

Now we present the results of simulations experiments carried out to

demonstrate the trajectory tracking performance of a 3R planar manipulator

using the proposed distributed control schemes carried out using Matlab

Simulink.

Recollect that the closed-loop error dynamics with the proposed

distributed control schemes, namely, the simple distributed control and the

cooperative control, is identical to that with the conventional model-based

control scheme. Thus, simulation results for all these schemes are expected to be

identical. For a 3R planar manipulator, we have implemented the the proposed

simple distributed control scheme as shown in Figure 4.5, the cooperative control

scheme as shown in Figure 5.1, and the conventional (centralized) model-based

control scheme as shown in Figure 1.3 in Simulink. As expected, the results of all

three control schemes were identical. We considered a manipulator with

m1 = 10kg, m2 = 10kg, and m3 = 10kg, and l1 = 5m, l2 = 6m, and l3 = 5m. We

considered a step and sinusoidal signals as desired trajectories at the joint levels.

First we show the results with the independent joint PID control scheme.

Figures 6.1(a)-(c) show the trajectory tracking performance of the first, second,

and third joints of the manipulator with the decentralized (independent joint)

PID controller. Dashed lines show the desired (sinusoidal) trajectories and the

solid lines show the actual trajectories. It may be noted that the exact tracking

performance varies with the desired trajectory to be tracked due to nonlinearity
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of manipulator and the closed-loop dynamics, apart from the values of controller

gains chosen.

(a)

(b)

(c)

Figure 6.1: Trajectory tracking performance of a) first, b) second joint, and c)
third joint, of a 3R planar manipulator with independent joint PID controller.
Dashed lines show the desired trajectories and the solid lines show the actual
trajectories. Angles (θ1, θ2, θ3) are in radians and time is in seconds.

Now we present a set of simulation results carried out using the model-based

control schemes, which are applicable for both the centralized and distributed

scheme. Step response of (a) joint 1, (b) joint 2, and (c) joint 3 of a 3R manipulator

using the model-based control is shown in Figures 6.2(1)-(c).
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(a)

(b)

(c)

Figure 6.2: Step response of (a) joint 1, (b) joint 2, and (c) joint 3 of a 3R
manipulator using the model-based control. Angles (θ1, θ2, θ3) are in radians and
time is in seconds.

Figure 6.3 shows trajectory tracking performance of a 3R manipulator with

model-based control in continuous time with slow varying sinusoidal trajectory

(frequency of 1rad/s) at each joint. Desired (solid lines) and actual (dashed lines)

trajectories are shown in Figures 6.3(a) for joint 1, 6.3(c) for joint 2, and 6.3(e)

joint 3. Corresponding error dynamics are shown in Figures 6.3(b), (d), and (f),

respectively.

Figure 6.4 shows trajectory tracking performance of a 3R manipulator with
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Trajectory tracking performance of a 3R manipulator with model-
based control in continuous time with slow varying sinusoidal trajectory at each
joint. Desired and actual trajectories are shown for (a) joint 1, (c) joint 2, and
(e) joint 3, and corresponding error dynamics are shown in (b), (d), and (f),
respectively. Solid lines show the desired trajectories and the dashed lines show
the actual trajectories. Angles (θ1, θ2, θ3), errors (e1, e2, e3) are in radians and time
is in seconds.
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model-based control with low sampling time (0.01 units) and with slow varying

sinusoidal trajectory (frequency of 1rad/s) at each joint. Desired (solid lines) and

actual (dashed lines) trajectories are shown in Figures 6.4(a) for joint 1, 6.4(c) for

joint 2, and 6.4(e) joint 3. Corresponding error dynamics are shown in Figures

6.4(b), (d), and (f), respectively.

Figure 6.5 shows trajectory tracking performance of a 3R manipulator with

model-based control with a higher sampling time (0.05 units) and with slow

varying sinusoidal trajectory (frequency of 1rad/s) at each joint. Desired (solid

lines) and actual (dashed) trajectories are shown in Figures 6.5(a) for joint 1,

6.8(c) for joint 2, and 6.5(e) joint 3. Corresponding error dynamics are shown in

Figures 6.5(b), (d), and (f), respectively.

Figure 6.6 shows trajectory tracking performance of a 3R manipulator with

model-based control in continuous time with a faster varying sinusoidal trajectory

(frequency of 2rad/s) at each joint. Desired (solid lines) and actual (dashed lines)

trajectories are shown in Figures 6.3(a) for joint 1, 6.6(c) for joint 2, and 6.6(e)

joint 3. Corresponding error dynamics are shown in Figures 6.6(b), (d), and (f),

respectively.

Figure 6.7 shows trajectory tracking performance of a 3R manipulator with

model-based control with lower sampling time (0.01 units) and with a faster

varying sinusoidal trajectory (frequency of 2rad/s) at each joint. Desired (solid

lines) and actual (dashed lines) trajectories are shown in Figures 6.7(a) for joint

1, 6.7(c) for joint 2, and 6.7(e) joint 3. Corresponding error dynamics are shown

in Figures 6.7(b), (d), and (f), respectively.

Figure 6.8 shows trajectory tracking performance of a 3R manipulator with

model-based control with a higher sampling time (0.05 units) and with faster

varying sinusoidal trajectory (frequency of 2rad/s) at each joint. Desired (solid

lines) and actual (dashed lines) trajectories are shown in Figures 6.8(a) for joint

1, 6.8(c) for joint 2, and 6.8(e) joint 3. Corresponding error dynamics are shown

in Figures 6.8(b), (d), and (f), respectively.

If we compare Figures 6.3 and 6.6, Figures 6.4 and 6.7, and Figures 6.5 and
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Trajectory tracking performance of a 3R manipulator with model-
based control with low sampling time (0.01 units) and with slow varying sinusoidal
trajectory at each joint. Desired and actual trajectories are shown for (a) joint
1, (c) joint 2, and (e) joint 3, and corresponding error dynamics are shown in
(b), (d), and (f), respectively. Solid lines show the desired trajectories and the
dashed lines show the actual trajectories. Angles (θ1, θ2, θ3), errors (e1, e2, e3) are
in radians and time is in seconds.

73



(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Trajectory tracking performance of a 3R manipulator with model-
based control with higher sampling time (0.05 units) and with slow varying
sinusoidal trajectory at each joint. Desired and actual trajectories are shown for
(a) joint 1, (c) joint 2, and (e) joint 3, and corresponding error dynamics are shown
in (b), (d), and (f), respectively. Solid lines show the desired trajectories and the
dashed lines show the actual trajectories. Angles (θ1, θ2, θ3), errors (e1, e2, e3) are
in radians and time is in seconds.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Trajectory tracking performance of a 3R manipulator with model-
based control in continuous time and with faster varying sinusoidal trajectory at
each joint. Desired and actual trajectories are shown for (a) joint 1, (c) joint 2,
and (e) joint 3, and corresponding error dynamics are shown in (b), (d), and (f),
respectively. Solid lines show the desired trajectories and the dashed lines show
the actual trajectories. Angles (θ1, θ2, θ3), errors (e1, e2, e3) are in radians and time
is in seconds.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Trajectory tracking performance of a 3R manipulator with model-
based control with low sampling time (0.01 units) and with faster varying
sinusoidal trajectory at each joint. Desired and actual trajectories are shown for
(a) joint 1, (c) joint 2, and (e) joint 3, and corresponding error dynamics are shown
in (b), (d), and (f), respectively. Solid lines show the desired trajectories and the
dashed lines show the actual trajectories. Angles (θ1, θ2, θ3), errors (e1, e2, e3) are
in radians and time is in seconds.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Trajectory tracking performance of a 3R manipulator with model-
based control with higher sampling time (0.05 units) and with faster varying
sinusoidal trajectory at each joint. Desired and actual trajectories are shown
for (a) joint 1, (c) joint 2, and (e) joint 3, and corresponding error dynamics are
shown in (b), (d), and (f), respectively. Solid lines show the desired trajectories
and the dashed lines show the actual trajectories. Angles (θ1, θ2, θ3) and errors
(e1, e2, e3) are in radians and time is in seconds.
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Figure 6.8, we observe that for a given sampling time, the model-based control

schemes lead to similar trajectory tracking performance, with both slow and fast

sinusoidal signals (or desired trajectories at the joint level). Further we may

observe that in both the cases, the trajectory tracking performance degrades with

increase in the sampling time, as discussed in Chapter 4 and 5. However, compared

to the trajectory tracking performance with the decentralized PID control scheme

as shown in Figure 6.1, as expected, the trajectory tracking performance with the

model-based schemes is superior.

Figures 6.9(a), (b), and (c) show the desired and actual trajectories of a

manipulator with the proposed distributed control scheme. Figures 6.10(a), (b),

and (c) show the desired and actual trajectories of a manipulator with the proposed

distributed cooperative control scheme. These results are shown to demonstrate

the trajectory tracking performance with the proposed distributed model-based

control schemes are identical to that with the conventional (centralized) model-

based control scheme as discussed earlier in this section and Chapters 4 and 5.

6.3 Implementation of the distributed control in ROS environment

In this section we provide the details of implementation of the proposed

distributed control schemes in Simulink-ROS environment. At the simulation

level, in contrast to the Matlab-Simulink environment, ROS provides a truly

distributed simulation environment. Major advantage of implementing the

proposed distributed control scheme within ROS environment is that, the same

programs may be implemented on hardware using a physical robot, at least in

principle. In this sense with ROS, the simulation is more realistic and a step

closer to hardware implementation. We have implemented the proposed

distributed control schemes using Simulink-ROS hybrid platform (using Robotics

toolbox in Matlab). Here, Simulink handles simulation of manipulator dynamics

with control, and ROS handles communication between modules/nodes in form

of ‘topics’. The block diagrams of the Simulink-ROS implementation are shown
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(a)

(b)

(c)

Figure 6.9: Trajectory tracking performance of a) first, b) second joint, and c)
third joint, of a 3R planar manipulator with the proposed distributed manipulator
control scheme. Solid lines show the desired trajectory and the dashed lines show
the actual trajectory. Solid lines show the desired trajectories and the dashed
lines show the actual trajectories. Angles (θ1, θ2, θ3) are in radians and time is in
seconds.
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(a)

(b)

(c)

Figure 6.10: Trajectory tracking performance of a) first, b) second joint, and c)
third joint, of a 3R planar manipulator with the proposed distributed cooperative
manipulator control scheme. Solid lines show the desired trajectory and the dashed
lines show the actual trajectory. Solid lines show the desired trajectories and the
dashed lines show the actual trajectories. Angles (θ1, θ2, θ3) are in radians and
time is in seconds.

80



in Figure 6.11 and 6.12. As expected, the results obtained are identical to that

obtained using Matlab-simulink, and hence to avoid duplicity, we skip the results

here.

6.4 Distributed vs decentralized schemes:

Now we present an informal discussion comparing the proposed distributed

(or centralized) control scheme with the decentralized control scheme in general.

The independent joint PID controller is probably the simplest control scheme

reported in the literature in the decentralized control architecture. Each of such

schemes lead to different trajectory tracking performance, which is expected to

be better than that with the independent-joint PID control scheme. However,

when the system model is fully available, it has been established theoretically

that the trajectory tracking performance with the model-based nonlinear control

is superior to that with any other control scheme which do not consider the

model fully, particularly the coupled dynamics. In the case of control schemes

in decentralized architecture in spite of using adaptive control or other techniques

to account for un-modeled dynamics, there is no provision for truly accounting

for the dynamic coupling between the links (See Section 3.1.2 in Chapter 3).

Apart from this theoretically established fact of leading to inferior trajectory

tracking performance compared to that with the model-based control (centralized

or distributed), decentralized control schemes proposed in the literature (unlike the

simple independent joint PID scheme) involve non-trivial computational overhead.

Thus, we may observe that though the decentralized schemes reported in the

literature may have marginally lower computational overhead as compared to

the proposed model-based control in the distributed architecture, their trajectory

performance is expected to be inferior (at least in a theoretical sense and ideal

situations) to that with the distributed scheme proposed in this work.

Though we consider the manipulator dynamics is known completely in this

work, it may not be the case in reality. When the model is not known exactly, it is

possible to use techniques such as adaptive control within the distributed control
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Figure 6.11: ROS-Simulink simulation of distributed control of a 3R manipulator.
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Figure 6.12: ROS-Simulink simulation of cooperative control of a 3R manipulator.
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architecture. However, the focus of this paper is on control schemes implemented

in a distributed control architecture and establishing equivalence of the centralized

and distributed architecture.
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CHAPTER 7

Conclusions

In this chapter we summarize the contributions of this thesis and discuss

possible directions for the future work.

7.1 Summary of contributions

In this thesis, inspired by multi-agent/robotic systems, first we perceived a

manipulator, which is MIMO multi-body system, as a multi-agent system with the

joints (or the joint-link pairs) as sub-systems or agents, which interact with each

other in a distributed manner. Here, the interaction between the joint-link agents

is in the form of interactive forces and moments that lead to dynamic coupling. As

the adjacency graph formed by the joint-link agents as nodes and links between

two joints as edges is connected, the direct interactions between the immediate

neighbors result in interaction (in the form of dynamic coupling) between any two

joint-link agents.

We carried out an analysis of the computational cost associated with the

model-based control law for planar serial-link manipulators with

degrees-of-freedom varying from 2 to 6 using Maple. Using this analysis, we

established the fact that the total computational cost associated with the

model-based control law increases with the degrees-of-freedom. We proposed a

distributed architecture for the control of manipulator now considered as a

multi-agent system of joint-link agents, with the primary motivation of reducing

computational cost associated with the centralized control scheme. Here, each

joint-link agent is controlled by a dedicated controller, and the joint-level

controllers communicate and cooperate among themselves. Though one of the

primary motivation for the proposed distributed control scheme is to reduce the

computational overhead, in this thesis we rely on the natural distributed nature

of the manipulator dynamics rather than the program optimization or operation

optimization techniques that are used at the algorithmic level.
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We proposed a simple distributed control scheme based on the conventional

model-based control law and show that it can be implemented using the

distributed control architecture. Here, apart from the reduced computational

lead time due to distributed computation of the control law at the joint-levels,

unlike the decentralized or independent joint control schemes, the proposed

control scheme fully utilizes the knowledge of the system dynamics, leading to a

feedback linearized closed-loop error dynamics. Though the proposed distributed

control scheme is suitable for a general serial-link manipulator, in this thesis, we

focussed on planar manipulators with revolute joints. We proved, that the

proposed distributed control scheme makes the links of the manipulator, and

hence the end-effector, follow the desired trajectory, asymptotically. We defined

a quantity called distribution effectiveness to quantify how the distributed

control schemes share the computational load among the individual joint-level

controllers. We also provided a discussion on implication of the discrete-time

implementation of the proposed distributed control scheme in contrast to the

conventional model-based control scheme. We designed a distributed

model-based controller for a planar 3R manipulator, to illustrate the proposed

distributed control scheme and the distributed control architecture for a

manipulator. For the case of planar manipulators with degrees-of-freedom 2 − 6,

we provided a method to reduce the computational cost associated with dynamic

equations used in the control law by identifying repetitive terms, which may be

generalized for any other manipulator in principle.

In an attempt to further improve the distribution effectiveness and reduce

the computational lead time, we proposed a cooperative control scheme for a

manipulator using the distributed control architecture. While in the basic

distributed control scheme proposed, joint-level controllers interact amongst

themselves in terms of exchanging desired and measured states (and their

derivatives), in the case of the cooperative control scheme the joint-level

controller cooperate by exchanging certain computed terms between them. Even

in this case, we provided a discussion on implication of the discrete-time

86



implementation. We proved, that the proposed cooperative control law makes

the links of the manipulator, and hence the end-effector, follow the desired

trajectory, asymptotically. We designed a cooperative distributed model-based

controller for a planar 3R manipulator, to illustrate the proposed cooperative

manipulator control scheme implemented in the distributed control architecture.

We also provided a discussion on computational effectiveness of the proposed

cooperative distributed control scheme along with a method to further reduce

the computational lead time by identifying repetitive terms in the control law.

We presented a detailed analysis of computational cost associated with the

dynamic equation of planar manipulators with degrees-of-freedom from 2 to 6,

where we analyze the cost involved in the proposed distributed control schemes in

contrast to that in the conventional centralized model-based control scheme, using

Maple. We provided results which indicate that the distribution effectiveness of

the proposed simple distributed control schemes improves with degrees-of-freedom

of the manipulator. We have also provided a detailed discussion on reducing the

computational cost by identifying repetitive terms in the dynamic equations at

each joint-level, for planar manipulators with degrees-of-freedom from 3 to 6.

We then presented simulation results demonstrating the proposed control

schemes. We presented results which show how the trajectory tracking

performance of the model-based control law degrades with increase in the

sampling time. Then we presented results which demonstrate that with the

proposed distributed control schemes every joint tracks the desired trajectory

satisfactorily, in comparison with the independent-joint PID control scheme. We

presented details of implementation of the proposed distributed manipulator

control scheme using Simulink-ROS hybrid platform based on Matlab’s Robotics

toolbox, which provides a more realistic simulation result and it is also amenable

for hardware implementation. Finally, we presented a discussion to compare

decentralized control schemes presented in the literature with the distributed

control schemes presented in this thesis.
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To summarize:

1. We perceived a manipulator, which is MIMO multi-body system, as a

multi-agent system with the joints (or the joint-link pair) as sub-systems or

agents interacting with each other in a distributed manner.

2. We proposed model-based control schemes in a distributed control

architecture, which combine the advantage of the conventional (centralized)

model-based scheme, in terms of the trajectory tracking performance and

the decentralized control schemes in terms of lower computational lead time

due to distribution of computational load among the joint-level controllers.

3. Though one of the primary motivation for the proposed distributed control

scheme is to reduce the computational overhead, in this thesis we relied on

the natural distributed nature of the manipulator dynamics rather than

the program optimization or operation optimization that is used at the

algorithmic level.

4. We proposed two simple distributed control schemes both incorporating

the dynamics fully, and relying upon the distributed nature of the

manipulator dynamics.

5. By a careful choice of the control laws at the joint levels, we achieved a set

of linear decoupled closed-loop error dynamics identical to that with the

conventional model-based control scheme. Note that, any control law that

achieves a true feedback linearization, where the nonlinear and coupling

terms get canceled by the feedback, the error dynamics is bound to be

similar.
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6. We presented details of implementation of the proposed distributed

manipulator control scheme using Simulink-ROS hybrid platform based on

Matlab’s Robotics toolbox, which provides a more realistic simulation

result and it is also amenable for hardware implementation.

7. Apart from the reduction in computational overhead due with the natural

distribution of the computational effort among the joint-level control, we

achieved further reduction in the computational load by identifying

repetitive terms in the manipulator dynamics/control law. As

demonstrated by the fact that the distribution effectiveness being

unaffected with this process, this exercise of reducing computational load is

independent of the distributed-ness property of the manipulator dynamics

or the proposed distributed control schemes.

7.2 Scope for future work

Some of the interesting and useful directions for future work are as follows:

1. The proposed distributed control schemes may be perceived as a task

allocation among individual agents/robots in a multi-agent(robot) system.

Here, the task is motion control of the end effector, which is distributed

among the individual joint-level controllers which are responsible to control

the motion of the respective joints, thereby achieving overall objective of

moving the end-effector along the desired trajectory. A truly and

completely distributed control is achieved when we incorporate the inverse

kinematics along with the manipulator dynamics in a distributed manner.

This integration of dynamics and kinematics into the joint-level control

schemes is a possible direction for further research.

2. The proposed distributed control architecture opens up scope for future

research which could lead to a fully modular and distributed control of a

redundant manipulator robust to failure of a few of the joints.
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