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ABSTRACT 

 

In the dynamic environment of the coast maintaining the harbor tranquility is possible only with the 

planning of proper protection structures. Breakwaters are one among the several coastal protection 

structures. Breakwaters could either run into the water linking to the shore or placed independently 

parallel to the shore. The former will lead to the accretion on up drift side and erosion on the down 

drift side of the structure but the latter provides shore protection without adversely affecting the 

longshore transport. Breakwaters attenuate the wave, slow the littoral drift and produces sediment 

deposition. To provide a basis for evaluating the effects of breakwater installation a comprehensive 

study on the hydrodynamic response of breakwaters needs to be investigated. Physical models could 

be used in the laboratory to assess the same however, it is expensive, laborious and time-consuming 

which involves many variables that affect the shape, strength, alignment, base stability and other 

phenomena. There are several empirical formulae but developed on limited data. Also, though 

numerical models are good option, it involves numerous assumptions not withstanding faster 

computing resources, most of which are time-consuming, tend to overestimate the hydraulic 

responses. The Computational Intelligence (CI) techniques can be made use to overcome some of 

these shortcomings. As they are capable of replicating the outcome of a numerical model with better 

accuracy.  

 

Among the several breakwaters available, the emerged semicircular breakwater is found 

advantageous and also the study on this type of breakwater is limited. Hence the present study is 

taken up to predict the hydraulic responses like reflection coefficient, relative wave runup, stability 

parameter, of emerged seaside perforated semicircular breakwater using different soft computing 

techniques. The soft computing techniques used are Artificial neural network (ANN), Adaptive 

neuro-fuzzy inference system (ANFIS), Genetic algorithm based adaptive neuro fuzzy inference 

system (GA-ANFIS) and Particle swarm optimization based adaptive neuro fuzzy inference system 

(PSO-ANFIS).  

 

The prediction is done using conventional data segregation method. Also, a methodology of 

segregating the lower ranges of wave height data, and not using it for training the network and then 

predicting the hydraulic responses purely for this segregated data is done successfully and it is named 
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as ‘below the range’ predictions. Similarly, a prediction for purely higher ranges of wave height data 

not used in training the network, has been carried out and it is named as ‘beyond the range’ prediction.  

 

The study shows the possibility of prediction of the hydrodynamic characteristics like reflection 

coefficient, relative run-up parameter and stability parameter of the semicircular breakwater using 

the soft computing techniques for both dimensional as well as non-dimensional input parameters. In 

both the cases the predicted outputs the reflection coefficient, relative run-up parameter and stability 

parameter was good in the conventional data segregation case. Also, below the data range approach 

gave reasonably good results in both set of input parameters for the prediction of reflection 

coefficient. Whereas, in the case of beyond the data range predictions the results are good in the case 

of dimensional input parameters but not for non-dimensional input parameters in the prediction of 

reflection coefficient. The relative wave run-up parameter prediction for below and beyond the range 

predictions did not give satisfactory results for both set of input parameters. In the present study the 

stability parameter of emerged seaside perforated semicircular breakwater is predicted for a dataset 

of 389 data sets. The results found are good for both the set of input parameters in the case of 

conventional data segregation method. As the available dataset is only 389 data sets, the below the 

data range and beyond the data range approach was not done for stability parameter prediction.  

 

From the performance of four different models in several cases considered, the prediction made by 

GA-ANFIS gave better results in maximum number of cases. The ANN also predicted the output 

parameter well, though it is an individual model. But, the disadvantage here is the number of neurons 

in the hidden layer is chosen based on trial and error method, depending on thumb rules. In the case 

of ANFIS method the FIS could be generated by grid partitioning, subtractive clustering or fuzzy c-

means clustering. In the present study since the number of inputs in dimensional as well as non-

dimensional case is more than 5 the grid partitioning method has not been employed as it suffers the 

curse of dimensionality. In such cases the subtractive clustering or fuzzy c-means clustering can be 

employed. In the study it is found that the prediction made by fuzzy c-means clustering-ANFIS gave 

better results in maximum number of cases of reflection coefficient prediction compared to 

subtractive clustering-ANFIS with dimensional input parameters. Hence for all the remaining cases 

FCM-ANFIS is employed. The performance of PSO-ANFIS model is not as good as GA-ANFIS in 

the different cases considered. Arriving at the optimal parameters of the hybrid model costs time. 
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However, these soft computing techniques can be adopted as an alternate technique to predict the 

hydraulic response of semicircular breakwaters by coastal engineers when similar site conditions are  

available. 

Keywords: semicircular breakwater, reflection coefficient, relative wave runup, stability parameter, 

artificial neural networks, adaptive neuro-fuzzy inference system, genetic algorithm, particle swarm 

optimization. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

The port and harbor tranquility is possible only with the planning of proper coastal 

protection structures. Breakwaters are one of the best coastal protection structures. They 

are built to dissipate the enormous energy of the sea waves. The design of such 

structures is of great importance as their installation involves huge investment. 

Reduction of the construction cost without compromising the structure stability is 

always the priority in any project. Also, the material used for the construction of the 

breakwaters could be different based on the availability of the materials and site 

conditions. It could be built with stones, rubble masonry or with their combination. The 

design life of a breakwater is usually 30-50 years for most rock structures. The 

breakwaters should be designed taking natural site characteristics into consideration as 

it has a direct impact on the shoreline. Sand accumulation behind the structure leads to 

the formation of a salient.  Also, sand accumulating connects the breakwater to the 

shore forming a tombolo. The choice of the type of breakwater is site-specific and no 

single breakwater holds good under all site conditions. 

 

1.2 BREAKWATERS 

Breakwaters aim at protecting the coast or activities at the coastline. Breakwaters have 

varying impact on the shoreline based on their variants. In general, the several variants 

in the design of breakwater are: 

 Emerged, submerged or floating 

 Distance from shoreline and location relative to the surf zone 

 Length and orientation 

 Single or segmented 

 Special shapes 

Emerged breakwaters hinder the aesthetics of the beach but reduce the wave energy by 

wave by introducing run-up, breaking and partial reflection of incident waves. These 
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types of breakwaters dissipate more energy compared to the submerged type of 

breakwaters, where the crest of these breakwaters protrudes above the still water level. 

Submerged breakwaters attenuate lesser wave energy compared to emerged 

breakwaters. Submerged breakwaters offer multiple functions. By not interfering the 

aesthetics of the beach, it reduces the wave energy by partial reflection and partial 

transmission and also maintains the landward flow of water due to which there is water 

circulation. Floating breakwaters are basically floating barriers constructed where bed 

soil is not suitable for permanent structures. This type of breakwater is mobile, less 

expensive and is less damaging to commercial activities as well as the environmental 

processes. Floating breakwaters have a relatively higher maintenance cost, unable to 

withstand catastrophic storms. 

In the design of detached offshore breakwater, its length should be optimal, neither too 

long nor too short such that the morphological response should be a smooth salient in 

the shoreline. If the length of any breakwater is too long then the changes in the flow 

pattern lead to the increase in current speeds towards the lee zone, near the breakwater 

heads. Unlike the longer breakwaters, shorter ones provide less shelter, lower eddy 

formation towards the lee zone, no high currents at the breakwater heads, and only 

slight changes in the general pattern of the longshore current. Breakwaters could be 

single or segmented depending on the requirement. Segmented breakwaters are most 

popularly in use as it provides better coastal protection. The curved breakwaters can be 

used for all type of coasts and as a replacement for traditional breakwaters. Different 

shapes of breakwaters are in use like semicircular breakwaters, quarter circular 

breakwaters, hemicylindrical breakwaters, rectangular breakwaters, porous pipe 

breakwaters, etc., There is a need to conduct more research on these different shapes of 

breakwaters to further implement these structures in the actual site. 

1.2.1 Types of Breakwaters  

Breakwaters are basically classified as fixed and floating type. However, in recent 

decades, there are special types of breakwaters in use. The most feasible one is chosen 

for construction based on the prevailing environment and depending upon the required 

degree of shelter (Rajendra et al. 2017). The following are some of the types of 

breakwaters in use : 
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 Rubble mound breakwaters 

 Vertical wall breakwaters  

 Composite breakwaters 

 Special type of breakwaters 

Rubble mound breakwaters (RMB) are most widely used in places where natural stones 

are abundantly available. The RMB is constructed mainly to break the wave and 

vertical wall breakwaters to reflect the waves. The RMB is limited to shallow water 

environments from the technical and economical point of view. Modern-day 

constructions with concrete blocks could be used in deep waters as well. A large 

amount of literature is available in the case of rubble mound breakwaters as several 

researchers have explored this kind of structure for the stability of armor blocks and 

concluded that armor stability is a function of several factors. They concluded that 

armor stability depends on the depth of water, various characteristics wave, slope of 

the structure, armor unit weight, porosity and the total duration of the storm (Hudson, 

1959; Brunn and Gunbak, 1976; Van der Meer and Pilarczyk, 1984; Gadre et al. 1985; 

Hegde and Samaga, 1996). Neelamani et al. (2002) studied the effect of a detached 

breakwater placed on the seaward side in front of an impermeable seawall. This 

significantly reduced the pressure, run-up, and rundown on the seawall. MuniReddy 

and Neelamani (2004) also studied the effect of a low crested rubble mound breakwater 

placed on the seaward side in front of the impermeable seawall and found reduction of 

pressure ratio with the increase in the relative height of the breakwater (h/d). Several 

types of research on such a combination of low crested rubble mound structure in front 

of the seawall vertical or inclined are available in the literature.                      

Vertical wall breakwaters could be a simple vertical wall structure or composite 

structure with a rubble mound foundation. It could be low mound or high mound. 

However, the higher mound breakwater has a mound higher than the low water level 

and wave breaks on the mound. High mound composite breakwaters are unstable as the 

breaking waves induce impulsive pressure and scouring, due to which, low mound 

breakwaters are commonly used. Horizontally composite breakwaters have a vertical 

wall breakwater and concrete blocks in front of the breakwater to dissipate the wave 

energy which otherwise would damage the vertical wall. Rubble mound stabilizes the 
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foundation against wave force and reduces scouring of the upright section. Some 

special breakwaters are still in use though limited to special conditions. The curtain 

wall breakwater is used as secondary breakwaters to protect small craft harbors. Sheet 

pile or continuous pile vertical wall breakwaters are used to break small waves. A 

Horizontal plate breakwater can reflect and break waves. A floating breakwater is very 

useful as a breakwater in deep waters, but its effect is limited to relatively short waves. 

For the present study semicircular breakwater is taken up and the advantages of the 

semicircular breakwaters are discussed in the following section. 

 

1.3 SEMICIRCULAR BREAKWATERS (SBW)   

The semicircular breakwater was first developed in Japan at the beginning of the 

nineties and was first adopted for the formation of the harbor in Miyazaki Port, Japan 

(Sasajima et al. 1994). The study of semicircular caisson breakwater was started by the 

Port and Harbour Research Institute of the Ministry of Transport of Japan, Coastal 

Development Institute of Technology and several other corporations in 1990. The 

semicircular breakwater is mainly a precast reinforced concrete structure having a 

semicircular shaped hollow caisson resting on a rubble mound as shown in (Fig. 1.1a). 

It is made of pre-stressed concrete and cast as different elements. Since the caisson is 

hollow its weight and the materials to be used are significantly less. It could be either 

emerged or submerged type, fully perforated or partially perforated. The Fig. 1.1b 

shows the emerged seaside perforated SBW, by employing this kind of breakwater the 

wave energy dissipation is done by creating turbulence inside the chamber thus 

reducing the pressure and force on the caisson.  The spacing between the perforations 

depends on the diameter of perforation and the S/D ratio. The stability against sliding 

for SBW is good, since, the horizontal component of the wave force is smaller 

compared to the vertical component. In addition, the vertical component is applied 

downward the curved wall. The semicircular breakwater possesses a round top and, 

thus, offers more stability against the action of waves. Thus it also serves well as 

offshore detached breakwaters adopted for the protection of the coast against erosion. 

The SBW enhances the scenery compared to the conventional rubble mound 

breakwaters. The impermeable semicircular breakwaters are effective wave reflectors 
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and the permeable semicircular breakwaters are good energy dissipaters (Teh and 

Venugopal, 2013).  

 

(a)  

 

 

(b) 

 

Fig. 1.1 (a) Sectional view of Semicircular breakwater (b) Typical detailing of the 

semicircular breakwater 
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1.3.1 Advantages of semicircular breakwaters  

Semicircular breakwaters (SBW) have many advantages over conventional 

breakwaters. These advantages make semicircular breakwaters more popular research 

topic for coastal engineers and scientists. Some of the advantages are mentioned below: 

 High aesthetic value due to the arch type of construction.  

 In case of relocation semicircular breakwaters can be easily dismantled and 

reassembled as it is the pre-stressed modular type of construction.  

 It is a modular type construction which is relatively simple and no in-situ 

concrete work 

 Reduction of construction material as the caisson of the semicircular 

breakwater is hollow and it does not require filling of materials as in the 

case of conventional rubble mound structures.  

 The construction cost of a semicircular breakwater is about 20% lower than 

that of a conventional rubble mound structure (Xie, 2001).  

 The dynamic force acting on the wall of SBW always passes through the 

center of the circle this will create a uniform sub-grade reaction. As the 

subgrade reaction per unit area is minimum applicability in soft foundations 

is possible (Tanimoto and Goda, 1992). Hence there is also no overturning 

moment induced by the wave pressure. 

 Semicircular breakwater has high stability against sliding because the 

horizontal component of wave force causing sliding is considerably less 

than the vertical component (Yuan and Tao, 2003).  

 Enhanced stability against overturning: SBW has high overturning stability 

because of its arch type shape (Graw et al., 1998). The stability can be 

increased further by making base slab perforated, which will reduce the 

uplift pressure (Sasajima et al. 1994). 

 Applicability in a broad range of water depths: SBW was established to be 

an excellent coastal protection structure for a wider range of water depths 

(Tanimoto and Takashashi, 1994), especially when the seaside wall is 

perforated (Dhinakaran et al. 2011). 
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1.3.2 Hydraulic response of semicircular breakwaters  

Hydraulic response parameters of an emerged seaside perforated semicircular 

breakwater under study are reflection coefficient (Kr), relative wave run-up (Ru) and 

stability parameter (W/γHi
2) which are the responses to the wave action on the structure. 

The study of the reflection coefficient is of importance as the incident and the reflected 

waves interact giving rise to standing waves/ clapotis in front of the coastal structure 

with occasional steep and unstable waves affecting the small boats. These waves may 

propagate into the harbor area leading to increased peak orbital velocities and may pave 

movement of beach material. Also, reflection increases littoral currents and local 

sediment transport under oblique waves. The study of the reflection coefficient is also 

important to keep the toe of the structure safe. The upward extreme level reached by 

each wave above the static water level is termed as wave run-up and determining this 

is important to fix the crest level of the structure in the design of the semicircular 

breakwater. Semicircular breakwater has high stability against sliding; however, the 

critical weight required to resist sliding needs to be found out in the design of the 

semicircular breakwater. This can be arrived at using the stability parameter (W/γHi
2) 

of the semicircular breakwater.  

In the present study, soft computing techniques such as ANN, ANFIS, GA-ANFIS, and 

PSO-ANFIS are used to predict the hydraulic responses of SBW. The data for this is 

collected from a two-dimensional monochromatic wave flume of Marine structures 

laboratory, NITK, Surathkal. The basic input parameters being the wave height, wave 

period, water depth, radius of the semicircular breakwater, center to center spacing of 

perforations, the diameter of the perforations and the structure height. Prediction is also 

done using a set of the non-dimensional parameter for the respective hydraulic response 

parameter.  

 

1.4 SOFT COMPUTING TECHNIQUES 

Principal components of the soft computing techniques are evolutionary computing, 

machine learning, fuzzy logic, and Bayesian statistics, they could be applied 

independently or combined with other techniques to solve the complex problems. Soft 

computing techniques can resolve the non-linear problems with the expert knowledge 
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of cognition, recognition, understanding, learning to name a few in computing. 

Hybridization of soft computing techniques has great potential. However, individual 

techniques are also capable of good prediction. This hybrid system of soft computing 

techniques is growing rapidly with its many successful applications in the area of 

coastal engineering. The Computational Intelligence (CI) techniques could be made use 

of to overcome the shortcomings of past methods. Artificial Intelligence has emerged 

as one of the most revolutionary areas. An overview of applications of Artificial 

Intelligence in prediction and forecasting of different wave parameters associated with 

breakwaters are presented in the subsequent chapters. Computer networks can be 

trained to think for themselves and make intelligent decisions like human counterparts. 

There have been a significant number of research works, where the soft computing 

techniques are adopted to predict the wave run-up, wave transmission, reflection 

coefficient, stability and damage level of breakwaters (Dwarakish and Nithyapriya 

2016).  

Over the past decades, researchers have predicted the performance of various types of 

breakwaters using different soft computing techniques. Identifying the gaps in the 

literature the current research on semicircular breakwaters by the application of soft 

computing techniques to predict its hydrodynamic characteristics is carried out. 

Artificial intelligence (AI) could be an excellent option for prediction when the 

experimental study data is limited as experimentation is tedious and expensive. A need 

was also felt to develop the soft computing models to predict for ranges of wave height 

which are not involved in training the network so that we could predict the output 

variables for the ranges of wave heights for which experiments were not conducted. 

This is named as below and beyond the data range prediction. A comparison between 

the conventional method of prediction and below/beyond the data range prediction is 

done. The ANN, ANFIS, GA-ANFIS, PSO-ANFIS model prediction performances are 

compared with the experimental observations. Further, the robustness of the model is 

assessed by the error metrics like the Correlation coefficient, Root mean squared error, 

Scatter index, Nash Sutcliffe efficiency and Bias. This study could be useful to the 

coastal engineers in the prediction of the hydraulic responses of emerged seaside 

perforated semicircular breakwaters. The study also shows that for lower and higher 
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ranges of wave heights for which no physical model data is available the prediction of 

the hydraulic responses is possible.  

          

1.5 SCOPE OF THE WORK 

The present research proposes to predict the hydraulic response of emerged seaside 

perforated non-overtopping semicircular breakwater using soft computing techniques 

for below and beyond the data ranges fed while training the network. The current 

research is an attempt to overcome the shortcomings of the past researches. In the 

literature, we find numerous models which are developed to predict the wave 

parameters for which the training data set involves all the ranges of data. Here, the 

model predicts for exclusively purely below and purely beyond the ranges of data used 

for training. If the conducted experiments are for certain wave height ranges then, by 

training the network, with these ranges we can predict the performance for lower ranges 

as well as the higher ranges of wave heights. Also, the conventional method of training 

and testing were done for a better understanding of the prediction performance. 
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1.6 ORGANISATION OF THE THESIS 

The thesis titled “Soft computing techniques in the prediction of the performance 

of semicircular breakwaters,” consists of the following chapters: 

Chapter 1 introduces the role of breakwaters in protecting the coast, the different types 

of breakwaters used in practice. It explains the advantages of semicircular breakwaters 

over other breakwaters. An introduction to soft computing techniques is also presented 

in this chapter. 

An overview of research done on semicircular breakwaters and the current state of 

knowledge of the application of soft computing techniques in the field of coastal 

engineering is presented in Chapter 2 

Chapter 3 deals with materials and methods, the details of the experimental data used 

for the present study, the data consistency check, data normalization, methodology of 

soft computing models employed and their assessment statistics. 

Chapter 4 illustrates the wave reflection coefficient of emerged seaside perforated 

semicircular breakwaters, the data segregation in the current study and the prediction 

of wave reflection coefficient for below, beyond and conventional ranges of data 

segregation.  

Chapter 5 illustrates the relative wave run-up parameter of emerged seaside perforated 

semicircular breakwaters, the data segregation and the prediction of relative wave run-

up parameter for below, beyond and conventional ranges of data segregation. 

Chapter 6 illustrates the stability parameter of emerged seaside perforated semicircular 

breakwaters, the data segregation and the prediction of the stability parameter for 

conventional ranges of data segregation. 

The study conclusions arrived on the application of soft computing models to predict 

the hydraulic responses of emerged seaside perforated semicircular breakwaters is 

presented in Chapter 7  
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CHAPTER 2           

LITERATURE REVIEW 

 

This chapter attempts to critically review the research done on semicircular breakwaters 

and the current state of knowledge of the application of soft computing techniques in 

the field of coastal engineering particularly breakwaters. 

 

2.1 LITERATURE ON SEMICIRCULAR BREAKWATERS 

The Japan Institute of Port and Harbor Research developed the semi-circular 

breakwater (SBW) in the 1980s. Since then, research on these arch type breakwaters 

has been of interest. A first-ever 36 m long bottom seated semicircular caisson 

breakwater was constructed at Miyazaki Port, Kyushu Island, Japan from 1992 to 1993 

(Sasajima et al. 1994; Aburatani et al. 1996). The structure built is 36 m long and made 

up of seaside perforated precast semi-circular caisson, with porosities of 25% and 10% 

for the seaside of the caisson and bottom slab respectively. Followed by this successful 

breakwater installation in Japan the countries like China and India have taken up 

similar studies. In 1997 China constructed a 527 m long SBW to protect the southern 

harbor side of the Tianjin port. In the year 2000, the largest SBW came into existence 

in the Yangtze River estuary in Shanghai, China with the length of the structure being 

18 km (Xie, 2001; Graw et al. 1998). 

 

By using Goda and Suzuki, 1976 caisson breakwater formula, Tanimoto and Takahashi 

(1994) recommended some empirical formulas to calculate the wave force on SBW. 

Sasajima et al. 1994 studied the world’s first semicircular breakwater constructed at 

Miyazaki port in Japan. They measured the pressures and forces on the breakwater. 

The variation of the measured highest one-third wave pressure with respect to 

maximum wave force at different elevations along the seaward face were found to be 

less than the results of the modified theoretical formula of Goda and Suzuki 1976.  

 

Yu et al. 1999 studied the hydraulic response of the semicircular breakwater when 

exposed to oblique irregular waves. They studied the wave force variation on a unit 
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length of SBW, wave steepness Hs/Ls, relative wave height Hs/d, d′/Hs and the angle of 

incidence θ0. They suggested the empirical formula of the longitudinal distribution 

coefficient and the longitudinal load reduction factor. The study found that the 

horizontal wave force corresponding to wave trough value was more than the crest 

values. 

 

 Yuan and Tao, 2003 studied the wave forces on a semicircular breakwater (for three 

cases, i.e. submerged, alternately submerged, and emerged conditions by using a 

numerical model based on a hybrid method of boundary element method (BEM) and 

finite difference method (FDM). Wavemaker technology and the non-reflected open 

boundary were adopted. Five sets of experimental data of different diameters and 

shapes of SBW has been used to calibrate and verify the numerical model the numerical 

results matched very well with the experimental data. They derived a simplified 

formula for calculating the total wave forces on the breakwaters from the numerical 

results suitable for submerged, alternately submerged, and emerged conditions.  

 

By using Goda and Suzuki (1976) caisson breakwater formula, Tanimoto and 

Takahashi (1994) recommended some empirical formulas to calculate the wave force 

on SBW. Sasajima et al. (1994) studied the world’s first semicircular breakwater 

constructed at Miyazaki port in Japan. they measured the pressures and forces on the 

breakwater. the variation of the measured highest one-third wave pressure with respect 

to maximum wave force at different elevations along the seaward face were found to 

be less than the results of the modified theoretical formula of Goda and Suzuki (1976).  

 

SriKrishnapriya et al. (2000) in their results on the variation of the dynamic pressures 

on an impermeable semicircular breakwater revealed that it compared well with the 

two-dimensional finite element model of Sundar et al. (2001).  They found that their 

measured values were less than those of the modified formulation of Goda and Suzuki 

(1976), particularly when nearer to the SWL, and conclusions were similar to that of 

Sundar and Raghu (1997). Further, the dimensionless pressures were found to reduce 

with increase in the scattering parameter, ka, where, ka is the wave number and ‘a’ is 
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the radius of the semicircular caisson. In addition, the pressures were reported to be 

less for higher hw/ ht, where, ht is the total height of the model, that is, the height of the 

rubble mound plus the height of the semicircular caisson.  Sundar and Ragu (1997) 

conducted experiments on a solid type SBW subjected to random waves. He studied 

the wave runup, wave reflection, and dynamic pressures. The reflection coefficient (Kr) 

for the SBW model ranges from 0.6-0.95 over a wave steepness range of 0.2 to 0.095.  

The results indicate that the SBW is quite effective in reflecting the incident wave 

energy. The pressure spectrum at still water level (SWL) results in lesser energy 

compared to that of immediately below the SWL, which is due to the intermittence 

effect. The pressure spectra were found to decrease towards the sea bed. The zeroth 

spectral moment at a location (z/d= -0.10), immediately below the SWL, was nearly 60 

to 75% greater than that exerted at the SWL. The shape of the pressure spectra is 

slightly broader than the corresponding wave spectrum. The shoreward peak pressures 

follow a Raleigh distribution. The study also reveals that the variations are similar to 

those of the corresponding wave spectra. The variation of the zeroth spectral moment 

of the run-up with a variation of the zeroth spectral moment of wave elevation (m0)η 

along with the line of best fit reveals that the energy under the run-up spectra increases 

with increase in energy in the incident wave spectrum. They observed that the trend in 

variation of the relationship of statistical averages of run-up was similar to that obtained 

for pressures.  

 

Dhinakaran et al. (2002) compared the dynamic pressures and forces exerted on 

impermeable and seaside perforated semicircular breakwaters (SBW model with 7 and 

11% perforations) due to regular waves. They observed that for higher hw/ht (water 

depth/total height of breakwater), the reflection coefficient (Kr) and the dimensionless 

pressure is less. As the water depth increases the vertical force is almost twice the 

horizontal force. They found that the seaside perforated SBW dissipates more energy 

due to the provision of perforations and is subjected to lower hydrodynamic pressures 

and forces and reflects a lower amount of energy. The estimation of wave reflection 

coefficient using empirical formulae and numerical models can be undertaken to 

integrate the complexity of coastal processes. Several empirical formulae and 
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numerical models to predict Kr for a wide range of coastal structures have been listed 

out by Zanuttigh and Van der meer (2008) concluding that these methods are time-

consuming and leading to probable overestimation of wave reflection. 

 

Nishanth (2008) carried out experiments to find the hydrodynamic performance 

characteristics of emerged seaside perforated and non-perforated semicircular 

breakwaters. The results showed that the non-dimensional wave run-down (Rd/Hi) and 

wave run-up (Ru/Hi) increases with the increase in incident wave steepness (Hi/gT2) 

and depth parameter (d/gT2). Ganesh (2009) conducted studies on seaside perforated 

model of semicircular breakwaters with S/D ratios of 2 and 6 for varying wave heights, 

periods in different water depths. Similarly, he studied the performance of both side 

perforated model of semicircular breakwaters with different S/D ratios of 2, 4, 6 and 8. 

The results of the study showed that as the percentage of perforations increased or the 

S/D ratio decreased, the value of the reflection coefficient, relative runup and relative 

rundown decreased, but the value of the transmission coefficient increased. The 

conclusions of Vishal Kumar (2010) were the same as that of Ganesh (2009) for 

perforated models with different S/D ratios.  

 

Dhinakaran et al. (2009) studied how the perforations, water depth and rubble mound 

height of an SBW affect the non-breaking wave transformations. The experimental 

study of an SBW model for three different perforation ratios with 7%, 11%, and 17% 

was selected to study the variation of reflection, transmission, runup characteristics and 

dimensionless horizontal and vertical forces as a function of relative water depth. They 

compared the obtained results with semicircular breakwater model results of Sri 

Krishnapriya et al. (2000) and Dhinakaran et al. (2002, 2008).  They found that the 

model with perforation percentage of 11% on the seaside and fully perforated type 

gives an optimum performance regarding energy dissipation and transmission. The 

increase in the percentage of perforations from 0 to 11 decreases the reflection 

coefficient and from 11 to 17% the reflection coefficient increases. Usually, with 

longer wave periods, the distance run by the waves over the curved surface is larger, 

hence more energy is dissipated and less reflection. In case SBW with 11% 
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perforations, the energy dissipation is irrespective of wave period. In the case of SBW 

with 17% perforations, waves of smaller period waves as well as longer period waves 

dissipate lesser energy because of its perforation size compared with models up to 11% 

perforations. The total height of the model recommended being about 1.25 times the 

water depth and height of the rubble mound which is 0.29 times the total height of the 

model. These values if adopted in the field gives a better performance of SBW. For all 

the considered perforation case, the dimensionless vertical force is very much higher 

than the dimensionless horizontal force. The vertical force acts on the semicircular 

caisson, adding stability to the breakwater. The long period waves exerted more force 

on the caisson compared to short period waves. The increase in water depth highly 

influences the wave force by increasing the force on the caisson. Thus the variations of 

force and pressure directly influence the stability of SBW, i.e. the minimum weight 

required to ensure that the stability of SBW increases with an increase in force and 

pressure. The comparison of transmission coefficient indicates that, for submerged 

condition, SBW transmits lesser energy than conventional rubble mound breakwater, 

whereas for surface piercing condition Kt value is on the higher side for SBW (till 11 

percentage perforation) than rubble mound breakwater and is within the upper bound. 

The effect of perforations and the effect of rubble mound height on hydrodynamic 

characteristics of seaside perforated SBW models are more significant compared to the 

effect of water depth. The increase in rubble mound height resulted in a significant 

reduction in reflection and transmission coefficients and run-ups for hr/ht values from 

0.18 to 0.29 and it is less significant for further increase in hr/ht to 0.36. The transmitted 

wave height on the seaside exceeds 50 percent of incident wave height in case of 

SBW17 almost in all the hw/ht ratios tested and concluded that SBW17 will affect the 

tranquility condition on the shoreward direction. Dimensionless run-up decreases with 

an increase in water depth and perforation and in case of higher water depth, there is 

no much reduction in values observed among the different cases of seaside and fully 

perforated SBW. 

 

Hegde et al. (2010) conducted the study on a semicircular breakwater in a two-

dimensional wave flume subjected to regular waves which shows that the relative run-
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up and run-down decreases by the increase of perforations in the breakwater. With the 

increase in wave steepness the relative wave run-up increases and the relative wave 

run-down decreases. Also, with the increase in depth parameter the relative wave run-

up and wave run-down increases. The energy loss coefficient including transmission 

and reflection coefficients were studied by Kudumula and Mutukuru (2013) for a 

semicircular low-crested breakwater. A comparison of the wave force characteristics 

on the impermeable vertical seawall with a combination of low crested rubble mound 

breakwater and a semicircular low crested breakwater was done. The wave forces on 

the vertical wall were less for semicircular low-crested breakwater for zero 

submergences in all the cases considered in the study. The waves impinging on an 

emerged seaside perforated SBW partly gets reflected seaward, and the rest enters 

through the perforations dissipating the energy. The seaward reflected waves may 

compromise structure stability by scouring the structure toe further causing a problem 

in its foundation (Zanuttigh et al. 2013). Hegde and Naseeb (2014), evaluated the wave 

transmission of semicircular breakwaters for different radii and for various 

submergence ratios. The study found a decrease in wave transmission as the incident 

wave steepness increased for all the considered submergence ratios. The lower 

reflection coefficient is desirable to keep the structure safe (Hodaei et al. 2016). A 

detailed review on different laboratory methods of wave reflection coefficient 

estimation of coastal structures are listed in the review of (Varghese et al. 2016) and 

suggests the usage of Issacson three probe method to study monochromatic waves in 

the laboratory Isaacson, 1991. However, the scope to estimate the wave reflection 

coefficient for partially perforated caissons still exists.  

 

Sreejith (2016) found the stability of emerged SBW models to resist sliding by 

determining the critical weight required. He evaluated the hydrodynamic performance 

by finding the wave run-up and wave reflection characteristics of the model. He also 

conducted a study on emerged non-perforated SBW model and seaside perforated SBW 

models of diameter to spacing ratios of 8, 4 and 2. He found that as the perforation 

increases stability parameter decreases. The percentage of reduction of stability 

parameter at least gets doubled by doubling the percentage of perforations from the 
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S/D ratio of 8 to 4. With the increase in incident wave steepness for all ranges of depth 

parameters for all SBW models Stability parameter (W/γHi
2) and Relative wave runup 

parameter (Ru/Hi) was found to decrease whereas the Reflection coefficient (Kr) was 

found to increase. As the depth parameter increased for constant incident wave 

steepness the relative runup decreased, the reflection coefficient was found to decrease, 

and the stability parameter increased for all SBW models. He obtained a nomogram 

which could be used successfully for finding the critical weight required for stability 

against sliding for an emerged SBW.  

 

Gope et al. (2016) studied the flow over the semicircular breakwater and examined the 

variations of properties like temperature, flow properties using Computational Fluid 

Dynamics taking into account the viscosity factor. They concluded that FLUENT 

software simulated well for semi-circular breakwater and GAMBIT performs 

geometrical modeling with high accuracy and is better than conducting the physical 

model study. Hegde et al. (2015) conducted an experimental study to understand the 

variation of the non-dimensional stability parameter with incident wave steepness for 

different values of dimensionless depth parameter and a nomogram was developed for 

computing the sliding stability of the breakwater. Hegde et al. (2018) studied the sliding 

stability of seaside perforated semicircular breakwater of 0.6 m radius and S/D ratio of 

8 and 4. He found that as an incident wave steepness and perforation increases the 

dimensionless stability parameter exponentially decreases. As the depth parameter 

increased, the critical weight required for the stability against sliding of semicircular 

breakwaters also increased.  The study of the influence of incident wave steepness and 

influence of perforations on the wave reflection and run up was performed.  Reflection 

coefficient was found to be decreasing with the increase in perforation. Run up 

parameter was found to be decreasing with increase in Hi/gT2 and S/D ratio.  

 

2.2 APPLICATION OF COMPUTATIONAL INTELLIGENCE IN 

BREAKWATERS 

The design of armor layer units of breakwater depends on the anticipated damage ratio. 

Prediction of the damage ratio of the breakwater is possible using the ANN model. 
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Artificial Intelligence simulations can efficiently interpolate the experimental data sets 

for a variety of combinations of wave height, wave period, wave steepness and slope 

angle. Damage ratio estimation for breakwater design uses the inputs like mean wave 

period, wave steepness, significant wave height, and the breakwater slope. Though 

ANN models can efficiently model the non-linear relationships between inputs and 

outputs, fuzzy logic better estimated the damage ratio as it closely mimics the 

environment. The damage ratio was modeled as a function of wave height, wave period, 

wave steepness and breakwater slope instead of generating a typical regression equation 

(Yagci et al. 2005). 

 

The stability number forecasting of the conventional rubble mound structures by fuzzy 

logic approach is more accurate, as it deals with the uncertainties not accounted for by 

empirical formulae. The input parameters to the developed FL model are permeability 

of structure, the slope angle of the breakwater, a number of waves, surf similarity 

parameter, and damage level to predict the stability number. Along with these 

parameters in Van der Meer’s equations the non-dimensional parameter, i.e., depth to 

significant height ratio (d/Hs), at the structure toe is also used to take into account the 

effect of foreshore breaking waves. The fuzzy logic model developed is the most 

superior model in prediction of stability number for conventional rubble mound 

breakwater design, followed by Van der Meer’s approach and Mase et al.’s ANN 

model, respectively (Erdik 2009). 

 

Stability number of armor block is a vital issue while designing rubble mound 

breakwaters. The prediction of Stability number of armor block can be accurately done 

using model trees. Model trees are easier to use, and they represent understandable 

mathematical rules. Here the conventional governing parameters were used as input 

variables, and the predicted stability numbers of breakwater armor outperformed the 

previous empirical and soft computing methods. Model trees produce easy and 

significant formulas (Etemad-Shahidi and Bonakdar, 2009). 

 

The maximum wave runup on breakwaters for determining the crest level of 
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breakwaters through traditional regression-based empirical model approaches involves 

several assumptions such as linearity, normality, variance constancy, etc. Whereas, 

ANN predicts the maximum wave runup accurately overcoming the drawback of the 

conventional empirical model and suffice as a modern approach towards Ru2%/Hs 

prediction to determine the crest level of coastal structures accurately. Here many three 

layer feed-forward type of ANN is used and the model with four inputs, five neurons 

in hidden layer with only one output, yields the best result out of all developed models. 

The accuracy of the developed model is evaluated with the empirical model based on 

regression of Van der Meer and Stam (1992) and found that the ANN outperformed 

regression model in Ru2%/Hs prediction (Erdik et al. 2009). 

 

Artificial Intelligence (AI) models can be developed for the preliminary design of 

rubble mound breakwaters. However, the final design necessitates examining other 

failure modes because the coastal structure safety is highly variable. The fuzzy systems 

and fuzzy neural networks are found more advantages in the prediction of stability 

number of rubble mound breakwaters as it incorporates fuzzy logic as expert systems 

relative to hybrid neural networks (Balas et al. 2010). 

 

Kirkgöz and Aköz (2005) observed that a breaking wave has highest impact force on a 

vertical wall when the wave breaks on a vertical wall with a near vertical front face at 

the instant of impact is called “perfect breaking.” The accurate prediction of these 

impact forces on coastal structures is dependent on the configurations of wave breaking. 

They employed artificial neural networks (ANN) to predict the geometrical properties 

like the breaker crest height, hb, breaker height, Hb, and water depth in front of the 

wall, dw, of perfect breaking waves on the vertical wall of composite-type breakwaters. 

The study found that ANN prediction can be done more accurately by artificial neural 

networks compared to linear and multi-linear regressions 

 

Adaptive Neuro-Fuzzy Inference System (ANFIS) outperformed the artificial neural 

networks model in the prediction of the wave transmission coefficient of horizontally 

interlaced multilayer moored floating pipe breakwater (HIMMFPB). In this work, the 
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input variables that influence the Kt of HIMMFPB such as S/D, W/L, Hi/d and Hi/L 

were considered, and six ANFIS models were constructed. They developed four ANFIS 

models with W/L, Hi/d, Hi/L and Kt as input data with a first-order Sugeno model 

containing 27 rules and three generalized bell membership functions. The ANFIS5 

model was developed including S/D ratio also as the input parameter with the structure 

using the first-order Sugeno model containing 81 rules and three generalized bell 

membership functions. The ANFIS6 model is similar to ANFIS5 model but does not 

consider Hi/L as the input parameter. With Principal Component Analysis (PCA) the 

most influencing parameter is found to be S/D and W/L whereas, the least influencing 

parameter was found to be Hi/L. Parameter variation study for ANFIS5 and ANFIS6 

model were conducted. The various ANFIS model study concludes that S/D has a 

significant influence and Hi/L has no significant influence in the prediction of Kt of 

HIMMFPB. The study concludes that the ANFIS can serve as another approach to study 

the wave-structure interactions of HIMMFPB (Mandal et al. 2009; Patil et al. 2011). 

 

Prediction of normalized scour depth at the head of the vertical wall breakwater using 

artificial neural networks (ANN) outperformed the existing empirical formulae. They 

found that ANN predicts well for dimensional input parameters compared to the non-

dimensional input parameters. For the network with dimensional parameters, the inputs 

to the ANN network were the width of the breakwater head (B), the wave angle of 

attack (Φ), wave period (T), maximum current velocity (Um) and the network output 

was non-dimensional scour depth (S/B). Implementing a forward perception three 

layers network with back propagation the prediction of scour depth around breakwaters 

were performed. Similarly, for a network with non-dimensional parameters, the 

network was trained with the dimensionless parameters of Reynolds number (Re), 

Shields number (θ) and Keulegan-Carpenter number (KC). Reynolds number Re 

=UmB/ν, where, Um is the maximum current velocity, B is the width of the breakwater 

head ν is the kinematic viscosity. Shields number, θ=το/(γs-γ )d in which τo is the shear 

stress, γs is the sediment unit weight, γ is the water unit weight, d is the sediment particle 

diameter. Keulegan-Carpenter number, KC= UmT/B, and sediment Reynolds number 

(Re). Based on a trial and error method the number of hidden layer neurons was taken 
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as three. A sensitivity analysis shows that the Keulegan - Carpenter number is the most 

influencing parameter in the scour process (Jabbari and Talebi, 2011). 

 

An ANN model was developed to predict the reflection coefficient. The input 

parameters influencing the reflection coefficient were crest freeboard Rc, crest width B, 

seaward angle α, the significant incident wave height Hi and peak period Tp or peak 

wavelength Lp. They considered three dimensionless parameters for the study as model 

inputs i.e., Iribarren number Ir, relative crest freeboard Rc/Hi and relative crest width 

kpB, with kp as wave number associated to the peak wavelength. The optimum 

architecture was arrived by evaluating the performance of each architecture. The results 

obtained from 400 different ANN models with ten different architectures were trained, 

tested and validated finally choosing the best architecture. They concluded that this 

model could be regarded as a virtual laboratory, replacing physical model tests in a 

conventional laboratory in determining the reflection coefficient (Castro et al. 2016). 

The M5’ model tree prediction of wave runup on rock slopes using Van der Meer 

experimental data was found to be better than the Van der Meer and Stam formula, 

Kingston and Murphy (1996) formula and Erdik and Savci’s TS Fuzzy method 

(Etemad-Shahidi and Bonakdar 2009). Jafari and Etemad-shahidi (2012) using the M5′ 

model tree successfully predicted the overtopping rate at rubble mound structures using 

a small CLASH database.  

 

To predict the wave transmission of horizontally interlaced multilayer moored floating 

pipe breakwater (HIMMFPB) they developed a hybrid Genetic Algorithm tuned 

Support Vector Machine Regression (GA-SVMR). Interfacing the MATLAB SVM 

toolbox with a genetic algorithm, a better generalization of GA-SVMR model was 

achieved by optimizing the SVM and kernel parameters simultaneously. Six GA-

SVMR models were developed using different kernel functions (with linear, 

polynomial, RBF, erbf, spline and b-spline kernels) for training. The first step is for GA 

to generate the initial population to identify optimum factors of kernel functions and 

SVMs. Next step is to perform an SVM process using the assigned value of the factors 

in the chromosomes and calculate the individual chromosome performance using 
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fitness function for GAs. Optimal parameters are selected if the calculated fitness value 

satisfies the terminal condition in GAs, if not apply the genetic operators to produce a 

new generation of the population. After which again perform the training process with 

the calculation of the fitness value. Repeat the process until a stopping condition is 

satisfied. With the completion in genetic search, chromosomes that show the best 

performance in the last population were selected as optimal SVMs and kernel 

parameters. These optimized parameters were tested with the test data. The GA-SVMR 

model with b-spline kernel function performed better than other five kernel functions 

for the given set of data. Also, it outperformed his earlier developed ANN and ANFIS 

models. Thus GA-SVMR could be taken as another approach to study the prediction 

performance of HIMMFPB (Patil et al. 2012). 

 

Koç and Balas (2012) predicted the stability number of rubble mound breakwaters 

using FNN in the framework of multilayer feed-forward supervised neural networks 

with AND and OR fuzzy neurons optimizing its parameters with gradient descent 

algorithm. As the accuracy of the prediction was not appreciable, there was a need for 

improvement. An improvement over Balas fuzzy neural networks in the prediction of 

stability number of rubble mound breakwaters by structural and parametric 

optimization using HGA-FNN (hybrid genetic algorithm-based fuzzy neural network) 

was established for better stability assessments. Here two models where developed one 

the standard GA-FNN (genetic algorithm-based fuzzy neural network) and the other is 

HGA-FNN (hybrid genetic algorithm-based fuzzy neural network). The HGA-FNN is 

having an advantage over GA-FNN as it involves a local search method, with the hill 

climbing method used in the current study. In the case of both the models the training, 

validation and testing was done for the same data involving five inputs they are the 

permeability coefficient (P), the damage level (S), the number of waves (N), the slope 

of the breakwater (cot θ), and the surf similarity parameter (εm), to predict the only 

output the stability number (Ns). The results show that the predictive performance of 

the HGA-FNN model is better than that of the GA-FNN model since it effectively 

combines local and global optimization. HGA-FNN has better prediction potential as it 

combines local and global search methods for stability assessments of rubble mound 
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breakwaters by simultaneously optimizing structures and weights. 

 

Garrido and Medina 2012 developed a semi-empirical model based on a potential flow 

theoretical model which was modified with specific, empirical formulas to obtain a 

much better agreement with the experimental tests. Pruned neural network models with 

evolutionary strategies were used to identify the nonlinear relationships between the 

structural and wave attack parameters and the Jarlan-type breakwater reflectivity. The 

developed model was valid for regular as well as random waves on single and double-

chamber Jarlan-type breakwaters estimating the reflection coefficient with an RMSE 

less than 10% with respect to observed values. 

 

Wave reflection coefficient prediction by using ANN for a wide database with 

structures of straight and non-straight slopes, seawalls, caissons, and circular caissons, 

Acquareefs, and structures under wave attacks. The developed ANN model was trained 

by 13 non-dimensional input elements chosen based on a sensitivity test of ANN 

performance considering the extended input dataset (including wave and structure 

characteristics) and 40 hidden neurons. Uncertainty of predictions through the 

technique of bootstrap sampling is found to have the same error distributions as the 

ones obtained from the non-bootstrap sampling. The results show that the model has 

good stability. Prediction of wave reflection coefficient from coastal and harbor 

structures for a wide variety of wave conditions, structure geometry, and structure type 

is possible using Artificial Neural Networks (Zanuttigh et al. 2013). 

 

The estimation of damage of breakwater armor blocks can be better by considering tidal 

level variation. The study revealed that the expected damage increased with the increase 

in the tidal level when compared with a constant tidal level. Here a shallow water wave 

height prediction artificial neural network (ANN) model was developed using offshore 

wave height and estimated the breakwater damage incorporating tidal level variation 

near shore. This reduced the total analysis time in estimating the breakwater damage of 

armor blocks and also allows it to apply a random simulation method such as Monte 

Carlo simulation (MCS) to estimate the damage using deep sea wave distribution. The 
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ANN predicted waves were compared with that from a wave transformation analysis. 

The study shows that by assuming tidal level constant at HWL, the damage of 

breakwater armor blocks is overestimated hence the tidal level variation should be 

incorporated (Kim et al. 2014). 

 

MATLAB-based regression is used to determine the wave transmission coefficient of 

a quarter-circular breakwater (QBW). Here the wave transmission coefficient (Kt) is 

established as a dependent variable on the independent non-dimensional parameters 

Hi/d (relative wave height), Hi/gT2 (incident wave steepness parameter), and hc/Hi 

(relative freeboard). The relation established between the two using a MATLAB-based 

regression and the accuracy was assessed on some statistical parameters. Noise removal 

of the collected experimental data performed for accurate prediction of the ANN model, 

where the data with more than ±15% in MSE and relative error were removed. The 

refined set of data were further subjected to regression in MATLAB, and a new model 

is obtained for the wave transmission coefficient (Kt) whose accuracy improved 

significantly. The author further applied ANN for the same problem. The predominant 

input variables influencing the performance and stability of quarter-circular 

breakwaters (QBW) are Hi/d (relative wave height), Hi/gT2 (incident wave steepness 

parameter), and hc/Hi (relative freeboard), while the transmission coefficient Kt is 

considered as the output variable to train the ANN. Using the Levenberg–Marquardt 

method of backpropagation, an ANN model is developed to predict the Kt of QBW. 

The predicted wave transmission coefficient using ANN was found to be better than 

that of MATLAB-based multiple regression. The study concludes ANN was a better 

approach in the prediction of wave transmission (Goyal et al. 2014; Goyal et al. 2015). 

 

Nikoo et al. (2014) arrived at the optimum of double-layer perforated-wall breakwaters 

(DLPW) based on data-driven simulation modeling, multi-objective optimization, and 

game theory. The DLPW breakwaters are employed to achieve a reduction in wave 

reflection and maximize the wave transmission to acceptable limits. Using the 

experimental data of DLPW, two ANFIS models were developed to predict the 

performance of DLPW breakwater and it is further linked with NSGA-II multi-
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objective optimization model to arrive at the optimum dimensions of DLPW 

breakwater.  

 

ANN models can predict the reflection coefficient (Kr) of the emerged perforated 

quarter circular breakwater (EPQCB) for beyond the range data of the wave period (T) 

used for training. Here the prediction of reflection coefficient (Kr) for two modes of 

data was done, i.e., dimensional as well as non-dimensional. The input parameters used 

in the case of dimensional mode are water depth (d), wave height (H), structure height 

(hs), spacing (S), Diameter (D) and radius (R). The input parameters used in the case of 

non-dimensional input parameters are wave steepness Hi/gT2, depth parameter d/gT2, 

spacing-perforation ratio S/D, relative wave run-up R/Hi and relative water depth hs/d. 

The results show that the prediction of reflection coefficient (Kr) of emerged perforated 

quarter circular breakwater using ANN with dimensional input parameters gave better 

accuracy than the non-dimensional input parameters (Raju et al. 2015). 

 

The damage level prediction of non-reshaped berm breakwaters was done successfully 

using GA-SVM models which improved the performance of SVM models (Narayana 

et al. 2014). Soft computing techniques are an alternative to physical and mathematical 

model study to determine the damage level of a non-reshaped berm breakwater which 

is complex and non-linear. In the damage analysis input parameters that influence the 

damage level (S) of non-reshaped berm breakwater are used as inputs, such as wave 

steepness (H/Lo), surf similarity, relative berm position by water depth (hB/d), armor 

stone weight (W50/W50max), relative berm width (B/Lo), and relative berm location 

(hB/Lo). The proposed model optimizes SVMs and kernel parameters simultaneously 

and predicts damage level. The PSO-SVM model with polynomial kernel function 

predicted better than the other SVM models (Harish et al. 2015). 

 

The armor stone weight required for a particular site condition for a particular wave 

height range is determined based on the stability number which will indicate how stable 

the armor stone is. To estimate this stability number, it is important to know the relation 

between the stability number and other parameters which are related to waves and 
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structure. Hence using Principal component analysis, a variable selection method, the 

influence of variables unused in the previous studies were considered, and research was 

carried out. Here a hybrid model of ANN with PCA is developed for estimating the 

stability number of rock armor using the experimental datasets of Van der Meer (1988). 

The experimental data had 11 input parameters of which grouping six as Group1 with 

well-distributed values and the remaining five as another group, i.e., Group 2 which 

varies amongst only a few values. Transforming Group 1 parameters into six PC’s using 

PCA, all the parameters were trained to ANN. The sixth PC obtained here had zero 

percent of the total variance. But the results obtained by including all PC’s were better 

compared to that by excluding the sixth PC. Finally, six PC’s of Group 1 and five 

parameters directly from Group 2 as the input variables, trained to ANN model. This 

hybrid ANN with PCA model outperformed the previous empirical and ANN models 

(Lee et al. 2015). 

 

The construction of a berm breakwater and further allowing it to reshape subjecting to 

storms to achieve a stable profile rather than constructing a reshaped berm breakwater 

directly is found more economical as it requires smaller size armor stones. However, 

the study of the stability of such breakwaters is important. The input variables are wave 

height, wave period, water depth, berm width, berm position from the sea bed, the slope 

of the breakwater, the nominal dimension of armor unit and storm duration. Whereas, 

the output variable was the failure of the breakwater regarding berm recession. The 

dimensionless parameters obtained by performing a dimensional analysis on these 

variables are stability Number H/∆D, wave steepness H/gT2, storm duration N, relative 

berm position hb/d, relative berm width B/d, number of primary layers N, breakwater 

slope cotα and relative berm recession Rec/Dn50. A Principal Component Regression 

(PCR) was performed using Xlstat® software with all the seven input parameters of 

which stability Number H/∆D, wave steepness H/gT2, relative berm position hb/d and 

relative berm width B/d had high factor loadings above 0.6. Subjecting these four 

parameters to a PCR analysis, the loadings of all the four parameters were found to be 

greater than 0.70 and found to be important. Even with the reduction of three 

parameters, the decrease in R2 and RMSE was insignificant. The reason for the 
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elimination of these parameters is because the variation of storm duration and number 

of primary layers was not high and breakwater slope was a constant which did not vary 

the output significantly. Principal Component Regression (PCR) analysis is a very 

effective tool in reducing the number of input parameters. The damage level of 

Reshaped berm breakwater can be well estimated by knowing the most influencing 

input variables on the output (Janardhan et al. 2015). 

 

Stability assessment of a rubble-mound breakwater has been attempted here by 

applying Genetic programming (GP) models to explore the explicit relationship 

between the stability number of armor blocks and influencing variables. He developed 

four GP models called GPM1, GPM2, GPM3, and GPM4. The GPM1 and GPM2 

models were developed using the training subsets Type 1 (579 data sets) and Type 2 

(62 data sets) respectively, of Van Der Meer experiments with function F1.  Similarly, 

GPM3 and GPM4 models were developed using the training subsets Type 1 (579 data 

sets) and Type 2 (62 data sets) respectively, of Van Der Meer experiments with function 

F2. The F2 function had more function operators compared to F1. Comparing the 

measured stability numbers of Van der Meer (1988) with the predictions done by the 

four GP models, GPM3 and GPM4 models produced lower values of SI, MAPE, and 

RMSE with respect to GPM1 and GPM2 models. Genetic programming (GP), the 

method found to have better prediction performance compared to the Van der Meer’s 

stability equations of rubble-mound breakwaters. Genetic programming can capture 

complex real-world relationships effectively with a limit on the parse tree size to control 

the bloating of GP (Koç et al. 2016). 

 

Ghasemi et al. 2016 evaluated the wave transmission coefficient (Kt) for floating 

breakwaters (FBs) of π-type. FBs are designed to reduce wave energy hence Kt is an 

important aspect of the design. A new hybrid artificial neural network (ANN) model 

developed for predicting Kt of π-type FB, combines particle swarm optimization (PSO) 

and Levenberg-Marquardt (LM) for learning of ANN. Experimental data sets were 

obtained for π-type FB from a wave basin of the University of a Coruña, Spain. The 

performance of the proposed model in comparison with the efficiency of the existing 
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formulas cited in the literature is high. 

 

Pourzangbar et al. 2017b predicted the maximum scour depth at breakwaters due to 

non-breaking waves using Genetic Programming (GP) and Artificial Neural 

Networks (ANNs). The study shows that GP outperformed ANN and also the existing 

formulas to predict the scour depth. They found that the reflection coefficient largely 

influenced scour depth. Similar prediction using M5′ model and the SVR models of 

maximum scour depth at breakwaters due to non-breaking waves were predicted well 

by M5′ model compared to the SVR model. 

 

Kuntoji et al. (2018) predicted the wave transmission over a submerged reef of the 

tandem breakwater using soft computing techniques like PSO-ANN and PSO-SVM. 

They found that the PSO-SVM tool outperforms PSO-ANN in predicting wave 

transmission. 

 

2.3 SUMMARY OF LITERATURE 

With the several advantages over conventional breakwaters, the semicircular 

breakwater is an area of interest for research. The study of performance characteristics 

of a semicircular breakwater is essential before deploying the structure in the sea. From 

the detailed literature review, it is found that not many studies were done on emerged 

semicircular breakwaters. The harbor tranquility can be maintained and terminal 

efficiency can be improved by reducing the wave reflection from the breakwater. The 

wave reflection coefficient is a key aspect in the assessment of breakwater and very few 

studies have been reported on the estimation of wave reflection performance of caisson 

structures like semicircular breakwaters. There is no fair amount of research in 

accurately estimating the Kr of these breakwaters. Although the physical model studies 

are reliable not many studies have been carried out on emerged seaside perforated 

semicircular breakwaters. 

 

Wave run-up is one of the most important physical process which is studied to design 

the breakwater height and crest level of semicircular breakwaters or as an indicator of 

https://www.sciencedirect.com/topics/engineering/breakwaters
https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/breakwaters
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possible overtopping or wave transmission (Arunjith et al., 2013; Shankar and 

Jayaratne, 2003). It mainly depends on the structure shape, roughness, porosity, depth 

of water at the structure toe, bottom slope in front of the structure and incident wave 

characteristics (US Army Corps of Engineers, 2002). The run-up is an important factor 

to be considered for the stability of the structure as run-up level influences the inflow 

of water into the structure and the elevation of water level within the structure core 

causing differential hydrostatic pressures. There is no sufficient literature regarding the 

wave run-up estimation of the emerged seaside perforated semicircular breakwater. 

As the pressure on a semicircular wall acts towards the center of the circle, these 

breakwaters generally have smaller horizontal force, lesser overturning moment and 

minimum soil subgrade reaction resulting in better stability and lesser cost in 

comparison with vertical breakwaters. However, it is important to find the sliding 

stability of semicircular breakwaters. Not many experimental studies nor any prediction 

techniques is found in this regard in the literature for the emerged seaside perforated 

semicircular breakwater. 

The literature on the efficiency of prediction of hydraulic response of different coastal 

structures using different soft computing techniques is quite promising, in spite of the 

data complexity, incompleteness, and incoherence. The application of techniques like 

ANN, ANFIS, GA, PSO, SVM, etc., individually or combined to various coastal 

engineering problems is found in the literature. To name a few the optimization of 

breakwater dimensions using the response of the structure, prediction of stability 

number, prediction of damage ratio, prediction of relative runup, prediction of 

reflection coefficient for different types of breakwaters is found in the literature. 

However, no study focusses on prediction when an insufficient quantity of data is 

available (i.e., when data is not available for all ranges of wave height). Any physical 

and numerical model studies of these structures are complex, expensive and time-

consuming. Hence, there is a need for further research to arrive at an alternative to 

overcome the shortcomings of past research. These soft computing techniques can be 

adopted as an alternate technique to predict the hydraulic response of semicircular 

breakwaters by coastal engineers when similar site conditions are available. In this 

regard the current study is taken up. 
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2.4 PROBLEM IDENTIFICATION 

Selection of a particular type of breakwater depends on various factors like 

environmental aspects, utilization, construction cost, layout, available construction 

materials, maintenance cost involved, etc. However, among the various types of 

breakwaters, semicircular breakwaters are becoming popular these days, because of its 

numerous advantages like better aesthetics, low construction cost, the requirement of 

lesser construction material, its applicability to soft foundations and a broad range of 

water depths, high stability against sliding and overturning. Hence, research on SBW 

is gaining momentum of late. The scaled down physical model studies of the 

semicircular breakwater could be carried out in wave flumes or basins in order to know 

the prototype performance characteristics under different wave conditions. However, 

physical modeling of SBW is expensive, time-consuming and demands a lot of efforts.  

In order to overcome this problem and achieve greater accuracy, a better scale may be 

adopted, but this process is enormously expensive. Numerical models could be used to 

evaluate the performance of the same, but the limitation here is complex 

hydrodynamics of fluid-structure interaction, which is rather difficult to be modeled in 

a numerical model. Hence, researchers have applied Artificial Intelligence to assess the 

hydrodynamic performance of breakwaters, however, they cannot replace the physical 

models as they are data-driven. These soft computing models developed for 

breakwaters are specific to the site and it can be employed when experimental data is 

available for similar site conditions where a new semicircular breakwater is to be 

designed. Only a limited study is found in the literature in the area of SBW, the present 

work aims to apply soft computing techniques in the prediction of hydraulic response, 

particularly of the emerged seaside perforated semicircular breakwater.  

 

Many times, there is a need to predict the performance of semicircular breakwater for 

parameters, beyond the range of training data set used for soft computing predictions. 

This is because of the higher expenditure involved in the physical modeling of the 

semicircular breakwater for larger wave parameters, like greater wave heights, large 

water depths, large radii of the breakwater, etc. Similarly, in the case of very small 

wave height, smaller water depths and small radii values. An attempt has been made in 



 

 

31 

 

the present work to predict the performance of semicircular breakwater for below and 

beyond the range of data used for soft computing model techniques. All of the data 

used in the present work is obtained from physical model experiments conducted in a 

monochromatic wave flume at the Marine Structures Laboratory of the Department of 

Applied Mechanics and Hydraulics, NITK, Surathkal (Nishanth 2008; Sooraj 2009; 

Vishal 2010; Sreejith 2015 and Surakshitha, 2017). 

 

2.5 RESEARCH OBJECTIVES 

 

Based on the research gaps mentioned above, the following objectives are framed: 

 

1. To predict the wave reflection coefficient (Kr) of emerged seaside perforated non-

overtopping semicircular breakwater by conventional, below and beyond the data range 

approach for dimensional as well as non-dimensional input parameters using ANN, 

ANFIS, GA-ANFIS, and PSO-ANFIS.  

2. To predict the relative wave runup parameter (Ru/Hi) of emerged seaside perforated 

non-overtopping semicircular breakwater by conventional, below and beyond the data 

range approach for dimensional as well as non-dimensional input parameters using 

ANN, ANFIS, GA-ANFIS, and PSO-ANFIS.  

3. To predict the stability parameter (W/γHi
2) of emerged seaside perforated non-

overtopping semicircular breakwater by conventional approach for dimensional as well 

as non-dimensional input parameters using ANN, ANFIS, GA-ANFIS, and PSO-

ANFIS. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

This chapter presents the experimental setup from which the data is acquired and the 

details of soft computing techniques.  

 

3.1 MATERIALS AND METHODS 

3.1.1 Data used 

As mentioned earlier the experimental data is collected from physical model 

experiments on emerged perforated semicircular breakwater (EPSBW) carried out using 

the monochromatic wave flume in the Marine Structures Laboratory of the Department 

of Applied Mechanics and Hydraulics, NITK, Surathkal. The experimental setup used 

in the laboratory is as shown in Fig. 3.1. The wave climate of Mangaluru coast as given 

by Dattatri and KREC study team (1994) were considered for selecting the input wave 

parameters. The largest single wave recorded off the Mangaluru coast was found to be 

5.4 m. The predominant wave period during the monsoon season is 9 to 10 s, while 

longer period waves are experienced in the fair weather season. In the non-monsoon 

months (October to May), the maximum wave heights are less than 1m in height. The 

tides at Mangalore are semi-diurnal type. The tidal range in the area is about 1.68 m. 

Hence, in the present investigations, wave heights in the range of 1.0 m to 5.4 m and 

wave periods in the range of 6 to 12 s are considered for modeling. Incident wave heights 

used in the flume varied from 3 to 20 cm, wave periods ranged from 1.4 s to 2.5 s, water 

depths used were 35 cm, 40 cm, 45 cm, and 50 cm and the model scale was 1:30.  

3.1.2 Wave flume used 

The basic dimensions of wave flume used are length 50 m, width 0.71 m and depth 1.1 

m. About 15 m length of the flume is provided with glass panels on one side. It has a 6.3 

m long, 1.5 m wide and 1.4 m deep chamber at one end where the bottom hinged flap 

generates waves. The flap is controlled by an induction motor of 11 KW, 1450 rpm. This 

motor is regulated by an inverter drive, with the frequency of 0-50 Hz and rotating with 

a speed range of 0-155 rpm. This facility can generate regular waves of heights 0.08 m 

to 0.24 m and of periods 0.8 s to 4 s. A series of vertical asbestos sheets are spaced at 
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about 10 cm distance from each other and kept parallel to the length of the flume to 

dissipate the generated waves by damping the disturbance caused by successive 

reflection and to smoothen them. The calibrations of the wave flume and probes were 

done prior to conducting the experiments.  

 

 Fig. 3.1 Experimental Setup of wave flume (Not to scale) 

The data for the current study is obtained from the experiments conducted in a 

monochromatic wave flume at the Marine structures laboratory, NITK, Surathkal. The 

experimental parameter ranges for prediction of reflection coefficient (Kr) is as shown 

in the Table 3.1. Table 3.2 shows the experimental parameter ranges for prediction of 

relative wave run-up parameter (Ru/Hi) and Table 3.3 shows the experimental parameter 

ranges for prediction of stability parameter (W/γHi
2). 

Table 3.1 Experimental parameter ranges for Kr prediction 

Input parameters Data Range 

Incident wave height, Hi (m) 0.06 -0.18 

Wave period, T (s) 1.2– 2.6 

Depth of water, d (m) 0.35, 0.40, 0.45, 0.50 

Radius of the semicircular caisson, R (m) 0.45, 0.60 

Perforation spacing, S (m) 
0.032, 0.048, 0.064, 0.096, 

0.128, 

Perforation diameter, D (m) 0.012, 0.016 

Structure-specific parameters 

SBW structure height hs (m) 0.502, 0.652, 0.730 
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Table 3.2 Experimental parameter ranges for Ru/Hi prediction 

Input parameters Data Range 

Incident wave height, Hi (m) 0.06 -0.18 

Wave period, T (s) 1.2– 2.6 

Depth of water, d (m) 0.35, 0.40, 0.45, 0.50 

Radius of the semicircular caisson, R (m) 0.45, 0.60, 0.75 

Perforation spacing, S (m) 0.032, 0.048, 0.064, 0.096, 0.128, 

Perforation diameter, D (m) 0.012, 0.016 

Structure-specific parameters 

SBW structure height hs (m) 0.502, 0.652, 0.730, 0.802 

 

Table 3.3 Experimental parameter ranges for prediction of W/γHi
2 

Input parameters Data Range 

Incident wave height, Hi (m) 0.06 -0.18 

Wave period, T (s) 1.4– 2.6 

Depth of water, d (m) 0.35, 0.45 

Radius of the semicircular 

caisson, R (m) 
0.45, 0.60, 0.75 

Perforation spacing, S (m) 0.032, 0.064, 0.128, 

Perforation diameter, D (m) 0.016 

Structure-specific parameters 

SBW structure height hs (m) 0.502, 0.652, 0.802 

 

 



 

 

36 

 

3.1.3 Normalization of the data and consistency check 

The wave parameters obtained from the experiments are normalized to (0, 1). The 

normalization is done by using Equation 3.1 before feeding to the network. This is done 

to bring all the input variables in a common range so that the network gets trained 

without being hindered by the effect of very high or very low values. However, in the 

current study, the variation of the ranges of the input and target values are not large.  

𝑍𝑖 =
𝑥𝑖−min(𝑥𝑖)

max(𝑥𝑖)−min(𝑥𝑖)
                 (3.1) 

Where,  

Zi - is the normalized data for the ith variable between 0 to 1, 

𝑥𝑖-  is the data point ith variable, 

max(𝑥𝑖)-  is the maximum amongst all the data points of ith variable, 

min(𝑥𝑖)-  is the minimum amongst all the data points of ith variable.  
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The consistency of the data is as shown in Fig. 3.2, Fig 3.2 and Fig. 3.3 

 

 

Fig. 3.2 Data consistency of input parameters  Hi/gT2, d/gT2, hs/d, S/D, R/Hi, Kr, in 

the case of reflection coefficient prediction 
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Fig. 3.3 Data consistency of input parameters Hi/gT2, d/gT2, hs/d, S/D, R/Hi, Ru/Hi, 
in the case of relative wave run-up parameter prediction  
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Fig. 3.4 Data consistency of input parameters Hi/gT2, d/hs, S/D, W/γHi
2,  in the case 

of stability parameter prediction  
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3.2 METHODOLOGY FLOWCHART 

The flowchart presented in Fig. 3.5 is adopted in order to achieve the objectives set in 

the research work. 

 

 

Fig. 3.5 Flowchart of Methodology 

3.3 PHYSICAL EXPLANATION OF PREDICTION VARIABLES OF 

SEMICIRCULAR BREAKWATERS UNDER STUDY 

3.3.1 Reflection coefficient 

When a vertical barrier such as a sea wall can reflect wave back into the ocean with little 

loss of energy, this process is called wave reflection. Reflected waves can make 

disturbances and intensify sediment scour, which can lead to dramatic loss in beach 

material and structure destabilization. The reflection coefficient provides an index for 

designing a slope of seaward face and an installed position of the structure. For an emerged 

non overtopping structure incident wave hits the surface with a wave height (Hi) and some 

amount of energy is reflected back. Reflection of a wave from a barrier occurs at an angle 
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equal to the angle of approach to the barrier. Reflection coefficient (Kr) depends upon 

incident wave condition, still water level and structural parameters like roughness, porosity, 

slope, etc. 

Reflection coefficient (Kr) increases with increase in wave steepness because in short 

period waves, the quantum of energy dissipated is less and hence reflection will be more. 

Also it is found that as depth parameter increases the value of reflection coefficient found 

to be decreased. This is because for smaller water depths, waves encounter more plane 

(relatively vertical) surface and as water depth increases the effect of curvature is more 

pronounced causing more energy dissipation hence less reflection. The increase in 

percentage of perforations creates more turbulence inside the chamber and dissipates more 

energy, hence the reflection coefficient decreases.  

 

Fig. 3.6 Variation of reflection coefficient with incident wave steepness and depth 

parameter for a constant R/ht of 0.92 for a perforated SBW model with S/D ratio of 4 
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Fig. 3.7 Influence of perforations on reflection coefficient for depth parameter of 0.01 to 

0.015 and a constant R/ht of 0.92.  

3.3.2 Relative runup parameter 

As the wave steepness increases there is an increase in the relative runup (Ru/Hi). This is 

obvious that as wave height increases, the runup also increases. It is observed that for larger 

wave periods the runup is more. Runup is also one of the ways of dissipation of energy. As 

the wave height increases there is an increase in wave energy, therefore the runup is more.  

The relative wave runup (Ru/Hi) decreases with the increase in depth parameter (d/gT2) due 

to the effect of curvature. This is because as d/gT2 increases, the effect of curvature is more 

pronounced and hence more dissipation of energy takes place, resulting in less runup. It 

must also be noted that for short period waves, lesser runup happens resulting in less energy 

loss and higher reflection. 

Since for smaller depths the radius of curvature is large, the surface almost vertical and  

hence there is an increase in water level at the model and if the percentage of perforations 

encountered is also less, then more runup. As the depth increases the radius of curvature is 

small thus the contact surface is more resulting in greater percolation, and if the percentage 

of perforations encountered is more than the there is decrease in wave runup.  

Also as the S/D ratio decreases and percentage of perforation increases, there is a decrease 

in relative wave runup. It is obvious that as the percentage of perforation increases there is 

a large amount of energy loss, resulting in decrease in wave runup. Wave run-up is found 

to be decreasing with increase in the percentage of perforations. The increase in percentage 
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of perforations creates more turbulence inside the chamber and dissipates more energy, 

hence the run-up decreases. 

 

 

Fig. 3.8  Variation of relative runup parameter with incident wave steepness and 

depth parameter for a constant R/ht of 0.92 for a perforated SBW model with S/D 

ratio of 8 

 

Fig. 3.9 Influence of perforations on relative runup for depth parameter of 0.00572 to 

and a constant R/ht of 0.92 
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3.3.3 Stability parameter 

The stability parameter (W/γHi
2) decreases as the incident wave steepness increases. This is 

because long period waves exert more force on the caisson while the short period waves will 

transfer less force. The sliding disturbance caused by the increased force is stabilized by 

increasing normal force i.e., by increasing the weight of the breakwater. It is also found that 

as the depth parameter d/gT2 increases, the W/γHi
2   also increases. This is because higher 

the water depth, the greater the area of the SBW model exposed to wave action hence the 

increase in d/gT2 imparts more force, hence W/γHi
2 increases. 

The W/γHi
2 decreases with the increase in percentage of perforations, due to the fact that 

the increase in percentage of perforations on the seaside of the SBW model generates more 

turbulence inside the chamber which produces more energy dissipation. Increase in 

percentage of perforation generates less force of impact on the SBW caisson hence the 

critical weight required to resist sliding found to be reduced.  

 

 

 

 

 

 

 

 

Fig. 3.10  Variation of stability parameter with incident wave steepness and depth 

parameter for a constant R/ht of 0.92 for a perforated SBW model with S/D ratio of 8 

Hi/gT2 
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Fig. 3.11 Influence of perforations on stability parameter with incident wave 

steepness  

 

3.4 DEVELOPMENT OF ANN MODEL 

The basic structure of ANN has an input, a hidden and an output layer. ANN learns 

from the training of the input-output pairs and regulates the connection weight values 

in the hidden layer and bias (Azamathulla et al. 2011). A Feed Forward Back 

Propagation Neural Network (FFBPNN) as seen in Fig. 3.6 is used for training the 

input-output data sets using a Levenberg-Marquardt algorithm with transfer functions 

like 'tansig' (hidden layer) and 'purelin' (output layer). In a Feed Forward Back 

Propagation Neural Network, the error is propagated back in a direction opposite to the 

way activities propagate in a network.  

The FFBPNN is mathematically expressed as, 

   ( ) ( )
r

m

k kj ko

j i

Z x W T y b


                          (3.2) 

   
1

j

n

ji i ji

i

y W x b


                                           (3.3) 

 Wherein, x is input values from 1 to n, hidden layer neurons are yj. Wji and Wkj are the 

weights between input and hidden layer and weights between hidden and output layer 



 

 

46 

 

respectively. Also, bji and bko are biased at the hidden and output layer respectively. 

Number of hidden layer nodes are m and Tr(y) is the transfer function. A non-linear 

conversion of summed inputs is possible with this transfer function Tr(y). This is done 

by tansig when employed between the input and hidden nodes and is expressed as,                 

          

2
(y) 1

1 exp( 2 y)
rT

 
  

   
                           (3.4) 

y- summation of input values with weights and biases 

      The transfer function increases the generalization capability of the network and 

expedites the learning process convergence. In every iteration, the bias adjustments for 

both hidden and output layer happens. The updated Levenberg-Marquardt algorithm 

calculates the weights between the hidden and output layer. Purelin a linear transfer 

function employed between hidden and output layer and is expressed as, 

Purelin (n) = n                    (3.5) 

The objective of the algorithm is to reduce the global error, E is defined as,                         

 
2

1 1

1 P K

kp kp

p k

E d o
p  

 
  

 
                    (3.6)           

Wherein, a total number of training patterns is p, the desired value of the kth output 

and the pth pattern is dkp and okp the actual value of the kth output and pth pattern.  

Literature supports the fact that a single hidden layer is sufficient to solve most of the 

nonlinear problems and the number of neurons in each layer is determined by trial and 

error method (Erdik et al. 2009; Karsoliya 2012; Panchal and Panchal 2014). In the 

current study, several ANNs were trained altering the number of neurons in the hidden 

layer. The network with the highest correlation coefficient with the experimental data 

and the least error is chosen. The Artificial Neural Networks predict well if properly 

trained with the datasets, however, over-training of the network should be avoided.  
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Fig. 3.12 ANN structure of feedforward backpropagation network  

 

3.5 DEVELOPMENT OF ADAPTIVE NEURO-FUZZY INFERENCE 

SYSTEMS (ANFIS) MODEL 

Jang (1993) originally presented the Adaptive Neuro-Fuzzy Inference Systems 

technique. ANFIS constructs fuzzy if-then rules with the required membership 

functions to generate a functional mapping of input-output pairs (Al-hmouz et al. 2012). 

ANFIS is a hybrid method combining the neural network learning to tune the 

parameters of a Fuzzy Inference System. In ANFIS, the inputs are first converted into 

fuzzy membership functions and then rule-based learning happens to obtain the output 

membership functions, by defuzzification, we get the required output (Azmathulla et 

al. 2011). There are a couple of methods to develop the initial fuzzy membership 

functions in the literature, here in the present study subtractive clustering method and 

Fuzzy c-means clustering has been employed.  

 

3.5.1 Subtractive clustering  

The subtractive clustering algorithm is used to automatically generate Gaussian 

membership functions. A set of fuzzy if-then rules are generated by the algorithm which 

is equal to the number of cluster centers, each representing the characteristic of the 

cluster. The algorithm is explained in this section (Chiu 1994). C 
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Wherein xi, xj are the data points with a radius of influence ra and xc1 is the first 

cluster center with the highest density. A data point with the highest density value is 

chosen as the first cluster center xc1. A point with the highest density occurs when there 

lie a large number of data points in its vicinity (Mohan Rao et al. 2015). Further, the 

next iteration density measure of each data point xi is obtained from Equation 3.8 below, 
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The process of changing the density of data point and finding the new cluster center 

is continued until all of the data points are within the range of cluster radius. Thus the 

FIS model is obtained and the obtained FIS is based on the first order Sugeno model 

which is used to initialize the ANFIS model. To map the inputs to the outputs, most 

commonly adopted FIS is Mamdani inference system and Sugeno inference system, it 

is found that the Sugeno model is more efficient and compatible (Tiwari et al. 2018). 

3.5.2 Fuzzy C-Means Clustering  

Fuzzy C-means (FCM) clustering is one of the most used clustering method developed 

by Bezdek (1981). Fuzzy C-Means Clustering algorithm (FCM) is usually employed in 

pattern recognition problems (Azamathulla et al. 2011; Alata et al. 2013; Zhou and Yang 

2016).  FCM limitation is that the cluster number need to be defined prior, however, it 

gives good modeling results (Castillo et al. 2012; Arumugadevi and Seenivasagam 
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2015). Clustering the data well into natural groups is performed by FCM. FCM allows 

each dataset to belong to multiple clusters. The entire dataset is grouped into ‘n’ clusters 

with every data point belonging to every cluster to a certain degree of membership. 

Hence FCM assigns every single data point a membership grade for each cluster. 

Cluster center and degree of membership for every data point is iteratively updated and 

pushes the cluster center to the right location in a dataset.  

The two important factors influencing the performance of the fuzzy c-means 

algorithm is the parameter ‘m’ the weight exponent and the number of clusters ‘n’. The 

parameter m the weight exponent in the fuzzy membership is normally m = 2 but does 

not work fine for all datasets. The algorithm was run for different exponent value of m 

from 1.1 to 2.2 and the validation is done based on RMSE, as the past researches claim 

that there exists no universal fuzzy clustering validity for diversified datasets in real-

world formula (Ren et al. 2016). The number of clusters for each case was decided 

depending upon the different wave heights and the corresponding values in the datasets. 

Also, a cross-check was done by varying the number of clusters (Ren et al. 2016) and 

found that better results were obtained when the number of clusters was set to 9 for the 

entire dataset, based on wave heights. The minimum improvement factor was set as   

1e-5 in the objective function in between the two consecutive iterations and the 

maximum iterations count was set to 100.  

 

In the FCM algorithm, the objective function as in Equation 3.9 is the generalization 

of the least squares method and is minimized in every iteration. 
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Where, 

 D - total dataset 

N – total cluster number 

m - is the fuzzy partition matrix exponent which has to be greater than 1 

xi  - is the ith data point in the dataset. 
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cj - is the  jth cluster center. 

μij - membership grade of xi in the jth cluster.  

Steps involved in the fuzzy clustering are  

1. Random initialization of the cluster membership values is done μij. 

2. Cluster centers are calculated by Equation 3.10 
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3. Update μij by Equation 3.11 
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4. Objective function Jm is calculated from Equation 3.9  

5. Repeat the steps 2-4 until the set termination condition is met. Either Jm does not 

improve beyond the set threshold or maximum iterations is reached (Zhou and Yang 

2016).  

3.5.3 ANFIS model (Adaptive neuro-fuzzy inference systems) 

ANFIS, the method is the integration of ANN and fuzzy logic models which integrates 

the learning ability and human knowledge to overcome the shortcomings in ANN (Jang 

1993). It finds out the position and shapes for membership functions in FIS 

(Mohammady 2016). The membership functions of a Sugeno-type Fuzzy Inference 

System are tuned using the input-output datasets. It consists of five layers as seen in 

Figure 5 and the role of each layer is briefed here. In the first layer, a membership 

function is assigned to each input. The membership functions are further multiplied in 

the second layer and hence the output of every node in the second layer is the product 

of all the incoming signals. In the third layer, each of these firing strengths of the rule 
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is compared with the sum of all the firing strengths or say the firing strengths are 

averaged here. This average is the weighing factor. The Layer 4 implements the 

Sugeno-type inference system i.e., a linear combination of the input variables of an 

ANFIS plus a constant from the output of each if-then rules. In layer 5 the summation 

of its inputs, i.e. the defuzzification process of the fuzzy system was done using a 

weighted average method (Patil et al. 2011). 

Fig. 3.13 Basic ANFIS structure (Azamathulla et al. 2011) 

In a first-order Takegi Sugeno Kang model, if a model has only two inputs the X1 and 

X2 and one output Y and the rule base has only two fuzzy if-then rules then the rules 

can be represented as, 

Rule 1: If  X1 is A1 and X2 is B1 then F1=P1X1+Q1X2+R1 

Rule 2: If  X1 is A2 and X2 is B2 then F2=P2X1+Q2X2+R2                  (3.12) 

Where, P1, P2, Q1, Q2 and R1, R2 are the linear parameters in the consequent part 

of the Sugeno fuzzy inference system. 

The architecture of ANFIS has five layers and each layer has several nodes defined by 

functions. 

Layer 1 This layer is a fuzzification layer with each node representing the 
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membership grades of inputs (𝑋1, 𝑋2) and each nodes output denoted as 𝑂𝑖
j
 i. e., the 

output of ith node in jth layer. 

 
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=μ XiO

         i = 1, 2 
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i-2
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1=μ Xi B
O

        i = 3, 4             (3.13) 

Ai and Bi are the linguistic labels (like small, medium…) for particular node 

characterized by membership functions μ(𝑋1) and μ(𝑋2) respectively. 𝑂𝑖
1 is the 

membership grade of the fuzzy set. The Gaussian membership function is given by, 
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Where ai and bi is the premise parameters of the membership function in the premise 

part of fuzzy if-then rules that modify the shapes of membership functions.  

Layer 2 is the rule layer where each node calculates the rule weight i.e., the firing 

strength of the associated rule as in Equation 3.15. 

   
i i

2

1 2 =  = μ μX Xi i A B
O w             (3.15) 

Layer 3 being the normalization layer represents the ratio of ith rules firing weight 

to the summation of all rules’ firing weight as in Equation 3.16. 
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 Layer 4 being the defuzzification layer, equation 13 shows the contribution of 

the ith rule to the total output, where 𝑤𝑖̅̅ ̅̅  is the Layer 3 output and 𝑓𝑖 shows the fuzzy if-

then rule of the Takagi sugeno type as in Equation 3.17  
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Layer 5 Total output layer as in Equation 3.18 here the single node computes 

output (𝑂𝑖
5- single output) by summation of all the rules from the previous layer.  
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Basically, the ANFIS fine-tunes the model parameters with gradient descent 

backpropagation and mean least squares optimization algorithms, which is a hybrid of 

two techniques. This hybrid technique has a forward pass and a backward pass. The 

mean least square algorithm identifies the consequent parameters in the forward pass 

(in Layer 4). In every epoch, the sum of the squared difference error (SSE) is propagated 

backward to update the premise parameters by gradient descent. Once the optimal 

premise parameters are learned for the generated model the overall output is a linear 

combination of consequent parameters (Tiwari et al. 2018, Zhou et al. 2016).   

 

3.6 PARTICLE SWARM OPTIMIZATION (PSO) 

Particle swarm optimization a metaheuristic method simple but powerful. PSO is good 

for optimization problems to find the best solution, however, the disadvantage of 

getting stuck in the local minima is overcome by improving different variants of PSO 

(Imran et al. 2013). The variants of PSO are the initialization of inertia weight and 

acceleration coefficients. The PSO searches for the global minimum. In PSO a level of 

intelligence is reached by the teamwork of entire colony of birds/fish. PSO is a swarm 

intelligence method it uses unintelligent particles to reach the upper level of 

intelligence. The population of candidate solutions is called a swarm of particles. Every 

particle (bird/fish) has a position in the search space of the optimization problem. 

Search space is a set of all probable solutions to the optimization problem and the best 

solution in this search space is found.  

Initially, a random set of particles is chosen and the velocity vector for each particle in 

the swarm is calculated. In each PSO iteration, every particles new position is updated, 

with respect to the previous position and the updated velocity vector. The velocity 

vector is updated relative to global best and personal best positions for each solution 

particle. The velocity vector as in Equation 3.19 is a combination of Inertia component, 

cognitive component and social component to form a new velocity vector as shown in 

Fig. 3.5. The new velocity vector translates the particle position to a new position in the 

search space according to this model. The process of updating is repeated until the 

convergence is met. And hence the best new location is found.  (Kennedy and Eberhart 

1995; Venter and Sobieszczanski-Sobieski 2002; Ejraei et al. 2016; Bergh and 
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Engelbrecht 2006). A detailed review concentrating on the advances, limitations, and 

architecture of the PSO algorithm has been done by Bonyadi and Michalewicz (2017). 

The position, xi, of the ith particle, is adjusted by a stochastic velocity vi which depends 

on the distance that the particle is from its own best solution and that of its 

neighborhood. If vij is velocity and xij is position at the current iteration of the ith particle 

at time t for the jth component update then (Bergh and Engelbrecht 2006). 

1 1 2 2(t 1) (t) (p (t) (t)) (g (t) (t))ij ij ij ij ij ijv wv c r x c r x            (3.19) 

(t 1) (t) (t)ij ij ijx x v                                                 (3.20)                   

Where, 

pij – personal best (Pbest) 

gij - global best (Gbest) 

w - inertia coefficient  

c1, c2 – coefficients of acceleration  

r1, r2 – uniformly distributed numbers between (0,1) 

t+1 – is the time step 

3.6.1 ANFIS training improved with PSO  

For any database, the ANFIS model accuracy depends on the respective rules', premises 

and consequent parameters. Arriving at the optimal values of these parameters is a great 

challenge. In the current study, ANFIS performance is enhanced with PSO, as shown 

in the flow diagram of Fig. 3.6.  The PSO parameters and the initial population is 

chosen. The fuzzy membership functions and rules of FIS are designed and the 

input/output variables are tuned according to PSO. The new best value is updated based 

on the RMSE of the individual particle solution. The PSO is used to reduce the RMSE 

of the prediction. The optimal parameters are thus obtained to create a fuzzy model, 

thus improving model prediction (Zahmatkesh et al. 2017).  
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Fig. 3.14 PSO-ANFIS simplified 

3.6.2 Literature on PSO application 

Particle swarm optimization is an evolutionary heuristic search model inspired by the 

swarming or collaborative behavior of biological population like birds flock flying 

together in multidimensional space searching optimum place adjusting their flight 

movement and distances for better search. The PSO algorithm was first introduced by 

Kennedy and Eberhart (1995). Since then there have been several applications of PSO. 

An efficient model based on Adaptive Network-based Fuzzy Interference Systems 

(ANFIS) optimized by using particle swarm optimization (PSO) was developed to 

predict the molecular diffusion of CO2 in reservoir oil at elevated temperature and 

pressures (Ejraei et al. 2016). Benzene density can be predicted from the ambient air 

pollution data using ANFIS and PSO. Here, the ANFIS accuracy was increased by 

optimizing the multiobjective fitness cost function (Singh et al. 2017). The PSO-ANFIS 

and PSO-ANN was used to enhance the estimation of DSI log parameters like 

compressional, shear and stoneley wave velocities. The optimization technique of PSO 

algorithm was applied to increase the accuracy and reliability of DSI log parameters 

prediction in the field through using inexpensive conventional logs (Zahmatkesh et al. 

2017). The short term wind power prediction in Portugal with historical wind power 

data as the main training input has been successful using a hybrid approach of PSO-
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ANFIS (Pousinho et al. 2011). A hybrid PSO-ANFIS approach in the prediction of the 

optimum parameters of a protective spur dike to control the scour around the series of 

spur dikes has been found efficient (Basser et al. 2015). 

 

                                  Fig. 3.15 PSO-ANFIS flowchart 
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3.7 GENETIC ALGORITHM  

Genetic algorithm (GA) is heuristic inspired by, Charles Darwin’s theory of natural 

evolution. In GA, by the natural selection, the fittest individuals are selected from a 

population for reproduction in order to produce the offspring of the next generation. So 

fittest parents produce better offspring and hence the chances of surviving are better.  

Three main phases involved in the genetic algorithm are: 

Selection: 

Initially, a set of individuals which is called a population (data variables) is chosen from 

the entire dataset. Each individual is a solution to the problem to be solved. A fitness 

function determines how to fit an individual is and gives a fitness score to each 

individual. Selection of a pair of the individual (chromosomes) with the highest fitness 

scores is done to pass on their genes to the next generation. Among the several existing 

operators, to choose the best individuals for the next generation the roulette wheel 

selection method has been employed in the current study. Followed by the most 

significant phase, is the crossover in genetic algorithm. 

Crossover: 

Crossover in genetic algorithm combines the genes of two parents to form new 

offspring for the next generation.  This could be done by single point crossover, two-

point crossover or k point crossover method. Here a single point crossover is employed 

in which a point is randomly picked on both parents' chromosomes and designated as a 

'crossover point'. The bits to the right of the crossover point are swapped between 

the two parent chromosomes resulting in two offspring. Each carries some 

genetic information from parents and is further added to the new population.  

Mutation: 

In some of these new offspring formed, their genes can be subjected to a mutation with 

a low random probability. In order to prevent premature convergence and to maintain 

diversity within the population, the mutation will occur. If the population has converged 

then, the algorithm terminates wherein, any further produced offspring is not 
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significantly different from the previous generation. Thus the GA provides a set of 

solutions to the given problem. 

3.7.1 Hybrid GA-ANFIS model  

The fuzzy c-means clustering parameters explained in Section 3.5.2 on which the fuzzy 

rules of ANFIS depends are determined by trial and error. To arrive at the optimal 

values is attempted by employing a genetic algorithm (GA). In GA-ANFIS model the 

clustering parameters are optimized using GA and ANFIS is called within the GA for 

the fitness value evaluation of every possible candidate solution generated by GA. The 

objective function of the genetic algorithm as in Equation 3.21, is to reduce the RMSE 

of the ANFIS model prediction of resulting final FIS whose rules are controlled by 

FCM. Here the parameters of a FIS designed for mapping input values to targets are 

optimized by GA-ANFIS model thus reducing training prediction error. Stopping 

criteria being either the set maximum number of iterations reached or minimum 

improvement between two consecutive iterations not exceeding 0.01. Further, with the 

optimized trained model, the testing is done. The methodology of GA-ANFIS is shown 

in Fig. 3.7 (Habibi et al. 2018).  

 
2

1

1
O

N

train

i

MinRMSE
i iN

P


                                                      (3.21) 
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Fig. 3.16 GA-ANFIS model (Azimi et al., 2017) 

Start 

Input data 

Training and 
testing data 
generation 

Generating FIS  

GA-ANFIS 
Training 

GA-ANFIS  
Testing 

Prediction 
Assessment 

Prediction 
Satisfactory 

Stoppin
g 
criteria 
satisfie
d 

Evaluation of fitness 
of individual 
population 

Initialize random 
population 

Mutation 

Performs reproduction  

Copy into new population 

End 

YES 

NO 

NO 

Performs crossover 

Genetic operator selection 

YES 



 

 

60 

 

 

3.8 STATISTICAL PARAMETERS TO VALIDATE THE MODEL 

PERFORMANCE 

The model performance is assessed by following five statistical measures: 

The Nash Sutcliffe Efficiency (NSE) can range from −∞ to 1.0, optimal being one. 
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The square of the correlation coefficient is the coefficient of determination (R2) and is 

described by a linear fit. It shows the amount of variance between the model prediction 

and actual value. Whereas, the correlation coefficient (R) is a measure showing a linear 

relationship between two variables. 
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         (3.23)  

 

The Bias in the models could be positive or negative. The mean positive error indicates 

average overestimation and mean negative error indicates an average underestimation 

of the wave reflection coefficient, 
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                           (3.24) 

 

The scatter index (SI) is the percentage of expected error for the parameter, 
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                          (3.25) 

 

The Root Mean Square Error (RMSE) has the same units as the actual and predicted 

data. Error between measured and predicted values should always below, 
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In Equation 3.22 to 3.26, 

𝑃𝑖
  - the model predicted the value of the output variable 

𝑂𝑖
 - actual value of the output variable 

𝑂𝑚𝑒𝑎𝑛
 - mean of actual values of the output variable 

N – Total data points 
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CHAPTER 4 

PREDICTION OF REFLECTION COEFFICIENT 

 

The reflection coefficient (Kr) of emerged seaside perforated semicircular breakwaters 

has not been much explored, and there is a research gap, particularly in the application 

of soft computing techniques to predict Kr. The present chapter includes the data 

segregation, prediction of Kr using different soft computing models as well as the 

assessment of the models. 

 

4.1 REFLECTION COEFFICIENT 

 

The wave reflection coefficient (Kr) is defined as the ratio of reflected wave height (Hr) 

to incident wave height (Hi) for regular waves as in Equation 4.1   

    𝐾𝑟 =
𝐻𝑟

𝐻𝑖
                                                                                    (4.1) 

In the current study, the prediction of the reflection coefficient of emerged seaside 

perforated semicircular breakwaters is proposed. The study involves the application of 

soft computing models to the data obtained from the experimental study involving 

emerged seaside perforated semicircular breakwaters of different radii under varying 

wave conditions using the Issacson three probe method. The experimental parameters 

used can be found in Table 3.1.  

 

The prediction of the reflection coefficient is studied separately for two sets of input 

variables i.e., the dimensional and dimensionless form. 

- Dimensional (Hi, T, S, D, R, d, hs)  

- Non-dimensional (Hi /gT2, d/gT2, S/D, hs/d, R/Hi) with π-terms obtained from 

dimensional analysis using Buckingham’s π-theorem. 
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4.1.1 Data segregation for prediction of Kr  

Data segregation for prediction of Kr for dimensional and non-dimensional input 

parameters are done as follows for the case of wave heights: 

 

Fig. 4.1 Typical data segregation for Kr prediction of SBW 

 

The data segregation procedure for the typical case of wave height  

1. The entire dataset (consisting of 1020 input-output data points) is called global 

data (GD) and is sorted in the increasing order of wave heights (Hi). The line 

diagram in Fig. 4.1 shows the data segregation.  

2. The lower ranges of wave height (15%, 0.06 m, 153 data points) and higher 

ranges of wave height (15%, above 0.15 m - 0.18 m, 153 data points) i.e., a total 

of 30% is segregated.  

3. The remaining 70% of the data (consisting 714 data points) is randomized and 

is called curtailed data (CD), of which 80% (571 data points) is used for training 

and the remaining 20% (143 data points) is used for testing as in the case of 

conventional prediction. 

4. Then this 20% test data, is replaced by the available 15% lower range of data 

and it is named as ‘below the range’. The network trained with 80% curtailed 

data, is used to predict the reflection coefficient for those ranges not involved 

in the training. 



 

 

65 

 

5. Similarly, a prediction for purely higher ranges of wave height (15%, above 

0.15 m) not involved in the training of the network has been carried out and it 

is named as ‘beyond the range’ predictions. 

6. A ‘conventional below’ case of prediction is done for a data division of  80:20. 

In which 80% of curtailed data and below the range data values 15% are 

grouped together and randomized and then used for prediction. 

7. A ‘conventional beyond’ case of prediction is done for a data division of  80:20. 

In which 80% of curtailed data and beyond the range data values 15% are 

grouped together and randomized and then used for prediction. 

8. In addition, a conventional data segregation prediction is done with a data 

division of 75:25 for a dataset of 1274 randomized data points. 

4.2 RESULTS AND DISCUSSION OF Kr PREDICTION OF SEMICIRCULAR 

BREAKWATER USING DIFFERENT SOFT COMPUTING MODELS FOR 

DIMENSIONAL INPUT PARAMETERS 

The proposed approach of predicting Kr below and beyond the data ranges of available 

experimental data is tested with ANN and ANFIS models. The results obtained for 

dimensional input parameters are shown in Table (4.2 - 4.5). Further, the comparison 

of this prediction is done using conventional data set whose data segregation is as 

explained in Section 4.1.1. Among the two methods employed in ANFIS i.e., 

subtractive clustering (SC) and Fuzzy c-means clustering (FCM); three out of four cases 

the FCM outperformed in the case of dimensional input parameters. Hence for 

remaining cases, FCM-ANFIS is adopted. The most influencing parameter in 

subtractive clustering is the cluster radius of influence which is varied from 0.1 to 1.0 

and the optimal FIS is chosen based on the least error, best R-value, best NSE, and SI. 

The most influencing parameter in FCM is the cluster number and the partition matrix. 

The cluster number is chosen based on the data clusters found by the subtractive 

clustering method. The partition matrix is varied from 1.1 to 2.0 and the optimal FIS is 

chosen based on the least error, best R-value, best NSE, and SI. Further, in the chapter, 

each proposed case the model, its optimal parameters and the assessment of results are 

presented. 
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4.2.1 Reflection coefficient prediction performance of different soft computing 

models for the case of below the data range for dimensional input parameters 

The training and testing of ANN Model for prediction below the data range is carried 

out. The best ANN architecture for the available data sets is determined using a trial 

and error basis with respect to the error metrics. The network is fed with 7 inputs and 

the prediction of 1 output is done by varying the number of neurons in the only set 

hidden layer. Among the different model architectures tested, the model with one 

hidden layer consisting of 12 neurons predicted the wave reflection coefficient (Kr) with 

the least error. The values of the measure of error is presented in Table 4.2. The 

correlation coefficient for training R=0.9899 and for testing R=0.9875 is found. Fig. 

4.2 shows the scatter plot of model prediction and actual values of the reflection 

coefficient for below the data range testing using ANN. 

 

ANFIS model with subtracting clustering was employed where the training data loaded 

to generate input membership function consisted of 7 inputs and 1 output data. In this 

case, the “genfis2” is used for training the data with a step size of 0.1 and a number of 

epochs 20. The radius of influence is varied from 0 to 1 and found that the RMSE to be 

least when the radius is 0.3 for all 7 inputs, and the genfis2, makes Gaussian 

membership functions for each input. Training and testing performance of the ANFIS 

model for below the data range is validated by error measure as shown in Table 4.2 and 

the scatter plot of prediction and actual values of ANFIS is as in Fig 4.2. The ANFIS 

model gave slightly better results with higher R=0.9887 compared to ANN whose R-

value for testing is 0.9875, as seen in Table 4.2.  

 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for Sugeno systems. Here the number of clusters is set as 9 as the entire dataset 

has 9 distinct wave heights. The exponent of partition matrix component m=1.2 is set, 

as it gave better R-value and relatively lowest error. The minimum improvement factor 

was set as 0.001 in the objective function in between the two consecutive iterations and 

the maximum iterations count was set to 25. Training and testing performance of the 
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ANFIS model for below the data range is validated by error measure as shown in Table 

4.2 and the scatter plot of prediction and actual values of ANFIS is as in Fig 4.2. In this 

case of the dimensional dataset, the input variables are 7 and the response variable is 1. 

Fuzzy C-means clustering constructs a fuzzy inference system (FIS) with inputs and 

output. The prediction of Kr for dimensional input parameters had a better correlation 

coefficient, lower SI, better NSE, lower positive bias and lower RMSE in the case of 

FCM-ANFIS model compared to the results of SC-ANFIS model. Among the three 

models adopted FCM-ANFIS gave relatively better results. The Fig.4.3 shows the 

comparison of predicted Kr by ANN, FCM-ANFIS, SC-ANFIS models with observed 

Kr values. 

 

 

Table 4.1 Error metrics for different soft computing models for dimensional input 

parameters in the case of below the data range for predicting reflection coefficient 

parameter 

 

 

 

Case 

 

 

Error 

metrics 

Soft computing models 

ANN 
ANFIS (FUZZY C-

MEANS 

CLUSTERING) 

ANFIS 

(SUBTRACTIVE 

CLUSTERING) 

Train Test Train Test Train Test 

B
el

o
w

 

R 0.9899 0.9875 0.9914 0.9904 0.9924 0.9887 

RMSE 0.0273 0.0517 0.0241 0.0274 0.0228 0.0303 

NSE 0.9781 0.9288 0.9829 0.9801 0.9847 0.9956 

SI 9.55 16.74 8.42 8.84 7.96 9.81 

BIAS -0.0005 0.0311 2.821E-08 0.0009 
-5.610E-

09 
0.0084 



 

 

68 

 

 

                    (a) ANN model                           (b) FCM-ANFIS model 

                                    

                      (c) SC-ANFIS model                                                        

Fig. 4.2 Scatter plot of predicted versus actual values of Kr for different models 

for the case of below the range with dimensional input parameters 

 

Fig. 4.3 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of below the range with dimensional input parameters with 

observed Kr values 
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4.2.2 Reflection coefficient prediction performance of different soft computing 

models for the case of conventional below the data range for dimensional input 

parameters 

The curtailed data including below the data range values are randomized and divided 

into two sets (80% for training and 20% for testing). This follows the typical 

conventional method of data segregation and prediction. As mentioned in section 4.1.1, 

7 inputs are fed into the model and with the expected output being reflection coefficient 

(Kr). For this case, the best ANN architecture is found to be 7-12-1, where 12 neurons 

are set in the hidden layer. Table 4.3 shows the error measure for training and testing 

by the conventional method of prediction. The R=0.9903 in the case of testing is found 

which is closer to 1, indicating a better fit of the model compared to ANN testing of 

below the data range. ANN model comparison of testing RMSE of the conventional 

method of data segregation to the testing of below the data range shows error reduction 

in the conventional method of data segregation. Fig.4.4 shows the scatter plot of model 

prediction and actual values of the reflection coefficient for testing by the conventional 

below the data range method of data segregation using ANN. 

 

Further on the application of ANFIS subtractive clustering to training data with 7 inputs 

and 1 output is loaded to generate input membership function. In the study, genfis2 is 

used for training the data with a step size of 0.1 and a number of epochs 20 least 

RMSE=0.0233 is obtained when the radius is set to 0.9. Training and testing 

performance of ANFIS model for the conventional below method of prediction is 

validated by error measure as shown in Table 4.3 and found that the predictions made 

by ANFIS re reasonably good, slightly improved over the ANN result in terms of 

correlation coefficient R=0.9922. The RMSE values are found to be slightly lower in 

this particular case of ANFIS model testing compared to that of ANN testing errors 

indicating the reduction of errors in the conventional below method of prediction using 

SC-ANFIS. The scatter plot of Kr actual and the ANFIS model prediction is plotted in 

Fig.4.4.  

 

Also, the application of FCM-ANFIS to training data with 7 inputs and 1 output is 
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adopted with the input membership function for each input variable is ‘gaussmf’ and 

the output membership function type is 'linear' for sugeno systems. Here the number of 

clusters is set as 9 as the entire dataset has 9 distinct wave heights. The exponent of 

partition matrix component m=1.2 is found to be the best with a lower error. The 

minimum improvement factor was set as 0.001 in the objective function in between the 

two consecutive iterations and the maximum iterations count was set to 25. Training 

and testing performance of the ANFIS model for below the data range is validated by 

error measure as shown in Table 4.3 and the scatter plot of predicted Kr value by ANFIS 

and actual values are as in Fig.4.4. FCM constructs a FIS with inputs and output. The 

prediction of Kr for dimensional input parameters by FCM had lower correlation 

coefficient, higher SI, lower NSE, higher negative bias and slightly higher RMSE in 

the case of FCM-ANFIS model compared to the results of ANFIS model with 

subtractive clustering. Among the three methods, SC-ANFIS gave relatively better 

results. The Fig.4.5 shows the comparison of predicted Kr by ANN, FCM-ANFIS, SC-

ANFIS models with observed Kr values. 

Table 4.2 Error metrics for different soft computing models for dimensional input 

parameters in the case of conventional below the data range for predicting 

reflection coefficient parameter 

 

Case 

 

 

Error 

metrics 

Soft computing models 

ANN 
ANFIS (FUZZY C-

MEANS 

CLUSTERING) 

ANFIS 

(SUBTRACTIVE 

CLUSTERING) 

Train Test Train Test Train Test 

C
o
n
v
en

ti
o
n
al

 B
el

o
w

 R 0.9912 0.9903 0.9908 0.9895 0.9934 0.9922 

RMSE 0.0252 0.0265 0.0251 0.0271 0.0213 0.0233 

NSE 0.9813 0.9797 0.9816 0.9788 0.9843 0.9867 

SI 8.83 8.85 8.76 9.05 7.45 7.78 

BIAS -0.0045 0.0045 1.034E-08 -0.0010 -0.0001 

 
-0.0001 
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                  (a) ANN model                             (b) FCM-ANFIS model 

                                    

(c) SC-ANFIS model 

Fig. 4.4 Scatter plot of predicted versus actual values of Kr for different models 

for the case of conventional below the range with dimensional input parameters 

 

Fig. 4.5 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of conventional below the range with dimensional input 

parameters with observed Kr values 
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4.2.3 Reflection coefficient prediction performance of different soft computing 

models for the case of beyond the data range for dimensional input parameters 

 

The training and testing of ANN Model for prediction beyond the data range are carried 

out. The best ANN architecture obtained by trial and error basis is 7-12-1 with the least 

RMSE=0.0526 for epoch 4.  The network is fed with 7 inputs and the prediction of 1 

output is done by varying the number of neurons in the only set hidden layer. The values 

of the measure of error are presented in Table 4.4. The correlation coefficient for 

training R=0.9899 and for testing R=0.9879 was found. Fig.4.6 shows the scatter plot 

of model prediction and actual values of the reflection coefficient for beyond the data 

range testing using ANN. 

 

ANFIS model with subtractive clustering is employed where the training data loaded 

to generate input membership function consisted of 7 inputs and 1 output data. In this 

case, the “genfis2” is used for training the data with a step size of 0.1 and a number of 

epochs 20. The radius of influence was varied from 0 to 1 and found that the RMSE to 

be least when radius was 0.3 for all 7 inputs, and the genfis2, makes Gaussian 

membership functions for each input. Training and testing performance of the ANFIS 

model for below the data range is validated by error measure as shown in Table 4.4 and 

the scatter plot of prediction and actual values of SC-ANFIS is as in Fig 4.6. The SC-

ANFIS model gave slightly better results with higher R=0.9906 compared to ANN 

whose R-value for testing is 0.9879, as seen in Table 4.4.  

 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for Sugeno systems. Here the number of clusters is set as 9 as the entire dataset 

has 9 distinct wave heights. The exponent of partition matrix component m=1.2 is set 

as for this value, the error is minimum. The minimum improvement factor is set as 

0.001 in the objective function in between the two consecutive iterations and the 

maximum iterations count is set to 25. Training and testing performance of FCM-

ANFIS model for beyond the data range is validated by error measure as shown in Table 



 

 

73 

 

4.4 and the scatter plot of prediction and actual values of FCM-ANFIS is as in Fig.4.6. 

In this case of the dimensional dataset, the input variables are 7 and the response 

variable is 1. Fuzzy C-means clustering constructs a fuzzy inference system (FIS) with 

inputs and output. The prediction of Kr for dimensional input parameters had better 

correlation coefficient, lower SI, better NSE of 98%, negative bias and lower RMSE in 

the case of FCM-ANFIS model compared to the results of SC-ANFIS and ANN model. 

The Fig.4.7 shows the comparison of predicted Kr by ANN, FCM-ANFIS, SC-ANFIS 

models with observed Kr values. 

 

Table 4.3 Error metrics for different soft computing models for dimensional input 

parameters in the case of beyond the data range for predicting reflection 

coefficient parameter 

 

 

 

 

 

Case 

 

 

 

 

Error 

metrics  

Soft computing models 

ANN ANFIS (FUZZY C-

MEANS 

CLUSTERING) 

ANFIS 

(SUBTRACTIVE 

   CLUSTERING) 

Train Test Train Test Train Test 

B
ey

o
n

d
 

R 0.9899 0.9879 0.9916 0.9911 0.9916 0.9906 

RMSE 0.0275 0.0526 0.0241 0.0428 0.0241 0.0497 

NSE 0.9778 0.9730 0.9829 0.9821 0.9829 0.9684 

SI 9.60 11.31 8.42 9.20 8.42 10.68 

BIAS 0.0081 -0.0180 0.0001 -0.0210 0.0001 -0.0186 
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    (a) ANN model                                 (b) FCM-ANFIS model 

                                    

(c) SC-ANFIS model 

Fig. 4.6 Scatter plot of predicted versus actual values of Kr for different models 

for the case of beyond the range with dimensional input parameters 

 

Fig. 4.7 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of beyond the range with dimensional input parameters with 

observed Kr values  
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4.2.4 Reflection coefficient prediction performance of different soft computing 

models for the case of conventional beyond the data range for dimensional input 

parameters 

The curtailed data including beyond the data range values are randomized and 

divided into two sets (80% for training and 20% for testing). This follows the typical 

conventional method of data segregation and prediction. As mentioned earlier, 7 inputs 

are fed into the model and with the output being reflection coefficient (Kr). For this 

case, the best ANN architecture was found to be 7-12-1 at epoch 4, where 12 neurons 

are set in the hidden layer. Table 4.5 shows the error measure for training and testing 

by the conventional beyond the data range method of prediction. The R-value for 

training and testing is found to be 0.9895 and 0.9859 respectively. Fig. 4.8 shows the 

scatter plot of model prediction and actual values of the reflection coefficient for testing 

by the conventional beyond the data range method of data segregation using ANN. 

 

Further on the application of ANFIS subtractive clustering (SC) to training data with 

7 inputs and 1 output is loaded to generate input membership function. In the study, 

genfis2 is used for training the data with a step size of 0.1 and the number of epochs 

20, least RMSE=0.0394 was obtained when the radius was set to 0.5. Training and 

testing performance of SC-ANFIS model is validated by error measure as shown in 

Table 4.5 and found that the prediction made by SC-ANFIS is good, however, did not 

improve over the ANN result in terms of correlation coefficient R=0.9812. The scatter 

plot of Kr actual and the SC-ANFIS model prediction is plotted in Fig. 4.8.  

 

Also, the application of FCM-ANFIS to training data with 7 inputs and 1 output is 

adopted with the input membership function for each input variable is ‘gaussmf’ and 

the output membership function type is 'linear' for Sugeno systems. Here the number of 

clusters is set as 13 as the entire dataset has 13 distinct wave heights. The exponent of 

partition matrix component m=1.2 IS found to have the least error with better 

prediction. The minimum improvement factor is set as 0.001 in the objective function 

in between the two consecutive iterations and the maximum iterations count was set to 

50 as it gave best results. Training and testing performance of FCM-ANFIS model for 
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conventional beyond the data range is validated by error measure as shown in Table 4.5 

and the scatter plot of prediction and actual values of FCM-ANFIS is as in Fig 4.8. 

FCM constructs a FIS with inputs and output. The prediction of Kr for dimensional 

input parameters by FCM had higher correlation coefficient, lower SI, higher NSE, 

lower negative bias and least RMSE in the case of FCM-ANFIS model compared to the 

results of ANFIS model with subtracting clustering and ANN prediction. 

In all the above four cases presented Kr prediction is reasonably good with a test value 

of R~0.99 for FCM-ANFIS which is good and acceptable;  hence no further application 

of any hybrid model has been attempted. The Fig.4.9 shows the comparison of predicted 

Kr by ANN, FCM-ANFIS, SC-ANFIS models. 

 

Table 4.4 Error metrics for different soft computing models for dimensional input 

parameters in the case of conventional beyond the data range for predicting 

reflection coefficient parameter 

 

 

 

 

 

 

 

Case 

 

 

 

 

 

Error 

metrics 

Soft computing models 

ANN ANFIS (FUZZY 

C-MEANS 

CLUSTERING) 

ANFIS 

(SUBTRACTIVE 

CLUSTERING) 

Train Test Train Test Train Test 

C
o
n

v
en

ti
o
n

a
l 

B
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o
n

d
 

R 0.9895 0.9859 0.9931 0.9877 0.9968 0.9812 

RMSE 0.0308 0.0526 0.0244 0.0312 0.0167 0.0394 

NSE 0.9782 0.9730 0.9864 0.9755 0.9936 0.9610 

SI 10.09 11.31 7.9918 10.69 5.45 13.49 

BIAS -0.0009 -0.0180 0 -0.0002 0 -0.0044 
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                   (a) ANN model                               (b) FCM-ANFIS model 

                                    

(c) SC-ANFIS model 

Fig. 4.8 Scatter plot of predicted versus actual values of Kr for different models 

for the case of conventional beyond the range with dimensional input parameters

Fig. 4.9 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of conventional beyond the range with dimensional input 

parameters with observed Kr values 

 

 



 

 

78 

 

4.3 RESULTS AND DISCUSSION OF Kr PREDICTION OF SEMICIRCULAR 

BREAKWATER USING DIFFERENT SOFT COMPUTING MODELS FOR 

NON-DIMENSIONAL INPUT PARAMETERS 

In all the four cases considered for dimensional input parameters three out of four cases 

the FCM-ANFIS gave better results compared to SC-ANFIS hence FCM-ANFIS alone 

is considered for prediction in the case of non-dimensional input parameters and not 

SC-ANFIS. In this case, the results obtained by ANN and ANFIS method had still scope 

for improvement hence further optimization of ANFIS is attempted using the genetic 

algorithm and particle swarm optimisation with an objective function set to reduce 

RMSE of best obtained FCM-ANFIS model prediction. In some cases either 

optimisation of GA was better than PSO or vice-versa. Non-dimensional input 

parameters Hi/gT2, d/gT2, S/D, hs/d and R/Hi obtained from dimensional analysis using 

Buckingham’s π-theorem is used here to predict the reflection coefficient. The data 

segregation, in this case, is similar to that explained in section 4.1.1. The assessment of 

each model is presented in Tables (4.6-4.9), it is found that GA-ANFIS outperformed 

all the other models in three out of the four cases considered. 

 

4.3.1 Reflection coefficient prediction performance of different soft computing 

models for the case of below the data range for non-dimensional input parameters 

The training and testing of ANN Model for prediction below the data range are carried 

out. The best ANN architecture obtained by trial and error basis is 5-5-1 with the least 

testing RMSE=0.1485 for epoch 20. The network is fed with 5 inputs and the prediction 

of one output was done by varying the number of neurons in the only set hidden layer. 

The values of the measure of error are presented in Table 4.6. The correlation coefficient 

for training R=0.8764 and for testing R=0.8586 was found. Fig. 4.10 shows the scatter 

plot of model prediction and actual values of the reflection coefficient for below the 

data range testing using ANN. 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for Sugeno systems. Here the number of clusters is set as 9 as the entire dataset 

has 9 distinct wave heights. The exponent of the partition matrix component m=1.4 
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gave the best R-value when compared to other ‘m’ values. The minimum improvement 

factor is set as of 1e-5 in the objective function in between the two consecutive 

iterations and the maximum iterations count was set to 50. Training and testing 

performance of FCM-ANFIS model for below the data range is validated by error 

measure as shown in Table 4.6 and the scatter plot of actual and predicted values and 

of Kr by FCM-ANFIS is as in Fig 4.10. In this case of the non-dimensional dataset, the 

input variables are 5 and the response variable is 1. FCM constructs a fuzzy inference 

system (FIS) with inputs and output. The prediction of Kr for non-dimensional input 

parameters by FCM-ANFIS did not improve the correlation coefficient hence had 

slightly higher SI, lower NSE, higher negative bias and with higher RMSE=0.1504, 

compared to the results of ANN model. 

To improve the ANFIS training GA-ANFIS model has been employed whose objective 

function is to reduce the RMSE of the prediction of Kr of the semicircular breakwater.  

In the FCM the number of clusters is set as 9 and with m=1.4 the prediction was optimal 

with least RMSE, for a maximum FCM iteration of 50 and minimum improvement of 

1e-5. GA is sensitive to its parameters i.e., population size and the maximum number 

of iterations. By changing these two parameters of the GA, the training of the ANFIS 

model with the parameters as mentioned above is done. The GA-ANFIS model was run 

for various population size 10, 15, 20, 25, 30, 35, 40, 50, 100, and finally set for a 

population size of 60. The maximum number of iterations was set to 1000, the mutation 

rate is set to 0.15, the crossover percentage is set to 0.4, mutation percentage is set to 

0.7, and the selection pressure is set to 8. Table 4.6 shows the comparison of GA-ANFIS 

and ANFIS model results in case of non-dimensional input parameters and the scatter 

plot of prediction and actual values of GA-ANFIS is as seen in Fig 4.10. The GA-

ANFIS model prediction is better than FCM-ANFIS model.  The Nash Sutcliffe 

efficiency of the GA-ANFIS model improved to 81% compared to 72% of testing of 

ANFIS model and accordingly the error reduced to least of all four cases to 

RMSE=0.1237, hence the scatter index is least. Though negatively biased the bias value 

improved over ANFIS.   

Further to check if PSO is better than GA in improving the ANFIS training PSO-ANFIS 

model has been employed whose objective function is to reduce the RMSE of the 
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prediction of wave reflection (Kr) of the semicircular breakwater. In the employment 

of PSO-ANFIS model, an initial FIS for the dataset of non-dimensional input 

parameters is generated using FCM and the PSO is applied to fine-tune the ANFIS 

training. The antecedent and consequent parameters of ANFIS are tuned by PSO. In the 

FCM the number of clusters is set as 9, as the data involved nine different wave heights. 

The other important parameter ‘m’ the exponent of the partition matrix is varied from 

1.1 to 2.2 and found m=1.4 is optimal with least RMSE, for a maximum FCM iteration 

of 100 and minimum improvement of 1e-5. PSO is sensitive to its parameters i.e., the 

inertia weight and acceleration coefficients and the obtained heuristic ensure 

convergent trajectories (Bergh and Engelbrecht 2006). Further, the parameters of PSO 

algorithm are adjusted such as to reduce the prediction error. The cognitive coefficient 

and social coefficients are usually set equal to 2 (Zahmatkesh et al. 2017), in the study 

c1=c2=2 predicted the Kr well. The model is run for different values of c1 and c2 but the 

least RMSE is attained only when the acceleration coefficient c1=c2=2. In PSO, the 

choice of size of the population is critical and it significantly affects the performance 

of population-based search techniques (Chen et al. 2015). The model was run for 

various population size 10, 15, 20, 25, 30, 35, 40, 50, 100, and finally set for a 

population size of 40 and 5000 iterations which gave the best prediction with least 

RMSE. With a lower number of iterations, the error was higher. The inertia weight of 

w=0.4 is set for achieving a better convergence as the rate of convergence is less for 

any other inertia coefficients set between 1.4 to 0.4 (Eberhart and Shi 2001). Table 4.6 

shows the comparison of PSO-ANFIS and ANFIS model results in case of non-

dimensional input parameters.  

 

The PSO-ANFIS model prediction is better than ANFIS-FCM model. The prediction 

of the reflection coefficient by PSO-ANFIS model is found to be positively biased with 

a bias value of 0.0034, shows slight overestimation, however, lower than the bias of 

ANFIS model i.e., -0.0139 which is also negatively biased. For PSO-ANFIS model, 

root mean square error is found to be less with Nash Sutcliffe Efficiency being higher 

and a lower scatter index compared to that of ANFIS model prediction statistics as, seen 

in Table 4.6. Also, a scatter plot of predict Kr and actual values of PSO-ANFIS is as 
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seen in Fig. 4.10. The Fig. 4.11 shows the comparison of predicted Kr by ANN, ANFIS, 

GA-ANFIS and PSO-ANFIS models with observed Kr values. Among the four models 

employed GA-ANFIS gave a better prediction of Kr in this case. 

 

 

                

(a) ANN model                                        (b) FCM-ANFIS model 

 

                (c) GA-ANFIS model                    (d) PSO-ANFIS model 

 

Fig. 4.10 Scatter plot of predicted versus actual values of Kr for different models 

for the case of below the range with non-dimensional input parameters 
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Table 4.5 Error metrics for different soft computing models for non-dimensional 

input parameters in the case of below the data range for predicting reflection 

coefficient parameter 

 

 

Case 

 

 

Error 

metrics 

 

Soft computing models 

ANN ANFIS GA-ANFIS PSO-ANFIS 

Train Test Train Test Train Test Train Test 

B
el

o
w

 

R 0.8764 0.8586 0.8907 0.8556 0.9088 0.9058 0.9078 0.902

9 

RMSE 0.1211 0.1485 0.1142 0.1504 0.1049 0.1237 0.1064 0.128

6 

NSE 0.7678 0.7362 0.7934 0.7296 0.8258 0.8171 0.8206 0.802

1 

SI 45.33 44.63 42.76 45.17 39.27 37.16 39.84 38.65 

 

BIAS 0.004 -0.0089 2.93E-

08 

-0.0139 -0.0017 -0.0114 0.0043 0.003 

 

 

 

 

Fig. 4.11 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of below the range with non-dimensional input parameters 

with observed Kr values 
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4.3.2 Reflection coefficient prediction performance of different soft computing 

models for the case of conventional below data range for non-dimensional input 

parameters 

The training and testing of ANN Model for prediction of conventional below the data 

range are carried out. The best ANN architecture obtained by trial and error basis is 5-

6-1 with the least testing RMSE=0.1437 for epoch 22. The network is fed with 5 inputs 

and the prediction of single output is done by varying the number of neurons in the only 

set hidden layer. The values of the measure of error are presented in Table 4.7. The 

correlation coefficient for training R=0.8764 and for testing R=0.8586 was found. Fig. 

4.12 shows the scatter plot of model prediction and actual values of the reflection 

coefficient for conventional below the data range testing using ANN. 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for Sugeno systems. Here the number of clusters is set as 9 as the entire dataset 

has 9 distinct wave heights. The exponent of partition matrix component m=1.8 is found 

to give better R-value with least RMSE among different trials of being’ value set. The 

minimum improvement factor is set as of 1e-5 in the objective function in between the 

two consecutive iterations and the maximum iterations count is set to 25. Training and 

testing performance of the ANFIS model for conventional below the data range is 

validated by error measure as shown in Table 4.7 and the scatter plot of prediction and 

actual values of ANFIS is as in Fig. 4.12. Here FCM constructs a fuzzy inference system 

(FIS) with five inputs and one output. The prediction of Kr for non-dimensional input 

parameters by ANFIS slightly improved the correlation coefficient of training to 0.9077 

and testing to 0.8655 however, relatively no significant change is observed with respect 

to ANN prediction.   

 

To improve the ANFIS training GA-ANFIS model has been employed whose objective 

function is to reduce the RMSE of the prediction of Kr of the semicircular breakwater.  

In the FCM the number of clusters was set as 9, with m=1.8 is found optimal with least 

RMSE, for a maximum FCM iteration of 25 and minimum improvement of 1e-5. GA 
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being sensitive to its parameters population size and the maximum number of iterations. 

By changing these two parameters of the GA the training of ANFIS model with optimal 

FCM parameters as mentioned above prediction is done. The GA-ANFIS model is run 

for various population size 10, 15, 20, 25, 30, 35, 40, 50, 100, and finally set for a 

population size of 90 as the model gave best R-value for this population size and for 

maximum iterations set to 5000. The mutation rate is set to 0.15, the crossover 

percentage is set to 0.4, mutation percentage is set to 0.7, and the selection pressure is 

set to 8. Table 4.7 shows the comparison of GA-ANFIS and ANFIS model results in 

case of non-dimensional input parameters and the scatter plot of predicted and actual 

values of Kr by GA-ANFIS is as seen in Fig.4.12. The GA-ANFIS model prediction is 

better than the ANFIS model.  The Nash Sutcliffe efficiency of the GA-ANFIS model 

improved to 77% compared to 74% of testing of ANFIS model and accordingly the 

error reduced to a least of all four cases to RMSE=0.1362 hence the scatter index is also 

least with a bias value of 0.0113. 

Further to check if PSO is better than GA in improving the ANFIS training PSO-ANFIS 

model is employed with an objective function to reduce the RMSE of the prediction of 

wave reflection (Kr) of the semicircular breakwater. In the employment of PSO-ANFIS 

model, an initial FIS for the dataset of non-dimensional input parameters is generated 

using FCM and the PSO approach to fine tune the ANFIS training. The antecedent and 

consequent parameters of ANFIS are tuned by PSO. In the FCM the number of clusters 

is set as 9, as the data involved nine different wave heights. The other important 

parameter ‘m’ the exponent of the partition matrix is varied from 1.1 to 2.2 and found 

m=1.8 is optimal with least RMSE, for a maximum FCM iteration of 25 and minimum 

improvement of 1e-5. The model is run for different values of c1 and c2 but the least 

RMSE was attained only when the acceleration coefficient c1=2, c2=2. The model is 

run for various population size and finally set for a population size of 90 and 5000 

iterations which gave the best prediction with least RMSE for inertia weight of w=0.4. 

Table 4.7 shows the comparison of PSO-ANFIS and ANFIS model results in case of 

non-dimensional input parameters. The PSO-ANFIS model prediction for training 

R=0.9290 is slightly better than ANFIS model training however, did not improve on 

the testing R=0.8623. On further increase of iterations in PSO-ANFIS, the model results 
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are not good. PSO-ANFIS model root mean square error was found slightly higher with 

Nash Sutcliffe Efficiency being lesser by 1% and a higher scatter compared to that of 

ANFIS model prediction Table 4.7. Also, a scatter plot of prediction and actual values 

of PSO-ANFIS is as seen in Fig. 4.12. Fig. 4.13 shows the comparison of predicted Kr 

by ANN, ANFIS, GA-ANFIS and PSO-ANFIS models with observed Kr values. Also 

among the four models employed GA-ANFIS predicted the best Kr for non-dimensional 

input parameters in the case of conventional below the data range.
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Table 4.6 Error metrics for different soft computing models for non-dimensional input parameters in the case of conventional 

below the data range for predicting reflection coefficient parameter 

 

 

 

 

Case 

 

 

Error 

metrics 

 

Soft computing models 

 

           ANN 

 

ANFIS 

 

GA-ANFIS 

 

PSO-ANFIS 

Train Test Train Test Train Test Train Test 
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n
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l 
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R 0.8712 0.8643 0.9077 0.8655 0.9664 0.8865 0.9290 0.8623 

RMSE 0.1247 0.1434 0.1064 0.1437 0.0658 0.1362 0.0940 

 

0.1470 

 

NSE 0.7583 0.7465 0.8239 0.7455 0.9326 0.7712 0.8625 

 

0.7336 

 

SI 45.81 45.87 

 

39.10 45.96 24.18 43.58 34.55 

 

47.03 

 

BIAS -0.004 -0.005 -1.83E-07 -0.0001 -0.0003 0.0113 -0.002 0.008 
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         (a) ANN model                             (b) FCM-ANFIS model  

  

                (c) GA-ANFIS model                    (d) PSO-ANFIS model 

Fig. 4.12 Scatter plot of predicted versus actual values of Kr for different models 

for the case of conventional below the range with non-dimensional input 

parameters 

 

Fig. 4.13 Comparison of Kr prediction performance of ANN, FCM-ANFIS, SC-

ANFIS models in case of conventional below the range with non-dimensional input 

parameters 
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4.3.3 Reflection coefficient prediction performance of different soft computing 

models for the case of beyond data range for non-dimensional input parameters 

 

The training and testing of ANN Model for prediction of beyond the data range are 

carried out. The best ANN architecture obtained by trial and error basis is 5-11-1 with 

the least testing RMSE=0.3114 for epoch 26. The network is fed with 5 inputs and the 

prediction of single output is done by varying the number of neurons in the only set 

hidden layer. The values of the measure of error are presented in Table 4.8. The 

correlation coefficient for training R=0.8919 and for testing R=0.7695 is found. Fig 

4.14 shows the scatter plot of model prediction and actual values of the reflection 

coefficient for beyond the data range testing using ANN. 

 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for Sugeno systems. Here the number of clusters is set as 9 as the entire dataset 

has 9 distinct wave heights. The model prediction is best with relatively lower 

RMSE=0.3362 when m=1.2 is set. The minimum improvement factor was set as of 1e-

5 in the objective function in between the two consecutive iterations and the maximum 

iterations count was set to 50. Training and testing performance of ANFIS model for 

beyond the data range is validated by error measure as shown in Table 4.8 and the 

scatter plot of predicted Kr and actual values of ANFIS is as in Fig 4.14. Here FCM 

constructs a FIS with five inputs and one output. The prediction of Kr for non-

dimensional input parameters by ANFIS did not improve the R-value of training and 

testing with respect to ANN prediction significantly.   

 

Hence in order to improve the ANFIS training; GA-ANFIS model has been employed 

whose objective function is to reduce the RMSE of the prediction of Kr of the 

semicircular breakwater.  In the FCM the number of clusters is set as 9, with m=1.2 is 

optimal with least RMSE, for a maximum FCM iteration of 50 and minimum 

improvement of 1e-5. GA is sensitive to its parameters i.e., population size and the 

maximum number of iterations. By changing these two parameters of the GA the 
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training of ANFIS model with the parameters as mentioned above is done. The GA-

ANFIS model was run for various population size 10, 15, 20, 25, 30, 35, 40, 50, 100, 

and finally set for a population size of 90 and a maximum number of iterations set to 

5000 as this gave better R-value. Similarly, the mutation rate is set to 0.15, the crossover 

percentage is set to 0.4, mutation percentage is set to 0.7, and the selection pressure is 

set to 8. In spite of varying the parameters to the best possible extent, the GA-ANFIS 

model did not improve over the ANFIS model prediction. Table 4.8 shows the 

comparison of GA-ANFIS and ANFIS model results in case of non-dimensional input 

parameters and the scatter plot of prediction and actual values of GA-ANFIS is as seen 

in Fig 4.14.  The Nash Sutcliffe efficiency of the GA-ANFIS model of testing is very 

poor.  

 

Further to check if PSO is better than GA in improving the ANFIS training PSO-ANFIS 

model is employed with an objective function to reduce the RMSE of the prediction of 

wave reflection (Kr) of the semicircular breakwater. In the employment of PSO-ANFIS 

model, an initial FIS for the dataset of non-dimensional input parameters is generated 

using FCM and the PSO approach to fine tune the ANFIS training. The antecedent and 

consequent parameters of ANFIS are tuned by PSO. In the FCM the number of clusters 

is set as 9, as the data involved nine different wave heights. The optimal found m=1.8 

with least RMSE is set for a maximum FCM iteration of 25 and minimum improvement 

of 1e-5. The model is run for different values of c1 and c2 but the least RMSE was 

attained only when the acceleration coefficient c1=2, c2=2. The model is run for various 

population size and finally set for a population size of 30 and 5000 iterations which 

gave the best prediction with least RMSE for inertia weight of w=0.4. Table 4.8 shows 

the comparison of PSO-ANFIS and ANFIS model results in case of non-dimensional 

input parameters. The PSO-ANFIS model prediction for training R=0.9109 is slightly 

better than ANFIS model training and for testing R=0.7900. On further increase of 

iterations in PSO-ANFIS, the model results are not good. Though PSO-ANFIS model 

root mean square error is found on the higher side, among the four models the PSO-

ANFIS had lower error RMSE=0.1908. The NSE of all the models is good for training 

whereas for testing it was very poor. Also, a scatter plot of predicted Kr and actual 
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values of PSO-ANFIS is as seen in Fig 4.14. Among the four models considered PSO-

ANFIS model gave better results. However, the results show that the prediction 

performance of different soft computing models for non-dimensional input parameters 

in the case of beyond the data range is not satisfactory from the statistics obtained. Fig. 

4.15 shows the comparison of predicted Kr by ANN, ANFIS, GA-ANFIS and PSO-

ANFIS models. 

 

 

  

         (a) ANN model                             (b) FCM-ANFIS model  

  

                (c) GA-ANFIS model                    (d) PSO-ANFIS model 

Fig. 4.14 Scatter plot of predicted versus actual values of Kr for different models 

for the case of beyond the range with non-dimensional input parameters
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Table 4.7 Error metrics for different soft computing models for non-dimensional input parameters in the case of of beyond the 

data range for predicting reflection coefficient  

 

 

 

Case 

 

 

 

Error 

metrics 

 

Soft computing models 

 

        ANN 

 

      ANFIS 

 

   GA-ANFIS 

 

   PSO-ANFIS 

Train Test Train Test Train Test Train Test 

B
ey

o
n

d
 

R 0.8919 0.7694 0.8541 0.7664 0.9016 0.6968 0.9109 0.7900 

RMSE 0.0903 0.3114 0.1038 0.3362 0.0873 0.2004 0.0823 0.1908 

NSE 0.7949 0.2007 0.7294 0.0684 0.8081 0.1325 0.8297 0.2141 

SI 39.80 64.98 45.72 70.15 38.50 83.59 36.27 39.81 

BIAS 0.0016 -0.2039 -1.2 E -08 -0.2124 -0.0033 -0.0723 0.0004 -0.0658 
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Fig. 4.15 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of beyond the range with non-dimensional input parameters 

with observed Kr values 

4.3.4 Reflection coefficient prediction performance of different soft computing 

models for the case of conventional beyond data range for non-dimensional input 

parameters 

The training and testing of ANN Model for prediction of conventional beyond the data 

range are carried out. The best ANN architecture obtained by trial and error basis is 5-

12-1 with the least testing RMSE=0.1524 for epoch 13. The network is fed with 5 inputs 

and the prediction of single output is done by varying the number of neurons in the only 

set hidden layer. The values of the measure of error are presented in Table 4.9. The 

correlation coefficient for training R=0.8744 and for testing R=0.8013 is found. Fig. 

4.16 shows the scatter plot of model predicted Kr and actual values for conventional 

beyond the data range testing using ANN. 

 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for sugeno systems. Here the number of clusters is set as 9 and the FIS is 

generated for five inputs and one output. The model predictions were best with 

relatively lower RMSE=0.1231 when the exponent of the partition matrix component 

was set to m=1.8. The minimum improvement factor is set as of 1e-5 in the objective 

function in between the two consecutive iterations and the maximum iterations count 

was set to 50. Training and testing performance of the ANFIS model for conventional 

beyond the data range is validated by error measure as shown in Table 4.9 and the 

scatter plot of prediction and actual values of ANFIS is as in Fig. 4.16. The prediction 
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of Kr for non-dimensional input parameters by ANFIS improved the R-value of training 

to 0.9015 and testing to 0.8721 with respect to ANN prediction.   

An attempt to improve the ANFIS training was done by GA-ANFIS model whose 

objective function is to reduce the RMSE of the prediction of Kr of the semicircular 

breakwater.  In the FCM the number of clusters was set as 9, with m=1.8 was optimal 

with least RMSE, for a maximum FCM iteration of 50 and minimum improvement of 

1e-5. GA is sensitive to its parameters i.e., population size and the maximum number 

of iterations. The GA-ANFIS model was run for various population size 10, 15, 20, 25, 

30, 35, 40, 50, 100, and finally set for a population size of 30 with maximum number 

of iterations set to 8000, the mutation rate was set to 0.15, the crossover percentage was 

set to 0.4, mutation percentage was set to 0.7, and the selection pressure was set to 8. 

GA-ANFIS model prediction was found to improve over the ANFIS model prediction 

and also was found to be the best among the four models adopted. Table 4.9 shows the 

comparison of GA-ANFIS and ANFIS model results in case of non-dimensional input 

parameters and the scatter plot of prediction and actual values of GA-ANFIS is as seen 

in Fig. 4.16.  The Nash Sutcliffe efficiency of the GA-ANFIS model of testing is 82% 

best among all four models for this case of prediction. The scatter index reduced 

relatively with respect to the other three models shown in Table 4.9. 

Further to check if PSO improves the ANFIS training, PSO-ANFIS model is employed 

with an objective function to reduce the RMSE of the prediction of wave reflection (Kr) 

of the semicircular breakwater. In the employment of PSO-ANFIS model, an initial FIS 

for the dataset of non-dimensional input parameters was generated using FCM and the 

PSO approach to fine tune the ANFIS training. In the FCM the number of clusters was 

set as 9, as the data involved 9 different wave heights. The optimal found m=1.8 with 

least RMSE was set for a maximum FCM iteration of 50 and minimum improvement 

of 1e-5. The model was run for different values of c1 and c2 but the least RMSE was 

attained only when the acceleration coefficient c1=2, c2=2. The model was run for 

various population size and finally set for a population size of 80 and 1000 iterations 

which gave the best prediction with least RMSE for inertia weight of w=0.4. Table 4.9 

shows the comparison of PSO-ANFIS and ANFIS model results in case of non-

dimensional input parameters. The PSO-ANFIS model prediction for training 
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R=0.9234 was slightly better than ANFIS model training however, did not improve on 

the testing R=0.8522. On further increase of iterations in PSO-ANFIS, the model results 

did not improve. A scatter plot of predicted Kr and actual values of PSO-ANFIS is as 

seen in Fig. 4.16. Among the four models considered GA-ANFIS model gave better 

results. However, the results show that the prediction performance of different soft 

computing models for non-dimensional input parameters in the case of conventional 

beyond the data range is satisfactory from the statistics obtained. Fig. 4.17 shows the 

comparison of predicted Kr by ANN, ANFIS, GA-ANFIS and PSO-ANFIS models with 

observed Kr values. 

 

   (a) ANN model                                  (b) FCM-ANFIS model  

  

                (c) GA-ANFIS model                    (d) PSO-ANFIS model 

Fig. 4.16 Scatter plot of predicted versus actual values of Kr for different models 

for the case of conventional beyond the range with non-dimensional input 

parameters 
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Table 4.8 Error metrics for different soft computing models for non-dimensional input parameters in the case of conventional 

beyond the data range for predicting reflection coefficient  

 

 

Case 

 

 

Error 

metrics 

 

Soft computing models 

         ANN         ANFIS      GA-ANFIS     PSO-ANFIS 

Train Test Train Test Train Test Train Test 

C
o
n
v
en

ti
o
n
al

 b
ey

o
n
d

 

R 0.8744 0.8013 0.9015 0.8721 0.9755 0.9261 0.9234 0.8522 

RMSE 0.1266 0.1524 0.1124 0.1231 0.0571 0.1039 0.0999 0.1420 

NSE 0.7717 0.6240 0.7717 0.7551 0.9500 0.8252 0.8578 0.6737 

SI 45.10 57.74 45.10 46.60 20.33 39.36 35.59 53.79 

BIAS -0.0132 -0.0006 -0.0132 0.0031 -0.0002 0.0044 -0.0030 0.0044 
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Fig. 4.17 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of conventional beyond the range with non-dimensional input 

parameters with observed Kr values 

 

 

4.4 RESULTS AND DISCUSSION OF Kr PREDICTION OF SEMICIRCULAR 

BREAKWATER USING DIFFERENT SOFT COMPUTING MODELS FOR 

1274 GLOBAL DATA POINTS  

Apart from the previously mentioned cases, the reflection coefficient prediction 

performance of different soft computing models for dimensional and non-dimensional 

input parameters for 1274 data points is done by conventional data segregation method. 

This particular case was carried out when additional dataset of 250 points was available. 

The entire dataset was randomized, normalized and a data division of 75% for training 

and 25% for testing was taken up to check the prediction possibility for both 

dimensional and non-dimensional input parameters. 

 

4.4.1 Reflection coefficient prediction performance of different soft computing 

models using dimensional input parameters for global data of 1274 points 

 

The training and testing of ANN Model for prediction of the Reflection coefficient are 

carried out. The best ANN architecture obtained by trial and error basis is 5-11-1 with 

the least testing RMSE=0.0321 for epoch 18.  

The network is fed with 7 inputs and the prediction of single output is done by varying 

the number of neurons in the only set hidden layer. The values of the measure of error 

are presented in Table 4.10. The correlation coefficient for training R=0.9834 and for 
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testing R=0.9697 is found. Fig. 4.18 shows the scatter plot of model predicted Kr and 

actual values for 1274 global data points using ANN. The ANN prediction had better 

correlation with respect to actual values and outperformed the other three models used. 

The model efficiency is highest of all models i.e., 96% with relatively least RMSE 

having a lower scatter index and a small positive bias of 0.0043. 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for sugeno systems. Here the number of clusters is set as 9. The model 

prediction is best with relatively lower RMSE=0.0499 when the exponent of partition 

matrix component was set to m=2.0. The minimum improvement factor was set as of 

1e-5 in the objective function in between the two consecutive iterations and the 

maximum iterations count is set to 25. Training and testing performance of the ANFIS 

model for conventional data segregation is validated by error measure as shown in 

Table 4.10 and the scatter plot of predicted Kr and actual values of ANFIS is as in Fig 

4.18. Here FCM constructs a FIS with seven inputs and one output. The prediction of 

Kr for non-dimensional input parameters by ANFIS improved the R-value of training 

to 0.9875 whereas, testing reduced to 0.9589 with respect to the R-value of ANN 

prediction.   

 

An attempt to improve the ANFIS training is done by GA-ANFIS model whose 

objective function is to reduce the RMSE of the prediction of Kr of the semicircular 

breakwater.  In the FCM the number of clusters is set as 9, with m=2.0 was optimal 

with least RMSE, for a maximum FCM iteration of 25 and minimum improvement of 

1e-5. GA is sensitive to its parameters i.e., population size and the maximum number 

of iterations. The GA-ANFIS model was run for various population size 10, 15, 20, 25, 

30, 35, 40, 50, 100, and finally set for a population size of 70 with a maximum number 

of iterations set to 1000 which gave better R-value. The mutation rate was set to 0.15, 

the crossover percentage was set to 0.4, mutation percentage was set to 0.7, and the 

selection pressure was set to 8. GA-ANFIS model prediction is found to improve over 

the ANFIS model prediction with an R-value of training as 0.9819 and for testing as 

0.9753 but did not improve over the ANN prediction. Accordingly the scatter index is 
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found lesser than that of the ANFIS model and the efficiency of the GA-ANFIS model 

is 95% and lower RMSE=0.0373 with lesser bias than the ANFIS model. Table 4.10 

shows the comparison of GA-ANFIS and ANFIS model results in case of non-

dimensional input parameters and the scatter plot of predicted Kr and actual values of 

GA-ANFIS is as seen in Fig 4.18.  The Nash Sutcliffe efficiency of the GA-ANFIS 

model of testing is 82% best among all four models for this case of prediction. The 

scatter index reduced relatively with respect to the other three models shown in Table 

4.10. 

Further to check if PSO is better than GA in improving the ANFIS training PSO-ANFIS 

model is employed with an objective function to reduce the RMSE of the prediction of 

Kr of the semicircular breakwater. In the employment of PSO-ANFIS model, an initial 

FIS for the dataset of non-dimensional input parameters is generated using FCM and 

the PSO is applied to fine-tune the ANFIS training. In the FCM the number of clusters 

was set as 9, as the data involved 9 different wave heights. The optimal found m=2 with 

least RMSE was set, for a maximum FCM iteration of 25 and minimum improvement 

of 1e-5. The model is run for different values of c1 and c2 but the least RMSE is attained 

only when the acceleration coefficient c1=2, c2=2. The model is run for various 

population size and finally set for a population size of 70 and 1000 iterations which 

gave the best prediction with least RMSE for inertia weight of w=0.4. Table 4.10 shows 

the comparison of PSO-ANFIS and ANFIS model results in case of non-dimensional 

input parameters. The PSO-ANFIS model prediction for testing R=0.9711 is better than 

ANFIS model however, could not improve over the results of ANN model prediction. 

A scatter plot of predict Kr and actual values of PSO-ANFIS is as seen in Fig 4.18 and 

the performance is presented in Table 4.10. Among the four models considered the 

ANN model gave best results this shows that even individual models predict well for 

some datasets. Fig. 4.19 shows the comparison of predicted Kr by ANN, ANFIS, GA-

ANFIS and PSO-ANFIS models with observed Kr values. 
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        (a) ANN model                                         (b) FCM-ANFIS model  

  

                    (c) GA-ANFIS model                              (d) PSO-ANFIS model 

Fig. 4.18 Scatter plot of predicted versus actual values of Kr for different models 

in case of 1274 global data points with dimensional input parameters 

 

Fig. 4.19 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of dimensional input parameters with observed Kr values
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Table 4.9 Error metrics for different soft computing models for dimensional input parameters in the case of  global data of 1274 

points for predicting reflection coefficient  

 

 

 

Input form 

 

 

Error 

metrics 

 

Soft computing models 

ANN ANFIS GA-ANFIS PSO-ANFIS 

Train Test Train Test Train Test Train Test 

 

D
im

en
si

o
n

a
l 

 

R 0.9869 0.9818 0.9875 0.9589 0.9819 0.9753 0.9862 0.9711 

RMSE 0.0297 0.0321 0.0289 0.0499 0.0347 0.0373 0.0298 0.0402 

NSE 0.9738 0.9633 0.9750 0.9116 0.9641 0.9503 0.9735 0.9424 

SI 9.83 11.31 9.59 15.29 11.50 13.17 9.88 14.18 

BIAS 0.0018 0.0043 2.20084E-

08 

0.0050 -0.0001 0.0025 -0.0003 0.0021 
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4.4.2 Reflection coefficient prediction performance of different soft computing 

models using non-dimensional input parameters for global data of 1274 points 

  

The training and testing of ANN Model for prediction of Kr for 1274 global data points 

are carried out. The best ANN architecture obtained by trial and error basis is 5-11-1 

with the least testing RMSE=0.1703 for epoch 133. The network is fed with 5 inputs 

and the prediction of single output is done by varying the number of neurons in the only 

set hidden layer. The values of the measure of error are presented in Table 4.11. The 

correlation coefficient for training R=0.6803 and for testing R=0.6003 is found. Fig. 

4.20 shows the scatter plot of model predicted Kr and actual values for the case of 1274 

global data points testing using ANN. 

 

The ANFIS model with fuzzy C-means clustering is adopted with the input membership 

function for each input variable is ‘gaussmf’ and the output membership function type 

is 'linear' for sugeno systems. Here the number of clusters is set as 9 as the entire dataset 

has 9 distinct wave heights. The model prediction for m=2 with the minimum 

improvement factor set as of 0.001 in the objective function in between the two 

consecutive iterations and the maximum iterations count is set to 25 for which 

RMSE=0.1282 is obtained. Training and testing performance of ANFIS model for the 

case of 1274 global data points is validated by error measure as shown in Table 4.11 

and the scatter plot of predict Kr and actual values of ANFIS is as in Fig. 4.20. Here 

FCM constructs a FIS with five inputs and one output. ANFIS predicted the Kr value 

for non-dimensional input parameters with an improvement in the R-value of training 

and testing with respect to ANN prediction as seen in Table 4.11.   

 

An attempt to further improve the ANFIS training was done by GA-ANFIS model 

whose objective function is to reduce the RMSE of the prediction of Kr of the 

semicircular breakwater.  In the FCM the number of clusters was set as 9, with m=1.2 

was optimal with least RMSE, for a maximum FCM iteration of 50 and minimum 

improvement of 1e-5. GA parameters population size and the maximum number of 

iterations ARE varied to arrive at the best R values and lower RMSE. Finally, a 
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population size of 20 with a maximum number of iterations 8000 was found optimal. 

Also, the mutation rate is set to 0.15, the crossover percentage is set to 0.4, mutation 

percentage is set to 0.7, and the selection pressure is set to 8. GA-ANFIS model 

prediction is found to improve over the ANFIS model prediction and is found to be the 

best among the four models adopted. Table 4.11 shows the comparison of GA-ANFIS 

and ANFIS model results in case of non-dimensional input parameters and the scatter 

plot of prediction and actual values of GA-ANFIS is as seen in Fig. 4.20.  The Nash 

Sutcliffe efficiency of the GA-ANFIS model of testing is 66% best among all four 

models for this case of prediction. The scatter index for testing reduced relatively with 

respect to the other three models as shown in Table 4.11. 

 

Further to check if PSO is better than GA in improving the ANFIS training PSO-ANFIS 

model is employed with an objective function to reduce the RMSE of the prediction of 

wave reflection (Kr) of the semicircular breakwater. In the employment of PSO-ANFIS 

model, an initial FIS for the dataset of non-dimensional input parameters is generated 

using FCM and the PSO is applied to fine-tune the ANFIS training. In the FCM the 

number of clusters was set as 9, as the data involved 9 different wave heights. The 

optimal found m=1.7 with least RMSE is set for a maximum FCM iteration of 50 and 

minimum improvement of 1e-5. The model is run for different values of c1 and c2 but 

the least RMSE was attained only when the acceleration coefficient c1=2, c2=2. The 

model is run for various population size and finally set for a population size of 50 and 

1000 iterations which gave the best prediction with least RMSE for inertia weight of 

w=0.7. Table 4.11 shows the comparison of PSO-ANFIS and ANFIS model results in 

case of non-dimensional input parameters. The PSO-ANFIS model prediction for 

training R=0.8886 is better than ANFIS model training and for the testing R=0.7569. 

On further increase of iterations in PSO-ANFIS, the model results did not improve. A 

scatter plot of prediction and actual values of PSO-ANFIS is as seen in Fig. 4.20. 

Among the four models considered GA-ANFIS model gave better results. Fig. 4.21 

shows the comparison of predicted Kr by ANN, ANFIS, GA-ANFIS and PSO-ANFIS 

models with observed Kr values. 



 

 

103 

 

 

         (a) ANN model                                       (b) FCM-ANFIS model 

  

(c) GA-ANFIS model                              (d) PSO-ANFIS model 

Fig. 4.20 Scatter plot of predicted versus actual values of Kr for different models 

in case of 1274 global data points with non-dimensional input parameters 

 
 

Fig. 4.21 Comparison of predicted Kr by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of non-dimensional input parameters with observed Kr values 
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Table 4.10 Error metrics for different soft computing models for non-dimensional input parameters in the case of  global data of 

1274 points for predicting reflection coefficient  

 

 

 

Input form 

 

 

Error metrics 

 

Soft computing models 

 

         ANN 

 

        ANFIS 

 

     GA-ANFIS 

 

    PSO-ANFIS 

Train Test Train Test Train Test Train Test 

 

N
o
n
-d

im
en

si
o
n

al
 

 

R 0.6803 
 

0.6003 0.6991 0.6494 0.9096 

 

0.8634 

 

0.8886 0.7569 

RMSE 0.1656 0.1703 0.1312 
 

0.1282 

 

0.0869 0.0974 0.0785 0.1116 

NSE 0.4621 
 

0.3190 
 

0.4886 

 

0.4158 0.7757 0.6626 0.8209 0.5580 

SI 58.26 
 

65.07 
 

43.45 

 

45.20 28.78 

 

34.34 25.97 39.32 

BIAS -0.0060 
 

0.0258 
 

3.129E-05 
 

0.0074 -0.0184 -0.0151 -0.0097 0.0160 
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4.5 CLOSURE 

The proposed approach of predicting Kr in below, conventional below, beyond, and 

conventional beyond the data ranges of available experimental data is carried out 

successfully and presented. Prediction is reasonably good for all the cases except in the 

case of beyond the range data particularly when the input data was non-dimensional 

form. With dimensional as well as non-dimensional input parameters though the 

improvement of ANFIS prediction statistics after optimization by GA, PSO is not 

significant, any improvement in the prediction of the reflection coefficient is considered 

good. The maximum Kr value obtained from experimental data is 0.884 and from 

prediction, the value is 1.05. As the values are corresponding to the scale down model 

of the actual sea conditions even a small improvement in the prediction value of output 

(Kr) is good. 
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CHAPTER 5 

PREDICTION OF RELATIVE RUN-UP PARAMETER 

 

5.1 PREDICTION OF RELATIVE WAVE RUN-UP (Ru/Hi) 

Wave run-up (Ru) is defined as the height of rising of the incident waves on the face of 

the breakwaters above the still water level. Wave run-up is a process influenced by 

various wave characteristics, structural parameters, and local effects. In the study, the 

wave run-up (Ru) has been expressed as a non-dimensional parameter (Ru/Hi). The 

relative wave run-up parameter (Ru/Hi) of the emerged seaside perforated semicircular 

breakwater has not been much explored, and there is a research gap, particularly in the 

application of soft computing techniques to predict Ru/Hi. All of the possible available 

literature regarding Ru/Hi has been discussed in chapter 2. The present chapter includes 

the data segregation, prediction of Ru/Hi using different soft computing models as well 

as the assessment of the models. 

 

5.1.1 Data segregation for prediction of relative wave run-up (Ru/Hi)  

The experimental input parameters for the set of data obtained from Marine structure 

Laboratory, NITK, Surathkal, India, is given in the Table 3.3 Data segregation for 

prediction of relative wave run-up parameter (Ru/Hi) for dimensional and non-

dimensional input parameters is done as follows:    

 

Fig. 5.1 Typical data segregation for Ru/Hi prediction of SBW 
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The data segregation procedure for the typical case of wave height (Hi) for Run-up is, 

1) The entire ensemble, called here as Global data (GD) is sorted in the increasing order 

of wave heights (Hi)  

2) Now, the lowest 15% of the Global data and the highest 15% of the Global data is 

carved out.  

3) The remaining 70% of Global data, which is called as curtailed data is randomized 

for application of soft computing techniques. 

4) The curtailed data is again divided into two parts 80% and 20% for training and 

testing respectively.  

5) The case I: Below the range, data is introduced in the testing data for prediction of 

the performance of emerged perforated SBW. 

6) Case II: Beyond the range, data is introduced in the testing data for prediction of the 

performance of emerged perforated SBW. 

7) Also the conventional data segregation of 70:30 and corresponding prediction is 

undertaken for the randomized Global data (GD) 

5.2 RESULTS AND DISCUSSION OF Ru/Hi PREDICTION OF 

SEMICIRCULAR BREAKWATER USING DIFFERENT SOFT COMPUTING 

MODELS FOR DIMENSIONAL INPUT PARAMETERS 

In the current study the prediction of relative wave run-up parameter is done for 

dimensional input parameters i.e., Hi, T, S, D, R, d and hs. The conventional data 

segregation was done as 70% for training and 30% for testing and the corresponding 

prediction is undertaken. The prediction of the relative wave run-up parameter by using 

ANN, ANFIS, GA-ANFIS, and PSO-ANFIS was carried out successfully.  

The training and testing of ANN model for prediction of relative wave run-up parameter 

are carried out. The best ANN architecture for the available data sets is determined on 

a trial and error basis with respect to the error metrics. The ANN network was designed 

for 7 inputs and single output the relative wave run-up parameter. The ANN with a 

single hidden layer consisting of 11 neurons in it predicted the Ru/Hi very well with R-
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value 0.9810 and 0.8095 for training and testing respectively. Table 5.2 represents the 

optimal parameters for the ANN model arrived in the study. 

 

In order to improve this result, ANFIS was employed. The ANFIS model with fuzzy 

C-means clustering is adopted with the input membership function for each input 

variable is ‘gaussmf’ and the output membership function type is 'linear' for sugeno 

systems. Fuzzy C-means clustering constructs a fuzzy inference system (FIS) with 7 

inputs and single output the relative wave run-up parameter. Although several 

combinations of the models were tried altering the exponent of partition matrix’ the 

ANFIS model training and testing did not improve in the case of dimensional 

parameters. Table 5.2 represents the optimal parameters arrived in the study for the 

ANFIS model. ANFIS predicted the Ru/Hi parameter for dimensional input parameters 

with an improvement in the R-value of training but, for testing, it is similar to ANN 

prediction as seen in Table 5.3.  

 

Further, the ANFIS was optimized with GA and PSO techniques individually. The 

model parameters set were crossover rate as 0.7, mutation rate as 0.4 and selection 

pressure as 8. In the case of GA-ANFIS model the prediction of Ru/Hi did not improve 

the correlation coefficient value of ANFIS, it is found to be 0.9822 for training and 

0.8075 for testing. The population size was varied from 10 to 100, and the number of 

iterations was also altered and among the different combinations tried better results 

were obtained when the population size is set to 90 and iterations is set to 7000. Table 

5.2 represents the optimal parameters arrived in the study for GA-ANFIS model. 

 

Whereas, in the case of PSO-ANFIS model the prediction of Ru/Hi improved with R-

value of 0.9836 and 0.8149 for training and testing respectively. Here the population 

size is varied from 10 to 100, and the number of iterations is also varied, and best results 

were obtained when the population size is set to 100 and iterations is set to 1000.  The 

other model parameters set were inertia weight 0.4 cognitive acceleration (c1)=2, social 

acceleration (c2)=2. Among the four models employed the PSO-ANFIS model well 

predicted the Ru/Hi parameter with the highest R-value and least error RMSE= 0.1497. 
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If we look into the Nash Sutcliffe efficiency of PSO-ANFIS model it is found to be the 

highest among all the four models i.e., 0.5870. However, the model efficiency of 58% 

is not highly appreciable in the prediction of (Ru/Hi). Table 5.2 represents the optimal 

parameters arrived in the study for PSO-ANFIS model. 

 

The scatter plot for the individual model is as seen in Fig 5.1 and among the scatter 

index of all the four models it is best for the PSO-ANFIS. The performance of each 

model is presented in Table 5.3, and it is found that PSO improved the ANFIS model 

result whereas GA did not. However, the hybrid methods consumed time when the 

population size and number of iterations were increased. The PSO-ANFIS model has a 

slight overestimation of values being positively biased. Also, the R=0.8149 of PSO-

ANFIS is better than the ANFIS and GA-ANFIS models. The scatter index of PSO-

ANFIS being 37.30 is better than 38.06 (ANFIS) and 38.25 (GA-ANFIS). Hence the 

application of PSO to ANFIS improved the training of the ANFIS model and finally a 

better prediction is possible reducing the root mean square error compared to the other 

three models considered. The Fig.5.3  shows the comparison of predicted Ru/Hi by 

ANN, ANFIS, GA-ANFIS, PSO-ANFIS models for the case of dimensional input 

parameters with observed values. 

                       

                     (a) ANN model                                            (b) ANFIS model 
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                   (c) GA-ANFIS model                                   (d) PSO-ANFIS model                 

 

Fig. 5.2 Scatter plot of predicted versus actual values of Ru/Hi for different 

models with dimensional input parameters  

 

 

Fig. 5.3 Comparison of predicted Ru/Hi by ANN, ANFIS, GA-ANFIS, PSO-

ANFIS models for the case of dimensional input parameters with observed 

values 
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Table 5.1 Optimal parameters of different models for dimensional input 

parameters 

Model Parameters Values 

ANN Number of neurons 11 

 Epochs 8 

ANFIS Partition matrix 1.8 

 Minimum improvement factor 0.001 

 Number of clusters 9 

GA-ANFIS Population size  90 

 Number of generations  7000 

PSO-ANFIS Number of iterations  1000 

 Number of Particles  100 
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Table 5.2 Error metrics for different soft computing models for dimensional input parameters in the case of 750 data points for 

predicting relative wave run-up parameter  

 

Input 

form   

 

 

 

Error 

Metrics 

Soft computing models 

ANN ANFIS (FCM) GA-ANFIS PSO-ANFIS 

Train Test Train Test Train Test Train Test 

D
im

en
si

o
n
al

 

 

R 0.9810 

 

0.8095 0.9838     0.8097 0.9822 

 

0.8075 

 

0.9836 

 

0.8149 

 

RMSE 0.0488 

 

0.1502 0.0449 

 

0.1527 

 

0.0469 

 

0.1535 0.0450 

 

0.1497 

 

NSE 0.9618 

 

0.5620 0.9677 0.5470 

 

0.9647 0.5425 

 

0.9675 

 

0.5648 

 

SI 10.75 

 

37.42 9.88 

 

38.06 

 

10.33 

 

38.25 

 

9.92 

 

37.30 

 

BIAS -0.0044 0.0499 8.19185E

-09 

0.0542 

 

-2.328E-05 

 

0.5425 

 

-0.0009 

 

0.0517 
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5.3 RESULTS AND DISCUSSION OF Ru/Hi PARAMETER PREDICTION OF 

SEMICIRCULAR BREAKWATER USING DIFFERENT SOFT COMPUTING 

MODELS FOR NON-DIMENSIONAL INPUT PARAMETERS 

In the present study the prediction of relative wave run-up parameter (Ru/Hi) is done 

for non-dimensional input parameters i.e., Hi/gT2, d/gT2, S/D, hs/d and R/Hi obtained 

from dimensional analysis using Buckingham’s π-theorem. The conventional data 

segregation is done as 70% for training and 30% for testing and the corresponding 

prediction is undertaken. The prediction of Ru/Hi by ANN, ANFIS, GA-ANFIS and 

PSO-ANFIS models is carried out successfully and compared as in Fig 5.5. 

The ANN model is trained with 5 inputs and one output relative wave run-up parameter 

and tested to predict the relative wave run-up parameter. The best ANN architecture for 

the available data sets is arrived on a trial and error basis based on the error metrics. 

Table 5.4 represents the optimal parameters arrived in the study for the ANN model. 

The ANN with a single hidden layer consisting of 7 neurons in it predicted the Ru/Hi 

very well with higher R=0.9467, with least RMSE=0.0874, higher NSE=0.8694, 

SI=20.41whereas, there is a positive bias of 0.0343. Among the four models employed 

the ANN prediction is found best, as seen in the error metrics of Table 5.5.   

The ANFIS model predicted Ru/Hi parameter did not improve the ANN model results 

hence, needed further improvement. In order to improve the ANN model result, ANFIS 

was employed. The FCM-ANFIS model with the input membership function for each 

input variable is ‘gaussmf’ and the output membership function type is 'linear' for 

sugeno systems. Altering the exponent of the partition matrix ‘m’ from 1.1 to 2.2 the 

ANFIS model training and testing did not improve in this case. Fuzzy C-means 

clustering constructs a FIS with 5 inputs and single output the relative wave run-up 

parameter. Table 5.4 represents the optimal parameters arrived in the study for the 

ANFIS model.   

Two hybrid models are developed i.e GA-ANFIS and PSO-ANFIS. The optimization 

techniques GA and PSO are individually clubbed to ANFIS and prediction are 

compared. The optimal parameters for each algorithm used in the study are tabulated 

in Table 5.4. The model parameters set in GA were crossover rate as 0.7, mutation rate 
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as 0.4 and selection pressure as 8. The other model parameters set in PSO were inertia 

weight 0.4 cognitive acceleration (c1)=2, social acceleration (c2)=2. The performance 

of each model is presented in Table 5.5, and it is found that GA and PSO improved the 

ANFIS model result.  

However, the hybrid methods consumed time when the population size and number of 

iteration is increased. From Table 5.5 as seen the NSE of GA-ANFIS model being 81% 

is higher compared to ANFIS and PSO-ANFIS models with a very small 

underestimation of values happened being negatively biased. Also, the testing 

R=0.9149 of  GA-ANFIS is better than the ANFIS and PSO-ANFIS models. The scatter 

index of GA-ANFIS being 24.12 is better than 27.15 (ANFIS) and 31.20 (PSO-ANFIS). 

Hence the application of GA to ANFIS improved the training of the ANFIS model and 

a better prediction is possible reducing the root mean square error. However, among 

the four models employed the ANN model best predicted the Ru/Hi parameter.  

 

 

                 

                    (a) ANN model                                              (b) ANFIS model 
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               (c) GA-ANFIS model                                        (d) PSO-ANFIS model             

Fig. 5.4 Scatter plot of predicted versus actual values of Ru/Hi for different 

models with non-dimensional input parameters 

Table 5.3 Optimal parameters of different models for non-dimensional input 

parameters 

Model Parameters Values 

ANN Number of neurons 7 

 Epochs 50 

ANFIS Partition matrix 2 

 Minimum improvement factor 0.001 

 Maximum iterations 25 

 Number of clusters 9 

GA-ANFIS Population size  30 

 Number of generations  7000 

PSO-ANFIS Number of iterations  1000  

 Number of Particles  80  
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Table 5.4 Error metrics for different soft computing models for non-dimensional input parameters in the case of 750 data points 

for predicting relative wave run-up parameter 

 

 

Input 

form   

 

 

Error 

Metrics 

Soft computing models 

 

       ANN 

ANFIS (FCM)  

    GA-ANFIS 

 

   PSO-ANFIS 

Train Test Train Test Train Test Train Test 

N
o
n

-d
im

en
si

o
n

a
l 

R 0.9662 0.9467 0.9227     0.9026     0.9718 0.9149 0.9249 0.9107 

RMSE 0.0652 0.0874 0.0975 0.1162 0.0595 0.1032 0.0961 0.1336 

NSE 0.9334 0.8694 0.8513 0.7690 0.9444 0.8178 0.8555 0.6950 

SI 12.94 20.41 19.34 27.15 11.82 24.12 19.07 31.20 

BIAS 0.0013 0.0343 -2.167E-09 0.0495 0.0293 -0.0002 0.0002 0.0827 
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Fig. 5.5 Comparison of predicted Ru/Hi by ANN, ANFIS, GA-ANFIS, PSO-ANFIS 

models for the case of non-dimensional input parameters with observed values 

 

5.4 RESULTS AND DISCUSSION OF Ru/Hi PREDICTION OF 

SEMICIRCULAR BREAKWATER USING DIFFERENT SOFT COMPUTING 

MODELS FOR DIMENSIONAL AND NON-DIMENSIONAL INPUT 

PARAMETERS FOR BELOW THE DATA RANGE PREDICTION 

As proposed in the present study an attempt to estimate relative wave run-up parameter 

(Ru/Hi) using dimensional input parameters for below the data ranges of training data 

is carried out. The data division can be found in Section 5.1.1 and four soft computing 

models i.e., ANN, ANFIS, GA-ANFIS, PSO-ANFIS are employed. The ANN model 

predicted the Ru/Hi parameter with an R-value of 0.9720 and 0.9713 for training and 

testing respectively for 12 neurons set in a hidden layer at epoch 3. And ANFIS model 

predicted the Ru/Hi parameter with an R-value of 0.9715 and 0.9634 for training and 

testing respectively a partition matrix m=1.4 and the number of clusters in the available 

data was 6. The application of GA to ANFIS did not improve the results of ANFIS as 

the R-value of 0.9671 and 0.5249 for training and testing respectively were found. This 

is a poor prediction. There was no improvement in the results in spite of varying the 

population size and increasing the iterations. An attempt was also done to change the 

crossover percentage and mutation rate however, the results of GA-ANFIS did not 

improve on prediction say poor generalization. Further, the application of PSO-ANFIS 

failed to predict the Ru/Hi parameter. 
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Also, an attempt to estimate relative wave run-up parameter (Ru/Hi) using non-

dimensional input parameters for below the data ranges of training data is carried out 

in the study. The data division can be found in Section 5.1.1 and four soft computing 

models i.e., ANN, ANFIS, GA-ANFIS, PSO-ANFIS are employed. The ANN model 

predicted the Ru/Hi parameter with an R-value of 0.9511 and 0.7469 for training and 

testing respectively for 10 neurons set in a hidden layer at epoch 18. And ANFIS model 

predicted the Ru/Hi parameter with an R-value of 0.7750 and 0.7116 for training and 

testing respectively a partition matrix m=1.4 and the number of clusters in the available 

data was 6. The application of GA to ANFIS improved the results of ANFIS training 

with the R-value of 0.8967 whereas for testing it was 0.6755 thus prediction is not 

satisfactory. There was no improvement in the results in spite of varying the population 

size, increasing the iterations and mutation. Further, the application of PSO-ANFIS also 

did not show any improvement over the results of ANFIS with the R-value of 0.7702 

and 0.6253 for training and testing respectively in the prediction of the Ru/Hi parameter. 

5.5 RESULTS AND DISCUSSION OF Ru/Hi PREDICTION OF 

SEMICIRCULAR BREAKWATER USING DIFFERENT SOFT COMPUTING 

MODELS FOR DIMENSIONAL AND NON-DIMENSIONAL INPUT 

PARAMETERS FOR BEYOND THE DATA RANGE PREDICTION 

As proposed in the present study an attempt to estimate relative wave run-up parameter 

using dimensional input parameters beyond the data ranges of training is carried out. 

The data division can be found in Section 5.1.1. and four soft computing models i.e., 

ANN, ANFIS, GA-ANFIS, PSO-ANFIS are employed. Among which the GA-ANFIS 

failed to predict the Ru/Hi. Whereas, the prediction of the other three models is 

reasonably good with the testing R-value of 0.9214, 0.9651 and 0.9515 in the case of 

ANN, ANFIS, PSO-ANFIS respectively with the respective training R being 0.9734, 

0.9731, 0.9733. Which shows that PSO did not improve the ANFIS training result and 

the prediction is not satisfactory.   

Similarly, the study to estimate relative wave run-up parameter using non-dimensional 

input parameters for beyond the data ranges of training is carried out using the same 

four models and data segregation may be referred to in Section 5.1.1. The ANN 
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predicted the Ru/Hi parameter well for training with an R-value of 0.9617 and poor for 

testing with R=0.6597 shows purely the overfitting of the model. The ANFIS poorly 

predicted the Ru/Hi parameter with very low R-value positively correlated in the case 

of training and negatively correlated in the case of testing. Further, the application of 

optimization techniques GA and PSO to ANFIS improved the Ru/Hi prediction with 

testing R-value of 0.8550 and 0.9712 respectively which is better than ANN. 

5.6 CLOSURE  

The estimation of relative wave run-up parameter (Ru/Hi) is vital for the design of the 

crest level of the breakwater. An approach to predict the relative wave run-up parameter 

(Ru/Hi) on emerged semicircular breakwater for conventional data range has been 

carried out in the present study. The study presents four different soft computing models 

i.e., ANN, ANFIS, GA-ANFIS, and PSO-ANFIS for estimating the Ru/Hi parameter for 

dimensional and non-dimensional input parameters. In the case of dimensional input 

parameters, Ru/Hi predicted by PSO-ANFIS gave better results whereas, ANN 

prediction was better in the case of non-dimensional input parameters. However, if you 

compare the relative wave run-up parameter prediction made for dimensional and non-

dimensional input parameters, the prediction made by the non-dimensional input 

parameters are better compared to the dimensional input parameters. Amongst the two 

cases under consideration, the ANN predictions have the least error in the prediction of 

Ru/Hi parameter. This shows that individual method like ANN also performs well in 

comparison with the hybrid models in the prediction of hydraulic response of emerged 

seaside perforated semicircular breakwater. Also, the prediction of Ru/Hi of the 

emerged semicircular breakwater for below and beyond the data range used for training 

has been attempted. However, this did not give satisfactory results hence details are not 

included in the thesis. This shows that such a prediction in the case of relative wave 

run-up parameter is not satisfactory for the emerged seaside perforated semicircular 

breakwater with the available dataset.  
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CHAPTER 6 

PREDICTION OF STABILITY PARAMETER 

 

GENERAL 

The stability parameter (W/γHi
2) of emerged seaside perforated semicircular 

breakwaters has not been much explored, and there is a research gap, particularly in the 

application of soft computing techniques to predict W/γHi
2. All of the possible available 

literature regarding stability parameter has been discussed in chapter 2. The present 

chapter includes the data segregation, prediction of W/γHi
2 using different soft 

computing models as well as the assessment of the models. 

6.1 STABILITY PARAMETER (W/γHi
2) OF SEMICIRCULAR 

BREAKWATER 

The breakwaters are continuously subjected to highly vulnerable environments; to 

provide adequate service during their designed life and to provide safety against 

different modes of failure the stability analysis needs to be performed. A cost-effective 

structure is to be designed as the cost of the structure varies exorbitantly depending on 

the depth of water, wave climate, and foundation conditions. The design and the 

breakwater position is highly influenced by these factors. By determining the stability 

parameter we can arrive at the critical (minimum) weight required for safeguarding the 

structure stability, thus minimizing the total expenditure of the breakwater installation. 

The sliding stability parameter of the emerged seaside perforated semicircular 

breakwater is expressed as a non-dimensional parameter as, 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
𝑊

𝛾𝐻𝑖
2                            (6.1) 

Where, 

      W- Weight added  

      ϒ- Specific weight 

      Hi-Incident wave height 

The current study focusses on predicting the stability parameter of the emerged seaside 

perforated semicircular breakwater using the inputs influencing the stability in two 

forms.  
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6.1.1 Data segregation for prediction of the Stability parameter 

For the data segregation for the typical case of wave height (Hi) the entire ensemble, 

called here as Global data (GD) is sorted in the increasing order of wave height (Hi). 

With the conventional procedure of data segregation 70:30 for training and testing the 

prediction of stability parameter is done for the entire set of data with of 389 points, the 

perforation diameter being constant 0.016 m. The two sets of input parameters are : 

(1) Dimensional (Hi, T, S, R, d, hs)  

(2) Non-dimensional (Hi /gT2, d/hs, S/D) 

The dimensional parameters being wave height (Hi), wave period (T), the spacing 

between the perforations (S), the radius of the semicircular caisson (R), water depth (d), 

structure height (hs).  The dimensionless parameters wave steepness (Hi/gT2), relative 

depth parameter (d/hs), and perforation spacing to the diameter of the perforation (S/D), 

is used to predict the stability parameter (W/γHi
2). The experimental parameter ranges 

are as in Table 3.3. 

6.2 RESULTS AND DISCUSSION OF W/γHi
2 PARAMETER PREDICTION OF 

SEMICIRCULAR BREAKWATER USING DIFFERENT SOFT COMPUTING 

MODELS FOR DIMENSIONAL INPUT PARAMETERS 

The prediction of stability parameter for an emerged seaside perforated semicircular 

breakwater using different soft computing models ANN, ANFIS, GA-ANFIS and PSO-

ANFIS for dimensional input parameters proposed has been performed here. In this 

case, a data length of 389 points is used and a conventional procedure of data 

segregation of 70% for training and 30% for testing is used in all the four models. The 

optimal parameters of each of the model have been presented in Table 6.2. Also, Table 

6.3 presents the results using different models.  

 

By trial and error approach, the best architecture for ANN was found to be 6-13-1 with 

R=0.9189 for training and lower RMSE of 0.0572 and for testing R=0.8642 with 

slightly higher RMSE of 0.0875. As seen in Table 6.3 the efficiency of training was 

83% with lower scatter of prediction and efficiency of testing was 74% with higher 

scatter of prediction.  
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The application of ANFIS model with the partition matrix of 1.8, with the minimum 

improvement factor of 0.001, maximum iterations 25 and number of clusters set to 13 

slightly improved the R-value of ANFIS prediction to 0.9215 and 0.8828  for 

training and testing respectively. Accordingly, the scatter index reduced, RMSE 

improved, scatter index improved over ANN results. Whereas, the result obtained for 

ANFIS is more negatively biased than ANN. 

 

To further improve the ANFIS model results GA was applied whose objective function 

is to reduce the RMSE of the prediction of Ru/Hi parameter of the semicircular 

breakwater.  In the FCM the number of clusters is set as 13 and with m=1.8 the 

prediction was optimal with least RMSE, for a maximum FCM iteration of 25 and 

minimum improvement of 1e-5. Population size and the maximum number of 

iterations, by changing these two most sensitive parameters of the GA, the training of 

the ANFIS model are done arriving at the optimal parameters as in Table 6.1. The model 

parameters set were crossover rate as 0.7, mutation rate as 0.4 and selection pressure as 

8. However, among the four models, GA-ANFIS had the highest value of R being 

0.9221 for training and 0.8874 for testing with the lowest RMSE 0.0572 and 0.0823 

respectively. The NSE for training was 6% better than that for testing and scatter plot 

for GA-ANFIS was better than the other three models with the least scatter index of 

34.92.  

The PSO-ANFIS model was employed to check if could predict better than the GA-

ANFIS model. PSO-ANFIS is run for various population size 10, 15, 20, 25, 30, 35, 

40, 50, 100, and finally set for a population size of 50. The maximum number of 

iterations was set to 5000. The training of the ANFIS model is done arriving at the 

optimal parameters for PSO as in Table 6.2. The other model parameters set were inertia 

weight 0.4 cognitive acceleration (c1)=2, social acceleration (c2)=2. The scatter index 

is highest among all the four models for PSO-ANFIS testing with the value of 41.91 

with slightly higher underestimated bias of -0.0190. Also, the PSO-ANFIS had a higher 

error with poor correlation with the measured value as seen in Table 6.3.  

In the prediction of stability parameter using all the four models the best was the 

prediction made by GA-ANFIS. The Fig.6.1 shows the scatter plot of individual models 
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and Fig.6.2 shows the comparison of best prediction of each employed model in the 

prediction of stability parameter (W/γHi
2) of the semicircular breakwater for 

dimensional input parameters. 

 

Table 6.1 Optimal parameters of different models for dimensional input 

parameters 

 

Model Parameters Values 

ANN Number of neurons 13 

 Epochs 4 

ANFIS Partition matrix 1.8 

 Minimum improvement factor 0.001 

 Maximum iterations 25 

 Number of clusters 13 

GA-ANFIS Population size  90 

 Number of generations  12000 

PSO-ANFIS Number of iterations  5000 

 Number of Particles  50 
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Table 6.2 Error metrics for different soft computing models for dimensional input parameters in the case of 389 data points  

for predicting stability parameter 

 

 

 

 

Input 

form  

 

 

 

 

Error  

Metrics  

Soft computing models 

ANN ANFIS  GA-ANFIS PSO-ANFIS 

Train Test Train Test Train Test Train Test 

 

D
im

en
si

o
n
al

 

R 0.9189 0.8642 0.9215 0.8828 0.9221 0.8874 0.9220 0.8284 

RMSE 0.0572 0.0875 0.0565 0.0845 0.0572 0.0823 0.0562 0.0987 

NSE 0.8309 0.7438 0.8350 0.7614 0.8309 0.7737 0.8363 0.6741 

SI 25.54 37.16 25.23 35.85 25.54 34.92 25.13 41.91 

BIAS 0.0043 -0.0095 -0.0019 -0.0215 0.0043 -0.0060 -0.0008 -0.0190 
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                       (a) ANN model                                       (b) ANFIS model  

 

                       (c) GA-ANFIS model                          (d) PSO-ANFIS model     

 Fig. 6.1 Scatter plot of predicted versus actual values of W/γHi
2 parameter of 

different models for dimensional input parameters 

 

 

Fig. 6.2 Comparison of predicted W/γHi
2 by ANN, ANFIS, GA-ANFIS, PSO-

ANFIS models for the case of dimensional input parameters with observed values 



 

 

127 

 

6.3 RESULTS AND DISCUSSION OF W/γHi
2 PARAMETER PREDICTION OF 

SEMICIRCULAR BREAKWATER USING DIFFERENT SOFT COMPUTING 

MODELS FOR NON-DIMENSIONAL INPUT PARAMETERS 

The prediction of stability parameter for an emerged seaside perforated semicircular 

breakwater using different soft computing models ANN, ANFIS, GA-ANFIS and PSO-

ANFIS for non-dimensional input parameters proposed has been performed here. In 

this case, a data length of 389 points is used and a conventional procedure of data 

segregation of 70% for training and 30% for testing is used in all the four models. The 

optimal parameters of each of the model have been presented in Table 6.3. Also, Table 

6.4 presents the results using different models.  

 

Among different trials of neurons set in the hidden layer the best architecture for ANN 

was found to be 6-2-1 with R=0.8087 for training with lower RMSE of 0.0930 and for 

testing R=0.7340 with slightly higher RMSE of 0.1214. It also shows that the efficiency 

of training was 64% with relatively lower scatter of prediction and the model efficiency 

of testing was 50% with higher scatter of prediction.  

 

The application of ANFIS model with the partition matrix of 2, with the minimum 

improvement factor of 0.001, maximum iterations 25 and number of clusters set to 13 

slightly improved the R-value of ANN prediction to 0.8406 and 0.7447 for training and 

testing respectively. Accordingly, the model efficiency of training improved to 70% 

and testing to 53% with improvement in the respective scatter index as seen in Table 

6.4.  

Further improvement of ANFIS prediction is expected by the application of GA and 

PSO. In both cases, the employment of optimization techniques did not significantly 

improve the prediction of the ANFIS model. In the case of GA-ANFIS model though 

the training-value slightly improved to 0.8488 and the testing R=0.7353 did not 

improve in spite of several trials of varying the population size and the iteration number. 

The GA-ANFIS model parameters were set as crossover rate to 0.7, mutation rate as 

0.4 and selection pressure as 8. Among the four models, PSO-ANFIS had the better 

value of R is 0.8459 for training and 0.7452 for testing. But the RMSE of 0.0838 and 
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0.1188 for training and testing was similar to that in the case of ANFIS, there is no 

significant decrease in the error. Also, the NSE for training and testing was close to that 

of ANFIS. The PSO-ANFIS model parameters were set with inertia weight 0.4 

cognitive acceleration (c1)=2, social acceleration (c2)=2.  

Fig.6.3 shows the scatter plot of individual models and Fig.6.4 shows the comparison 

of the best prediction of each employed model in the prediction of stability parameter 

(W/γHi
2) of the semicircular breakwater. 

      

 

                         (a) ANN model                                             (b) ANFIS model  

 

 

 

              (c) GA-ANFIS model                                     (d) PSO-ANFIS model     

 

Fig. 6.3 Scatter plot of predicted versus actual values of W/γHi
2 for different 

models with non-dimensional input parameters 
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Table 6.3 Optimal parameters of different models for non-dimensional input 

parameters 

Model Parameters Values 

ANN Number of neurons 2 

 Epochs 4 

ANFIS Partition matrix 2 

 Minimum improvement factor 0.001 

 Maximum iterations 25 

 Number of clusters 13 

GA-ANFIS Population size  20 

 Number of generations  3000 

PSO-ANFIS Number of iterations  1000 

 Number of Particles  30 



130 

 

Table 6.4 Error metrics for different soft computing models for non-dimensional input parameters in the case of 389 data points  

for predicting stability parameter 

 

 

Input 

form 

 

 

Error 

Metrics 

Soft computing models 

ANN 

ANFIS (FUZZY C-

MEANS 

CLUSTERING) 

GA-ANFIS PSO-ANFIS 

Train Test Train Test Train Test Train Test 

N
o
n

- 
d

im
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o
n

a
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R 
0.8087 0.7340 0.8406 0.7447 0.8488 0.7353 0.8459 0.7452 

RMSE 
0.0930 0.1214 0.0851 0.1178 0.0830 0.1197 0.0838 0.1188 

NSE 
0.6495 0.5076 0.7066 0.5365 0.7205 0.5211 0.7155 0.5287 

SI 
41.55 51.52 38.01 49.99 37.10 50.81 37.43 50.40 

BIAS 
-0.0057 -0.0228 1.596E-07 -0.0205 -4.70E-05 -0.0236 0.0009 -0.0225 
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Fig. 6.4 Comparison of predicted W/γHi
2 by ANN, ANFIS, GA-ANFIS, PSO-

ANFIS models for the case of non-dimensional input parameters with observed 

values 

6.4 CLOSURE 

In the case of W/γHi
2 prediction performance of ANN, ANFIS, GA-ANFIS, PSO-

ANFIS models for dimensional input parameters and non-dimensional input parameters 

did not improve significantly over the individual models. The data length being 389 

could be one of the reasons for not getting accurate predictions in both cases. In the 

case of dimensional input parameters, the training R-value is reasonably good but 

testing R-value is low in case of all the four models. Whereas, in the case of non-

dimensional input parameters, the training and testing R-value is found similar in the 

case of ANFIS, GA-ANFIS, and PSO-ANFIS. However, test R values are low in case 

of all the four models. The model was also run for different non-dimensional input 

parameters to predict the W/γHi
2 but, the results are better only when the input is limited 

to Hi/gT2, d/hs, and S/D; these parameters being the most important parameters in 

estimating the stability parameter with the available data set. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

7.1 SUMMARY 

 

The present study of developing soft computing models to predict the hydraulic 

responses of emerged seaside perforated semicircular breakwater by the conventional 

approach of data segregation has been successfully carried out. Also, it is first of its 

kind wherein certain ranges of data is excluded from training the models and the 

prediction of hydraulic responses is done and compared with the conventional 

approach. The possibility of such a prediction is checked for both below the range 

prediction as well as beyond the range prediction. Such a study is attempted to facilitate 

the coastal engineers in the prediction of hydraulic responses of emerged seaside 

perforated semicircular breakwaters to be installed in similar site conditions. Especially 

when physical model data is available only for certain ranges, the hydraulic responses 

for lower and higher wave ranges could be predicted. Several different cases considered 

are discussed in the previous chapters based on which it is found that GA-ANFIS gave 

good results in most of the cases.  

 

7.2 CONCLUSIONS 

 

Based on the present study the following conclusions are drawn: 

 Reflection coefficient prediction performance of ANN, ANFIS, GA-ANFIS 

AND PSO-ANFIS models are tested for 1274 data points shows that ANN 

produced the best prediction in the case of dimensional parameters, however, in 

the case of non-dimensional input parameters GA-ANFIS outperformed the 

rest. 

 In the study a comparison of two ANFIS methods i.e., subtractive clustering and 

fuzzy c-means clustering in the reflection coefficient prediction shows that 

fuzzy c-means clustering works better in most of the cases.  
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 The reflection coefficient prediction for ‘below the data range’ approach is close 

to the prediction by a conventional approach using ANN and ANFIS models in 

case of dimensional input parameters and hence such a prediction is acceptable. 

The study found that below the data range prediction made by the FCM-ANFIS 

model (0.9904) is better than the ANN model (0.9875) and SC-ANFIS model 

(0.9887). 

 The reflection coefficient prediction made by SC-ANFIS model (0.9922) for 

‘conventional below the data range’ approach in the case of dimensional input 

parameters is better than the ANN model (0.9903) and FCM-ANFIS model 

(0.9922). 

 The reflection coefficient prediction for ‘beyond the data range’ approach is 

close to the prediction made by a conventional approach using ANN and ANFIS 

models in case of dimensional input parameters and hence such a prediction is 

acceptable. The study found that beyond the data range prediction made by the 

FCM-ANFIS model (0.9911) outperformed the ANN model (0.9879) and SC-

ANFIS model (0.9906). 

 In the case of non-dimensional input parameters, the prediction of reflection 

coefficient using ANN and ANFIS is found to improve with the application of 

hybrid methods like GA-ANFIS and PSO-ANFIS. 

 The reflection coefficient prediction for ‘below the data range’ approach is close 

to the prediction made by a conventional approach using ANN, ANFIS, GA-

ANFIS and PSO-ANFIS models in case of non-dimensional input parameters 

hence such a prediction is acceptable. The study found that ‘below the data 

range prediction’ in the case of non-dimensional input parameters made by the 

GA-ANFIS model (0.9058) was better than the other models. 

 The reflection coefficient prediction made by GA-ANFIS model (0.8865) for 

‘conventional below the data range’ approach in the case of non-dimensional 

input parameters was better than the other three models. 

 The reflection coefficient prediction for ‘beyond the data range’ approach did 

not give satisfactory results compared to the prediction made by the 

conventional approach in the case of non-dimensional input parameters using 
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ANN, ANFIS, GA-ANFIS, and PSO-ANFIS models and hence such a 

prediction was not acceptable. 

 The reflection coefficient prediction made by GA-ANFIS model (0.9261) for 

‘conventional beyond the data range’ approach in the case of non-dimensional 

input parameters was better than the other three models. 

 Relative wave runup parameter prediction done by using non-dimensional input 

parameters gave better results compared to the dimensional input parameters in 

the case of the conventional data segregation method. 

 Relative wave runup parameter predicted by GA-ANFIS is found to give better 

R=0.8201, compared to the other three model R-values in the case of 

dimensional parameters. 

 Relative wave runup parameter predicted by ANN is found to outperform the 

other three models in the case of non-dimensional input parameters shows that 

even individual models are capable of good prediction. However, the runup 

parameter prediction in the case of below and beyond the data range prediction 

was not found satisfactory. 

 Stability parameter prediction using dimensional input parameters 

outperformed the prediction done using non-dimensional input parameters, 

using all four soft computing models. 

 Stability parameter predicted by GA-ANFIS was found to be slightly higher 

compared to the other three models in the case of dimensional parameters. 

 Stability parameter prediction by PSO-ANFIS was found to be better than the 

other three models in the case of non-dimensional parameters. 

 Among the two optimization techniques applied to ANFIS, GA- ANFIS gave 

better results in most of the cases considered.  
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7.3 CONTRIBUTIONS FROM THE STUDY 

 

- This study verified the possibility of prediction of hydraulic responses of semicircular 

breakwater subjected to regular waves using four soft computing models. 

- Prediction of hydraulic responses of semicircular breakwater using four soft 

computing models for both below and beyond the data ranges is made. 

 

7.4 LIMITATIONS AND FUTURE SCOPE 

 

- The major limitation of the study is models are site specific and can be applied only 

if similar site conditions exist. 

- The data segregation could be done with respect to the frequency of the data. 

- There is a scope to carry out a similar study for semicircular breakwater employing 

other soft computing techniques like Extreme Learning Machines, Ant Colony 

optimization or Firefly optimization algorithm could be explored. 
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