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ABSTRACT
The frequency assignment problem is the problem of assigning frequencies to transmitters in an

optimal way and with no interference. Interference can occur if transmitters located sufficiently

close to each other receive close frequencies. The frequency assignment problem motivates

many graph coloring problems. Motivated by this, we study radio k-coloring and k-distance

coloring of graphs. In this thesis, we study radio k-coloring of paths, trees, Cartesian product

of graphs and corona of graphs; k-distance coloring of trees, cycles and cactus graphs. A radio

k-coloring of a simple connected graph G is an assignment f of positive integers (colors) to

the vertices of G such that for every pair of distinct vertices u and v in G, | f (u)− f (v)| is at

least 1+ k− d(u,v). The span of f , rck( f ), is the maximum color assigned by f . The radio

k-chromatic number rck(G) is min{rck( f ) : f is a radio k-coloring of G}. If d is the diameter

of G, then a radio d-coloring and the radio d-chromatic number are referred as a radio coloring

and the radio number rn(G) of G. Since finding the radio k-chromatic number is highly non-

trivial, it is known for very few graphs and that too for some particular values of k only. For

k ≥ 6, we determine the radio k-chromatic number of path Pn for 2n+1
7 ≤ k ≤ n−4 if k is odd

and for 2n−4
5 ≤ k ≤ n−5 if k is even. For some classes of trees, we obtain an upper bound for

the radio k-chromatic number when k is at least the diameter of the tree. Also, for the same,

we give a lower bound which matches with the upper bound when k and the diameter of the

tree are of the same parity. Further, we determine the radio d-chromatic number of larger trees

constructed from the trees of diameter d in some subclasses of the above classes. We determine

the radio number for some classes of the Cartesian product of complete graphs and cycles.

We obtain a best possible upper bound for the radio k-chromatic number of corona G�H of

arbitrary graphs G and H. Also, we obtain a lower bound and an improved upper bound for the

radio number of Qn�H and P2p+1�H. A k-distance coloring of a simple connected graph G

is an assignment f of positive integers to the vertices of G such that no two vertices at distance

less than or equal to k receive the same color. If α is the maximum color assigned by f , then f

is referred as a k-distance α-coloring. The k-distance chromatic number χk(G) is the minimum

α such that G has a k-distance α-coloring. We determine the k-distance chromatic number for

trees and cycles. Also, we determine the 2-distance chromatic number of cactus graphs.

Keywords: radio k-coloring; span; radio k-chromatic number; radio coloring; radio number; k-distance

coloring; distance coloring; k-distance chromatic number; 2-distance coloring; 2-distance chromatic

number
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CHAPTER 1

INTRODUCTION

“Graph coloring is arguably the most

popular subject in graph theory.”
- Noga Alon (1993)

Graphs can be used to model many types of relations and processes in physical, bio-

logical, social, and information systems. Many of the real-world practical problems

can be represented by graphs. Beginning with the origin of the Four Color Problem

in 1852, the field of graph colorings has developed into one of the most popular areas

of Graph Theory. Many graph colorings are motivated by the frequency assignment

problem. Due to the rapid growth of wireless networks and the relatively scarce radio

spectrum, the importance of the frequency assignment problem is growing significantly.

Motivated by this, we discuss two graph coloring problems, namely, radio k-coloring of

graphs and k-distance coloring of graphs. Before going deep into these areas, we give

some basic definitions of Graph Theory in the following section. We have referred the

textbook “Introduction to Graph Theory" by West (1996) for all the terminologies and

definitions.

1.1 BASIC DEFINITIONS OF GRAPH THEORY

A simple graph G is an ordered pair (V (G),E(G)), where V (G) is a non-empty finite

set and E(G) is a subset of the set of all two-element subsets of V (G). The elements of

V (G) are called as vertices of G and the elements of E(G) as edges of G. Unless there

1



is no ambivalence in the graph under discussion, V (G) and E(G) are represented by V

and E, respectively. The order and the size of a graph are the number of vertices and

the number of edges in G, respectively. An edge e = {u,v} ∈ E is simply represented

by uv, and u and v are called as the end vertices of e. An edge e is said to be incident

on the vertices u and v if u and v are the end vertices of e. Two vertices u and v are said

to be adjacent in G if uv is an edge of G. If a vertex u is adjacent to a vertex v, then

v is called a neighbor of u. The degree of a vertex v in a graph is the number of edges

incident on v, and is denoted by degG(v) or simply deg(v). A vertex of degree one is

called a pendant vertex or a leaf. A Graph H is said to be a subgraph of a graph G if

the vertex set and the edge set of H are subsets of V (G) and E(G), respectively. If H

is a subgraph of G, then we say that G contains H. For a vertex v in G, G− v denotes

the graph with vertex set V (G)\{v} and edges in G− v are all those edges of G which

are not incident on v. An induced subgraph G[S] of G induced by S is a subgraph of G

obtained by deleting the vertices in V (G)\S from G. The complement of a graph G is

the graph G with vertex set V (G) =V (G) and two vertices in G are adjacent if and only

if they are not adjacent in G.

A walk in a graph G is an alternating sequence of vertices and edges, starting and

ending with vertices, and every edge is incident on vertices preceding and succeeding

to it. The number of edges in a walk is called the length of the walk. If a walk starts

and ends at the same vertex, then it is called a closed walk. If all the edges of a walk are

distinct, then the walk is said to be a trail. If all the vertices of a walk are distinct, then it

is called a path. If a path has u and v as end vertices, then it is called a u,v-path. If all the

vertices of a closed walk are distinct (except starting and end vertices), then it is called

a cycle. A graph G is said to be connected if there exists a path between every pair of

vertices. A disconnected graph is a graph which is not connected. The distance between

two vertices u and v in a graph G is the length of a shortest u,v-path if it exist, otherwise

the distance is ∞, and it is denoted by dG(u,v) or simply d(u,v). In a connected graph G,

the eccentricity eG(v) (or simply e(v)) of a vertex v is the max{d(v,u) : u ∈V (G)}. The

2



diameter, diam(G), and the radius, rad(G), of a connected graph G are the maximum

and the minimum of the set {e(v) : v ∈ V (G)}, respectively. The center of a graph is

the subgraph induced y the vertices of minimum eccentricity. The girth g(G) of G,

containing a cycle, is the length of the shortest cycle in G. A subset of the vertex set

of a graph is said to be an independent set if no two vertices in it are adjacent. The

independence number α(G) of G is the maximum size of an independent set in G. A

subset of the vertex set of a graph is said to be a clique if every pair of vertices in it are

adjacent. The clique number ω(G) of G is the maximum size of a clique in G.

A graph is said to be a path if its vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the order. Path of order n is denoted by

Pn. A graph is said to be a cycle if its vertices can be placed on a circle so that two

vertices are adjacent if and only if they appear consecutively along the circle. Cycle of

order n is denoted by Cn. A complete graph of order n, denoted by Kn, is the graph in

which every pair of vertices are adjacent. A tree is a connected graph without cycles.

A rooted tree is a tree with one vertex u chosen as root. For each vertex v, let P(v) be

the unique v,u-path. The parent of v is its neighbor on P(v); its children are its other

neighbors. The level of a vertex L(v) is the distance of it from the root. The height of

the rooted tree is max{L(v) : v ∈ V (T )}. A tree is said to be a caterpillar if deleting

all the pendant vertices of the tree results a path graph. An m-distant tree is a tree T

in which there is a path P of maximum length (this path is referred as the central path)

such that every vertex in V (T )\V (P) is at distance at most m from P. A unicyclic graph

is a connected graph containing exactly one cycle. A cactus graph is a connected graph

in which no two cycles have a common edge. A graph G is said to be bipartite if its

vertex set can be partitioned into two independent sets X and Y . The partition {X ,Y} is

called a bipartition of G. A complete bipartite graph is a bipartite graph in which every

vertex in one partite set is adjacent to every vertex in the other partite set, and is denoted

by Km,n, where m and n are the cardinalities of the partite sets. The complete bipartite

graph K1,n is known as a star graph. For an integer r ≥ 2, an r-partite graph or simply

3



multipartite graph is a graph whose vertex set can be partitioned into r independent

sets. A complete r-partite graph or simply complete multipartite graph is an r-partite

graph such that every vertex in every partite set is adjacent to all the vertices in all the

other partite sets. An r-regular graph is a graph in which the degree of every vertex

is r. An n-dimensional hypercube Qn is the graph whose vertices are the n-tuples with

entries in {0,1} and two vertices are adjacent if they differ in exactly one position.

Two graphs G and H are said to be isomorphic if there exists a bijection f from

V (G) to V (H) such that two vertices u and v of G are adjacent if and only if f (u)

and f (v) are adjacent in H. If G and H are isomorphic, then we denote G ∼= H. An

automorphism of G is an isomorphism from G to G. A graph G is said to be a vertex-

transitive graph if for every pair u,v ∈ V (G), there is an automorphism that maps u

to v. The hypercube Qn is a vertex-transitive graph. The Cartesian product G�H of

two graphs G and H is the graph with vertex set V (G)×V (H) and two vertices (u,x)

and (v,y) in G�H are adjacent if u = v and xy ∈ E(H), or x = y and uv ∈ E(G). It is

easy to see that diam(G�H) is diam(G)+diam(H). The direct product G×H of two

graphs G and H is the graph with vertex set V (G)×V (H) and two vertices (u,x) and

(v,y) are adjacent if uv ∈ E(G) and xy ∈ E(H). Let G and H be two graphs with vertex

sets {v1,v2,v3, . . . ,vn} and {u1,u2, u3, . . . ,um}, respectively. Then the corona G�H

of G and H is the graph with vertex set V (G)
⋃( n⋃

i=1
{v j

i : 1 ≤ j ≤ m}
)

and edge set

E(G)
⋃( n⋃

i=1
{viv

j
i : 1 ≤ j ≤ m}

)⋃( n⋃
i=1
{vl

iv
j
i : ulu j ∈ E(H)}

)
. Equivalently, G�H is

the graph obtained by taking one copy of G and for each vertex vi of G, one copy of

H, say Hi, and joining vi to each and every vertex of Hi by an edge. It is easy to see

that G�H 6∼= H�G if and only if G 6∼= H. Also, diam(G�H) = diam(G)+ 2. For a

positive integer r, the rth power of a graph G, denoted by Gr, is the graph with vertex

set V (G) and vertices u and v in Gr are adjacent if and only if dG(u,v)≤ r.

A coloring of a graph is an assignment of positive integers to the vertices of it. A

coloring f is said to be a proper coloring if no two adjacent vertices receive the same
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color. If k is the maximum color used in a proper coloring f of G, then f is called a

k-coloring of G. The chromatic number χ(G) of G is the minimum k such that G has a

k-coloring. A graph G is said to be a planar graph if it has a drawing without crossing

of edges.

1.2 THE FREQUENCY ASSIGNMENT PROBLEM

The Frequency Assignment Problem (FAP) emerges in a wide variety of real-world

situations. Several such problems, perhaps modeled as an optimization problem in

the following manner. Given a collection of transmitters to be assigned operating fre-

quencies, obtain an assignment that meets multiple constraints, and that minimizes the

value of a given objective function. FAP has applications in wireless networks. Due

to rapid growth of wireless networks and to the relatively scarce radio spectrum, the

importance of FAP is growing significantly. The first FAP emerged from the discovery

that transmitters receiving the identical or closely related frequencies had the potential

to interfere with each other. Consequently, the primary approach to FAP is to mini-

mize or eradicate this potential interference. In this strategy, the significant constraints

are the operating bandwidth of the transmitters, the band of the electromagnetic spec-

trum which the transmitters are capable of using, and the total number of frequencies

available for assignment to the transmitters. An easy approach to minimize the inter-

ference is to assign different transmitters distinct non-interfering frequencies. Such an

approach to frequency assignment is tied up a lot of the spectrum but persisted viable

so long as the growth of the available spectrum kept pace with the growth in demand

of it. The growth of the usable spectrum slowed while the demand of it grown expo-

nentially. This turn of the event forced to consider different approaches. A type of

constraint specifies that if the distance between a pair of transmitters is less than a des-

ignated minimum number of miles, then some combinations of assignments to this pair

of transmitters are excluded. Such constraints employ both frequency and distance sep-
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aration to decrease interference and are called frequency-distance constraints. An FAP

in which the interference limiting constraints are all frequency-distance constraints is

called a frequency-distance constrained FAP. One more type of interference restrict-

ing constraint stipulates that some specific combinations of assignments are forbidden

for a given couple of transmitters. Such constraints employ only frequency separation

to alleviate interference and are called frequency constraints. An FAP in which the

interference restricting constraints are all frequency constraints is called a frequency

constrained FAP.

In 1980, Hale has modeled FAPs as optimization problems. Most of them are graph

coloring problems. The modeling is as follows. Transmitters are represented by vertices

of a graph and those vertices corresponding to transmitters which are very close are

joined by edges. Frequency assignment to transmitters is nothing but assignment of

positive integers to the vertices of the corresponding graph.

1.2.1 Radio kkk-coloring of Graphs

In 2001, Gary Chartrand, David Erwin, Frank Harary, and Ping Zhang have considered

a variation of FAP, in which maximum interference occurs among transmitters corre-

sponding to adjacent vertices. Interference decreases as distance between transmitters

increases. Assigning frequencies to transmitters is same as assigning positive integers

(colors) to the vertices. To get efficient assignment, we should assign colors to the

vertices so that the adjacent vertices’ colors differ a lot and other vertices’ colors dif-

ference decreases as distance increases. Also, we have to minimize the maximum color

assigned.

Definition 1.2.1. (Chartrand et al., 2001) For a connected graph G and an integer

k, 1 ≤ k ≤ diam(G), a radio k-coloring of G is an assignment f of positive integers

(referred as colors) to the vertices of G such that for every pair u and v of distinct

vertices in G, | f (u)− f (v)| ≥ 1+ k− d(u,v). The maximum color assigned by f is

called the span rck( f ) of f .
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Definition 1.2.2. (Chartrand et al., 2001) The radio k-chromatic number rck(G) of a

connected graph G is the minimum of spans over all radio k-colorings of G. A radio

k-coloring with span rck(G) is referred as a minimal radio k-coloring of G.

Example 1.2.3. A radio 3-coloring of a graph with span 16 is given in Figure 1.1. A

minimal radio 3-coloring of the same graph is given in Figure 1.2.
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Figure 1.1 A radio 3-coloring of a graph
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Figure 1.2 A minimal radio 3-coloring of the graph Figure 1.1

For some special values of k, there are special names of radio k-colorings and as

well as the radio k-chromatic numbers in the literature which are given in Table 1.1.

Radio k-coloring of graphs is a generalization of proper coloring and L(2,1)-coloring

(introduced by Griggs and Yeh (1992)) of graphs. In a graph G, two vertices u and v

are said to be antipodal vertices if d(u,v) = diam(G). In a radio (d− 1)-coloring of a

graph, antipodal vertices can receive the same colors.

Few researchers have studied radio k-coloring of graphs as Multi-level distance la-

beling of graphs. Also, few authors have considered the radio k-coloring is a mapping

of non-negative integers satisfying the same condition. The radio k-chromatic number

obtained by considering radio k-coloring as a mapping of non-negative integers is one
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kkk Name of the coloring Radio k-chromatic number rrrccckkk(((GGG)))

1 Proper coloring Chromatic number χ(G)

2 L(2,1)-coloring λ -number or L(2,1)-number λ (G)

diam(G) Radio coloring Radio number rn(G)

diam(G)−1 Antipodal coloring Antipodal number ac(G)

diam(G)−2 Nearly antipodal coloring Nearly antipodal number ac′(G)

Table 1.1 Radio k-colorings and the radio k-chromatic numbers for some special values
of k

less than that obtained by considering radio k-coloring as a mapping of positive inte-

gers. Also, if the minimum color r assigned by a radio k-coloring f is greater than 1,

then a coloring g defined by g = f − r+1 is a radio k-coloring whose span is r−1 less

than that of f . So, we assume that every radio k-coloring of a graph assigns the color 1

to at least one vertex of the graph.

1.2.2 kkk-distance Coloring of Graphs

In 1969, Florica Kramer and Horst Kramer have introduced k-distance coloring of

graphs as a generalization of proper coloring of graphs. In recent times, some authors

have studied k-distance coloring as an FAP.

Definition 1.2.4. (Kramer and Kramer, 1969b) Given a connected graph G and a posi-

tive integer k, a k-distance coloring of G is an assignment f of positive integers (referred

as colors) to the vertices of G such that no two vertices at distance less than or equal to

k receive the same color. If α is the maximum integer assigned by f , then f is referred

as a k-distance α-coloring.

Definition 1.2.5. (Kramer and Kramer, 1969b) The k-distance chromatic number χk(G)

is the smallest α for which G has a k-distance α-coloring.

Example 1.2.6. A 3-distance 7-coloring of a graph is given in Figure 1.3. It is easy to

see that 7 is the 3-distance chromatic number of the graph.
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Figure 1.3 A 3-distance 7-coloring of a graph

1.3 LITERATURE SURVEY

In this section, we give a detailed literature survey for radio k-coloring of graphs and k-

distance coloring of graphs. There are two survey papers on radio k-coloring of graphs,

one is by Chartrand and Zhang (2007) and the other by Panigrahi (2009). Also, a litera-

ture survey of radio k-coloring can be found in the dynamic survey of graph labelings by

Gallian (2019). A survey paper of k-distance coloring of graph is published by Kramer

and Kramer (2008). Throughout this section and in the subsequent chapters, unless we

mention, graph means a connected graph.

1.3.1 Radio kkk-coloring

In the introductory paper, Chartrand et al. (2001) have studied the radio numbers of

some well known graphs, namely, cycles, complete multipartite graphs and graphs with

diameter 2. They have computed the radio numbers of Cn for n ≤ 8, and have given

bounds for other values of n. Also, they have found the radio number of a complete t-

partite graph Kn1,n2,n3,...,nt as (t−1)+
t
∑

i=1
ni. Further, they have proved that n≤ rn(G)≤

2n− 2 for any graph G of order n and diameter 2. For 1 ≤ k ≤ n− 1, Chartrand et al.

(2004) have proved that rck(Pn) is at the most k2+2k+1
2 if k is odd and at the most k2+2k+2

2

if k is even. Although, Chartrand et al. (2001) have defined radio k-coloring of a graph G

for k≤ diam(G), one can also see this problem for k> diam(G), as it is useful to find the

radio k-chromatic number of larger graphs containing G. Kchikech et al. (2007) have

determined the radio k-chromatic number of path Pn for k≥ n as (n−1)k− 1
2n(n−2)+1

if n is even and (n−1)k− 1
2(n−1)2 +2 if n is odd, and conjectured as below.
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Conjecture 1.3.1. (Kchikech et al., 2007) For any integer k ≥ 5,

lim
n→∞

rck(Pn) =


k2+2k+1

2 i f k is odd,

k2+2k+2
2 i f k is even.

Liu and Zhu (2005) have determined the radio number of Pn for n≥ 4 as 2p2−2p+2 if

n= 2p and 2p2+3 if n= 2p+1. Khennoufa and Togni (2005) have found the antipodal

number of Pn as 2p2− 4p+ 5 if n = 2p and 2p2− 2p+ 3 if n = 2p+ 1. Kola and

Panigrahi (2009a) have determined the nearly antipodal number of Pn as 2p2− 6p+ 8

if n = 2p and 2p2−4p+6 if n = 2p+1. Kola and Panigrahi (2009b) have determined

the radio (n− 4)-chromatic number of Pn as n2−8n+25
2 when n is odd and given an

upper bound for the same as n2−8n+26
2 when n is even. Das et al. (2017) have improved

the lower bound for the radio k-chromatic number of infinite path, towards Conjecture

1.3.1, as k2+k+2
2 . In an attempt to prove Conjecture 1.3.1, Kola and Panigrahi (2013)

have improved the upper bound of rck(Pn) for different intervals of n ≤
⌊

k2+2k
2

⌋
as

below.

Theorem 1.3.2. (Kola and Panigrahi, 2013) For k ≥ 7 and 4≤ s≤ b k+1
2 c,

rck(Pk+s)≤


k2+2s+1

2 i f k is odd,

k2+2s+2
2 i f k is even.

Theorem 1.3.3. (Kola and Panigrahi, 2013) For any odd k ≥ 5,

rck(Pn)≤


k2+k+2

2 i f 3k+1
2 < n≤ 5k−1

2 ,

k2+k+2s+4
2 i f (5+2s)k+1

2 ≤ n≤ (7+2s)k−1
2 , s = 0,1,2, . . . , k−5

2 .
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Theorem 1.3.4. (Kola and Panigrahi, 2013) For any even k ≥ 6,

rck(Pn)≤


k2+k+2

2 i f n = 3k+2
2 ,

k2+k+2s+4
2 i f (3+2s)k+2s+4

2 ≤ n≤ (5+2s)k+2s+4
2 , s = 0,1,2, . . . , k−4

2 .

Further, Kola and Panigrahi (2013) have re-conjectured Conjecture 1.3.1 as below.

Conjecture 1.3.5. (Kola and Panigrahi, 2013) For any integer k ≥ 5 and n ≥ n0,

rck(Pn) = n0, where n0 =
k2+2k+1

2 if k is odd and n0 =
k2+2k+2

2 if k is even.

For a tree T of order n, Liu (2008) has showed that rn(T )≥ (n−1)(diam(T )+1)+

1−2w(T ), where w(T ) is the weight of T , defined by w(T ) = min
u∈V (T )

{
∑

v∈V (T )
d(u,v)

}
.

Also, she has given a lower bound for the radio number of spider graph (tree with at

most one vertex of degree more than two) and characterized the spider graphs achieving

this bound. Given integers m≥ 2 and r≥ 1, the complete m-ary tree of height r, denoted

by Tr,m, is a rooted tree such that each non-pendant vertex has m children and all the

pendant vertices are at distance r from the root. Li et al. (2010) have found the radio

number of complete m-ary trees. Marinescu Ghemeci (2010) has determined the radio

number of caterpillars in which all non-pendant vertices have degree 3. Also, she has

determined the radio number of the tree obtained by attaching r pendant vertices to

each pendant vertex of star K1,n, by an edge. A binomial tree Bn consists of two copies

of Bn−1 such that the root of one is the leftmost child of the root of the other, where

B0 is the one vertex tree. Binary Fibonacci trees BFT0 and BFT1 are paths P1 and P2

respectively. For n ≥ 2, a binary Fibonacci tree BFTn is a rooted tree in which the left

subtree and the right subtree are BFTn−1 and BFTn−2. Fibonacci trees FT0 and FT1

are path P1. For n ≥ 2, a Fibonacci tree FTn consists FTn−1 and FTn−2 such that the

root of FTn−2 is the leftmost child of the root of FTn−1. An uniform caterpillar is a

caterpillar in which all the non-pendant vertices are of the same degree. Reddy and

Iyer (2011) have given upper bounds for the radio number of binomial trees, binary
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Fibonacci trees, Fibonacci trees and uniform caterpillars. Benson et al. (2013) have

determined the radio number of all graphs of order n and diameter n−2 (these graphs

are caterpillars having exactly 3 pendant vertices). Kola and Panigrahi (2015b) have

determined the radio number of some classes of caterpillars. Also, Kola and Panigrahi

(2014) have found the radio number of some m-distant trees. A banana tree B(n,r)

is a tree obtained by making adjacent one pendant vertex from each of n copies of a

(r−1)-star to a new vertex. A firecracker tree, denoted by F(n,r), is the tree obtained

by taking a path Pn and n copies of (r−1)-star, and making each vertex of Pn adjacent

to a pendant vertex in the corresponding (r− 1)-star. Bantva et al. (2015) have found

the radio number of symmetric trees (trees in which all the non-pendant vertices have

the same degree and all the pendant vertices have the same eccentricity). Also, Bantva

et al. (2017) have determined the radio number of banana trees, Fire cracker trees and

some classes of caterpillars.

Chartrand et al. (2001) have computed the radio numbers of Cn for n≤ 8 and proved

that the radio number of Cn, n ≥ 6, is at least 3
⌈n

2

⌉
− 1. Also, they have obtained an

upper bound for the radio number of the same as n2−2n+1
4 if n is odd and n2−2n+4

4 if n

is even. Liu and Zhu (2005) have improved the bounds for rn(Cn) and proved that the

radio number of cycle Cn, n ≥ 3, is n−2
2 φ(n)+ 1 if n is even and n−1

2 φ(n) if n is odd,

where φ(n) is equal to s+1 if n = 4s+1 and s+2 if n = 4s+ r, r = 0,2,3. Chartrand

et al. (2000) have proved that ac(Cn) = 2s(s+1)+1, where n = 4s+2 and in the other

cases they have given lower bounds. Juan and Liu (2006) have showed that the lower

bounds for ac(Cn) given by Chartrand et al. (2000) are exact for n ≡ 1,3 (mod 4) and

for n≡ 0 (mod 4) conjectured as below.

Conjecture 1.3.6. (Juan and Liu, 2006) For any s≥ 1, ac(C4s) = 2s2.

Kola and Panigrahi (2013) have shown that if Conjecture 1.3.1 is true, then Con-

jecture 1.3.6 is also true. Karst et al. (2017) have given a lower bound for rck(Cn),

k > diam(Cn), as Φ(k,n)(n−2)
2 − n

2 + k+ 1 if n is even and Φ(k,n)(n−1)
2 if n is odd, where
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Φ(k,n) =
⌈3k−n+3

2

⌉
. Also, they have proved that the lower bound is exact when k =

diam(Cn)+1.

The generalized Petersen graph GP(n,r), n ≥ 3 and 1 ≤ r ≤
⌊n−1

2

⌋
, is a graph

with vertex set {u1,u2,u3, . . . ,un,v1,v2,v3, . . . ,vn} and edge set {uiui+1,uivi,vi,vi+r :

i = 1,2,3, . . . ,n}, where the subscripts are taken modulo n. Kola and Panigrahi (2011)

have determined the radio number of generalized Petersen graphs GP(n,1) when n ≡

0 (mod 4); n ≡ 1 (mod 4); n = 4m + 2 and m odd; n = 4m + 3 and m even; and

n = 4m + 3 and m ≡ 1,2 (mod 3). Zhang et al. (2019) have determined the radio

number of GP(n,2) when n = 4m+ 2 and they have obtained a lower bound for the

radio number of GP(4m,2). Kousar et al. (2015) have determined the radio number of

GP(n,3) for n≡ 4 (mod 6).

For the hypercube Qn, n ≥ 2, and k ≥ 2, Kchikech et al. (2008) have proved (2n−

1)k−2n−1(2n−3)+n−1≤ rck(Qn)≤ (2n−1)k−2n−1+2. Kola and Panigrahi (2010)

have improved the lower bound given by Kchikech et al. (2008) and proved that the

improved lower bound is sharp for the radio number. The radio number of hypercube

Qn is
(n+4

2

)
2n−1 + n

2 if n is even and
(n+3

2

)
2n−1 + n−1

2 if n is odd. Khennoufa and

Togni (2011) have determined the antipodal number ((2n−1−1)dn
2e+ε(n), where ε(n)

is 1 if n ≡ 0 (mod 4), else 0) of hypercube Qn. Kchikech et al. (2008) have given an

upper bound for the radio k-chromatic number of Cartesian product G�H of arbitrary

graphs as rck(G�H) ≤ χ(Hk)(rck(G)+ k− 1)− k+ 1. Also, they have given bounds

for rck(Pn�Pn) when k ≥ 2n−3. Jiang (2014) has completely found the radio number

of grid graph Pn�Pm by improving both the upper and lower bounds given by Kchikech

et al. (2008). The radio number of Pn�Pm is n2m+m2n
2 −mn−m− n+ 6 if both m and

n are even; n2m+m2n−m−n
2 −mn+ 2 if both m and n are odd; n2m+m2n−n

2 −mn− n+ 2

if m is odd and n is even. Kim et al. (2015a) have determined the radio number of

Pn�Km as mn2−2n+4
2 if n is even and mn2−2n+m+4

2 if n is odd. Martinez et al. (2011)

have determined the radio number of generalized prism graph Pn�Cm, for n = 1,2,3.

Morris-Rivera et al. (2015) have determined rn(Cn�Cn) as 2p3+4p2− p if n = 2p and
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is 2p3 + 4p2 + 2p+ 1 if n = 2p+ 1. Saha and Panigrahi (2013) have found the radio

number of toroidal grid Cm�Cn when at least one of m and n is even. Nazeer and Kousar

(2014) have proved that rn(P2�Pn) = 2n+4, n≥ 5 and rn(P2�K1,m) = 2m+7, m≥ 2.

For a graph G of order n and diameter d, Saha and Panigrahi (2015) have proved that⌈
rn(G)

2

⌉
≤ rn(G2)≤

⌊
rn(G)+n−1

2

⌋
if d is even and

⌈
rcd+1(G)

2

⌉
≤ rn(G2)≤

⌊
rcd+1(G)+n−1

2

⌋
if d is odd. Also, they have determined the radio number of G2 when G is an even order

graph of diameter d except for d
2 ≡ 0 (mod 4) and hence they have obtained the radio

number of Q2
n, square of the hypercube, when n 6≡ 0 (mod 4), and (Cm�Cn)

2, square

of the toroidal grid, when n+m 6≡ 0,5,7 (mod 8). For the square of paths, Liu and

Xie (2009) have determined the radio number as follows. If n ≡ 1 (mod 4) and n > 8,

then rn(P2
n ) =

⌊n
2

⌋2
+ 3, else rn(P2

n ) =
⌊n

2

⌋2
+ 2. Rao et al. (2018) have completely

determined the radio number of rth power of Pn. For 2 ≤ r ≤ n− 2, p =
⌊ n

2r

⌋
and

m = n− 2pr, the radio number of Pr
n is 2rp2 + 2 if m = 0 or m = 1 and n < 4r + 1;

2rp2 + 3 if m = 0 or m = 1 and n ≥ 4r + 1; 2rp2 + 2rp+m+ 1 if 2 ≤ m ≤ r + 1;

2rp2+2rp+m if m = r+1; and 2rp2+2rp+2r+2 if r+2≤m≤ 2r−1. Liu and Xie

(2004) have proved that the radio number of square of cycle C2
n is 2p2+5p+1

2 if n = 4p

and p is odd; 2p2+3p+2
2 if n = 4p and p is even; p2 + 5p+ 2 if n = 4p+ 2 and p is

odd; p2 +4p+2 if n = 4p+2 and p is even; p2 +2p+2 if n = 4p+1 and p is even;

p2+ p+1 if n = 4p+1 and p≡ 3 (mod 4); 2p2+9p+6
2 if n = 4p+3 and p≡ 0 (mod 4);

2p2+9p+6
2 if n = 4p+ 3 and p = 4m+ 2, m 6≡ 5 (mod 7); 2p2+7p+5

2 if n = 4p+ 3 and

p = 4m+1, m≡ 0,1 (mod 3); 2p2+7p+7
2 if n = 4p+3 and p = 4m+1, m≡ 2 (mod 3).

For the remaining cases, they have given upper and lower bounds. Nazeer et al. (2015)

have determined the antipodal number of C2
4p+2 as p2+ p if p is odd and p2+2p if p is

even. Sooryanarayana and Raghunath (2007) have determined the radio number of C3
n

for some classes of n.

For any list l chosen from {1,2,3, . . . ,bn
2c}, a circulant graph Cin(l) is a graph

on the vertices v1,v2,v3, . . . ,vn such that each vi, 1 ≤ i ≤ n, is adjacent to vi+ j and

vi− j (subscripts are taken modulo n) for every j in the list l. It is easy to see that
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Cr
n =Cin(1,2,3, . . . ,r). Kenneth et al. (2013) have determined the antipodal number of

Cin(1,2,3, . . . ,
⌊n

2

⌋
−1) as

⌈n
2

⌉
. Also, they have obtained upper bounds for the antipodal

number of circulant graphs Ci4n(1,2n), n ≥ 4; Ci3n(1,n), n ≥ 2; and Ci10n(1,2n), n ≥

1. Kang et al. (2016) have determined the radio number and the antipodal number

of Ci4mp+2m(1,2m) when m is even and they have given a lower bound for the radio

number of Ci4mp+2m(1,2m) when m is odd.

The wheel graph Wn (n≥ 3) consists of an n-cycle together with a center vertex that

is adjacent to all n vertices of the cycle. The generalized gear graph Jt,n is obtained

from the wheel Wn by replacing each edge on n-cycle by a path of length t +1, that is,

by introducing t-vertices between every pair of adjacent vertices on the n-cycle of the

wheel. Fernandez et al. (2008) have found the radio number for the wheel graph Wn and

gear graph J1,n. Rahim et al. (2012) have given an upper bound for the radio number

of generalized gear graph Jt,n when n ≥ 7 and t < n− 1. Later, Ali et al. (2012) have

given a lower bound for the radio number of generalized gear graph which matches with

the upper bound given by Rahim et al. (2012). A helm graph Hn is obtained from the

wheel Wn by attaching a vertex to each of the n vertices of the cycle of the wheel by an

edge. Rahim and Tomescu (2012) have determined the radio number of the helm graph

as rn(H3) = 13, rn(H4) = 21 and rn(Hn) = 4n+ 2 for every n ≥ 5. The middle graph

M(G) of a graph G is the graph such that V (M(G)) = V (G)∪E(G) and two vertices

are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and

the other is an edge incident on it. Bantva (2017) has determined the radio number of

M(Pn) for all n. Vaidya and Vihol (2012) have determined the radio number of M(Cn)

for all n.

For the radio number of a graph, the order of the graph is a trivial lower bound.

Sooryanarayana and Raghunath (2007) have characterized the graphs C3
n for which the

radio number is n. Niedzialomski (2016) has proved that the radio number for the Carte-

sian product of t copies of Kn is nt for n≥ 3 and 2≤ t ≤ n. Also, she has proved that the
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radio number of Hamming graph Kn1�Kn2�Kn3� . . .�Knr is
r

∏
i=1

ni if n1,n2,n3, . . . ,nr

are relatively prime.

Kola and Panigrahi (2015a) have given a lower bound for rck(G) of an arbitrary

graph G (see Theorem 1.4.4, page 22) and proved that the lower bound is sharp for

the radio number of cycle Cn. Using this lower bound, they have given a lower bound

for rck(Cn�Pm). Further, they have proved that the lower bound is exact for Cn�P2,

when n ≡ 1 (mod 4) and n ≡ 2 (mod 8). Das et al. (2017) have given a lower bound

technique for the radio k-chromatic number of a graph (see Theorem 1.4.3, page 21)).

Bantva (2019) has improved the lower bound technique of Das et al. (2017) for the

radio number. Saha and Panigrahi (2019) have given two algorithms to produce radio

k-colorings for general graphs. Using the algorithms, they have obtained minimal radio

k-colorings for several graphs and many values of k as given in Table 1.2.

Graphs Values of kkk Values of nnn

Cn,
diam(Cn) All n

6≤ n≤ 400
diam(Cn)−1 n≡ 1,2 (mod 4)

diam(Cn)−2 n≡ 2 (mod 4)

Cn�P2

diam(Cn�P2) n odd

6≤ n≤ 200
diam(Cn�P2)−1 n 6≡ 1 (mod 4)

diam(Cn�P2)−2 n≡ 2 (mod 4)

Cn�C4

diam(Cn�C4) n≡ 0 (mod 4)

6≤ n≤ 100
diam(Cn�C4)−1 n≡ 2,3 (mod 4)

diam(Cn�C4)−2 n≡ 1 (mod 4)

Table 1.2 The graphs and values of k for which minimal radio k-colorings are given by
Saha and Panigrahi (2019) using the algorithms

1.3.2 kkk-distance Coloring

As k-distance coloring is trivial for k ≥ diam(G), it is studied for k < diam(G). Since

k+1 is trivial lower bound for χk(G), Kramer and Kramer (1969a,b) characterized the
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graphs with χk (G) = k+1 as below.

Theorem 1.3.7. (Kramer and Kramer, 1969a,b) For any graph G, χk(G) = k+1 if and

only if G satisfies one of the following.

(i) |V (G)|= k+1.

(ii) G is a path of length greater than k.

(iii) G is a cycle of length multiple of k+1.

Fertin et al. (2003) have determined the k-distance chromatic number of two dimen-

sional grid Pm�Pn as
⌈
(k+1)2

2

⌉
. Also, they have determined the 2-distance chromatic

number of m-dimensional grid graph Pn1�Pn2�Pn3� . . .�Pnm as 2m + 1. Sevcikova

(2001) have found the exact value of χk(G) for triangular lattice G as
⌈

3(k+1)2

2

⌉
. Jacko

and Jendrol (2005) have determined the k-distance chromatic number of hexagonal lat-

tice as
⌈

3(k+1)2

8

⌉
if k is odd and

⌈
3
8

(
k+ 4

3

)2
⌉

if k is even. Jendrol and Skupien (2001)

have given an upper bound for the k-distance chromatic number of an arbitrary planar

graph as below.

Theorem 1.3.8. (Jendrol and Skupien, 2001) If G is a planar graph with maximum

degree ∆ and N = max{∆,8}, then

χk(G)≤ 3N +3
N−2

((N−1)k−1−1)+6.

Definition 1.3.9. For a non-negative integer r and a vertex v of a graph G, the graph

Gr
v denotes the subgraph of G induced by the vertices of G which are at distance less

than or equal to r from v.

The following result of Sharp (2007) gives a lower bound for the k-distance chro-

matic number of an arbitrary graph.
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Theorem 1.3.10. (Sharp, 2007) For any graph G and a positive integer k,

χk (G)≥


max

v∈V (G)

∣∣∣∣V (G
k
2
v

)∣∣∣∣ i f k is even,

max
v∈V (G)

∣∣∣∣V (G
k−1

2
v

)∣∣∣∣+1 i f k is odd.

Kramer and Kramer (1986) have given an upper bound for χ3 (G) of a bipartite

graph G with maximum degree ∆ as 2(1+∆(∆−1)). Also, they have proved that

χ3 (G)≤ 8 for a bipartite planar graph G with maximum degree ∆≤ 3.

Although, k-distance coloring is defined for all positive integers k, it is mostly stud-

ied for k = 2 and k = 3. For any planar graph G with maximum degree ∆, Wegner

(1977) has proved that χ2(G)≤ 8 if ∆≤ 3, and conjectured as below.

Conjecture 1.3.11. (Wegner, 1977) For any planar graph G with maximum degree ∆,

χ2 (G)≤


7 i f ∆ = 3,

∆+5 i f 4≤ ∆≤ 7,⌊3∆

2

⌋
i f ∆≥ 8.

The average degree of a graph G, denoted ad (G), is 1
|V (G)| ∑

v∈V (G)
deg(v). The max-

imum average degree of a graph G, denoted mad (G), is the maximum of ad (H) on

every subgraph H of G. Bonamy et al. (2011) have proved that χ2 (G) is ∆+1 for any

planar graph G with ∆ ≥ 5 and girth g(G) ≥ 12; ∆ ≥ 6 and g(G) ≥ 10; ∆ ≥ 8 and

g(G) ≥ 9. Also, Bonamy et al. (2014) have found the 2-distance chromatic number

of a graph with maximum degree ∆ ≥ 4 and maximum average degree less than 7
3 as

∆+1. Wong (1996) have given an upper bound for χ2(G) of planar graph G with max-

imum degree ∆ as 3∆+5. van den Heuvel and McGuinness (2003) have improved the

upper bound given by Wong (1996) for planar graph with maximum degree ∆ > 20 as
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2∆+25. For planar graphs with ∆≥ 241, Molloy and Salavatipour (2005) have proved

that χ2(G)≤ d5∆

3 e+25. For a planar graph G with girth at least 5, Dong and Lin (2016)

have improved the existing lower bound as χ2(G)≤ ∆(G)+8. Bu and Lv (2016) have

further improved the upper bound for χ2 (G) of a planar graph G without cycles of

length 3, 4 and 7 and ∆ ≥ 15 as ∆+ 4. For a planar graph G with maximum degree at

least 5 and girth 339, Dong and Xu (2017) have proved that χ2(G)≤ ∆+3. For a pla-

nar graph G, Zhu and Bu (2018) have proved that χ2(G)≤ 5∆(G)−7 if ∆(G)≥ 6 and

χ2(G) ≤ 20 if ∆(G) ≤ 5. Dong and Xu (2019) have proved that if G is a planar graph

without 4-cycle and 5-cycle, and ∆(G) ≥ 185760, then G is 2-distance (∆(G) + 2)-

colorable. Also, they have proved that, the upper bound ∆(G)+2 is best possible. Kim

et al. (2015b) have determined the 2-distance chromatic number of direct product of

two cycles and direct product of path and cycle.

1.4 LOWER BOUNDS FOR THE RADIO kkk-CHROMATIC NUM-

BER OF AN ARBITRARY GRAPH

In this section, we provide some basic results related to radio k-coloring of graphs. The

definition and the lemma below are first used by Khennoufa and Togni (2005). The

definition below, gives how much extra is the difference between any two consecutive

colors used in a radio k-coloring.

Definition 1.4.1. For a graph G of order n and a radio k-coloring f of G, let x1,x2,x3,

. . . ,xn be an ordering of vertices of G such that f (xi) ≤ f (xi+1), 1 ≤ i ≤ n−1. Define

εi = f (xi)− f (xi−1)− (1+ k−d(xi,xi−1)), 2≤ i≤ n.

We refer the sums
n
∑

i=2
d(xi,xi−1) and

n
∑

i=2
εi as distance sum and epsilon sum, respec-

tively. Lemma below gives the span of a radio k-coloring in terms of k, order of the

graph, distance sum and epsilon sum.

19



Lemma 1.4.2. Let f be a radio k-coloring of G and let x1,x2,x3, . . . ,xn be an order-

ing of vertices of G such that f (x1) ≤ f (x2) ≤ f (x3) ≤ ·· · ≤ f (xn) and εi = f (xi)−

f (xi−1)− (1+ k−d(xi,xi−1)), 2≤ i≤ n. Then

rck( f ) = (n−1)(1+ k)−
n

∑
i=2

d(xi,xi−1)+
n

∑
i=2

εi +1.

Proof: f (xn)− f (x1) =
n

∑
i=2

[ f (xi)− f (xi−1)]

=
n

∑
i=2

[1+ k−d(xi,xi−1)+ εi]

= (n−1)(1+ k)−
n

∑
i=2

d(xi,xi−1)+
n

∑
i=2

εi.

Since f (x1) = 1, rck( f ) = f (xn) = (n−1)(1+ k)−
n
∑

i=2
d(xi,xi−1)+

n
∑

i=2
εi +1.

For a given k and a graph G, the term (n−1)(k+1)+1 is constant. To get a lower

bound, we need to maximize
n
∑

i=2
d(xi,xi−1)−

n
∑

i=2
εi, precisely, we have to maximize the

distance sum simultaneously minimizing the epsilon sum. For a subset S of the vertex

set of a graph G, let N(S) denote the set of all vertices of G adjacent to at least one vertex

of S. Das et al. (2017) have given a lower bound technique for the radio k-chromatic

number of a graph G as in Theorem 1.4.3. Since we use Theorem 1.4.3 and its proof

frequently in the subsequent chapters, we give a proof of it.

Theorem 1.4.3. (Das et al., 2017) If f is a radio k-coloring of a graph G, then

rck( f )≥ |Dk|−2p+2
p

∑
i=0
|Li|(p− i)+α +β , (1.4.1)

where Dk and Li’s are defined as follows. If k = 2p+1, then L0 = V (C), where C is a

maximal clique in G. If k = 2p, then L0 = {v}, where v is a vertex of G. Recursively

define Li+1 = N(Li)\(L0∪L1∪L2∪·· ·∪Li) for i = 0,1,2, . . . , p−1. Let Dk = L0∪L1∪
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L2 ∪ ·· · ∪Lp. The minimum and the maximum colored vertices among the vertices of

Dk are in Lα and Lβ respectively.

Proof: Let x1,x2,x3, . . . ,x|Dk| be an ordering of vertices of Dk such that f (xs)< f (xs+1).

For 1 ≤ s < |Dk|, if xs ∈ Li and xs+1 ∈ L j, then d(xs,xs+1) ≤ i+ j if k is even and

d(xs,xs+1) ≤ i+ j + 1 if k is odd. Now, by the radio k-coloring condition, f (xs+1)−

f (xs)≥ 1+k−d(xs,xs+1)≥ 2p+1−(i+ j). Let g be a mapping from {1,2,3, . . . , |Dk|}

to {0,1,2, . . . , p} defined by g(s) = i if xs ∈ Li. Now,

f (x|Dk|)− f (x1) =
|Dk|

∑
s=2

[ f (xs)− f (xs−1)]

≥
|Dk|

∑
s=2

[2p+1− (g(s)+g(s−1))]

= |Dk|−1+
|Dk|

∑
s=2

[(p−g(s))+(p−g(s−1))]

= |Dk|−1− (p−g(1))− (p−g(|Dk|))+2
|Dk|

∑
s=1

[p−g(s)]

= |Dk|−1−2p+g(1)+g(|Dk|)+2
|Dk|

∑
s=1

[p−g(s)]

= |Dk|−1−2p+2
p

∑
i=0
|Li|(p− i)+α +β ,

where α and β are such that x1 ∈ Lα and x|Dk| ∈ Lβ . Since f (x1) ≥ 1, rck( f ) ≥

f (x|Dk|)≥ |Dk|−2p+2
p
∑

i=0
[p− i]+α +β .

For a given graph and a radio k-coloring of it, α and β are at most p. To get a better

lower bound, we have to choose L0 such that |Dk| and
p
∑

i=0
|Li|(p− i) are maximum.

Kola and Panigrahi (2015a) have given a lower bound for rck(G) of an arbitrary graph

G described as below.

Theorem 1.4.4. (Kola and Panigrahi, 2015a) Let G be a graph of order n. If d(x,y)+
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d(x,z)+d(y,z)≤M for every triple x, y and z of G, then

rck(G)≥



(n−1)(3(k+1)−M)
4 +1 i f n is odd and M 6≡ k (mod 2),

(n−1)(3(k+1)−M+1)
4 +1 i f n is odd and M ≡ k (mod 2),

(n−2)(3(k+1)−M)
4 + k−diam(G)+2 i f n is even and M 6≡ k (mod 2),

(n−2)(3(k+1)−M+1)
4 + k−diam(G)+2 i f n is even and M ≡ k (mod 2).

The minimum positive real number M such that d(x,y)+ d(x,z)+ d(y,z) ≤ M for

any three vertices of G is called as the triameter of G. If M is the triameter of G, then

Theorem 1.4.4 gives a better lower bound for rck(G). The following proposition gives

an upper bound for the radio k-chromatic number of a graph.

Proposition 1.4.5. (Khennoufa and Togni, 2005) For a graph G of order n having

diameter d and for integers k and l with 1≤ k≤ l ≤ d, rcl(G)≤ rck(G)+(n−1)(l−k).

The proposition below gives bounds for the radio number of a graph.

Proposition 1.4.6. (Khennoufa and Togni, 2005) For a graph G of order n and having

diameter d, n≤ rn(G)≤ (n−1)d +1.

1.5 SOME IMPORTANT ASSUMPTIONS IN THE THESIS

1. In all chapters, except Chapter 5, a graph means a connected graph.

2. In Chapter 5, whenever we consider G�H, the first graph G is always connected
and the second graph H need not be connected.

3. The symbols k, p,r,n and m are positive integers.

4. For a radio k-coloring f , we refer the condition | f (u)− f (v)| ≥ 1+k−d(u,v) as
the radio k-coloring condition.

5. The minimum color used by any radio k-coloring of a graph is 1.
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6. By connecting two graphs G and H at u and v, u ∈ V (G), v ∈ V (H), we mean
adding an edge between u and v.

7. In Chapter 4, moving on a cycle, unless we mention, we mean clockwise.

1.6 CHAPTERIZATION

The thesis consists of seven chapters of which Chapter 1 contains introduction and de-
tailed literature survey of radio k-coloring and k-distance coloring of graphs. The next
five chapters are the contributed chapters, and the last chapter is dedicated for conclu-
sion and future scope.

In Chapter 2, we study radio k-coloring of path Pn. We show that the upper bounds
given by Kola and Panigrahi (2013) are exact for k+4 ≤ n ≤ 7k−1

2 if k ≥ 7 is odd and
for k+4≤ n≤ 5k+4

2 if k > 7 is even. In Chapter 3, we give an upper bound for the radio
k-chromatic number of some classes of trees when k is at least the diameter of the tree.
Also, we show that the upper bound is exact when the diameter of the tree and k are
of the same parity. Further, we determine the radio d-chromatic number of infinitely
many trees and graphs of large diameter constructed from the trees of diameter d in
some subclasses of the above classes. In Chapter 4, we determine the radio number
for the Cartesian product of complete graph Kn and cycle Cm when n even and m odd;
any n and m ≡ 6 (mod 8); and n odd and m ≡ 5 (mod 8). In Chapter 5, we first
obtain a best possible upper bound for the radio k-chromatic number of corona G�H

of arbitrary graphs. Later, we improve the upper bound for the radio number of Qn�H

and P2p+1�H, and also obtain a lower bound for the same. In Chapter 6, we determine
the k-distance chromatic number of trees and cycles. Also, we determine the 2-distance
chromatic number of cactus graphs.
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CHAPTER 2

THE RADIO kkk-CHROMATIC NUMBER OF
PATH PPPnnn FOR SOME INTERVALS OF nnn

“It would not be hard to present the history of graph theory as

an account of the struggle to prove the four color conjecture,

or at least to find out why the problem is difficult.”
- William Thomas Tutte (1967)

Paths are the simplest class of graphs. For a path Pn, the radio k-chromatic number is

known for k ∈ {n− 1,n− 2,n− 3}. In this chapter, in an attempt towards Conjecture

1.3.5, we determine the radio k-chromatic number of Pn for 2n−4
5 ≤ k≤ n−5 if k is even

and 2n+1
7 ≤ k ≤ n−4 if k is odd.

2.1 PRELIMINARIES

To obtain lower bounds for the radio k-chromatic number of the paths, we use the lower

bound technique for radio k-coloring given by Das et al. (2017). For convenience, we

state Theorem 1.4.3 again.

Theorem 1.4.3. (Das et al., 2017) If f is a radio k-coloring of a graph G, then

rck( f )≥ |Dk|−2p+2
p

∑
i=0
|Li|(p− i)+α +β , (1.4.1)

where Dk and Li’s are defined as follows. If k = 2p+1, then L0 = V (C), where C is a

maximal clique in G. If k = 2p, then L0 = {v}, where v is a vertex of G. Recursively
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define Li+1 = N(Li)\(L0∪L1∪L2∪·· ·∪Li) for i = 0,1,2, . . . , p−1. Let Dk = L0∪L1∪

L2 ∪ ·· · ∪Lp. The minimum and the maximum colored vertices among the vertices of

Dk are in Lα and Lβ respectively.

From the proof of Theorem 1.4.3 (see page 21), the right hand side of Equation

(1.4.1) is a lower bound for the induced subgraph G[Dk]. In a minimal radio k-coloring

f of G, it is not necessary that the colors 1 and span( f ) are used to color a vertex in Dk.

So, we have the theorem below.

Theorem 2.1.1. Let G be a graph, and Li and Dk be as in Theorem 1.4.3. If f is a radio

k-coloring of G, and λmin ∈ Lα and λmax ∈ Lβ respectively are the minimum and the

maximum colors among the vertices of Dk, then

λmax−λmin +1≥ |Dk|−2p+2
p−1

∑
i=0
|Li|(p− i)+α +β .

For path Pn, if k is odd, we choose L0 as two adjacent vertices which are at distance

at least k−1
2 from the pendant vertices of Pn, and if k is even, we choose L0 as one vertex

which is at distance at least k
2 from the pendant vertices of Pn. For k = 2p+ 1, we

get |Li| = 2 for all i = 0,1,2, . . . , p, and for k = 2p, we get |L0| = 1 and |Li| = 2 for

all i = 1,2,3, . . . , p. In any case, Dk induces Pk+1 for which L0 is the center. Then by

Theorem 2.1.1, we get the result below.

Theorem 2.1.2. If f is a radio k-coloring of Pn, then

rck( f )≥ λmax ≥


k2+3

2 +α +β +λmin−1 i f k is odd,

k2+2
2 +α +β +λmin−1 i f k is even.

We use the following lemmas in the sequel.
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Lemma 2.1.3. If f is a radio k-coloring of a graph G with span λ , then there exists a

radio k-coloring g of G with span λ such that the vertices of G receiving 1 and λ by f

receive λ and 1, respectively, by g.

Proof: The radio k-coloring g of G defined as g(v) = λ +1− f (v) for every vertex v of

G is one of such colorings.

Lemma 2.1.4. If n1 and n2 are positive integers such that n1 < n2, then rck(Pn1) ≤

rck(Pn2).

Proof: Since restriction of any radio k-coloring of the path Pn2 to the path Pn1 is a radio

k-coloring of Pn1 , rck(Pn1)≤ rck(Pn2).

For convenience in analyzing the results, in Table 2.1, the existing radio k-chromatic

numbers of paths are given in terms of k.

2.2 THE RADIO kkk-CHROMATIC NUMBER OF PATH FOR kkk

ODD

In this section, for k odd, we determine the radio k-chromatic number of path Pn, k+5≤

n≤ 7k−1
2 . We use Theorem 2.1.1 and Theorem 2.1.2 to get the lower bounds those match

with the upper bounds given in Theorems 1.3.2 and Theorems 1.3.3.

Theorem 2.2.1. If k ≥ 7 is odd and 4≤ s≤ k+1
2 , then rck(Pk+s) =

k2+2s+1
2 .

Proof: Let f be a minimal radio k-coloring of path Pk+s : v1v2v3 . . .vk+s with span λ .

Let i and j be the least positive integers such that f (vi) = 1 and f (v j) = λ . Without loss

of generality, we assume that i< j. Let k = 2p+1. To prove the result, depending on the

positions of the maximum and the minimum colored vertices, we choose a Pk+1 subpath
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Value of nnn rrrccckkk(((PPPnnn))) References

n < k and n is odd (n−1)k− 1
2(n−1)2 +2

Kchikech et al. (2007)
n < k and n is even (n−1)k− 1

2n(n−2)+1

n = k and k is odd k2+3
2

n = k and k is even k2+2
2

n = k+1 and k is odd k2+3
2 Liu and Zhu (2005)

n = k+1 and k is even k2+6
2

n = k+2 and k is odd k2+5
2 Khennoufa and Togni (2005)

n = k+2 and k is even k2+6
2

n = k+3 and k is odd k2+7
2 Kola and Panigrahi (2009a)

n = k+3 and k is even k2+8
2

n = k+4 and k is odd k2+9
2 Kola and Panigrahi (2009b)

Table 2.1 The radio k-chromatic numbers of paths in terms of k

(L0 is the center of it) of Pn such that α +β ≥ s− 1. If α +β ≥ s− 1, we get the re-

quired lower bound and if α+β > s−1, we get a contradiction to Theorem 1.3.2 (using

Theorem 2.1.2). If i ≤ s, then by considering the path vivi+1vi+2 . . .vi+pvi+p+1 . . .vi+k,

we get α = k−1
2 . Now, by using Theorem 2.1.2, we get rck( f ) ≥ k2+k+2

2 which is a

contradiction to Theorem 1.3.2 if s 6= k+1
2 . If s < i < p+ 1, then by considering the

path vsvs+1vs+2 . . .vs+pvs+p+1 . . .vs+k, we get α ≥ s. If j ≥ k + 1, then by consider-

ing the path v j−kv j−k+1v j−k+2 . . .v j−p−1v j−p . . .v j, we get β ≥ k−1
2 which is strictly

greater than s− 1 if s 6= k+1
2 . If p + s < j < k + 1, then by considering the path

v1v2v3 . . .vp+1vp+2 . . .vk+1, we get β ≥ s−1. Suppose p+1≤ i < j ≤ p+ s.

Case I: sss === 222lll

If i≥ p+ l+1, then by choosing the path v1v2v3 . . .vp+1vp+2 . . .vk+1, we get α ≥ l−1

and β ≥ l. By Theorem 2.1.2, we get rck( f ) ≥ k2+3
2 + l− 1+ l = k2+2s+1

2 . If j ≤ p+

l +1, then by choosing vsvs+1vs+2 . . .vs+pvs+p+1 . . .vk+s subpath, we get β ≥ l−1 and
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α ≥ l. So, α+β ≥ s−1. Suppose p+1≤ i< p+ l+1< j≤ p+s. Let i= p+ l+1− l1

and j = p+ l+1+ l2, where 1≤ l1≤ l and 1≤ l2≤ l−1. Suppose that l1 < l2. Then by

considering the path v1v2v3 . . .vp+1vp+2 . . .vk+1, we get α = (p+ l+1− l1)−(p+2) =

l − l1− 1 and β = (p+ l + 1+ l2)− (p+ 2) = l + l2− 1. Now, by Theorem 2.1.2,

rck( f ) ≥ k2+3
2 + l − l1 − 1 + l + l2 − 1 = k2+3

2 + 2l + (l2 − l1)− 2 ≥ k2+2s+1
2 . Sup-

pose that l1 > l2. Then by considering the path vsvs+1vs+2 . . .vs+pvs+p+1 . . .vk+s, we

get α = (p+ 2l)− (p+ l + 1− l1) = l + l1− 1 and β = (p+ 2l)− (p+ l + 1+ l2) =

l − l2− 1. So, α + β ≥ s− 1. If l1 = l2, then we choose L0 = {vp,vp+1} (we get

the path v1v2v3 . . .vk). So, we get |Lp| = 1 and |Lt | = 2, t = 0,1, . . . , p− 1. Also,

α +β = p+ l + 1− l1− p+1+ p+ l + 1+ l2− (p+ 1) = 2l = s. Now, by Theorem

2.1.1, rck( f )≥ 2p+1−2p+2
p−1
∑

t=0
2(p− t)+1 = k2+2s+1

2 .

Case II: sss === 222lll +++111

If i ≥ p + l + 1 or j ≤ p + l + 2, then as in Case I, we get rck( f ) ≥ k2+2s+1
2 . So,

we assume p+ 1 ≤ i < p+ l + 1 < p+ l + 2 < j ≤ p+ s. Let i = p+ l + 1− l1 and

j = p+ l + 2+ l2, where 1 ≤ l1 ≤ l and 1 ≤ l2 ≤ l− 1. Rest of the proof is similar to

that of Case I.

Theorem 2.2.2. If k ≥ 7 is odd and 3k+1
2 < n≤ 5k−1

2 , then rck(Pn) =
k2+k+2

2 .

Proof: From Theorem 2.2.1, we have rck(P3k+1
2
) = k2+k+2

2 . By Lemma 2.1.4 and The-

orem 1.3.3, we get the result.

Lemma 2.2.3. Let k ≥ 7 be odd and f be a minimal radio k-coloring of Pn : v1v2 . . .vn,

where n = 5k−1
2 . If f (vi) = 1 and f (v j) =

k2+k+2
2 , then {i, j}= {k,n− k+1}.

Proof: Let f (vi) = 1 and f (v j) = λ , where λ = k2+k+2
2 . Without loss of general-

ity, we assume that i < j. Let k = 2p + 1. To prove i = k and j = n− k + 1, we

first show that j− i = p or j− i = p+ 1. If j− i < p or p+ 1 < j− i ≤ k, then we
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choose the path v j−kv j−k+1v j−k+2 . . .v j−p−1v j−p . . .v j if j > k, else we choose the path

vivi+1vi+2 . . .vi+pvi+p+1 . . .vi+k. In any case, we get one of α and β is k−1
2 and the other

is at least 1. Now, by Theorem 2.1.2, rck( f ) ≥ k2+k+4
2 , which is a contradiction. Sup-

pose that j− i > k. If the color λ is not used in the path vivi+1vi+2 . . .vi+pvi+p+1 . . .vi+k,

using Theorem 2.1.2, we get a contradiction. Suppose the color λ is used in the path

vivi+1vi+2 . . .vi+pvi+p+1 . . .vi+k, say f (vt) = λ . Since t − i ≤ k, t − i = p or t − i =

p+ 1. Since f (vt) = f (v j) = λ , t + k < j ≤ n. If the color 1 is not used in the path

vtvt+1vt+2 . . .vt+pvt+p+1 . . .vt+k, using Theorem 2.1.2, we get a contradiction. Suppose

the color 1 is used in the path vtvt+1vt+2 . . .vt+pvt+p+1 . . .vt+k, say f (vl) = 1. Since

l−t ≤ k, l−t is p or p+1. Since f (vi) = f (vl) = 1, l− i≥ k+1. Therefore l = i+k+1.

Now, the minimum color used in the path vi+1vi+2vi+3 . . .vl−1 (path on k vertices) is not

less than p+ 2. So, the colors available to color the path vi+1vi+2vi+3 . . .vl−1 is from

p+ 2 = k+3
2 to k2+k+2

2 . Since rck(Pk) =
k2+3

2 and k2+k+2
2 − k+3

3 + 1 = k2+1
2 , the path

vi+1vi+2vi+3 . . .vl−1 cannot be colored. Therefore in any case, j− i ≯ k and hence

j− i = p or p+1.

Next, we show that k ≤ i < j ≤ n− k + 1 and j− i 6= p. For that, we first prove

that the color 1 and λ are used only once by f . Suppose f (vl) = 1 for some l 6= i.

Since f (vi) = 1, l ≥ i+ k + 1 and hence l > j. So, l − j is p or p+ 1. Therefore

l− i = l− j+ j− i ≤ k+ 1 and hence l− i = k+ 1. Now, the minimum color used in

the path vi+1vi+2vi+3 . . .vl−1 (path on k vertices) is not less than p+ 2. So, the colors

available to color the path vi+1vi+2vi+3 . . .vl−1 is from p+ 2 = k+3
2 to k2+k+2

2 . Since

rck(Pk) =
k2+3

2 and k2+k+2
2 − k+3

3 + 1 = k2+1
2 , the path vi+1vi+2vi+3 . . .vl−1 cannot be

colored. Hence, the color 1 is assigned to only vi and by Lemma 2.1.3, the color λ is

assigned only to v j. If i < k, then vi+1,vi+2vi+3 . . .vn is a path of at least 3k+1
2 vertices.

Since rck(P3k+1
2
)= k2+k+2

2 = λ and the color 1 is not used in the path vi+1,vi+2vi+3 . . .vn,

we get a contradiction. Hence i ≥ k. Suppose that j > n− k+ 1. Then v1v2v3 . . .v j−1

is a path of at least 3k+1
2 vertices and rck(P3k+1

2
) = k2+k+2

2 = λ . But the maximum color
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used for a vertex of v1v2v3 . . .v j−1 is at most λ −1, which is a contradiction. Therefore

k≤ i< j≤ n−k+1. If j− i= p, then i= k, j = k+ p or i= k+1, j = k+ p+1. If i= k

and j = k+ p, then by considering the path vk+pvk+p+1vk+p+2 . . .vk+2pvk+2p+1 . . .vn,

we get β = k−1
2 and the color 1 is not used for vk+pvk+p+1vk+p+2 . . .vn. Now, by using

Theorem 2.1.2, we get rck( f ) ≥ k2+k+4
2 , which is a contradiction. If i = k + 1 and

j = k+ p+1, then for the path v1v2v3 . . .vp+1vp+2 . . .vk+1, the color k2+k+2
2 is not used

and α = k−1
2 . Now, by Theorem 2.1.2, we get rck( f )≥ k2+k+4

2 , which is a contradiction.

Therefore, j− i = p+1, that is, i = k and j = n− k+1.

Example 2.2.4. For k = 7 and n = 5k−1
2 = 17, only one minimal radio k-coloring (radio

7-coloring with span k2+k+2
2 = 29) is possible for the path P17, which is given in Figure

2.1. Here, the color 1 is used to the vertex v7 = vk and the span 29 is used to the vertex

v11 = vn−k+1.
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Figure 2.1 The minimal radio 7-coloring of P17

Theorem 2.2.5. If k ≥ 7 is odd and 5k+1
2 ≤ n≤ 7k−1

2 , then rck(Pn) =
k2+k+4

2 .

Proof: Let n = 5k+1
2 , Pn : v1v2V3 . . .vn and λ = k2+k+2

2 . Suppose rck(Pn) = λ . Let f be a

minimal radio k-coloring of Pn. Now, f restricted to v1v2v3 . . .vn−1 is a minimal radio k-

coloring of Pn−1. By Lemma 2.2.3, we get { f (vk), f (vn−k)}= {1,λ}. By restricting f

to the path v2v3v4 . . .vn and using Lemma 2.2.3, we get { f (vk+1), f (vn−k+1)}= {1,λ}.

Therefore, rck(Pn)≥ k2+k+4
2 and hence by Theorem 1.3.3, rck(Pn) =

k2+k+4
2 .
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2.3 THE RADIO kkk-CHROMATIC NUMBER OF PATH FOR kkk

EVEN

In this section, for k even, we determine the radio k-chromatic number of path Pn,

k+ 4 ≤ n ≤ 5k+4
2 . We use Theorem 2.1.1 and Theorem 2.1.2 to get the lower bounds

those match with the upper bounds in Theorems 1.3.2 and Theorems 1.3.4.

Theorem 2.3.1. If k > 7 is even and 4≤ s≤ k
2 , then rck(Pk+s) =

k2+2s+2
2

Proof: Let f be a minimal radio k-coloring of path Pk+s : v1v2v3 . . .vk+s with span λ .

Let i and j be the least positive integers such that f (vi) = 1 and f (v j) = λ . Without loss

of generality, we assume that i < j. Let k = 2p. Analogous to the proof of Theorem

2.2.1, depending on the positions of the maximum and the minimum colored vertices,

here also we choose a Pk+1 subpath such that α+β ≥ s. If i≤ s, then we choose the path

vivi+1vi+2 . . .vi+p . . .vi+k. So, we get α = k
2 and by Theorem 2.1.2, rck( f ) ≥ k2+k+2

2 ,

which is a contradiction to Theorem 1.3.2 if s 6= k
2 . If s < i ≤ p, then by choosing

vsvs+1vs+2 . . .vs+p . . .vs+k subpath, we get α ≥ s. If j ≥ k+1, then as in Case I of the

proof of Theorem 2.2.1, we get contradiction if s 6= k
2 . Also, if j > p+ s, then similar

to the proof of Theorem 2.2.1, we get β ≥ s. Suppose that p+1≤ i < j ≤ p+ s.

Case I: sss === 222lll

If i> p+ l, then by choosing the path v1v2v3 . . .vp+1 . . .vk+1, we get α ≥ l and β ≥ l+1.

If j≤ p+ l, then by considering the subpath vsvs+1vs+2 . . .vs+p . . .vs+k, we get β ≥ l and

α ≥ l+1. Suppose p+1≤ i≤ p+ l < j≤ p+s. Let i= p+ l+1− l1 and j = p+ l+ l2,

where 1 ≤ l1 ≤ l and 1 ≤ l2 ≤ l. The cases l1 < l2 and l1 > l2 are similar to Case I in

proof of Theorem 2.2.1. If l1 = l2, we choose L0 = {vp}. So, we get |L0|= |Lp|= 1 and

|Lt |= 2, t = 1,2,3, . . . , p−1. Also, α+β = p+ l+1− l1− p+ p+ l+ l2− p= 2l+1=

s+1. Now by Theorem 2.1.1, rck( f )≥ 2p−2p+2p+2
p−1
∑

t=1
2(p− t)+s+1 = k2+2s+2

2 .
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Case II: sss === 222lll +++111

If i > p+ l +1 or j ≤ p+ l, then as in Case I, we get rck( f )≥ k2+2s+1
2 . So, we assume

that p+ 1 ≤ i < p+ l + 1 < p+ l + 2 < j ≤ p+ s. Let i = p+ l + 1− l1 and j =

p+ l+1+ l2, where 1≤ l1 ≤ l and 0≤ l2 ≤ l−1. Rest of the proof is similar to that of

Case I.

Theorem 2.3.2. If k > 7 is even and n = 3k+2
2 , then rck(Pn) =

k2+k+2
2 .

Proof: From Theorem 2.3.1, we have rck(P3k
2
)= k2+k+2

2 . By Lemma 2.1.4 and Theorem

1.3.4, we get the result.

Lemma 2.3.3. Let k = 2p > 7 and f be a minimal radio k-coloring of Pn : v1v2 . . .vn,

where n = 3k+2
2 . If f (vi) = 1 and f (v j) =

k2+k+2
2 , then {i, j}= {p+1,n− p}.

Proof: Let f (vi) = 1 and f (v j) = λ , where λ = k2+k+2
2 . Without loss of generality,

we assume that i < j. To prove i = p+ 1 and j = n− p, we first show that j− i = p.

Suppose that j− i < p. If j > k, then by choosing v j−kv j−k+1v j−k+2 . . .v j−p . . .v j path

and if i≤ p+1, then by choosing vivi+1vi+2 . . .vi+p . . .vi+k path, we get α +β ≥ k
2 +1,

a contradiction, by Theorem 2.1.2, to the fact that rck( f ) = k2+k+2
2 . If i ≥ d3p+1

2 e,

then by considering L0 = {vp} and using Theorem 2.1.1, we get a contradiction as

α +β ≥ k
2 +2. If j≤ d3p+1

2 e, then by considering the path vp+1vp+2vp+3 . . .v2p+1 . . .vn

we get a contradiction. So, p + 1 < i < d3p+1
2 e < j ≤ k. Let i = d3p+1

2 e − l1 and

j = d3p+1
2 e+ l2. By applying Theorem 2.1.1 with L0 = {v2p+2} if l1 ≥ l2 and with

L0 = {vp} if l1 < l2, we get a contradiction to the fact that rck( f ) = k2+k+2
2 . Therefore

j− i ≮ p. If j− i > p, then by considering an appropriate subpath of k + 1 vertices

(starting with vi or ending with v j), again we get a contradiction. Therefore j− i = p.

Next, we show that i = p+1 and j = n− p. For that, we first show that the colors

1 and λ are not repeated. Suppose f (vl) = 1 for some l 6= i. Then l ≥ i+ k+ 1 and
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l− j = p. Therefore l = j+ p= i+2p= i+k, which is a contradiction. Hence, the color

1 is assigned to only vi and by Lemma 2.1.3, the color λ is assigned only to v j. Suppose

that i≤ p. Then vi+1vi+2vi+3 . . .vi+p+1 . . .vi+k+1 does not contain the color 1. Let λmin

be the minimum color used in vi+1vi+2vi+3 . . .vi+p+1 . . .vi+k+1, say f (vt) = λmin. Since

rck(Pk+1) =
k2+6

2 and the maximum color used is k2+k+2
2 , λmin ≤ p−1. Now, p−2 ≥

λmin−1≥ 2p+1−d(vi,vt) = 2p+1−(t− i), that is t ≥ i+ p+3. So, α = t−(i+ p+

1) = (t− i)− (p+1)≥ 2p+1−λmin+1− (p+1) = p+1−λmin and β = 1. Now, by

Theorem 2.1.2, we get rck( f ) ≥ k2+2
2 + p+ 1−λmin + 1+λmin− 1 = k2+k+4

2 which is

a contradiction. Similarly, by considering the path v j−k−1v j−kv j−k+1 . . .v j−p−1 . . .v j−1,

we get a contradiction if j > n− p. Therefore j = n− p and i = p+1.

Example 2.3.4. For k = 2p = 10 and n = 3k+2
2 = 16, only one minimal radio k-coloring

(radio 10-coloring with span k2+k+2
2 = 56) is possible for the path P16, which is given

in Figure 2.2. Here, the color 1 is used to the vertex v6 = vp+1 and the span 56 is used

to the vertex v11 = vn−p.
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Figure 2.2 The minimal radio 10-coloring of P16

Theorem 2.3.5. If k > 7 is even and 3k+4
2 ≤ n≤ 5k+4

2 , then rck(Pn) =
k2+k+4

2 .

Proof: Let k= 2p, n= 3k+4
2 , Pn : v1v2 . . .vn and λ = k2+k+4

2 . Suppose rck(Pn)= λ . Let f

be a minimal radio k-coloring of Pn. Now, f restricted to v1v2v3 . . .vn−1 is a minimal ra-

dio k-coloring of Pn−1. By Lemma 2.3.3, we get { f (vp+1), f (vn−1−p)}= {1,λ}. By re-

stricting f to the path v2v3 . . .vn and using Lemma 2.2.3, we get { f (vp+2), f (vn−p+1)}=

{1,λ}. Therefore, rck(Pn) ≥ k2+k+4
2 and hence by Theorem 1.3.4, rck(Pn) =

k2+k+4
2 .
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2.4 SUMMARY

The radio k-chromatic number for path Pn is known for k≥ n−3 if k is odd and k≥ n−4

if k is even. In this chapter, we have determined rck(Pn) for 2n+1
7 ≤ k≤ n−4 if k is odd

and for 2n−4
5 ≤ k ≤ n−5 if k is even. From Theorem 2.2.5 and Theorem 2.3.5, for the

infinite path P∞, rck(P∞)≥ k2+k+4
2 which improves the lower bound given by Das et al.

(2017) by one, a step towards Conjecture 1.3.5.
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CHAPTER 3

THE RADIO kkk-CHROMATIC NUMBER OF
TREES

“A diagram is worth of thousand proofs.”
- Carl E. Linderholm (1971)

Trees are used to analyze networks or structures and naturally arise in many areas of

computer science, especially in data storage, searching and communication. We dedi-

cate this chapter completely for the radio k-chromatic number of trees. Let G and H be

two graphs and let u and v be two vertices of G and H respectively. By connecting G and

H at u and v, we mean adding an edge between u and v. The graph obtained by merging

u and v into a single vertex is called the concatenation of G and H at the vertices u and

v. Let T1 and T2 be rooted trees such that the number of vertices in the ith level of T1

is equal to the the number of vertices in the (p+ 1− i)th level of T2, i = 1,2,3, . . . , p,

where p ≥ 1 is the number of levels in T1 and T2. Let T be the tree obtained by con-

necting the trees T1 and T2 at the roots and let G be the set of all such trees over all

trees T1 and T2. Let T1 and T2 be rooted trees as described in the above with an extra

condition that T1 has at least two vertices in the first level. Let T ′ be the tree obtained

by concatenation of T1 and T2 at the roots and let G ′ be the set of all such trees over

all trees T1 and T2. Recall that finding the radio k-chromatic number of a graph G for

k > diam(G), is useful to determine the radio k-chromatic number of graphs containing

G.
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In this chapter, we first give an upper bound for the radio k-chromatic number of any

tree T in G or G ′, when k ≥ diam(T ), and prove that if k and diam(T ) are of the same

parity, then the upper bound matches with the lower bound obtained from the lower

bound technique given by Das et al. (2017). Later, we determine the radio d-chromatic

number of trees and graphs constructed from the trees of diameter d in some subclasses

of G or G ′.

3.1 ON THE RADIO kkk-CHROMATIC NUMBER OF TREES IN

G AND G ′′′

In this section, for k ≥ diam(T ), we define a radio k-coloring of any tree T in G or G ′,

whose span, when k and diam(T ) are of the same parity, matches with the lower bound

that we obtain using Theorem 3.1.1. Also, when k and diam(T ) are of different parity,

we obtain a lower bound for rck(T ), which is n+ 1 less than the upper bound, where

n is the order of T . As a direct consequence of Theorem 1.4.3, we have the theorem

below which we use to get the lower bound for the radio k-chromatic number of trees

under discourse.

Theorem 3.1.1. For any graph G and any positive integer k, we have

rck(G)≥


|Dk|−2p+2

p

∑
i=0
|Li|(p− i) i f k = 2p+1,

|Dk|−2p+2
p

∑
i=0
|Li|(p− i)+1 i f k = 2p.

Let T ∈ G . Then diam(T ) is 2p+ 1 and so the center of T is an edge, say uv.

Let Lu
0 = {u}, Lv

0 = {v}, Lu
1 = N(Lu

0)\Lv
0, Lv

1 = N(Lv
0)\Lu

0, Lu
i+1 = N(Lu

i )\Lu
i−1 and

Lv
i+1 = N(Lv

i )\Lv
i−1, i = 1,2,3, . . . , p− 1. Let T ′ ∈ G ′. Then diam(T ′) is 2p and so

the center of T ′ is a vertex, say u. If T ′ is the concatenation of trees T1 and T2, then u is

the merged vertex. Let L0 = {u}, Ll
1 = N(L0)∩V (T1), Lr

1 = N(L0)∩V (T2). Now, we
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define Ll
2 = N(Ll

1)\L0, Lr
2 = N(Lr

1)\L0 and Ll
i+1 = N(Ll

i)\Ll
i−1 and Lr

i+1 = N(Lr
i )\Lr

i−1,

i = 2,3,4, . . . , p− 1. For T ∈ G , if L0 in Theorem 1.4.3 is {u,v}, then Li = Lu
i ∪ Lv

i ,

i = 0,1,2, . . . , p. For T ∈ G ′, if L0 in Theorem 1.4.3 is {u}, then Li = Ll
i ∪ Lr

i , i =

1,2,3, . . . p. It is easy to see that |Lu
i |= |Lv

p+1−i| and |Ll
i|= |Lr

p+1−i| for i = 1,2, . . . , p.

In the following two theorems, we give upper bounds for the radio k-chromatic

number of trees in G and trees in G ′ when k is at least diameter.

Theorem 3.1.2. If T ∈ G is a tree of order n, diameter d = 2q+1 and k ≥ d, then

rck(T )≤


(2p−q)n+2(q− p)+2 i f k = 2p+1,

(2p−q−1)n+2(q− p)+3 i f k = 2p.

Proof: First, we order the vertices of T as follows. Let uv be the center of T . Let x1 = u

and xn = v. We label the vertices of Lv
q+1−i, i= 1,2,3, . . . ,q, as x2 j, j = 1,2,3, . . . , n

2−1,

starting from the vertices of Lv
q, and once all the vertices of Lv

q are labeled, we label the

vertices of Lv
q−1 and so on. Now, we label the vertices of Lu

i , i = 1,2,3, . . . ,q, as x2 j+1,

j = 1,2,3, . . . , n
2 − 1, starting from the vertices of Lu

1, and once all the vertices of Lu
1

are labeled, we label the vertices of Lu
2 and so on. In this labeling, if xs ∈ Lv

q+1−i, then

xs−1 ∈ Lu
i or Lu

i−1. If xs ∈ Lv
q+1−i and xs−1 ∈ Lu

i , then d(xs,xs−1) = p+2. If xs ∈ Lv
q+1−i

and xs−1 ∈ Lu
i−1, then d(xs,xs−1) = q+ 1. For each i = 1,2,3, . . . ,q+ 1, xs ∈ Lv

q−i and

xs−1 ∈ Lu
i happens exactly once. If xs ∈ Lu

i , then xs−1 ∈ Lv
q+1−i and d(xs,xs−1) = q+2.

Therefore,

n

∑
s=2

d(xs,xs−1) = (q+1)(q+1)+((n−1)− (q+1))(q+2)

= (q+2)n−2q−3.

Now, we define a coloring f by f (x1) = 1 and f (x j) = f (x j−1)+(1+ k−d(x j,x j−1)),
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2≤ j ≤ n. Now, we show that f is a radio k-coloring of T . We have, f (xs+1)− f (xs)≥

k− q− 1 as d(xs+1,xs) ≤ q+ 2. So, | f (xt)− f (xs)| ≥ 2k− 2q− 2 > k if 1 ≤ t < s− 2

or s+2 < t ≤ n. Therefore, it is enough to check the radio k-coloring condition for the

pairs {xs,xs−2} and {xs,xs+2}. Now,

f (xs)− f (xs−2) = f (xs)− f (xs−1)+ f (xs−1)− f (xs−2)

≥ (1+ k−q−2)+(1+ k−q−1)

= 2k−2q−1

≥ k.

Similarly, f (xs+2)− f (xs)≥ k. Hence, f is a radio k-coloring of G. By the definition of

f , it is clear that εi = 0, 2≤ i≤ n. Now by Lemma 1.4.2, we have

rck( f ) = (n−1)(k+1)− ((q+2)n−2q−3)+1.

Therefore,

rck(T )≤


(2p−q)n+2(q− p)+2 i f k = 2p+1,

(2p−q−1)n+2(q− p)+3 i f k = 2p.

Example 3.1.3. The tree in Figure 3.1 is a tree from G and is of diameter d = 2(3)+1,

edge uv is its center. It is labeled as in the proof of Theorem 3.1.2. Note that Lu
0 = {u}=

{x1}, Lv
0 = {v} = {x30}, Lv

1 = {x20,x22,x24,x26,x28}, Lv
2 = {x8,x10,x12,x14,x16,x18},

Lv
3 = {x2,x4,x6}, Lu

1 = {x3,x5,x7}, Lu
2 = {x9,x11,x13,x15,x17,x19} and Lu

3 = {x21,x23,

x25,x27,x29}. For the same tree, the radio 7-coloring in the proof of Theorem 3.1.2, is

given in Figure 3.2.
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Figure 3.1 Labeling of a tree in G as in the proof of Theorem 3.1.2
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Figure 3.2 The radio 7-coloring in the proof of Theorem 3.1.2 for the tree in Figure 3.1

Theorem 3.1.4. If T ∈ G ′ is a tree of order n, diameter d = 2q and k ≥ d, then

rck(T )≤


(2p−q)n−2p+q+2 i f k = 2p,

(2p−q+1)n−2p+q+1 i f k = 2p+1.

.

Proof: To define a radio k-coloring of T , we first order the vertices of T . Let u be

the center of T . Let x1 = u, and x2 be a vertex of Ll
q chosen arbitrarily. We label

the vertices of Lr
q+1−i, i = 1,2,3, . . . ,q, as x2 j+1, j = 1,2,3, . . . , n−1

2 , starting from the

vertices of Lr
q and once all the vertices of Lr

q are labeled, we label the vertices of Lr
q−1

and so on. Now, we choose x4 from Ll
1 such that x4 is not on u− x2 path. We label

the vertices of Ll
i , i = 1,2,3, . . . ,q, as x2 j, j = 3,4,5, . . . , n−1

2 , starting from the vertices

of Ll
1 and once all the vertices of Ll

1 are labeled, we label the vertices of Ll
2 and so on.

For 4 ≤ s ≤ n, if xs ∈ Lr
q+1−i, then xs−1 ∈ Ll

i or Ll
i−1. If xs ∈ Lr

q+1−i and xs−1 ∈ Ll
i ,

then d(xs,xs−1) = q+1. If xs ∈ Lr
q+1−i and xs−1 ∈ Ll

i−1, then d(xs,xs−1) = q. For each
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i = 2,3,4, . . . ,q, xs ∈ Lr
q+1−i and xs−1 ∈ Ll

i−1 happens exactly once. For 4 ≤ s ≤ n, if

xs ∈ Ll
i , then xs−1 ∈ Lr

q+1−i and d(xs,xs−1) = q+1. Therefore,

n

∑
s=2

d(xs,xs−1) = q+2q+q(q−1)+((n−3)− (q−1))(q+1)

= (q+1)n−q−2.

Now, we define a coloring f by f (x1) = 1 and f (xs) = f (xs−1)+(1+ k−d(xs,xs−1)),

2 ≤ s ≤ n. Since d(x2,x3) = 2q and d(x3,x4) = q+ 1, f (x3) = f (x2)+ 1+ k− 2q and

f (x4) = f (x3)+ k−q. Also, by the choice of x4, d(x2,x4) = q+1. Therefore, | f (x4)−

f (x2)|= 1+2k−3q≥ 1+ k−q > 1+ k−d(x2,x4). Similar to Theorem 3.1.2, we can

prove the radio k-coloring condition for the remaining pairs of vertices. From Lemma

1.4.2, rck( f ) = (2p−q)n−2p+q+2 if k = 2p and rck( f ) = (2p−q+1)n−2p+q+1

if k = 2p+1.

Example 3.1.5. The tree in Figure 3.3 is a tree from G ′ and is of diameter d = 2(3), u

is its center. It is labeled as in the proof of Theorem 3.1.4. Here L0 = {u}= {x1}, Ll
1 =

{x4,x6}, Ll
2 = {x8,x10,x12,x14,x16}, Ll

3 = {x2,x18,x20,x22,x24}, Lr
1 = {x17,x19,x21,x23,

x25}, Lr
2 = {x7,x9,x11,x13,x15} and Lr

3 = {x3,x5}. For the same tree, in Figure 3.4, the

radio 6-coloring in the proof of Theorem 3.1.4 is given.
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Figure 3.3 Labeling of a tree in G ′ as in the proof of Theorem 3.1.4
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Figure 3.4 The radio 6-coloring in the proof of Theorem 3.1.4 for the tree in Figure 3.3

In the two theorems below, we use Theorem 3.1.1 to get lower bounds for rck(T ),

k ≥ diam(T ), of the trees in G and G ′.

Theorem 3.1.6. If T ∈ G is a tree of order n, diameter d = 2q+1 and k ≥ d, then

rck(T )≥


(2p−q)n+2(q− p)+2 i f k = 2p+1,

(2p−q−2)n+2(q− p)+4 i f k = 2p.

Proof: Case 1: k = 2p+1

Let uv be the center of T . We choose L0 = {u,v}. So, we get Li = Lu
i ∪Lv

i , |L0| = 2,

|Li|= |Lu
i |+ |Lv

i |= |Lu
i |+ |Lv

q+1−(q+1−i)|= |L
u
i |+ |Lu

q+1−i|, i = 1,2,3, . . .q, |Li|= 0 for

q < i≤ p and |Dk|= |V (T )|= n. Then by Theorem 3.1.1, we get

rck(T ) ≥ n−2p+2p|L0|+2
p

∑
i=1
|Li|(p− i)

≥ n+2p+2
q

∑
i=1

(|Lu
i |+ |Lu

q+1−i|)(p− i)

= n+2p+(2p−q−1)
q

∑
i=1

2|Lu
i |

= n+2p+(2p−q−1)(n−2)

= (2p−q)n+2(q− p)+2.

Case 2: k = 2p

It is easy to see that rck(G)≥ rck−1(G). Therefore, rck(T )≥ rck−1(T ) = rc2p−1(T )≥

(2(p−1)−q)n+2(q− (p−1))+2 = (2p−q−2)n+2(q− p+1)+2.

43



Theorem 3.1.7. If T ∈ G ′ is a tree of order n, diameter d = 2q and k≥ d, then rck(T )≥

(2p−q)n−2p+q+2, where k = 2p or k = 2p+1.

Proof: Proof is similar to that of Theorem 3.1.6.

The following theorems are the main results of this section which we get from the

above theorems.

Theorem 3.1.8. If T ∈ G is a tree of order n and 2q+1 = diam(T )≤ k = 2p+1, then

rck(T ) = (2p−q)n+2(q− p)+2.

Theorem 3.1.9. If T ∈G ′ is a tree of order n and 2q= diam(T )≤ k= 2p, then rck(T )=

(2p−q)n−2p+q+2.

3.2 ON THE RADIO kkk-CHROMATIC NUMBER OF TREES AND

GRAPHS CONSTRUCTED FROM SOME TREES IN G AND

G ′′′

In this section, we determine the radio d-chromatic number of trees obtained by con-

necting some trees of diameter d in G (G ′). Also, we determine the radio d-chromatic

number of graphs obtained from trees of diameter d in some subclasses of G (G ′).

3.2.1 Construction from Trees in G

Let H be the collection of all the trees T ∈ G such that |Lu
i |> 1 for all i = 1,2,3, . . . , p,

where uv is the center of T and diam(T ) = 2p+ 1. Let T ′ ∈H be a tree of diameter

d = 2p+1, center wz, |Lw
i | > ` for i = 1,2,3, . . . , p and Lw

p has ` vertices which are at

distance d−1 from each other. Let HT ′,` denotes the set of all trees T ∈H such that

|Lu
i | = |Lw

i |, i = 1,2,3, . . . , p, where uv is the center of T and diam(T ) = diam(T ′) =

2p+1. It is easy to see that T ′ ∈HT ′,`.
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In this subsection, we construct trees by connecting any tree T in HT ′,` to one or

more copies of T ′ in H , and prove that the radio d-chromatic number of the constructed

trees is same as the radio number of T ′ which is same as the radio number of T . Later,

for given d = 2p + 1 ≥ 3, even integer n ≥ 2d and n′ ≥ n, we prove the existence

of a tree of order n′ and having the radio d-chromatic number pn+ 2. Similarly, for

given d = 2p+1≥ 3, even integer n≥ 2d and d′ ≥ d, we prove the existence of a tree

of diameter d′ and having the radio d-chromatic number pn+2. Further, we construct

graphs from any tree T in H such that the radio d-chromatic number of the constructed

graphs is same as the radio number of T .

Theorem 3.2.1. Let T ′ ∈H be a tree of order n and diameter d = 2p+ 1, and let

T ∈HT ′,`. If ` ≥ 2, then there exist trees T t
j of order ( j + 1)n, j = 1,2,3, . . . `, t =

1,2,3, . . . ,
(`

j

)
, such that rcd(T t

j ) = rn(T ) = rn(T ′) and diameter of T t
j is either 2d +1

or 2d+2. If `= 0, then there exists a tree T ∗ of order 2n and diameter 2d+1 such that

rcd(T ∗) = rn(T ) = rn(T ′).

Proof: We label the vertices of T and T ′ with xs and ys, 1≤ s≤ n, as in Theorem 3.1.2

but with a variation explained as follows. In T , while labeling the vertices of Lv
p+1−i,

2≤ i≤ p, we first label the vertex on x2−xn path. If `≥ 2, then we label the ` vertices of

Lw
p which are at distance d−1 from each other as yn−1,yn−3,yn−5, . . . ,yn−(2l−1). Also,

while labeling the vertices of Lw
i , 1 ≤ i ≤ p−1, we use the last ` labels to the vertices

on the paths yn−1− y1,yn−3− y1,yn−5− y1, . . . ,yn−(2`−1)− y1, in the order highest to

lowest. If ` = 0, then while labeling the vertices of Lw
i , 1 ≤ i ≤ p− 1, we use the last

label to the vertex on the path yn−1− y1. Now, we consider the radio colorings f and

g of T and T ′, respectively, defined by f (x1) = g(y1) = 1, f (xs) = f (xs−1)+ (1+ d−

d(xs,xs−1)) and g(ys) = g(ys−1)+ (1+ d− d(ys,ys−1)), 2 ≤ s ≤ n (which are same as

the radio coloring defined in Theorem 3.1.2). Suppose that `≥ 2. Let T ′1,T
′

2,T
′

3, . . . ,T
′
`

be ` copies of T ′. We connect T and T ′s at x2 and yn−(2 j−1), j = 1,2,3, . . . , `. For

j = 1,2,3, . . . , `, let Tj be a tree obtained by connecting j trees among T ′1,T
′

2,T
′

3, . . . ,T
′
`

45



to T . Since choosing j trees among T ′1,T
′

2,T
′

3, . . . ,T
′
` has

(`
j

)
possibilities, we get the

trees T t
j , t = 1,2,3, . . . ,

(`
j

)
. If `= 0, then we get the tree T ∗ by connecting T and T ′ at

x2 and yn−1.

First, we show that the resultant coloring h of T t
j is a radio d-coloring of T t

j . The

radio d-coloring condition is clearly satisfied among the copies of T ′. It is remained to

show the condition between the vertices of T and a copy of T ′. We check the condition

between T and T ′1. It is enough to check the radio d-coloring condition for xs with

ys−1,ys and ys+1 as the colors of the remaining yrs differ by at least d from the color

of xs. If s is odd, then d(xs,ys−1),d(xs,ys) and d(xs,ys+1) are at least d. Suppose s

is even. Then clearly d(xs,ys) > d. If xs ∈ Lv
p+1−i, then xs−1 ∈ Lu

i−1 or Lu
i and hence

ys−1 ∈ Lw
i−1 or Lw

i . If ys−1 ∈ Lw
i−1, then both xs and ys−1 are on xn− y1 path. Therefore,

d(xs,ys−1) = d(xs,x2)+1+d(yn−1,ys−1) = i−1+1+ p− i−1 = p+1 = d(xs,xs−1).

If ys−1 ∈ Lw
i , then ys−1 cannot be on yn−1−y1 path. Therefore, d(xs,ys−1) = d(xs,x2)+

1+ d(yn−1,ys−1) ≥ i− 1+ 1+ p+ 1− i+ 2 = p+ 3 > d(xs,xs−1). So, in any case,

d(xs,ys−1)≥ d(x,xs−1). Hence h(xs)−h(ys−1) = f (xs)−g(ys−1) = f (xs)− f (xs−1)≥

1+d−d(x,xs−1)≥ 1+d−d(x,ys−1). Therefore, radio d-coloring condition is satisfied

for xs and ys−1. If xs ∈ Lv
p+1−i, then ys+1 ∈ Lw

i . By the choice of vertices on x2−xn path

and yn−1− y1 path, at most one of xs and ys+1 can be on the xn− y1 path. Therefore,

d(xs,ys+1) = d(xs,x2)+1+d(yn−1,ys+1)≥ i−1+1+ p− i+2 = p+2 = d(xs,xs−1).

Hence h(ys+1)−h(xs) = g(ys+1)− f (ys) = f (xs+1)− f (xs)≥ 1+d−d(xs,xs+1)≥ 1+

d−d(xs,ys+1). Since T is a subtree of T t
j , rcd(T t

j ) = rn(T ) = rn(T ′). It is easy to see

that the order of T t
j is ( j+ 1)n and the diameter of T t

j is 2d + 1 if j = 1, else 2d + 2.

Similarly, it is easy to see that the resultant coloring of T ∗ is also a radio d-coloring of

T ∗.

Example 3.2.2. In Figure 3.5, a tree T ′ in H and a tree T in HT ′,2 are given. The

vertices of the trees T and T ′ are labeled as in the proof of Theorem 3.2.1. Also y19 and

y21 are the two vertices in Lw
3 such that d(y19,y21) = 6 = diam(T ′)− 1. In Figure 3.6,

one copy of tree T is connected to two copies of T ′ at x2, y21 (yn−1) and x2, y19 (yn−3).
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Figure 3.5 A tree T ′ ∈H and a tree T ∈HT ′,2 labeled as in the proof of Theorem 3.2.1
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Figure 3.6 The trees in Figure 3.5 are connected as in the proof Theorem 3.2.1

Remark 3.2.3. Let T ′1,T
′

2,T
′

3, . . . ,T
′
` be trees in H such that T ′i ∈HT ′j ,`

for all i and

j. Now, for any T ∈
⋂̀

i=1
HT ′i ,`

. Then, proof of Theorem 3.2.1 holds true if we replace

l copies of T ′ by T ′1,T
′

2,T
′

3, . . . ,T
′
` and labeling the vertices of T ′1,T

′
2,T

′
3, . . . ,T

′
` similar

to that of T ′, provided x2 is not connected to two vertices of the same index. For the
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tree T in Theorem 3.2.1, suppose Lv
p has `′ number of vertices which are at distance

d−1 from each other and |Lv
i |> `′, i = 1,2,3, . . . , p. Then we label these `′ vertices as

x2,x4,x6, . . . ,x2`′ and while labeling the vertices of Lv
p+1−i, 2 ≤ i ≤ p, we use the first

` labels to the vertices on the paths x2− xn,x4− xn,x6− xn, . . . ,x2`′ − xn, in the order

lowest to highest. We can connect T and T ′ at x2r and yn−(2s−1) as in the proof of

Theorem 3.2.1, provided the vertex of Lv
p+1−i on the path x2r− xn and the vertex of Lw

i

on the path yn−(2s−1)− y1 do not have consecutive indexed labels.

Theorem 3.2.4. Let T ′ ∈H be a tree of diameter d = 2p+ 1. If T ∈HT ′,1, then

there exist trees Tj of diameter ( j+1)d+ j, j = 1,2,3, . . . , such that rcd(Tj) = rn(T ) =

rn(T ′).

Proof: Let x1,x2,x3, . . . ,xn be the labeling of vertices of T such that for each i, the la-

bels of the vertices of Lv
i and Lu

i are same as that of Lv
i of T and Lw

i of T ′, respectively,

as in the proof of Theorem 3.2.1 corresponding to ` = 0 case. Let y1,y2,y3, . . . ,yn be

the labeling of vertices of T ′ such that for each i, the labels of the vertices of Lw
i and Lz

i

are same as that of Lw
i of T ′ and Lv

i of T , respectively’ as in the proof of Theorem 3.2.1

corresponding to ` = 0 case. Let T1 = T ∗, where T ∗ is the tree in Theorem 3.2.1, ob-

tained by connecting T and T ′ at x2 and yn−1. It is easy to see that the diameter and the

order of T1 are 2d+1 and 2n respectively. Now to obtain Tj, j = 2,3,4, . . . , we connect

a copy of T (or T ′) to the last copy of tree which is connected in Tj−1 at xn−1 (or yn−1)

and x2 or y2. It is easy to see that Tj is of order ( j+1)n and diameter ( j+1)d + j.

For an odd integer d = 2p+1≥ 3 and an even integer n≥ 2d, it is easy to see that

there exists a tree T ∈H of order n and diameter d.

Corollary 3.2.5. Let d = 2p+ 1, p ≥ 1, be an odd integer and n ≥ 2d be an even

integer. Then for every integer n′ ≥ n, there exists a tree T ∗ of order n′ such that

rcd(T ∗) = pn+2.

Proof: Let T ∈H be a tree of diameter d and order n. Among the trees Tj of order

48



( j+1)n in Theorem 3.2.4, we consider the smallest tree Tt such that n′≤ (t+1)n. Now,

we remove (t + 1)n− n′ vertices from the last copy of the tree that is connected in Tt

and get a tree T ∗ of order n′ (removing pendant vertices recursively) with rcd(T ∗) =

rn(T ) = pn+2.

Corollary 3.2.6. Let d = 2p+ 1, p ≥ 1, be an odd integer and n ≥ 2d be an even

integer. Then for every integer d′ ≥ d, there exists a tree T ∗ of diameter d′ such that

rcd(T ∗) = pn+2.

Proof: Let T ∈H be a tree of diameter d and order n. Among the trees Tj of diameter

( j+1)d+ j in Theorem 3.2.4, we consider the smallest tree Tt such that d′≤ (t+1)d+t.

Now, we remove all the pendant vertices of Tt in the last copy of tree that is connected in

Tt to get a tree of diameter (t +1)d+ t−1. We repeat this process d′− ( j+1)d− j+1

times to get T ∗.

In the following theorem, we construct graphs from trees in H .

Theorem 3.2.7. Let T ∈H be a tree of order n, diameter d = 2p+1, center uv, Lu
p has

` vertices which are at distance d−1 from each other and |Lu
i |> ` for all i. If l ≥ 2, then

there exist graphs Gt
j, j = 1,2,3, . . . , `, t = 1,2,3, . . . ,

(`
j

)
, of order n and size n−1+ j,

such that rcd(Gt
j) = rn(T ). If `= 0 and |Lu

i |> 1 for all i, then there exists a graph G∗

of order n and size n, such that rcd(G∗) = rn(T ).

Proof: Let x1,x2,x3, . . . ,xn be the labeling of vertices of T such that for each i, the

labels of the vertices of Lv
i and Lu

i are same as that of Lv
i of T and Lw

i of T ′, respectively,

as in the proof of Theorem 3.2.1. We define a radio coloring f of T by f (x1) = 1 and

f (xs) = f (xs−1)+ (1+ d− d(xs,xs−1)), 2 ≤ s ≤ n. If ` ≥ 2, then we get a graph G j

by making j vertices among xn−1,xn−3, . . . ,xn−(2`−1) adjacent to x2. Since choosing

j vertices among xn−1,xn−3, . . . ,xn−(2`−1) has
(`

j

)
possibilities, we get the graphs Gt

j,

t = 1,2,3, . . . ,
(`

j

)
. Now, we prove that f is a radio d-coloring of Gt

j. If ` = 0, then we
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get the graph G∗ by making x2 and xn−1 adjacent. First we prove that f is a radio d-

coloring of Gt
j. It is enough to check the radio d-coloring condition for xs with xs−1 and

xs+1 as the colors of the remaining xrs differ by at least d from the color of xs. By the

choice of vertices on the paths xn−x2,xn−1−x1,xn−3−x1,xn−5−x1, . . . ,xn−(2`−1)−x1

the distances of xs−1 and xs+1 from xs in T and Gt
j are the same. Hence f is a radio

d-coloring of Gt
j and rcd(Gt

j) = rn(T ). Also, it is easy to see that Gt
j has n− 1+ j

edges. Similarly, we can prove for G∗.

Example 3.2.8. For the tree T in Figure 3.7, |Lu
i | > 2. The graph in Figure 3.8 is the

graph Gt
2 constructed, as in the proof of Theorem 3.2.7, from the tree T .
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Figure 3.7 A tree T ∈H labeled as in the proof of Theorem 3.2.7
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Figure 3.8 A graph obtained from the tree in Figure 3.7 as in the proof of Theorem 3.2.7

Remark 3.2.9. For the tree T in Theorem 3.2.7, suppose Lv
p has `′ number of vertices

which are at distance d−1 from each other and |Lv
i |> `, i = 1,2, . . . , p. Then we label

these `′ vertices as x2,x4,x6, . . . ,x2`′ and while labeling the vertices of Lv
p+1−i, 2≤ i≤ p,

we use the first ` labels to the vertices on the paths x2−xn,x4−xn,x6−xn, . . . ,x2`′−xn,

50



in the order lowest to highest. We can make x2r, r = 2,3,4, . . . , `′, adjacent to xn−(2s−1),

s = 1,2,3, . . . , `, provided the vertex of Lv
p+1−i on the path x2r− xn and the vertex of Lu

i

on the path xn−(2s−1)−x1 do not have the consecutive indexed labels. Instead of T ∈ G

taken in Theorem 3.2.7, we can consider any of the trees obtained in Theorem 3.2.1 or

Theorem 3.2.4 to construct graphs as in Theorem 3.2.7.

3.2.2 Construction from Trees in G ′

To avoid ambiguity between trees T and T ′ in G ′, for the tree T ′, we use Si, Sl
i and Sr

i in

place of Li, Ll
i and Lr

i respectively. Let H ′ be the collection of all the trees T ∈ G ′ such

that Ll
p has at least two vertices at distance diam(T ) = 2p from each other and |Ll

i|> 2,

i = 1, p. Let T ′ ∈H ′ be a tree of diameter d = 2p, |Sl
i |> ` for i = 1, p and Sl

p has `≥ 2

vertices which are at distance d from each other. Let H ′
T ′,` denotes the set of all the

trees T ∈ G ′ such that diam(T ) = diam(T ′) and |Ll
i| = |Sl

i |, i = 1,2,3, . . . , p. It is easy

to see that T ′ ∈H ′
T ′,`.

In this subsection, we first give a construction of larger (in terms of diameter and

order) trees from any tree T in H ′ such that the radio d-chromatic number of the

constructed tree is same as the radio number of T . Later, for given d = 2p ≥ 2, odd

integer n ≥ 2d + 5 and n′ ≥ n, we prove the existence of a tree of order n′ having the

radio d-chromatic number p(n− 1)+ 2. Similarly, for given d = 2p ≥ 2, odd integer

n≥ 2d +5 and d′ ≥ d, we prove the existence of a tree of diameter d′ having the radio

d-chromatic number p(n− 1)+ 2. Further, we give a construction of graphs from any

tree T in H such that the radio d-chromatic number of the constructed graphs is same

as the radio number T .

Theorem 3.2.10. Let T ′ ∈H ′ be a tree of order n and diameter d = 2p. If T ∈H ′
T ′,`,

then there exist trees T t
j of order ( j + 1)n, j = 1,2,3, . . . , `− 1, t = 1,2,3, . . . ,

(`−1
j

)
,

such that rcd(T t
j ) = rn(T ) = rn(T ′) and diameter of T t

j is either 2d +1 or 2d +2.
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Proof: We label the vertices of T with xs, 1≤ s≤ n as in Theorem 3.1.4 with a variation

explained as follows. In T , while labeling the vertices of Lr
p+1−i, 2 ≤ i ≤ p, we first

label the vertices on x1− x3 path. We label the ` vertices of Sl
p which are at distance d

from each other as y2,yn−1,yn−3,yn−5, . . . ,yn−(2`−3). Also, while labeling the vertices

of Sl
i , 1≤ i≤ p, we use the last `−1 labels to the vertices on the paths yn−1−y1,yn−3−

y1,yn−5− y1, . . . ,yn−(2`−3)− y1, in the order highest to lowest. Now, we consider the

radio colorings f and g of T and T ′ respectively defined by f (x1) = g(y1) = 1, f (xs) =

f (xs−1)+ (1+ d− d(xs,xs−1)) and g(ys) = g(ys−1)+ (1+ d− d(ys,ys−1)), 2 ≤ s ≤ n

(which are same as the radio coloring defined in Theorem 3.1.4). Let T ′1,T
′

2,T
′

3, . . . ,T
′
`−1

be `−1 copies of T ′. We connect T and T ′s at x3 and yn−(2s−1). For j = 1,2,3, . . . , `−1,

let Tj be a tree obtained by connecting j trees among T ′1,T
′

2,T
′

3, . . . ,T`−1 to T . Since

choosing j trees among T ′1,T
′

2, . . . ,T
′
`−1 has

(`−1
j

)
possibilities, we get trees T t

j , t =

1,2,3, . . . ,
(`−1

j

)
. As in Theorem 3.2.1, we can prove that the coloring of T t

j is a radio

d-coloring. Therefore rcd(T t
j ) = rn(T ) = rn(T ′) and the diameter of T t

j is 2d + 1 if

j = 1, else 2d +2.

Example 3.2.11. The tree T ′ ∈H ′ in Figure 3.9 has three vertices (y2, y24, y26) in Sl
3

which are at distance 6 = diam(T ′) from each other. Also, a tree T ∈H ′
T ′,3 is given

in Figure 3.9. The vertices of trees T and T ′ are labeled as in the proof of the Theorem

3.2.10. In Figure 3.10, a tree is constructed, as in the proof of Theorem 3.2.10, by

connecting two copies of T ′ to T at y26 (yn−1), x3 and y24 (yn−3), x3.

Remark 3.2.12. Similar to Remark 3.2.3, here also, we get larger trees having the radio

d-chromatic number same as the radio number of T .

Theorem 3.2.13. Let T ′ ∈H ′ be a tree of order n and diameter d = 2p. If T ∈H ′
T ′,2,

then there exist trees Tj of diameter ( j + 1)d + j, j = 1,2,3, . . . , such that rcd(Tj) =

rn(T ) = rn(T ′).
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Figure 3.9 A tree T ′ ∈H ′ and a tree T ∈H ′
T ′,3
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Figure 3.10 A tree constructed from the trees in Figure 3.9 as in the proof of Theorem
3.2.10

Proof: We consider the labeling of T as given in Theorem 3.2.10. Let y1,y2,y3, . . . ,yn

be the labeling of the vertices of T ′ such that for each i, the labels of the vertices of Sl
i

and Sr
i are same as that of Sl

i of T ′ and Lr
i of T , respectively, as in the proof of Theorem

3.2.10. Let T1 = T 1
1 , be the tree in Theorem 3.2.10, obtained by connecting T and T ′

at x3 and yn−1. It is easy to see that the diameter and the order of T1 are 2d + 1 and

2n respectively. Now to obtain Tj, j = 2,3,4, . . . , we connect a copy of T ′ to the last
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copy of T ′ which is connected in Tj−1 at yn−1 and y3. It is easy to see that Tj is of order

( j+1)n and with diameter ( j+1)d + j.

Remark 3.2.14. In addition to conditions in Theorem 3.2.13, suppose that T ∈H ′. If

we label the vertices of Ll
i similar to that of Sl

i in the proof of Theorem 3.2.13, then to

get Tj, j = 2,3,4, . . . , we connect a copy of T (or T ′) to the last copy of tree which is

connected in Tj−1 at xn−1 (or yn−1) and x3 or y3.

Example 3.2.15. In Figure 3.11, a tree T ′ ∈H ′ and a tree T ∈H ′
T ′,1 are given. Also,

T ∈H ′. The vertices of T ′ are labeled as in Theorem 3.2.13 and the vertices of T

are labeled as in Remark 3.2.14. Using the trees T and T ′, a tree T3 of diameter 27 is

constructed in Figure 3.12, as in Remark 3.2.14.
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Figure 3.11 Two trees satisfying the condition in Remark 3.2.14 labeled as in the proof
of Theorem 3.2.13

For an even integer d = 2p≥ 3 and an odd integer n≥ 2d +5, it is easy to see that

there exists a tree T ∈H ′ of order n and diameter d. The following corollaries are

similar to Corollary 3.2.5 and Corollary 3.2.6 respectively.

Corollary 3.2.16. Let d = 2p, p≥ 1, be an even integer and n≥ 2d+5 an odd integer.

Then for every integer n′ ≥ n, there exists a tree T ∗ of order n′ such that rcd(T ∗) =

p(n−1)+2.
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Figure 3.12 A tree is constructed as in Remark 3.2.14 from the trees in Figure 3.11

Proof: Let T ∈H ′ be a tree of diameter d and order n. Among the trees Tj of order

( j + 1)n in Theorem 3.2.13, we consider the smallest tree Tt such that n′ ≤ (t + 1)n.

Now, we remove (t + 1)n− n′ vertices from the last copy of the tree that is con-

nected in Tt and get a tree T ∗ of order n′ (removing pendant vertices recursively) with

rcd(T ∗) = rn(T ) = pn+2.

Corollary 3.2.17. Let d = 2p, p≥ 1, be an even integer and n≥ 2d+5 an odd integer.

Then for every integer d′ ≥ d, there exists a tree T ∗ of diameter d′ such that rcd(T ∗) =

p(n−1)+2.

Proof: Let T ∈H ′ be a tree of diameter d and order n. Among the trees Tj of di-

ameter ( j + 1)d + j in Theorem 3.2.13, we consider the smallest tree Tt such that

d′ ≤ (t + 1)d + t. Now, we remove all the pendant vertices of Tt in the last copy of

tree that is connected in Tt to get a tree of diameter (t + 1)d + t − 1. We repeat this

process d′− ( j+1)d− j+1 times to get T ∗.
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Theorem 3.2.18. Let T ∈ H ′ be a tree of order n, diameter d = 2p. If Ll
p has `

vertices at distance d from each other and |Ll
i| > ` for i = 1, p, then there exist graphs

Gt
j, j = 1,2,3, . . . , `− 1, t = 1,2,3, . . . ,

(`−1
j

)
, of order n and size n− 1+ j, such that

rcd(Gt
j) = rn(T ).

Proof: Let x1,x2,x3, . . . ,xn be the labeling of the vertices of T such that for each i,

the labels of the vertices of Lr
i and Ll

i are same as that of Lr
i of T and Sl

i of T ′, re-

spectively, as in the proof of Theorem 3.2.10. We define a radio coloring f of T by

f (x1) = 1 and f (xs) = f (xs−1)+ (1+ d− d(xs,xs−1)), 2 ≤ s ≤ n. We get a graph G j

by making j vertices among xn−1,xn−3, . . . ,xn−(2`−3) adjacent to x3. Since choosing j

vertices among xn−1,xn−3, . . . ,xn−(2`−3) has
(`−1

j

)
possibilities, we get the graphs Gt

j,

t = 1,2,3, . . . ,
(`−1

j

)
. Now, we prove that f is a radio d-coloring of Gt

j. It is enough

to check the radio d-coloring condition for xs with xs−1 and xs+1 as colors of remain-

ing xrs differ by at least d from the color of xs. By the choice of vertices on paths

xn− x3,x1− xn−1,x1− xn−3,x1− xn−5, . . . ,x1− xn−(2`−1) distance of xs from xs−1 and

xs+1 in T and Gt
j are same. Hence f is a radio d-coloring of Gt

j and rcd(Gt
j) = rn(T ).

Also, it is easy to see that Gt
j has n−1+ j edges.

Remark 3.2.19. For the tree T in Theorem 3.2.18, suppose that Lr
p has `′ number of

vertices which are at distance d from each other. Then we label these `′ vertices as

x3,x5,x7, . . . ,x2`′+1 and while labeling the vertices of Lv
p+1−i, 2 ≤ i ≤ p, we use the

first ` labels to the vertices on the paths x3− x1,x5− x1,x7− x1, . . . ,x2`′+1− x1, in the

order lowest to highest. We can make x2r+1, r = 2,3,4, . . . , `′, adjacent to xn−2s−1,

s = 1,2,3, . . . , `− 1, provided the vertex of Lv
p+1−i on the path x2r+1− x1 and vertex

of Lu
i on the path xn−(2s−1)− x1 do not have the consecutive indexed labels. Instead of

T ∈H ′ taken in Theorem 3.2.18, we can consider any of the trees obtained in Theorem

3.2.10 or Theorem 3.2.13 to construct graphs as in Theorem 3.2.18.
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3.3 SUMMARY

In this chapter, we have given an upper bound and a lower bound for the radio k-

chromatic number of trees in G and trees in G ′, when k greater than or equal to the

diameter of the tree. The upper bound matches with the lower bound when k and the

diameter of the tree are of the same parity. Also, we have determined the radio d-

chromatic number of the trees and graphs constructed from the trees in some subclasses

of G and G ′.
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CHAPTER 4

THE RADIO NUMBER FOR THE
CARTESIAN PRODUCT OF COMPLETE
GRAPH AND CYCLE

“The coloring of abstract graphs is a generalization of the

coloring of maps, and the study of the coloring of abstract graphs

opens a new chapter in the combinatorial part of mathematics.”
- Gabriel Andrew Dirac (1951)

The Cartesian product, the direct product, and the strong product are the three fun-

damental products of graphs. These products have been widely investigated and have

many significant applications. More details on products of graphs can be found in the

handbook of Hammack et al. (2011). In the Cartesian products, radio k-coloring has

been studied for Pn�Pm, Cn�Cm, Pn�Km and Pn�Cm. In this chapter, we determine

the radio number for the Cartesian product of complete graph Kn and cycle Cm for the

following values of m and n: (a) n even and m odd (b) any n and m ≡ 6 (mod 8) (c) n

odd and m≡ 5 (mod 8).

4.1 THE RADIO NUMBER OF KKKnnn���CCCmmm FOR nnn EVEN AND mmm

ODD

In this section, we define a radio coloring of Kn�Cm for n even and m odd, whose span

matches with the lower bound given in Theorem 1.4.4. To do this, we first order the
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vertices of Kn�Cm. The lemma below assures that such ordering exists.

Lemma 4.1.1. If m odd and n even, then there exists an ordering x1,x2,x3, . . . ,xmn of

the vertices of Cm, which takes every vertex n times, such that {d(xi,xi−1)}mn
i=2 is an

alternating sequence of m−1
2 and p, where

p =


m+3

4 i f m≡ 1 (mod 4),

m+1
4 i f m≡ 3 mod 4,

and

d(xi,xi−2) =


m−1

4 i f m≡ 1 (mod 4),

m+1
4 i f m≡ 3 (mod 4),

i = 3,4,5, . . . ,mn.

Proof:

Case I: mmm≡≡≡ 111 (((mmmoooddd 444)))

Moving in the counter-clockwise direction on Cm, let x1,x3,x5, . . . ,xmn−1 be an order-

ing of the vertices of Cm such that the distance between any two consecutive vertices is

m−1
4 . Since m and m−1

4 are relatively prime, in this ordering each vertex of Cm appears

n
2 times. We choose x2 as that vertex of Cm which is at distance m−1

2 from x1 in the

clockwise direction. Now, again moving in the counter-clockwise direction on Cm, let

x2,x4,x6, . . . ,xmn be an ordering of the vertices of Cm such that the distance between any

two consecutive vertices is m−1
4 . It is easy to see that d(x2i−1,x2i)=

m−1
2 , i= 1,2, . . . , mn

2

and d(x2i,x2i+1) =
m+3

4 , i = 1,2, . . . , mn
2 −1.

Case II: mmm≡≡≡ 333 (((mmmoooddd 444)))

Moving in the counter-clockwise direction on Cm, let x1,x3,x5, . . . ,xmn−1 be an order-

ing of vertices of Cm such that the distance between any two consecutive vertices is

m+1
4 . Since m and m+1

4 are relatively prime, in this ordering each vertex of Cm appears

n
2 times. We choose x2 as that vertex of Cm which is at distance m−1

2 from x1 in the
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clockwise direction. Now, again moving in the counter-clockwise direction on Cm, let

x2,x4,x6, . . . ,xmn be an ordering of vertices of Cm such that the distance between any two

consecutive vertices is m+1
4 . It is easy to see that d(x2i−1,x2i) =

m−1
2 , i = 1,2, . . . , mn

2

and d(x2i,x2i+1) =
m+1

4 , i = 1,2, . . . , mn
2 −1.

The Cartesian product Kn�Cm contains n copies of Cm and m copies of Kn. Now

onwards, unless we mention, moving on a cycle, we mean clockwise.

Lemma 4.1.2. For an even integer n > 7 and m odd, there exists an ordering x1,x2,x3,

. . . ,xmn of the vertices of Kn�Cm such that {d(xi,xi−1)}mn
i=2 is an alternating sequence

of m−1
2 +1 and p′, where

p′ =


m+3

4 +1 i f m≡ 1 (mod 4),

m+1
4 +1 i f m≡ 3 (mod 4),

and

d(xi,xi−2) =


m−1

4 +1 i f m≡ 1 (mod 4),

m+1
4 +1 i f m≡ 3 (mod 4),

i = 3,4,5, . . . ,mn.

Proof:

Case I: mmm≡≡≡ 111 (((mmmoooddd 444)))

If we treat each copy of Kn in Kn�Cm as a single vertex, the ordering of vertices of

Kn�Cm that we need here is the ordering of Cm in Lemma 4.1.1. That is, to choose xi

in Kn�Cm, we move one less than the required distance on the cycle containing xi−1

and distance one across the cycles. To maintain the distance d(xi,xi−2) =
m−1

4 + 1,

i = 3,4,5, . . . ,mn, we need to see that xi is not on the cycle containing xi−2. Now, we

prove that this is possible. Suppose that x1,x2,x3, . . . ,xl , l < mn, are chosen. Let Cl and

Cl−1 be the copies of Cm on which xl and xl−1 lies. Let u be the vertex of Cl at distance

m−1
2 in the clockwise direction from xl if l is odd and at distance m+3

4 in the clockwise

61



direction from xl if l is even. Let Kl be the copy of Kn containing u. By Lemma 4.1.1,

at least one vertex of Kl is not chosen, say v. If v is not on Cl−1 and v 6= u, then we

choose the vertex v as xl+1. Otherwise v is on Cl−1 or v = u. Without loss of generality,

we assume that v = u. Now, for a vertex labeled xi in Kl , the possible positions for

the vertices xi−2,xi−1,xi+1 and xi+2 on Cl are the vertices of Cl at distance m+3
4 , m−1

4

and m−1
2 from u (three positions in the clockwise direction and three positions in the

counter-clockwise direction). Since d(xl,u) = m−1
2 or d(xl,u) = m+3

4 , xl is in one of the

six positions. Since n > 7, there exists at least one vertex labeled x j of Kl not on Cl−1

such that none of the vertices x j−2, x j−1, x j+1 and x j+2 is on Cl . Now, relabel x j as xl+1

and label u as x j.

Case II: mmm≡≡≡ 333 (((mmmoooddd 444)))

Proof of this case is analogous to that of Case I by replacing m+3
4 with m+1

4 .

Example 4.1.3. In Figure 4.1, the vertices of K8�C9 are ordered as in Case I of Lemma

4.1.2. Here m−1
2 + 1 = 5, m+3

4 + 1 = 4 and m−1
4 + 1 = 3. In Figure 4.2, the vertices of

K8�C7 are ordered as in Case II of Lemma 4.1.2. Here m−1
2 +1 = 4, m+1

4 +1 = 3 and

m+1
4 +1 = 3.

It is easy to see that diam(Kn�Cm) =
m−1

2 +1 if m is odd and diam(Kn�Cm) =
m
2 +1

if m is even.

Theorem 4.1.4. For an even integer n > 7,

rn(Kn�Cm)≤


1
8(m

2n+3mn−2m+10) i f m≡ 1 (mod 4),

1
8(m

2n+5mn−2m+6) i f m≡ 3 (mod 4).
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Figure 4.1 The ordering of the vertices of K8�C9 as in Case I of the proof of Lemma
4.1.2

Proof: Let x1,x2,x3, . . . ,xmn be the ordering of vertices in Kn�Cm as in Lemma 4.1.2.

Case I: mmm≡≡≡ 111 (((mmmoooddd 444)))

We define f by f (x1) = 1 and f (xi) = f (xi−1)+(1+ m−1
2 +1)−d(xi,xi−1), 2≤ i≤mn.

We show that f is a radio coloring of Kn�Cm. Except xi and xi−2, 3 ≤ i ≤ mn, and xi

and xi−3, 4 ≤ i ≤ mn all other pairs of vertices satisfy the radio coloring condition

clearly. So, we check the radio coloring condition for xi and xi−2. If i is odd, then

d(xi,xi−1) =
m+3

4 +1, d(xi−1,xi−2) =
m−1

2 +1 and d(xi,xi−2) =
m−1

4 +1. Therefore

f (xi)− f (xi−2) = f (xi)− f (xi−1)+ f (xi−1)− f (xi−2)

=

(
1+

m−1
2

+1
)
−d(xi,xi−1)+

(
1+

m−1
2

+1
)
−d(xi−1,xi−2)
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Figure 4.2 The ordering of the vertices of K8�C7 as in Case II of the proof of Lemma
4.1.2

=
m−1

4
+1

= 1+
m−1

2
+1−d(xi,xi−2).

Since d(xi,xi−3)≥ d(xi−2,xi−3)−d(xi−2,xi) =
m−1

2 +1− m−1
4 −1 = m−1

4 , we have

f (xi)− f (xi−3) = f (xi)− f (xi−2)+ f (xi−2)− f (xi−3)

=
m−1

4
+1+

(
1+

m−1
2

+1
)
−d(xi−2,xi−3)

=
m−1

4
+1+1

= 1+
m−1

2
+1− m−1

4

≥ 1+
m−1

2
+1−d(xi,xi−3).
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If i is even, then d(xi,xi−1) =
m−1

2 + 1, d(xi−1,xi−2) =
m+3

4 + 1, d(xi,xi−2) =
m+3

4 .

Therefore,

f (xi)− f (xi−2) = f (xi)− f (xi−1)+ f (xi−1)− f (xi−2)

= 1+
m−1

4

= 1+
m
2
+1−d(xi,xi−2).

Since f (xi−2) = f (xi−3) +
m−1

4 , f (xi−1) = f (xi−2) + 1 and f (xi) = f (xi−1) +
m−1

4 ,

f (xi)− f (xi−3) =
m−1

2 + 1 = diam(Kn�Cm). Hence, f is a radio coloring. From the

choice of xis and by the definition of f , it is easy to see that

mn

∑
i=2

d(xi,xi−1) =
mn
2

(
m−1

2
+1
)
+
(mn

2
−1
)(m+3

4
+1
)

and
mn

∑
i=2

εi = 0.

Now by Lemma 1.4.2,

rn( f ) = f (xmn)

= (mn−1)
(

m+1
2

+1
)
− mn

2

(
m−1

2
+1
)
−
(mn

2
−1
)(m+3

4
+1
)
+1

=
1
8
(m2n+3mn−2m+10).

Case II: mmm≡≡≡ 333 (((mmmoooddd 444)))

We define a coloring g by g(x1) = 1 and g(xi) = g(xi−1)+ (1+ m−1
2 +1)−d(xi,xi−1),

2≤ i≤ mn. Similar to the Case I, we can prove that g is a radio coloring and by using

Lemma 1.4.2, we get rn(g) = g(xmn) =
1
8(m

2n+5mn−2m+6).

Theorem 4.1.5. For an even integer n > 7, we have

rn(Kn�Cm) =


1
8(m

2n+3mn−2m+10) i f m≡ 1 (mod 4),

1
8(m

2n+5mn−2m+6) i f m≡ 3 (mod 4).
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Proof: Using Theorem 1.4.4, we prove that

rn(Kn�Cm)≥


1
8(m

2n+3mn−2m+10) i f m≡ 1 (mod 4),

1
8(m

2n+5mn−2m+6) i f m≡ 3 (mod 4).

Here k = diam(Kn�Km) =
m−1

2 +1. We choose M = m+3, the triameter of Kn�Cm.

Case I: mmm≡≡≡ 111 (((mmmoooddd 444)))

Since m ≡ 1 (mod 4), (m+3) 6≡
(m−1

2 +1
)
(mod 2). Since mn is even and (m+3) 6≡(m−1

2 +1
)
(mod 2), by Theorem 1.4.4, we have

rn(Kn�Cm) ≥
(mn−2)

(
3(m−1

2 +1+1)− (m+3)
)

4
+2

=
1
8
(m2n+3mn−2m+10).

Case II: mmm≡≡≡ 333 (((mmmoooddd 444)))

Since m≡ 3 (mod 4), (m+3)≡
(m−1

2 +1
)
(mod 2). Now, by Theorem 1.4.4, we have

rn(Kn�Cm) ≥
(mn−2)

(
3(m−1

2 +1+1)− (m+3−1)
)

4
+2

=
1
8
(m2n+5mn−2m+6).

Example 4.1.6. The radio coloring f in Case I of the proof of Theorem 4.1.4 is given

for K8�C9 in Figure 4.3. The span of f is 107. The radio coloring g in Case II of the

proof of Theorem 4.1.4 is given for K8�C7 in Figure 4.4. The span of g is 83.
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Figure 4.3 The radio coloring for K8�C9 as given in Case I of the proof of Theorem
4.1.4

4.2 THE RADIO NUMBER OF KKKnnn���CCCmmm FOR mmm≡≡≡ 666 (((mmmoooddd 888)))

In this section, similar to the above section, we find the radio number of Kn�Cm, m ≡

6 (mod 8) and n≥ 7.

Lemma 4.2.1. If m ≡ 6 (mod 8) and n is any positive integer, then there exists an

ordering x1,x2,x3, . . . ,xmn of the vertices of Cm, which takes every vertex n times, such

that the sequence {d(xi,xi−1)}mn
i=2 is an alternating sequence of m

2 and m+2
4 .

Proof: Moving in the counter-clockwise direction on Cm, let x1,x3,x5, . . . ,xm−1,x2,x4,

x6, . . . ,xm,xm+1,xm+3,xm+5 . . . ,x2m−1,xm+2,xm+4, . . . ,xmn−2, xmn be an ordering of ver-

tices of Cm such that the distance between any two consecutive vertices is m−2
4 . Since m

and m−2
4 are relatively prime, in the above ordering each vertex of Cm appears n times.
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For i = 1,3,5, . . . ,mn−1,

d(xi,xi+1) =

[(m
2

)(m−2
4

)]
(mod m)

=

[(
m−6

8

)
m+

m
2

]
(mod m)

=
m
2
.
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Figure 4.4 The radio coloring for K8�C7 as given in Case II of the proof of Theorem
4.1.4

Lemma 4.2.2. If m≡ 6 (mod 8) and n≥ 7, then there exists an ordering x1,x2,x3, . . . ,xmn

of the vertices of Kn�Cm such that the sequence {d(xi,xi−1)}mn
i=2 is an alternating se-

quence of m
2 +1 and m+2

4 +1, and d(xi,xi−2) =
m+2

4 , i = 3,4,5, . . . ,mn.
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Proof: Proof is similar to that of Lemma 4.1.2 with the following variations. The vertex

u is at distance m+2
4 from xl if l is even and at distance m

2 from xl if l is odd. For a vertex

labeled xi in Kl , the possible positions for the vertices xi−2,xi−1,xi+1 and xi+2 on Cl are

the vertices of Cl at distance m+2
4 , m−2

4 and m
2 from u (three positions in the clockwise

direction and two positions in the counter-clockwise direction).

Example 4.2.3. In Figure 4.5, the vertices of K7�C6 are ordered as in Lemma 4.2.2.

Here m
2 +1 = 3, m−2

4 +1 = 2 and m−1
4 +1 = 3.
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Figure 4.5 The ordering of the vertices of K7�C6 as in the proof of Lemma 4.2.2

Theorem 4.2.4. If m≡ 6 (mod 8) and n≥ 7, then rn(Kn�Cm) =
1
8(m

2n+6mn−2m+

4).
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Proof: Let x1,x2,x3, . . . ,xmn be the ordering of vertices in Kn�Cm as in Lemma 4.2.2.

Now, we define f by f (x1) = 1 and f (xi) = f (xi−1)+(1+ m
2 +1)−d(xi,xi−1), 2≤ i≤

mn. As in Theorem 4.1.4, we can prove that f is a radio coloring of Kn�Cm. By Lemma

1.4.2, we have

rn( f ) = f (xmn−1)

= (mn−1)
(

1+
m
2
+1
)
− mn

2

(m
2
+1
)
−
(mn

2
−1
)(m+2

4
+1
)
+1

=
1
8
(m2n+6mn−2m+4).

Next, we show that rn(Kn�Cm) ≥ 1
8(mn2 +6mn−2m+4). To prove this we use The-

orem 1.4.4. Since mn is even and (m+ 3) 6≡
(m

2 +1
)
(mod 2), by Theorem 1.4.4, we

have

rn(Kn�Cm) ≥
(mn−2)

(
3(m

2 +1+1)− (m+3)
)

4
+2

=
1
8
(m2n+6mn−2m+4).

Example 4.2.5. In Figure 4.6, for K7�C6, using the vertex ordering in Figure 4.5, the

minimal radio coloring in the proof of Theorem 4.2.4 is given.

4.3 THE RADIO NUMBER OF KKKnnn���CCCmmm FOR nnn ODD AND mmm ≡≡≡

555 (((mmmoooddd 888)))

Similar to the above sections, here also, we order the vertices of Kn�Cm, using which

we define a minimal radio coloring of Kn�Cm for n odd and m≡ 5 (mod 8).

Lemma 4.3.1. If m ≡ 5 (mod 8) and n is any positive integer, then there exists an

ordering x1,x2, . . . ,xmn of vertices of Cm, which takes every vertex n times, such that

d(xi,xi−1) =
3m+1

8 , i = 2,3, . . . ,mn, and d(xi,xi−2) =
m−1

4 , i = 3,4,5, . . . ,mn.
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Figure 4.6 The minimal radio coloring of K7�C6, given in the proof of Theorem 4.2.4

Proof: Moving in the clockwise direction on Cm, let x1,x2,x3, . . . ,xmn be an ordering

of vertices of Cm such that the distance between any two consecutive vertices is 3m+1
8 .

Since m and 3m+1
8 are relatively prime, in this ordering, each vertex of Cm appears n

times. It is easy to see that d(xi,xi−2) =
m−1

4 , i = 3,4,5, . . . ,mn.

Lemma 4.3.2. If n≥ 7 is odd and m≡ 5 (mod 8), then there exists an ordering x1,x2,x3,

. . . ,xmn of vertices of Kn�Cm such that d(xi,xi−1) =
3m+1

8 + 1, i = 2,3,4, . . . ,mn, and

d(xi,xi−2) =
m−1

4 +1, i = 3,4,5, . . . ,mn.

Proof: Proof is similar to that of Lemma 4.1.2 with the following variation. Vertex u

is at distance 3m+1
8 from xl . For a vertex labeled xi in Kl , the possible positions for

the vertices xi−2,xi−1,xi+1 and xi+2 on Cl are the vertices of Cl at distance 3m+1
8 and

3m+1
4 from u (two positions in the clockwise direction and two positions in the counter-

clockwise direction).
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Example 4.3.3. In Figure 4.7, the vertices of K7�C5 are ordered as in Lemma 4.3.2.

Here d(xi,xi−1) =
3m+1

8 +1 = 3 and d(xi,xi−2) =
m−1

4 +1 = 2.
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Figure 4.7 The ordering of the vertices of K7�C5 as in the proof of Lemma 4.3.2

Theorem 4.3.4. If n≥ 7 is odd and m≡ 5 (mod 8), then rn(Kn�Cm) =
1
8(m

2n+3mn−

m+5).

Proof: Let x1,x2,x3, . . . ,xmn be the ordering of vertices in Kn�Cm as in Lemma 4.3.2.

Now, we define f by f (x1) = 1 and f (xi) = f (xi−1)+ (1+ m−1
2 +1)−d(xi,xi−1), 2 ≤

i ≤ mn. As in Theorem 4.1.4, we can prove that f is a radio coloring of Kn�Cm. By

Lemma 1.4.2, we have

rn( f ) = f (xmn) = (mn−1)
(

m+1
2

+1
)
− (mn−1)

(
3m+1

8
+1
)
+1

=
1
8
(m2n+3mn−m+5).
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Next, we show that rn(Kn�Cm)≥ 1
8(m

2n+3mn−m+5). To prove this, we use Theo-

rem 1.4.4. Since mn is odd and (m+ 3) 6≡
(m−1

2 +1
)
(mod 2), by Theorem 1.4.4, we

have

rn(Kn�Cm) ≥
(mn−1)

(
3(m−1

2 +1+1)− (m+3)
)

4
+1

=
1
8
(m2n+3mn−m+5).

Example 4.3.5. In Figure 4.8, for K7�C5, using the vertex ordering in Figure 4.7, the

minimal radio coloring in the proof of Theorem 4.3.4 is given.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

22

12

7

9 24
4

19
34 14

29

2

17

32

27

15

30

10

25

5

20

35

8
23

3
18

33
28

13
1

26

31

11

26

6

21

Figure 4.8 The minimal radio coloring of K7�C6, given in the proof of Theorem 4.3.4
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4.4 SUMMARY

In this chapter, we have studied the radio number for the Cartesian product of complete

graph and cycle. We have determined rn(Kn�Cm) when n even and m odd; any n and

m≡ 6 (mod 8); n is odd and m≡ 5 (mod 8).
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CHAPTER 5

THE RADIO kkk-CHROMATIC NUMBER
FOR CORONA OF ARBITRARY GRAPHS

“The older I get, the more I believe that at the bottom of most

deep mathematical problems there is a combinatorial problem.”
- Israil Moiseevich Gelfand (1990)

Products of graphs are often viewed as a convenient language to describe structures, but

they are increasingly being applied in more substantial ways. Computer science is one

of the many fields in which graph products are becoming commonplace. Let G and H

be two graphs with vertex sets {v1,v2,v3, . . . ,vn} and {u1,u2, u3, . . . ,um}, respectively.

Recall that, the corona G�H of G and H is the graph with vertex set V (G)
⋃( n⋃

i=1
{v j

i :

1≤ j≤m}
)

and edge set E(G)
⋃( n⋃

i=1
{viv

j
i : 1≤ j≤m}

)⋃( n⋃
i=1
{vl

iv
j
i : ulu j ∈E(H)}

)
.

Equivalently, G�H is the graph obtained by taking one copy of G and for each vertex vi

of G, one copy of H, say Hi, and joining vi to each and every vertex of Hi by an edge. By

the definition of corona of graphs, it is clear that G�H 6∼= H�G unless G∼= H. Many

properties of G�H mainly depend on G, but not on H. The corona G�H is connected

if and only if G is connected. Also, diam(G�H) = diam(G)+ 2. Throughout this

chapter, in corona G�H, the first graph G is connected, but not necessarily the second

graph H.

In this chapter, we obtain a best possible upper bound for the radio k-chromatic

number of corona of graphs. Also, for an arbitrary graph H, we improve the upper

bound and obtain lower bounds for the radio numbers of P2p+1�H and Qn�H.
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5.1 AN UPPER BOUND FOR THE RADIO kkk-CHROMATIC NUM-

BER FOR CORONA OF ARBITRARY GRAPHS

In this section, we first give an upper bound for the radio k-chromatic number of corona

of two arbitrary graphs. Later, we show that this upper bound is exact for P2p�H and

Kn�H.

Theorem 5.1.1. If G is a connected graph and H is a graph, of orders n > 1 and m

respectively, then for k > 3, rck(G�H)≤ (m+1)rck−2(G)+(k−3)m+2(n−1).

Proof: Let f be a minimal radio (k−2)-coloring of G. Let y1,y2,y3, . . . ,yn be an order-

ing of vertices of G such that f (yi)≤ f (yi+1) for all i. Let Hi be the copy of H in G�H

corresponding to the vertex yi of G. We order the vertices of G�H as follows. Let

x1 = y1 and for j = 0,1,2, . . . ,m− 1, we choose x jn+i, jn+ i 6= 1, from Hi, 1 ≤ i ≤ n.

We choose xmn+1 from H1 and xmn+i as yi, 2 ≤ i ≤ n. Now, we define a coloring g of

G�H by g(x1) = f (y1) = 1,

g(xi)=



g(xi−1)+ f (y2)− f (y1)+1 i f i = 2, mn+2,

g(xi−1)+ f (yl)− f (yl−1) i f 3≤ i≤ mn, i 6≡ 1 (mod n) and l ≡ i (mod n),

g(xi−1)+ k−2 i f i≡ 1 (mod n),

g(xi−1)+ f (yl)− f (yl−1)+2 i f mn+2 < i≤ mn+n and l ≡ i (mod n).

It is clear that d(x1,x2) = d(xmn+1,xmn+2) = d(y1,y2)+ 1; d(xi,xi−1) = d(yl,yl)+ 2,

3 ≤ i ≤ mn, i 6≡ 1 (mod n), l ≡ i (mod n); d(xi,xi−1) ≥ 3 for i ≡ 1 (mod n); and

d(xi,xi−1) = d(yl,yl−1), mn+2 < i≤mn+n, l ≡ i (mod n). Since f is a radio (k−2)-

coloring of G, we have g is a radio k-coloring of G�H. Now,

rck(g) = g(xmn+n) = g(x1)+
mn+n

∑
i=2

[g(xi)−g(xi−1)]

= 1+(1+ rck−2(G)−1)+(m−1)(rck−2(G)−1)+m(k−2)

+(1+ rck−2(G)−1+2(n−2))
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= (m+1)rck−2(G)+(k−3)m+2(n−1).

Therefore rck(G�H)≤ (m+1)rck−2(G)+(k−3)m+2(n−1).

Let v1,v2,v3, . . . ,vm be a vertex ordering of a graph H. Let α ′(v1,v2,v3, . . . ,vm)

denotes the number of pairs of adjacent consecutive vertices in the ordering. Let α ′(H)

be the minimum of α ′(v1,v2,v3, . . . ,vm) over all the vertex orderings of H.

Theorem 5.1.2. If G is a connected graph and H is a graph, of orders n > 1 and m

respectively, then

rc3(G�H)≤


(m+1)χ(G)+2(n−1) i f G is not bipartite,

2(m+n)+α ′(H) i f G is bipartite.

Proof: Theorem 5.1.1 holds good for k = 3 if G is not a bipartite graph. Hence,

rc3(G�H) ≤ (m+ 1)χ(G)+ 2(n− 1) if G is not bipartite. Let G be a bipartite graph

and f be a minimal radio 1-coloring of G. Let y1,y2,y3, . . . ,yn be an ordering of the

vertices of G such that f (yi) ≤ f (yi+1) for all i. Let Hi be the copy of H in G�H

corresponding to the vertex yi of G. Let v1,v2,v3, . . . ,vm be a vertex ordering of H such

that α ′(v1,v2,v3, . . . ,vm) = α ′(H). We consider the vertex ordering x1,x2,x3, . . . ,xmn+n

of G�H as in the proof of Theorem 5.1.1 with the following modification. The vertex

x jn+1 from H1 is chosen such that x jn+1 = v j, j = 1,2,3, . . . ,m. For j = 1,2,3, . . . ,m, the

vertex x( j−1)n+i is chosen from the copy of Hi such that x( j−1)n+i = v j, i = 2,3,4, . . . ,n.

We modify the coloring g defined in the proof of Theorem 5.1.1 for the vertices x jn+2,

j = 1,2,3, . . . ,m−1 as follows. For j = 1,2,3, . . . ,m−1,

g(x jm+2) =


g(x jm+1)+ f (y2)− f (y1)+1 i f v j−1 and v j are ad jacent,

g(x jm+1)+ f (y2)− f (y1) i f v j−1 and v j are not ad jacent.

It is easy to see that g is a radio 3-coloring of G�H and rc3(g) = (m+ 1)rc1(G)+

2(n−1)+α ′(H) = 2(m+n)+α ′(H).
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Example 5.1.3. A minimal radio coloring and the ordering of vertices in the increas-

ing order of their colors for P6 and P5 are considered in Figure 5.1 and Figure 5.4,

respectively. The vertex orderings, as in the proof of Theorem 5.1.1, for P6�C4 and

P5�C4 are given in Figure 5.2 and Figure 5.5, respectively. The radio coloring in the

proof of Theorem 5.1.1 for P6�C4 and P5�C4 is given in Figure 5.3 and Figure 5.6,

respectively.
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Figure 5.1 A minimal radio coloring of P6 and the ordering of vertices in the increasing
order of their colors
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Figure 5.2 The vertex ordering of P6�C4 as in the proof of Theorem 5.1.1

Next, we give lower bounds for rck(Kn�H) and rn(P2p�H) which match with the

upper bound given in Theorem 5.1.1.

Theorem 5.1.4. If H is a graph of order m, k > 2 and n > 1 are integers, then rck(Kn�

H) = (k−2)mn+ k(n−1)+1.
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Figure 5.3 The radio coloring of P6�C4 as in the proof of Theorem 5.1.1

Proof: It is easy to see that rck−2(Kn) = (k−2)(n− 1)+ 1. From Theorem 5.1.1, we

have rck(Kn�H)≤ (m+1)rck−2(Kn)+(k−3)m+2(n−1) = (k−2)mn+k(n−1)+1.

To get the lower bound that matches with the upper bound, we use Lemma 1.4.2. It is

easy to see that the maximum distance sum for Kn�H is 2+3(mn−1)+2+n−2 =

3mn+ n− 1. Now, by Lemma 1.4.2, we have rck(Kn�H) ≥ (mn+ n− 1)(1+ k)−

(3mn+n−1)+1 = (k−2)mn+ k(n−1)+1.
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Figure 5.4 A minimal radio coloring of P5 and the ordering of vertices in the increasing
order of their colors

Theorem 5.1.5. If H is a graph of order m, then rn(P2p�H) = (2m+2)p2 +2p.

Proof: From Theorem 5.1.1, rn(P2p�H) ≤ (m+1)rn(P2p)+ (k−3)m+2(2p−1) =

(m+ 1)(2p2− 2p+ 2)+ ((2p+ 1)− 3)m+ 2(2p− 1) = (2m+ 2)p2 + 2p. To get the

lower bound that matches with the upper bound, we use Theorem 1.4.3. Let P2p :

v1v2v3 . . .v2p be the path. We choose L0 = {vp,vp+1}. Then for i = 1,2,3, . . . , p− 1,

|Li| = 2(m+1) and |Lp| = 2m. Now, by Theorem 1.4.3, rn(P2p�H) ≥ (2pm+2p)−

2p+2×2+2
p−1
∑

i=1
2(m+1)(p− i) = (2m+2)p2 +2p.
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Figure 5.5 The vertex ordering of P5�C4 as in the proof of Theorem 5.1.1
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Figure 5.6 The radio coloring of P5�C4 as in the proof of Theorem 5.1.1

5.2 AN IMPROVED UPPER BOUND FOR THE RADIO NUM-

BER OF PPP222p+1���HHH

In this section, we improve the upper bound for the radio number of Pn�H when n is

odd. Also, we show that the improved upper bound is at most 1 more than the exact

number.

Theorem 5.2.1. If H is a graph of order m, then for n = 2p+ 1 > 4, rn(Pn�H) ≤

(2m+2)p2 +(2m+4)p+m+3.

Proof: Let v1v2v3 . . .vn be the path Pn and in Pn�H, Hi denotes the copy of H, corre-
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sponding to the vertex vi. To obtain an upper bound for rn(Pn�H), we first order the

vertices of Pn�H using which we define a radio coloring. For j = 0,1,2, . . . ,m−1, we

choose x jn+i from H i
2

if i is even and from Hp+ i+1
2

if i is odd, i = 1,2,3, . . . ,n. Next, we

label the vertices v1,v2,v3, . . . ,vp+1 and vp+2,vp+3,vp+4, . . . ,vn as xmn+1,xmn+3,xmn+5,

. . . ,xmn+n and xmn+2,xmn+4,xmn+6, . . . ,xmn+n−1 respectively.

We define a coloring f of Pn�H by f (x1) = 1, f (xi) = f (xi−1)+ (1+ 2p+ 2)−

d(xi,xi−1), i= 2,3,4, . . . ,mn,mn+2,mn+3,mn+4, . . . ,mn+n, and f (xmn+1)= f (xmn)+

(1+ 2p+ 2)− d(xmn+1,xmn)+ 1. By definition of f , it is easy to see that | f (xi+1)−

f (xi)| > (1+2p+2)−d(xi+1,xi) for all i = 1,2,3, . . . ,mn+n−1. For any i, 1 ≤ i ≤

mn+n−4, it is easy to see that f (xi+4)− f (xi)≥ 2p+2 = n+1 = diam(Pn�H). So,

it remains to check the radio coloring condition for xi with xi+2 and xi+3.

For any 1≤ i≤ mn+n−3 and i /∈ {mn−2,mn−1,mn}, we have

f (xi+3)− f (xi) = ( f (xi+3)− f (xi+2))+( f (xi+2)− f (xi+1))+( f (xi+1)− f (xi))

≥ p+ p+ p

≥ 2p+2

as d(xi+1,xi), d(xi+2,xi+1) and d(xi+3,xi+2) are at the most p+3. If i ∈ {mn−2,mn−

1,mn}, then one of i+ 1, i+ 2 and i+ 3 is mn+ 1. So, one of d(xi+1,xi), d(xi+2,xi+1)

and d(xi+3,xi+2) is 2p+1 and the other two are at most p+3. Therefore,

f (xi+3)− f (xi) = ( f (xi+3)− f (xi+2))+( f (xi+2)− f (xi+1))+( f (xi+1)− f (xi))

≥ 3+ p+ p

> 2p+2

If both xi and xi+2 are on copies of H, then d(xi+1,xi) and d(xi+2,xi+1) are at the

most p+3, and d(xi,xi+2)≥ 3. So, f (xi+2)− f (xi)≥ (2p+3− p−3)+(2p+3− p−

3) = 2p≥ 1+2p+2−d(xi,xi+2). If both xi and xi+2 are not on the copies of H, then
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d(xi+1,xi) and d(xi+2,xi+1) are at the most p+1, and hence f (xi+2)− f (xi)> 2p+2.

If one of xi and xi+2 is on a copy of H and the other is on Pn, then i = mn− 1 or

i = mn. Suppose that i = mn− 1. Then d(xi+1,xi) = p+ 3, d(xi+2,xi+1) = 2p+ 1

and d(xi+2,xi) = p which implies f (xi+2)− f (xi) = 3+ p = (1+2p+2)−d(xi+2,xi).

Suppose that i=mn. Then d(xi+1,xi) = 2p+1, d(xi+2,xi+1) = p+1 and d(xi+2,xi) = p

which implies f (xi+2)− f (xi) = (p+ 3)+ 3 > (1+ 2p+ 2)− d(xi+2,xi). Therefore f

is a radio coloring of Pn�H.

By the ordering of vertices, the distance sum is as follows. For j = 0,1,2, . . . ,m−1,

the sum
n
∑

i=2
d(x jn+i,x jn+i−1) is an alternating series of p+2 and p+3, d(x jn+1,x jn) =

p+2 ( j 6= 0), d(xmn+1,xmn) = 2p+1 and
n
∑

i=2
d(xmn+i,xmn+i−1) is an alternating series

of p+1 and p. That is,

mn+n

∑
i=2

d(xi,xi−1) = m(p(p+2)+ p(p+3))+(m−1)(p+2)

+2p+1+ p(p+1)+ p(p)

= (2m+2)p2 +(6m+2)p+2m−1.

By the definition of f ,
mn+n

∑
i=2

εi = 1. Now, by Lemma 1.4.2,

rn( f ) = f (xmn+n) = (mn+n−1)(1+2p+2)

− ((2m+2)p2 +(6m+2)p+2m−1)+1+1

= (2m+2)p2 +(2m+4)p+m+3.

Remark 5.2.2. Liu and Zhu (2005) have proved that rn(P2p+1) = 2p2 +3. For a graph

H of order m, by Theorem 5.1.1, rn(P2p+1�H)≤ (m+1)rn(P2p+1)+(2p+2−3)m+

2(2p+1−1) = (2m+2)p2+(2m+4)p+2m+3 which is m more than the upper bound

given in Theorem 5.2.1.
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Example 5.2.3. The vertex ordering and the radio coloring, as in the proof of Theorem

5.2.1, of P5�C4 are given in Figure 5.7 and Figure 5.8, respectively.
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Figure 5.7 The vertex ordering of P5�C4 as in the proof of Theorem 5.2.1
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Figure 5.8 The radio coloring of P5�C4 as in the proof of Theorem 5.2.1

Theorem 5.2.4. If H is a graph of order m, then for n = 2p+1 > 4, rn(Pn�H) is either

(2m+2)p2 +(2m+4)p+m+2 or (2m+2)p2 +(2m+4)p+m+3.

Proof: Let Pn : v1v2v3 . . .vn be the path. We choose L0 = {vp+1}. By Theorem 1.4.3,

we get |L1|= m+2, |Lp+1|= 2m and |Li|= 2(m+1), i = 2,3,4, . . . p and rn(Pn�H)≥

(2m+2)p2+(2m+4)p+m+2. Hence, by Theorem 5.2.1, the radio number of Pn�H

is either (2m+2)p2 +(2m+4)p+m+2 or (2m+2)p2 +(2m+4)p+m+3.
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5.3 BOUNDS FOR THE RADIO NUMBER OF QQQnnn���HHH

Kola and Panigrahi (2010) have determined the radio number of hypercube by maxi-

mizing the distance sum simultaneously minimizing the epsilon sum (see Lemma 1.4.2).

For hypercube Qn, n odd, a minimal radio coloring is obtained using a vertex ordering

y1,y2,y3, . . . ,y2n of Qn such that {d(yi,yi−1)}2n

i=2 is an alternating sequence of n and n+1
2

starting and ending with n, and all εis are zero. For n even, the same is obtained by a ver-

tex ordering y1,y2,y3, . . . ,y2n of Qn such that {d(yi,yi−1)}2n−1

i=2 and {d(yi,yi−1)}2n

i=2n−1+2

are alternating sequences of n and n
2 starting with n and d(y2n−1+1,y2n−1) = n+2

2 with

epsilon sum 1 (ε2n−1+1 = 1). The vertices y2 j+1, 1 ≤ j < 2n−1, are chosen at dis-

tance n+1
2 or n

2 to maximize the distance sum and minimize the epsilon sum simul-

taneously. Also, for any vertex u of Qn, there exists exactly one vertex v of Qn such that

d(u,v) = diam(Qn) = n. Since Qn is a vertex-transitive graph, the ordering of the ver-

tices of Qn can be started with any vertex. In this section, we provide an upper bound

for the radio number of Qn�H, which is improved to that given in Theorem 5.1.1.

Later, we obtain a lower bound for the same.

Theorem 5.3.1. If H is any graph of order m, then for n > 3,

rn(Qn�H)≤


(mn+n+3m+11)2n−2− n−1

2 −1 i f n is odd,

(mn+n+4m+12)2n−2− n
2 −2 i f n is even.

Proof: For n odd, we first obtain an ordering of vertices of Qn�H, which we use to

obtain a radio coloring of Qn�H. We choose x1,x2,x3, . . . ,xm2n from the copies of H

as follows.

1. For j = 0,1,2, . . . ,m−1, x j2n+1,x j2n+2,x j2n+3, . . . ,x( j+1)2n are on different copies
of H such that {d(x j2n+i,x j2n+i−1)}2n

i=2 is an alternating sequence of n+ 2 and
n+1

2 +2 starting and ending with n+2.

2. For j = 1,2,3, . . . ,m−1, d(x j2n+1,x j2n) = n+1
2 +2.
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Now, we choose xm2n+1,xm2n+2,xm2n+3, . . . ,x(m+1)2n on Qn such that

1. d(xm2n+1,xm2n) = n+1
2 +1.

2. {d(xm2n+i,xm2n+i−1)}2n

i=2 is an alternating sequence of n and n+1
2 starting and end-

ing with n.

We define a coloring f of Qn�H as f (x1) = 1 and for 2 ≤ i ≤ (m+1)2n, f (xi) =

f (xi−1)+(1+n+2)−d(xi,xi−1). For the vertices on the copies of H, d(xi,xi+2) =
n+1

2 ;

d(xi,xi+3) =
n+1

2 +2 when i is odd; and f (xi+3)− f (xi) = n+2 when i is even. For the

vertices on Qn, d(xi,xi+2) =
n−1

2 ; d(xi,xi+3) =
n+1

2 when i is odd; and f (xi+3)− f (xi) =

n+8 when i is even. Now, it is easy to verify that f is a radio coloring of Qn�H. By

the ordering of the vertices of Qn�H, we have

(m+1)2n

∑
i=2

d(xi,xi−1) =

((
n+2+

n+1
2

+2
)
(2n−1−1)+n+2

)
m

+

((
n+1

2
+2
)

m−1
)
+

((
n+

n+1
2

)
(2n−1−1)+n

)
= (3mn+9m+3n+1)2n−2− n+3

2
.

Also, by Lemma 1.4.2,

rn( f ) = f (x(m+1)2n) = ((m+1)2n−1)(n+3)

−
(
(3mn+9m+3n+1)2n−2− n+3

2

)
+1

= (mn+n+3m+11)2n−2− n−1
2
−1.

Let n be even. We choose x1,x2,x3, . . . ,xm2n from the copies of H as follows.

1. For j = 0,1,2, . . . ,m−1, x j2n+1,x j2n+2,x j2n+3, . . . ,x( j+1)2n are on different copies

of H such that {d(x j2n+i,x j2n+i−1)}2n−1

i=2 and {d(x j2n+i,x j2n+i−1)}2n

i=2n−1+2 are al-

ternating sequences of n + 2 and n
2 + 2, starting and ending with n + 2, and

d(x j2n+2n−1+1,x j2n+2n−1) = n+2
2 +2.
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2. For j = 1,2,3, . . . ,m−1, d(x j2n+1,x j2n) = n
2 +2.

Now, we choose xm2n+1,xm2n+2,xm2n+3, . . . ,x(m+1)2n on Qn such that

1. d(xm2n+1,xm2n) = n
2 +1.

2. {d(xm2n+i,xm2n+i−1)}2n−1

i=2 and {d(xm2n+i,xm2n+i−1)}2n

i=2n−1+2 are alternating se-

quences of n and n
2 , starting and ending with n, and d(xm2n+2n−1+1,xm2n+2n−1) =

n+2
2 .

We define a coloring g of Qn�H as

g(xi) =



1 i f i = 1,

g(xi−1)+(1+n+2)−d(xi,xi−1)+1 i f i = j2n +2n−1 +1 and

0≤ j ≤ m−1,

g(xi−1)+(1+n+2)−d(xi,xi−1) otherwise.

Similar to n odd case, we can verify that g is a radio coloring of Qn�H. By the ordering

of the vertices of Qn�H, we have

(m+1)2n

∑
i=2

d(xi,xi−1) =

((
n+2+

n
2
+2
)
(2n−1−2)+2(n+2)+

n+2
2

+2
)

m

+
((n

2
+2
)

m−1
)
+

((
n+

n
2

)
(2n−1−2)+2n+

n+2
2

)
= (3mn+8m+3n)2n−2− n

2
+m.

Now, by the coloring g, we have
(m+1)2n

∑
i=2

εi = m. By Lemma 1.4.2, we get

rn(g) = g(x(m+1)2n) = ((m+1)2n−1)(n+3)

−
(
(3mn+8m+3n)2n−2− n

2
+m

)
+m+1

= (mn+n+4m+12)2n−2− n
2
−2.
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Remark 5.3.2. Kola and Panigrahi (2010) have proved that rn(Qn) is (n+3
2 )2n−1− n−1

2

if n is odd and (n+4
2 )2n−1− n

2 if n is even. For odd n > 4 and a graph H of order m,

by Theorem 5.1.1, rn(Qn�H) ≤ (m+ 1)rn(Qn) + (n+ 2− 3)m+ 2(2n− 1) = (m+

1)
(
(n+3

2 )2n−1− n−1
2

)
+(n+ 2− 3)m+ 2(2n− 1) = (mn+ n+ 3m+ 11)2n−2− n−1

2 −

1+ m(n−1)
2 −1 which is m(n−1)

2 −1 more than the upper bound given in Theorem 5.3.1.

For even n > 3 and a graph H of order m, by Theorem 5.1.1, rn(Qn�H)≤ (mn+n+

4m+12)2n−2− n
2−2− m(n+2)

2 which is m(n+2)
2 −1 more than the upper bound given in

Theorem 5.3.1.

For any three vertices x, y and z of Qn�H, we have Table 5.1. The following

Positions of xxx, yyy and zzz in QQQnnn���HHH max{ddd(((xxx,,,yyy)))+++ddd(((yyy,,,zzz)))+++ddd(((zzz,,,xxx)))}

All the three are on the copies of H 2n+6

Only one of x, y and z is on Qn 2n+4

Only two of x, y and z are on Qn 2n+2

All the three are on Qn 2n

Table 5.1 The maximum of d(x,y)+ d(y,z)+ d(z,x) for any three vertices of Qn�H
depending on their positions

theorem gives a lower bound for the radio number of Qn�H, where H is an arbitrary

graph.

Theorem 5.3.3. If H is a graph of order m, then

rn(Qn�H)≥


(mn+n+3m+7)2n−2− n−1

2 +2 i f n is odd,

(mn+n+4m+8)2n−2− n
2 i f n is even.

Proof: Let f be a radio coloring of Qn�H and x1,x2,x3, . . . ,x(m+1)2n be an ordering of

vertices of Qn�H such that f (xi) < f (xi+1) for all i. For any 2 ≤ i ≤ (m+ 1)2n, let

di = d(xi,xi−1) and εi = f (xi)− f (xi−1)− ((1+n+2)−d(xi,xi−1)). Let n > 3 be odd.

First, we show that
(m+1)2n

∑
i=2

di−
(m+1)2n

∑
i=2

εi is at most
(3n+9

2

)
(m+1)2n−1−2n− n+1

2 −4.
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Now, for any 2 ≤ i ≤ (m+ 1)2n− 1, depending on the positions of xi−1, xi and xi+1,

bound for di +di+1− (εi + εi+1) is given in Table 5.2.

Positions of xxxi−1, xxxiii and xxxi+1 dddiii +++dddi+1−−− (εi + εi+1)

All the three are on the copies of H ≤ n+2+ n+1
2 +2− (0)

Only one of xi−1 and xi+1 is on Qn ≤ n+2+ n+1
2 +1− (0)and xi is on a copy of H

Only xi is on Qn ≤ n+1+ n+1
2 +2− (0)

Only xi is on H ≤ n+1+ n+1
2 +1− (0)

Only one of xi−1 and xi+1 is on H ≤ n+1+ n+1
2 +1− (0)and xi is on Qn

All the three are on Qn ≤ n+ n+1
2 +1− (0)

Table 5.2 Upper bounds for di + di+1− (εi + εi+1) depending on the positions of xi−1,
xi and xi+1 in a radio coloring of Qn�H, n odd

From Table 5.2, it is easy to see that

(m+1)2n

∑
i=2

(di− εi) ≤
(

n+1+
n+1

2
+2
)

2n

+

(
n+2+

n+1
2

+2
)
((m−1)2n−1−1)+n+2

= (3n+9)(m+1)2n−2−2n− n+1
2
−4

Now, by Lemma 1.4.2, we have

rn(Qn�H) ≥ ((m+1)2n−1)(1+n+2)

−
(
(3n+9)(m+1)2n−2−2n− n+1

2
−4
)
+1

= (mn+n+3m+7)2n−2− n−1
2

+2

Let n ≥ 4 be even. Now, for any 2 ≤ i ≤ (m+1)2n−1, depending on the positions of

xi−1, xi and xi+1, bound for di +di+1− (εi + εi+1) is given in Table 5.3.

From Table 5.2, it is easy to see that
(m+1)2n

∑
i=2

(di− εi)≤ (3mn+3n+8m+4)2n−2−
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Positions of xxxi−1, xxxiii and xxxi+1 dddiii +++dddi+1−−− (εi + εi+1)

All the three are on the copies of H ≤ n+2+ n
2 +2− (0)

Only one of xi−1 and xi+1 is on Qn ≤ n+2+ n
2 +1− (0)

and xi is on a copy of H
Only xi is on Qn ≤ n+1+ n

2 +2− (0)

Only xi is on H ≤ n+1+ n
2 +1− (0)

Only one of xi−1 and xi+1 is on H ≤ n+1+ n
2 +1− (0)

and xi is on Qn
All the three are on Qn ≤ n+ n

2 +1− (0)

Table 5.3 Upper bounds for di + di+1− (εi + εi+1) depending on the positions of xi−1,
xi and xi+1 in a radio coloring of Qn�H, n even

n
2 −2. Now, by Lemma 1.4.2, we have rn(Qn�H)≥ (mn+n+4m+8)2n−2− n

2 .

5.4 SUMMARY

In this chapter, we have studied radio k-coloring for the corona G�H of arbitrary

graphs G and H. We have obtained an upper bound for rck(G�H). Also, we have

proved that this bound is sharp by determining the radio k-chromatic number of Kn�H

and the radio number of P2p+1�H. Further, we have improved the upper bounds and

obtained lower bounds for the radio numbers of P2p+1�H and Qn�H.
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CHAPTER 6

THE kkk-DISTANCE CHROMATIC NUMBER
OF TREES AND CYCLES

“Many of the concepts, theorems, and problems of Graph

Theory lie in the shadows of the Four Color Problem.”
- Gary Chartrand (2009)

Proper coloring of graphs is motivated by coloring regions of a map. The famous Four

Color Problem was first posed by Francis Guthrie, a student of Augustus De Morgan,

in 1852 as "The regions of every map can be colored with four or fewer colors in such

a way that every two regions sharing a boundary are colored differently". In Graph

Theory, it was famous as Four Color Conjecture stated as "The vertices of every planar

graph can be colored with four or fewer colors in such a way that no two adjacent

vertices receive the same color". The conjecture remained unsolved until 1977. In the

process of solving the conjecture many false proofs were given. Finally, the conjecture

was proved by Appel and Haken (1977) with the aid of computer. Kramer and Kramer

(1969b) have introduced k-distance coloring of graphs as a generalization of proper

coloring. In the recent times, few authors have studied k-distance coloring as a variation

of FAP. We recall the definition and the theorem below. The theorem gives a lower

bound for the k-distance chromatic number of a graph.
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Theorem 1.3.10. (Sharp, 2007) For any graph G and a positive integer k,

χk (G)≥


max

v∈V (G)

∣∣∣∣V (G
k
2
v

)∣∣∣∣ i f k is even,

max
v∈V (G)

∣∣∣∣V (G
k−1

2
v

)∣∣∣∣+1 i f k is odd.

In this chapter, we study k-distance coloring of graphs. We improve the lower bound

given in Theorem 1.3.10 for the k-distance chromatic number of arbitrary graphs, when

k is odd. We prove that the trees achieve the lower bound. Also, we determine the

k-distance chromatic number of cycles. Although, k-distance coloring is defined for all

positive integers k, it is mostly studied for k = 2 and that too for planar graphs, as it is

an immediate generalization of the Four Color Theorem and due to Conjecture 1.3.11

by Wegner (1977). Motivated by this, we determine the 2-distance chromatic number

of cactus graphs.

6.1 THE kkk-DISTANCE CHROMATIC NUMBER OF TREES

In this section, for k odd, we improve the lower bound for the k-distance chromatic

number of an arbitrary graph given by Sharp (2007). Later, we prove that trees attain

the lower bound. Before we give a lower bound for χk (G), similar to Gr
v, we define Gr

S

for any subset S of V (G). For a subset S of V (G) and a vertex v ∈ V (G), the distance

from v to S, denoted by d(S,v), is min{d(u,v) : u ∈ S}.

Definition 6.1.1. For any non-negative integer r and a subset S of the vertex set of a

graph G, the graph Gr
S denotes the subgraph of G induced by the vertices of G which

are at distance less than or equal to r from S.

Theorem 6.1.2. If G is a graph and k is any positive integer, then

χk (G)≥


max

{∣∣∣∣V (G
k
2
v

)∣∣∣∣ : v ∈V (G)

}
i f k is even,

max
{∣∣∣∣V (G

k−1
2

S

)∣∣∣∣ : S is a maximal clique in G
}

i f k is odd.
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Proof: If k is even, the result follows from Theorem 1.3.10. Suppose that k is odd. Let

S be a maximal clique in G and w, w′ be any two vertices of G
k
2
S . Then d (S,w) ≤ k−1

2

and d (S,w′) ≤ k−1
2 . Therefore, d(u,w) ≤ k−1

2 and d(v,w′) ≤ k−1
2 for some u,v ∈ S.

Since u and v are adjacent, d(w,w′) ≤ d(u,w)+ d(v,w′)+ d(u,v) ≤ k. Therefore, in

any k-distance coloring, w and w′ should receive different colors. Hence χk (G) ≥

max
{∣∣∣∣V (G

k−1
2

S

)∣∣∣∣ : S is a maximal clique in G
}

.

In the introductory paper on L(2,1)-coloring, Griggs and Yeh (1992) have proved

that the L(2,1)-span of a tree with the maximum degree ∆ is either ∆+ 1 or ∆+ 2

by giving an L(2,1)-coloring. Motivated by this, we give a k-distance coloring of a

tree and determine χk(T ). For this, we use the lemma below. Recall that, in a graph G,

eG (u) (or simply e(u)) denotes the eccentricity of a vertex u in G, diam(G) and rad (G)

are the diameter and the radius of G, respectively.

Lemma 6.1.3. Let T be a tree with n vertices. Let Ti−1 = Ti− vi, i = n,n− 1, . . . ,2,1,

where Tn = T and vi is a vertex of Ti such that eTi (vi) = diam(Ti). If T ′ = (Ti)
r
vi

, then

diam(T ′)≤ r.

Proof: On the contrary, suppose diam(T ′)> r. Since eTi (vi) = diam(Ti), vi is a leaf of

Ti and so in T ′. Let v j and vl be antipodal vertices of T ′ (that is, d
(
v j,vl

)
= diam(T ′)).

Let Pj and Pl be the v j,vi-path and vl,vi-path in T ′ respectively. Since vi is a leaf of T ′

and the paths Pj and Pl end at vi, there must be a vertex common to them other than

vi. Let u be the first vertex of Pj which is in Pl . Then v j,u-subpath of Pj followed

by u,vl-subpath of Pl give the v j,vl-path in T ′. If d (u,vi) ≥ d (u,vl), then d
(
v j,vl

)
=

d
(
v j,u

)
+d (u,vl)≤ d

(
v j,u

)
+d (u,vi)≤ r, a contradiction. So d (u,vi)< d (u,vl).

Using the above inequality d (u,vi)< d (u,vl), we show that there is a path in Ti whose

length is greater than the diam(Ti) which is a contradiction. Let v be a vertex of Ti such
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that d (v,vi) = diam(Ti). Let P be the vi,v-path in Ti. Since vi is a leaf and the paths

Pj and P end at vi, there must be a vertex common to them other than vi. Let w be the

first vertex of P which is also in Pj. If w is in v j,u-subpath of Pj, then v,w-subpath

of P followed by w,u-subpath of Pj, followed by u,vl-subpath of Pl is the v,vl-path.

So d (v,vl) = d (v,w) + d (w,u) + d (u,vl) = d (v,u) + d (u,vl) > d (v,u) + d (u,vi) =

d (v,vi) = diam(T ′), a contradiction. Therefore w cannot be in v j,u-subpath of Pj.

If w is in u,vi-subpath of Pj, then v,w-subpath of P followed by w,u-subpath of Pj, fol-

lowed by u,vl-subpath of Pl is the v,vl-path. So d (v,vl) = d (v,w)+d (w,u)+d (u,vl) =

d (v,u)+d (u,vl)> d (v,u)+d (u,vi)≥ d (v,vi) = diam(T ′), a contradiction. Therefore

diam(T ′)≤ r.

Theorem 6.1.4. For any tree T ,

χk (T ) =


max

v∈V (T )

∣∣∣∣V (T
k
2

v

)∣∣∣∣ i f k is even,

max
uv∈E(T )

∣∣∣∣V (T
k−1

2
uv

)∣∣∣∣ i f k is odd.

Proof: Since in a tree any maximal clique is an edge, from Theorem 6.1.2 it is clear

that

χk (T )≥


max

v∈V (T )

∣∣∣∣V (T
k
2

v

)∣∣∣∣ if k is even,

max
uv∈E(T )

∣∣∣∣V (T
k−1

2
uv

)∣∣∣∣ if k is odd.

Now, we give a k-distance α-coloring for the tree T , where α = max
v∈V (T )

∣∣∣∣V (T
k
2

v

)∣∣∣∣,
if k is even and α = max

uv∈E(T )

∣∣∣∣V (T
k−1

2
uv

)∣∣∣∣, if k is odd. Let Ti and vi, i = 1,2,3, . . . ,n are

subtrees and vertices of T , respectively, as given in Lemma 6.1.3. We assign the color

1 to v1 and 2 to v2. Suppose v1,v2, . . . ,vi−1 are colored. Now, to color vi, we consider

the tree T ′ = (Ti)
k
vi

. By Lemma 6.1.3, diam(T ′)≤ k.
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Case I: kkk is even

Let x be a vertex of T ′ such that eT ′ (x) = rad (T ′) =
⌈

diam(T ′)
2

⌉
≤
⌈ k

2

⌉
= k

2 . Then

every vertex of T ′ is distance at most k
2 from x. So T ′ is a subgraph of T

k
2

x . Since

|V (T ′)−{vi}| < |V (T ′)| ≤
∣∣∣∣V (T

k
2

x

)∣∣∣∣ ≤ max
v∈V (T )

∣∣∣∣V (T
k
2

v

)∣∣∣∣ = α , we have at least on

color not used in T ′ to color vi.

Case II: kkk is odd.

Subcase (i): dddiiiaaammm
(
TTT ′′′
)

is odd.

Since the diameter of T ′ is odd, the center of T ′ is an edge, say xy. So eT ′ (x) = eT ′ (y) =

rad (T ′) =
⌈

diam(T ′)
2

⌉
≤
⌈ k

2

⌉
= k+1

2 . Therefore, every vertex of T ′ is at distance at

most k+1
2 from x and y. If w is a vertex of T ′ with d (w,x) = k+1

2 , then d (w,y) ≤ k−1
2

and vice versa. So every vertex of T ′ is at distance less than or equal to k−1
2 from x

or y. So T ′ is a subgraph of T
k−1

2
xy . Since |V (T ′)−{vi}| < |V (T ′)| ≤

∣∣∣∣V (T
k−1

2
xy

)∣∣∣∣ ≤
max

uv∈E(T )

∣∣∣∣V (T
k−1

2
uv

)∣∣∣∣= α , we have a color not used in T ′ to color vi.

Subcase (ii): dddiiiaaammm
(
TTT ′′′
)

is even.

Let x be the center of T ′. Then eT ′ (x) = rad (T ′) =
⌈

diam(T ′)
2

⌉
≤
⌈k−1

2

⌉
= k−1

2 . There-

fore, every vertex of T ′ is at distance less than or equal to k−1
2 from x. Since |V (T ′)−

{vi}| < |V (T ′)| ≤
∣∣∣∣V (T

k−1
2

x

)∣∣∣∣ ≤ ∣∣∣∣V (T
k−1

2
xy

)∣∣∣∣ ≤ max
uv∈E(T )

∣∣∣∣V (T
k−1

2
uv

)∣∣∣∣ = α , where y is

any neighbor of x in T ′, we have a color not used in T ′ to color vi.

Example 6.1.5. In Figure 6.1, a 4-distance coloring, as in the proof of Theorem 6.1.4,

for a tree T with 42 vertices is given. A 3-distance coloring for the same tree is given

in Figure 6.2.
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Figure 6.1 A 4-distance coloring of a tree as in the proof of Theorem 6.1.4
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Figure 6.2 A 3-distance coloring of a tree as in the proof of Theorem 6.1.4

6.2 THE kkk-DISTANCE CHROMATIC NUMBER OF CYCLES

Kramer and Kramer (1969a,b) have determined χk
(
Cl(k+1)

)
as k+1. Now, we find the

same for any cycle Cn.

Theorem 6.2.1. For any cycle Cn, χk (Cn) = k+ 1+
⌈r

l

⌉
, where r and l are integers

such that n = l (k+1)+ r, 0≤ r < k+1.

Proof: In any k-distance coloring of a graph G if two vertices u and v receive the same

color, then d (u,v) is at least k+ 1. Since n = l (k+1)+ r, any k-distance coloring of
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Cn assign a color c to at most l vertices of Cn. Therefore, any k-distance coloring of

Cn needs at least
⌈n

l

⌉
= k+1+

⌈r
l

⌉
colors. Now, we show that χk (Cn) ≤ k+1+

⌈r
l

⌉
by defining a k-distance coloring of Cn. Let Cn : v1,v2, . . . ,vn,v1 be the cycle and α =

k+1+
⌈r

l

⌉
.

Now,

n = l (k+1)+ r

= l (k+1)+ l′
⌈r

l

⌉
+ r′,where r′ and l′ are integers such that 0≤ r′ <

⌈r
l

⌉
= l′

(
k+1+

⌈r
l

⌉)
+
(
l− l′

)
(k+1)+ r′

= l′α +
(
l− l′

)
(k+1)+ r′.

It is easy to see that l′ ≤ l. Define a map f from {v1,v2, . . . ,vn} to {1,2, . . . ,α} by

f (vi) = t if i≡ t (mod α), 1≤ i≤ l′α,

f
(
vl′α+ j

)
= t if j ≡ t (mod k+1), 1≤ j ≤

(
l− l′

)
(k+1) = n− r′,

f (vn−s) = α− s, 0≤ s < r′.

It is easy to verify k-distance coloring condition for vi and v j, 1≤ i < j ≤ n− r′. Since

the color given to vn−(r′−1) is α− (r′−1)> α−
⌈ r

l

⌉
+1≥ k+2 > k+1, the k-distance

coloring condition is satisfied between vi and vn−s, 1 ≤ i ≤ l′α , 0 ≤ s < r′; and vl′α+ j

and vn−s, 1≤ j ≤ n− r′, 0≤ s < r′.

Remark 6.2.2. For k < n, from Theorem 6.1.2, χk(Cn)≥ k+1 which is
⌈ r

l

⌉
, 0≤

⌈ r
l

⌉
≤

k, less than the exact number.

Example 6.2.3. In Figure 6.3, a 5-distance coloring, as in the proof of Theorem 6.2.1,

for C17 is given.
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Figure 6.3 A 5-distance coloring of C17

6.3 THE 222-DISTANCE CHROMATIC NUMBER OF CACTUS

Recall that, a cactus graph is a connected graph in which no two cycles share an edge.

In this section, we determine the 2-distance chromatic number of cactus graph.

Theorem 6.3.1. If G is a cactus graph with maximum degree ∆≥ 3, then

χ2 (G) =


5 i f G contains C5 and ∆ = 3,

∆+1 otherwise.

Proof: Let G be a graph with maximum degree ∆ ≥ 3. Let α = 5 if G contains C5

and ∆ = 3, otherwise α = ∆+1. Since χ2 (C5) = 5 and from Theorem 6.1.2, we have

χ2 (G) ≥ α . Now, we give a procedure to define a 2-distance coloring of G using α

colors. Let C be any cycle in G. It is clear that χ2 (C) ≤ α . We color the vertices of C

using Theorem 6.2.1. Let u be a vertex on C with deg(u)≥ 3. As deg(u)≤ ∆, u has at

most ∆− 2 neighbors which are not colored. Since α ≥ ∆+ 1, we have at least ∆− 2

colors (excluding the colors given to u and its neighbors on C) to color the neighbors of

u not on C. Suppose that u is on any other cycle C′. Let C′ : uu3u4 . . .umu1u and c1, c2

and c3 be the colors assigned to u1, u and u3 respectively. We choose χ2 (C′)−3 number

of colors c4,c5,c6, . . . ,cχ2(C′) from {1,2,3, . . . ,α} other than c1, c2, c3. We color the
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remaining vertices of C′ using the colors c1,c2,c3, . . . ,cχ2(C′) as in Theorem 6.2.1 (color

ci refers to color i in Theorem 6.2.1). Now, we choose a colored vertex of G which has

uncolored neighbors and continue as above until all the vertices of G are colored. It is

easy to see that α is the maximum color and it is used to either a vertex in C5 or to a

maximum degree vertex or any one of its neighbors.

Example 6.3.2. A cactus containing C5 and having the maximum degree 3 along with

the 2-distance coloring defined in the proof of Theorem 6.3.1 is given in Figure 6.4.

First, the vertices of the cycle C are colored. The vertices v1,v2 and v5 are the colored

vertices which are at distance at most 2 from v6. So, the least possible color available

for v6 is 3. After this, v7,v8,v9 and v10 are colored, respectively. The cycle containing v8

is C5, so the vertices v11 and v12 are colored with a color different from that of v8,v9 and

v10. Similarly, the vertices v13,v14,v15, . . . ,v20 are colored. Since the cycle containing

v18 is C6 and χ2(C6) is 3, the remaining vertices of the cycle are colored using the

colors of the vertices v18,v19 and v20. In Figure 6.5, a 2-distance coloring of a cactus

with maximum degree 7 is given.

C

1

23

3

2

4

1

2

3

5

2

1
1

1

3

4

4

21

2

4
v
5

v

v

5

3

v4

2v

1

v

v v

v

v

v

v

v
v

v
v

v6

13

14

v
18

19

21

23

22

20
16

15

17

v9

11

12v
10

8

7
v

v

v

4
Figure 6.4 A 2-distance coloring, as in the proof of Theorem 6.3.1, of a cactus contain-
ing C5 and having maximum degree 3
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Figure 6.5 A 2-distance coloring, as in the proof of Theorem 6.3.1, of a cactus having
maximum degree 7

6.4 SUMMARY

This chapter is dedicated to k-distance coloring of graphs. The k-distance chromatic

number of trees, cycles and the 2-distance chromatic number of cactus graphs are de-

termined in this chapter. It is clear that all the above graphs satisfy Conjecture 1.3.11.
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CHAPTER 7

CONCLUSION AND FUTURE SCOPE

“Every human activity, good or bad, except

mathematics, must come to an end.”
- Paul Erdős

The field of graph colorings has developed into one of the most popular areas of Graph

Theory. The frequency assignment problem is the motivation for many of the graph

coloring problems. Due to the relatively scarce radio spectrum and the rapid growth

of wireless networks, the importance of the frequency assignment problem is growing

significantly. Motivated by this, we have studied two graph coloring problems in this

thesis, namely, radio k-coloring of graphs and k-distance coloring of graphs.

For any non-trivial class of graphs, the radio k-chromatic number is not known

for arbitrary k, in fact, very less research is done when k ≤ diam(G)− 2. One of the

possible reasons could be, finding rck(G) is difficult for smaller values of k, in general.

As far as we know, rck(G) is studied for k < diam(G)− 3, only for Pn. In Chapter 2,

we have determined rck(Pn) for 2n+1
7 ≤ k≤ diam(Pn)−5 if k is odd and for 2n−4

5 ≤ k≤

diam(Pn)−6 if k is even. From Theorem 2.2.5 and Theorem 2.3.5, for the infinite path

P∞, rck(P∞) ≥ k2+k+4
2 which improves the lower bound given by Das et al. (2017) by

one, a step towards Conjecture 1.3.5.
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Although, radio k-coloring of a graph G is defined for 1 ≤ k ≤ diam(G), some

researchers have studied it for k > diam(G), as it is useful to find the radio k-chromatic

number of larger graphs containing G. In Chapter 3, for the trees in G and G ′, we have

given upper and lower bounds for the radio k-chromatic number when k ≥ diam(T ),

which match when diam(T ) and k are of the same parity. Also, we have determined the

radio d-chromatic number of the trees and graphs constructed from the trees in some

subclasses of G and G ′. It is easy to see that paths Pn of even order are in G and

hence rck(Pn), n even, is determined for k ≥ n− 1 (when k and n− 1 are of the same

parity), which matches with the result of Liu and Zhu (2005) (for k = n−1) and with the

result of Kchikech et al. (2007) (for k≥ n). Many authors have studied radio k-coloring

for k ∈ {diam(G)− 1,diam(G)}. Even for the simplest graph path Pn, the radio k-

chromatic number is known only for k ∈ {1,2,n−3,n−2,n−1} and k≥ n. In Chapter

3, for each k > 1, we have determined the radio k-chromatic number of infinitely many

trees whose diameter is much larger than k. We feel that the upper bounds given for

the radio k-chromatic number of trees in G and G ′ are sharp and so one can try to

improve the lower bounds to get the exact numbers. The problem of determining the

radio k-chromatic number of a graph G for k < diam(G) is comparatively hard problem.

The way of construction of larger trees and graphs discussed in Chapter 3 is an idea to

explore the radio k-chromatic number for k < diam(G).

In Chapter 4, we have determined rn(Kn�Cm) when n even and m odd; any n and

m ≡ 6 (mod 8); n is odd and m ≡ 5 (mod 8). In the remaining cases of n and m,

to get an upper bound for rn(Kn�Cm) which matches with the lower bound obtained

using Theorem 1.4.4, one needs an ordering x1,x2,x3, . . . ,xmn of the vertices of Kn�Cm

such that d(xi,xi+1)+ d(xi+1,xi+2)+ d(xi,xi+2) = m+ 6 for all i = 1,2,3, . . . ,mn− 2.

From the proof of Lemma 4.1.2, it looks like getting such vertex ordering is difficult in

general. In few of the remaining cases, it may be required to improve the lower bound

also.
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Radio k-coloring for corona G�H of arbitrary graphs G and H is studied in Chap-

ter 5. A best possible upper bound for rck(G�H) is obtained. The upper bound is

improved for the radio numbers of P2p+1�H and Qn�H. Further, a lower bound for

the radio number of Qn�H is obtained. The upper bound obtained for the radio num-

ber of P2p+1�H differs by 1 with the exact number. We feel that the upper bound is

sharp. For Qn�H, the upper and lower bounds obtained differ by at most 2n− 2. We

feel that the lower bound obtained is sharp for n odd. For n even, we feel that the lower

bound is close to the exact number. It will be interesting to classify the graphs whose

radio k-chromatic numbers match with the upper bounds given in Theorem 5.1.1 and

Theorem 5.1.2.

Chapter 6 is dedicated for k-distance coloring of graphs. In Chapter 6, the k-distance

chromatic number of trees and cycles, and the 2-distance chromatic number of cactus

graphs are determined. It is clear that all these graphs satisfy Conjecture 1.3.11. From

Theorem 6.1.4, the 2-distance chromatic number of a tree with maximum degree ∆ is

∆+1. If T is a tree obtained from a cactus graph G by deleting exactly one edge from

each cycle without decreasing the maximum degree ∆, then χ2(G) is at most 1 more

than χ2(T ) (both differ by 1, only when G contains C5 and ∆ = 3). The procedure given

in the proof of Theorem 6.3.1 becomes difficult as k increases. Since any unicyclic

graph can be obtained by adding an edge to a tree, one can try to find the k-distance

chromatic number of unicyclic graph.
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