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ABSTRACT

Rotating spiral waves of excitation are common in many physical, chemical and

biological systems. In physiological systems like the heart, such waves anchor to un-

excitable tissue (an obstacle), become stable pinned waves and cause life-threatening

cardiac arrhythmias. The traditional high voltage defibrillation techniques used to treat

arrhythmias are known to have pro-arrhythmic effects. Therefore, it is crucial to develop

low energy methods to unpin and eliminate them.

This thesis investigates two kinds of low voltage electric fields to unpin the pinned

spiral waves. In the first method using pulsed electric fields, the spiral wave will be

unpinned only when the pulse is delivered inside a narrow time interval called the un-

pinning window of the spiral. In experiments with cardiac monolayers, we found that

other obstacles situated near the spiral’s pinning centre can facilitate unpinning. In nu-

merical simulations, we found that the unpinning window can change depending on

the location, orientation and distance between the pinning centre and the obstacle. The

second method involves unpinning the spiral using circularly polarised electric fields

(CPEF). Here, we show that the spiral can always be unpinned below a threshold time

period of CPEF for a given obstacle size. Our analytical formulation accurately pre-

dicts the threshold and explains the absence of the traditional unpinning window. We

also show that the unpinning always happens within the first rotation of the electric

field.

Previous unpinning studies using two-dimensional experimental and numerical mod-

els show that the width of the unpinning window is very narrow. This could be due to

the presence of multiple obstacles as our results suggests. The absence of unpinning

window with CPEF eliminates the problem of timing the pulses and guarantees un-

pinning of the spiral below a certain threshold time period. We hope that the results

discussed in this thesis regarding the spatial arrangement of the obstacles and its inter-

actions with the electric fields will open new ways towards low-energy therapies of the

cardiac arrhythmias.

Keywords: Spiral waves; Cardiac arrhythmias; Unpinning; Low-voltage defibrillation.
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Chapter 1

Introduction

This chapter gives a brief introduction to the excitable media with the focus on the

control of spiral waves in the heart. It includes a detailed literature survey, scope

and objectives of the research. In the end, an organization of the thesis is also

presented.

The modern-day introductory Physics textbooks are filled with examples of swing-

ing pendulums, spinning tops and billiard-ball collisions to construct a mental picture

of fundamental concepts like momentum, energy, spin etc. Similarly, a typical Biology

course would begin with the study of cells, evolution etc. However, real-world problems

rarely have disciplinary boundaries. This thesis presents one such problem that lies on

the borderline between Physics and Biology; it describes how the tools from different

disciplines can be used to solve a contemporary public-health issue.

The modern roots of Biophysics can be traced down to the 18th century when the

role of electricity was established in biological cells (Galvani (1792)). Today, all the

biological tissues that support electrical waves are classified along with other media

that show similar waves of excitation. Together they are known as excitable media.

Every excitable media is made up of many excitable cells that interact with each other

using a diffusion like coupling. The general properties of the excitable cell are the

following:
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1. It has a stable resting state.

2. It shows a characteristic response to external stimulus.

3. It has a excitation threshold. The cell can only be activated if the stimulus is

supra-threshold.

4. It has a property of refractoriness. It takes a certain amount of time for the cell to

be ready for a second stimulus following an excitation. During this time interval,

another stimulus, no matter how strong, will not be able to generate a second

activation. This interval is called the refractory period.

The presence of a threshold of excitation means that the medium has no memory

of the stimulus used to initiate the excitation after the initial transients. The refractori-

ness property gives rise to wave annihilation, analogous to the colliding fire-fronts in

a forest fire. Depending on the physiological context, the waves of excitation behave

differently. In a 1D cable of excitable cells such as an axon, the excitation travels as

pulses without attenuation, whereas in a 2D medium such as Belousov-Zhabotinsky

chemical reaction (see Fig. 1.1 (a)), they show patterns like spiral or target waves. In a

3D excitable medium such as the ventricles of a heart, scroll waves can be formed. The

spatiotemporal pattern formation seen in different types of excitable media is shown in

Fig. 1.1. Examples include spiral waves on the surface of a rabbit heart (Fig. 1.1 (b)),

colonies of starving slime mold Dictyostelium discoideum bacteria (Fig. 1.1 (c)) and a

condition called Geographic tongue where spiral waves are seen on human tongue (Fig.

1.1 (d)).

The study done in this thesis primarily focuses on the dynamics and elimination of

spiral waves in the heart. Therefore, before presenting the problems and the hypotheses

of this study, we briefly describe the anatomy and physiology of the heart.

1.1 Anatomy And Physiology Of Heart

The human heart (see Fig. 1.2) is a muscular organ that pumps blood through the circu-

latory system. A normal human heart is divided into four chambers, with two atria and

2



Figure 1.1: Patterns in biological excitable media. (a) Chemical waves in two dimen-
sional Belousov-Zhabotinsky reaction (Experiments by Amrutha S V and Sibeesh PP).
(b) Spiral waves in the surface of rabbit heart (Weiss et al. (2005)). (c) Spiral waves
in colonies of starving slime mold Dictyostelium discoideum bacteria (Alcantara and
Monk (1974)). (d) Geographic tongue - spiral waves on human tongue (Seiden and
Curland (2015)).

two ventricles. The atria are the upper receiving chambers of the heart. The ventricles

are the heart’s pumping chambers, which lie below the atria and comprise most of the

heart’s volume. The entire heart can be seen as two separate pumps, one on the left and

the other on the right (Fig. 1.2 (a)). The right atria receive deoxygenated blood from

the superior and inferior vena cava, which then releases it to the lungs through the right

ventricles and pulmonary artery. The oxygenated blood from the lung enters the left

atria and is circulated to different parts of the body through the most prominent artery,

called the aorta, connected to the left ventricle. During one heartbeat, different heart

chambers undergo contractions (systole) and relaxation (diastole). This involves the

3



blood being pumped into the heart from the veins and pushed back to the body through

arteries. A healthy heart allows the blood to flow in only one direction with several

valves, which prevent the backflow of blood. The heart wall comprises three layers,

the inner endocardium, the middle myocardium and the outer epicardium (Guyton and

Hall (2006)). Like any other tissue in the body, the heart tissue needs some mechanism

for its maintenance, such as the supply of oxygen and removal of the wastes. This is

achieved by coronary circulation. It is a network of veins and arteries surrounding the

heart muscle. The coronary arteries supply blood to the myocardium and other parts of

the heart. The coronary veins remove the deoxygenated blood from the heart muscle.

Figure 1.2: Anatomy and physciology of human heart (a) Anatomy of human heart.
Four chambers of the heart, the right atrium the left atrium and the right and left ven-
tricles are shown ( Guyton and Hall (2006)). (b) Physciology of human heart showing
the conduction pathway of the heart (Guyton and Hall (2006)).

The lub-dub symphony of the cardiac cycle described above is controlled by the

electrical signals generated by a specialized group of cells in the right atrium of the

heart called the sinoatrial node (SA node). SA nodal cells (see Fig. 1.2 (b)) are os-

cillatory; they generate periodic electrical signals that can drive the surrounding tissue.

The electrical impulses generated by the SA node stimulate the atria to contract. Si-

multaneously they travel to the Atrioventricular Node (AV Node) through a conduction

pathway called Inter Nodal Pathway. Atria and ventricles are electrically isolated from

each other by a layer of fibrous tissue. So, the AV node acts as an electrical window
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between the two. The AV node holds the electrical signals for some time, allowing the

atria to contract. Once the atrial contraction is complete and the ventricles are filled

with blood, the signals are released through the Bundle of His and Purkinje fibers to

every corner of the ventricles. This is followed by ventricular contraction. The delay

induced by the AV node prevents the atria and ventricles from contracting together. The

SA node, AV node, Bundle of His and Purkinje fibers constitute the conduction pathway

of the heart.

The heart muscle fibres are made up of cardiac cells coupled with each other through

gap junctions. However, due to the elongated shape of the cells, the coupling is anisotropic.

The fiber axis continuously rotates by about 180◦ from the innermost endocardium to

the outer epicardium. In addition to this, other properties such as the action potential

duration and polarization are also known to be different across different parts of the

cardiac muscle (Szentadrassy et al. (2005)). The heart muscle contains naturally occur-

ring heterogeneities such as scars, fibrotic tissue etc., which change the behaviour of

the muscle (Kakkar and Lee (2010)). The electrical impulses that SA Node gives out

are called action potentials. The mechanism of action potential generation is described

in the next section.

1.2 The Cardiac Action Potential

The cardiac muscle is made up of cells called cardiomyocytes. Each cardiomyocyte is

enclosed by a cell membrane embedded with specialized proteins called ion channels

as shown in Fig. 1.3 (a). They permit the selective passage of ions (such as K+ ions,

Na+ etc.) in and out of the cell and help in maintaining a potential difference across

the cell membrane. This potential difference is called transmembrane potential. The

ion channels are also voltage-gated, meaning that they open only if the transmembrane

potential hits a certain threshold voltage. Initially, the extracellular space contains a

large number of Na+ ions and a very small amount of K+ ions. So, in the resting state,

the interior of the cell is negatively polarized as marked by 4© in Fig. 1.3 (b).

When the cells around the ventricular cardiomyocyte get excited, the transmem-

brane potential shoots up from the resting state of -90 mV. If the stimulus is high

5



Figure 1.3: Structure of cell membrane and action potential. (a) Schematic repre-
sentation of the outer membrane of the ventricular cell incorporating ion channels with
selective permeabilities to different ions. (b) Cardiac action potential representing the
time course of transmembrane voltage in response to a suprathreshold electrical stimu-
lus ( Karma (2013)).

enough, the transmembrane potential raises to about +20 mV due to the diffusion of

Na+ ions down the gradient into the cell. As a result of this, the cell’s interior loses its

negative polarization and becomes more positive. This phase is called the depolariza-

tion phase (marked by 0© in Fig. 1.3 (b)). Once the action potential peaks (indicated

by 1© in Fig. 1.3 (b)) the sodium channels begin to close in succession and the poten-

tial begins to fall. Now the calcium channel gates are released. This bring in positive

Ca2+ ions, but the potassium channels simultaneously open which compensates for the

addition of Ca2+ ions, maintaining the potential intact. This process leads to the plateau

region in the action potential curve (indicated by 2© in Fig. 1.3 (b)). At the end of the

plateau, all the calcium ion channels would have already closed and the k+ ions contin-

ues leaving the cell until the transmembrane potential drops to resting state. This state

is called the repolarisation state (shown as 3© in Fig. 1.3 (b)).

Meanwhile, the sodium-potassium pump transports three sodium ions outside the

cell to bring two potassium ions inside at the expense of an ATP. These processes make

the inside of the cell more negative. This increases the potassium concentration inside

the cell. The outside of the cell remains at the same concentration as it is an infinite

bath of ions. In this way, the action potential generated in a single cell can propagate

to the neighbouring cells through gap junctions and cause contractions of the muscle.
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In the next section we discuss how the excitation waves in the heart muscle can form

rotating waves and cause cardiac arrhythmia.

1.2.1 Scope

Any deviation from the normal sinus rhythm of the heart is called Cardiac Arrhythmia.

In a normal heart, the electrical waves given out by the SA node will spread across the

heart and excite the entire muscle. After the excitation, the muscle recovers and waits

for another wave. However, the waves that cannot fully excite the whole tissue in their

first attempt can re-enter the unexcited parts of the tissue due to the property of re-

fractoriness and form spiral-shaped rotating patterns (Winfree (1989), Davidenko et al.

(1992)). These rotating spiral waves in heterogeneous excitable media tend to attach to

heterogeneities (also called obstacles) and form stable pinned waves (Davidenko et al.

(1992), Valderrábano et al. (2001), Bub et al. (2002)). Once pinned, they rotate with

very high frequency around the boundary of the obstacle. In an excitable medium, if

there are two wave sources with different frequencies, the region of influence of a higher

frequency source will continue to expand due to the phenomenon of wave annihilation.

Ultimately, the entire tissue will be controlled by the higher frequency source (Krin-

sky and Agladze (1983)). Therefore, a spiral wave can override the natural rhythm set

by the heart’s pacemaking cells leading to cardiac arrhythmia. A healthy human heart

beats between 60 to 100 times per minute. During the initial stages of arrhythmia, the

number of beats may increase above 100. This condition is called Tachycardia which

causes irregularity in the blood pumping ability of the heart. If left untreated, Tachy-

cardia can lead to a potentially life-threatening condition called fibrillation, where the

rotating wave breaks up into multiple spiral waves (Gray et al. (1998)). When this hap-

pens in the heart’s ventricles, it is called Ventricular Tachycardia (VT) and Ventricular

Fibrillation (VF), respectively.

Antiarrhythmic drugs are a group of pharmaceuticals used to treat the abnormal

rhythms of the heart. Different drugs have a different mechanism of action - some slow

down impulse initiation, while others keep the tissue refractory for an extended time

(Rosen and hoffman (1973)), etc. Several efforts have been made to classify the an-
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tiarrhythmic drugs in the literature (Lei et al. (2018)). However, since these drugs have

several modes of action, classifying them has always been a problem. The major disad-

vantage of these medications is that nearly all of them are pro-arrhythmic, meaning that

a drug given to terminate one kind of arrhythmia can cause arrhythmia of another kind

(Roden (1998), Frommeyer and Eckardt (2016)). Another well-known method used in

treating cardiac arrhythmia is called catheter ablation (Glass (1996)). Here, a catheter

is inserted into desired locations in the patient’s heart and using a radio frequency of

40-50 watts; the abnormal tissue is either ablated or dissociated from the rest of the

healthy tissue (Terasawa et al. (2009)).

Ventricular fibrillation is usually treated by applying high voltage counter shocks

(∼1kV, 12ms, 30A) delivered to the whole heart muscle (Otani et al. (2019)) either us-

ing a high voltage defibrillator or an implantable cardioverter-defibrillator (ICDs). It

is presumed that this shock resets all the excitation waves in the cardiac muscle and

resets the rhythm. Even though this technique is reliable and life-saving, the physical

pain and the psychological distress caused to the patient are immense (Matchett et al.

(2009), Tung (1996)). It can also damage the tissue causing scars, leading to the dys-

function of the myocardium (Godemann et al. (2004)). Since all the methods presented

above have demerits, there is an immediate need for alternatives.

Wiener and Rosenblueth were the first to hypothesize that the spiral waves could

be the reason behind the rapid heart beats during fibrillation (Weiner and Rosenblunth

(1946)). Later, the similarities between the spiral waves in excitable media and inside

a fibrillating heart were pointed out by physicists such as Moe and Krinsky (Krin-

skii (1966), Moe et al. (1964)) in mathematical models. Zhabotinsky was the first

to describe spiral waves in experiments in a 1970 Russian report. In 1972, Art Win-

free re-discovered the spiral waves in Belusov-Zhabotinsky reaction ( Winfree (1972)).

However, the connection between the spiral waves occurring in chemical medium like

Belusov-Zhabotinsky reaction to the one occurring in the heart was not known. It was

Art winfree who made that connection. To understand the dynamics of the rotating

spiral waves, Winfree initiated several numerical and experimental studies in excitable

media. The properties such as meander (Winfree (1992)) and breakup (Courtemanche
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and Winfree (1991)) of spiral waves were the results of these careful observations. Fol-

lowing these dynamical studies, several pioneering works have been conducted for un-

derstanding the mechanisms of electrical defibrillation and termination of the spiral

waves. The notable one was a proposal to use low voltage electric fields to drift the

freely rotating spiral away to the boundary of the medium by Biktashev’s group (Bikta-

shev and Holden (1998)). Other methods of control include applying current through a

lattice of electrodes (Rappel et al. (1999)) and limiting the size of the tissue using low

voltage electric pulses (Sinha et al. (2001)). The techniques described above involves

an electrical stimulus applied to a large area of tissue. Such global applications of elec-

trical fields have limited clinical applications. Keeping this in mind, techniques using

localized low energy electric pulses were proposed as an alternative to the high voltage

shocks as they are below the pain threshold and do not damage the tissue.

To control the spiral waves inside the heart, one has to understand the factors affect-

ing their initiation and interactions with the obstacles and the external electric fields.

For this purpose, excitation waves have been studied in intact hearts using voltage-

sensitive dyes (Luther et al. (2011), Davidenko et al. (1992)), in chemical medium such

as Belousov - Zhabotansiky reactions and in mathematical models of excitable media

(Shajahan et al. (2007, 2016), Ten Tusscher and Panfilov (2003), Fenton et al. (2002)).

All these work aim to address either of the following problems: (1) Initiation of spiral

waves, (2) dynamics of spiral waves and (3) elimination of spiral waves. This thesis

specifically concerns about the elimination of pinned spiral waves from the medium.

This involves understanding the dynamics of waves interacting with the obstacles in the

presence of different kinds of electric fields.

When the spiral wave is pinned to the obstacle, it becomes necessary to apply the

stimulus close to the core wave to unpin it (Bittihn et al. (2008)). By applying a se-

quence of far-field pulses, it was shown that the fibrillation could be controlled with

80% less energy compared to standard defibrillation. Here the low voltage electric field

pulses recruit tissue heterogeneities as wave emitting sites, and this may be helping to

unpin and remove even the waves pinned to small scale obstacles in the tissue.
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1.2.2 Objectives

To unpin a spiral from the obstacle, one has to apply a stimulus close to the spiral’s

core in a narrow spatial and temporal window called the unpinning window. (Bittihn

et al. (2008)). To solve the problem of spatial location, a method called Far Field Pacing

(FFP) was suggested (Bittihn et al. (2008)). In this method, electric pulses are applied

to the tissue using a pair of electrodes, which generates secondary excitations from

the heterogeneities. Since these heterogeneities are the pinning centres themselves, the

emitted excitations appear close to the pinned spiral’s core. However, the problem of

timing the pulse so that it falls into the unpinning window persists.

Recently, many groups have started using periodic field pulses to increase the chances

of unpinning. The idea is to fire multiple pulses at the pinned spiral with the hope

of one of the pulses falling into the unpinning window. The technique is called Low-

Energy Antifibrillation Pacing (LEAP) and is found to be very effective (Li et al. (2009),

Luther et al. (2011)). However, these studies also revealed that unpinning window is

relatively narrow in mathematical models of excitable media and experiments with car-

diac monolayer compared to the experimental studies in the intact heart (Luther et al.

(2011), Shajahan et al. (2016)). Despite their critical importance in low- energy antifib-

rillation techniques, this problem has not received much attention. We study how these

additional obstacles can alter the unpinning of a single spiral.

The technique of LEAP hypothesizes that multiple periodic pulses can unpin spiral

waves by firing the stimulus into the unpinning window of the spiral. However, the

technique’s success critically depends on the pacing frequency and the width of the

unpinning window. If the pacing frequency is not optimal or if the unpinning window

is too narrow, the technique could potentially fail. Therefore, as an alternative to LEAP,

we use a circularly polarized electric field to unpin the spirals.

Circularly polarised electric fields (CPEF) was first introduced by Jiang-Xing Chen

et al. to study the drift of spiral waves (Chen et al. (2006)). Later, in a simulation

study, it was used to terminate the pinned spirals by Feng et al. (Feng et al. (2014)).

In this study, they compared the circularly polarized electric field’s efficiency to that of

the pulsed electric field and found a significant increase in the success rate with much
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lower voltage strength than pulsed electric fields. The subsequent study showed that

the higher frequency circular wave trains generated by the CPEF could successfully

terminate spiral turbulence (Feng et al. (2015)). Recently, the effect of CPEF on an

irregularly shaped obstacle was also performed (Feng and Gao (2019)). In addition

to these studies, the ability of CPEF to control the turbulence has been shown experi-

mentally in the Belousov-Zhabotinsky reaction (Ji et al. (2013)). Despite its success in

terminating the spirals, the factors and parameters determining the success remain elu-

sive. Therefore, we try to provide a theory and mechanism of unpinning using circularly

polarized electric fields.

Thus, the objectives of this study are as follows:

1. To study how the additional obstacles can alter the unpinning window of a single

pinned spiral.

2. To provide a theory and mechanism for the unpinning of spiral waves using cir-

cularly polarized electric fields.

1.3 Organization of the thesis

The work presented in this thesis concerns with the study of dynamics and control of ro-

tating excitation waves via electric field pulses in excitable media. The study is carried

out with the hope of opening new and efficient pathways in low voltage defibrillation

therapies of the heart. Such a study requires a sound understanding of the dynamics

of the excitation waves causing the arrhythmias. Moreover, the control strategies to be

devised must be supported by sufficient mathematical and theoretical background.

The thesis consists of five chapters. To make it self-contained, Chapter 1, gives a

brief introduction to the excitable media in general with the focus on control of spiral

waves in the heart using available techniques. This chapter also includes the relevant

literature survey, the scope of the research carried out, and the research objectives. At

the end of this chapter, an organization of the thesis is also presented.

Chapter 2 presents the experimental techniques and the mathematical foundations

necessary for this study. This includes brief details about the mathematical models and
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numerical techniques used in this work.

Chapter 3 and chapter 4 are centred around the question of how the unpinning win-

dow of the single obstacle is affected by the presence of an additional obstacle nearby.

Here, we systematically investigate the process of unpinning numerically by introduc-

ing an additional obstacle and calculate the unpinning window of the spiral wave using a

pulsed electric field. The numerical result is consolidated with experiments performed

using cardiac monolayers. (All the experimental work in this thesis is carried out by

the co-authors Dr. T. K. Shajahan and Dr. Sebastian Berg in Max Planck Institute of

Dynamics and Self Organization, Göttingen, Germany.)

Chapter 5 is dedicated to unpinning spiral waves using the circularly polarized elec-

tric field (CPEF). Here, we present separate mechanism of unpinning spiral waves hav-

ing different chirality and propose a robust theory to validate the findings of the numer-

ical simulations.

Chapter 6 contains the summary of the research work presented in this thesis. It also

includes concluding remarks and the scope for future research in these areas.
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Chapter 2

Methods

This chapter briefly describes the experimental techniques, mathematical founda-

tions and numerical modelling details necessary to understand the concepts pre-

sented in this thesis.

2.0.1 Experimental Methods

Cardiac monolayers have been used as an experimental tool to study conduction and

electrophysiology as early as the 1970s (DeHaan and Gottlieb (1968)). The develop-

ment of high-resolution optical techniques has made it possible to map the dynamics

of cardiac waves (Bub et al. (1998)) in monolayers. Unlike the intact heart, the mono-

layer is isotropic and mostly homogeneous which makes it an ideal system to study

the excitation waves. In the past, monolayers have been used to study the mechanisms

of formation of reentry (Bub et al. (2005)), unidirectional block (Rohr et al. (1997)) ,

calcium instabilities (Chang et al. (2012)), and the effects of fibroblast on conduction

(Zlochiver et al. (2008)), to name a few.
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2.0.2 Real-time optical mapping

High-resolution optical mapping allows to observe reentrant wave dynamics in the car-

diac monolayer. Activity in the monolayer will be mapped using a macroscope (Olym-

pus MVX10) and a CCD camera (Photometrics Cascade). The imaging system can

record from a field of view of up to 3× 3 cm2 with spatial 2 resolution starting from 16

× 16 µm. The camera can record fluorescent activity optimally from an area of 1 cm2

at about 40 Hz, which is sufficient to capture electrical waves in the monolayer. Since

the fluorescent signals from a monolayer are small compared to that from intact hearts,

usually calcium signals are mapped. Calcium gives a much larger fluorescent signal,

and it closely follows the voltage in most slow pacing applications (Tung and Zhang

(2006)). Usually, a calcium-sensitive dye Ca-green from Invitrogen is used since this

dye is suitable for capturing even small changes in the intracellular calcium concentra-

tion. Waves in embryonic chicken monolayers are sufficiently slow (1 cm/sec) to allow

electrical and pharmacological intervention. This will help one to control the dynamics

as it evolves and study the transition.

2.0.3 Mathematical Background

One of the most outstanding achievements of 20th-century biophysics is the mathemat-

ical framework developed by Sir Alan Hodgkin and Sir Andrew Huxley for explain-

ing the initiation and propagation of action potentials (Hodgkin and Huxley (1952d,b),

Hodgkin et al. (1952), Hodgkin and Huxley (1952c,a)). After the end of the Second

World War, Hodgkin and Huxley learned about the voltage clamp technique during one

of their visits to K. S Cole’s lab and later used it to understand the action potentials in an

axon (Huxley (1996)). Hodgkin and Huxley’s work laid the mathematical foundation

for modern biophysical research.

The Hodkin-Huxley model was developed based on a series of experiments per-

formed on a giant squid axon. Using experiments, they demonstrated that the ionic

currents could be understood in terms of changes in the Na+ and K+ conductances

in the membrane. Using the Voltage-clamp method, they developed a mathematical
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model that explains the voltage and time-dependent properties of the Na+ and K+ con-

ductances. D. Noble applied this model to explain the cardiac action potentials for the

first time in 1962 (Noble (1962)).

In the sections below, we present a brief mathematical background used in mod-

elling the excitable media in general. Following the mathematical background, the

models and techniques used in this work are described in detail.

2.1 Cable Equations

i

Figure 2.1: Electrical circuit modelling a series of excitable cells. The top part of
the circuit is the intracellular space and the bottom part is the extracellular space. The
arrows at the top and bottom parts of the circuit correspond to the intracellular and
extracellular stimulation respectively.

We begin by building an electronic circuit model to explain the one-dimensional

description of action potential propagation in cardiac cells (see Fig. 2.1). The excitable
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tissue is thought of as a series of biological cells lying along a one-dimensional cable.

The cells are connected via a series of gap junctions which can be modelled as resistors

with rg as the value of resistance per unit length of the chain. Let x be the center

of the coordinate system and if the length of the cell in x-direction is δx, then the

value of each gap junction resistor located between the cells x and x+δx can be given

as rg(x + δx/2)δx. Every cell in the cable can interact with the extracellular space

through the cell membrane and the ion channels embedded in the membrane. Each

cell membrane can be modelled as a capacitor with capacitance cδx, where c is the

membrane’s capacitance per unit length. The ion channel is represented as a little box

in the circuit, assuming that it has complicated dynamics. The extracellular fluid, a

resistive medium, can also be modelled as a series of resistors. Although their resistance

values must be lower than the gap junction resistors since the extracellular space is vast

and continuous, the current must flow without much trouble instead of the gap junctions

that are narrow in shape. Let reδx be the value of extracellular resistance per unit length.

The voltage at different nodes can be identified by their locations: the intracellular

potential of the cell located at x is φi(x) and the corresponding extracellular potential is

φe(x).

Applying Kirchhoff’s current law (KCL) at node ”1”, we get,

c
∂ (φi(x)−φe(x))

∂ t
+im(x)+

(φi(x)−φi(x−δx))
rgδx2 +

(φi(x)−φi(x+δx))
rgδx2 −iintracell(x)= 0

(2.1)

For simplicity, we assume that the gap junction resistance rg(x− δx/2) = rg(x+

δx/2) = rg a constant.

If the cell size δx is small we can use Taylor expansion to simplify the expression

as follows( The third and fourth terms),

c
∂Vm(x, t)

∂ t
+ im(x, t)−

1
rg

∂ 2φi(x, t)
∂x2 − iintracell(x, t) = 0 (2.2)

where the membrane potential Vm(x) = φi(x)−φe(x) is the potential difference be-

tween inside and outside of the cell.
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Applying KCL to node 2 will give us the following equation,

c
∂ (−Vm(x, t))

∂ t
− im(x, t)−

1
re

∂ 2φe(x, t)
∂x2 − iextracell(x, t) = 0 (2.3)

The final form of 2.2 and 2.3 are given below,

∂Vm

∂ t
=
−im

c
+Dg

∂ 2Vm

∂x2 +Dg
∂ 2φe

∂x2 +
iintracel

c
(2.4)

(De +Dg)
∂ 2φe

∂x2 =−Dg
∂ 2Vm

∂x2 −
iintracell

c
− iextracell

c
(2.5)

The Eq. 2.5 is constructed using c∂Vm
∂ t + im from Eq. 2.4. Dg =

1
rgc and De =

1
rec .

Eqs. 2.4 and 2.5 are called cable equations.

2.2 Bidomain model

Bidomain model is a generalization of the cable equations described in section 2.1. In

deriving the cable equations in the last section, we made several assumptions regarding

the isotropy and homogeneity of the tissue. The cardiac tissue is a three-dimensional

structure and not one-dimensional. The assumption that the resistance per unit length

to be the same in any direction is not valid (the tissue is not isotropic). Moreover, the

gap junction and extracellular resistances are not the same everywhere (the tissue is not

homogeneous).

The bidomain model considers both the extracellular and intracellular spaces while

describing the cardiac tissue. Here, we assume that both the intracellular and extracellu-

lar spaces occupy the entire geometric space. These two spaces are connected through

ion channels on the cell membrane. Let us assume that the extracellular space is a

heterogeneous anisotropic medium. The equivalent three dimensional circuit is shown

in Fig. 2.2 (a). Let δx, δy and δ z be the distance between the nodes in x, y and z

directions. To obtain a continuous medium we let δx, δy and δ z→ 0.

In an anisotropic medium, the resistor’s value is proportional to the resistor’s length

and inversely proportional to its area of cross-section, but the constant of proportion-
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Figure 2.2: (a) A part from the 3D lattice of extracellular network of resistors. (b) The
voltages and resistors used to compute KCL at node (x,y,z).

ality, known as resistivity, is different in different directions. Let ηex,ηey,ηez be the

resistivities of the medium. Therefore, the value of resistor along x-direction (for ex-

ample) would be ηexδx/δyδ z.

Applying KCL at node (x,y,z) (see Fig. 2.2 (b)), dividing by −δx,δy,δ z and ex-

panding each of the six terms using Taylor series we obtain,

∂

∂x
(

1
ηex

∂φe

∂x
)+

∂

∂y
(

1
ηey

∂φe

∂y
)+

∂

∂ z
(

1
ηez

∂φe

∂ z
) = 0 (2.6)

Now we connect the extracellular space with the intracellular at a single node (x,y,z)

as shown in Fig. 2.3. Let jm be the current per unit volume coming from the intracel-

lular space. Then the current flowing into any node in the extracellular space will be

jmδxδyδ z where δxδyδ z is the volume associated with the node. We also add the pos-

sibility of a stimulus being applied to the extracellular space by a current of magnitude

iextracell per unit volume. Doing a similar analysis as above, we obtain

∂

∂x
(

1
ηex

∂φe

∂x
)+

∂

∂y
(

1
ηey

∂φe

∂y
)+

∂

∂ z
(

1
ηez

∂φe

∂ z
) =− jm− iextracell (2.7)
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Figure 2.3: A part of the circuit required to apply KCL at the point (x,y,z) when linked
to the intracellular universe.

We now relate jm to the currents flowing through the capacitors and the ion channels

explicitly. Then the total current flowing out of the intracellular space in a volume

δx,δy,δ z containing the point (x,y,z) is

jm = c
∂Vm

∂ t
+ im (2.8)

where jm,c and im are the total current through the membrane, capacitance and ion

channel current per unit volume of the tissue. Substituting Eq. 2.8 in Eq. 2.7 we obtain

∂

∂x
(Dex

∂φe

∂x
)+

∂

∂y
(Dey

∂φe

∂y
)+

∂

∂ z
(Dez

∂φe

∂ z
) =−∂Vm

∂ t
− im

c
− iextracell

c
(2.9)

where the components of De are Dex = 1/(cηex), Dey = 1/(cηey) and Dez = 1/(cηez).

The RHS of Eq. 2.9 can be written as

∇ ·De ·∇φe =
∂

∂x
(Dex

∂φe

∂x
)+

∂

∂y
(Dey

∂φe

∂y
)+

∂

∂ z
(Dez

∂φe

∂ z
) (2.10)
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Where, the quantity De is defined to contain the scalar quantities Dex, Dey and Dez.

In the matrix form it can be written as,
Dex 0 0

0 Dey 0

0 0 Dez


Now, Eq. 2.9 can be written compactly as

∇ ·De ·∇φe =−
∂Vm

∂ t
− im

c
− iextracell

c
(2.11)

where the components of De are Dex = 1/(cηex), Dey = 1/(cηey) and Dez = 1/(cηez).

Similarly, the equations for 3D anisotropic heterogeneous versions of cable equa-

tions can be derived. For the sake of simplicity, we write the bidomain equations di-

rectly below.

∂Vm

∂ t
=
−im

c
+∇ ·Dg ·∇Vm +∇ ·Dg ·∇φe +

iintracell

c
(2.12)

∇ · (De +Dg) ·∇φe =−∇ ·Dg ·∇Vm−
iintracell

c
− iextracell

c
(2.13)

∇ ·De ·∇φe =−
jm
c
− iextracell

c
(2.14)

The familiar way to solve the bidomain equations is to integrate Eq 2.12 and then

solve Eq 2.13 and 2.14 for φe. Solving for φe is computationally expensive for large do-

main sizes. To reduce the computational cost, an approximation of the Bidomain model

is used, which involves only one partial differential equation called the monodomain

model.

2.3 Monodomain model

In this section, we show how the monodomain equations can be directly obtained from

the cable equations (Eq. 2.4) explained in section 2.1. Here, we look at each term of
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Figure 2.4: Electrical circuit diagram showing the contribution of the term ∂Vm
∂ t =

Dg
∂ 2Vm
∂x2 .

Eq. 2.4 separately one at a time and analyse their effects on the system. Let us consider

the first term,

∂Vm

∂ t
=− im

c
(2.15)

While deriving the above equations, we assumed the cell membrane to behave as a

capacitor. Therefore, Eq. 2.15 tells us that the capacitor can be charged by the current im

flowing through the ion channels. In general terms, Eq. 2.15 is indicating how excitable

the cell is. So, once the membrane potential is raised above the threshold, the term im

activates the cell. Eq. 2.15 shows the mechanism through which this activation takes

place.

Next, we focus on the other term of Eq. 2.4.

∂Vm

∂ t
= Dg

∂ 2Vm

∂x2 (2.16)

This equations arises from the resistors and membrane capacitance shown in the

equivalent circuit in Fig. 2.4. The potentials on the intracellular nodes should have

been φi(x− δx), φi(x) and φi(x+ δx) respectively instead of Vm(x− δx), Vm(x) and

Vm(x+ δx). The problem arises because we wanted to express the equation in terms
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of φe and Vm instead of φe and φi. To circumvent this, we assume that φe is small or

approximately zero. Then Vm = φi and the potentials shown in Fig. 2.4 are correct. The

Eq. 2.16 is the heat or diffusion equation. If we put all the three terms together (i.e Eq.

2.15 and Eq. 2.16), we obtain

∂Vm

∂ t
=− im

c
+Dg

∂ 2Vm

∂x2 (2.17)

Eq. 2.17 is called the Monodomain equations as it includes only the intracellular

domain.

2.4 Phase Field Method

Finite difference methods are one of the widely used methods to solve partial differen-

tial equations. The simplicity of the method has led to their usage in diverse fields of

science and technology such as heat conduction (Brian (1961)), diffusion (Yuste and

Acedo (2005)), weather forecast (Simmons and Burridge (1981)) etc. However, finite

difference methods have some major disadvantages. They become quite unwieldy if

we have complexities such as moving boundaries or unstructured grids. The inability

of finite difference methods to handle irregular geometries is one of its main disad-

vantages. There are workaround techniques such as finite element methods, but they

come at the expense of computational power. To circumvent this problem, we use a

method that automatically takes care of the no-flux boundary conditions at the irregular

domain boundaries. It is called Phase Field Method. This method widely used by ma-

terial scientists and engineers to solve material science problems, including dendritic

solidification (Boettinger et al. (2002)), viscous fingering (Folch et al. (1999)), crack

propagation (Karma et al. (2001)) etc.

The natural boundary conditions in mono-domain cardiac models such as Fitzhugh-

Nagumo or Barkley models are no-flux. They are as given below.

n̂ ·∇u = 0 (2.18)

where n̂ is the unit vector normal to the boundary, and u is the transmembrane po-
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tential. We use the following steps to implement Eq. 2.18 using the phase-field method

at the domain boundary. First, we introduce an auxiliary field φ , henceforth called the

phase field. It takes values φ = 1 for the excitable tissue (for example, the circular

domain in Fig. 2.5) and φ = 0 outside with a smooth transition at the boundary. The

smoothing of the values of φ at the interface is done by solving the partial differential

Eq. 2.19 as t→ ∞.

∂φ

∂ t
= (φ0−φ)+ξ

2
∇

2
φ (2.19)

Where ξ is the parameter that controls the width of the diffusive interface. The

above partial differential equation maintains the values of φ of 1 and 0 inside and outside

the excitable tissue, and the Laplacian operator smoothens out the discontinuity of φ at

the boundary of the circular domain. In this thesis, we have used the finite difference

explicit method (mentioned in section 2.6) to calculate the phase field. Fig. 2.5 shows

the initial binary field φ0 and the resulting equilibrium phase field φ .

Figure 2.5: The no-flux boundary condition given in Eq. 2.18 is to be applied on the
boundaries of the circular domain at the center. (a) Initial bipartite phase field φ0. (b)
The equilibrium solution of equation 2.19 with ξ = 0.05 and φ0 from (a)

Once the equilibrium phase field is computed using the above mentioned method, it
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is then substituted to the diffusion term as follows:

∇ · (D∇u)→ 1
φ

∇ · (φD∇u) (2.20)

Details about how this substitution simulates the Neumann boundary condition is

given below.

Substituting Eq. 2.20 into the general reaction diffusion equation, we get,

∂u
∂ t

= f (u)+
1
φ

∇ · (φD∇u) (2.21)

We assume that f (u) is bounded when u is bounded. We now integrate Eq. 2.21

over a small volume V (see Fig. 2.6) as follows,

∫
V

φ
∂u
∂ t

dV =
∫

V
φ f (u)dV +

∫
V

∇ ·(φD∇u)dV =
∫

V
φ f (u)dV +

∮
φD∇u · dA. (2.22)

Figure 2.6: Graph showing the volume integration of equation 2.22 at the boundary
between φ0 = 1 (brown) and φ0 = 0 (blue). The arrows shows the surface normal vectors
to the integration volume, V.
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Now, we write the contributions from individual surfaces as follows,

∫
V

φ
∂u
∂ t

dV =
∫

V
φ f (u)dV +

∫
a1

φD∇u ·da1+
∫

a2

φD∇u ·da2+
∫

a3

φD∇u ·da3+
∫

a4

φD∇u ·da4+. . .

(2.23)

The dots stand for the two surfaces of the volume V above and below the interface.

For a chosen width of the interface ξ , the width of V normal to the interface is fixed

so that the two surfaces parallel to the interface are having the values of φ = 1−δ and

φ = δ for an arbitrarily small δ > 0.

If the volume we pick is sufficiently small and if the u is bounded, we can approx-

imate the individual integrands of Eq. 2.23 by constants excluding φ . Now, if we let

ξ → 0 and reduce the width of the volume V , the tangential components a2 and a4

vanish as their size goes to zero. This is also true for the first term on the RHS of Eq.

2.23. Now, since we have φ ≈ 1 on the surface da3 it survives. The other term on the

surface da1 vanishes as φ ≈ 0 there. Considering all the above arguments Eq. 2.23 can

be written as,

0 =
∫

a1

φD∇u ·dn3 ≈ n̂ ·D∇u (2.24)

The technical details about the mechanism of boundary condition enforcement can

be found in the book by Philip Bittihn ( Bittihn (2014)).

2.5 Models of Excitable Media

A typical bottom-up approach cardiac model begins with a mathematical description of

various ion species and transmembrane potentials required to describe an action poten-

tial. Several such models have been proposed for different kind of cardiac cells. An

exhaustive list of physiological models for different regions of the heart using several

ion species is given in (Fenton and Cherry (2008)). Ionic models can be beneficial

when studying tissue-specific diseases as the model’s variables are directly related to

the physiological properties. But they involve a large number of parameters and the

25



variables, making numerical simulations expensive. In this thesis we study the propa-

gation dynamics of the excitation waves. For this reason, we use the generic models of

excitable media, constructed using the top-down approach like Barkley model (Barkley

(1991)) and Fitzhugh-Nagumo model (see section 2.5.1). Both the models use only two

variables and three parameters.

2.5.1 Fitzhugh Nagumo Model

R. Fitzhugh and J Nagumo independently published a series of papers developing a

mathematical model for reproducing the current dynamics seen in excitable neuron

cells (FitzHugh (1961), Nagumo et al. (1962)). This model is a simplification of the

Hodgkin-Huxley model used for modelling the spiking neurons. The same set of equa-

tions can be used to model the cardiac tissue as both the neuronal and cardiac cells share

excitable properties.

The model consists only two equations as given below:

∂u
∂ t

=
1
ε
(u(1−u)(u−a)− v)+D∇

2u (2.25)

∂v
∂ t

= bu− v (2.26)

The quantity u is the transmembrane potential, and the variable v acts as the recovery

variable. a, b and ε are the parameters of the model. The variable v is slower than u by

the factor of 1/ε , where ε << 1. The parameter a sets the threshold of excitation.

The quantity u(1−u)(u−a) has a cubic non-linearity with three equilibrium points

at u = 0, u = a and u = 1. The points u = 0 and u = 1 represent the stable resting

and excited states, respectively, while u = a represents the unstable threshold. There-

fore, being a bi-stable system, the quantity u(1−u)(u−a) cannot model the excitable

medium. We need another quantity that makes one of the stable equilibrium points

gradually become unstable so that the system goes back to the resting state. This can

be achieved by subtracting a time-dependent quantity v from u(1− u)(u− a). So the

term now becomes (u(1−u)(u−a))−v. The evolution of v is given by the differential
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equation 2.26.

Figure 2.7: (a) The phase portrait of Eq. 2.25 and Eq. 2.26 with a initial condition
u=−0.1 and v=−0.1. (b) The time evolution of u and v variables for a= 0.1,b= 0.25
and ε = 0.025.

The fixed points of the Fitzhugh Nagumo equations are the solutions of the follow-

ing equations:

u(1−u)(u−a)− v = 0

bu− v = 0
(2.27)

The equations u(1−u)(u−a)− v and bu− v are called u-nullcline and v-nullcline

respectively. Fig. 2.7 (a) shows the phase portrait of the model. The point of intersection

of two nullclines denote the stable equilibrium point. For portions below (above) the u-

nullcline, du/dt > 0 (< 0) and for the portions to the left (right) of v-nullcline, dv/dt <

0 (> 0). Therefore, if one follows the direction of flow beginning from some initial

condition somewhere in the phase portrait, one can obtain the trajectory of the system.

Fig. 2.7 (b) shows the time evolution of the u and v variables for a fixed values of the

model parameters a and b.

When applying the phase field method, the boundary condition given in Eq. 2.18 is
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incorporated into the circular boundary in Fitzhugh Nagumo model equation as follows.

∂u
∂ t

=
1
ε

u(1−u)(u−a)− v)+∇ · (∇u)+∇(lnφ) · (∇u)− (∇(lnφ) ·~E)
∂v
∂ t

= bu− v
(2.28)

In Cartesian co-ordinates, Eq. 2.28 are integrated on a gird size of 300× 300

medium with no-flux boundary conditions on the domain boundaries using finite differ-

ence method. The central difference method is applied to calculate the five point Lapla-

cian term ∇2u and the gradient terms. The space steps and time steps are dx = dy = 0.1

and dt = 10−4 respectively. The value of ξ is taken to be 0.05.

2.5.2 Barkley Model

Barkley Model was proposed by Dwight Barkley in 1990 with an intention of perform-

ing very fast numerical simulations of spiral and scroll waves in excitable media. The

dynamics of the model is similar to the Fitzhugh Nagumo model but has gained impor-

tance due to the reduced computational cost and extensions to the model proposed later

(Bär and Eiswirth (1993)). The model equations are as follows:

∂u
∂ t

=
1
ε
(u(1−u)(u− v+b

a
))+D∇

2u (2.29)

∂v
∂ t

= u− v (2.30)

with a, b and ε as parameters of the model and D is the diffusion coefficient. The

(u,v) phase space of the model is shown in Fig. 2.8. The stable fixed point of the

model is at (0,0), indicating that the trajectories starting close to it will return to (0,0)

immediately. This corresponds to a sub-threshold stimulation. However, the trajectories

beginning to the right of the nullcline u = uth =
v+b

a will make a long roundabout before

settling at the fixed point. This process corresponds to a supra-threshold stimulation

and the resulting action potential. The significance of the three parameters of the model

can be determined directly from the phase space diagram. At rest, the ratio b/a gives
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the excitation threshold. The parameter a sets the width of action potential, and the

parameter ε determines the time scale between the variables u and v.

Figure 2.8: Phase portrait of Barkley model. Nullclines of the model are shown:
The straight line v = u corresponds to the v nullcline and the lines u = 0, u = 1 and
u = v+b

a corresponds to u nullclines. The point (0,0) denotes an excitable fixed point.
The parameter δ , introduced to speed up the computation, corresponds to a boundary
layer which determines the state of the system. If the system is inside the boundary
layer, its recovering and if its outside, its excited.

2.6 Time Stepping Scheme

Reaction diffusion equations most often display the change in the concentration of one

or more chemical substances in space and time. Mathematically, reaction-diffusion
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equations are parabolic partial differential equations which can be represented as fol-

lows,

∂u
∂ t

= D∇
2u+R(u) (2.31)

where, u(r, t) is a vector of concentration variables, D is the matrix of diffusion

coefficients and R describes all the local reaction kinetics. Eq. 2.31 is an initial value

problem defined on a spacial domain D. So, if the initial field, u(r, t = 0) and the appro-

priate boundary conditions are given, u(r, t) can be determined for t ∈ [0,T ]. Suppose

we seek the solution of u(r, t) for a time interval 0 < t < T in the domain having dimen-

sions [0,Lx]× [0,Ly]× [0,Lz], where Lx,Ly and Lz are the length of the domain along

x,y and z directions. As a first step, we generate a mesh with discretization steps dx,dy

and dz in three spatial directions and dt in time as follows;

0 = x0 < x1 · · ·< xnx = Lx

0 = y0 < y1 · · ·< yny = Ly

0 = z0 < z1 · · ·< znz = Lz

(2.32)

The temporal domain [0,T ] is discretized as,

0 = t0 < t1 · · ·< tnt = T (2.33)

The solution u(x,y,z, t) is known only on the grid points (xi,y j,zk) with i= 0, . . . ,nx,

j = 0, . . . ,ny and k = 0, . . . ,nz. We approximate u(x,y,z, t) by a discrete function un
i, j,k.

At any spatial grid, the time derivative is calculated using forward Euler of forward time

centered-space (FTCS) scheme as follows,

∂u
∂ t

=
un+1

i, j,k−un
i, j,k)

dt
(2.34)

2.6.1 Approximation of the Laplacian

For a sufficiently smooth u we can write,
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u(x+dx,y,z, t) = u(x,y,z, t)+dx
∂u
∂x

+
dx2

2
∂ 2u
∂x2 +O(dx3) (2.35)

u(x−dx,y,z, t) = u(x,y,z, t)−dx
∂u
∂x

+
dx2

2
∂ 2u
∂x2 +O(dx3) (2.36)

Adding Eqs. 2.35 and 2.36 together we get,

u(x+dx,y,z, t)+u(x−dx,y,z, t) = 2u(x,y,z, t)+dx2 ∂ 2u
∂x2 +O(dx4 (2.37)

Ignoring the O(dx4) term and rewriting Eq. 2.37 we get the x component of the

Laplacian,

∂ 2u
∂x2 =

u(x+dx,y,z, t)−2u(x,y,z, t)+u(x−dx,y,z, t)
dx2 (2.38)

Note that one can derive the same for y and z components, which together gives the

approximation for the Laplacian as follows,

∇
2u(x,y,z, t) =

u(x+dx,y,z, t)−2u(x,y,z, t)+u(x−dx,y,z, t)
dx2 +

u(x,y+dy,z, t)−2u(x,y,z, t)+u(x,y−dy,z, t)
dy2 +

u(x,y,z+dz, t)−2u(x,y,z, t)+u(x,y,z−dz, t)
dz2

(2.39)

This approximation for the Laplacian is handy because it contains only u at the

current time step t.

Therefore, combining Eq. 2.34 and Eq. 2.39, the algebraic version of Eq. 2.31 can

be written as follows,

31



un+1
i, j,k−un

i, j,k)

dt
=

u(x+dx,y,z, t)−2u(x,y,z, t)+u(x−dx,y,z, t)
dx2 +

u(x,y+dy,z, t)−2u(x,y,z, t)+u(x,y−dy,z, t)
dy2 +

u(x,y,z+dz, t)−2u(x,y,z, t)+u(x,y,z−dz, t)
dz2 +Rn

i, j,k

(2.40)

2.6.2 Stability of scheme

The Barkley model and Fitzhugh Nagumo model equations used in this thesis to simu-

late excitable medium have a significant separation in Spatio-temporal scales. The time

scale on which the transmembrane voltage u changes in Eq. 2.25 and Eq. 2.29 as the

system becomes excited is several orders of magnitude faster than the v variable. In

mathematics, such systems are called stiff differential equations. The numerical meth-

ods, such as the Explicit Euler method used in this thesis, to solve stiff differential

equations are known to cause numerical instabilities unless the time step size is small

enough to resolve the fast dynamics of excitation.

Another possibility of instability in reaction diffusion systems occurs due to the dif-

fusion term. The condition for stability for this case is given by Von Neumann stability

criterion as follows:

Ddt
dx2 ≤

1
2d

(2.41)

where, d is the spatial dimensions. The condition in Eq. 2.41 is not fulfilled when

the phase-field method is applied. In this method, the diffusion term is multiplied by the

phase-field φ . It decays quite quickly at the boundaries of the domain and decays expo-

nentially far from the domain with a length scale approximately equal to ξ , comparable

to the grid spacing dx. Therefore, the normal derivative of the phase-field can be written

as d lnφ

dn . 1
ξ

. This leads to an advection-like term with a velocity given by |v|. D
ξ

. The

stability condition for an advection equation using an explicit time-stepping scheme is

called Courant - Friedrichs - Lewy criterion. It is given as follows:
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1≥ |v|∆t
dx

&
D∆t
ξ dx

(2.42)

The values of ξ in this thesis is restricted to (dx
2 , dx).

2.6.3 Spiral Tip Detection

The tip of the spiral wave in the Barkley and Fitzhugh Nagumo model is defined to be

a point in space where f (u = 1/2,v) = 0. i.e. the point where f = 0 on the u = 1/2

contour of the spiral solution (Barkley (1995)). The tip condition is defined this way

because it is easier to calculate it numerically from the u and v fields. According to

the above definition, the tip (x,y) is defined implicitly by f1(x,y) = f2(x,y) = 0. For

Barkley model f (u,v) = u(1−u)(u− v+b
a ). So, the functions f1 and f2 are as follows:

f1 = u(x,y)− ucontour and f2 = v(x,y)− vcontour, where ucontour = 1/2 and vcontour =

a/2−b. For Fitzhugh Nagumo model, f (u,v) = u(1−u)(u−a)− v. Using the above

definition for the tip, we obtain, f1 = u(x,y)−ucontour and f2 = v(x,y)− vcontour where

ucontour = 1/2 and vcontour = 1/8−a/4.

Figure 2.9: The spiral tip trajectories in Barkley model. The parameter values are
b = 0.05, ε = 0.02 and (a) a = 0.56, (b) a = 0.58, (c) a = 0.69 and (d) a = 0.72.

The tip of the spiral is numerically determined by custom software written in dd

Two-dimensional Newton’s method is used to determine the root (x,y). The derivatives

in newton’s method are determined by the finite difference method. The u and v fields

are approximated using the Lagrangian interpolation method with polynomials of order

3. The Python code used to find the spiral’s tip is given in the appendix A.
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2.6.4 Hardware, Software, Parallelization

The numerical simulation for this thesis was carried out on the following computers.

1. Macbook Pro (13 inch, Mid 2012), 2.5GHz dual-core Intel Core i5 processor

(Turbo Boost up to 3.1GHz) with 3MB L3 cache, 8GB of 1600MHz DDR3 mem-

ory.

2. HP Z640 Workstation, Intel Xeon(R) CPU E5-2620 v3 Processor with 2.40GHz x

12, 12GB of 1600MHz DDR3 memory and GeForce GT 730/PCle/SSE2 Graph-

ics.

3. DEL Power Edge R740 2U Rack server with Processor: 2 no’s x Intel Xeon Silver

4108 1.8G, 8Core/16Tread, 9.6GT/s 2UPI, 11M Cache, Turbo, HT (85W) DDR4-

2400. 384 GB RAM, 12 no’s x 32GB DDR4 2400MHz (2Rx8) ECC RDIMM

2666/MT/s. SSD: 1 no x 480GB SSD SATA Read Intensive 6Gbps 512n 2.5in

Hot-plug Drive, 8 no’s x 600GB Hard Drive,15000RPM,2.5”,SAS 12Gbps 512n

(approximate 4.2TB of after RAID configured raw space).

All the computers run Unix operating system. The operating systems used are Ma-

cOS, Ubuntu and CentOs. All the codes used in this thesis are self-written in either

python, C or C++ language. Post-processing is done using standard python libraries

such as matplotlib and Mayavi. The parallelization was done using python’s message

passing interface library called mpi4py.
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Chapter 3

Unpinning spiral waves anchored to

two obstacles

In this chapter, the effect of the additional wave emitting site on the unpinning

window of the spiral is studied for a special case where the spiral wave is pinned

to both the obstacles. The study shows that the unpinning window decreases as

the distance between the obstacles increases, and beyond a critical distance, the

window completely vanishes.

3.1 Introduction

In many physiological systems, a wave of excitation coordinates the functioning of mil-

lions of cells that constitute the system. The excitation is produced locally within each

cell, hence as long as the cells are excitable, the wave can travel without any attenua-

tion. Waves of this type are found in a variety of systems, including in chemical reac-

tions (Jahnke et al. (1989)), social amoebae (Gregor et al. (2010)), and in physiological

tissue such as brain (Huang et al. (2004)), heart (Davidenko et al. (1992)), retina (Yu

et al. (2012)), and uterus (Singh et al. (2012)). Two important properties of these waves

are: (1) The conduction velocity of excitation waves depends on the curvature of the
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wave, i.e., convex waves travel slower than plane waves, whereas concave waves travel

faster than plane waves. (2) After excitation, the tissue remains inactive for a character-

istic period called the refractory time. Because of the propagation properties, excitation

waves can form a spiral shape and rotate indefinitely in the supporting medium (Karma

(2013)). Such rotating waves are often associated with functional disorders in physio-

logical tissue, such as reentrant electrical activity in the heart during cardiac arrhythmias

(Tung et al. (2008)). In the heart, rotating waves of excitation are known to cause fatal

cardiac arrhythmia such as Ventricular Tachycardia (VT) and Ventricular Fibrillation

(VF). During tachycardia, a cardiac excitation wave rotates in the tissue overriding the

natural rhythm set by the heart’s pacemaking cells. During fibrillation, these rotating

waves break up and form multiple wavelets, leading to irregular ECG patterns. The

irregular propagation of the excitation waves causes asynchronous and irregular con-

traction of muscles in the heart. Hence it is important to devise methods to eliminate

them.

Electrical shocks were known to terminate VF for more than 100 years (Prevost

(1899)). With the advent of technology in the last half of the century, external high volt-

age defibrillators were made available to a greater population (Zoll et al. (1956)). The

current clinical standard for the treatment of VF is to deliver biphasic shocks (∼1kV,

12ms, 30A) (Otani et al. (2019)) either using the electrode panels placed on the chest

(Ley (2019)) or through an implantable cardioverter-defibrillator (ICD’s). The high

voltage shock depolarizes the entire heart at once for a short period of time, pushing it

into a refractory state and eliminating all excitation at once. Even though this technique

is reliable and life-saving, the physical pain and the psychological distress caused to the

patient are immense (Tung (1996)). It can also damage the tissue causing scars, lead-

ing to the dysfunction of the myocardium (Al-Khadra et al. (2000), Cook et al. (2013),

Bradfield et al. (2012)). Since the demerits of high voltage shocks became known, con-

siderable efforts have been put into developing effective defibrillation with much lower

voltages. Initial studies in the field led to the elimination of monophasic waveforms and

the use of biphasic waveforms (Mittal et al. (1999), Clark et al. (2002)). Recent studies

using a train of low voltage pulses having millisecond (Rantner et al. (2013), Luther
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et al. (2011)) and nanosecond duration (Varghese et al. (2017)) have shown promising

results in achieving low voltage defibrillation.

In a method called Anti Tachycardia Pacing (ATP), low-intensity pulses are given

far away from the spiral core. These pulses generate target waves emanating from the

location of the stimulus electrode. If the pacing frequency is higher than the frequency

of the spiral, these target waves can push the spiral wave away from the medium (Rip-

plinger et al. (2006)). The success rate of ATP is found to be 60−90% (Pumir and Krin-

sky (1999)). While they are able to remove freely rotating spirals in a heterogeneous

medium, excitation waves tend to form a stable rotating pattern around a heterogeneity

in the medium. This is known as wave pinning (Davidenko et al. (1992), Valderrábano

et al. (2001), Bub et al. (2002)). If not unpinned, these pinned spirals can rotate indef-

initely (Luther et al. (2011)). It is therefore imperative to find optimal conditions and

device efficient methods to unpin them. Further details about cardiac arrhythmia and

available therapies are discussed in chapter 1, section 1.2.1.

To unpin the spiral from an obstacle, the stimulus has to be applied in the refractory

tail, close to the core of the spiral wave (Bittihn et al. (2012), Shajahan et al. (2016),

Takagi et al. (2004), Hörning et al. (2009), Bittihn et al. (2010)). This narrow time

window, where the spiral unpins, is called the unpinning window of the spiral. The

stimulus delivered in this unpinning window will nucleate a wave that can travel only in

the direction opposite to the spiral due to the refractory property of the excitable media.

Eventually, the wave nucleated by the stimulus and the spiral will collide head-on and

annihilate each other, unpinning the spiral. To get the stimulus delivered to the core of

the spiral wave, we use a technique called Far Field Pacing (FFP) (Bittihn et al. (2008)).

When a low voltage global electric field is applied across a medium with obstacles, de-

polarization and hyperpolarisation regions form on either side of the obstacles. These

regions are called Weidmann Zones (Pumir and Krinsky (1999)). Above a threshold

value of the electric field, the depolarization region can nucleate an excitation wave.

A stimulus delivered so that the wave it nucleates will fall into the unpinning window

can unpin the spiral wave. Unpinning of a wave attached to a single obstacle has been

extensively studied using FFP by (Takagi et al. (2004), Pumir et al. (2007), Bittihn
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et al. (2010)). The unpinning success using velocity restitution effects in detailed car-

diac models is done by (Isomura et al. (2008)). The pinned spiral waves’ response to

the periodic stimuli is carried out in detail by (Behrend et al. (2010), Shajahan et al.

(2016)) where an alternative and robust approach to finding the pacing frequencies for

unpinning is discussed.

In this chapter, we study the effect on the unpinning window by introducing a second

obstacle near the central obstacle. We study the special case of unpinning where the

spiral tips are attached to both the obstacles. By delivering low voltage stimulus at

different phases of the spiral and systematically changing the distances between the

two obstacles, we try to understand the unpinning window of the two obstacle system.

3.2 Methods

All the simulations in this chapter are carried out using the Barkley Model ( Barkley

(1991)), which is a modified Fitzhugh-Nagumo type model proposed by Dwight Barkley

to simulate cardiac action potential efficiently. For more details, see chapter 2, section

2.5.2.

For the purpose of this study, the parameters of the model are set to a = 0.53,

b = 0.05 and ε = 0.02 throughout the simulations. The Barkley model equations are

solved in a 300 × 300 computational grid using forward Euler method. A five-point

stencil is used to compute the Laplacian (see chapter 2, section 2.6). Neumann bound-

ary conditions are implemented at the domain boundaries to ensure no flux escapes out

of the boundary. The computation is carried out using a spatial resolution dx = 0.1 and

Euler time step dt = 0.001. The Euler scheme’s accuracy has been tested systemati-

cally for smaller spatial resolutions (dx = 0.05, 0.01), and the quantities such as action

potential duration and wavelength of the spiral are found to agree with each other. The

electric field is applied using no-flux boundary conditions (Pumir and Krinsky (1999))

given below

ŷ · (D∇u−~E) = 0 (3.1)
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Figure 3.1: Initial conditions.
Spiral wave with its tip attached to both the obstacles. The obstacles are at a distance
0.625λ apart, where λ is the wavelength of the spiral wave. We treat this spiral as our

initial condition for all the simulations.

ŷ is a unit vector perpendicular to the obstacle boundary, D is the coupling constant,

and ~E is the applied electric field. The Neumann boundary conditions in Eq. 5.1 can be

implemented easily since the boundaries of the obstacle are parallel to the co-ordinate

axis. In the simulations, we apply the electric field along the y-axis. Then, Eq. 5.1

becomes:

D
∂u
∂y

= Ey (3.2)

The strength of the electric field is set to ~E = 3 units and the pulse duration is set to

0.5. All the distances in this chapter are measured in terms of the wavelength (λ = 48)

of the spiral. The the wavelength of the spiral is the number of space steps between the

wavefront and the wave back.

3.3 Results and Discussions

To study unpinning in the presence of multiple obstacles, we simulated a wave attached

to two obstacles in a medium as shown in Fig. 3.1. The wave rotates with a period of

10. In Fig. 3.1 the obstacles are at a distance 0.625λ apart. We define the phase as the

spiral position at the time of the pulse in one complete spiral period. So, Φ ∈ [0,1].

To determine the unpinning window of the above-mentioned spiral, we deliver a low
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Figure 3.2: Successful unpinning of the spiral wave attached to both the obstacles.
The FFP stimulus makes the obstacles emit secondary excitations at t=3.5. The tips
of the secondary excitation and the spiral wave meet at t=5.1, which results in their
annihilation. The wave is unpinned and moves away to the boundary, as shown at
t=6.4.

voltage electrical stimulus along the negative y-axis (as shown in Fig. 3.2) at different

phases of the spiral. After the application of the electric field, the secondary waves

are nucleated at t=3.5 due to the phenomenon of Wave Emission from Heterogeneity

(WEH) (Bittihn et al. (2012)). The emitted wave will then successfully unpin the spiral

wave, as shown in Fig. 2 (d).

The unpinning shown in Fig. 3.2 is unique because the secondary excitation is

not nucleated in the refractory tail of the spiral. Instead, the secondary excitation is

nucleated from the top of the two obstacles. After the wave nucleation, there are four

tips in total. The tips of the secondary excitation close to the spiral tips will collide

and annihilate each other. The remaining two tips of the secondary excitation will also

collide with each other at t=5.1 and move away from the obstacles, unpinning the spiral.

The unpinning mechanism mentioned above happens only in the small region in

the phase window of the spiral. We call it the unpinning window of the two obstacle

system. However, if the spiral tips and the tips of the secondary excitation do not meet

exactly, then they do not annihilate completely. This leaves a portion of the wave which

later develops and ends up pinning to one or either of the obstacles. The snapshots of

failed unpinning due to the above-mentioned reason is shown in Fig. 3.3 (a-d).

In Fig. 3.3 (e-h), we show another case where the spiral fails to unpin from the

obstacle. Here, the distance between the obstacles is increased to 1.014λ . As the dis-
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Figure 3.3: Cases of unsuccessful unpinning. In figure (a - d) the spiral tips on the
left do not collide with each other perfectly. Due to imperfect collision wave which
survives in the medium later develops into a pinned spiral as shown in fig (d). In fig
(e - h) the distance between the obstacles has been increased to 1.014λ . This allows
the secondary excitations from the obstacles to develop more curvature which results in
incomplete unpinning. The resulting wave will attach to both the obstacles as shown in
Figure (h).

tance between the obstacle increases, the tips generated from the secondary excitations

will continue to collide and annihilate with the tips the spiral. However, the tips of the

secondary excitations will have to move a more significant distance before they collide

and annihilate. The increase in distance will give them more time to develop curva-

ture so that their tips do not coincide with each other exactly. The wave left out due to

inefficient collision will develop into a new pinned spiral wave as shown in Fig. 3.3 (h).

The above-mentioned unpinning mechanism shows that the spiral wave attached to

both the obstacles does not have a conventional unpinning window, but it does have an

unpinning window of its own. We plot a graph that indicates the unpinning window

as a function of the distance between the obstacles corresponding to the electric field
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Figure 3.4: Unpinning window of the two obstacle system. White coloured grids
indicate unpinning and black grids indicate failed unpinning. Distance between the
obstacles is measured in terms of spiral wavelength. The stimulus is given every 0.2 for
six different distances. The graph shows that the unpinning window decreases as the
distance between the obstacles increases.

stimulus being applied at different spiral phases. From the graph, we observe a large

unpinning window at lower distances between the obstacles. This success in unpin-

ning can be attributed to the mechanism explained in Fig. 3.2. The unpinning window

reduces as the distance between the obstacles increases. This is because of the unsuc-

cessful cases mentioned in Fig. 3.3. After a certain distance, d = 1.46 λ , the window

vanishes completely.
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3.4 Conclusions

In this chapter, we have discussed wave unpinning from two obstacles. Here, we studied

a special case of unpinning where the spiral tips are attached to both the obstacles. We

have shown that the chances of unpinning, as quantified by the unpinning window, de-

creases as the distance between obstacles increase. After a critical distance, unpinning

fails. Our results show that to unpin a spiral anchored to both the obstacles, it is not

essential that the stimulus delivered falls into the spiral’s refractory tail. It is sufficient

if the tips of the secondary excitation will annihilate with the tips of the spiral wave.

Our results will be relevant in deciding FFP based methods for low energy fibrilla-

tion. In particular, the distribution of heterogeneities can play a critical role in decid-

ing the unpinning window. The presence of neighbouring heterogeneities can alter the

length of the unpinning window. The more general case of unpinning where the spiral

is pinned to just one obstacle is considered in the next chapter (see chapter 4).
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Chapter 4

Spiral wave unpinning facilitated by

wave emitting sites in cardiac

monolayers

In this chapter, the effect of the additional wave emitting site on the unpinning

window of the spiral is studied for a general case where the spiral is pinned to a

single obstacle. The chapter includes the numerical results and the experimental

studies performed on cardiac monolayers.

The spiral waves can be unpinned from an obstacle if an electric stimulus is de-

livered very close to the pinning centre and within a specific time interval called the

unpinning window (UW), i.e. the stimulus has to be within a narrow spatial and tempo-

ral window . As discussed in chapter 3 it is possible to generate secondary excitations

from heterogeneities in the tissue using electric field pulses (Krinsky et al. (1995), Bit-

tihn et al. (2010)). Since these excitations are generated from possible pinning centres,

they can appear close to the core of the spiral and hence solve the problem of spatial

location. However, the pulses still have to be generated within the unpinning window

of the wave. Recently, many groups have started using periodic field pulses to increase

the chances of unpinning, and these are found to be very effective in LEAP (Li et al.
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(2009), Luther et al. (2011)). Studies so far have focused on unpinning a rotating wave

by secondary excitations emanating from the pinning centre itself (except a paper by

Tom Wörden et al., which studied control of multiple pinned spirals in an excitable me-

dia (tom Wörden et al. (2019))). However, these studies show that unpinning window is

quite narrow compared to the experimental studies in the intact heart. (Shajahan et al.

(2016), Luther et al. (2011)). Apart from the three-dimensional nature of the heart, we

hypothesized that the presence of multiple wave emitting sites in the cardiac tissue could

be one of the factors affecting the width of the unpinning window. This induced us to

study the role of multiple wave emitting sites in the unpinning process. Also, multi-

ple heterogeneities in close vicinity offer the possibility of additional stimulus sites and

additional anchoring sites. In such cases, one needs to examine how the distribution

of heterogeneities modifies the unpinning window. Despite their critical importance in

low energy antifibrillation techniques, this problem has not received much attention.

In a recent paper by Tom Wörden and colleagues have looked at how multiple pinned

waves can be unpinned simultaneously (tom Wörden et al. (2019)). We study how these

additional obstacles can alter the unpinning of a single spiral.

This chapter shows that secondary excitations emanating from nearby heterogeneities

can unpin a wave attached in the vicinity in monolayers of cardiac cells. We then un-

dertake a detailed numerical study of the wave unpinning in the presence of two het-

erogeneities. We found that the unpinning window either increases or decreases in the

presence of additional heterogeneity. Their influence depends on their orientation with

respect to the electric field, distance from the obstacle, and the size. Along certain

orientations, unpinning fails.

4.1 Methods

4.1.1 Experiments

The experiments were conducted in a monolayer of cardiac myocytes extracted from

chicken embryos, prepared as described in (Borek et al. (2012), Schlemmer et al. (2015))

and plated as circular disks of 10 mm diameter.
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A hole with 2 mm diameter was drilled in the middle of the glass plate, creating a

central heterogeneity without any cells. Rotating waves were initiated in the monolayer

by high-frequency field pacing. The excitation of the cardiac myocytes was tracked

using a calcium-sensitive dye (Calcium Green, Invitrogen), and the resulting calcium

waves were mapped with an Olympus MVX10 microscope and a Photometrics Cascade

512 EMCCD camera. Custom written software was used for data acquisition and further

analysis.

During the experiment 1, the fluorescent signal was averaged over a small user-

selected area and then it was smoothed using a bandpass filter. When this fluorescent

activity from the pre-selected area of the monolayer exceeded a certain threshold, we

applied electric field pulses at chosen phases of the rotating wave. The strength of the

field varied from 1 V/cm to 5 V/cm and its frequency from 0.6 to 2.0 Hz and each

stimulus lasted for 20 ms.
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Figure 4.1: An electric field pulse initiates multiple wave emitting sites in a cardiac
cells monolayer. The electric field E is applied from left to right at t = 0 s. (a) At
E = 1.5 V/cm, waves are emitted only from the monolayer outer boundary (B), see
t = 200 ms. (b) At E = 2 V/cm, the outer monolayer boundary (B) and the obstacle at
the center (C) are emitting waves. (c) At 2.5 V/cm, excitation can also originate from
smaller heterogeneities in the monolayer. Note that full excitation occurs much earlier
in (c).

1The experiments are performed by Dr. T. K. Shajahan and Dr. Sebastian Berg in Max Planck Institute
for Dynamics and Self-Organization, Göttingen, Germany. It is included in the thesis for the reason of
continuity only.
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4.1.2 Mathematical Model

We use the Fitzhugh Nagumo model (FHN) to simulate the spiral wave in a two-

dimensional medium. The model equations are as follows.

∂u
∂ t

=
1
ε
(u(1−u)(u−a)− v)+D∇

2u (4.1)

∂v
∂ t

= bu− v (4.2)

where u and v stands for transmembrane voltage and gating variable respectively.

The parameter values are chosen as a = 0.085, b = 0.25 and ε = 0.045. The space and

time coordinates are discretized for a spatial step of ∆x = ∆y = 0.1 and time step of

∆t = 0.0001. We use square domain of grid size 300x300. For presentation purpose,

we postulate the time units to 20 ms and space units to 1 mm. That is, 1 the time step

is equivalent to 0.002 ms, and 1 grid space is equivalent to (1/10) mm. The diffusion

coefficient D is set to 1cm2/s. With this choice of spatial and temporal scales, the

wavelength and conduction velocity approximately match with those observed in the

experiments. These equations are solved using the explicit forward Euler method in

time and the five-point finite difference method in space. The Euler scheme’s accuracy

has been tested systematically for smaller spatial resolutions (dx = 0.05,0.01), and the

quantities such as action potential duration and wavelength of the spiral are found to

agree with each other.

The no flux boundary condition with an applied field E is given by,

ŷ · (D∇u−~E) = 0 (4.3)

where ŷ represents the unit vector along the direction of applied electric field ~E (V/cm).

The boundary conditions are imposed on the obstacle boundary by the phase field

method Fenton et al. (2005). The phase field (φ ) modifies the Eq. 4.1 to:

∂u
∂ t

=
1
ε
(u(1−u)(u−a)− v)+∇ · (D∇u)+∇ lnφ · (D∇u)−∇ lnφ ·~E (4.4)
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A spiral wave rotating in the clockwise direction is initiated in the medium. The

wavelength of the spiral is λ = 3.5mm. It takes 328 ms to complete one free rotation

around an obstacle of radius 3 mm located at the centre. Far-Field Pacing (FFP) shock

of duration 0.8 ms is applied in a horizontal direction with a weak electric field of

strength E0= 1.2 V/cm. The electric field gives rise to secondary excitations that can

potentially unpin the spiral. The spiral phase at the time of the stimulus is an important

parameter that determines the unpinning window (Behrend et al. (2010)).

The phase here is the location of the wavefront of the pinned spiral at the time of

the stimulus, with the zero of phase being the place of wave emission from the hetero-

geneity. The phases of the stimuli that lead to successful unpinning are the unpinning

window.

To study the effect of an additional wave emitting site on the wave unpinning, we

introduced a second obstacle. We considered the unpinning to be successful only if the

spiral drifted away from both the obstacles at the end of one spiral period.

4.2 Experimental Results

Field stimulus induces wave emitting sites (WES) from boundaries of heterogeneities.

There were two major boundaries in our experiments: the concave boundary of the

entire monolayer and the convex boundary of the circular hole within the monolayer.

Fig. 4.1 shows wave emission from these boundaries as we increase the field strength.

When the field strength is low (1.5 V/cm), only the concave outer boundary of the

monolayer is excited. However, at E = 2 V/cm, both the outer monolayer boundary

and the central obstacle boundaries are excited. At higher field (E = 2.5 V/cm), wave

emission is observed even from small scale heterogeneities such as non-excitable cells

such as fibroblasts and fluctuations in cell to cell connectivity, as predicted by previ-

ous theoretical studies (Pumir and Krinsky (1999), Hörning et al. (2012), Bittihn et al.

(2012)). An attached wave can be unpinned by any of these excitations.
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Figure 4.2: Unpinning by two wave emitting sites in a cardiac cells monolayer.
(a) A rotating wave R pinned to the obstacle. (b) A field stimulus is given from bottom
to top (t = 0). Wave emitted from the lower boundary (S1) moves opposite to wave R.
This would eventually collide and annihilate wave R. (c) The stimulus is applied when
the wave R is slightly more advanced. A second site (S2) from the top boundary also
gets excited by the stimulus (t = 150 ms), which terminates the rotating wave R. (d,
e) The rotating wave R along the circumference of the obstacle at the time of stimulus,
corresponding to the images in (b) and (c), respectively. The red line indicates the
location of the wave emission site (S1 or S2), and black line indicates the location of the
wavefront. The insets show the fluorescent activity directly around the heterogeneity,
indicating the corresponding phase.

However, if the medium is already excited, only some of the wave emission sites will
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be active during a stimulus. For example, consider the monolayer in Fig. 4.2 (a), where

an attached wave is rotating clockwise. When we apply an electric field (≈ 3 V/cm)

directed vertically upwards, there can be wave emission from the lower boundary (S1,

see Fig. 4.2 (b)) and the upper boundary (S2, Fig. 4.2 (c)). However, at the time of the

stimulus, if any of these locations are refractory due to the passing of the rotating wave,

those sites will not emit secondary excitation.

There is a short time window after the wave, such that secondary excitations in

that window propagate only in the direction opposite to the rotating wave (Nomura and

Glass (1996)). This is the unpinning window(UW). A stimulus within the unpinning

window can unpin an attached wave. Thus, if either S1 or S2 gets activated in the

rotating wave’s unpinning window, the wave will be unpinned.

Figure 4.3: Numerical simulations showing successful unpinning by FFP for a sin-
gle obstacle.: (a) A rotating spiral is pinned to an obstacle of radius 3 mm located
at the centre of the domain. (b) Nucleation of secondary excitation from the obstacle
when a pulsed stimulus is applied in a vertical direction as indicated by the black ar-
row on the right. (c-d) Detachment of pinned spiral from the obstacle. (e) Unpinning
window of a single obstacle: Each angle inside the circle corresponds to the phase of
the pinned spiral at the time of the stimulus. It is measured with respect to the point of
secondary excitation represented by ’0’ in the figure. The red shaded sector indicates
the unpinning window. All the simulations are done using Fitzhugh Nagumo model.
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In Fig. 4.2 (b), the stimulus was applied when the wave is at the 12H location on

the obstacle. Site S2 happened to be in the refractory tail of the wave, and S1 was

activated within the unpinning window of the rotating wave, and the wave got unpinned.

Another stimulus when the wavefront was at 3H (Fig. 4.2 (c)) excited both S1 and S2.

Here S1 was fully excitable and could propagate both directions, but S2 was within the

unpinning window and eliminated the rotating wave. Thus the UW enlarges when there

are two wave emitting sites. Which of them participates in the unpinning event depends

on the location of the rotating wave at the time of the stimulus.

4.3 Numerical Results

Numerical simulations are carried out to reveal the mechanisms underlying the complex

interaction of excitable waves with obstacles and their effect on the unpinning window.

In cardiac monolayers, the boundary of the monolayer acted as an additional wave

emitting site. In the following section, we systematically study the effect of additional

wave emitting sites by introducing another obstacle near the pinning centre.

In the following section, we systematically scrutinize the conditions for success and

failure of unpinning by introducing an additional wave emitting site near the spiral core.

Fig. 4.3 shows the unpinning of the spiral due to the secondary wave emitted from the

single obstacle. We find the continuous phase window that leads to unpinning of the

spiral to be 0.24.
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Figure 4.4: Success and failure of unpinning of spiral pinned to an obstacle in
the presence of the additional wave emitting site: Black vertical arrow on the right
indicates the direction of applied electric field of strength E0 = 1.2 V/cm. (a) Spiral
is pinned to an obstacle of radius 3 mm with second obstacle of radius 2 mm nearby.
(b) Nucleation of secondary excitation by the application of short timed pulse. (c-d)
Detachment of the original spiral from the obstacle resulting in successful unpinning.
(e) Spiral wave pinned to the central obstacle at a different phase. (h) The spiral getting
pinned back to the second obstacle leading to failure of unpinning. (i) The unpinning
window for the above configuration of the obstacles.

To estimate the effect of the second wave emitting site on the unpinning window, we

introduce a new obstacle of 2mm radius (Fig. 4.4). A global electric field now creates

two excitable waves, one from each of the obstacle. Depending on the time at which the

pulse is given, the spiral can (a) successfully unpin from the obstacle (Fig. 4.4 (d)) (b)

detach but repin back to the second obstacle (Fig. 4.4 (g-h)) or (c) reattach to the first

obstacle at a different phase. For the choice of the orientation of the obstacle considered

in Fig. 4.4 the unpinning window is found to be 0.36, which is 50% more than that of

the single obstacle unpinning window (Fig. 4.3 (b)).
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Figure 4.5: Unpinning window for different distances of additional wave the emit-
ting site around the central obstacle: The orientation of the additional wave emitting
site is as shown in Fig. 4.4. By keeping the radius of both the obstacle fixed, we change
the second obstacle’s distance from the first. The red shaded sectors in subplots (a-d)
indicate the unpinning window for the distance between the obstacles 5.656 mm, 7.707
mm, 8.484 mm and 9.898 mm, respectively. Subplot (e) summarizes figures (a-d). The
white shaded circular region at the centre of the obstacle indicates the central obsta-
cle. The arrow indicates the orientation of the second obstacle. Each white concentric
circle denotes the distance of the second obstacle from the central obstacle. The red
shaded region corresponds to the unpinning window for a fixed distance between the
two obstacles.

For a given orientation of the obstacle and fixed strength of the electric pulse, the

width of the unpinning window critically depends on the distance of the second ob-

stacle from the first. If the distance is very small, like in Fig. 4.5 (a), the unpinning

window shrinks to 0.21 but widens significantly for larger distances. The variation of

the unpinning window with distance is summarized in Fig. 4.5 (e). The reason for the

shrinking of the unpinning window at smaller distances is because of the obstacles act-

ing as a single entity when they are very close to each other. Owing to this merging of

the obstacles, the spiral is able to sustain its pinned rotation.
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Figure 4.6: Unpinning window for different orientation of additional wave emitting
site around the central heterogeneity: The shaded circular region at the centre of the
figure represents the obstacle. The arrow indicates the angle at which the second obsta-
cle is located. By keeping the radius of both the obstacle fixed, we change the second
obstacle’s distance from the first. Each white concentric circle denotes the distance of
the second obstacle from the central obstacle. The red shaded region corresponds to the
unpinning window for a fixed distance between the two obstacles. Figures (a)-(h) rep-
resents the unpinning window of 8 different orientation of the additional wave emitting
site having a radius of 2 mm around the central heterogeneity. The distances between
the first and second obstacles are fixed to 5.656 mm, 7.707 mm, 8.484 mm and 9.898
mm, respectively. (i) Plot of the orientation of the second obstacle vs the unpinning
window for different distances between the obstacles.

Interestingly, the increase in the width of the unpinning window does not carry over

uniformly across all the locations of the additional wave emitting site. To study the

dependence, we place the second obstacle at eight different orientation around the cen-

tral obstacle, each time shifting it by an angle of 45° (0.125 phase units) as shown in

Fig. 4.6. For the majority of orientations, the unpinning window either shrieked or
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vanished entirely for very small distances. From Fig. 4.6 (i), we can infer the qualita-

tive behaviour of the unpinning window for different orientations and distances of the

additional wave emitting site.

Figure 4.7: Dependence of unpinning window with the location of second obstacle:
Figures (a-d) represents the unpinning window plotted for 4 different distances 5.656
mm, 7.707 mm, 8.484 mm and 9.898 mm between the centers of obstacles. 8 differ-
ent location of the second obstacle varying by an angle of 45 is taken over x axis (as
clock positions) and corresponding unpinning window is plotted. Inside each figure
the unpinning window for three different radii of the second obstacle (denoted by ’r’)
corresponding to 1.5 mm, 2 mm and 2.5 mm are shown.

Then, we comprehensively study the effect of variation of the size of the second

obstacle on the unpinning window. We systematically vary the radius of the second ob-

stacle to be 1.5 mm (Fig. B.1), 2.0 mm (Fig. 4.6), and 2.5 mm (Fig. B.2). As the size of

the second obstacle increases, the boundary separation between the obstacles becomes

negligible. With this setting, both the central and second obstacle acts like a single en-

tity since the excitation is unable to propagate between them (Conduction Block) (ten

Tusscher and Panfilov (2005)). This increases the chances of spiral repinning to the

second obstacle and hence significantly reduces the unpinning window.

56



Fig. 4.7 indicates the dependence of the unpinning window on the orientation of the

second obstacle for 3 different sizes of the obstacle. Here, each subplot represents

the unpinning window for the distance 5.656 mm, 7.707 mm, 8.484 mm, and 9.898 mm

respectively. For a fixed distance between the obstacles, the unpinning window either

vanishes or is very low for most orientations when the obstacle size is large. Unpinning

will be easier if the additional wave emitting site is small. This is because smaller

obstacles reduce the chances of spiral repinning to the obstacle. This explains the large

unpinning window for smaller sized obstacles shown in Fig. 4.7.

4.4 Discussion

In this chapter, we study how introducing an additional wave emitting site modifies the

unpinning window of a pinned spiral wave. In the experiments using cardiac mono-

layers, we found that a wave pinned to an obstacle can be unpinned by a secondary

wave initiated from another nearby obstacle. We then systematically investigated un-

pinning in the presence of two heterogeneities and found that the second obstacle can

significantly alter the unpinning window of a pinned spiral wave. The unpinning win-

dow alters depending on how the second obstacle is placed with respect to the pinning

centre.

Our experiments show that a higher number of wave emitting sites can be recruited

in a heterogeneous medium simply by increasing the strength of the applied electric

field. Extra obstacles in proximity act as extra wave emitting sites that can help in

unpinning, but they can also act as additional pinning sites. We have chosen the size

of the secondary obstacle so that it is possible to have stable pinned spirals (that is, the

diameter is more than the spiral core). Such large obstacles are also more likely to act

as virtual electrodes than smaller obstacles for the field strengths we use.

We observed widening of the unpinning window for certain orientations and dis-

tances of additional wave emitting site. Unpinning window is seen to decrease or some-

times vanish altogether for smaller distances due to repinning. Unpinning fails if the

separation between the obstacle boundary is too small compared to the spiral wave-

length. This is due to the obstacles acting like a single entity, and the wave is unable to
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propagate between them. We also observe that unpinning success rate decreases for a

configuration containing a large secondary obstacle than that of a small one, as a large

obstacle can contribute to the maximum probability of repinning.

Though these studies are conducted in a two-dimensional model, the phenomenon

such as pinning, unpinning and secondary excitations described in the paper were ob-

served in previous detailed studies carried on ionic models such as Luo-Rudy I (Pumir

and Krinsky (1999)) and Beeler Reuter (Pumir et al. (2010)). Hence we expect the

qualitative features of our study to be valid even in realistic ionic models. However, the

quantitative details such as the width of the unpinning window are model dependent.

Studies of unpinning using two-dimensional experimental and numerical models

show that the unpinning window in such cases are very narrow (Shajahan et al. (2016),

Luther et al. (2011)). However, multiple field pulses are much more efficient in vivo

experiments. We suspect several factors, including multiple heterogeneities, and the

three-dimensional structure of the heart, could be assisting the unpinning. Our study

using two obstacles point in this direction. Further investigations are required to under-

stand how multiple waves finally alter the unpinning. In the next chapter (see chapter 5),

we discuss the mechanism of unpinning spiral waves using circularly polarized electric

fields.
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Chapter 5

Spiral Wave Unpinning Using

Circularly Polarized Electric Fields

In this chapter, we present a mechanism of unpinning of the spiral waves using a

circularly polarized electric field. We present the simulation and theoretical results

which are consistent with each other.

With the pulsed electric fields considered in the previous chapters, the stimulus

needs to be carefully timed to unpin the spiral. To time the pulses, we need to know the

phase of the pinned spiral. In the cardiac setting, the phase of the spiral is not always

known. Therefore, we fire multiple pulses hoping that one of the pulses falls into the

unpinning window of the spiral. Although this method has a much higher success rate

compared to a single pulse, it can fail if the unpinning window is narrow or if the pacing

frequency is not optimized. This chapter provides an alternative to pulsed electric fields

using rotating circularly polarized electric fields.

Jiang-Xing Chen et al. were the first to introduce the circularly polarized electric

field (CPEF) to study its influence on the drift of the spiral waves (Chen et al. (2006)).

They noted that the spiral waves possess rotational symmetry and tried to exploit it by

using a circularly polarised electric field with a similar symmetry. Later, Feng et al.

used it to terminate the pinned spiral waves (Feng et al. (2014)). In a simulation study,
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they compared the circularly polarized electric field’s efficiency with that of the pulsed

electric field and found a significant increase in the success rate with much lower volt-

age strength than pulsed electric fields. The subsequent study showed that the higher

frequency circular wave trains generated by the CPEF could successfully terminate spi-

ral turbulence (Feng et al. (2015)). Recently, the effect of a circularly polarized electric

field on an irregularly shaped obstacle was also performed (Feng and Gao (2019)).

Besides these studies, the ability of CPEF to control the turbulence has been shown

experimentally in the Belousov-Zhabotinsky reaction (Ji et al. (2013)).

In this chapter, we present a mechanism for unpinning the spiral waves using circu-

larly polarized electric fields. We show that for a given obstacle size, there exists a time

period of the CPEF below which spiral can always be unpinned. We call it the cut-off

time period. We also show that the termination always happens within the first period

of the CPEF. In the following sections, first, we summarise the observations made in

the simulations. Later, based on these observations, we derive a robust and generalized

analytical formulation that explains the findings of the simulations. Our theory accu-

rately predicts the cut-off time period of CPEF. In particular, we show that unpinning is

always successful if the period of the CPEF is below the cut-off period. We also show

that the cut-off period depends linearly on the radius of the obstacle. We find that there

is no traditional unpinning window with a circularly polarized electric field.

5.1 Mathematical model

To simulate CPEF, we use a generic model of excitation waves, namely the Fitzhugh-

Nagumo model given in section 2.5.1.

The equations are solved using the forward Euler scheme in time and five-point

finite difference stencil on a 2D square grid as described in section 2.6. The domain

boundaries are modelled using no-flux boundary conditions. In monodomain models,

an additional no-flux boundary condition is applied on the boundary of the obstacle to

simulate the wave emission from heterogeneity. It is given by (Pumir et al. (2007), Pan

et al. (2016), Bittihn et al. (2012)),
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n̂.(D∇u−EEE) = 0. (5.1)

Here EEE is the applied electric field. The boundary conditions are imposed on the

obstacle using phase field method as given in section 2.4 (Bittihn et al. (2012), Fenton

et al. (2005)). For EEE, we used a anti-clockwise rotating circularly polarized electric

field of the form EEE = E0 sin(2πt/Tcp)x̂+E0(cos(2πt/Tcp)ŷ, where E0 is the strength of

the field and Tcp is its period.

The parameter values are chosen as a = 0.1, b = 0.25, ε = 0.025, D = 1 and E0 =

0.1. We used dimensionless space step dx = 0.1 and time step dt = 0.0001. Spiral

waves of desired chirality were initiated in the system with their tips pinned to the

obstacles. First, we consider an anticlockwise rotating spiral and then move on to the

case of the clockwise rotating spiral in the next section. We define the phase difference

α as the angular difference between the spiral and the initial direction of the EEE field.

The waves were allowed to perform at least four rotations before the delivery of EEE field.

5.2 Results and discussion

5.2.1 Numerical studies of unpinning an anticlockwise rotating spi-

ral with circularly polarized electric field

Fig. 5.1 shows the unpinning of the anticlockwise rotating spiral by a circularly po-

larized electric field. The spiral is pinned to an obstacle of fixed radius, r = 4. The

period of the spiral, Ts around this obstacle is 12.5. In Fig. 5.1 (a)-(d) CPEF having

a period Tcp = 10.4166 is used. Fig. 5.1(a) shows the spiral, S with α = 0. When EEE

field is applied, the wave emission happens from those points on the obstacle boundary

where the field density is sufficient to nucleate a new wave. This gives rise to symmet-

rical crescent-shaped depolarisation, which can be divided into head, H, and tail, T. The

head, H, follows the electric field vector along the boundary of the obstacle. When T

collides with S, H lags behind S by a phase angle of φ . Due to this, H continues to stay

pinned to the obstacle. In Fig. 5.1(e)-(f) EEE field having a period Tcp = 3.6764 is used.
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Since the radius of the obstacle is fixed, and Tcp is shorter than in the case of Fig. 5.1

(a)-(d), H moves faster on the boundary and reaches the wave back of S when T and

S collide. This makes the phase width φ = 0 and causes a successful unpinning of the

spiral.

Figure 5.1: Unpinning of anticlockwise rotating spiral. The radius of the obstacle
(white circular patch), r = 4 and the phase difference α = 0. (a)-(d) Unsuccessful case,
period of the CPEF Tcp = 10.4166. (a) An anticlockwise rotating pinned spiral wave,
S. (b) Excitation is emitted from the obstacle. The leading end, labelled as head, H,
follows the electric field. The trailing end is labelled as the tail, T . (c) T collides with
S. The excitable gap φ > 0 (shaded in green) between H and the wave back of S do not
facilitate unpinning. (e)-(h) Successful case. The electric field now has a smaller period
Tcp = 3.6764. (g) When T collides with S, H reaches the wave back of S. The excitable
gap is zero, and this leads to successful unpinning (h). Notations: Magenta dashed
arrows show the instantaneous direction, and red circular arrows within the obstacle
show the direction of rotation of the electric field.

Since we have kept the radius of the obstacle and phase difference, α fixed, if we

keep on reducing the time period Tcp, we must reach a point where the excitable gap

φ = 0. This is the cut-off time period T ∗cp of the EEE field. Below this, φ is always zero,

and therefore there is always unpinning.

What happens if we continue to apply the EEE field in the unsuccessful case of Fig. 5.1
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(a-d)? Will the spiral unpin if we apply multiple rotations of EEE field by keeping the

value of Tcp fixed? In Fig. 5.1(a-d) Tcp < Ts. So, the head, H, is being dragged along by

the electric field vector along the boundary of the obstacle. Due to this, the tail of the

electric field vector, around which the wave nucleation happens, always stays behind H

(see Fig. 5.1(d)). Since H leaves a refractory tail behind it as it moves, the electric field

cannot nucleate any waves there. So, when Tcp < Ts, applying multiple rotations of EEE

field do not unpin the spiral wave.

Figure 5.2: Unpinning failure when Tcp > Ts. The radius of the obstacle is r = 4 and
the phase difference α = 0. The period of the E field is Tcp = 23.22 and the period of
the spiral Ts = 12.5. Here, the newly nucleated heads H1, H2 and H3 move with the
same period as that of the spiral. (a) A pinned anticlockwise spiral S. (b) When S and
T1 collide, the excitable gap φ (shaded in green) is non-zero. This leads to failure of
unpinning. (c) The E field falls behind the refractory tail of H1 and nucleates a new
wave with head H2 and tail, T2. (d) When T2 collides with H1 the non-zero φ leads to
failure of unpinning. (e) The E field lags once again and nucleates a new head H3 and
tail T3. (f) The unpinning fails in a similar fashion, as shown in (d).

The case with Tcp > Ts is shown in Fig. 5.2. Here, every time the EEE field nucleates a

new wave, the head H of the newly nucleated wave moves with the same speed as that
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of the spiral instead of the speed dictated by the applied EEE field. Since the period of

the EEE field is high compared to the period of the spiral, the electric field keeps lagging

behind the spiral. As the EEE field lags and falls out of the refractory tail of H, it nucleates

a new wave there. Because all the pinned waves now move with the same velocity on

the boundary of the obstacle, the head, H of the newly nucleated wave cannot catch up

with the previous one. Therefore, the excitable gap φ can never vanish (Fig. 5.2(d) and

(f)). So, if the unpinning fails within the first rotation of the EEE field, then it keeps failing

irrespective of whether Tcp is lesser or greater than Ts.

5.2.2 Theory of unpinning of anticlockwise rotating spiral with cir-

cularly polarized electric field

To provide validation for the unpinning mechanisms observed in the simulations, we

derive analytical formulas based on the following assumptions. Fig. 5.3 shows the

schematic diagram of the anticlockwise spiral unpinning. On the application of the EEE

field at t = 0, the wave nucleates from an extended region rather than a point. At time

t0, just after the wave emerges and before it starts moving, it subtends an symmetric

angle of 2θ0. In the time it takes for the wave to emerge from the obstacle, the spiral S

would move a distance of rα + vst0 in the anticlockwise direction. Here, vs = (2πr/Ts)

is the velocity of S. Eventually, T and S collide. The expression for the collision time

t between T and S can be obtained as follows. The angular distance covered by S in

anticlockwise direction in time t can be expressed as α +(vst)/r. At the same instant,

T collides with S travelling clockwise and covering an angle θ1 = θ0 +(vT (t− t0))/r,

where, vT is the velocity of T. But, we have (θ1 +α +(vst)/r) = π . So, we can write

the expression for t as follows,

t =
r

vs + vT

(
π−α−θ0 +

vT t0
r

)
. (5.2)

Meanwhile, H moves an angle of θ2 = θ0+(2π/Tcp)(t− t0) in anticlockwise direc-

tion. But, the total angle is θ1 + θ2 + φ = 2π . Therefore, the final expression for the
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Figure 5.3: Schematic diagram of anticlockwise spiral unpinning. (a) Pinned spiral
wave, S time t = 0. α is the angular difference between the EEE field and the spiral
wavefront at time t = 0. (b) At t = t0, excitation emerges out symmetrically making an
angle θ0. Meanwhile, S covers a distance of vst0. (c) S and T collide at time, t. θ1 and
θ2 are the angle covered by T and H. The excitable gap, φ = 2π− (θ1 +θ2).

excitable gap φ can be written as,

φ = π +α +
vst
r
−θ0−

2π

Tcp
(t− t0)−θsw. (5.3)

In Fig. 5.3(c), we considered φ as the angle between the wavefront of H and the

waveback of S. However, on deriving the equation, we found that the value of φ mea-

sured in simulations and the one obtained through the equations differed by an angle

corresponding to the width of the spiral on the obstacle boundary. To compensate for

this, we add θsw to φ , which is the width of S on the obstacle boundary. In Eq. 5.3 we

have taken the quantity to the RHS.

Eq. 5.3 is plotted as a function of Tcp for an obstacle of radius r = 4 for three

different phase differences α = 0,π/4 and −π/4 in Fig. 5.4 (a). The curve predicted

by Eq. 5.3 agrees with the one obtained through simulations.

What happens when the initial phase difference α is varied? Consider a case with

α = π/4. Then, S is much closer to T at t = 0. If H has to meet the collision point of

T and S simultaneously and unpin the spiral, then the EEE field should move much faster

on the boundary of the obstacle. So it should have a shorter time period. i.e the cut-off

period T ∗cp(α = π/4) < T ∗cp(α = 0). If α = −π/4 is the initial phase difference; then,

S is closer to H than T at t = 0. So, S has more distance to cover on the boundary
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of the obstacle to reach T. So, EEE should have a longer time period (T ∗cp(α = −π/4) >

T ∗cp(α = 0)) such that H reaches collision point of T and S only when those two collide.

So, depending upon how the initial phase difference α is varied, the period of the EEE

field should be timed so that H, S, and T meet together and unpins the spiral. This

confirms that in this mechanism of unpinning, we do not have an unpinning window.

However, for a given phase difference α , we only have a threshold value for Tcp below

which there is always unpinning.

Figure 5.4: (a) Graph of the excitable gap φ as a function of period of the circularly
polarized electric field Tcp for anticlockwise rotating spiral. The radius of the obstacle
r = 4. α’s denote the phase difference between the spiral and the initial direction of
the electric field. The solid lines represent the theoretical curves. (b) Graph of cut-off
period T ∗cp as a function of obstacle radius r for anticlockwise rotating spiral. The value
of α = 0.

The variation of the excitable gap φ as a function of Tcp for different phase differ-

ences (α’s) are shown in Fig. 5.4 (a). The x-intercept of each curve gives the cut-off

period T ∗cp. Once the cut-off period T ∗cp is determined for an obstacle of radius r and

phase difference α , the unpinning is guaranteed for all the time periods lower than T ∗cp.
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If we set the left-hand side of Eq. 5.3 to zero, we can write T ∗cp as a function of

the phase difference α and the obstacle radius r. To test our theory, we performed

simulations for obstacles of different radius and a fixed phase difference of α = 0.

The curve obtained through simulation study matches the theoretical predictions. The

results are shown in Fig. 5.4 (b).

Figure 5.5: Unpinning of a clockwise rotating spiral. The radius of the obstacle,
r = 4 and the phase difference α = 0. (a)-(d) Unsuccessful case, period of the rotating
field Tcp = 10.4166. (a) A clockwise rotating pinned spiral wave, S. (b) Excitation is
emitted from the obstacle. (c) H and S collide. (d) When H and S fuse together and
detach from the obstacle, the electric field nucleates a new wave, N. The excitable gap
φ > 0 (shaded in green) between N and T keeps the spiral pinned to the obstacle (f).
(g)-(l) Successful case, period of the rotating field, Tcp = 3.6764. (j) When N collides
with T, the excitable gap is zero, and this leads to successful unpinning (l).
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5.2.3 Numerical studies of unpinning a clockwise rotating spiral

with circularly polarized electric field

The unpinning of a clockwise rotating spiral by EEE field is shown in Fig. 5.5. After

the EEE field induces the depolarization, H and S start moving towards each other. They

eventually collide and start detaching from the obstacle as the excitation cannot go past

the refractory tail left behind by the other (Fig. 5.5 (c)). Since the EEE field is rotating, it

induces a new excitation head, N, once it crosses the refractory tail of S. The non-zero

excitable gap φ from the wavefront of N to the wavefront of T when H and S just detach

from the obstacle, prevents unpinning. In Fig. 5.5 (g)-(l) EEE field having smaller rotation

period (Tcp = 3.6764) is used. Now, when H and S fuse and detach from the obstacle,

the new head, N, already collides with T. So, there is no excitable gap. This leads to the

successful unpinning of the spiral (see Fig. 5.5 (l)). Since we have kept the radius of

the obstacle and phase difference fixed, similar to the anticlockwise case, if we keep on

reducing the time period Tcp, we will reach a point where the excitable gap φ = 0. This

is the cut-off time period T ∗cp of the EEE field. Below this, φ is always zero, and therefore

there is always unpinning.

5.2.4 Theory of unpinning of clockwise rotating spiral with circu-

larly polarized electric field

The schematic diagram of the clockwise spiral unpinning is shown in Fig. 5.6. α is the

phase difference between the EEE field and the spiral wavefront at time t = 0. At the time

t0, the nucleated wave subtends a symmetric angle of 2θ0. When the depolarization

emerges from the obstacle, S moves clockwise towards H, covering a distance of vst0.

Later, H and S collide at time t = t1.

The angle covered by H before collision with S can be given as θ2 = θ0+(2π/Tcp)(t1−
t0). In the meantime, S travels clockwise and covers an angular distance of (vst1)/r.

But, we have θ2 +(vst1)/r = π +α . We use these conditions to obtain a formula for t1.
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t1 =
(

π +α−θ0 +
2πt0
Tcp

)(
rTcp

2πr+Tcpvs

)
. (5.4)

Figure 5.6: Schematic diagram of clockwise spiral unpinning. (a) Pinned spiral
wave, S. α is the phase difference between the EEE field and the spiral wavefront at
time t = 0. (b) At t = t0, excitation emerges out symmetrically making an angle θ0.
Meanwhile, S covers a distance of vst0 moving clockwise. (c) S and H collide at time,
t1. θ1 and θ2 are the angle covered by S and H. Meanwhile, T covers a distance of vT t1.
(d) At time t1+∆τ1, the rotating electric field nucleates a new wave, N after crossing the
refractory tail of S. (e) At t = t1+∆τ2, H and S detach from the obstacle. The excitable
gap φ = 2π− (θN +θT ).

Once H and S collide, they begin to detach from the obstacle. As the detachment is

in progress, the anticlockwise rotating EEE field nucleates a new head, N once it crosses

the refractory tail of S. For an obstacle of a given radius, how fast the EEE field crosses

the refractory tail depends on how small its time period Tcp is. Let us denote the time

taken by the EEE field to cross the refractory tail of S and nucleate N as ∆τ1. Once the

detachment of H and S from the obstacle is complete at time t = t1 +∆τ2, we measure

the excitable gap φ = 2π− (θN +θT ). Here, ∆τ2 is the time taken by H and S to detach

from the obstacle after their collision at t = t1. The angle covered by T can be written

as θT = θ0 +(t1− t0 +∆τ2)(vT/r) whereas the total angle covered by the head (H and

N included) is, θN = θ0 +(2π/Tcp)(t1− t0)+(2π/Tcp)(∆τ2−∆τ1).

We can identify two cases depending on whether the term (∆τ2− ∆τ1) in θN is

positive or negative. The first case is ∆τ2 > ∆τ1. Here, Tcp is fast enough so that the

new head, N is nucleated before H and S detaches from the obstacle. Then the excitable
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gap φ can be given as,

Figure 5.7: (a) Graph of the excitable gap φ as a function of period of the rotating
electric field Tcp for a clockwise rotating spiral. The radius of the obstacle r = 4 and the
phase difference α = 0. (b) Graph of cut-off period T ∗cp as a function of obstacle radius
r for clockwise rotating spiral.

φ = 2(π−θ0)−
(

2π

Tcp
+

vT

r
)(t1− t0 +∆τ2

)
+

2π∆τ1

Tcp
−θsw. (5.5)

In theory, the angular distance φ is calculated between the collision point of H and

S and the wavefront of T. But, in simulations, it is measured between the wavefronts of

N and T. To compensate for this, we subtract θsw from Eq. 5.5. Here, θsw is the width

of the newly nucleated head, N on the boundary of the obstacle.

In the second case (i.e ∆τ2 < ∆τ1), Tcp is so slow that it cannot cross refractory

tail of S until H and S detaches from the obstacle. So, N does not reappear at all and

∆τ1 = 0. So, θN = θ0 +(2π/Tcp)(t1− t0). Then, the excitable gap φ can be written as,

φ = 2(π−θ0)−
(

2π

Tcp
+

vT

r

)
(t1− t0)−

vT ∆τ2

r
. (5.6)
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In the second case, φ is measured from the point of collision between the H and S.

The parameters ∆τ1 and ∆τ2 are measured directly from the simulations. As men-

tioned above, ∆τ1 varies with the period of the applied E field. For an obstacle of radius

r and phase difference α , we measured ∆τ1 as a function of Tcp. For the measured

values, we obtain a straight line fit (∆τ1 = mTcp + c) where m and c are the slope and

intercept of the straight line. Both the parameters m and c are the functions of radius

r and the spiral phase α . The measured values of the parameter ∆τ2 is found to be a

constant.

Somewhere in between the two cases, ∆τ2 = ∆τ1. We call the corresponding Tcp

as Tcp transition. Since ∆τ2 is a known constant, the value of Tcp transition can be

calculated from the straight-line fit of ∆τ1. The results are summarised in Fig. 5.7.

Similar to the anticlockwise mechanism, the unpinning happens within one rotation of

the EEE field, and if we vary the phase difference α , we find that there is no unpinning

window for this mechanism.

5.3 Summary

This chapter has identified a robust mechanism for unpinning the spiral waves using

a circularly polarized electric field. We show that for an obstacle of a given radius

and fixed phase difference of the spiral, it is always possible to time the period of the

electric field so that unpinning is guaranteed. This period is called the cut-off period

of the electric field. When the electric field period is below the cut-off, the spiral is

unpinned before it finished one full rotation around the obstacle and within the first

rotation of the electric field. Our theory accurately predicts this cut-off period and is

also quantitatively consistent with all the simulation results. Since arguments used in

deriving the theory are based only on fundamental properties of the excitable media, we

expect these results to be valid in more general settings.

Typical unpinning studies with field stimulus identify an unpinning window, which

is a phase window of the spiral during which it can be unpinned using a field pulse.

However, in our mechanism with the circularly polarized electric field, there is no un-

pinning window. All rotating fields below the cut-off frequency can result in unpinning.
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Yet, it must be noted that we use a simple monodomain model for simulating the effect

of the electric field near the obstacle. A Bidomain model, which is the more accu-

rate cardiac tissue model, predicts a complicated distribution of polarization around an

obstacle, and it could affect the mechanism of unpinning (Takagi et al. (2004)).

Our results can be tested in experiments that show two-dimensional excitation waves,

including cardiac monolayers and excitable chemical media. Specifically, experimental

verification of the results showed in Fig. 2 would serve as a qualitative test for our mech-

anism. The circularly polarized electric field can be obtained using two perpendicular

AC electric fields with a phase difference of π/2 generated with a pair of electrodes

kept mutually perpendicular to each other. We hope that our analytical results of the

spiral wave unpinning using a circularly polarized electric field will stimulate further

studies in this direction.
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Chapter 6

Conclusion

In this chapter, we present a brief summary of the work carried out in this thesis.

We also discuss the possibility of experimental verification of the results and scope

for future research in related areas.

The project aimed to study the dynamics and control of rotating excitation waves via

electric field pulses in excitable media. This problem had a wide range of application

since such rotating waves are seen in many physiological systems and are the leading

cause of cardiac arrhythmias such as ventricular tachycardia and fibrillation. We pro-

posed studying the effect of multiple heterogeneities and different types of electric fields

to control such waves. We have made significant progress in all these objectives, the re-

sults of which are published in two international journals and a conference proceeding.

The work presented in this thesis is summarised below.

We have investigated the detailed mechanism of unpinning when there are multiple

heterogeneities. First, we investigated a special case of a rotating wave pinned to two

nearby heterogeneities and studied it’s unpinning using an electric field pulse (Punacha

et al. (2019a)). We have shown that the chances of unpinning, as quantified by the

unpinning window, decreases as the distance between obstacles increase. After a critical

distance, unpinning fails. For this special case, our results show that to unpin a spiral

anchored to both the obstacles, it is not essential that the stimulus delivered falls into
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the spiral’s refractory tail.

We then systematically investigated unpinning of the spiral for a more general case

in the presence of two obstacles and found that the second obstacle can significantly

alter the unpinning window of a pinned spiral wave (Punacha et al. (2019b)). The un-

pinning window alters depending on how the second obstacle is placed with respect to

the pinning centre. We observed widening of the unpinning window for certain orien-

tations and distances between two obstacles. The unpinning window either decreases

or vanishes altogether for smaller distances due to repinning. We also observe that un-

pinning success rate decreases for a configuration containing a large secondary obstacle

than that of the small one, as a large obstacle can contribute to the maximum probability

of repinning.

We then studied unpinning by circularly polarized electric fields (CPEF) (Punacha

et al. (2020)). We have identified two separate mechanisms for unpinning the spiral

waves using a circularly polarized electric field based on their chirality. We show that

for an obstacle of a given radius and fixed phase of the spiral, it is always possible to

time the period of the CPEF so that unpinning is guaranteed. This is called the cut-off

period of the electric field. Once the cut-off period is determined, unpinning occurs for

all the periods of the CPEF below the cut-off period. Our theory accurately predicts

this cut-off period in simulations. We also provide a robust explanation of why this

unpinning mechanism does not have an unpinning window.

Thus we have made considerable progress in our understanding of the control ro-

tating waves. We are hopeful that our work will lead to developing optimized control

strategies for situations such as cardiac arrhythmias. In all the chapters, homogeneous

2D excitable media having rectangular geometries were considered to study the dy-

namics and assess the complexity in controlling them. The theoretical and simulation

study is completely based on simplified models of cardiac tissue called mono-domain

description. To model the application of external defibrilating electric field, boundary

conditions mimicking the bi-domain effect are used. During the modelling, we have

ignored several important aspects of the cardiac muscle, such as the heart’s electrical

conduction system, the Purkinje fibers in the ventricles, the repercussion of muscle
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contraction, and the fluid dynamics of the blood flow etc. We believe that considering

the minimal working model that displays the crucial dynamics of the medium makes it

easier to understand the underlying mechanisms involved. We hope that the knowledge

obtained from these minimalistic studies will help better understand the mechanisms in-

volved in more realistic studies in the future. Even though these studies are conducted in

a generic, two-variable model of an excitable media, the phenomenon such as pinning,

unpinning and secondary excitations described here were observed in previous studies

carried on in detailed models of cardiac cells, such as Luo-Rudy I (Pumir and Krinsky

(1999)) and Beeler Reuter (Pumir et al. (2010)), that take into account the transport of

various ions across the cell membrane. Hence we expect the qualitative features of our

study to be valid even in realistic ionic models. However, the quantitative details, such

as the width of the unpinning window, are model-dependent—this need to be explored

in further work.

In this project, we have also exclusively focused on the two-dimensional dynam-

ics on the surface. The physiological tissues such as atria can be treated as two-

dimensional, but many physiological systems are three dimensional. In three dimen-

sions, the rotating waves take a more complicated structure of a scroll wave. However,

initial studies show that their unpinning is easier. Experiments in intact hearts also point

to a broader unpinning window in three dimensions. There have not been many studies

in three-dimensions; we believe this need to be explored further.
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Appendix A

Codes to study the dynamics of spiral

waves in excitable media

A.1 Code to trace the tip trajectory of the spiral wave

from f u t u r e i m p o r t p r i n t f u n c t i o n

”””

Th i s i m p o r t i s r e q u i r e d t o w r i t e t h e p r i n t o u t p u t t o a f i l e i n

Newton ( ) .

P l e a s e do n o t p u t any o t h e r p r i n t s t a t e m e n t s i n t h i s f i l e b e f o r e

d i s a b l i n g t h i s i m p o r t .

”””

””” ***************************************

Author : S h r e y a s Punacha

F i l ename : P l o t t i n g A n d T i p T r a c k i n g . py

Date : 18 F e b r u a r y 2020

******************************************** ”””

””” **********************************************************

* Th i s program can be used t o l o c a t e m u l t i p l e s p i r a l t i p s .

* The Tip D e f i n i t i o n :

The t i p ( x , y ) i s d e f i n e d as t h e i n t e r s e c t i o n o f two c o u n t o r s f1 ( x , y ) = f2 ( x , y ) = 0 .

In B a r k l e y Model t h e c o u n t o r s a r e u = 1 / 2 and f ( u , v ) = u * (1−u ) * ( u − u t h ) , w i th

u t h = ( v+b ) / a . The f u n c t i o n s f1 and f2 a r e d e f i n e d below i n t h e body of t h e program .

The t i p d e f i n i t i o n i s t a k e n from Dwight Bark ley ’ s p a p e r ”A model f o r f a s t computer

s i m u l a t i o n o f waves i n e x c i t a b l e media . ”

* Newtons Method (2D) :

2D Newtons i t e r a t i o n s a r e used t o f i n d t h e r o o t s ( x , y ) . The p a r t i a l d e r i v a t i v e s i n t h e

J a c o b i a n m a t r i x a r e c a l c u l a t e d u s i n g f i n i t e d i f f e r e n c e method .
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# The Dx and Dy r e q u i r e d f o r f i n i t e d i f f e r e n c i n g a r e f i x e d ( don ’ t change them ) and a r e

d e f i n e d below .

# The TOOBIG v a r i a b l e i s d e f i n e d t o p r e v e n t blowup .

# The MXNWT v a r i a b l e i s an uppe r l i m i t on maximum number o f newton i t e r a t i o n s t o be pe r fo rmed .

# TOL2 i s t h e t o l e r e n c e , used f o r l i m i t i n g t h e a c c u r a c y of t h e method .

* E v a l f u n c and hh :

These a r e used t o i n t e r p o l a t e (2D Lagrange i n t e r p o l a t i o n i s used ) u and v f i e l d s

wi th p o l y n o m i a l s o f o r d e r N ORDER . T e s t i n g shows N ORDER = 3 g i v e s most a c c u r a t e

r e s u l t s . N ORDER must a lways be odd .

* F i n d t i p s ( t ) :

Every t ime t h i s f u n c t i o n i s c a l l e d , t h e e n t i r e 2D g r i d i s s e a r c h e d f o r p o s s i b l e t i p s

( Excep t t h e p o i n t s t h a t a r e t o o c l o s e t o t h e b o u n d a r i e s ) .

The f i r s t two i f s t a t e m e n t s a r e used t o d e t e r m i n e t h e s q u a r e w i t h i n which t h e t i p i s

l o c a t e d . Once l o c a t e d , t h e t i p i s a p p r o x i m a t e d t o be a t t h e c e n t e r o f t h i s s q u a r e . i . e

x = i + 0 . 5 and y = j + 0 . 5 . Th i s i s t h e i n i t i a l g u e s s f o r Newton ’ s method .

****************************************************************** ”””

i m p o r t numpy as np

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

i m p o r t os

d e f f1 ( i , j ) :

r e t u r n u d a t a [ i , j ] − U CONT

d e f f2 ( i , j ) :

r e t u r n v d a t a [ i , j ] − V CONT

d e f Newton ( t , px , py , pz ) :

nwt = 0

new = 1

o l d = 0

x = px

y = py

w h i l e ( nwt<MXNWT) :

f 1 v a l = E v a l f u n c ( f1 , x , y , new )

f 2 v a l = E v a l f u n c ( f2 , x , y , o l d )

nrm2 = ( f 1 v a l * f 1 v a l ) + ( f 2 v a l * f 2 v a l )

i f ( nrm2>TOOBIG) :

# p r i n t ( ” nrm2 g r e a t e r t h a n TOOBIG” )

r e t u r n F a l s e

i f ( nrm2<TOL2) :

px = x

py = y

# p r i n t ( ” S uc es s ! ” )

p r i n t (”%d %0.5 f %0.5 f %0.5 f ”%( t , x−1. , y−1. , pz ) , f i l e = T i p F i l e )

# p r i n t (”%d %0.5 f %0.5 f %0.5 f ”%( t , x−1. , y−1. , pz ) )

r e t u r n True

df1dx = ( E v a l f u n c ( f1 , x+DX, y , new ) − f 1 v a l ) /DX

df2dx = ( E v a l f u n c ( f2 , x+DX, y , o l d ) − f 2 v a l ) /DX

df1dy = ( E v a l f u n c ( f1 , x , y+DY, new ) − f 1 v a l ) /DY
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df2dy = ( E v a l f u n c ( f2 , x , y+DY, o l d ) − f 2 v a l ) /DY

j a c = df1dx * df2dy − df1dy * df2dx

x −= ( ( df2dy * f 1 v a l ) − ( df1dy * f 2 v a l ) ) / j a c

y −= ((− df2dx * f 1 v a l ) + ( df1dx * f 2 v a l ) ) / j a c

nwt += 1

# p r i n t ( ” Warning : nwt > MXNWT i n Newton ( ) ” )

# r e t u r n None

d e f E v a l f u n c ( f , x , y , new ) :

hx = np . z e r o s ( [NORDER+1 ] , d t y p e =” f l o a t 3 2 ” )

hy = np . z e r o s ( [NORDER+1 ] , d t y p e =” f l o a t 3 2 ” )

i x 0 = 0

i y 0 = 0

sum = 0 .

i f ( True ) :

i x 0 = np . i n t 3 2 ( x ) − ( (NORDER+1) / 2 −1) # i n t ( x ) − 1 .

i y 0 = np . i n t 3 2 ( y ) − ( (NORDER+1) / 2 −1) # i n t ( y ) − 1 .

x l o c a l = x − i x 0

y l o c a l = y − i y 0

f o r i i n r a n g e ( 0 , (NORDER+1) , 1 ) :

hx [ i ] = hh ( x l o c a l , i )

hy [ i ] = hh ( y l o c a l , i )

i f ( ( i x 0 < 1) o r ( i x 0 > NX−NORDER) or ( i y 0 < 1) o r ( i y 0 > NY−NORDER) ) :

# p r i n t ( ” Warning : ( x , y ) o u t o f r a n g e i n E v a l f u n c ( ) ” )

r e t u r n (TOOBIG+ 1 . )

f o r i i n r a n g e ( 0 , (NORDER+1) , 1 ) :

f o r j i n r a n g e ( 0 , (NORDER+1) , 1 ) :

sum += hx [ i ]* hy [ j ]* f ( i x 0 + i , i y 0 + j )

r e t u r n sum

d e f hh ( x l o c a l , i ) :

p r o d u c t = 1 .

f o r j i n r a n g e ( 0 , NORDER+1 , 1 ) :

i f ( j != i ) :

p r o d u c t *= ( x l o c a l − f l o a t ( j ) ) / f l o a t ( i−j )

r e t u r n p r o d u c t

d e f F i n d t i p s ( t , z ) :

x = 0 .

y = 0 .

c o u n t = 0

n t i p s = 0

t i p x = np . z e r o s ( [ MAX TIPS ] , d t y p e =” f l o a t 3 2 ” )

t i p y = np . z e r o s ( [ MAX TIPS ] , d t y p e =” f l o a t 3 2 ” )

f o r i i n r a n g e ( 2 , NX−1, 1 ) :

f o r j i n r a n g e ( 2 , NY−1, 1 ) :

i n d e x = ( ( f1 ( i , j ) >= 0 . ) ) | ( ( f1 ( i +1 , j ) >= 0 . ) <<1) | ( ( f1 ( i , j +1) >= 0 . ) <<2) | ( ( f1 ( i +1 , j

+1) >= 0 . ) <<3)

i f ( ( i n d e x != 0) and ( i n d e x != 15) ) :
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i n d e x = ( ( f2 ( i , j ) >= 0 . ) ) | ( ( f2 ( i +1 , j ) >= 0 . ) <<1) | ( ( f2 ( i , j +1) >= 0 . ) <<2) | ( ( f2 ( i

+1 , j +1) >= 0 . ) <<3)

i f ( ( i n d e x != 0) and ( i n d e x != 15) ) :

x = f l o a t ( i ) + 0 . 5

y = f l o a t ( j ) + 0 . 5

# p r i n t ( ” t=%d x=%f , y=%f ”%( t , x , y ) )

i f ( ( n t i p s ==0) o r ( c o u n t ==0) o r ( ( x− t i p x [ n t i p s −1]) * ( x− t i p x [ n t i p s −1]) + ( y− t i p y [ n t i p s −1]) * ( y

− t i p y [ n t i p s −1]) ) > 4 ) :

i f ( Newton ( t , x , y , z ) ) :

t i p x [ n t i p s ] = x

t i p y [ n t i p s ] = y

n t i p s += 1

c o u n t += 1

# p r i n t ( ” number o f t i p s i n one f i e l d = %d”%c o u n t )

r e t u r n None

i f n a m e == ” m a i n ” :

# i m p o r t pdb ; pdb . s e t t r a c e ( )

a , b , e p s i l o n = 0 . 8 , 0 . 0 5 , 0 . 0 2

NX = 61

NY = 61

NZ = 61

###################################################################

n t = 147000 # Th i s i s t h e on ly t h i n g need t o be changed .

###################################################################

S t a r t T i m e = 100000

S a v i n g I n t e r v a l = 500

# ===============================

# DO NOT CHANGE THESE .

# ===============================

U CONT = 0 . 5

V CONT = ( 0 . 5 * a − b )

n t i p s = 0

NORDER = 3

DX = 0 . 0 5

DY = 0 . 0 5

TOL2 = 1 . E−10

TOOBIG = 1 0 .

MXNWT = 8

MAX TIPS = 100000

# I f f i l e e x i s t s t h e n append t h e s u b s e q u e n t da t a ,

# e l s e open a new one

i f os . p a t h . i s f i l e ( ” T i p F i l e . t x t ” ) :

T i p F i l e = open ( ” T i p F i l e . t x t ” , ” a ” )

e l s e :

T i p F i l e = open ( ” T i p F i l e . t x t ” , ”w” )

# ===============================

f o r t i n r a n g e ( S t a r t T i m e , S t a r t T i m e + n t + S a v i n g I n t e r v a l , S a v i n g I n t e r v a l ) :
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u d a t a 1 D = np . l o a d t x t ( ” u %0.7d . t x t ”% t )

v d a t a 1 D = np . l o a d t x t ( ” v %0.7d . t x t ”% t )

u d a t a = np . z e r o s ( [NX+2 , NY+ 2 ] )

u d a t a [ 1 :NX+1 , 1 :NY+1] = u d a t a 1 D . r e s h a p e (NX,NY) . T

v d a t a = np . z e r o s ( [NX+2 , NY+ 2 ] )

v d a t a [ 1 :NX+1 , 1 :NY+1] = v d a t a 1 D . r e s h a p e (NX,NY) . T

F i n d t i p s ( t )

T i p F i l e . c l o s e ( )

# ===============================

A.2 Code to generate the phase field

# i n c l u d e <s t d i o . h>

# i n c l u d e ” H e a d e r F i l e s . h ”

do ub l e P h a s e F i e l d T i m e E v o l u t i o n ( i n t nx , i n t ny , i n t n t , d ou b l e dx , d ou b l e dy , d ou b l e dt , d ou b l e z i )

{

/ * D e f in e * /

d oub l e c1 = ( d t * ( z i * z i ) ) / ( dx*dx ) ;

d oub l e c2 = ( d t * ( z i * z i ) ) / ( dy*dy ) ;

/ * D ef in e a r r a y s * /

do ub l e P h i 0 [ nx + 2 ] [ ny + 2 ] ;

do ub l e Ph i [ nx + 2 ] [ ny + 2 ] ;

do ub l e PhiBackup [ nx + 2 ] [ ny + 2 ] ;

/ * Load t h e i n i t i a l c o n d i t i o n s from P h i 0 . t x t f i l e i n t o P h i 0 and Phi a r r a y s . * /

FILE * f1 , * f2 ;

d oub l e b u f f e r ;

f1 = fopen ( ” P h i 0 . t x t ” , ” r ” ) ;

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

f s c a n f ( f1 , ”% l f ” , &b u f f e r ) ;

P h i 0 [ i ] [ j ] = b u f f e r ;

PhiBackup [ i ] [ j ] = b u f f e r ;

}

}

f c l o s e ( f1 ) ;

/ * Time Loop * /

f o r ( i n t t =0 ; t<=n t ; t ++)

{

/ * Array Exchange * /

f o r ( i n t i =1 ; i<=nx ; i ++)

{
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f o r ( i n t j =1 ; j<=ny ; j ++)

{

Phi [ i ] [ j ] = PhiBackup [ i ] [ j ] ;

}

}

/ * Neumann Boundary C o n d i t i o n s * /

f o r ( i n t i =1 ; i<=nx ; i ++)

{

Phi [ i ] [ 0 ] = Phi [ i ] [ 2 ] ;

Ph i [ i ] [ ny +1] = Phi [ i ] [ ny−1];

}

f o r ( i n t j =1 ; j<=ny ; j ++)

{

Phi [ 0 ] [ j ] = Ph i [ 2 ] [ j ] ;

Ph i [ nx + 1 ] [ j ] = Ph i [ nx−1][ j ] ;

}

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

PhiBackup [ i ] [ j ] = Ph i [ i ] [ j ] + ( d t * ( P h i 0 [ i ] [ j ] − Phi [ i ] [ j ] ) ) + ( ( c1 ) * ( Ph i [ i

+ 1 ] [ j ] − 2 . * Ph i [ i ] [ j ] + Ph i [ i −1][ j ] ) ) + ( ( c2 ) * ( Ph i [ i ] [ j +1] − 2 . * Phi [ i ] [ j ] +

Phi [ i ] [ j −1]) ) ;

}

}

}

/ * Sav ing t h e l a s t v a l u e o f Phi , i . e P h i E q u i l i b r i u m i n t o a f i l e * /

f2 = fopen ( ” P h i E q u i l i b r i u m . t x t ” , ”w” ) ;

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

f p r i n t f ( f2 , ”% l f\n ” , PhiBackup [ i ] [ j ] ) ;

}

}

f c l o s e ( f2 ) ;

r e t u r n ( 0 ) ;

}

A.3 Code to study the dynamics of spiral wave in Barkley

model

# i n c l u d e <s t d i o . h>

# i n c l u d e <math . h>

# i n c l u d e ” H e a d e r F i l e s . h ”
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do ub l e B a r k l e y T i m e E v o l u t i o n ( i n t nx , i n t ny , d ou b l e dx , d ou b l e dy , d ou b l e dt , i n t n t , d ou b l e a , d ou b l e b , dou b l e

e p s i l o n , do ub l e DELTA, i n t S t a r t T i m e , do ub l e Ex , do ub l e Ey , i n t P u l s e S t a r t T i m e , i n t s a v i n g I n t e r v a l , i n t

c e n t r e x , i n t c e n t r e y , i n t o b s t a c l e r a d i u s , d ou b l e A)

{

d oub l e u t h ;

do ub l e f ;

do ub l e c1 = ( d t ) / ( dx*dx ) ;

do ub l e c2 = ( d t ) / ( dy*dy ) ;

do ub l e c3 = ( c1 / 4 . 0 ) ;

do ub l e c4 = ( c2 / 4 . 0 ) ;

do ub l e c5 = ( d t / ( 2 . 0 * dx ) ) ;

do ub l e c6 = ( d t / ( 2 . 0 * dy ) ) ;

do ub l e c7 = (−A* c5 ) ;

do ub l e c8 = (−A* c6 ) ;

p r i n t f ( ” c1 = %l f\n ” , c1 ) ;

p r i n t f ( ” c2 = %l f\n ” , c2 ) ;

p r i n t f ( ” c3 = %l f\n ” , c3 ) ;

p r i n t f ( ” c4 = %l f\n ” , c4 ) ;

p r i n t f ( ” c5 = %l f\n ” , c5 ) ;

p r i n t f ( ” c6 = %l f\n ” , c6 ) ;

/ * Memory A l l o c a t i o n * /

do ub l e u [ nx + 2 ] [ ny + 2 ] ;

do ub l e v [ nx + 2 ] [ ny + 2 ] ;

do ub l e ubackup [ nx + 2 ] [ ny + 2 ] ;

do ub l e vbackup [ nx + 2 ] [ ny + 2 ] ;

do ub l e P h i E q u i l i b r i u m [ nx + 2 ] [ ny + 2 ] ;

do ub l e L n P h i E q u i l i b r i u m [ nx + 2 ] [ ny + 2 ] ;

do ub l e D[ nx + 2 ] [ ny + 2 ] ;

/ * Load p h i e q u i l i b r i u m f i l e * /

FILE * f1 ;

do ub l e b u f f e r ;

f1 = fopen ( ” P h i E q u i l i b r i u m . t x t ” , ” r ” ) ;

p r i n t f ( ” Loading P h i E q u i l i b r i u m f i l e \n ” ) ;

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

f s c a n f ( f1 , ”% l f ” , &b u f f e r ) ;

P h i E q u i l i b r i u m [ i ] [ j ] = b u f f e r ;

/ / p r i n t f (”% l f\ t ” , P h i E q u i l i b r i u m [ i ] [ j ] ) ;

}

}

f c l o s e ( f1 ) ;

p r i n t f ( ” Done\n ” ) ;

/ * C a l c u l a t e t h e l o g of P h i E q u i l i b r i u m a r r a y * /

/ / In c l o g i s n a t u r a l l o g a r i t h m , i . e l n .

p r i n t f ( ” C a l c u l a t i n g l o g ( P h i E q u i l i b r i u m ) \n ” ) ;
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f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

L n P h i E q u i l i b r i u m [ i ] [ j ] = l o g ( P h i E q u i l i b r i u m [ i ] [ j ] ) ;

/ / p r i n t f (”% l f\ t ” , L n P h i E q u i l i b r i u m [ i ] [ j ] ) ;

}

}

p r i n t f ( ” Done\n ” ) ;

/ * Load t h e o b s t a c l e a r r a y h e r e * /

/ * F i l e s f o r s a v i n g u and v d a t a * /

FILE * fu ;

FILE * fv ;

/ * R e p l a c i n g a l l t h e g a r b a g e v a l u e s o f t h e a r r a y s wi th z e r o s . * /

f o r ( i n t i =0 ; i<=nx +1; i ++)

{

f o r ( i n t j =0 ; j<=ny +1; j ++)

{

ubackup [ i ] [ j ] = 0 . 0 ;

vbackup [ i ] [ j ] = 0 . 0 ;

}

}

f o r ( i n t i =0 ; i<nx +2; i ++)

{

f o r ( i n t j =0 ; j<ny +2; j ++)

{

D[ i ] [ j ] = 1 . 0 ; / / I n i t i a l i s i n g a l l e n t r i e s t o 1

}

}

f o r ( i n t i = c e n t r e x−o b s t a c l e r a d i u s ; i<c e n t r e x + o b s t a c l e r a d i u s +1; i ++)

{

f o r ( i n t j = c e n t r e y−o b s t a c l e r a d i u s ; j<c e n t r e y + o b s t a c l e r a d i u s +1; j ++)

{

i f ( ( ( i−c e n t r e x ) * ( i−c e n t r e x ) + ( j−c e n t r e y ) * ( j−c e n t r e y ) ) <= o b s t a c l e r a d i u s *

o b s t a c l e r a d i u s )

{

D[ i ] [ j ] = 0 . 0 0 0 0 1 ;

}

}

}

i f ( S t a r t T i m e == 0) / * Load I n i t i a l C o n d i t i o n s * /

{

p r i n t f ( ” Loading I n i t i a l C o n d i t i o n s\n ” ) ;

f o r ( i n t i = ( ( nx / 2 ) −5) ; i <=((nx / 2 ) +5) ; i ++)

{

/ / p r i n t f ( ” i = %d\n ” , i ) ;

f o r ( i n t j =1 ; j <=(ny / 2 ) ; j ++)

{

ubackup [ i ] [ j ] = 1 . 0 ;

}

}
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f o r ( i n t i =( nx / 2 ) +10; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

vbackup [ i ] [ j ] = 0 . 5 ;

}

}

}

p r i n t f ( ” Done\n ” ) ;

i f ( S t a r t T i m e != 0)

{

FILE * f3 ;

do ub l e u b u f f e r ;

do ub l e v b u f f e r ;

c h a r f i l e [ 3 2 ] ;

s p r i n t f ( f i l e , ” d a t a %.7d . t x t ” , S t a r t T i m e ) ;

f3 = fopen ( f i l e , ” r ” ) ;

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

f s c a n f ( f3 , ”% l f \ t %l f\n ” , &u b u f f e r ,& v b u f f e r ) ;

ubackup [ i ] [ j ] = u b u f f e r ;

vbackup [ i ] [ j ] = v b u f f e r ;

}

}

f c l o s e ( f3 ) ;

}

/ * i f ( S t a r t T i m e != 0) Load t h e S t a r t T i m e ’ t h i t e r a t i o n f i l e

{

p r i n t f ( ” Loading f i l e %d\n ” , S t a r t T i m e ) ;

FILE * f3 , * f4 ;

do ub l e u b u f f e r ;

do ub l e v b u f f e r ;

c h a r u f i l e [ 3 2 ] ;

c h a r v f i l e [ 3 2 ] ;

s p r i n t f ( u f i l e , ” u %.7d . t x t ” , S t a r t T i m e ) ;

s p r i n t f ( v f i l e , ” v %.7d . t x t ” , S t a r t T i m e ) ;

f3 = fopen ( u f i l e , ” r ” ) ;

f4 = fopen ( v f i l e , ” r ” ) ;

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

f s c a n f ( f3 , ”% l f ” , &u b u f f e r ) ;

ubackup [ i ] [ j ] = u b u f f e r ;

f s c a n f ( f4 , ”% l f ” , &v b u f f e r ) ;

vbackup [ i ] [ j ] = v b u f f e r ;

}

}

f c l o s e ( f3 ) ;

f c l o s e ( f4 ) ;
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} * /

p r i n t f ( ” Done\n ” ) ;

p r i n t f ( ” E n t e r i n g t ime e v o l u t i o n loop\n ” ) ;

/ * Time Loop * /

f o r ( i n t t =0 ; t<=n t ; t ++)

{

/ * Array Exchange * /

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

u [ i ] [ j ] = ubackup [ i ] [ j ] ;

v [ i ] [ j ] = vbackup [ i ] [ j ] ;

}

}

/ * Neumann Boundary C o n d i t i o n s * /

f o r ( i n t i =1 ; i<=nx ; i ++)

{

u [ i ] [ 0 ] = u [ i ] [ 2 ] ;

u [ i ] [ ny +1] = u [ i ] [ ny−1];

v [ i ] [ 0 ] = v [ i ] [ 2 ] ;

v [ i ] [ ny +1] = v [ i ] [ ny−1];

}

f o r ( i n t j =1 ; j<=ny ; j ++)

{

u [ 0 ] [ j ] = u [ 2 ] [ j ] ;

u [ nx + 1 ] [ j ] = u [ nx−1][ j ] ;

v [ 0 ] [ j ] = v [ 2 ] [ j ] ;

v [ nx + 1 ] [ j ] = v [ nx−1][ j ] ;

}

i f ( ( t >= P u l s e S t a r t T i m e ) && ( t <= P u l s e S t a r t T i m e +1000) )

{

/ * S o l v i n g PDE i n s i d e t h e g r i d * /

/ * p r i n t f ( ” Apply ing E f i e l d %d\n ” , t ) ; * /

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

i f ( u [ i ] [ j ] < DELTA)

{

ubackup [ i ] [ j ] =

( (D[ i ] [ j ] * c1 ) * ( u [ i + 1 ] [ j ] − 2 . 0 * u [ i ] [ j ] + u [ i

−1][ j ] ) ) +

( (D[ i ] [ j ] * c2 ) * ( u [ i ] [ j +1] − 2 . 0 * u [ i ] [ j ] + u [ i

] [ j −1]) ) +

( (D[ i ] [ j ] * c3 ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j ] −
L n P h i E q u i l i b r i u m [ i −1][ j ] ) * ( u [ i + 1 ] [ j ] − u [ i

−1][ j ] ) ) +

( (D[ i ] [ j ] * c4 ) * ( L n P h i E q u i l i b r i u m [ i ] [ j +1] −
L n P h i E q u i l i b r i u m [ i ] [ j −1]) * ( u [ i ] [ j +1] − u [ i

] [ j −1]) ) −
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( (D[ i ] [ j ] * c5 * Ex ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j

] − L n P h i E q u i l i b r i u m [ i −1][ j ] ) ) −
( (D[ i ] [ j ] * c6 * Ey ) * ( L n P h i E q u i l i b r i u m [ i ] [ j

+1] − L n P h i E q u i l i b r i u m [ i ] [ j −1]) ) +

( ( c7 ) * ( u [ i + 1 ] [ j ]−u [ i −1][ j ] ) ) + ( ( c8 ) * ( u [ i ] [ j +1]−u [ i ] [

j −1]) ) ;

vbackup [ i ] [ j ] = ( ( 1 . − d t ) * v [ i ] [ j ] ) ;

}

e l s e

{

u t h = ( v [ i ] [ j ] + b ) / ( a ) ;

f = ( ( 1 . / e p s i l o n ) * ( ( u [ i ] [ j ] ) * ( 1 . 0 − u [ i ] [ j ] ) * ( u [ i ] [ j ] −
u t h ) ) ) ;

ubackup [ i ] [ j ] = u [ i ] [ j ] + ( d t * f ) +

( (D[ i ] [ j ] * c1 ) * ( u [ i + 1 ] [ j ] − 2 . 0 * u [ i ] [ j ] + u [ i

−1][ j ] ) ) +

( (D[ i ] [ j ] * c2 ) * ( u [ i ] [ j +1] − 2 . 0 * u [ i ] [ j ] + u [ i

] [ j −1]) ) +

( (D[ i ] [ j ] * c3 ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j ] −
L n P h i E q u i l i b r i u m [ i −1][ j ] ) * ( u [ i + 1 ] [ j ] − u [ i

−1][ j ] ) ) +

( (D[ i ] [ j ] * c4 ) * ( L n P h i E q u i l i b r i u m [ i ] [ j +1] −
L n P h i E q u i l i b r i u m [ i ] [ j −1]) * ( u [ i ] [ j +1] − u [ i

] [ j −1]) ) −
( (D[ i ] [ j ] * c5 * Ex ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j

] − L n P h i E q u i l i b r i u m [ i −1][ j ] ) ) −
( (D[ i ] [ j ] * c6 * Ey ) * ( L n P h i E q u i l i b r i u m [ i ] [ j

+1] − L n P h i E q u i l i b r i u m [ i ] [ j−i ] ) ) +

( ( c7 ) * ( u [ i + 1 ] [ j ]−u [ i −1][ j ] ) ) + ( ( c8 ) * ( u [ i ] [ j +1]−u [ i

] [ j −1]) ) ;

vbackup [ i ] [ j ] = v [ i ] [ j ] + ( ( d t ) * ( u [ i ] [ j ] − v [ i ] [ j ] ) ) + ( ( c7 ) * ( v [

i + 1 ] [ j ]−v [ i −1][ j ] ) ) + ( ( c8 ) * ( v [ i ] [ j +1]−v [ i ] [ j −1]) ) ;

}

}

}

}

e l s e

{

/ * S o l v i n g PDE i n s i d e t h e g r i d wi th no e l e c t r i c f i e l d a p p l i e d . * /

/ * p r i n t f ( ” I n s i d e e l s e loop %d\n ” , t ) ; * /

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

i f ( u [ i ] [ j ] < DELTA)

{

ubackup [ i ] [ j ] =

( (D[ i ] [ j ] * c1 ) * ( u [ i + 1 ] [ j ] − 2 . 0 * u [ i ] [ j ] + u [ i −1][ j ] ) )

+

( (D[ i ] [ j ] * c2 ) * ( u [ i ] [ j +1] − 2 . 0 * u [ i ] [ j ] + u [ i ] [ j −1]) )

+

( (D[ i ] [ j ] * c3 ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j ] −
L n P h i E q u i l i b r i u m [ i −1][ j ] ) * ( u [ i + 1 ] [ j ] − u [ i −1][ j ] ) )

+

( (D[ i ] [ j ] * c4 ) * ( L n P h i E q u i l i b r i u m [ i ] [ j +1] −
L n P h i E q u i l i b r i u m [ i ] [ j −1]) * ( u [ i ] [ j +1] − u [ i ] [ j −1]) )

+

( ( c7 ) * ( u [ i + 1 ] [ j ]−u [ i −1][ j ] ) ) + ( ( c8 ) * ( u [ i ] [ j +1]−u [ i ] [ j −1]) ) ;
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vbackup [ i ] [ j ] = ( ( 1 . − d t ) * v [ i ] [ j ] ) + ( ( c7 ) * ( v [ i + 1 ] [ j ]−v [ i −1][ j

] ) ) + ( ( c8 ) * ( v [ i ] [ j +1]−v [ i ] [ j −1]) ) ;

}

e l s e

{

u t h = ( v [ i ] [ j ] + b ) / ( a ) ;

f = ( ( 1 . / e p s i l o n ) * ( ( u [ i ] [ j ] ) * ( 1 . 0 − u [ i ] [ j ] ) * ( u [ i ] [ j ] −
u t h ) ) ) ;

ubackup [ i ] [ j ] = u [ i ] [ j ] + ( d t * f ) +

( (D[ i ] [ j ] * c1 ) * ( u [ i + 1 ] [ j ] − 2 . 0 * u [ i ] [ j ] + u [ i

−1][ j ] ) ) +

( (D[ i ] [ j ] * c2 ) * ( u [ i ] [ j +1] − 2 . 0 * u [ i ] [ j ] + u [ i

] [ j −1]) ) +

( (D[ i ] [ j ] * c3 ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j ] −
L n P h i E q u i l i b r i u m [ i −1][ j ] ) * ( u [ i + 1 ] [ j ] − u [ i

−1][ j ] ) ) +

( (D[ i ] [ j ] * c4 ) * ( L n P h i E q u i l i b r i u m [ i ] [ j +1] −
L n P h i E q u i l i b r i u m [ i ] [ j −1]) * ( u [ i ] [ j +1] − u [ i

] [ j −1]) ) +

( ( c7 ) * ( u [ i + 1 ] [ j ]−u [ i −1][ j ] ) ) + ( ( c8 ) * ( u [ i ] [ j +1]−u [ i ] [

j −1]) ) ;

/ / − ( ( c5 * Ex ) * ( L n P h i E q u i l i b r i u m [ i + 1 ] [ j ] −
L n P h i E q u i l i b r i u m [ i −1][ j ] ) ) −

/ / ( ( c6 * Ey ) * ( L n P h i E q u i l i b r i u m [ i ] [ j +1] −
L n P h i E q u i l i b r i u m [ i ] [ j −1]) ) ;

vbackup [ i ] [ j ] = v [ i ] [ j ] + ( ( d t ) * ( u [ i ] [ j ] − v [ i ] [ j ] ) ) + ( ( c7 ) * ( v [ i

+ 1 ] [ j ]−v [ i −1][ j ] ) ) + ( ( c8 ) * ( v [ i ] [ j +1]−v [ i ] [ j −1]) ) ;

}

}

}

}

/ * Sav ing Data i n t o f i l e s * /

FILE * Values ;

i f ( ( t%s a v i n g I n t e r v a l ) == 0)

{

c h a r f i l e [ 3 2 ] ;

s p r i n t f ( f i l e , ” d a t a %.7d . t x t ” , t + S t a r t T i m e ) ;

Va lues = fopen ( f i l e , ”w” ) ;

f o r ( i n t i =1 ; i<=nx ; i ++)

{

f o r ( i n t j =1 ; j<=ny ; j ++)

{

f p r i n t f ( Values , ”% l f \ t %l f\n ” , u [ i ] [ j ] , v [ i ] [ j ] ) ;

}

}

f c l o s e ( Va lues ) ;

}

}

r e t u r n ( 0 ) ;

}
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Appendix B

Supplementary Data

Figure B.1: Unpinning window for different orientation of additional wave emitting
site around the central heterogeneity. The figure is same as in Fig. 4.6 (chapter 4) but
with additional wave emitting site having a radius of 1.5 mm.
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Figure B.2: Unpinning window for different orientation of additional wave emitting
site around the central heterogeneity. The figure is same as Fig. 4.6 (chapter 4) but
with additional wave emitting site having a radius of 2.5 mm.
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Appendix C

Modelling Details

Model Parameter Set Parameter Values

Barkley Model
(see Chapter 3)

a

b

ε

0.53

0.05

0.02

Fitzhugh-Nagumo Model
(see Chapter 4)

a

b

ε

0.085

0.25

0.045

Fitzhugh Nagumo Model
(see Chapter 5)

a

b

ε

0.1

0.25

0.025

Table C.1: The model parameters used for Barkley model and Fitzhugh-Nagumo mod-
els in respective chapters.
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