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ABSTRACT 

Reduction in the usage of Portland cement as the primary cementitious component in 

concrete has become a key driver for accomplishment of the UN sustainable 

development goals (SDGs). Utilization of secondary cementitious materials, recycled 

materials and performance-based design of concrete by innovative cement 

combinations are being attempted to make concrete the most versatile and widely used 

construction material and sustainable too. Nevertheless, achieving desired workability, 

strength and durability characteristics, is still challenging owing to the complex 

interaction of many variables. Performance-based design demands thorough qualitative 

and quantitative appraisal of concrete characteristics. Knowledge of significant 

variables will provide directions to performance-based design methods for 

accomplishing targeted levels. Data analytics help enhance state-of-the-art. 

Mathematically, in such complex systems, random experiments further add to sources 

of redundancy and lead to unnecessary complications, if all the variables are to be 

included in performance appraisal. Identification of significant variables, elimination 

of redundant helps in dimensionality reduction of data and meaningful representation 

of system’s behaviour. Statistical methods, group method of data handling, machine 

learning techniques are very popularly employed in modelling complex systems of this 

kind.  

Proper Orthogonal Decomposition (POD) has been considered in this work for 

dimensionality reduction in performance-based design of concrete. An account of 

employment of data handling techniques in performance-based design has been 

provided and utility of POD in such assignments has been demonstrated and 

highlighted. Sequential steps adopted in current research have been described. 

Available-published data sets have been adopted for study. Correlation matrix obtained 

from screened data has been decomposed to obtain eigenvalues and eigenvectors. 

Orthogonal components extracted from dimensionality reduction have been further 

used to draw inferences. A method to identify significant variables and their hierarchy 

has been ordered, which is of prime importance in performance-based design to for 

accomplishment of targets. A performance quality index has been proposed for 

evaluating relative quality of different mixes. Potential utility of POD in refinement of 
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available concrete models to predict and project behaviour of concrete with inclusion 

of emerging data in decision-making for redefining such models have been 

investigated. 

General outcomes on utility of POD in concrete performance evaluation and specific 

conclusions on concrete workability, strength, durability and performance at elevated 

temperature exposure have been brought out as inferences. It is found that POD can be 

an effective tool in exploration of complex concrete data. Identification of crucial 

variables and ordering of hierarchy based on their significance can aid in quick 

calibration of concrete characteristics depending upon specific target requirements of 

performance-based design. Utilization of POD can open up new vistas to extend 

existing concrete capabilities and possibilities. 

Key words: Concrete, Data, Correlation, Eigenvalue, Eigenvector, Dimensional and 

variable reduction, Component plot, POD, Performance index, Models. 
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CHAPTER 1 

INTRODUCTION 
 
1.1 GENERAL 

Though behaviour of Nature is very complex and chaotic, it is very much fascinating. 

This makes humans think, understand phenomena, and use them to the best of their 

ability. Quest of scientists, researchers, academicians and almost every being is to find, 

explore, observe, understand, predict and advance the knowing and relishing these 

wonders. 

A researcher’s expedition is to bring all these complexities onto paper or lab, organise 

and model them in simplified form and apply it in future tasks. 

1.2 CONCRETE 

Mould-ability of concrete to any shape, water-resistant characteristics and cost-

effectiveness have made it the most popular and widely used construction material. 

Advent of modern cement (OPC) in 1824 by Joseph Aspdin, relegated Roman cement 

to the back feat (Neville and Brooks 2010). Continuous efforts from investigators have 

provided a spectrum of concrete having site-specific applications. 

Workability, strength and durability are the cardinal properties of concrete affected by 

a large number of variables, and many of these have been identified. It is recognised 

that concrete is a composite and is heterogeneous material at different scales (Mehta 

and Monteiro 2014) and also its behaviour is non-linear (Boukhatem et al. 2011b) at 

different loading conditions. Notwithstanding the advancements made in concrete 

technology, accomplishment of targeted performance levels is still challenging. 

Variation in material characteristics, methods of mixing and placing, degree of 

compaction, curing techniques, structural boundary conditions and environmental 

factors (Pan et al. 2017) have an effect on the properties and performance of concrete.  

As the extent to which the characteristics of concrete are affected by such variables 

itself has a wide range, dimensionality reduction of data in assessment and projection 

of concrete characteristics is of great importance in resource optimization. Evolution of 
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computer and information technology (Boukhatem et al. 2011b) has aided in handling 

concrete data consisting of multiple variables and in identification of those that 

influence the desired and targeted behaviour. 

1.3 STATISTICAL TECHNIQUES 

Organised data is essential in developing predictive models. In systems with many 

variables, data handling and analysis itself is a very challenging exercise. In such cases, 

statistical methods can be used to infer the nature and degree of correlation of 

parameters involved. Proper Orthogonal Decomposition (POD) is one multivariate 

technique that helps in understanding correlation among variables and assists in 

addressing big data handling difficulties employing dimensionality reduction without 

much information loss. 

1.4 PROPER ORTHOGONAL DECOMPOSITION 

POD is a popular dimensionality reduction technique (Jolliffe 2002). The central idea 

of POD is to look through directions or plane of largest variance in dataset consisting 

of a large number of interrelated variables. Directions (or dimensions) of largest 

variation are considered to be most important (or principal) in POD analysis. Hence, 

POD is also popularly called as Principal Component Analysis (PCA). Smith (2002) 

says – “It is a way of identifying patterns in data, and expressing the data in such a way 

as to highlight their similarities and differences”. 

When data is projected onto newly formed reduced orthogonal space (preferably ≤ 3 

dimensions), it leads to easy visualisation and interpretation of variable dependence, 

interdependence and independence, and retention of most of the original information. 

Thus POD serves as a valid decision-making tool in judicious selection of important 

variables from among the vast database to make relevant data less exhaustive and more 

meaningful. In other words, POD helps to remove unimportant variables with very little 

information loss. Systematic utility of POD finds a vital place in reorganisation of data 

and mathematical model development that are operational to reduced computational 

efforts and time. Thus state of the art can enhance the Science – the knowing, and the 

Art – the doing of Concrete! 
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1.4.1 POD – Graphical interpretation  

Physical meaning of POD can be understood by conducting a simple photography 

experiment on a teapot (Li 2009). Aim of this experiment is to take picture(s) of the 

teapot in such a way that the image alone would be sufficient to explain most of its 

features. This can be done in two ways. 

1. Many pictures can be taken in different directions, such that each picture would 

explain in detail different characteristics of the teapot. 

2. Taking a single picture that can explain most important details of the teapot that 

would be sufficient to describe its characteristics. 

The first method is not an efficient technique to achieve the aim of this experiment and 

hence is not of interest. Considering the second method, in order to get most details of 

the teapot in a single image, it has to be rotated, and axes capturing maximum 

information of visibility has to be found, which is the utmost important task. Finding 

such axes help in extracting most of the data variance, which is the main theme of POD. 

 

Figure 1.01 Rotation of teapot (Li 2009) 

As seen in Fig. 1.01, the first image gives comprehensive information than others, 

which makes it most preferred image. It can be learned that by suitable axis orientation, 

maximum details can be construed. It is apparent from Fig. 1.02 that; red and green 

lines are the major and minor axes of most preferred configuration, respectively. 

 
Figure 1.02 Axes of preferred configuration of teapot (Li 2009) 

Hence, to summarise, the whole exercise of POD revolves around finding the best 

configuration in which description of data would be the most. In order to find the best 

configuration, POD follows a definite stepwise procedure of finding axis of the largest 

variation, whose mathematical gist has been explained in the chapter that follows. 
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1.4.2 Similar methods as POD for dimensionality reduction 

Under dimensionality reduction tools, there are a plethora of options available. Other 

than POD, some popular tools are, 

1. Reduced major axis (RMA) 

2. Factor analysis 

3. Independent component analysis 

1.4.2.1 POD and RMA 

Linear regression is a method of finding best fit line by trying to minimise the vertical 

distance between the point(s) and the assumed best fit. By doing so, it defines the 

direction of the best fit and thereby incorporating some error in analysis.  

But, instead of calculating the vertical distance, in RMA, the orthogonal distances 

between the assumed line and the data point is calculated. Without knowing the best 

fit, it is impossible to calculate the orthogonal distance. Hence, it becomes an iterative 

process to find the best fit, where the orthogonal distances are to be minimised. 

This process of minimising the orthogonal distance in 2–dimensions and determining 

the transformed orthogonal axes representing the variation of a dataset is called reduced 

major axis method. In comparison, POD (or PCA) can be thought of as RMA applied 

to higher dimensions. 

1.4.2.2 POD and factor analysis 

POD and factor analysis are very similar in operation. Factor analysis is a statistical 

method used to describe variability among observed, correlated variables in terms of a 

potentially lower number of unobserved, uncorrelated variables called factors. In other 

words, it is possible, for example, that variations in three or four observed variables 

mainly reflect the variations in fewer such unobserved variables. Factor analysis is 

related to POD, but the two are not identical. Factor analysis uses regression modelling 

techniques to test hypothesis producing error terms, while POD is a descriptive 

statistical technique. POD is used to find optimal ways of combing variables into a 

small number of subsets, while factor analysis is used in identification of the structure 

underlying such variables. When an investigator has a set of hypotheses that form the 

conceptual basis for the factor analysis, the investigator performs confirmatory factor 

analysis. On the contrary, when there are no guiding hypotheses and when the question 
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is simply what are the underlying factors, the investigator conducts an exploratory 

factor analysis. The factors in factor analysis are conceptualized as “real world” entities 

such as depression, anxiety and disturbed thought. This contrasts with POD, where the 

components are simply geometrical abstractions that may not map easily onto real-

world phenomena. So, based on the data, one has to decide the analysis method. The 

structure of factor analysis is as presented in Eq. 1.01. 

x = 𝚲𝚲f + 𝑒𝑒  (1.01) 

1.4.2.3 POD and independent component analysis 

(Jolliffe 2002) The main objective of POD is to obtain a set of linear functions with the 

successive maximisation of variance, and the orthogonality and un-correlatedness are 

extras, which are included to ensure that the different components are measuring 

separate things. In contrast, independent component analysis (ICA) aims at the 

separation of components and begins with the vision of statistical independency 

(Jolliffe 2002; Shlens 2003). 

𝑃𝑃(x1, x2) = 𝑃𝑃(x1) 𝑃𝑃(x2) (1.02) 

where P() denotes the probability density. ICA model is, 

x = 𝚲𝚲(𝑓𝑓) (1.03) 

where 𝚲𝚲 is some, not necessarily linear, function and the elements of  f are independent. 

The components (factors) f are estimated by 𝑓𝑓, which is a function of x and the family 

of functions from which 𝚲𝚲 can be chosen must be defined. 

1.4.3 POD – Advantages and applications 

1.4.3.1 Advantages 

The popularity of POD is due to the following essential properties. 

a) It is the optimal (in terms of mean squared error) linear scheme for compressing 

a set of high dimensional vectors into a set of lower-dimensional vectors and 

then reconstructing the data. 

b) The model parameters can be computed directly from the data. 

c) Compression and decompression are easy operations to perform given the 

model parameters; they require only matrix multiplication. 

d) POD is usually a robust solution (Shlens 2003) even to slightly deviated non-

Gaussian data. 
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1.4.3.2 Applications 

The apparent simplicity of the technique has made POD a widely used data handling 

technique in agriculture, biology, chemistry, climatology, demography, ecology, 

economics, food research, genetics, geology, meteorology, oceanography, psychology 

and quality control. It is now attracting the attention of concrete technologists and 

investigations are on in understanding behaviour of concrete and enhancement of 

concrete performance. 

1.5 THESIS ORGANIZATION 

The need, mode, method and potential of POD in concrete performance appraisal have 

been introduced with brevity in Chapter 1.  

Chapter 2 presents a comprehensive review of relevant literature, research objectives 

and scope of the work. Chapter 3 outlines the methodology adopted to accomplish 

objectives set. Data analysis, results, critical observations, case-specific conclusions 

and application in computational mechanics have been put forward in Chapter 4. 

General conclusions drawn from the present research have been penned in Chapter 5. 

List of publications and References have been appended subsequently. 

1.6 SUMMARY 

The first chapter introduces POD and describes its potential in addressing the 

complexity of Concrete. At the chapter end, organisation of the research thesis has also 

been detailed. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 INTRODUCTION TO REVIEW 

POD history, its mathematical background and literature related to application of POD 

(or PCA), factor analysis and cluster analysis in the field of concrete technology have 

been reviewed in this chapter. Essence of collected scientific works, motivation for this 

research, objectives and scope have been penned. Summary of the chapter has also been 

briefed. 

2.2 POD – A BRIEF HISTORY 

POD is one of the best multivariate techniques to reduce the dimensionality of data. 

Beltrami (1873) and Jordan (1874) developed singular value decomposition, which 

forms the basis of POD. Later, POD was independently developed by Pearson (1901) 

and Hotelling (1933). 

Interestingly Pearson writes ‘his method can easily be applied to numerical problems’, 

even before 50 years of the widespread availability of computers. Although he mentions 

– the calculations become ‘cumbersome’ for four or more variables and suggest that 

they are quite feasible.  

Hotelling derives it using Lagrange multipliers in 1933 (Hotelling 1933) and Power 

method in 1936 (Hotelling 1936). As per Jolliffe (2002), there has been only small 

amount of work from an application point of view for 25 years after Hotelling’s paper. 

Widespread utilisation of electronic computers in 1960s, works of Anderson (1963), 

Rao (1964), Gower (1966) and Jeffers (1967) gave an impetus to tap the power of POD 

and bring out its value of practical application in the field of Science, Engineering and 

Technology (Jolliffe 2002; Liang et al. 2002).  

2.2.1 POD – Mathematical background 

A brief explanation of mathematical operations of matrix manipulations in POD is 

provided in this section.  
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Vector x (eq. 2.01) is a vector of p random variables ⊂ ℝ. Correlations between these 

variables are of fundamental interest, which are to be understood by their variances and 

co-variances.  

𝐱𝐱 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑝𝑝

�  (2.01) 

When the number of variables is limited, it is possible to observe all the variances, co-

variances and correlations. When structure is complex, a technique to hold vital 

information by looking at a very few of the derived variables is of great help. 

A first consideration in this direction is to seek a linear function of  𝛼𝛼1𝑇𝑇𝐱𝐱 (Eq. 2.02), of 

the elements of x with maximum variance. Here 𝛼𝛼1 is a vector of p constants 

𝛼𝛼11,𝛼𝛼12, . . ,𝛼𝛼1𝑝𝑝 (i.e. 𝛼𝛼1(1×𝑝𝑝)
𝑇𝑇 =< 𝛼𝛼11,𝛼𝛼12, . . ,𝛼𝛼1𝑝𝑝 >). Superscript T denotes transpose. 

𝛼𝛼1𝑇𝑇𝐱𝐱 = 𝛼𝛼11𝑥𝑥1 + 𝛼𝛼12𝑥𝑥2+ . . . + 𝛼𝛼1𝑝𝑝𝑥𝑥𝑝𝑝 = �𝛼𝛼1𝑗𝑗𝑥𝑥𝑗𝑗

𝑝𝑝

𝑗𝑗=1

  (2.02) 

As subsequent logical step looking for another linear function 𝛼𝛼2𝑇𝑇x, uncorrelated with 

𝛼𝛼1𝑇𝑇x that has a maximum variance, and so on so that the 𝛼𝛼𝑘𝑘𝑇𝑇x is the kth linear function 

(𝑫𝑫�𝑘𝑘) that is uncorrelated with previously derived (k – 1) terms; when considered yield 

𝑝𝑝 linear functions. Very generally, it is highly likely that much of the variance will be 

accounted by a few initial linear combinations.  

If the majority of the variance gets captured by the first two combinations, the additional 

advantage of representation of data in two dimensions is possible. Even if the case is 

not so, consideration of consecutive component’s linear function, two at a time, makes 

two-dimensional representations feasible. Consideration of the number of such 

representations can be based on predetermined targets on variation explanation.   

In this research work, the vector random variable x has a known covariance matrix 𝚺𝚺 

(or correlation matrix R, for normalized data). 𝚺𝚺 would have, 

𝜎𝜎𝑖𝑖𝑗𝑗 = �Variance of 𝐱𝐱                  ∀ 𝑖𝑖 = 𝑗𝑗
Co − variance of 𝐱𝐱        ∀ 𝑖𝑖 ≠ 𝑗𝑗 

 

In a more realistic case, where 𝚺𝚺 is unknown, replace 𝚺𝚺 by sample covariance matrix S. 

It turns out that for k = 1, 2, . . . , p, the kth linear function is given by 𝐷𝐷�𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑇𝑇𝐱𝐱, where 
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𝛼𝛼𝑘𝑘 is an eigenvector of 𝚺𝚺 corresponding to its kth largest eigenvalue 𝜆𝜆𝑘𝑘. Furthermore, 

if 𝛼𝛼𝑘𝑘 is chosen to have a unit length (𝛼𝛼𝑘𝑘𝑇𝑇𝛼𝛼𝑘𝑘 = 1), then var(𝑫𝑫�𝑘𝑘) = 𝜆𝜆𝑘𝑘, where var(𝑫𝑫�𝑘𝑘) 

denotes the variance of 𝑫𝑫�𝑘𝑘. 

To derive the form of 𝑫𝑫�𝑘𝑘, consider first 𝛼𝛼1𝑇𝑇𝐱𝐱 = 𝑫𝑫�1. Variance of 𝐷𝐷�1 is, 

𝐸𝐸�𝑫𝑫�12� = 𝐸𝐸(𝑫𝑫�1 × 𝑫𝑫�1) 

= 𝐸𝐸[(𝛼𝛼1𝑇𝑇 .𝐱𝐱) × (𝛼𝛼1𝑇𝑇 . 𝐱𝐱)𝑇𝑇)] 

=𝛼𝛼1𝑇𝑇 .𝐸𝐸(𝐱𝐱𝐱𝐱𝑇𝑇).𝛼𝛼1 

=𝛼𝛼1𝑇𝑇𝚺𝚺𝛼𝛼1 (2.03) 

The maximization will not stand for finite 𝛼𝛼1, so a normalization constraint must be 

enforced. The constraint is ‖𝛼𝛼1‖= 1, indicate 𝛼𝛼1𝑇𝑇 .𝛼𝛼1 = 1. 

To maximize 𝛼𝛼1𝑇𝑇Σ𝛼𝛼1 subject to 𝛼𝛼1𝑇𝑇 .𝛼𝛼1 = 1, the standard approach is to use the technique 

of Lagrange multipliers, ℒ (Shalizi 2013). Maximize 

ℒ(𝛼𝛼1,𝜆𝜆) = 𝛼𝛼1𝑇𝑇𝚺𝚺𝛼𝛼1 − 𝜆𝜆(𝛼𝛼1𝑇𝑇 .𝛼𝛼1 − 1) (2.04) 

where 𝜆𝜆 is a Lagrange multiplier. Differentiating with respect to 𝛼𝛼1 gives  

𝚺𝚺𝛼𝛼1 − 𝜆𝜆𝛼𝛼1 = 0 (2.05) 

or 

�𝚺𝚺 − 𝜆𝜆𝐈𝐈𝑝𝑝�𝛼𝛼1 = 0 (2.06) 

where 𝐈𝐈𝑝𝑝 is (p×p) identity matrix. Thus, 𝜆𝜆 is an eigenvalue of 𝚺𝚺 and 𝛼𝛼1 is the 

corresponding eigenvector. To decide which of the p eigenvectors gives 𝛼𝛼1𝑇𝑇𝐱𝐱 with 

maximum variance, note that the quantity to be maximized is 

𝛼𝛼1𝑇𝑇Σ𝛼𝛼1 = 𝛼𝛼1𝑇𝑇λ𝛼𝛼1 = λ𝛼𝛼1𝑇𝑇𝛼𝛼1 = λ (2.07) 

so λ must be as large as possible. Thus, 𝛼𝛼1 is an eigenvector corresponding to the largest 

eigenvalue of 𝚺𝚺, and var(𝛼𝛼1𝑇𝑇𝐱𝐱 ) = 𝛼𝛼1𝑇𝑇Σ𝛼𝛼1 = 𝜆𝜆1, the largest eigenvalue. 

In general, the kth 𝑫𝑫�𝑘𝑘 of x is 𝛼𝛼𝑘𝑘𝑇𝑇𝐱𝐱 and var(𝛼𝛼𝑘𝑘𝑇𝑇𝐱𝐱 ) = 𝜆𝜆𝑘𝑘, where 𝜆𝜆𝑘𝑘 is the kth largest 

eigenvalue of 𝚺𝚺, and 𝛼𝛼𝑘𝑘 is the corresponding eigenvector. 

The second 𝑫𝑫�2(= 𝛼𝛼2𝑇𝑇𝐱𝐱), maximizes 𝛼𝛼2𝑇𝑇𝚺𝚺𝛼𝛼2 subject to being uncorrelated with 𝛼𝛼1𝑇𝑇𝐱𝐱, or 

equivalently subject to cov(𝛼𝛼1𝑇𝑇𝐱𝐱,𝛼𝛼2𝑇𝑇𝐱𝐱) = 0, where cov(x, y) denoted the covariance 

between the random variable x and y. But 

cov(𝛼𝛼1𝑇𝑇𝐱𝐱,𝛼𝛼2𝑇𝑇𝐱𝐱) = 𝛼𝛼1𝑇𝑇𝚺𝚺𝛼𝛼2 = 𝛼𝛼2𝑇𝑇𝚺𝚺𝛼𝛼1 = λ𝛼𝛼2𝑇𝑇𝛼𝛼1 = λ𝛼𝛼1𝑇𝑇𝛼𝛼2 
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Thus, any of the equations 

𝛼𝛼1𝑇𝑇𝚺𝚺𝛼𝛼2 = 0;   𝛼𝛼2𝑇𝑇𝚺𝚺𝛼𝛼1 = 0;   𝛼𝛼2𝑇𝑇𝛼𝛼1 = 0;   𝛼𝛼1𝑇𝑇𝛼𝛼2 = 0 

could be used to specify zero correlation between 𝛼𝛼1𝑇𝑇𝐱𝐱 and 𝛼𝛼2𝑇𝑇𝐱𝐱. Applying above 

condition and normalization constraint (‖𝛼𝛼2‖= 1) again, maximize 

ℒ(𝛼𝛼1, 𝜆𝜆,𝜙𝜙) = 𝛼𝛼2𝑇𝑇𝚺𝚺𝛼𝛼2 − 𝜆𝜆(𝛼𝛼2𝑇𝑇 .𝛼𝛼2 − 1) − 𝜙𝜙𝛼𝛼2𝑇𝑇 .𝛼𝛼1 (2.08) 

where 𝜆𝜆, 𝜙𝜙 are Lagrange multipliers. Differentiating with respect to 𝛼𝛼2 gives, 

𝚺𝚺𝛼𝛼2 − 𝜆𝜆𝛼𝛼2 − 𝜙𝜙𝛼𝛼1 = 0 (2.09) 

and multiplication of this equation on the left by 𝛼𝛼1𝑇𝑇  gives, 

𝛼𝛼1𝑇𝑇𝚺𝚺𝛼𝛼2 − 𝜆𝜆𝛼𝛼1𝑇𝑇𝛼𝛼2 − 𝜙𝜙𝛼𝛼1𝑇𝑇𝛼𝛼1 = 0 (2.10) 

which, since first two terms are zero and 𝛼𝛼1𝑇𝑇𝛼𝛼1 = 1, reduces 𝜙𝜙 = 0. Therefor 

𝚺𝚺𝛼𝛼2 − 𝜆𝜆𝛼𝛼2 = 0 (2.11) 

or equivalently 

�𝚺𝚺 − 𝜆𝜆𝐈𝐈𝑝𝑝�𝛼𝛼2 = 0 (2.12) 

So 𝜆𝜆 is once more an eigenvalue of 𝚺𝚺, and 𝛼𝛼2 the corresponding eigenvector. Again, 

𝜆𝜆 = 𝛼𝛼2𝑇𝑇𝚺𝚺𝛼𝛼2, so 𝜆𝜆 is to be as large as possible. Assuming that 𝚺𝚺 does not have repeated 

eigenvalues, a complication, 𝜆𝜆 cannot equal 𝜆𝜆1. If it did, it follows that 𝛼𝛼1 = 𝛼𝛼2, 

violating the constraint 𝛼𝛼1𝑇𝑇𝛼𝛼2 = 0. Hence 𝜆𝜆 is the second largest eigenvalue of 𝚺𝚺, and 

𝛼𝛼2 is the corresponding eigenvector. 

As stated above, it can be shown that for third, fourth, . . .  , pth linear functions, the 

vectors of coefficients 𝛼𝛼3,𝛼𝛼4, . . ,𝛼𝛼𝑝𝑝 are the eigenvectors of 𝚺𝚺 corresponding to 

𝜆𝜆3, 𝜆𝜆4, . . , 𝜆𝜆𝑝𝑝, the third and fourth largest, . . .  , and the smallest eigenvalue, respectively. 

Furthermore, 

var(𝛼𝛼𝑘𝑘𝑇𝑇𝐱𝐱 ) = 𝜆𝜆𝑘𝑘    for  𝑘𝑘 = 1, 2, 3,   .  .  . ,𝑝𝑝 (2.13) 

Computation of these linear functions reduce to solution of an eigenvalue–eigenvector 

problem for a positive-semi-definite symmetric matrix (R or 𝚺𝚺). Its general form is, 

�𝚺𝚺 − 𝜆𝜆𝐈𝐈𝑝𝑝�𝛼𝛼 = 0 (2.14) 

The eigenvalues are arranged in descending order so as to identify the eigenvector 

contributing maximum variation. 

𝜆𝜆1 > 𝜆𝜆2 > 𝜆𝜆3 > 𝜆𝜆4 > . . . > 𝜆𝜆𝑝𝑝−1 >  𝜆𝜆𝑝𝑝 (2.15) 

Data Projection 
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Consider 

𝑫𝑫�𝑗𝑗 = 𝛼𝛼𝑗𝑗𝑇𝑇𝐱𝐱 = 𝐱𝐱𝑇𝑇𝛼𝛼𝑗𝑗   (2.16) 

where j = 1, 2, . . . , p 

Now the interest is to synthesize data given as a set of 𝑫𝑫�𝑗𝑗 

Define  𝑨𝑨 = [𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, . . ,𝛼𝛼𝑝𝑝] 

and 𝑫𝑫� = �𝐷𝐷�1,𝐷𝐷�2,𝐷𝐷�3, . . . ,𝐷𝐷�𝑝𝑝�
𝑇𝑇
 

𝑫𝑫� = �𝛼𝛼1𝑇𝑇𝐱𝐱,𝛼𝛼2𝑇𝑇𝐱𝐱,𝛼𝛼3𝑇𝑇𝐱𝐱, . . . ,𝛼𝛼𝑝𝑝𝑇𝑇𝐱𝐱�
𝑇𝑇
 (2.17) 

 

𝑫𝑫� (𝑝𝑝×𝑛𝑛) = 𝑨𝑨(𝑝𝑝×𝑝𝑝)
𝑇𝑇 𝑿𝑿(𝑝𝑝×𝑛𝑛) (2.18) 

Pre-multiplying both sides by A, 

𝑨𝑨𝑫𝑫� = 𝑿𝑿 (2.19) 

 

𝑿𝑿 = �𝛼𝛼𝑗𝑗𝑫𝑫�𝑗𝑗

𝑝𝑝

𝑗𝑗=1

 (2.20) 

Now dimensionality reduction can be forced by selecting initial few eigenvalues, 

𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, . . . , 𝜆𝜆𝑚𝑚−1, 𝜆𝜆𝑚𝑚, and corresponding eigenvectors. Here m ≪ p. After 

truncating the insignificant values, 

𝑿𝑿� = �𝛼𝛼𝑗𝑗𝑫𝑫�𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 (2.21) 

𝑿𝑿� = [𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 … 𝛼𝛼𝑚𝑚]

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐷𝐷
�1
𝐷𝐷�2
𝐷𝐷�3
𝐷𝐷�4
⋮
𝐷𝐷�𝑚𝑚⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.22) 

𝑿𝑿� = �𝑨𝑨���𝑫𝑫�� (2.23) 

Eigenvalue decomposition brings out a set of eigenvectors (𝛼𝛼) of the covariance matrix 

(or correlation matrix), and vector capturing maximum variance will have the largest 

eigenvalue 𝜆𝜆. Coefficients of eigenvector speak loading of variables in that dimension. 

√𝜆𝜆𝛼𝛼 and 𝛼𝛼𝑇𝑇𝐱𝐱 give the projection of variables and individual coordinates on the 
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corresponding dimension respectively. Since orthogonal dimensions are derived from 

variables, term √𝜆𝜆𝛼𝛼 is referred to as component(s) and coefficients of projected 

individual observations as scores (Husson et al. 2017). 

POD on a non-square matrix (X) is also possible by singular value decomposition 

(SVD). The basic structure of SVD is 

𝑿𝑿 = 𝑼𝑼𝑼𝑼𝑽𝑽𝑇𝑇 (2.24) 

where U and V are right and left singular matrices respectively, which rotate the X 

matrix. 𝑼𝑼 contains singular values and speak of magnitude of scale. 

2.3 POD FOR PERFORMANCE APPRAISAL OF CONCRETE 

Availability of plenty of computational techniques and advancement in computer 

capabilities have given a chance to study concrete and its cardinal properties in much 

more detailed manner at both analysis and design stage. Complexity of concrete has not 

made it possible to predict the relationship between microstructural characteristics and 

its properties only using analytical models (Boukhatem et al. 2011b). 

2.3.1 Computational techniques for handling big data 

Decomposition techniques (Jolliffe 2002; Liang et al. 2002), machine learning (ML) 

algorithms and multivariate statistical approaches have proved themselves to be the best 

techniques in resolving the big data issues, where generation of analytical models is a 

difficult task. Computer simulations, artificial neural network (ANN), ML techniques 

(Boukhatem et al. 2011b) are the current trends in predicting and understanding 

systems. Atmospheric science (Chávez-Arroyo et al. 2013), weather forecasting 

(Jaruszewicz and Mandziuk 2002; Ogallo 1989), image processing (Ng 2017) and 

human behavioural prediction (Raskin and Terry 1988) are the branches of Science that 

extensively use these techniques to draw conclusions.  

Vast data on concrete is available for usage and implementation of computational 

techniques for development of models and simulations. 

2.3.2 Data science in concrete technology 

Statistical methods for studies on properties of concrete (Filho et al. 2010) and math 

models for strength have been proposed adopting ANN in combination with genetic 

algorithm (GA) considering cement content, cement type, phase composition, chemical 
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analysis parameters, fineness and soundness of cement, water-cement ratio, aggregate 

shape and size, fineness modulus of fine aggregates, sand to coarse aggregate ratio, 

admixture dosage, cube density, curing conditions, slump value, ultrasonic pulse 

velocity value (Kheder et al. 2003; Lee 2003; Madandoust et al. 2010; Ni and Wang 

2000) as variables influencing characteristics of concrete. Regression for tensile 

strength (Ahmed et al. 2016) and long term strength variation calculations (Aggarwal 

et al. 2015; Yi et al. 2005), non-linear regression for activation energy and heat of 

hydration quantification (Folliard et al. 2008; Riding et al. 2012), response surface 

methodology (RSM) for optimization of silica fume content of ultra-high performance 

fibre reinforced concrete (Aldahdooh et al. 2013), ANN for determination of 

dimensional variation due to drying shrinkage (Bal and Buyle-Bodin 2013), multi-

variable regression and GA technique for elastic moduli and tensile strength prediction 

(González-Taboada et al. 2016) and meta-modelling for carbonation front depth 

calculation (Ta et al. 2016) are few of the research attempts in this direction. 

ML techniques are highly efficient in addressing complex physical and chemical 

phenomenon of deterioration of reinforced concrete over conventional prediction 

models (Taffese and Sistonen 2017). For addressing durability and serviceability issues 

in existing structures state of the art of data acquisition and processing facilities have 

popularised ML techniques. Stochastic approaches have also been employed in life 

cycle assessment (Pan et al. 2017; Trejo et al. 2017).  

Concrete technology provides huge opportunities for employment and exploitation of 

big data analytics (Newlands 2019). 

2.3.3 Analytical tools in concrete performance appraisal 

Principal component analysis (PCA), factor analysis, cluster analysis, ANN, GA, fuzzy 

logics have all been considered and adopted in performance appraisal of concrete to 

analyse experimental data, noise reduction of data acquired, prediction and projection 

math modelling, durability studies and failure forensics. 

2.3.3.1 Historical monument forensics 

There are some structural investigations of historical monuments which have used PCA 

techniques to draw inferences. 
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For classification of mortars from Byzantine and Ottoman monuments (Moropoulou et 

al. 2003) into distinct groups based on physicochemical characteristic tests, feature 

extraction of mortars of churches St. Lorenzo (Milan) and St. Abbondio (Como) 

(Rampazzi et al. 2006) with the aid of chemo-metric analysis, the method of PCA has 

been employed. Further, score and loading plots of PCA has been utilized along with 

least square regression to predict binder-aggregate ratio and to differentiate hydraulic 

and aerial binders (Rampazzi et al. 2006). 

Using cluster analysis and PCA, similar work has been reported for Quadrangular tower 

of the Balivi Complex in Aosta (Italy) (Arizio et al. 2013). Decision to choose number 

of specimens for mortar characterization and number of tests for determination of 

binder fraction and sulphate fraction had been made based on these techniques. Some 

statistical studies on characterization of monumental structures are available. 

PCA has been adopted to correlate variables for checking composition of hardened 

concrete samples from a narrow-gauge railway viaduct in Braine-l’Alleud (Belgium), 

built in 1904 by Hennebique company (Hellebois et al. 2013). This study emphasises 

the need for extensive representative data in failure forensics. 

2.3.3.2 Experimental data analysis 

Math modelling for varieties of concrete has been attempted to develop statistical 

prediction models (Chou et al. 2011). ANN (Boukhatem et al. 2012; Kellouche et al. 

2017), data mining (Chou et al. 2015), RSM (Aldahdooh et al. 2013), regression 

(Aggarwal et al. 2015) and other statistical techniques have been used as tools to 

estimate the strength of concrete, having different variable sets from the experiments. 

Only basic descriptive statistical inferences have been used (Filho et al. 2010) for 

evaluation and comparison of self-compacting concrete properties variability with code 

recommendations. 

The efficacy of modelling with dimensionality reduction technique has been 

demonstrated by a study on concrete with different mineral admixtures (Boukhatem et 

al. 2011a, 2012). 

Improved predictability has been reported when ANN is used for slump and strength 

modelling, multiple regression for computing shear strength, in combination with PCA. 
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PCA has also been incorporated in assessing performance of application sealants and 

fillers in asphalt concrete pavement cracks (Li et al. 2017). 

Combined PCA and self-organization feature map (SOFM) – a hybrid model to 

determine the pull-off adhesion between concrete layers, has reduced the number of 

input variables as well as improved the precision of prediction (Sadowski et al. 2015). 

PCA and PLS-DA (partial least square-discriminant analysis) have been used to build 

hyperspectral image technology model to detect presence of mortar paste attached to 

recycled aggregate surface (Bonifazi et al. 2018). 

PCA has been employed to interpret experimental data, and recognised relationships 

have been confirmed (Manoj and Babu Narayan 2019; Manoj and Narayan 2021). 

2.3.3.3 Output analysis of acoustic emission test 

PCA and K mean clustering have been adopted in environmental noise removal and 

suppression in AE (structural health monitoring) data of long time corrosion monitoring 

of a pre-damaged post-tensioned concrete beam (Calabrese et al. 2012). PCA to reduce 

the dimensionality of AE data in CFRP-retrofitted RC slabs (Degala et al. 2009), to 

characterise the acoustic behaviour of concrete made with crumb rubber waste 

(Ghizdăveț et al. 2016) and cluster analysis to group the AE data of hydration of cement 

(Thirumalaiselvi and Sasmal 2019) has also been attempted. 

2.3.3.4 Damage analysis 

POD, a generalized method of PCA, has been effectively employed in damage detection 

and analysis (Al-Ghalib and Mohammad 2016; Gryllias et al. 2009; Santos et al. 2016). 

The power of PCA has been exploited in development of damage indices for 

quantification of concrete structure conditions. In terms of the existence of damage and 

its corresponding severity, different rebar conditions have been classified with the 

assistance of PCA (Lu et al. 2013). It has also been used in identifying the correlation 

between the considered damage parameters and microstructural feature assessment 

(Gulotta et al. 2015). 

2.3.3.5 Durability 

Efforts have been made towards development of regression models with PCA for 

physical properties and durability characteristics of different cement mortars (Falchi et 

al. 2015), assessment of durability and service life of reinforced concrete structures by 
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utilisation of ML techniques (Taffese and Sistonen 2017) and PCA based evaluation of 

sealants and fillers for cracks in asphalt concrete pavements (Li et al. 2017). 

The need for standardised testing of input parameters has being accentuated for reliable 

service life prediction of RC structures considering corrosion aspect (Trejo et al. 2017). 

Studies on durability aspects using POD method are found to be limited. 

A beginning has been made in understanding and implementing the usage potential of 

data analytics in Concrete technology. There also is a tremendous need and scope for 

employment of POD in reorganising, rationalising available data for formulation of 

math models in concrete technology. 

2.4 ESSENCE OF LITERATURE REVIEW 

From the literature review, it is evident that decomposition techniques are, 

a) Very useful to understand the compatibility of new materials in restoration of 

historical structures (for reconstruction of original material). 

b) Helpful in relating results drawn with microstructural properties (SEM) of 

mixes. 

c) Valuable in drawing inference on causal-effect relations of material behaviour. 

d) Useful to develop models to evaluate performance characteristics of different 

varieties of concrete. 

e) Suitable in acoustic emission test noise removal and suppression. 

Dependence, interdependence and independence of variables can very clearly be 

understood, vital variables can be identified and system’s behaviour can be modelled 

by limiting consideration to variables that significantly influence the behaviour without 

compromise on prediction capability/loss of information by utilizing POD. 

2.5 RESEARCH MOTIVATION 

Concrete has come a long way from its days of plain cement concrete through 

reinforced concrete, pre-stressed concrete, structural light weight concrete, high-

density concrete, high strength concrete, regulated sleeping concrete, high-performance 

concrete, self-compacting concrete, fibre reinforced concrete . . .. The attributes still are 

challenging for understanding and attainment of contemplated characteristics as the 

number of variables that dictate the performance are too many. POD should help the 

analyst in this onerous task and should serve as a decision-making tool.   



17 
 

2.6 RESEARCH GAPS 

Based on review of literature, following research gaps have been identified. 

a) Hierarchizing the influence of variables on wet and set concrete properties has 

hardly been attempted. 

b) POD is of utility as an immensely powerful tool in hierarchizing, that needs 

attention of concrete technologists. 

c) Whole-to-part and part-to-whole exploration of complex concrete data, utilizing 

POD technique can help in recognising and understanding unknown cause-

effect relations and gaining valuable insights. This possibility needs 

consideration and exploitation. 

d) Assessment of existing models of concrete performance and their refinement 

has tremendous scope for utilization of POD. 

2.7 RESEARCH OBJECTIVES 

The present research aims at, 

1. Decomposing and hierarchizing the parameters affecting workability, strength, 

durability of concrete. 

2. Utilizing POD in performance appraisal. 

3. Application in selection of appropriate math models suitable for projection of 

performance with available dataset. 

2.8 SCOPE  

This research is an attempt to investigate 

a) Utilization of POD to identify significant parameters affecting concrete 

performance. 

b) Possible dimensionality reduction and proposition of performance index based 

on vital variables identified. 

c) POD application in refinement to concrete modelling techniques in performance 

based design. 

2.9 SUMMARY 

A detailed account of relevant literature has been presented and the research gaps, 

objectives and scope have been outlined in this chapter.  
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CHAPTER 3 

POD – FOR REORGANISATION, RATIONALISATION 

AND REDUCTION OF DIMENSIONALITY 
 

3.1 OVERVIEW 

This chapter covers in detail the methodology adopted to accomplish set objectives. 

Fig. 3.01 provides sequential steps to be followed while performing POD (Jolliffe 2002; 

Liang et al. 2002). 

 

Figure 3.01 Steps in POD  

3.2 DESCRIPTION OF METHODOLOGY 

Following sub-sections elaborate the sequential steps provided in Fig. 3.01.  

Acquisition of exhaustive and pertinent data.

Checking adequacy of data size for the exercise on hand and data organization 
with checks for missing data and outliers.

Combination of variables for generation of new variables from recognized 
relationships to reduce time and effort in data analysis.

Normalization of raw data based on numerical values of variables and ranges.

Generation and assembly of correlation matrix with checks on sample adequacy, 
sphericity and significant correlation.

Extraction of eigenvalues and eigenvectors.

Data reduction and hierarchization based on analysis results.

Interpretation of POD results and data dimensionality reduction for 
implementation of performance based formulations.
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3.2.1 Data acquisition 

Relevant data acquisition is the first step in POD. Preferably datasets should be 

exhaustive, encompassing a large number of observations for variables to capture 

cause-effect relations. For the present investigation, details of data employed are given 

in Table 3.01. 

Table 3.01 Sources of data sets analysed by POD in the present investigation 

Sl.No. Source Source type Description 

01. Pradeep et al. 

(2012) 

Thesis Experimental data on concrete 28 days 

compressive strength and slump characteristics. 

02. Yaragal et al. 

(2010) 

Journal 

article 

Studies on normal strength concrete cubes 

subjected to elevated temperatures. 

03. Lavanya 

(2018) 

Thesis An experimental investigation on properties of 

high strength self-compacting concrete mixes. 

04. Rejilin 

(2018) 

Thesis Strength and durability properties of geo-

polymer concrete 

05. Dhir et al. 

(2010) 

Technical 

report 

Innovative cement combinations for concrete 

performance. 

06. Poole  

(2007) 

Thesis Modeling temperature sensitivity and heat 

evolution of concrete. 

3.2.2 Testing and data re-organisation 

3.2.2.1 Data structure 

Checking data structure and classification of variables to quantitative and qualitative 

subsets are the initial steps in data reorganisation. 

3.2.2.2 Missing values 

POD demands completeness in data matrix before testing and generation of correlation 

values. Variables with incomplete observations and missed values have been excluded 

from the analysis. 

3.2.2.3 Outlier detection 

Outliers are identified from boxplots (Krzywinski and Altman 2014). In this 

investigation for all the datasets, no exclusion of outliers has been attempted to make 
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comparisons of interpretations from the current investigation with findings of the 

studies from which data has been sourced.   

3.2.2.4 Bartlett sphericity test 

‘Bartlett sphericity test’ (Bartlett 1950; Tobias and Carlson 1969) is used as a measure 

of the extent of deviation from the reference situation – determinant of correlation 

matrix being 1, to foresee the possibility of dimensionality reduction. Though not 

essential, sphericity test can suggest the scope and extent of dimensionality reduction 

possible. The test statistic under H0 is,  

𝜒𝜒2 = −�𝑁𝑁 − 1 −
2𝑃𝑃 + 5

6
� × |𝑹𝑹| (3.01) 

following an 𝜒𝜒2 distribution with a [P × (P – 1) / 2] degree(s) of freedom. The Null 

hypothesis, H0 = Determinant is 1, indicate ‘R ’is an identity matrix or off-diagonal 

terms are zero, meaning variables are unrelated and unsuitable for structure detection. 

3.2.2.5 Descriptive statistics 

Arithmetic mean (average), standard deviation, minimum and maximum values have 

been looked into to understand data. A data matrix plot is also included for the first 

dataset to visualize the scatter. 

3.2.3 Variables generation 

Variables have been combined for generation of new variables from recognized and 

established relationships to reduce data analysis efforts. 

3.2.4 Data normalization 

To avoid bias, mean centring and variance scaling normalisation (Eq. 3.02) has been 

performed, since datasets include a heterogeneous mixture of variables with different 

measuring units and scales.  

𝑧𝑧𝑖𝑖𝑗𝑗 = �
𝑥𝑥𝑖𝑖𝑗𝑗 −  �̅�𝑥𝑗𝑗

𝜎𝜎𝑗𝑗
�  (3.02) 

where, 

𝑧𝑧𝑖𝑖𝑗𝑗= Normalized value of variable 

𝑥𝑥𝑖𝑖𝑗𝑗= Original variable value 

�̅�𝑥𝑗𝑗= Variable mean 

𝜎𝜎𝑗𝑗= Standard deviation of variable 
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𝜎𝜎𝑗𝑗 = �
1
𝑁𝑁
��𝑥𝑥𝑖𝑖𝑗𝑗 −  �̅�𝑥𝑗𝑗�

2
𝑁𝑁

𝑖𝑖=1

  (3.03) 

N = Total number of observations 

3.2.5 Correlation matrix generation 

Correlation matrix can be used to analyse dependence, interdependence and 

independence between variables. Eq. 3.04, gives expression to compute correlation 

between any two variables.  

𝑟𝑟𝑖𝑖𝑗𝑗 =
𝑁𝑁∑�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗� − (∑𝑥𝑥𝑖𝑖)�∑𝑥𝑥𝑗𝑗�

�[𝑁𝑁Σ𝑥𝑥𝑖𝑖2 − (Σ𝑥𝑥𝑖𝑖)2] �𝑁𝑁Σ𝑥𝑥𝑗𝑗2 − �Σ𝑥𝑥𝑗𝑗�
2
�
 (3.04) 

where 𝑟𝑟𝑖𝑖𝑗𝑗  is correlation value between ith and jth variables.  

Correlation coefficient indicates nature and degree of linear relationship between two 

variables considered.  

To decide significance of correlation, two-tail T-test has been used. Consider, 

Null hypothesis, H0: r = 0 

Alternate hypothesis, H1: r ≠ 0 

Null hypothesis indicates correlation value is not significantly different from zero, and 

there is no significant linear relationship between variables tested. Alternate hypothesis 

indicates correlation value is significantly different from zero, and there is a significant 

linear relationship between variables tested. 

Based on the number of observations (N), significant correlation values can be found 

from the T-test statistic (Eq. 3.05) for prefixed significance level norms or a minimum 

value of |±0.7| (Jeffers 1967) is considered for identifying important correlation. For 

the test, the level of significance (𝛼𝛼) has been set to 95%. Degree of freedom (DF) for 

two–tail T–test is (N – 2).  

𝑡𝑡𝛼𝛼,𝑁𝑁−2 =
𝑟𝑟√𝑁𝑁 − 2
√1 − 𝑟𝑟2

 (3.05) 

On rearranging, 

Significant correlation, 𝑟𝑟 = �
𝑡𝑡𝛼𝛼,𝑁𝑁−2
2

𝑡𝑡𝛼𝛼,𝑁𝑁−2
2 + 𝑁𝑁 − 2

  (3.06) 
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Table 3.02 Critical correlation values 
N rsignificant rcritical 

6 0.81 0.81 

7 0.75 0.75 

8 0.71 0.71 

9 0.67 0.70 

≥10 ≤0.63 0.70 

Higher among the value computed and literature suggested minimum value is deemed 

to be critical correlation. Critical absolute correlation values calculated from both the 

criterion are listed in Table 3.02. The critical correlation is one of the norm considered 

in identifying significant variables affecting target characteristics. 

3.2.6 Orthogonal decomposition 

POD is performed on the correlation matrix (𝑅𝑅) to obtain a set of eigenvalues and 

eigenvectors (𝜆𝜆j, 𝑣𝑣j). Eigenvectors obtained are the linear combination of initial 

variables. Eigenvalues (𝜆𝜆j) account the amount of variation explained by each 

dimension and eigenvectors indicate direction of components. 

(𝑹𝑹− 𝜆𝜆𝐈𝐈𝑃𝑃)𝑣𝑣 = 0  (3.07) 
Coefficients of eigenvector are indicators of influence of variables (vector loading), and 

those variables with large absolute magnitude are deemed as significant. 

3.2.7 Dimensionality reduction 

Dimensionality reduction of data employs scree plot (elbow plot) and Pareto chart.  

Percentage variation captured by jth component is calculated as, 
𝜆𝜆𝑗𝑗

∑ 𝜆𝜆𝑗𝑗𝑃𝑃
𝑗𝑗=1

× 100  (3.08) 

where 𝜆𝜆𝑗𝑗 is the jth eigenvalue and p is the total number of components.  

Number of components to be included for performance appraisal is judiciously decided 

by prefixing the percentage variation to be captured by the components considered. 

3.2.8 POD results interpretation 

Variable coordinates of new orthogonal space constructed by principal components/ 

dimensions (𝐷𝐷𝑗𝑗) are computed as a product of square root of eigenvalue and 

corresponding eigenvector. 

𝐷𝐷𝑗𝑗 = �𝜆𝜆𝑗𝑗𝑣𝑣𝑗𝑗  (3.09) 
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Plotting orthogonal components 𝐷𝐷𝑗𝑗 , two at a time against each other, gives “component 

plot”, which is of immense help in identifying, classifying important and unimportant 

variables and their effect on target characteristics. Further analysis can be limited to 

reduced dimensions. “Component plot” is also sometimes called “correlation plot”. 

Quality of representation of a variable on a component can be measured by the distance 

between the point within the space and the projection on the component of interest 

(Husson et al. 2017). In reality, it is preferred to calculate the percentage of contribution 

of variables on components. Square of component coefficients quantify the quality of 

representation (𝑄𝑄𝑗𝑗) of variables in a specific component. These can also be graphically 

presented, as exemplified in Fig. 4.03. 

High 𝑄𝑄𝑗𝑗 values represent a good representation of variables on that component, and 

such variables are close to the circumference of the component plot (see Fig. 4.08). 

Variables away from circumference and near the centre of component plot depict that 

such variables do not contribute significantly to variation in those dimensions and 

possibly be well defined in dimensions that are not under consideration. The 

contribution of a variable to a specific component variation (in percentage) is given by, 

Variable Contibution =  
𝑄𝑄𝑗𝑗

∑ 𝑄𝑄𝑗𝑗𝑃𝑃
𝑗𝑗=1

× 100  (3.10) 

Generally, variables that are highly correlated with first two components (i.e. 𝐷𝐷1 and 

𝐷𝐷2) are the most important in explaining variability in data decomposed. 

3.2.9 Performance index and charts for design  

Orthogonal components can be used to develop mathematical models for prediction of 

characteristics of concrete. In this work, one such model has been proposed to quantify 

performance level indicator for the target characteristic. Design charts have been 

developed and proposed based on the performance index. 

3.3 WORKING ENVIRONMENT 

In the present investigation, all data analyses by POD have been performed in 

“RStudio”. 

3.4 SUMMARY 

In this chapter, details on data collection, organization, testing, decomposition and 

dimensionality reduction have been explained comprehensively.
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CHAPTER 4 

POD APPLICATIONS IN VARIED CONTEXTS – 

ANALYSIS, RESULTS AND DISCUSSION 
 

4.1 GENERAL 

Amenability of POD in a wide and varied range of situations of data handling has been 

attempted and details of analysis, interpretation of analysis results, utility in addressing 

the specific situation have been described in the following sections.  

Understanding workability and strength characteristics, performance appraisal of 

concrete at elevated temperatures, evaluation of high strength self-compacting 

concrete, assessment of long term behavioural aspects of geo-polymer concrete in 

aggressive environment, performance-based design of concrete by innovative cement 

combinations and comparison of models for early-age cracking of concrete, have been 

considered as specific cases for investigation.  

4.2 CONCRETE WORKABILITY AND STRENGTH CHARACTERISTICS 

As a first exercise of POD in establishing dependence, interdependence and 

independence of variables in influencing workability and strength characteristics, an 

available dataset has been subject to analysis. 

4.2.1 Data – Source and pre-processing 

1. Source: Pradeep et al. (2012) 

Mix design details are pertaining to experimentations at National Institute of 

Technology Karnataka, Surathkal. Variables considered in the mix design and testing 

have been listed in Table 4.01. 

2. Total number of variables: 10 Quantitative + 5 Qualitative = 15 Variables. 

Among ten quantitative variables, original variables are compressive strength, slump, 

cement content, water content, fine aggregate and coarse aggregate. The remaining four 

variables are synthetic variables generated to assist interpretation of analysis results. 

Variation of compressive strength and slump have been investigated with reference to 

other listed variables. 
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Table 4.01 List of variables considered in data on concrete workability and 
strength characteristics 

Quantitative variables Symbols Qualitative variables (Class) 

1. Compressive strength 

2. Slump 

3. Cement 

4. Water/Cement  

5. Water  

6. Fine aggregate  

7. Coarse aggregate  

8. Fine aggregate/Cement 

9. Coarse aggregate/Cement 

10. Cement/(Total aggregate) 

CS 

Sl 

C 

W/C 

W 

FA 

CA 

FA/C 

CA/C 

C/(FA+CA) 

1. Name of observations 

2. Strength category (Cat_Str)     

    ( Low (LS), medium (MS),  

    high (HS) ) 

3. Strength (0-20, 20-30, 30-40,  

    40-50 MPa) 

4. Slump (Very low, low,  

    medium, high, very high) 

5. Cement (Low, medium, high) 

3. Total number of observations (Individuals): 97 

4. Matrix size of quantitative data: 97×10  

5. Missing values: This dataset has no missing values.  

6. Bartlett sphericity test  

χ2   = 2628.95 

DF   = 45 

Probability value  ≅ 2.22×10-16 < 0.05 

Reject the null hypothesis. Dataset is not spherical and is accepted for analysis by POD. 

7. Descriptive statistics: Table 4.02 describes the basic statistics of variables 

considered in the experiments conducted on concrete compressive strength and slump. 

4.2.2 Correlation matrix and data matrix plot  

1. Standardization of data 

Mean centring and variance scaling normalisation has been performed before deriving 

correlation matrix. Table 4.03 presents correlation matrix of the dataset. Coefficient of 

correlation matrix reveals the measure of linear dependency of each variable with 

another. 
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Table 4.02 Descriptive statistics of data on concrete workability and strength 
characteristics   

 

Table 4.03 Correlation matrix of data on concrete workability and strength 
characteristics 

xi CS Sl C W/C W FA CA FA/C CA/C C/(FA+CA) 

CS 1 0.22 0.69 -0.65 0.31 -0.07 -0.27 -0.52 -0.58 0.70 

Sl 0.22 1 0.21 0.09 0.68 0.73 -0.80 0.31 -0.51 0.26 

C 0.69 0.21 1 -0.91 0.55 0 -0.41 -0.70 -0.90 0.98 

W/C -0.65 0.09 -0.91 1 -0.16 0.26 0.15 0.79 0.71 -0.88 

W 0.31 0.68 0.55 -0.16 1 0.47 -0.66 -0.13 -0.73 0.54 

FA -0.07 0.73 0 0.26 0.47 1 -0.75 0.69 -0.31 -0.01 

CA -0.27 -0.80 -0.41 0.15 -0.66 -0.75 1 -0.21 0.74 -0.50 

FA/C -0.52 0.31 -0.70 0.79 -0.13 0.69 -0.21 1 0.45 -0.69 

CA/C -0.58 -0.51 -0.90 0.71 -0.73 -0.31 0.74 0.45 1 -0.92 

C/(FA+CA) 0.70 0.26 0.98 -0.88 0.54 -0.01 -0.50 -0.69 -0.92 1 
Note: Significant correlation values ≥ |±0.7|, have been shown with coloured boxes. 

Data matrix plot shown in Fig. 4.02 helps understand correlations between variables 

graphically. The plot provides a graphical explanation for dependence, interdependence 

and independence. 

Variables Units Mean SD Minimum Maximum 

CS N/mm2 35.86 7.69 17.30 46.70 

Sl mm 54.19 29.49 10.00 120.00 

C kg/m3 391.46 43.87 259.00 470.00 

W/C Ratio 0.49 0.05 0.40 0.60 

W lt/m3 188.08 10.15 155.40 198.00 

FA kg/m3 616.91 79.47 456.50 707.62 

CA kg/m3 1178.71 101.52 1056.02 1335.60 

FA/C Ratio 1.60 0.29 1.10 2.64 

CA/C Ratio 3.07 0.56 2.27 5.04 

C/(FA+CA) Ratio 0.22 0.03 0.13 0.27 
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Figure 4.01 Data matrix plot 

Correlation values in Table 4.03 (or data matrix plot in Fig. 4.01) indicate, 28 days’ 

compressive strength of concrete is most strongly correlated to cement to aggregate 

ratio and next to cement content. In contrast, for slump, the strong correlations are with 

fine and coarse aggregate quantities. 

4.2.3 Performing orthogonal decomposition of correlation matrix of experimental 

data on concrete compressive strength and slump characteristics 

Eigenvalues and eigenvectors obtained after decomposition have been given in Tables 

4.04 and 4.05, respectively. Along with component eigenvalues, Table 4.04 include 

details on percentage variation explained by each component and cumulative variation 

explained by the successive components. 
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Table 4.04 Eigenvalues of data on concrete workability and strength 

characteristics  

Dimensions 1 2 3 4 5 6 7 8 9 10 

𝜆𝜆𝑖𝑖 5.36 3.24 0.54 0.48 0.21 0.14 0.03 0.00 0.00 0.00 

Var. % 53.61 32.38 5.35 4.85 2.10 1.42 0.27 0.01 0.01 0.00 

Cum. Var. % 53.61 85.99 91.34 96.19 98.29 99.70 99.98 99.99 100 100 

From Table 4.04, it is observable that eigenvalue for first component is highest, and 

explanation is around 54% of variation in the data. Dimensions 1 and 2 together explain 

about 86 % of variation in the data, signifying that with only 14% information loss, a 

10-dimensional problem can be reduced to a 2–dimensional problem. Further addition 

of subsequent dimensions does not contribute to information extraction vitally; instead, 

it intricates the visualisation. It can also be seen from Fig. 4.02 that the gradient of the 

line has a dramatic change beyond Component 3. Beyond 3rd dimension, the slope is 

insignificant, suggesting that first 2 components explain major part of data variation.  

 

Figure 4.02 Scree plot 

The eigenvectors (which are unit vectors) tabulated in Table 4.05 give direction of 

components in transformed orthogonal space. Coefficients of eigenvector indicate 

loading of each variable to variation in that component. Eigenvalues and vectors can be 

put together as components. 
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Table 4.05 Eigenvectors of data on concrete workability and strength 

characteristics 

xi v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

CS 0.32 -0.13 0.62 0.62 0.24 -0.19 -0.09 -0.03 0.01 0.01 

Sl 0.19 0.44 0.03 0.36 -0.55 0.57 0.05 -0.02 -0.01 0.01 

C 0.41 -0.13 -0.04 -0.16 0.23 0.25 0.42 -0.23 0.34 -0.58 

W/C -0.34 0.29 -0.21 0.35 -0.01 -0.36 0.25 -0.21 0.62 0.08 

W 0.30 0.26 -0.63 0.35 0.42 -0.09 -0.02 0.10 -0.37 -0.04 

FA 0.08 0.51 0.22 -0.28 0.45 0.22 -0.18 0.39 0.35 0.20 

CA -0.27 -0.39 -0.13 0.21 0.36 0.60 0.00 -0.24 0.08 0.39 

FA/C -0.25 0.43 0.31 -0.15 0.23 -0.01 0.34 -0.51 -0.46 0.03 

CA/C -0.42 -0.08 0.11 0.20 0.07 0.12 0.50 0.64 -0.16 -0.25 

C/(FA+CA) 0.42 -0.11 -0.01 -0.14 -0.11 -0.13 0.59 0.13 0.00 0.63 

Component coordinates 𝐷𝐷𝑗𝑗  and quality of representation of variables 𝑄𝑄𝑗𝑗 values of 

concrete workability and strength data are presented in Tables 4.06 and 4.07 

respectively. 

Table 4.06 Component coordinates of data on concrete workability and strength 

characteristics 

xi D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

CS 0.73 -0.23 0.46 0.43 0.11 -0.07 -0.01 0.00 0.00 0.00 

Sl 0.45 0.79 0.02 0.25 -0.25 0.22 0.01 0.00 0.00 0.00 

C 0.95 -0.23 -0.03 -0.11 0.11 0.09 0.07 -0.01 0.01 -0.01 

W/C -0.79 0.52 -0.15 0.25 0.00 -0.13 0.04 -0.01 0.02 0.00 

W 0.68 0.48 -0.46 0.24 0.19 -0.03 0.00 0.00 -0.01 0.00 

FA 0.17 0.92 0.16 -0.20 0.21 0.08 -0.03 0.01 0.01 0.00 

CA -0.63 -0.71 -0.09 0.15 0.17 0.23 0.00 -0.01 0.00 0.00 

FA/C -0.57 0.78 0.22 -0.11 0.10 0.00 0.06 -0.02 -0.01 0.00 

CA/C -0.97 -0.15 0.08 0.14 0.03 0.04 0.08 0.02 0.00 0.00 

C/(FA+CA) 0.97 -0.19 -0.01 -0.10 -0.05 -0.05 0.10 0.00 0.00 0.01 
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Table 4.07 Quality of representation of data on concrete workability and 
strength characteristics 

xi D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

CS 0.53 0.05 0.21 0.19 0.01 0.01 0.00 0.00 0.00 0.00 

Sl 0.20 0.62 0.00 0.06 0.06 0.05 0.00 0.00 0.00 0.00 

C 0.91 0.05 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

W/C 0.62 0.27 0.02 0.06 0.00 0.02 0.00 0.00 0.00 0.00 

W 0.47 0.23 0.21 0.06 0.04 0.00 0.00 0.00 0.00 0.00 

FA 0.03 0.85 0.03 0.04 0.04 0.01 0.00 0.00 0.00 0.00 

CA 0.39 0.50 0.01 0.02 0.03 0.05 0.00 0.00 0.00 0.00 

FA/C 0.32 0.60 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

CA/C 0.94 0.02 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 

C/(FA+CA) 0.94 0.04 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 

Graphical presentation of quality of representation can be seen in Fig. 4.03, from which 

it is perceived that most of the variables are well represented in first two dimensions.  

 
Figure 4.03 Quality of representation 



32 
 

 
Figure 4.04 Combined quality of representation of variables in dimensions 1 & 2 

The combined quality of representation as presented in bar plot – Fig. 4.04, points out 

that all the variables represent more than 50% of their variation in first two components 

and representation of variables is good enough.  

Table 4.08 Percentage variable contribution 

xi D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

CS 9.95 1.58 38.94 38.90 5.99 3.76 0.79 0.06 0.01 0.01 

Sl 3.75 19.26 0.08 13.30 30.58 32.67 0.30 0.05 0.01 0.00 

C 16.96 1.64 0.14 2.48 5.33 6.09 17.28 5.47 11.34 33.27 

W/C 11.64 8.37 4.45 12.53 0.01 12.69 6.35 4.38 38.88 0.70 

W 8.71 6.99 39.29 11.97 17.70 0.72 0.03 1.03 13.41 0.13 

FA 0.57 26.35 4.91 7.95 20.58 5.03 3.41 15.05 12.36 3.81 

CA 7.30 15.43 1.60 4.53 13.05 35.94 0.00 5.98 0.71 15.46 

FA/C 6.01 18.57 9.45 2.36 5.13 0.00 11.75 25.89 20.77 0.07 

CA/C 17.59 0.65 1.14 4.02 0.48 1.35 25.42 40.43 2.52 6.39 

C/(FA+CA) 17.51 1.15 0.01 1.96 1.14 1.73 34.67 1.66 0.00 40.16 

Variables contribution in accounting for the variability in a particular component, 

expressed as percentages, is tabulated in Table 4.08. Graphically contribution of 

variables has been presented in Fig. 4.05. Such plots are essential if dimensions have to 

be studied exclusively. 
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Figure 4.05 Percentage variable contribution of data on concrete workability and 

strength characteristics 

It is seen in Fig. 4.05 that most of the variation in 1st dimension (≈54% of total variation) 

is contributed from all variables except FA, FA/C and Sl. In 2nd dimension, Slump and 

fine aggregate content contribute highest to variation in the component (Variation in 

2nd dimension is about 33%), but in contrary compressive strength, cement, CA/C and 

CA/(FA+CA) contribute insignificantly. In 3rd dimension, compressive strength and 

water content have the highest say (Total variation in 3rd component is about 5%).  

From Fig. 4.05, it may seem that compressive strength is not sufficiently well 

represented as much as other variables in first two dimensions. Hence its variable 

contribution is further investigated with the help of variance contribution bar plots for 

first two dimensions separately. 
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Figure 4.06 Contribution of variables to dimension 1 of data on concrete 

workability and strength characteristics 

  
Figure 4.07 Contribution of variables to dimension 2 of data on concrete 

workability and strength characteristics 

Figs. 4.06 and 4.07 depict that compressive strength is fairly contributing 

(≥(1/N)×100%) to the variation in first dimension, not to the second. It is to be 

remembered the first component itself encompasses a significant part of the total 

variation, i.e. about 54%. Hence contribution of compressive strength to first two 

components is assumed to be fair.  

Overall variation captured beyond the second component is less than 14% altogether. 

Further study has been limited to dimensions 1 and 2.  



35 
 

Component Plot 

Meeting all conditions of dimensionality reduction (by any of the methods: Elbow in 

scree plot, desired cut-off percentage and number of component retention (preferably 

2)), and analysis of contribution and quality of representation plots, the dataset has been 

reduced to two dimensions. Fig. 4.08 presents correlation plot generated for the first 

two components considered.  

  
Figure 4.08 Correlation plot of variables in dimensions 1 and 2  

 
Figure 4.09 Bi-plot of data on concrete workability and strength characteristics 
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Projection of individual observations on principal component plane give their 

representation in that plane and is called score plot. Correlation circle superimposed on 

score plot results in bi-plot. Fig. 4.10 shows bi-plot for the concrete data analysed. Here, 

confidence (95%) ellipses are drawn based on strength categorical variables. 

4.2.4 Interpretation of POD results of data on concrete workability and strength 

characteristics 

Analysis of POD results for the data indicates,  

a) Increase in compressive strength with cement content and ratio of cement to 

aggregate.  

b) Decrease in strength with increase in water to cement ratio. This result is consistent 

with the recognised Abram’s law.  

c) Strength is negatively correlated to fine aggregate to cement content and coarse 

aggregate to cement content ratios.  

d) Slump as an indicator of workability is directly influenced by water and fine 

aggregate content as intuitively expected.  

e) Higher coarse aggregate content makes the mix harsher and hence reduces the 

slump.  

Based on critical correlation values and component plot of the first two dimensions, 

significant variables affecting 28 day’s compressive strength and slump have been 

identified and listed in Table 4.09. 

Table 4.09 Significant variables affecting strength and slump characteristics 
identified from data on concrete workability and strength characteristics 

Target characteristics Significant variables 

CS C/(FA+CA), C, W/C 

Sl CA, FA, W 

      Text code: Navy blue colour indicates positive correlation;  
         Red colour indicates negative correlation. 

Note: It may seem obvious that the component plot encompasses most of the analysis 

results of quality of representation and variable contribution. So obtaining a 

correlation plot becomes a principal step in POD. In cases considered next, only 

essential results are presented along with correlation plot(s). 
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4.3 NORMAL STRENGTH CONCRETE PERFORMANCE AT ELEVATED 

TEMPERATURES 

Performance appraisal of concrete at elevated temperatures has always been an 

interesting and challenging exercise. Utility of POD in this regard has been 

investigated.  

4.3.1 Data – Source and pre-processing 

1. Source: Yaragal et al. (2010) 

Available data (Yaragal et al. 2010) on concrete exposed to elevated temperature has 

been gathered for analysis by POD. Concrete grade (CG), cement content (C), fine 

aggregate (FA), coarse aggregate (CA – 12 mm and 20 mm passing), crushed rock fines 

content (CRF), water content (W), admixture dosage (A), gel space ratio (GSR), water 

to cement ratio (W/C), cement to aggregate ratio (C/(FA+CA)), slump (Sl), 28 days 

cube strength (CS28 T°C), residual compressive strength (RCS) and weight loss 

(WL_T) after exposure to elevated temperature (T) are available as variables in the data 

set. 

Table 4.10 List of variables in data on concrete exposed to elevated temperature  

Variables Symbols Variables Symbols 

01. Weight loss after 

exposure to elevated 

temperature 

02. Residual compressive 

strength 

03. 28 days cube 

compressive strength at 

elevated temperature T°C 

04. Slump 

05. Concrete grade  

06. Cement  

07. Water/Cement 

WL_T 

 

 

RCS 

 

CS28T°C 

 

 

Sl 

CG 

C 

W/C 

08. Water  

09. Fine aggregates 

10. Coarse aggregate 

(12 mm downsize) 

11. Coarse aggregate 

(20 mm downsize)  

12. Cement to 

aggregate ratio  

13. Crushed rock fines 

14. Admixture dosage 

(High range water 

reducing admixture) 

15. Gel space ratio 

W 

FA 

CA12 

 

CA20 

 

C/(FA+CA)  

 

CRF 

SP 

 

 

GSR 
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2. Total number of variables: 15 Quantitative + 0 Qualitative = 15 Variables (refer 

Table 4.10). Dataset has been used as available, without generating any new synthetic 

variables. Interaction of residual compressive strength and weight loss after exposure 

to elevated temperature with variables available have been studied employing POD.  

3. Total number of observations (Individuals): 48 

4. Matrix size of quantitative data: 48×15  

5. Missing values: Dataset collected has no missing values. 

6. Bartlett sphericity test 

χ2 = 10920.34 

DF = 105 

Probability value ≅ 2.22×10-16 < 0.05 

Reject the null hypothesis. Data is not spherical and is accepted for analysis by POD. 

7. Descriptive statistics  

Basic statistical details of concrete subject to elevated temperatures have been provided 

in Table 4.11. 

Table 4.11 Descriptive statistics of concrete subject to elevated temperature 
Variables Units Mean SD Minimum Maximum 

WL_T % 3.45 2.22 0.05 7.26 

RCS Ratio 0.66 0.26 0.18 1.09 

CS28T°C N/mm2 27.82 12.06 8.00 49.78 

Sl mm 73.33 18.14 50.00 100.00 

CG kg/m3 32.50 8.63 20.00 45.00 

C kg/m3 366.67 60.60 280.00 454.00 

W/C Ratio 0.45 0.07 0.37 0.56 

W kg/m3 160.83 5.36 156.00 170.00 

FA kg/m3 485.83 29.13 434.00 512.00 

CA12 kg/m3 297.50 21.12 286.00 344.00 

CA20 kg/m3 740.33 4.80 735.00 747.00 

C/(FA+CA) Ratio 0.20 0.04 0.14 0.26 

CRF kg/m3 323.50 29.17 293.00 376.00 

SP % 2.65 0.57 1.98 3.72 

GSR Ratio 0.86 0.08 0.74 0.95 
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4.3.2 Correlation matrix  

Z-score standardisation (normalisation) has been carried out to normalise the data 

before computing correlation matrix. 

Correlation of WL_T and RCS with other Variables  

Correlation coefficients of weight loss with other variables at different exposure 

temperature levels are as in Table 4.12, and correlation coefficients of RCS are reported 

in Table 4.13. 

Inference from correlation coefficient matrices for various temperature ranges of 

exposure 

Inferences can be drawn from the correlation coefficient matrices for WL_T and RCS 

at different ranges of exposure temperatures.  

Table 4.12 Correlation of weight loss with variables at different temperature levels 

xi 
Exposure Temperature (°C) 

100 200 300 400 500 600 700 800 

RCS 0.30 -0.27 -0.65 -0.92 -0.86 -0.86 -0.78 -0.89 

CS28T°C -0.47 -0.30 0.70 0.95 0.76 0.35 0.66 0.57 

Sl 0.73 0.35 -0.59 -0.64 -0.64 -0.61 -0.30 -0.53 

CG -0.64 -0.23 0.79 0.90 0.84 0.87 0.77 0.85 

C -0.67 -0.24 0.78 0.86 0.81 0.84 0.72 0.82 

W/C 0.79 0.39 -0.77 -0.81 -0.86 -0.83 -0.72 -0.83 

W 0.39 0.56 0.22 0.34 -0.02 0.19 0.29 0.20 

FA 0.50 0.09 -0.67 -0.77 -0.63 -0.70 -0.53 -0.65 

CA12 0.23 -0.14 -0.75 -0.56 -0.50 -0.54 -0.72 -0.58 

CA20 0.24 0.03 -0.55 -0.20 -0.35 -0.24 -0.27 -0.16 

C/(FA+CA) -0.67 -0.24 0.79 0.86 0.81 0.83 0.71 0.81 

CRF 0.92 0.63 -0.57 -0.72 -0.84 -0.77 -0.50 -0.72 

SP -0.53 -0.18 0.64 0.85 0.74 0.82 0.72 0.81 

GSR -0.79 -0.38 0.78 0.82 0.86 0.84 0.71 0.82 
Note: Significant correlation values ≥ |±0.7|, have been shown with coloured boxes. 
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Influence of variables on WL_T and RCS for exposure temperatures less than 300 °C 

Usage of CRF increases the water demand and water-cement ratio. For 100 °C and 200 

°C, the correlation coefficients of W/C and WL_T are positive, indicating higher water 

to cement ratios result in higher weight loss for exposure of concrete up to 200 °C. The 

correlation coefficients of WL_T are negative at this temperature range with GSR, 

C/(FA+CA), C and CG, suggesting higher these variables are WL_T going to be less. 

The effect of temperature on strength at exposure up to 200 °C is insignificant as 

indicated by low correlation coefficients between RCS and CS28T°C. Variables C, 

C/(FA+CA), GSR, CG and SP show a strong negative correlation with RCS. Positive 

correlation of RCS with FA and W/C signifies the importance of these variables in 

strength retention. Influence of CRF on RCS is less than that on WL_T.  

Table 4.13 RCS correlation with variables at different temperature levels 

xi 
Exposure Temperature (°C) 

100 200 300 400 500 600 700 800 

WL_T 0.30 -0.27 -0.65 -0.92 -0.86 -0.86 -0.78 -0.89 
CS28T°C -0.40 -0.05 -0.47 -0.78 -0.55 0.09 -0.43 -0.64 
Sl 0.56 0.55 0.77 0.73 0.44 0.70 0.46 0.84 
CG -0.85 -0.68 -0.86 -0.94 -0.86 -0.98 -0.85 -0.94 
C -0.86 -0.72 -0.86 -0.93 -0.84 -0.98 -0.84 -0.93 
W/C 0.76 0.66 0.70 0.87 0.88 0.96 0.81 0.88 
W -0.65 -0.43 -0.74 -0.38 -0.18 -0.32 -0.46 -0.29 
FA 0.82 0.69 0.97 0.85 0.60 0.84 0.71 0.88 
CA12 0.72 0.68 0.42 0.51 0.84 0.76 0.90 0.40 
CA20 -0.05 0.15 -0.25 -0.02 0.41 0.24 0.34 0.01 
C/(FA+CA) -0.85 -0.72 -0.86 -0.92 -0.83 -0.97 -0.84 -0.93 
CRF 0.49 0.41 0.59 0.80 0.64 0.78 0.48 0.89 
SP -0.88 -0.63 -0.94 -0.95 -0.76 -0.92 -0.78 -0.93 
GSR -0.76 -0.66 -0.72 -0.88 -0.86 -0.96 -0.80 -0.89 
Note: Significant correlation values ≥ |±0.7|, have been shown with coloured boxes. 
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Influence of variables on WL_T and RCS for exposure temperature range 300 °C to 

600 °C  

In temperature range 300 °C and 600 °C, WL_T is poorly correlated to water content, 

suggesting water loss happening at lower temperature levels than 300 °C. High positive 

correlation of WL_T with cement content and CG and negative correlation with RCS 

are indicative of the vulnerability of higher grades of concrete.  

Higher admixture dosage leads to lower RCS, and higher fines content helps in strength 

retention at elevated temperature exposures. 

Influence of variables on WL_T and RCS for exposure temperature above 600 °C  

Higher grades of concrete suffer more WL_T for exposure temperatures above 600 °C. 

FA and CRF contribute largely to strength retention characteristics.  

For all levels of exposure temperatures, low correlation coefficients between CA20, 

WL_T and RCS indicate that coarse aggregate has less influence on these variations.  

4.3.3 Performing orthogonal decomposition for concrete subject to elevated 

temperature data 

First two eigenvalues extracted from POD and the percentage of total variation 

explained are given in Table 4.14. The first 2–dimensions capture more than 80% of 

the variation in the data. First and second component coefficients are as given in Table 

4.15 and Table 4.16, respectively.  

Table 4.14 Eigenvalues of concrete subject to elevated temperature data 
Exposure Temperature (°C) 100 200 300 400 500 600 700 800 

1st eigenvalue 10.30 9.60 10.50 10.90 10.60 10.30 10.40 10.60 

% variation contribution  68.90 64.20 70.00 72.90 70.80 68.50 69.00 70.50 

2nd eigenvalue 2.30 2.30 2.40 2.10 2.30 2.10 2.20 2.20 

% variation contribution 15.70 15.30 16.30 14.00 15.30 14.00 14.60 14.40 

Cumulative variance % 84.60 79.50 86.30 86.90 86.10 82.50 83.60 84.90 

Vector loadings represent the strength of a variable in a particular dimension. They 

quantify the contribution of variables to variation of data in the axis under 

consideration. For the analysis performed, vector loadings for all temperature ranges 

are presented in Fig. 4.10(a–h). 
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Table 4.15 Coefficients of first component, D1 

xi 
Exposure Temperature (°C) 

100 200 300 400 500 600 700 800 
WL_T -0.70 -0.27 0.82 0.91 0.87 0.87 0.76 0.85 
RCS -0.82 -0.69 -0.87 -0.94 -0.85 -0.97 -0.85 -0.96 
CS28T°C 0.76 0.70 0.73 0.85 0.80 0.02 0.73 0.64 
Sl -0.86 -0.86 -0.85 -0.84 -0.84 -0.84 -0.82 -0.84 
CG 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 
C 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 
W/C -0.97 -0.96 -0.95 -0.95 -0.97 -0.97 -0.96 -0.96 
W 0.30 0.32 0.34 0.33 0.29 0.31 0.34 0.31 
FA -0.92 -0.93 -0.93 -0.92 -0.90 -0.91 -0.91 -0.91 
CA12 -0.59 -0.59 -0.61 -0.59 -0.60 -0.61 -0.63 -0.59 
CA20 -0.14 -0.13 -0.15 -0.14 -0.17 -0.15 -0.16 -0.15 
C/(FA+CA) 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 
CRF -0.89 -0.88 -0.86 -0.87 -0.88 -0.87 -0.85 -0.88 
SP 0.95 0.95 0.95 0.96 0.94 0.95 0.95 0.95 
GSR 0.98 0.97 0.96 0.96 0.98 0.98 0.97 0.97 

Table 4.16 Coefficients of second component, D2 

xi 
Exposure Temperature (°C) 

100 200 300 400 500 600 700 800 
WL_T 0.51 0.75 -0.33 -0.05 -0.25 -0.12 -0.26 -0.12 
RCS -0.38 -0.36 -0.45 -0.11 0.35 0.10 0.27 -0.11 
CS28T°C -0.13 -0.09 -0.29 -0.09 0.24 -0.02 0.18 -0.29 
Sl -0.04 0.02 -0.19 -0.19 -0.30 -0.23 -0.34 -0.25 
CG 0.05 0.03 0.00 0.00 0.03 0.02 0.02 0.01 
C 0.04 0.03 0.01 0.00 0.04 0.03 0.02 0.02 
W/C 0.22 0.23 0.24 0.25 0.21 0.23 0.20 0.22 
W 0.92 0.92 0.75 0.74 0.71 0.74 0.58 0.69 
FA -0.34 -0.30 -0.35 -0.35 -0.41 -0.38 -0.38 -0.37 
CA12 0.19 0.03 0.46 0.50 0.53 0.49 0.63 0.52 
CA20 0.81 0.60 0.96 0.96 0.93 0.95 0.93 0.97 
C/(FA+CA) 0.04 0.02 0.01 0.00 0.04 0.03 0.03 0.02 
CRF 0.28 0.37 0.12 0.12 0.04 0.09 -0.04 0.06 
SP 0.30 0.23 0.28 0.27 0.30 0.29 0.27 0.28 
GSR -0.19 -0.20 -0.20 -0.21 -0.17 -0.19 -0.16 -0.18 
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Figure 4.10 Vector loadings at exposure temperature (a) 100 °C (b) 200 °C      
 (c) 300 °C (d) 400 °C (e) 500 °C (f) 600 °C (g) 700 °C and (h) 800 °C 
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Inferences from POD results for various temperature ranges of exposure 

CA20 is loaded in second dimension, and CA12 is loaded in higher dimensions 

indicating their influence on WL_T and RCS is negligible for the type of aggregate in 

question. 

Variables interaction for exposure temperatures up to 200 °C 

CRF and other fines holding more water lead to variation of WL_T up to exposure 

temperature 100 °C. For exposure temperatures up to 200 °C, first two axes 

consideration is necessary to address influence of water on WL_T. 

Higher fine content and W/C contribute to strength retention on exposure to 

temperature up to 200 °C. Higher strength and admixture dosage affects strength 

retention characteristics adversely.   

Variables interaction for exposure temperature range from 300 °C to 800 °C 

For exposure temperature range between 300 °C and 800 °C, the loading plots are 

similar; hence variables have same influence on WL_T and RCS. 

More fines in mix lead to less WL_T, and higher the strength of concrete, higher is 

WL_T at elevated temperatures. It is also evident from the loading plots that WL_T and 

RCS have vector loadings of opposite signs, indicating the influence of variables is 

opposite in nature. Even in this temperature range of exposure, the beneficial effect of 

fines in strength retention and the adverse effect of high cement content is clearly seen.  

Component plots 

The data set in all has 15 components/variables. The components at eight temperature 

exposure levels namely 100 °C, 200 °C, 300 °C, 400 °C, 500 °C, 600°C, 700 °C and 

800 °C, are as shown in Fig. 14.11(a–h).  

The first two components for these temperatures explain about 85%, 80%, 86%, 87%, 

86%, 83%, 84% and 85% of the variation in the data respectively.  

4.3.4 POD results interpretation – concrete subject to elevated temperature data 

From component plots, it is evident that variables influencing a characteristic cluster 

together. Hence, grouping of variables is possible for further dimensionality reduction.  
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        (a)         (b)        (c) 

   
        (d)         (e)        (f) 

  

 

       (g)        (h)  
   

 

 

Figure 4.11 Component plots for concrete at temperature (a) 100 °C (b) 200 °C 
(c) 300 °C (d) 400 °C (e) 500 °C (f) 600 °C (g) 700 °C and (h) 800 °C 

For exposure temperature up to 200 °C W/C and CRF are variables strongly influencing 

WL_T. In this range influence of W, CA(20mm), CRF, WL_T on RCS is very less, and 

these variables need not be accounted in residual strength predictions.  

Component plots for exposure temperatures from 300 °C to 800 °C do not show much 

difference. Hence, a single model may be operational for temperatures above 300 °C, 

to study WL_T and RCS. In this range, as W, CA12 and CA20 have no much vector 

loadings, their inclusion in prediction model is unnecessary.  
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From component plots, it is also clear that W/C and GSR lead to almost same 

correlation coefficients with opposite sign and hence any one can be treated as a 

variable of interest at the expense of other.  

It is to be appreciated that a 15–dimensional problem can be reduced to 2–dimensions 

that explains about 80–87% of the inherent variation. Key variables affecting RCS and 

WL_T have been identified and listed in Table 4.17. 

Table 4.17 Significant variables affecting RCS and weight loss for concrete 
subject to elevated temperatures 

Exposure  

Temperature 

(°C) 

WL_T RCS 

100 CRF, W/C, GSR SP, C, C/(FA+CA), CG, FA, W/C, 

GSR, CA12- 

200 – C, C/(FA+CA), FA, CA12-, CG, 

SP+ 

300 CG, C/(FA+CA), C, GSR, 

W/C, CA12, CS28300, CRF+ 

FA, SP, C, C/(FA+CA), CG, GSR-

, W-, W/C- 

400 CS28400, CG, C, C/(FA+CA), 

SP, GSR, W/C, FA, CRF 

SP, CG, C, C/(FA+CA), GSR, 

W/C, FA, CRF, CS28400 

500 GSR, W/C, CG, CRF, C, 

C/(FA+CA), CS28500-, SP- 

W/C, CG, GSR, C, CA12, 

C/(FA+CA), SP- 

600 CG, GSR, C, C/(FA+CA), 

W/C, SP-, CRF, FA- 

CG, C, C/(FA+CA), GSR, W/C, 

SP-, FA-, CRF, CA12 

700 CG, C, W/C, SP-, CA12, GSR, 

C/(FA+CA) , CRF+ 

CA12, CG, C, C/(FA+CA), W/C, 

GSR, SP, FA, CRF+ 

800 CG, W/C, C, GSR, SP-, 

C/(FA+CA), CRF 

CG, C, C/(FA+CA) , SP, GSR, 

CRF, W/C, FA 
Text code: Navy blue colour indicates positive correlation; Red colour indicates negative correlation. 

Superscript ‘+’ or ‘–’ denote variables that are added or fit for removal based on study of component 

plots. 
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4.4 PERFORMANCE APPRAISAL OF HIGH STRENGTH SELF–

COMPACTING CONCRETE 

Amenability of POD in selecting suitable ingredients and appropriate mix design of 

high strength self-compacting concrete for accomplishment of targeted performance 

levels has been explored. 

4.4.1 Data – Source and pre-processing  

1. Source: Lavanya (2018)  

Table 4.18 Data variable list of experimental investigation on properties of high 
strength SCC mixes 

Variables Symbols Variables  Symbols 

1. Slump spread SlS 13. Water absorption Wabs 

2. Slump flow time to spread 

50 cm diameter 

SlS50 14. Sorption SRP28 

3. V Funnel test concrete 

flow time to flow 10 cm 

VT10 15. Rapid chloride 

penetration test value 

RCPT28 

4. V Funnel test concrete 

flow time to flow 50 cm 

VT50 16. Weight loss due to 

acid attack  

WL_AA 

5. Blocking ratio from L box 

test 

LB(H2/H1) 17. Weight loss due to 

sulphate attack 

WL_SA 

6. Passing ability from U 

box test 

UB(H2/H1) 18. Weight loss due to 

corrosion 

WL_Cor 

 

7. Cube compressive 

strength at 28 days 

CS28 19. Fly ash F 

8. Cube compressive 

strength at 90 days 

CS90 20. Ground granulated 

blast furnace slag  

GGBS  

9. Split tensile strength value STS28 21. Silica fumes SF  

10. Flexural strength FlS28 22. Fine aggregate FA 

11. Elastic modulus E 23. Water to cement ratio W/C 

12. Poisson’s ratio PR 24. Water W  

Dataset on use of mineral admixture for replacement of fine aggregate in self-

compacting concrete of M60 grade has been studied utilizing POD. The dataset includes 
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variables namely, water to cement ratio (W/C), water content (W), fine aggregate (FA), 

slump spread (SlS), slump flow time to spread 50 cm diameter (SlS50), V funnel test 

concrete flow time to flow 10 cm (VT10) and 50 cm (VT50), blocking ratio from L box 

test (LB(H2/H1)), passing ability from U box test (UB(H2/H1)), cube compressive 

strength at 28 (CS28) and 90 days (CS90), split tensile strength value (STS28), flexural 

strength (FlS28), elastic modulus (E), Poisson's ratio (PR), water absorption (Wabs), 

sorption (SRP28), rapid chloride penetration test value (RCPT28), weight loss due to 

acid arrack (WL_AA), sulphate solution (WL_SA) and corrosion (WL_Cor). 

2. Total number of variables:  24 (Quantitative) (Refer Table 4.18) 

Different percentage (5 – 25 %) of fine aggregate (FA) has been replaced with fly ash 

(F), ground granulated blast furnace slag (GGBS) and silica fumes (SF). In all mixes, 

cement content (C), coarse aggregate content (CA) and super-plasticizer dosage are 

kept constant and are equal to 550 kg/m3 and 589 kg/m3 and 11 kg/m3 respectively. 

3. Total number of observations (Individuals):  24 

4. Matrix size of quantitative data: 24×24  

5. Missing values:  Observations with missing values have been removed before 

finalising the data matrix.  

6. Bartlett sphericity test  

χ2 = 1165.24 

DF = 276 

Probability value ≅ 2.22×10-16 < 0.05 

Reject the null hypothesis. Data is not spherical and is accepted for analysis by POD. 

7. Descriptive statistics: Statistical information of collected SCC data has been 

displayed in Table 4.19. 
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Table 4.19 Descriptive statistics of SCC data 

Variables Units Mean SD Minimum Maximum 

W/C Ratio 0.34 0.04 0.30 0.40 

W  kg/m3 185.63 20.27 165.00 220.00 

FA kg/m3 810.32 47.12 730.40 867.40 

F kg/m3 57.08 68.98 0.00 182.6.00 

SF kg/m3 22.83 44.66 0.00 137.00 

GGBS kg/m3 22.83 44.66 0.00 137.00 

SlS mm 714.13 88.3 624.00 886.00 

SlS50 s 4.66 1.82 2.30 7.30 

VT10 s 7.95 1.17 6.00 10.00 

VT50 s 13.63 2.01 10.00 18.00 

LB(H2/H1) Ratio 0.86 0.03 0.80 0.89 

UB(H2/H1) Ratio 22.71 2.31 20.00 28.00 

CS28 N/mm2 61.89 3.67 55.60 68.75 

CS90 N/mm2 71.17 2.62 66.74 75.95 

STS28 N/mm2 5.12 0.6 3.70 6.20 

FlS28 N/mm2 7.69 0.85 6.20 9.30 

E N/mm2 44519.83 4915.26 35670.00 53940.00 

PR Ratio 0.11 0.00 0.11 0.12 

Wabs Percentage 3.04 0.19 2.64 3.30 

SRP28 mm/√𝑠𝑠 0.03 0.01 0.02 0.04 

RCPT28 C 567.88 151.95 365.00 840.00 

WL_AA Percentage 2.91 0.34 2.40 3.50 

WL_SA Percentage 3.08 0.23 2.64 3.52 

WL_Cor Percentage 3.5 0.35 2.94 4.27 
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Table 4.20 Correlation matrix for concrete with fine aggregate replaced by fly ash, GGBS and silica fume 

Cases Fly ash GGBS Silica fume 
Variables W/C W FA F W/C W FA GGBS W/C W FA SF 
SlS 0.99 0.99 -0.05 0.05 0.75 0.75 0.50 -0.50 0.20 0.20 0.97 -0.97 
SlS50 -0.62 -0.62 -0.33 0.33 -0.86 -0.86 0.37 -0.37 -0.19 -0.19 -0.90 0.90 
VT10 -0.59 -0.59 -0.72 0.72 -0.95 -0.95 -0.30 0.30 -0.60 -0.60 -0.74 0.74 
VT50 -0.70 -0.70 -0.44 0.44 -0.76 -0.76 -0.52 0.52 -0.70 -0.70 0.36 -0.36 
LB(H2/H1) 0.00 0.00 -0.56 0.56 -0.52 -0.52 -0.21 0.21 0.87 0.87 0.00 0.00 
UB(H2/H1) -0.85 -0.85 0.48 -0.48 -0.93 -0.93 0.23 -0.23 -0.96 -0.96 0.24 -0.24 
CS28 -0.70 -0.70 0.62 -0.62 -0.82 -0.82 -0.53 0.53 0.19 0.19 -0.85 0.85 
CS90 -0.48 -0.48 -0.85 0.85 -0.39 -0.39 -0.90 0.90 -0.50 -0.50 -0.86 0.86 
STS28 -0.77 -0.77 0.56 -0.56 -0.73 -0.73 -0.63 0.63 -0.67 -0.67 -0.68 0.68 
FlS28 -0.83 -0.83 0.54 -0.54 -0.66 -0.66 -0.70 0.70 -0.69 -0.69 -0.66 0.66 
E -0.82 -0.82 0.55 -0.55 -0.66 -0.66 -0.69 0.69 -0.69 -0.69 -0.67 0.67 
PR -0.58 -0.58 0.04 -0.04 -0.83 -0.83 0.41 -0.41 -0.61 -0.61 0.58 -0.58 
Wabs 0.15 0.15 -0.06 0.06 0.84 0.84 -0.28 0.28 0.18 0.18 -0.40 0.40 
SRP28 -0.45 -0.45 0.18 -0.18 0.75 0.75 -0.39 0.39 0.35 0.35 -0.52 0.52 
RCPT28 -0.48 -0.48 0.22 -0.22 0.85 0.85 -0.35 0.35 0.29 0.29 -0.66 0.66 
WL_AA -0.21 -0.21 0.14 -0.14 0.88 0.88 -0.36 0.36 0.46 0.46 -0.49 0.49 
WL_SA -0.25 -0.25 0.18 -0.18 0.81 0.81 -0.44 0.44 0.55 0.55 -0.37 0.37 
WL_Cor 0.19 0.19 0.20 -0.20 0.86 0.86 -0.38 0.38 0.59 0.59 -0.42 0.43 
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4.4.2 Correlation matrix  

Data has been normalised before the application of POD. Table 4.20 presents 

correlation matrix, giving values of degrees of dependence of target characteristics on 

input variables.  

It is evident that fly ash content is highly correlated to cube compressive strength at 28 

& 90 days and V funnel concrete flow time (VT10) to flow 100 mm.  

Cube compressive strength at 90 days, split tensile strength, flexural strength and 

modulus of elasticity are greatly affected by GGBS content.  

Use of silica fume as a replacement to fine aggregate influences compressive strength 

at 28 & 90 days, split tensile strength, flexural strength and elastic modulus. Fine 

aggregate content replacement by silica fume reduces slump spread as indicated by 

negative correlation value. 

4.4.3 Performing orthogonal decomposition of SCC data 

POD technique is applied to the chosen dataset; results are obtained and presented in 

Tables 4.21 and 4.22. 

Table 4.21 Eigenvalues of SCC data 
Cases Fly ash GGBS Silica fume 

Dimensions 1 2 3 1 2 3 1 2 3 

𝜆𝜆𝑖𝑖 9.31 5.58 5.33 13.40 6.59 1.03 10.45 8.30 2.29 

Var. % 42.30 25.40 24.20 60.90 29.90 4.70 47.50 37.70 10.40 

Cum. Var. % 42.30 67.70 91.90 60.90 90.80 95.50 47.50 85.20 95.60 

Component plots 

Fig. 4.12 presents component plots for first two dimensions obtained for the data on 

replacement of fine aggregates with fly ash, GGBS and silica fumes of SCC.  

From Table 4.22 and Fig. 4.12 (a), it is seen that fly ash replacement to fine aggregates 

majorly influence L box test blocking ratio, V funnel test flow time, water absorption 

and weight loss due to acid exposures & corrosion of reinforcement. 

Use of GGBS as a replacement to FA largely affects 90 days’ cube compressive 

strength, flexural strength and modulus of elasticity, as seen in Fig. 4.12 (b).   
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Table 4.22 Component coordinates for SCC with fine aggregates replaced by fly ash, GGBS and silica fume 

Cases        Fly ash      GGBS     Silica fume 
Variables D1 D2 D3 Variables D1 D2 D3 Variables D1 D2 D3 

W/C -0.91 0.04 0.38 W/C -0.98 0.06 -0.05 W/C 0.10 -0.95 -0.28 
W -0.91 0.04 0.38 W -0.98 0.06 -0.05 W 0.10 -0.95 -0.28 
FA 0.29 -0.62 0.70 FA -0.08 -0.97 0.20 FA -0.89 -0.22 0.37 
F -0.29 0.62 -0.70 GGBS 0.08 0.96 -0.20 SF 0.89 0.22 -0.37 
SlS -0.94 0.04 0.30 SlS -0.76 -0.53 -0.36 SlS -0.88 -0.39 0.24 
SlS50 0.63 0.58 -0.30 SlS50 0.85 -0.38 0.11 SlS50 0.95 0.30 0.03 
VT10 0.41 0.65 -0.63 VT10 0.95 0.24 0.08 VT10 0.47 0.79 -0.31 
VT50 0.58 0.38 -0.62 VT50 0.82 0.43 -0.31 VT50 -0.28 0.51 0.74 
LB(H2/H1) -0.13 0.58 -0.39 LB(H2/H1) 0.55 0.30 0.73 LB(H2/H1) 0.01 -0.78 -0.54 
UB(H2/H1) 0.90 -0.36 0.00 UB(H2/H1) 0.85 -0.29 0.01 UB(H2/H1) -0.31 0.86 0.34 
CS28 0.81 -0.49 0.18 CS28 0.85 0.47 -0.15 CS28 0.91 -0.10 -0.02 
CS90 0.20 0.51 -0.74 CS90 0.49 0.82 -0.24 CS90 0.73 0.65 -0.17 
STS28 0.90 -0.33 0.09 STS28 0.79 0.59 0.06 STS28 0.58 0.78 -0.08 
FlS28 0.92 -0.38 0.05 FlS28 0.72 0.69 0.03 FlS28 0.56 0.79 -0.04 
E 0.92 -0.38 0.06 E 0.73 0.68 0.06 E 0.56 0.80 -0.05 
PR 0.35 -0.57 -0.67 PR 0.82 -0.48 -0.14 PR -0.81 0.56 -0.09 
Wabs 0.10 0.77 0.53 Wabs -0.86 0.42 0.12 Wabs 0.76 -0.26 0.53 
SRP28 0.70 0.53 0.45 SRP28 -0.77 0.54 0.15 SRP28 0.84 -0.39 0.37 
RCPT28 0.73 0.48 0.44 RCPT28 -0.86 0.47 0.08 RCPT28 0.92 -0.29 0.22 
WL_AA 0.49 0.63 0.57 WL_AA -0.87 0.47 0.07 WL_AA 0.79 -0.50 0.28 
WL_SA 0.53 0.59 0.59 WL_SA -0.81 0.56 0.06 WL_SA 0.71 -0.61 0.33 
WL_Cor 0.13 0.61 0.75 WL_Cor -0.86 0.48 0.02 WL_Cor 0.72 -0.63 0.24 
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    (a)           (b)            (c)  

Figure 4.12 Component plots (a) SCC with fly ash replacement to fine aggregates (b) SCC with GGBS replacement to fine 
aggregates (c) SCC with silica fumes replacement to fine aggregates. 
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SF replacement increases early age and long term strengths. From Fig. 4.12 (c), it is 

evident that replacement of SF has major effect on durability aspects when compared 

to fly ash and GGBS replacement to fine aggregates. Use of silica fume reduces the 

slump flow and Poisson’s ratio of SCC. 

List of significant variables affecting characteristics of SCC has been tabulated in Table 

4.23. 

Table 4.23 Significant variables affecting characteristics of SCC with fly ash, 
GGBS and silica fumes replacement to fine aggregates 

Target Characteristics Fly ash GGBS Silica fume 

SlS W/C, W W/C, W FA, SF 

SlS50 – W/C, W FA, SF 

VT10 FA, F W/C, W FA, SF 

VT50 W/C, W W/C, W W/C, W 

LB(H2/H1) – – W/C, W 

UB(H2/H1) W/C, W W/C, W W/C, W 

CS28 W/C, W W/C, W FA, SF 

CS90 FA, F FA, GGBS FA, SF 

STS28 W/C, W W/C, W – 

FlS28 W/C, W FA, GGBS – 

E W/C, W – – 

PR – W/C, W – 

Wabs – W/C, W – 

SRP28 – W/C, W – 

RCPT28 – W/C, W – 

WL_AA – W/C, W – 

WL_SA – W/C, W – 

WL_Cor – W/C, W – 
Text code: Navy blue colour indicate positive correlation; Red colour indicate negative correlation. 
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4.5 STRENGTH AND DURABILITY OF GEO-POLYMER CONCRETE  

Strength and durability characteristics of geo-polymer concrete have been studied with 

the aid of POD for an available dataset. Analysis, results, interpretation of POD 

outcomes and appreciation of behavioural aspects of GPC in aggressive environments 

have been highlighted. 

4.5.1 Data – Source and pre-processing  

1. Source: Rejilin (2018) 

Available data set on geo-polymer concrete cured at ambient temperature has been 

taken up to study the interaction of concrete variables with its cardinal properties. Data 

consists of three cases of blends without fibre (FC, FG, GC) and three cases with fibre 

(FRFC, FRFG, FRGC).  

Fine aggregate (630 kg/m3), coarse aggregate (1800 kg/m3), NaOH (57.15 kg/m3), 

Na2SiO3 (142.85 kg/m3), Gujcon CRF fibres (7 g/m3) and total fines quantity (400 

kg/m3) are adopted and maintained constant for all combination of concrete mixes. 

The data available as variables considered for the study are in Table 4.24. 

Table 4.24 Geo-polymer concrete data variable list 

Variables Symbols Variables Symbols 

1. Cement C 7. Split tensile strength at 7 days STS7 

2. Fly ash F 8. Split tensile strength at 28 days STS28 

3. Ground granulated 

blast furnace slag 

 

GGBS 

9. Modulus of elasticity E 

4. Slump Sl 10. Weight loss due to acid attack  WL_AA 

5. Compressive 

strength at 7 days 

 

CS7 

11. Strength loss due to acid attack  CSL_AA 

6. Compressive 

strength 28 days 

CS28 12. Strength loss due to thermal 

shock  

CSL_TS 

 

  13. Strength loss due to exposure 

to fire 

CSL_Fire 

2. Total number of variables: 13 Quantitative 

3. Total number of observations (Individuals): 60 

4. Matrix size of quantitative data: 60×13 
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5. Missing values: Collected data has no missing value. 

6. Bartlett sphericity test  

χ2 = 3112.59 

DF = 78 

Probability value ≅ 2.22×10-16 < 0.05 

Reject the null hypothesis. Data is not spherical and is accepted for analysis by POD 

7. Descriptive statistics: Refer to Table 4.25 for basic statistical details of GPC data. 

Table 4.25 Descriptive statistics of GPC data 
Variables Units Mean SD Min Max 
C kg/m3 164 167.28 0 400 
F kg/m3 176 166.12 0 400 
GGBS kg/m3 60 96.78 0 400 
Fibres g/m3 3.5 3.53 0 7 
Sl mm 69.48 18.24 20 89 
CS7 N/mm2 36.9 20.18 8.13 76.33 
CS28 N/mm2 51.42 23.23 10.59 96.53 
STS7 N/mm2 3.13 1.74 0.35 6.73 
STS28 N/mm2 4.53 1.83 0.72 7.97 
E N/mm2 35.07 7.66 15.48 48.84 
WL_AA Percent 1.22 0.43 0.48 2.3 
CSL_AA Percent 3.35 2 0.18 7.55 
CSL_ TS Percent 1.91 1.43 0.09 5.7 
CSL_ Fire Percent 3.13 2.05 0.27 8.49 

4.5.2 Correlation matrix 

Data has been normalised before the POD application. 

Since there are six cases in collected GPC data, it would result in six correlation 

matrices. Also, from previous analyses it is apparent that the relationship between 

variables will be well captured and projected in first few components; correlation 

matrix values have not been presented for the chosen set of data. 

4.5.3 Performing orthogonal decomposition for GPC data 

The normalised dataset correlation matrices have been subject to eigenvalue 

decomposition, and results are presented in Tables 4.26 and 4.27. 
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Table 4.26 Eigenvalues of GPC data 
Cases FC FRFC FG FRFG GC FRGC 
𝜆𝜆1  7.83 8.70 10.46 10.38 7.87 7.23 
Var. % 65.20 72.50 87.20 86.60 65.60 60.30 
𝜆𝜆2  2.87 2.65 0.90 0.86 3.86 4.51 
Var. % 23.90 22.10 7.50 7.20 32.30 37.60 
Cum. Var. % 89.10 94.60 94.70 93.80 97.80 97.90 

Table 4.27 First two components of FC, FRFC, FG, FRFG, GC, FRGC mix concrete data without and with fibres 
Cases FC FRFC  FG FRFG  GC FRGC 
Variables D1 D2 D1 D2  D1 D2 D1 D2  D1 D2 D1 D2 

C 0.55 0.80 0.46 -0.88 F -0.98 -0.06 -0.98 0.05 C 0.51 0.86 0.62 0.78 
F -0.55 -0.80 -0.46 0.88 GGBS 0.98 0.06 0.98 -0.05 GGBS -0.51 -0.86 -0.62 -0.78 
Sl -0.76 -0.63 -0.55 0.83 Sl -0.92 -0.14 -0.95 -0.22 Sl 0.57 0.82 0.64 0.76 
CS7 0.98 -0.09 0.98 0.11 CS7 0.96 0.16 0.98 -0.02 CS7 0.97 0.20 0.99 -0.01 
CS28 0.95 -0.24 0.97 0.17 CS28 0.97 0.14 0.99 -0.03 CS28 0.99 0.03 0.97 -0.21 
STS7 0.95 -0.28 0.98 0.01 STS7 0.99 0.09 0.97 0.23 STS7 0.98 0.02 0.99 -0.06 
STS28 0.96 -0.14 0.96 0.11 STS28 0.97 0.14 0.95 0.21 STS28 0.99 -0.07 0.98 -0.21 
E 0.97 -0.13 0.98 0.07 E 0.97 0.20 0.96 0.23 E 0.99 0.08 1.00 -0.05 
WL_AA -0.98 -0.14 -0.98 0.10 WL_AA -0.94 -0.22 -0.91 -0.22 WL_AA -0.46 0.85 -0.66 0.72 
CSL_AA -0.77 0.49 -0.86 -0.37 CSL_AA -0.82 0.48 -0.85 0.49 CSL_AA -0.89 0.41 0.41 0.89 
CSL_ TS -0.69 0.43 -0.88 -0.31 CSL_ TS -0.88 0.38 -0.86 0.05 CSL_ TS -0.89 0.41 -0.67 0.70 
CSL_ Fire 0.04 0.76 -0.87 -0.35 CSL_ Fire -0.79 0.57 -0.77 0.61 CSL_ Fire -0.61 0.78 -0.39 0.91 
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As per Table 4.26, twelve-dimensional data set can be reduced to 2-dimensions as the 

first two axes account for about 90% of variation. 

Coordinate information of components in reduced dimensional space has been 

organised in Table 4.27. The coefficients reveal orientation of variables to lie in a 

specific dimension.  

  

  

  
  Figure 4.13 Vector loadings (a) FC (b) FRFC (c) FG (d) FRFG (e) GC (f) FRGC 

Vector loadings shown in Fig. 4.13 give an idea of amount of contribution of variables 

to each dimension and nature of contribution. 
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             (a) 

 
             (b) 

 
             (c) 

 
             (d) 

 
              (e) 

 
             (f) 

Figure 4.14 Component plot (a) FC (b) FRFC (c) FG (d) FRFG (e) GC (f) FRGC 
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Component Plots 

Fig. 4.14 shows component plots that are of utility in identifying prime variables 

influencing targeted concrete characteristics. This exercise immensely helps in 

discarding variables that do not affect target characteristics. Such elimination vastly 

reduces time and efforts in modelling and simulations.  

It is observable from correlation plots (Fig. 4.14a & 4.14b) of cement-fly ash based 

mixes that WL_AA, CSL_AA and CSL_TS are negatively correlated to strength of 

concrete. In mixes without fibres, CSL_Fire is not well correlated with any other 

variables considered. With addition of fibres, CSL_Fire is negatively correlated to 

strength variables.  Slump is strongly and positively correlated to fly ash content.  

As observed from Figs. 4.14c and 4.14d, in FG and FRFG mixes also, slump increases 

as fly ash content increases. Strength parameters are positively correlated to GGBS and 

negatively correlated to fly ash contents. WL_AA, CSL_AA, CSL_TS and CSL_Fire 

are more in mixes with higher fly ash quantities. Addition of fibres does not show much 

change in nature of variables interaction.  

Figs. 4.14e and 4.14f show that usage of fibres in cement-GGBS based mixes has 

highest influence on CSL_AA. In mixes without fibres CSL_AA has negative 

correlation with strength whereas in mixes with fibres CSL_AA has high positive 

correlation with cement content. Slump increases with an increase in OPC content. 

Weight loss due to acid exposure and strength loss due to thermal shock & exposure to 

fire are negatively correlated to 28 days’ compressive strength. 
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4.6 PERFORMANCE-BASED DESIGN OF CONCRETE BY INNOVATIVE 

CEMENT COMBINATIONS  

Innovative cement combinations are being tried for accomplishment of economic 

growth with due concern to environment. To pick the most appropriate combination for 

a given situation, POD can be a valid decision-making tool. Arrival at the judicious 

combination by way of determining performance index has been elaborated.  

4.6.1 Data – Source and pre-processing 

1. Source: Dhir et al. (2010) 

Available data set “Innovative cement combinations for concrete performance” has 

been studied using POD technique. Data set of 159 observations and 58 variables 

reduced to matrix of 159×35 size after removing variables with missing values and this 

matrix further categorised into 13 case-specific combinations (see Table 4.32). 

Ordinary Portland cement – CEMI (PC) based unary mixes, flyash (F), ground 

granulated blast-furnace slag (GGBS), silica fume (SF), metakaolin (MK) and 

limestone (LS) based binary and ternary mixes had been formulated and experimentally 

studied (Dhir et al. 2010). Along with available data on quantities of these mineral 

admixtures, their corresponding percentages in total fines content (T_fines) are also 

taken as variables (PCp, Fp, GGBSp, SFp, MKp, LSp) to assist the data analysis. 

As reported, 0.35, 0.50 and 0.65 water binder ratios W/B (by weight) and 470, 330 and 

255 kg/m3 binder contents were adopted. Superplasticizer was used to maintain nominal 

slump of 75±25 mm, (British Standards Institution 2000). A water content of 165 kg/m3 

was maintained across all mixes. Fine aggregate (FA), 10 mm downsize coarse 

aggregate (CA5_10), 20 mm downsize coarse aggregate (CA10_20) contents ranged 

between 434–867.40 kg/m3, 286–385 kg/m3 and 725–765 kg/m3 respectively.  

Compressive strength of 100 mm cubes at 3, 7, 28, 90, 180 days (CS3, CS7, CS28, 

CS90, CS180), expected time to achieve 10 N/mm2 strength (ET_10MPa), initial 

surface absorption (ISAT28, ISAT180), sorptivity (SRP28, SRP180), water penetration 

(WP28, WP180), air permeability (AP28, AP180) at 28 and 180 days, carbonation 

depth (Car8w, Car20w) at 8 and 20 weeks and embodied carbon dioxide (Emb_CO2) 

are available as data on target performances. Blaine fineness and particle density test 

results reported are as mentioned in Table 4.29. 



62 
 

Table 4.28 Data variable list of innovative cement combinations for concrete performance 

Sl No. Variables Symbols Units N Mean SD Min. Max. 

01. Portland cement (CEMI) PC kg/m3 159 184.18 106.54 25.00 475.00 
02. Fly ash F kg/m3 159 36.45 57.02 0.00 255.00 

03. Ground granulated blast-furnace slag GGBS kg/m3 159 97.70 109.28 0.00 420.00 

04. Lime stone LS kg/m3 159 16.92 35.64 0.00 165.00 

05. Metakaolin MK kg/m3 159 10.25 18.65 0.00 70.00 

06. Silica fume SF kg/m3 159 5.69 12.37 0.00 50.00 

07. Fine aggregate or sand FA kg/m3 159 743.71 78.77 625.00 845.00 

08. Coarse aggregates (5–10mm size) CA5_10 kg/m3 159 374.65 5.37 355.00 385.00 

09. Coarse aggregates (10–20mm size) CA10_20 kg/m3 159 751.91 9.57 725.00 765.00 

10. Total fines  T_Fines kg/m3 159 351.19 91.09 245.00 480.00 

11. Portland cement (percentage) PCp % 159 52.42 26.12 9.09 100.00 

12. Fly ash  (percentage) Fp % 159 10.51 15.76 0.00 55.38 

13. Ground granulated blast-furnace slag  (percentage) GGBSp % 159 27.69 29.23 0.00 90.91 

14. Limestone (percentage) LSp % 159 4.81 9.75 0.00 36.36 

15. Metakaolin  (percentage) MKp % 159 2.94 5.15 0.00 16.00 

16. Silica fume  (percentage) SFp % 159 1.63 3.38 0.00 10.64 

17. Water to binder ratio W/B Ratio 159 0.50 0.12 0.34 0.67 

18. Cube compressive strength at 3 days CS3 MPa 159 18.46 12.60 2.00 56.00 
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Sl No. Variables Symbols Units N Mean SD Min. Max. 

19. Cube compressive strength at 7 days CS7 MPa 159 27.79 15.50 5.00 70.00 
20. Cube compressive strength at 28 days CS28 MPa 159 41.26 17.73 10.00 86.00 

21. Cube compressive strength at 90 days CS90 MPa 159 49.94 18.76 14.50 94.00 

22. Cube compressive strength at 180 days CS180 MPa 159 54.46 19.08 17.00 96.00 

23. Initial surface absorption test at 28 days ISAT28 (×10-2) ml/m2 s 159 49.42 14.91 27.50 102.00 

24. Initial surface absorption test at 180 days ISAT180  (×10-2) ml/m2s 159 35.91 13.21 14.90 87.00 

25. Sorptivity at 28 days SRP28  (×10-4) mm/√𝑠𝑠 159 269.25 94.06 95.00 620.00 

26. Sorptivity at 180 days SRP180 mm/√𝑠𝑠 159 195.86 77.38 70.00 465.00 

27. Water penetration at 28 day curing WP28 mm 159 32.35 20.48 5.00 110.00 

28. Water penetration at 180 day curing WP180 mm 159 17.20 11.35 2.00 70.00 

29. Intrinsic air permeability at 28 days curing AP28  (×10-17) m2 159 5.54 5.91 0.99 30.00 

30. Intrinsic air permeability at 180 days curing AP180 (×10-17)m2 159 4.62 5.21 0.56 25.10 

31. Embodied CO2 per kg EmbCO2 kg/m3 159 0.84 0.49 0.25 2.60 

32. Expected time to reach 10 MPa cube strength ET_10MPa h 159 61.57 91.68 4.40 672.00 

33. Accelerated carbonation depth at 8 weeks Car8w mm 141 18.71 11.33 1.50 50.00 

34. Accelerated carbonation at depth 20 Weeks Car20w mm 141 25.01 13.44 4.00 52.00 

35. Non-steady state chloride migration for 28 days 

cured concrete 

 

Cl_Mig28  (×10-12) m2/s 32 12.13 8.64 2.30 33.90 
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Sl No. Variables Symbols Units N Mean SD Min. Max. 

.36. Non steady state chloride migration for 90 days 

cured concrete 

Cl_Mig90  (×10-12) m2/s 22 10.12 9.15 1.40 29.50 

37. Chloride migration for 180 days cured concrete Cl_Mig180 (×10-12) m2/s 22 7.84 7.48 0.70 23.80 

38. Heat of hydration – rate of evolution HoH_RoE W/kg 28 2.69 0.83 1.39 4.06 

39. Time to reach maximum rate of HoH HoH_T h 28 9.22 1.70 7.40 13.60 

40. Total heat evolved in 72 h HoH_Tot KJ/kg 28 207.07 45.82 128.00 268.00 

41. Quantity of CaOH2 at 28 days CaOH2_28 % Cement Mass 29 11.97 5.35 4.20 22.90 

42. Quantity of CaOH2 at 180 days CaOH2_180 % Cement Mass 25 11.49 6.22 3.40 24.10 

43. Superplasticizer dosage SP % of Cement 159 0.32 0.13 0.14 0.76 

44. Embodied CO2 at 3 days cube strength Emb.CO2_CS3 MPa 39 15.64 3.26 9.80 22.90 

45. Embodied CO2 at 180 days cube strength Emb.CO2_CS1

 

MPa 39 54.34 5.13 43.50 66.00 

46. Embodied CO2 Emb.CO2_Per2

 

kg/m3  39 177.26 43.43 102.00 277.00 

47. Initial surface absorption test at 28 days ISTA10_28 ml/(m2.s)  39 45.30 7.48 32.70 63.60 

48. Initial surface absorption test at 180 days ISTA10_180 ml/(m2.s)  39 31.24 6.09 19.70 45.60 

49. Water penetration at 28 day curing WP_40MPa_28 mm 39 27.54 10.30 12.30 55.00 

50. Water penetration at 180 day curing WP_40MPa_18

 

mm  39 13.31 4.18 7.00 24.00 

51. Sorptivity at 28 days SRP_40MPa28  (×10-4) mm/√𝑠𝑠 39 235.62 49.02 108.00 342.00 

52. Sorptivity at 180 days SRP_40MPa180  (×10-4) mm/√𝑠𝑠 39 172.49 41.95 75.00 271.00 

53. Intrinsic air permeability at 28 days curing IA_40MPa28  (×10-17) m2 39 3.90 2.79 1.07 11.61 
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Sl No. Variables Symbols Units N Mean SD Min. Max. 

54. Intrinsic air permeability at 180 days curing IA_40MPa180  (×10-17) m2 39 3.10 2.27 0.89 8.90 
55. Accelerated carbonation depth at 8 weeks Carb40MPa8w mm  39 17.67 5.60 9.50 29.00 

56. Accelerated carbonation depth at 20 weeks Carb40MPa20w mm 39 24.94 7.07 14.00 42.00 

57. Non steady state chloride migration for 28 days 

cured concrete 

Cl40MPa28  (×10-12) m2/s 32 12.33 10.06 2.00 44.10 

58. Non steady state chloride migration for 180 days 

cured concrete 

Cl40MPa180  (×10-12) m2/s 13 11.76 10.44 2.10 32.80 

 
 

Table 4.29 Reported values of Blaine fineness and particle density 

Property  PC F GGBS MK LS SF 

Blaine fineness, m2/kg 410 370 10.2 450 12400 1550 24000 

Particle density, g/cm3 3.14 3.14 2.20 2.91 2.59 2.63 2.10 
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2. Total number of variables: 58 Quantitative (Table 4.28) 

3. Observations (Individuals): 159 

4. Quantitative data size: 159 × 58 

5. Missing values: Collected data has many missing values. Variables with missing 

values are excluded from POD analysis. Data without missing values reduces to a 

matrix of 159 × 33 size. 

6. Bartlett sphericity test 

χ2 = 13708.26 

DF = 528 

Probability value ≅ 2.22×10-16 < 0.05 

Reject the null hypothesis. Data is not spherical and is accepted for analysis by POD. 

7. Descriptive statistics  

Statistical information of binary and ternary blend mix concrete data is given in Table 

4.28. 

Data has been classified (Table 4.30) based on mix ingredients and are analysed 

separately to understand variable interaction across the type of mixes. 

Table 4.300 Innovative cement combinations for concrete performance data 
classification chart 

 Combination Notation N P 

Ternary Blends 

PC + F + GGBS PFG 15 29 
PC + F + LS PFL 9 29 
PC + F + MK PFM 15 29 
PC + F + SF PFS 12 29 
PC + GGBS + LS PGL 21 27 
PC + GGBS + MK PGM 21 27 
PC + GGBS + SF PGS 15 27 

Binary Blends 

PC + F PF 9 27 
PC + GGBS PG 12 25 
PC + LS PL 9 27 
PC + MK PM 9 27 
PC + SF PS 6 27 

Cement based Mix PC  P 6 24 
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Z-score standardization has been carried out to normalize the data. 

4.6.2 Correlation matrix  

Obtained correlation matrices of different combinations of mix have been subject to 

POD analysis.  

4.6.3 Performing orthogonal decomposition for innovative cement combinations 

for concrete performance data 

Table 4.31 Eigenvalues 

Cases  𝜆𝜆1 Var. % 𝜆𝜆2 Var. % Cum. Var % 

PFG 20.39 70.31 5.05 17.42 87.73 
PFL 20.87 71.97 5.01 17.29 89.26 
PFM 18.19 62.74 7.30 25.16 87.89 
PFS 18.75 64.65 6.87 23.69 88.34 
PGL 16.97 62.83 6.87 25.43 88.27 
PGM 16.43 60.85 7.18 26.59 87.44 
PGS 16.67 61.75 7.51 27.80 89.54 
PF 19.40 71.85 5.83 21.61 93.46 
PG 17.09 68.36 6.23 24.91 93.27 
PL 21.62 80.07 4.05 14.99 95.06 
PM 20.92 77.50 3.47 12.84 90.33 
PS 21.36 79.12 3.44 12.74 91.86 
P 21.36 89.00 1.61 6.72 95.72 

 

Eigenvalues obtained are listed in Table 4.31. The first two dimensions have been 

investigated for targeted performance appraisal of concrete with an emphasis on 

significant variables, as these dimensions explain about 87% of the inherent variation. 

Component plots have been presented in Fig. 4.15.  

Cause-effect relation has been inferred from the correlation coefficients. Variables 

interaction have been analyzed using correlation values and component plots. 
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         (a) PFG           (b) PFL 

 
                      (c) PFM          (d) PFS 

 
                      (e) PGL           (f) PGM 
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                      (g) PGS            (h) PF 

 
                       (i) PG           (j) PL 

 
                     (k) PM           (l) PS 
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        (m) P 

Figure 4.15 Correlation plots for innovative cement combinations for concrete 
performance data 

4.6.4 Inferences from component plots  

For all concrete formulations 

POD accomplishes dimensionality reduction of data by explaining that, 87% of the 

variation is explained by first two components and limiting consideration of these two 

components with just 13% loss of information, reduces time and effort. Component 

plots in addition to helping in dimensionality reduction enhance visualization and 

understanding of variable interaction.  

Observation of component plots helps in segregating cement mixes from binary and 

ternary as variables are concentrated around 1st dimension for PC (Fig. 4.15 m) and not 

so for binary (Fig. 4.15 h – l) and ternary (Fig. 4.15 a – g).  

As 1st component explains the maximum variation strength characteristics in almost all 

plots and ISAT28, ISAT180, SRP28, SRP180, WP28, WP180, AP28, AP180, Car8w, 

Car20w in majority of the plots lie around 1st axis indicating variation due to mix 

proportions.  

Correlation plots suggest that variables affecting strength and adsorption, permeation 

and carbonation are at loggerheads. Cement content and strength have a positive 

correlation, whereas cement content and ISAT28, ISAT180, SRP28, SRP180, WP28, 

WP180, AP28, AP180, Car8w, Car20w have a negative correlation. Sorption, surface 
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adsorption, water & air permeability and carbonation characteristics are positively 

correlated to W/B ratio and fine aggregate contents. Super-plasticiser used enhances 

workability, contribute to strength enhancement and durability. Embodied CO2 is 

positively correlated to OPC, T_Fines and SP contents. Maximum size of coarse 

aggregate has not significantly affected concrete characteristics in comparison to other 

variables. 

Specific trends observed for blends  

Binary Blends 

Figs. 4.20 (k) and 4.20 (l), component plots for PM and PS blends show strength 

increase with increase in metakaolin and silica fume contents whereas increase in 

GGBS reduces strength as indicated by Fig. 4.15 (i). Addition of fly ash or limestone 

has not changed strength characteristics much (Fig. 4.15 (h) and 4.15 (j)). This 

difference is due to the higher fineness of silica fume and metakaolin in comparison to 

GGBS, flyash and limestone. Higher GGBS contents lead to increased permeability 

which adversely affects durability, and this aspect is highlighted by Fig. 4.15 (i). 

Ternary Blends 

Component plots for all fly ash based ternary blends (Figs. 4.15 a, b, c & d) indicate 

positive correlation of strength with variables, suggesting accomplishment of higher 

strength as possible with blends. However, corresponding weak correlation in GGBS 

based ternary mixes (Figs. 4.15 e, f & g) suggest futility of such blending exercise. 

Component plots also provide indications to the order for discrimination of these 

blends. A deviation in direct inverse relation of strength and W/B is observed for GGBS 

blends except for PFG case, needs further probing to account for the deviation. 

On the whole fly ash based ternary blends have performed better than GGBS.  

4.6.5 Identification of significant variables for possible dimensionality reduction 

Significant variables identified based on significant correlation values and examination 

of component plots have been summarised in Table 4.32. Based on the need and 

objective of works at site, variables recognised can be fine-tuned to obtain targeted 

performance levels. 
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Text code: Navy blue colour indicate positive correlation; Red colour indicate negative correlation. 

Table 4.32 List of significant variables for cement, binary and ternary blend 
concrete mixes 

Performance 

Characteristics 

Cases 

PFG PFL PFM PFS 

EmbCO2 T_Fines, SP, 

FA, W/B, 

CA10_20, 

CA5_10 

W/B, FA, 

T_Fines, SP, 

PC 

FA, T_Fines, 

W/B, SP 

SP, T_Fines, 

W/B, FA, PC 

CS3 T_Fines, SP, 

FA, W/B, 

CA10_20, 

CA5_10, PC 

PC, 

T_Fines, 

W/B, FA, 

SP 

PC, T_Fines, 

W/B, FA 

PC, T_Fines, 

W/B,  FA, SP  CS7 

CS28 

CS90 

CS180 

ET_10MPa W/B, FA, SP, 

T_Fines, 

CA5_10 

SP, PC, 

W/B 

PC, W/B, 

T_Fines 

PC, W/B 

ISAT28 PC, W/B,  FA, 

SP, T_Fines 

W/B, FA, 

T_Fines, SP, 

PC 

W/B, FA, 

T_Fines, SP 

W/B, FA, 

T_Fines, SP, 

PC 

ISAT180 W/B,  FA, PC, 

SP, T_Fines 

SP, SF, FA, 

W/B, T_Fines 

SRP28 W/B, FA, SP, 

T_Fines, 

CA10_20, 

CA5_10 

W/B, SP, 

FA, 

T_Fines, F, 

PC 

FA, W/B, 

T_Fines, SP, 

F 

F, SF, 

CA10_20, 

CA5_10, FA, 

W/B, T_Fines 

SRP180 W/B, FA, SP, 

T_Fines, PC, 

CA10_20 

F, FA, W/B, 

T_Fines, SP, 

MK, CA5_10 

F, SF, 

CA10_20, 

CA5_10, FA, 

W/B 
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WP28 PC, W/B, FA, 

SP, T_Fines 

SP, W/B, 

FA, 

T_Fines, PC 

W/B, 

T_Fines, FA, 

SP, PC 

FA, W/B, 

T_Fines, SP 

WP180 W/B, 

T_Fines, FA, 

PC 

W/B, FA, 

T_Fines, SP, 

PC 

AP28 PC, PCp, 

GGBSp 

W/B, FA, 

T_Fines, PC, 

SP 

AP180 

Car8w PC, W/B, FA, 

SP, T_Fines 

PC, W/B, 

T_Fines, 

FA, SP 

PC, W/B, 

T_Fines, FA 

PC, W/B, 

T_Fines, FA, 

SP 

Car20w 

Table 4.32 List of significant variables for cement, binary and ternary blend 

concrete mixes (Continued) 

Performance 

Characteristics 

Cases 

PGL PGM PGS PG 

EmbCO2 T_Fines, SP, 

FA, W/B, 

CA10_20, 

CA5_10 

GGBS, SP, 

CA5_10, FA, 

CA10_20, 

T_Fines, 

W/B, MK 

CA5_10, FA, 

T_Fines, 

GGBS, W/B, 

SF, SP, 

CA10_20 

FA, T_Fines, 

SP, W/B, 

CA10_20, 

CA5_10, 

GGBS 

CS3 PC, T_Fines, 

SP, W/B, FA 

PC,  T_Fines, 

FA, W/B, 

CA10_20 

PC, T_Fines, 

W/B, FA 

PC, CA10_20, 

T_Fines, W/B, 

FA CS7 PC, GGBSp, 

LSp 

CS28 PC, PCp, 

GGBSp, LSp CS90 

CS180 

ET_10MPa PC, GGBSp, 

LSp 

W/B,  FA, 

T_Fines  

W/B, PC, 

T_Fines, FA 
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ISAT28 PC, T_Fines, 

W/B, SP 

FA, T_Fines W/B, FA, 

T_Fines 

PC, W/B, FA, 

T_Fines, 

CA10_20  

ISAT180 

SRP28 PC, W/B, SP W/B, FA, 

T_Fines 

PC, W/B 

SRP180 W/B, FA, SP, 

T_Fines, PC 

WP28 PC, PCp, 

GGBS, LSp 

PC, GGBSp, 

PCp 

PC, W/B PC, PCp, 

GGBSp WP180 

AP28 PC, PCp, 

GGBS, LSp 

PC, GGBSp, 

PCp 

PC, GGBS, 

PCp AP180 

 

Table 4.32 List of significant variables for cement, binary and ternary blend 

concrete mixes (Continued) 

Performance 

Characteristics 

Cases 

PF PL PM PS P 

EmbCO2 PC, SP, 

T_Fines, 

W/B, FA 

PC,  SP, 

T_Fines, 

W/B, FA, 

CA10_20, 

CA5_10 

T_Fines, 

FA, W/B, 

SP, PC, 

MK 

FA, 

T_Fines, 

W/B, SP, 

PC, SF 

PC, 

T_Fines, 

FA, SP, 

W/B, 

CA5_10 

CS3 PC, SP, 

T_Fines, 

W/B, FA 

PC, 

T_Fines, 

FA, W/B, 

SP, 

CA5_10, 

CA10_20 

W/B, PC,  

T_Fines, 

FA, SP 

W/B, FA, 

T_Fines, 

PC, SP 

PC, 

T_Fines, 

FA, W/B, 

CA5_10, SP 

CS7 

CS28 

CS90 

  CS180 

ET_10MPa PC, SP, 

W/B 

SP, PC, 

W/B 

W/B, FA, 

PC, 

T_Fines, 

SP 

W/B, FA, 

T_Fines, 

PC, SP 

W/B, FA, 

PC, 

T_Fines, SP 
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ISAT28 W/B, FA, 

T_Fines, 

PC, SP 

PC, W/B, 

T_Fines, 

FA, SP, 

CA5_10 

  

W/B, FA,  

T_Fines, 

SP, PC 

W/B, FA,  

T_Fines, 

PC,  SP 

W/B, FA,  

T_Fines, 

PC, SP, 

CA5_10 ISAT180 W/B, FA, 

T_Fines, 

PC 

SRP28 W/B, FA, 

T_Fines 

W/B, FA, 

T_Fines, 

PC, SP, 

CA5_10 

W/B, SP, 

FA, 

T_Fines, 

PC, MK  

W/B, FA, 

T_Fines, 

PC, 

CA5_10,  

SP 

SRP180 

WP28 W/B, SP, 

T_Fines, 

PC, FA,  

SP, PC, 

W/B, FA, 

T_Fines 

W/B, FA,  

T_Fines, 

PC, SP 

W/B, FA, 

PC, 

T_Fines, SP 

WP180 

AP28 W/B, FA, 

T_Fines, 

PC, SP 

PC, SP, 

W/B, FA, 

T_Fines 

W/B, FA, 

T_Fines, 

PC, SP  

W/B, FA,  

T_Fines, 

PC, SP 

SP, W/B, 

FA, PC, 

T_Fines  

AP180 

Car8w PC, SP, 

W/B, 

T_Fines, 

FA 

PC, SP, 

W/B, FA, 

T_Fines 

W/B, PC, 

FA,  

T_Fines,  

W/B, FA, 

PC,  

T_Fines, SP 

W/B, FA,  

T_Fines, 

PC, 

CA5_10, SP 

Car20w 

 
 

4.7 DESIGN AIDS FROM POD 

4.7.1 Performance index 

A Performance index has been developed and proposed to quantify relative 

performance of mixes with significant variables identified from POD. Component 

weights have been multiplied by scaled variable values, to quantify positive and 

negative effects as QP and QN, respectively. Ratios of normalised positive and negative 

effects give relative performance indices. The general form of performance index 

proposed is detailed in Eq. 4.01.  

𝑃𝑃𝑃𝑃𝑥𝑥 =
𝑄𝑄𝑃𝑃 𝑄𝑄𝑃𝑃,𝑚𝑚𝑚𝑚𝑥𝑥⁄
𝑄𝑄𝑁𝑁 𝑄𝑄𝑁𝑁,𝑚𝑚𝑖𝑖𝑛𝑛⁄  (4.01) 
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where,  

𝑄𝑄𝑃𝑃, 𝑄𝑄𝑁𝑁 : Quantity of Positive and Negative effects which are computed using Eq. 4.02. 

𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑥𝑥 = �
1
𝑚𝑚
�𝐷𝐷1,𝑦𝑦𝑘𝑘  

𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘,𝑟𝑟𝐸𝐸𝐸𝐸

𝑚𝑚

𝑘𝑘=1

� × 𝐷𝐷1,𝑥𝑥 + �
1
𝑚𝑚
�𝐷𝐷2,𝑦𝑦𝑘𝑘  

𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘,𝑟𝑟𝐸𝐸𝐸𝐸

𝑚𝑚

𝑘𝑘=1

� × 𝐷𝐷2,𝑥𝑥 (4.02) 

𝑄𝑄𝑃𝑃,𝑚𝑚𝑚𝑚𝑥𝑥 : Maximum value of 𝑄𝑄𝑃𝑃 computed 

𝑄𝑄𝑃𝑃,𝑚𝑚𝑖𝑖𝑛𝑛 : Minimum value of 𝑄𝑄𝑁𝑁 computed 

m : Number of significant variables 

𝐷𝐷 : Component weight 

𝑦𝑦𝑘𝑘 : Important variables affecting target characteristics, as listed in Table 4.32.  

𝑦𝑦𝑟𝑟𝐸𝐸𝐸𝐸 : Reference maximum value of the variable in dataset (Table 4.33) 

Table 4.33 Reference maximum values 

Variables Reference 

Values (kg/m3) 

Variables Reference 

Values (%) 

Variables Reference 

Values 

PC 475 PCp 100 T_Fines 480 kg/m3 

F 255 Fp 55 W/B 0.67 

GGBS 420 GGBSp 90.91 CA5_10 385 kg/m3 

SF 50 SFp 10.6 CA10_20 765 kg/m3 

MK 70 MKp 36.36 FA 845 kg/m3 

LS 165 LSp 10 SP 0.76 (% of PC) 

High performance index will be obtained for formulations for which positive attributes 

are maximum and negative are minimum.  

4.7.2 Design charts 

For all concrete formulations, indices obtained have been mapped against 

corresponding concrete performance characteristics as reported in data (Fig. 4.16). 

Blue, yellow and red ellipses are the regions of 95% CI for 0.35, 0.50 and 0.65 W/B 

ratios respectively. 

From performance indices and also from Fig. 4.16, for the data analysed fly ash based 

mixes have exhibited their superiority over GGBS based mixes in satisfaction of 

performance basis. 
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(a) 3 day’s compressive strength   (b) 7 day’s compressive strength 

 

 
 
 

(c) 28 day’s compressive strength   (d) 90 day’s compressive strength 

 

 
(e) 180 day’s compressive strength  (f) Expected time to reach 10 MPa cube strength 
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(g) Initial Surface Adsorption at 28 days    (h) Initial Surface Adsorption at 180 days 

 

 
(i) Sorptivity at 28 days    (j) Sorptivity at 180 days 

 

 
(k) Water penetration at 28 days curing  (l) Water penetration at 180 days curing 
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(m) Intrinsic air permeability at 28 days curing (n) Intrinsic air permeability at  

     180 days curing 
 

 
(o) Accelerated Carbonation depth at 8 weeks (p) Accelerated Carbonation depth at  

20 weeks 
 

 
(q) Embodied CO2 

Figure 4.16 Performance design charts 
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4.8 UTILITY OF POD IN COMPUTATIONAL MECHANICS 

Cracking is inherent to concrete, triggered by heat released during hydration, shrinkage, 

insolation, thermal-hygral-structural loadings and many other causes. The extent of 

early-age cracking is one of the prime factors that decide the strength and durability of 

concrete. Quantification of heat release during hydration of cement and its rate is an 

important step in developing models to simulate early age cracking. Using Arrhenius 

equation, three-parameter exponential hydration-maturity relationship and equation of 

heat release rate, Schindler suggested an expression to compute heat release with time, 

as in Eq. 4.03 (Riding et al. 2012; Schindler et al. 2002; Schindler and Folliard 2005). 

𝑄𝑄ℎ(𝑡𝑡) = 𝐻𝐻𝑢𝑢𝐶𝐶𝐸𝐸 �
𝜏𝜏
𝑡𝑡𝐸𝐸
�
𝛽𝛽
�
𝛽𝛽
𝑡𝑡𝐸𝐸
� 𝛼𝛼𝑢𝑢 𝑒𝑒�−

𝜏𝜏
𝐸𝐸𝑒𝑒
�
𝛽𝛽

𝑒𝑒
𝐸𝐸𝑎𝑎
𝑅𝑅 � 1𝑇𝑇𝑟𝑟

− 1𝑇𝑇𝑐𝑐
�  (4.03) 

𝑄𝑄ℎ is heat release with time, 𝐻𝐻𝑢𝑢 total heat available for reaction (J/g), 𝐶𝐶𝐸𝐸 is cementitious 

material content (g/m3), te (h) is the equivalent age for a material hydrating at reference 

temperature 𝑇𝑇𝑟𝑟(K), R is the universal gas constant (8.314 J/mol/K), Tc is the temperature 

of the concrete (K), and Ea is the apparent activation energy (J/mol), which depends on 

composition and proportioning of the cementitious materials. 

𝜏𝜏 is the hydration time parameter (h), 𝛽𝛽 is the hydration slope parameter, and 𝛼𝛼𝑢𝑢 is the 

ultimate degree of hydration in the three-parameter model for degree of hydration. The 

𝜏𝜏 term represents the time delay from mixing until setting, 𝛽𝛽 represents the slope of the 

S-shaped curve, and 𝛼𝛼𝑢𝑢 is the total amount of cement that has reacted at t = ∞ where 

𝛼𝛼𝑢𝑢 = 0 for no hydration and 𝛼𝛼𝑢𝑢 = 1 is for complete hydration. The terms  𝛽𝛽, 𝜏𝜏 and 𝛼𝛼𝑢𝑢 

themselves depend on composition and proportioning of cementitious materials. To 

determine 𝛽𝛽, 𝜏𝜏 and 𝛼𝛼𝑢𝑢 many multi-variate non-linear regression expressions are 

established through experimentations on mixes with a wide range of compositions. Past 

works have used the technique of ANOVA in selection/exclusion of variables and 

combination of selected variables. 

Poole (2007) chooses two Bogue compounds C3A, C4AF and Blaine fineness (Fb) as 

suggested by Schindler et al. (2002) model and additionally gypsum content and water-

cement ratio for modeling apparent activation energy to arrive at Eq. 4.04 based on 

Bogue calculations and Eq. 4.05 based on Reitveld analysis.    
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𝐸𝐸𝑚𝑚 = 31400 ��𝑝𝑝𝐶𝐶3𝐴𝐴 + 𝑝𝑝𝐶𝐶4𝐴𝐴𝐴𝐴� 𝑝𝑝𝐺𝐺𝑦𝑦𝑝𝑝𝐺𝐺𝑢𝑢𝑚𝑚�
0.13

 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝑒𝑒−0.07 𝑊𝑊/𝐶𝐶−0.05 (4.04) 

𝐸𝐸𝑚𝑚 = 37800 ��𝑝𝑝𝐶𝐶3𝐴𝐴�(𝐶𝐶𝐵𝐵𝐶𝐶𝑂𝑂4.𝑥𝑥𝐻𝐻2𝑂𝑂 + 𝐾𝐾2𝐶𝐶𝑂𝑂4)�
0.05

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝑒𝑒−0.03𝑊𝑊/𝐶𝐶−0.04  (4.05) 

Available datasets used to develop Eqs. 4.04 and 4.05 are analyzed by POD and results 

obtained are presented in Figs. 4.17 and 4.18 respectively.  

 

  
  (a) Scree plot    (b) Quality of representation 

 
(c) Component plot 
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(d) 3D component plot 

Figure 4.17 POD results for Poole data used for modelling Eq. 4.04 

As evident from Fig. 4.17 (a), first two components explain about 70% of total variation 

in the data. Also, as per Fig. 4.17 (b), the target variable Ea is well represented in first 

dimension. From component plot as presented in Fig. 4.17 (c), it is clear that prime 

variables to be considered in modeling Ea are C3A, C4AF, gypsum content and Blaine 

fineness. Variables W/C, C3S and C2S do not significantly affect Ea. This result is 

consistent with variables selected by Poole in modeling Eq. 4.04. 
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(a) Scree plot    (b) Quality of representation 

 
(c) Component plot  
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(d) 3D component plot  

Figure 4.18 POD results for Poole data used for modelling Eq. 4.05 

Fig. 4.18 (a) indicates only about 61% variance explained from first-two components. 

Ea is well represented in first and fourth components as per Fig. 4.18 (b). Eq. (4.05) 

includes C3A, GHA, K2SO4, Blaine fineness and W/C as variables to predict Ea. 

Component plot drawn for first-two dimensions (Fig 4.18 (c)) shows a strong 

association of Ea with C2S, C4AF and C3S in addition to variables in Eq. 4.05. Their 

inclusion to address the mismatch in Ea model may be necessary, which can be taken 

up based on supplementary information. Consideration of third and fourth components 

may be required for more accurate analysis.  

POD can be of great utility in variable selection by dimensionality reduction of complex 

data which otherwise is difficult to analyse and model. Analysis becomes quick, and 

modelling can be more assertive. Thus POD can be used as a model refinement tool in 

concrete computational mechanics.   
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CHAPTER 5 

CONCLUSIONS 
 

Utility of POD in understanding dependence, inter-dependence and independence of 

variables, interplay of variables in influencing performance, quantification of 

performance levels and reduction of dimensionality of data has been systematically 

studied. The need for computational techniques in reorganization and rationalization of 

concrete data for development of math models, refining of available models has been 

explained. A method of performance appraisal from POD analysis result interpretation, 

and quantification of performance level by determination of performance index has 

been suggested. Possible application of POD in refinement of modelling concrete in 

performance based design has been illustrated. 

5.1 GENERAL CONCLUSIONS 

General conclusions that can be drawn from the investigation are, 

a) POD is of great utility in handling high-dimensional data and helps in identifying 

very vital variables that greatly influence system’s behaviour. Identification of 

crucial variables shall help in reduction of computational efforts in math modelling. 

From the situations addressed, it is clear that first few components are sufficient to 

capture much of the variation. Also at the expense of computational time and effort 

POD helps in inclusion of entire exhaustive data in assessing system’s behaviour. 

b) In experimental investigations, many a time, some crucial data is not acquired. 

Suggestions for acquisition of such data can be made by analytical investigation 

employing POD. 

c) Qualitative and quantitative assessment of system’s behaviour is possible and POD 

is a valid decision-making tool in comparing, discriminating and selecting from 

alternatives as demonstrated by exercise on innovative cement combinations.  

d) Existing and recognised models can be assessed with available data and the model 

that best represents the system can be chosen as has been illustrated by the 

investigation on early-age cracking of concrete. 

e) Systems can be investigated by inclusion of new data and assessed for changes in 

system’s behaviour when such new data is available.  
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f) In the current investigation, the concept of ‘whole-to-part’ of dimensionality 

reduction has been attempted. Part-to-whole approach of dimensionality addition is 

also a possible sequence, wherein, from fringe data, system’s behaviour appraisal 

can be done by addition of data on variables for exploration, verification and 

validation of possible improvements in performance. 

5.2 SPECIFIC CONCLUSIONS 

Specific conclusions that can be drawn from the investigation are, 

5.2.1 Workability 

a) An increase in water and fine aggregate content increases workability; whereas 

higher coarse aggregate content makes the mix harsher (Section 4.2.4d, e).  

b) Use of silica fume as a replacement to fine aggregate influences flow characteristics 

more than replacement by GGBS or fly ash in self-compacting concrete (Section 

4.4.2).  

c) In cement - fly ash based and fly ash - GGBS based geo-polymer concrete slump is 

strongly and positively correlated to fly ash content whereas in cement-GGBS 

based mixes slump is correlated to cement content (Section 4.5.3). 

5.2.2 Strength 

a) Higher cement content in mixes and an increase in the ratio of cement to aggregate 

increases compressive strength but an increase in water-cement ratio decreases 

compressive strength. Strength is negatively correlated to fine aggregate to cement 

content and coarse aggregate to cement content ratios (Section 4.2.4a, b, c).  

b) In self-compacting concrete, use of GGBS as a replacement to fine aggregate 

strongly affects, leading to increase in 90 days’ cube compressive strength, flexural 

strength and modulus of elasticity. Silica fume replacement enhances early age and 

long term strengths, on the contrary, substitution of fly ash affects strength 

properties adversely (Section 4.4.3). 

c) POD analysis of fly ash - GGBS based geo-polymer concrete reveals that strength 

parameters are positively correlated to GGBS and negatively correlated to fly ash 

contents. Positive correlations of fly ash content in concrete with weight and 

strength loss due to acid, thermal and fire exposure are indicators of poor 

performance. Generally, in geo-polymer concrete mixes, weight and strength loss 
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due to acid exposure and loss in compressive strength due to thermal shock and fire 

are negatively correlated to strength of concrete. Incorporation of fibres can vastly 

help in retaining compressive strength characteristics when fly ash - cement based 

mixes exposed to fire and GGBS - cement based mixes are subjected to a harmful 

acid environment (Section 4.5.3). 

d) In the innovative cement combination studies, strength variables cluster around 

total fine content and lie opposite to fine and coarse aggregate contents (Section 

4.6.4), indicating superiority of more fines concrete in strength capabilities.  

5.2.3 Durability 

a) It is observed that in making innovative cement, usage of fly-ash and GGBS in 

binary blends in addition to cement does not change the interaction of the variables 

much. Although, their increased percentage in mixes can initiate durability 

problems (Section 4.6.4).  

b) Coarse aggregate majorly affects sorption characteristics and does not affect 

strength and durability as much as other variables. Increased fine aggregate content 

in mixes can result in higher sorption and water penetration (Section 4.6.5). 

c) Replacement of coarser materials (aggregates) does not have an effect as much as 

the replacement of finer materials on strength and durability characteristics, unless 

coarse material is reactive (Section 4.6.3).  

d) Percolation characteristics are negatively correlated with strength variables. Hence 

mixes with high-strength are likely to have low permeability issues (Section 4.6.3).  

e) Clustering of variables influencing durability suggests that they are interrelated and 

one of the variables affecting adversely indicates possibility of issues due to other 

variables too (Section 4.6.3).  

f) The signatures of variable interaction in component plots substantiate that grading 

of fines and their optimum proportioning are the primary factors that contribute to 

strength enhancement and durability extension (Section 4.6.3). 

g) Utility of SCMs is more effective as a ternary blend. On the whole fly ash based 

ternary blends are superior to GGBS (Section 4.6.4).  

5.2.4 Performance at elevated temperature exposure 

Inferences from POD analysis of data on concrete exposed to elevated temperature are, 
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a) Crushed rock fines content and water-cement ratio are the primary variables that 

increase weight loss due to concrete exposure up to 200 °C. In this temperature 

range, higher cement content and cement to aggregate ratio help in retaining weight 

(Section 4.3.3).  

b) For exposure above 200 °C, cement content, cement to aggregate ratio, admixture 

dosage and concrete grade are the significant parameters that determine the amount 

of weight loss that can happen. Higher the strength, greater is the weight loss 

(Section 4.3.3).  

c) Fine and coarse aggregate contents do not significantly affect weight loss at 

elevated temperatures (Section 4.3.4).  

d) In all temperature ranges of the data, water-cement ratio shows a positive 

correlation with residual compressive strength whereas cement content, cement to 

aggregate ratio, admixture dosages and gel space ratio show a negative correlation 

with residual compressive strength, indicating loss in strength is greater in higher 

strength grades (Section 4.3.4).  

e) Fine aggregate content has a strong positive correlation with residual compressive 

strength, indicating beneficial role of fine aggregate in strength retention (Section 

4.3.4). 

5.3 HIGHLIGHTS AND NOVELTY OF THE PRESENT INVESTIGATION 

a) Demonstration of utility of POD in performance based design has been 

accomplished by illustrations through investigations on available data for  

o Workability 

o Strength 

o Durability 

o Performance at elevated temperature exposure 

b) The illustrations demonstrate the power of POD in quantification of influence of 

variables on concrete performance. The investigations have been carried out on a 

wide and varied range of data sets available for conventional concrete, geo-polymer, 

self-compacting concrete, concrete at elevated temperature and innovative cement 

blends. 
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c) Available concrete models have been tested for prediction/projection capabilities 

subjecting them to POD analysis.  

d) POD has immense capabilities of dimensionality reduction, qualitative and 

quantitative representation of system’s behaviour, understanding interplay of 

variables and refinement of concrete models as has been demonstrated by the 

various illustrations.  
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