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ABSTRACT

Notion of frames and Bessel sequences for metric spaces have been introduced. This

notion is related with the notion of Lipschitz free Banach spaces. It is proved that ev-

ery separable metric space admits a metric Md-frame. Through Lipschitz-free Banach

spaces it is showed that there is a correspondence between frames for metric spaces

and frames for subsets of Banach spaces. Several characterizations of metric frames

are obtained. Stability results are also presented. Non linear multipliers are introduced

and studied. This notion is connected with the notion of Lipschitz compact operators.

Continuity properties of multipliers are discussed.

For a subclass of approximated Schauder frames for Banach spaces, characterization

result is derived using standard Schauder basis for standard sequence spaces. Duals of

a subclass of approximate Schauder frames are completely described. Similarity of

this class is characterized and interpolation result is derived using orthogonality. A

dilation result is obtained. A new identity is derived for Banach spaces which admit a

homogeneous semi-inner product. Some stability results are obtained for this class.

A generalization of operator-valued frames for Hilbert spaces are introduced which

unifies all the known generalizations of frames for Hilbert spaces. This notion has been

studied in depth by imposing factorization property of the frame operator. Its duality,

similarity and orthogonality are addressed. Connections between this notion and unitary

representations of groups and group-like unitary systems are derived. Paley-Wiener

theorem for this class are derived.

Keywords: Frame, Riesz basis, Bessel sequence, Lipschitz function, multiplier, operator-

valued frame, metric space.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

A vector in a vector space is usually obtained as a linear combination of elements of a
basis for the vector space. Thus a vector is fully known if we know the coefficients in
the representation of it using basis elements. However, as dimension of the space in-
creases, it is difficult to get the coefficients. Hence we look for nice spaces and certain
bases which give coefficients of a given vector easily. For this purpose, Hilbert spaces
and orthonormal bases become a very handy tool to obtain representation of a vector.
Orthonormal bases for Hilbert spaces have practical disadvantages. Since each coeffi-
cient in the expansion is very important, a small error in one of the coefficient leads to
significant variation in the resultant vector and the actual vector. Thus we seek a collec-
tion in Hilbert space which gives representation as well as a small change in coefficient
need not effect much to the original vector. This is where the theory of frames becomes
important.
Historically it was Gabor (1946), who first studied representation of functions using
translations and modulations of a single function (Feichtinger et al. (2009, 2007); Fe-
ichtinger and Strohmer (1998, 2003); Gröchenig (2001); Sondergaard (2007)). In 1947,
Sz. Nagy studied sequences which are close to orthonormal bases using Paley-Wiener
type results (de Sz. Nagy (1947)). Modern definition of frames was set by Duffin and
Schaeffer (1952) in the study of sequences of type {eiλnx}n∈Z,λn ∈C,x ∈ (−r,r) ,r > 0.
After this work, Young (1980) made an account of frames in his book ‘An introduction
to nonharmonic Fourier series’.
Paper of Daubechies, Grossmann, and Meyer (Daubechies et al. (1986)) triggered the
area of frames for Hilbert spaces. Later, the paper of Benedetto and Fickus (2003) in-
fluenced the development of frame theory for finite dimensional Hilbert spaces. Today
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theory of frames find its uses in many areas such as wireless communication (Strohmer
(2001)), signal processing (Mallat (2009)), image processing (Donoho and Elad (2003)),
sampling theory (Benedetto and Ferreira (2001)), filter banks (Fickus et al. (2013)), psy-
cho acoustics (Balazs et al. (2017)), quantum design (Bodmann and Haas (2020)), quan-
tum channels (Han and Juste (2019)), quantum optics (Jamioikowski (2010)), quantum
measurement (Eldar and Forney (2002)), numerical approximation (Adcock and Huy-
brechs (2019)), Sigma-Delta quantization (Benedetto et al. (2006)), coding (Strohmer
and Heath (2003)) and graph theory (Bodmann and Paulsen (2005)). For a compre-
hensive look on the theory of frames, we refer (Christensen (2016), Han and Larson
(2000), Han et al. (2007), Casazza and Kutyniok (2013), Waldron (2018), Heil (2011),
Okoudjou (2016), Pesenson et al. (2017)).

Since many spaces appearing both in theoretical and practicals are Banach spaces
which may not be Hilbert spaces, there is a need for extending the notion of frames to
Banach spaces. This was first done by Gröchenig (1991). After the study of several
function spaces (Feichtinger (2015)), Gröchenig first studied the notion of an atomic
decomposition for Banach spaces and then defined the notion of a Banach frame. Fe-
ichtinger and Gröchenig (1988, 1989a,b) in 90’s developed a theory of atomic decom-
positions and frames for a large class of function spaces such as modulation spaces
(Feichtinger (2006)) and coorbit spaces (Berge (2022)), via, group representations and
projective representations.
Abstract study of atomic decompositions and frames for Banach spaces started from
the fundamental paper (Casazza et al. (1999)). Further study and variations of the
frames for Banach spaces are done in Carando et al. (2011), Terekhin (2010), Terekhin
(2009), Terekhin (2004), Fornasier (2007), Casazza et al. (2005a), Stoeva (2009), Sto-
eva (2012), Aldroubi et al. (2008), Gröchenig (2004) and so on.

1.2 ORTHONORMAL BASES, RIESZ BASES, FRAMES AND
BESSEL SEQUENCES FOR HILBERT SPACES

In the study of integral equations, Hilbert studied the space of square integrable se-
quences (Blanchard and Bruning (2003)). Later, John von Neumann (1930) formulated
the notion of Hilbert spaces.

Definition 1.2.1. (cf. Limaye (2014)) A vector space H over K (R or C) is said to be a

Hilbert space if there exists a map �·, ·� : H ×H →K such that the following axioms

hold.

(i) �h,h� ≥ 0, ∀h ∈ H .
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(ii) If h ∈ H is such that �h,h�= 0, then h = 0.

(iii) �h,h1�= �h1,h�, ∀h,h1 ∈ H .

(iv) �αh+h1,h2�= α�h,h2�+ �h1,h2�, ∀h,h1,h2 ∈ H , ∀α ∈K.

(v) H is complete with respect to the norm �h� :=
�
�h,h�.

We now mention two important examples of Hilbert spaces.

Example 1.2.2. (cf. Limaye (2014))

(i) Let n ∈ N. The space Kn equipped with the inner product

�(ak)
n
k=1,(bk)

n
k=1� :=

n

∑
k=1

akbk, ∀(ak)
n
k=1,(bk)

n
k=1 ∈Kn

is a finite dimensional separable Hilbert space.

(ii) The space �2(N) := {{an}n : an ∈ K,∀n ∈ N,∑∞
n=1 |an|2 < ∞} equipped with the

inner product

�{an}n,{bn}n� :=
∞

∑
n=1

anbn, ∀{an}n,{bn}n ∈ �2(N)

is an infinite dimensional separable Hilbert space. The space �2(N) is known as

the standard separable Hilbert space.

Throughout this thesis, we assume that all of Hilbert spaces are separable. Among
all kinds of sets in a Hilbert space, orthonormal sets are the easiest to handle, whose
definition reads as follows.

Definition 1.2.3. (cf. Limaye (2014)) A collection {τn}n in a Hilbert space H is called

an orthonormal set in H if �τ j,τk�= δ j,k,∀ j,k ∈ N.

Following theorem, known as Gram-Schmidt orthonormalization (cf. Leon et al.
(2013)) shows that a linearly independent sequence of vectors can be converted into an
orthonormal set such that at each stage of conversion the spaces spanned by the original
set and transformed set are the same.

Theorem 1.2.4. (cf. Limaye (2014)) (Gram-Schmidt orthonormalization) Let {τn}n

be a linearly independent subset of H . Define ω1 := τ1, ρ1 := ω1/�ω1� and

ωn := τn −
n−1

∑
k=1

�τn,ρk�ρk, ρn :=
ωn

�ωn�
, ∀n ≥ 2.
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Then {ρn}n is orthonormal and

span{ρk}n
k=1 = span{τk}n

k=1, ∀n ≥ 1.

One of the most important inequalities associated with an orthonormal sequence is
the Bessel’s inequality. It is a generalization of Cauchy-Schwarz inequality.

Theorem 1.2.5. (cf. Limaye (2014)) (Bessel’s inequality) If {τn}n is an orthonormal

set in H , then the series ∑∞
n=1 |�h,τn�|2 converges for all h ∈ H and

∞

∑
n=1

|�h,τn�|2 ≤ �h�2, ∀h ∈ H .

Next theorem characterizes convergence of series in a Hilbert space with that of
sequence of scalars.

Theorem 1.2.6. (cf. Limaye (2014)) (Riesz-Fisher theorem) Let {an}n be a sequence

of scalars and {τn}n be an orthonormal set in H . Then

∞

∑
n=1

anτn converges in H if and only if
∞

∑
n=1

|an|2 converges in R.

Next theorem shows that given any orthonormal set and an element in a Hilbert
space, the inner product of the element with the members of an orthonormal set can be
non zero at most countably many times.

Theorem 1.2.7. (cf. Limaye (2014)) Let {τn}n be an orthonormal set in H and h∈H .

Then the set Eh := {τn : �h,τn� �= 0,n ∈ N} is either finite or countable.

A natural analogue of basis for finite dimensional vector spaces to that of infinite
dimensional Hilbert spaces is the notion of Schauder basis and orthonormal basis.

Definition 1.2.8. (cf. Christensen (2016)) A collection {τn}n in H is called

(i) a Schauder basis for H if for each h ∈ H , there exists a unique collection

{an(h)}n of scalars such that ∑∞
n=1 an(h)τn converges in H and h=∑∞

n=1 an(h)τn.

(ii) an orthonormal basis for H if it is a Schauder basis for H and it is orthonor-

mal.

We now give various examples of orthonormal bases for Hilbert spaces.

Example 1.2.9. (cf. Christensen (2016))

4



(i) Define en := {δn,k}k, where δ·,· is the Kronecker delta. Then {en}n is an orthonor-

mal basis for �2(N). This is known as the standard orthonormal basis for �2(N).

(ii) Define

L 2[0,1] :=
�

f : [0,1]→ C is measurable and
� 1

0
| f (x)|2 dx < ∞

�

equipped with the inner product

� f ,g� :=
� 1

0
f (x)g(x)dx.

Let n ∈ Z. Define en : [0,1] � x �→ e2πinx ∈ C. Then {en}∞
n=−∞ is an orthonormal

basis for L 2[0,1].

(iii) (Gabor basis) Define

L 2(R) :=
�

f : R→ C is measurable and
� ∞

−∞
| f (x)|2 dx < ∞

�

equipped with the inner product

� f ,g� :=
� ∞

−∞
f (x)g(x)dx.

Let χ[0,1] be the characteristic function on [0,1]. For j,k ∈ Z, define f j,k(x) :=
e2πi jxχ[0,1](x− k),∀x ∈ R. Then { f j,k} j,k∈Z is an orthonormal basis for L 2(R).

(iv) (Haar system) Let ψ be the Haar function defined on R by

ψ(x) :=





1 if 0 ≤ x < 1
2

−1 if 1
2 ≤ x ≤ 1

0 otherwise .

For j,k ∈ Z, let ψ j,k(x) := 2 j/2ψ(2 jx− k),∀x ∈ R. Then {ψ j,k} j,k∈Z is an or-

thonormal basis for L 2(R).

(v) (cf. Christensen (2016)) For a,b > 0, define

Ta : L 2(R) � f �→ Ta f ∈ L 2(R), Ta f : R �→ (Ta f )(x) := f (x−a) ∈ C

5



and

Eb : L 2(R) � f �→ Eb f ∈ L 2(R), Eb f : R �→ (Eb f )(x) := e2πibx f (x) ∈ C.

Let g : R → C be a continuous function with compact support. Then, for any

a,b > 0, {EmbTnag}n,m∈Z is not an orthonormal basis for L 2(R).

Following theorem shows that given an orthonormal set, we can check whether it
is an orthonormal basis by checking several equivalent conditions rather appealing to
Definition 1.2.8, which is difficult in many cases.

Theorem 1.2.10. (cf. Christensen (2016)) Let {τn}n be an orthonormal set in H . The

following are equivalent.

(i) {τn}n is an orthonormal basis for H .

(ii) (Fourier expansion) h = ∑∞
n=1�h,τn�τn,∀h ∈ H .

(iii) (Parseval identity for the inner product) �h,g�= ∑∞
n=1�h,τn��τn,g�,∀h,g ∈ H .

(iv) (Parseval identity for the norm) �h�2 = ∑∞
n=1 |�h,τn�|2,h ∈ H .

(v) span{τn}n = H .

(vi) If h ∈ H is such that �h,τn�= 0,∀n ∈ N, then h = 0.

Theorem 1.2.11. (cf. Christensen (2016)) A Hilbert space is separable if and only if it

has a countable orthonormal basis.

Hilbert spaces have the remarkable property that every bounded linear functional
from the space to the scalar field is given by the inner product with a unique element in
the space.

Theorem 1.2.12. (cf. Limaye (2014)) (Riesz representation theorem) Let f : H �→K
be a bounded linear functional. Then there exists a unique τ f ∈ H such that

f (h) = �h,τ f �, ∀h ∈ H and � f�= �τ f �.

Riesz representation theorem opens the door to the following definition.

Definition 1.2.13. (cf. Limaye (2014)) Let T : H → H0 be a bounded linear operator.

The unique bounded linear operator T ∗ : H0 → H such that

�T h,h0�= �h,T ∗h0�, ∀h ∈ H , ∀h0 ∈ H0

6



is called as the adjoint of T .

Hilbert spaces are studied along with various kinds of operators. These are defined
as follows.

Definition 1.2.14. (cf. Limaye (2014)) Let T : H → H0 be a bounded linear operator.

The operator T is said to be

(i) invertible if there exists a bounded linear operator S : H0 → H such that ST =

IH and T S = IH0 .

(ii) isometry if �T h�= �h�, ∀h ∈ H .

(iii) unitary if T T ∗ = IH0 , T ∗T = IH .

Definition 1.2.15. (cf. Limaye (2014)) Let T : H → H be a bounded linear operator.

(i) Operator T is said to be a normal operator if T T ∗ = T ∗T .

(ii) Operator T is said to be a projection if T 2 = T = T ∗.

(iii) Operator T is said to be a self-adjoint operator if T = T ∗.

(iv) Operator T is said to be a positive operator if T = T ∗ and �T h,h� ≥ 0, ∀h ∈ H .

Theorem 1.2.16. (cf. Limaye (2014)) Let H be a separable Hilbert space.

(i) If H is finite dimensional, then H is isometrically isomorphic to Kn, for some

n.

(ii) If H is infinite dimensional, then H is isometrically isomorphic to �2(N).

Orthonormal bases have the nice property that given a single orthonormal basis, we
can generate all of them just by acting unitary operators.

Theorem 1.2.17. (cf. Christensen (2016)) Let {τn}n be an orthonormal basis for H .

Then the set of all orthonormal bases for H are precisely the families {Uτn}n, where

U ∈ B(H ) is unitary.

Hilbert spaces have another nice property that closed subspaces decompose the orig-
inal space.

Theorem 1.2.18. (cf. Limaye (2014)) (Orthogonal complement theorem) If W is a

closed subspace of H , then H = W ⊕W ⊥, where W ⊥ is the orthogonal complement

of W in H .
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First level of generalization of orthonormal basis is that of Riesz basis. These are
defined as follows.

Definition 1.2.19. (cf. Christensen (2016)) A collection {ωn}n in H is called a Riesz
basis for H if there exist an orthonormal basis {τn}n for H and an invertible T ∈
B(H ) such that ωn = T τn,∀n.

As written by Simon (2015), the origin of the term "Riesz basis" is unknown. By
taking T as the identity operator, we easily see that every orthonormal basis is a Riesz
basis.

Example 1.2.20. (i) Let {λn}∞
n=1 be a sequence of scalars such that there exist a,b>

0 with a ≤ |λn| ≤ b,∀n ∈ N. Then {λnen}∞
n=1 is a Riesz basis for �2(N), since it

is image of the standard orthonormal basis {en}∞
n=1 under the invertible operator

T : �2(N) � {xn}∞
n=1 �→ {λnxn}∞

n=1 ∈ �2(N). We note further that if |λn| �= 1, for

at least one n, then {λnen}∞
n=1 is not an orthonormal basis for �2(N).

(ii) (Kadec (1964)) (Kadec 1/4 theorem) Let {λn}n∈Z be a sequence of reals such

that

sup
n∈N

|λn −n|< 1
4
, ∀n ∈ Z.

Define fn : (−π,π) � x �→ eiλnx ∈ C, ∀n ∈ Z. Then { fn}n∈Z is a Riesz basis for

L 2(−π,π). It was shown that 1/4 is the optimal constant (Levinson (1936), cf.

Christensen (2001)).

(iii) (Casazza (1998)) (Kalton-Casazza theorem) A linear combination of two or-

thonormal bases is a Riesz basis.

(iv) (cf. Christensen (2016)) For a,b > 0, define

Ta : L 2(R) � f �→ Ta f ∈ L 2(R), Ta f : R �→ (Ta f )(x) := f (x−a) ∈ C

and

Eb : L 2(R) � f �→ Eb f ∈ L 2(R), Eb f : R �→ (Eb f )(x) := e2πibx f (x) ∈ C.

Let g : R → C be a continuous function with compact support. Then, for any

a,b > 0, {EmbTnag}n,m∈Z is not a Riesz basis for L 2(R).
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Remark 1.2.21. Let {τn}n be an orthonormal basis for H . Since an invertible map

preserves the cardinality, it follows that for each n ∈ N , the set {τ j}n
j=1 can not be a

Riesz basis for H .

Like orthonormal basis, Riesz basis will also give a series representation of every
element in a Hilbert space.

Theorem 1.2.22. (cf. Christensen (2016)) Let {τn}n be a Riesz basis for H .

(i) There exists a unique collection {ωn}n in H such that

h =
∞

∑
n=1

�h,ωn�τn, ∀h ∈ H . (1.2.1)

Moreover, {ωn}n is a Riesz basis for H and the series in Eq. (1.2.1) converges

unconditionally for all h ∈ H .

(ii) There exist a,b > 0 such that a�h�2 ≤ ∑∞
n=1 |�h,τn�|2 ≤ b�h�2,∀h ∈ H .

Next result says that there is a characterization of Riesz basis which is free from
orthonormal basis. It also gives a tool to check whether a collection is a Riesz basis for
a given Hilbert space. To state the result, we need two definitions.

Definition 1.2.23. (cf. Christensen (2016)) A sequence {τn}n in a Hilbert space H is

said to be complete if spann∈N{τn}= H .

Definition 1.2.24. (cf. Christensen (2016)) A sequence {ωn}n in a Hilbert space H is

said to be biorthogonal to a sequence {τn}n in H if �ωn,τm�= δn,m for all n,m.

Theorem 1.2.25. (cf. Christensen (2016); Heil (2011); Stoeva (2020)) For a sequence

{τn}n in H , the following are equivalent.

(i) {τn}n is a Riesz basis for H .

(ii) span{τn}n = H and there exist a,b > 0 such that for every finite subset S of N,

a ∑
n∈S

|cn|2 ≤
�����∑

n∈S
cnτn

�����

2

≤ b ∑
n∈S

|cn|2, ∀cn ∈K. (1.2.2)

(iii) {τn}n is complete in H and the operator given by the infinite Gram matrix
[�τm,τn�]1≤n,m<∞ defined by

�2(N) � {cm}m �→
�

∞

∑
m=1

�τn,τm�cm

�

n

∈ �2(N)
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is a bounded invertible operator on �2(N).

(iv) {τn}n is a bounded unconditional Schauder basis for H .

(v) {τn}n is a Schauder basis for H such that ∑∞
n=1 cnτn converges in H if and only

if ∑∞
n=1 |cn|2 < ∞.

Remark 1.2.26. Using Inequality 1.2.2, we can show that certain collection of vectors

is not a Riesz basis. As an illustration, let {en}∞
n=1 be the standard orthonormal basis

for �2(N). We claim that {e1}∪ {en}∞
n=1 is not a Riesz basis for �2(N). Suppose the

claim fails, then we get an a > 0 such that first inequality in Inequality 1.2.2 holds. By

taking 1 and −1 we see that

a(|1|2 + |−1|2)≤ �1 · e1 +(−1) · e1�2 = 0 ⇒ a = 0,

which is a contradiction. Hence {e1}∪{en}∞
n=1 can not be a Riesz basis for �2(N).

Theorem 1.2.25 leads to the following definition.

Definition 1.2.27. (cf. Christensen (2016)) A sequence {ωn}n in a Hilbert space H is

said to be a Riesz sequence for H if there exist a,b > 0 such that for every finite subset

S of N,

a ∑
n∈S

|cn|2 ≤
�����∑

n∈S
cnτn

�����

2

≤ b ∑
n∈S

|cn|2, ∀cn ∈K.

Theorem 1.2.25 says that every Riesz basis is a Riesz sequence. It is easy to see
that a Riesz sequence need not be a Riesz basis. Following theorem gives another
characterization of Riesz basis which is also free from orthonormal basis. It also helps
to check whether a collection is a Riesz basis.

Theorem 1.2.28. (cf. Gohberg and Krein (1969)) (Kothe-Lorch theorem) A sequence

{τn}n is a Riesz basis for H if and only if the following three conditions hold.

(i) {τn}n is an unconditional Schauder basis for H .

(ii) 0 < infn∈N �τn� ≤ supn∈N �τn�< ∞.

Remark 1.2.29. Since the collection {e1}∪{en}∞
n=1 in Remark 1.2.26 is not a Schauder

basis for �2(N), using Theorem 1.2.28, we again conclude that it is not a Riesz basis.

However, the collection {e1}∪ {en}∞
n=1 satisfies conditions (ii) and (iii) in Theorem

1.2.28.

10



It is clear that whenever we perturb an orthonormal basis, we may not get an or-
thonormal basis. However, it is a classical theorem of Paley and Wiener which says
whenever we perturb an orthonormal basis, we get a Riesz basis.

Theorem 1.2.30. (Paley and Wiener (1987), cf. Young, 1980) (Paley-Wiener theorem)

Let {τn}n be an orthonormal basis for H . If {ωn}n in H is such that there exists

0 < α < 1 and for every m = 1,2, . . . ,

�����
m

∑
n=1

cn(τn −ωn)

�����≤ α

�
m

∑
n=1

|cn|2
� 1

2

, ∀cn ∈K,

then {ωn}n is a Riesz basis for H .

Next level of generalization of Riesz basis for Hilbert spaces is the notion of frame.

Definition 1.2.31. (Duffin and Schaeffer (1952)) A collection {τn}n in a Hilbert space

H is said to be a frame for H if there exist a,b > 0 such that

(Frame inequalities) a�h�2 ≤
∞

∑
n=1

|�h,τn�|2 ≤ b�h�2, ∀h ∈ H . (1.2.3)

Constants a and b are called as lower frame bound and upper frame bound, respec-

tively. Supremum (resp. infimum) of the set of all lower (resp. upper) frame bounds is

called optimal lower frame bound (resp. optimal upper frame bound). If the optimal

frame bounds are equal, then the frame is called as tight frame. A tight frame whose

optimal frame bound is one is termed as Parseval frame.

As recorded by Kovacevic and Chebira (2007), and Heil (2013), the reason for using
the term “frame" is unknown.

Note that in Definition 1.2.31 we indexed the frame by natural numbers. Since
the convergence of series in Definition 1.2.31 is unconditional, any rearrangement of
a frame is again a frame. We also note that Definition 1.2.31 can be formulated for
arbitrary indexing set J. In this case, by the convergence of the series we mean the
convergence of the net obtained by the set inclusion, on the collections of all finite
subsets of J.

From (ii) in Theorem 1.2.22 we can conclude that every Riesz basis is a frame. On
the other hand, every frame can be written as a finite union of Riesz sequences (which
is called as Feichtinger conjecture (Casazza et al. (2005b))) and is known as Marcus-
Spielman-Srivastava Theorem (cf. Casazza and Edidin (2007); Casazza and Tremain
(2016)). We now give various examples of frames.
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Example 1.2.32. (i) Let {en}∞
n=1 be an orthonormal basis for H and let m ∈ N.

Then the collection {e1, . . . ,em}∪ {en}∞
n=1 is a frame for H with bounds 1 and

2. In fact, for all h ∈ H ,

1 ·�h�2 =
∞

∑
n=1

|�h,en�|2 ≤
m

∑
k=1

|�h,ek�|2 +
∞

∑
n=1

|�h,en�|2 ≤ 2
∞

∑
n=1

|�h,en�|2 = 2�h�2.

In particular, the collection in Remark 1.2.26 is a frame for �2(N).

(ii) (cf. Christensen (2016)) (Harmonic frame) Let m,n ∈ N, n ≤ m and ω1, . . . ,ωm

be the distinct mth roots of unity. Define

ηk :=
1√
m
(ωk

1 , . . . ,ω
k
n), 1 ≤ k ≤ m.

Then {ηk}m
k=1 is a Parseval frame for Cn.

(iii) (cf. Kovacevic and Chebira (2007), Shor (2004)) (Mercedes-Benz frame or

Peres-Wooters states) {(0,1),(−
√

3/2,−1/2),(
√

3/2,−1/2)} is a tight frame

for R2 with bound 3/2.

(iv) (cf. Han et al. (2007)) For n ≥ 3, the collection {(cos(2π j/n),sin(2π j/n)}n−1
j=0

is a tight frame for R2. It has to be noted that we can not take n = 2 because

{(1,0),(−1,0)} is not a frame for R2.

(v) (cf. Christensen (2016)) (Gabor frame or Weyl-Heisenberg frame) Let g be the

Gaussian defined by g : R � x �→ g(x) := e−x2 ∈ R and let a,b > 0. Define fn,m :
R � x �→ e2πimbxg(x−na) ∈ R, ∀n,m ∈ Z. Then { fn,m}n,m∈Z is a (Gabor) frame

for L 2(R) if and only if ab < 1. Moreover, if { fn,m}n,m∈Z is a frame for L 2(R),
then ab = 1 if and only if { fn,m}n,m∈Z is a Riesz basis for L 2(R).

(vi) (Duffin and Schaeffer (1952)) Let {λn}n∈Z be a sequence of scalars such that

there are constants d,L,δ > 0 satisfying

���λn −
n
d

���≤ L, ∀n ∈ Z and |λn −λm|≥ δ , ∀n,m ∈ Z,n �= m.

Let 0 < r < dπ and define fn : (−r,r) � x �→ eiλnx ∈ C, ∀n ∈ Z. Then { fn}n∈Z is

a frame for L 2(−r,r).

(vii) (cf. Feichtinger and Strohmer (2003)) For a,b > 0, define

Ta : L 2(R) � f �→ Ta f ∈ L 2(R), Ta f : R �→ (Ta f )(x) := f (x−a) ∈ C

12



and

Eb : L 2(R) � f �→ Eb f ∈ L 2(R), Eb f : R �→ (Eb f )(x) := e2πibx f (x) ∈ C.

For c > 0, let χ[0,c] be the characteristic function on [0,c]. Then for a ≤ c ≤ 1,

{EmTnaχ[0,c]}n,m∈Z is a (Gabor) frame for L 2(R) (this is a particular case of the

celebrated abc-problem for Gabor systems (Dai and Sun (2016))).

(viii) (Janssen and Strohmer (2002)) Let Ta and Eb be the operators in (vii). Let g(x) :=
cosh(πx) = 2

eπx+e−πx , ∀x ∈ R. Then, for ab < 1, {EmbTnag}n,m∈Z is a (Gabor)

frame for L 2(R).

(ix) (Janssen (2003)) Let Ta and Eb be the operators in (vii). Let g(x) := e−|x|, ∀x ∈R.

Then, for ab < 1, {EmbTnag}n,m∈Z is a (Gabor) frame for L 2(R).

(x) (Janssen (1996)) Let Ta and Eb be the operators in (vii). Let g(x) := e−xχ[0,∞)(x),

∀x∈R. Then {EmbTnag}n,m∈Z is a (Gabor) frame for L 2(R) if and only if ab≤ 1.

(xi) (Casazza (1998)) (Kalton-Casazza theorem) Every frame is a sum of three or-

thonormal bases.

(xii) (cf. Christensen (2016)) (Wavelet frame) Let 0< b< 0.0084. Define the Mexican
hat function

ψ(x) :=
2√
3

π
−1
4 (1− x2)e

−x2
2 , ∀x ∈ R.

For j,k ∈ Z, define

ψ j,k(x) := ψ(2 jx− kb), ∀x ∈ R.

Then {2
j
2 ψ j,k} j,k∈Z is a (wavelet) frame for L 2(R).

(xiii) (Benedetto and Kolesar (2006); Strohmer and Heath (2003)) (Grassmannian
frame) The n-equally spaced lines in R2, namely {(cos(π j/n),sin(π j/n)}n−1

j=0

is a (Grassmannian) frame for R2.

(xiv) (Benedetto and Fickus (2003)) (Group frame) Vertices of each of (five) Platonic
solids is a tight frame for R3.

(xv) (cf. Waldron (2018)) (Equiangular frame) For each d ∈ N, d +1 vertices of the

regular simplex in Rd is an (equiangular) frame for Rd.
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We now give various examples which are not frames.

Example 1.2.33. (i) (cf. Christensen (2016)) If {τn}∞
n=1 is an orthonormal basis for

H , then {τn + τn+1}∞
n=1 is not a frame for H .

(ii) (cf. Bachman et al. (2000)) If {τn}∞
n=1 is an orthonormal basis for H , then

{ τn
n }∞

n=1 is not a frame for H .

(iii) (cf. Christensen (2016)) If {τn}∞
n=−∞ is a Riesz basis for H , then {τn+τn+1}∞

n=−∞

is not a frame for H .

(iv) (cf. Christensen (2016)) For n ∈ Z, define Tn : L 2(R) � f �→ Tn f ∈ L 2(R),
Tn f : R � x �→ f (x−n) ∈ C. Then for any φ ∈ L 2(R), {Tnφ}n∈Z is not a frame

for L 2(R).

(v) (Aldroubi and Petrosyan (2017); Christensen et al. (2018)) Let H be an infinite

dimensional Hilbert space and T : H →H be a bounded linear operator which

is unitary or compact. Then for every τ ∈ H , {T nτ}∞
n=0 is not a frame for H

(this is a particular case of dynamical sampling (Aldroubi et al. (2017a,b))).

(vi) (cf. Feichtinger and Strohmer (2003)) Let Ta and Eb be the operators in (vii) of

Example 1.2.32. For c > 0, let χ[0,c] be the characteristic function on [0,c]. Then

for c ≤ a or a > 1, {EmTnaχ[0,c]}n,m∈Z is not a frame for L 2(R).

There is a simple criterion to check for frames in finite dimensional Hilbert spaces.
This reads as follows.

Theorem 1.2.34. (cf. Han et al. (2007)) A finite set of vectors for a finite dimensional

Hilbert space is a frame if and only if it spans the space.

Remark 1.2.35. (i) Theorem 1.2.34 gives a very useful algebraic criterion for check-

ing whether a finite set of vectors is a frame for a finite dimensional space rather

verifying the analytic condition (frame inequality) which is harder in many cases.

(ii) Theorem 1.2.34 does not tell that a frame for a finite dimensional Hilbert space

is finite. A finite dimensional Hilbert space can have a frame with infinitely many

elements. For example, {1
n}∞

n=1 is a tight frame for C (as a vector space over

itself), because

∞

∑
n=1

����
�

h,
1
n

�����
2

=
∞

∑
n=1

����
h
n

����
2

=
π2

6
|h|2, ∀h ∈ C.
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(iii) Suppose dim(H ) = n. From Theorem 1.2.34 we see that a spanning set having

at least n+1 elements is a frame for H but not a Riesz basis for H .

(iv) A spanning set need not be a frame. For instance, {n}∞
n=1 spans C but ∑∞

n=1 |�1,n� |2
= ∑∞

n=1 n2 = ∞. Hence {n}∞
n=1 is not a frame for C.

Following theorem is the most important result in the theory of frames.

Theorem 1.2.36. (Duffin and Schaeffer (1952), Christensen (2016), Han and Larson

(2000)) Let {τn}n be a frame for H with bounds a and b. Then

(i) span{τn}n = H .

(ii) The map θτ : H � h �→ θτh := {�h,τn�}n ∈ �2(N) is a well-defined bounded lin-

ear operator. Further,
√

a�h� ≤ �θτh� ≤
√

b�h�,∀h ∈ H . In particular, θτ is

injective and its range is closed.

(iii) The map Sτ : H � h �→ Sτh := ∑∞
n=1�h,τn�τn ∈ H is a well-defined bounded

linear positive invertible operator. Further,

a�h�2 ≤ �Sτh,h� ≤ b�h�2, ∀h ∈ H , a�h� ≤ �Sτh� ≤ b�h�, ∀h ∈ H .

(iv) (General Fourier expansion or frame decomposition)

h =
∞

∑
n=1

�h,τn�S−1
τ τn =

∞

∑
n=1

�h,S−1
τ τn�τn, ∀h ∈ H . (1.2.4)

(v) θ ∗
τ ({an}n) = ∑n anτn,∀{an}n ∈ �2(N). In particular, θ ∗

τ en = τn,∀n ∈ N.

(vi) Sτ factors as Sτ = θ ∗
τ θτ .

(vii) θ ∗
τ is surjective.

(viii) �S−1
τ �−1 is the optimal lower frame bound and �Sτ�= �θτ�2 is the optimal upper

frame bound.

(ix) Pτ := θτS−1
τ θ ∗

τ is an orthogonal projection onto θτ(H ).

(x) {τn}n is Parseval if and only if θτ is an isometry if and only if θτθ ∗
τ is a projection.

(xi) {S−1
τ τn}n is a frame for H with bounds b−1 and a−1.

(xii) {S−1/2
τ τn}n is a Parseval frame for H .
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(xiii) (Best approximation) If h∈H has representation h=∑∞
n=1 cnτn, for some scalar

sequence {cn}n ∈ �2(N), then

∞

∑
n=1

|cn|2 =
∞

∑
n=1

|�h,S−1
τ τn�|2 +

∞

∑
n=1

|cn −�h,S−1
τ τn�|2.

Theorem 1.2.36 says several things. First, it says that every vector in the Hilbert
space admits an expansion, called as general Fourier expansion, similar to Fourier ex-
pansion coming from an orthonormal basis for a Hilbert space. Second, it says that co-
efficients in the expansion of a vector need not be unique. This is particularly important
in applications, since loss in the information of a vector is less if some of the coeffi-
cients are missing. Third, given a frame, it naturally generates other frames. Fourth, a
frame gives a bounded linear injective operator from the less known inner product on
the Hilbert space H to the well known standard inner product on the standard separable
Hilbert space �2(N). Frame inequality now clearly says that there is a comparison of
norms between H and the standard Hilbert space �2(N). Fifth, a frame embeds H in
�2(N) through the bounded linear operator θτ . Sixth, whenever a Hilbert space admits
a frame it becomes an image of a surjective operator θ ∗

τ from the �2(N) to it. An easy
observation from Theorem 1.2.36 is that for an infinite dimensional Hilbert space, a
finite collection of vectors can not be a frame.

The operators θτ , θ ∗
τ and Sτ in Theorem 1.2.36 are called as analysis operator,

synthesis operator and frame operator, respectively (cf. Christensen (2016)).
Dilation theory usually tries to extend operator on Hilbert space to larger Hilbert

space which are easier to handle as well as well-understood and study the original op-
erator as a slice of it (Arveson (2010); Levy and Shalit (2014); Sz.-Nagy et al. (2010)).
As long as frame theory for Hilbert spaces is considered, following theorem is known
as Naimark-Han-Larson dilation theorem. This was proved independently by Han and
Larson (2000) and by Kashin and Kulikova (2002). History of this theorem is nicely
presented in the paper (Czaja (2008)).

Theorem 1.2.37. (Han and Larson (2000); Kashin and Kulikova (2002)) (Naimark-
Han-Larson dilation theorem) A collection {τn}n in H is a

(i) frame for H if and only if the exist a Hilbert space H1 ⊇H , a Riesz basis {ωn}n

for H1 and a projection P : H1 → H such that τn = Pωn,∀n ∈ N.

(ii) Parseval frame for H if and only if the exist a Hilbert space H1 ⊇ H , an or-

thonormal basis {ωn}n for H1 and an orthogonal projection P : H1 → H such

that τn = Pωn,∀n ∈ N.
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In order to construct an element of the Hilbert space using frames using Equation
1.2.4, we have to first determine inverse of the frame operator which is difficult in
general. Thus we seek a way to approximate an element using a sequence which does
not involve calculating inverse of frame operator. This is given in the following theorem.

Proposition 1.2.38. (Duffin and Schaeffer (1952)) (Frame algorithm) Let {τn}∞
n=1 be

a frame for H with bounds a and b. For h ∈ H define

h0 := 0, hn := hn−1 +
2

a+b
Sτ(h−hn−1), ∀n ≥ 1.

Then

�hn −h� ≤
�

b−a
b+a

�n

�h�, ∀n ≥ 1.

In particular, hn → h as n → ∞.

Given a collection {τn}n, in general, it is difficult to find a and b such that the two
inequalities in (1.2.3) hold. Therefore, it is natural to ask whether there is a charac-
terization for frame without using frame bounds. Orthonormal bases are the simplest
and easiest sequences we can handle in a Hilbert space, so one can attempt to obtain
characterization using orthonormal bases. Since every separable Hilbert space is iso-
metrically isomorphic to the standard Hilbert space �2(N) and the standard unit vectors
{en}n form an orthonormal basis for �2(N), one can further ask whether frames can be
characterized using {en}n. This question was answered affirmatively by Holub (1994)
as follows.

Theorem 1.2.39. (Holub (1994)) (Holub’s theorem) A sequence {τn}n in H is a frame

for H if and only if there exists a surjective bounded linear operator T : �2(N)→ H

such that Ten = τn, for all n ∈ N.

There is a slight variation of Theorem 1.2.39 given by Christensen (2016).

Theorem 1.2.40. (Christensen (2016)) Let {ωn}n be an orthonormal basis for H .

Then a sequence {τn}n in H is a frame for H if and only if there exists a surjective

bounded linear operator T : H → H such that T ωn = τn, for all n ∈ N.

Given a frame {τn}n for H we now consider the frame {S−1
τ τn}n. This frame

satisfies Equation (1.2.4). However, in general there may be other frames satisfying the
Equation (1.2.4) like {S−1

τ τn}n. This leads to the notion of dual frames as stated below.

Definition 1.2.41. (cf. Christensen (2016)) Let {τn}n be a frame for H . A frame {ωn}n
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for H is said to be a dual frame for {τn}n if

h =
∞

∑
n=1

�h,ωn�τn =
∞

∑
n=1

�h,τn�ωn, ∀h ∈ H .

Just like characterization of frames, given a frame, we seek a description of each of
its dual frame. This problem was solved by Li (1995) in the following two lemmas and
a theorem.

Lemma 1.2.42. (Li (1995)) Let {τn}n be a frame for H and {en}n be the standard

orthonormal basis for �2(N). Then a frame {ωn}n is a dual frame for {τn}n if and only

if

ωn =Uen, ∀n ∈ N,

where U : �2(N)→ H is a bounded left-inverse of θτ .

Lemma 1.2.43. (Li (1995)) Let {τn}n be a frame for H . Then L : �2(N) → H is a

bounded left-inverse of θτ if and only if

L = S−1
τ θ ∗

τ +V (I�2(N)−θτS−1
τ θ ∗

τ ),

where V : �2(N)→ H is a bounded operator.

Theorem 1.2.44. (Li (1995)) Let {τn}n be a frame for H . Then a frame {ωn}n is a

dual frame for {τn}n if and only if

ωn = S−1
τ τn +ρn −

∞

∑
k=1

�S−1
τ τn,τk�ρk, ∀n ∈ N,

where {ρn}n is a sequence in H such that there exists b > 0 satisfying

∞

∑
n=1

|�h,ρn�|2 ≤ b�h�2, ∀h ∈ H .

We again consider the frame {S−1
τ τn}n. Note that this frame is obtained by the action

of an invertible operator S−1
τ to the original frame {τn}n. This leads to the question:

what are all the frames which are obtained by operating an invertible operator to the
given frame? This naturally brings us to the following definition.

Definition 1.2.45. (Balan (1999)) Two frames {τn}n and {ωn}n for H are said to be

similar or equivalent if there exists a bounded invertible operator T : H → H such
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that

ωn = T τn, ∀n ∈ N. (1.2.5)

Given frames {τn}n and {ωn}n, it is rather difficult to check whether they are sim-
ilar because one has to get an invertible operator and verify Equation (1.2.5) for every
natural number. Thus it is better if there is a characterization which does not involve
natural numbers and involves only operators. Further, it is natural to ask whether there
is a formula for the operator T which gives similarity. This was done by Balan (1999)
and independently by Han and Larson (2000) which states as follows.

Theorem 1.2.46. (Balan (1999); Han and Larson (2000)) For two frames {τn}n and

{ωn}n for H , the following are equivalent.

(i) {τn}n and {ωn}n are similar, i.e., there exists a bounded invertible operator T :
H → H such that ωn = T τn, ∀n ∈ N.

(ii) θω = θτT , for some bounded invertible operator T : H → H .

(iii) Pω = Pτ .

If one of the above conditions is satisfied, then the invertible operator in (i) and (ii) is

unique and is given by T = S−1
τ θ ∗

τ θω .

For a given subset M of N, set SM : H � h �→ ∑n∈M�h,τn�τn ∈ H . Because of
Inequalities (1.2.3), SM is a well-defined bounded positive operator (which may not be
invertible). Let Mc denote the complement of M in N. Casazza, Edidin, and Kutyniok
derived following identities for frames for Hilbert spaces (Balan et al. (2006, 2005)).

Theorem 1.2.47. (Balan et al. (2005, 2007)) (Frame identity) Let {τn}n be a frame for

H . Then for every M⊆ N,

∑
n∈M

|�h,τn�|2 −
∞

∑
n=1

|�SMh, τ̃n�|2 = ∑
n∈Mc

|�h,τn�|2 −
∞

∑
n=1

|�SMch, τ̃n�|2, ∀h ∈ H .

Theorem 1.2.48. (Balan et al. (2005, 2007)) (Parseval frame identity) Let {τn}n be a

Parseval frame for H . Then for every M⊆ N,

∑
n∈M

|�h,τn�|2 −
����� ∑

n∈M
�h,τn�τn

�����

2

= ∑
n∈Mc

|�h,τn�|2 −
����� ∑

n∈Mc
�h,τn�τn

�����

2

, ∀h ∈ H .

Theorem 1.2.48 has applications. It was applied to get the following remarkable
lower estimate for Parseval frames.
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Theorem 1.2.49. (Balan et al. (2007); Gavruta (2006)) Let {τn}n be a Parseval frame

for H . Then for every M⊆ N,

∑
n∈M

|�h,τn�|2 +
����� ∑

n∈Mc
�h,τn�τn

�����

2

= ∑
n∈Mc

|�h,τn�|2 +
����� ∑

n∈M
�h,τn�τn

�����

2

≥ 3
4
�h�2, ∀h ∈ H .

Further, the bound 3/4 is optimal.

As another application, Theorem 1.2.49 was used in the study of Parseval frames
with finite excesses (Bakic and Beric (2015); Balan et al. (2003)).
Like duality, there is another notion called as orthogonality for frames for Hilbert
spaces. This was first introduced by Balan (1998) in his Ph.D. thesis and further studied
by Han and Larson (2000).

Definition 1.2.50. (Balan (1998); Han and Larson (2000)) Let {τn}n be a frame for

H . A frame {ωn}n for H is said to be an orthogonal frame for {τn}n if

0 =
∞

∑
n=1

�h,ωn�τn =
∞

∑
n=1

�h,τn�ωn, ∀h ∈ H .

Remarkable property of orthogonal frames is that we can interpolate as well as we
can take direct sum of them to get new frames. These are illustrated in the following
two results.

Proposition 1.2.51. (Han et al. (2007); Han and Larson (2000)) Let {τn}n and {ωn}n

be two Parseval frames for H which are orthogonal. If C,D ∈ B(H ) are such that

C∗C +D∗D = IH , then {Cτn +Dωn}n is a Parseval frame for H . In particular, if

scalars c,d,e, f satisfy |c|2 + |d|2 = 1, then {cτn +dωn}n is a Parseval frame.

Proposition 1.2.52. (Han et al. (2007); Han and Larson (2000)) If {τn}n and {ωn}n

are orthogonal frames for H , then {τn ⊕ωn}n is a frame for H ⊕H . Further, if both

{τn}n and {ωn}n are Parseval, then {τn ⊕ωn}n is Parseval.

Recall that Paley-Wiener theorem 1.2.30 says that sequences which are close to
orthonormal bases are Riesz bases. Since a frame will also give a series representation,
it is natural to ask whether a sequence close to frame is a frame. This was first derived
by Christensen (1995a) which showed that sequences which are quadratically close to
frames are again frames.
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Theorem 1.2.53. (Christensen (1995a)) (Christensen’s quadratic perturbation) Let

{τn}∞
n=1 be a frame for H with bounds a and b. If {ωn}∞

n=1 in H satisfies

c :=
∞

∑
n=1

�τn −ωn�2 < a,

then {ωn}∞
n=1 is a frame for H with bounds a

�
1−

� c
a

�2 and b
�
1+

� c
b

�2
.

Three months later, Christensen generalized Theorem 1.2.53.

Theorem 1.2.54. (Christensen (1995c)) (Christensen perturbation) Let {τn}∞
n=1 be a

frame for H with bounds a and b. If {ωn}∞
n=1 in H is such that there exist α,γ ≥ 0

with α + γ√
a < 1 and

�����
m

∑
n=1

cn(τn −ωn)

�����≤ α

�����
m

∑
n=1

cnτn

�����+ γ

�
m

∑
n=1

|cn|2
� 1

2

, ∀c1, . . . ,cm ∈K,m = 1,2, . . . ,

then {ωn}∞
n=1 is a frame for H with bounds a

�
1− (α + γ√

a)
�2

and b
�

1+(α + γ√
b
)
�2

.

After two years, Casazza and Christensen further extended Theorem 1.2.54.

Theorem 1.2.55. (Casazza and Christensen (1997)) (Casazza-Christensen perturba-
tion) Let {τn}∞

n=1 be a frame for H with bounds a and b. If {ωn}∞
n=1 in H is such that

there exist α,β ,γ ≥ 0 with max{α + γ√
a ,β}< 1 and

�����
m

∑
n=1

cn(τn −ωn)

�����≤ α

�����
m

∑
n=1

cnτn

�����+ γ

�
m

∑
n=1

|cn|2
� 1

2

+β

�����
m

∑
n=1

cnωn

����� ,

∀c1, . . . ,cm ∈K,m = 1,2, . . . ,

then {ωn}∞
n=1 is a frame for H with bounds a

�
1− α+β+ γ√

a
1+β

�2

and b
�

1+
α+β+ γ√

b
1−β

�2

.

We next consider Bessel sequences which is next level of generalization of frames.

Definition 1.2.56. (cf. Christensen (2016)) A collection {τn}n in a Hilbert space H is

said to be a Bessel sequence for H if there exists a real constant b > 0 such that

(General Bessel’s inequality)
∞

∑
n=1

|�h,τn�|2 ≤ b�h�2, ∀h ∈ H . (1.2.6)

Constant b is called as a Bessel bound for {τn}n.
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Inequality 1.2.3 is stronger than Inequality 1.2.6. Hence every frame is a Bessel
sequence. Using Cauchy-Schwarz inequality, it follows that every finite set of vectors
is a Bessel sequence (cf. Christensen (2016)). Now using Theorem 1.2.34, we get
plenty of Bessel sequences which are not frames (in finite dimensions). As an example
in infinite dimensions, we claim that {e2,e3, . . .} is a Bessel sequence for �2(N) but
not a frame. Clearly {e2,e3, . . .} satisfies Inequality 1.2.6. If this is a frame, let a > 0
be such that first inequality in 1.2.3 holds. Then by taking h = e1, we get a�e1�2 ≤
∑∞

n=2 |�e1,en�|2 = 0 ⇒ a = 0, which is a contradiction.

Example 1.2.57. (i) If {τn}n is a frame for H , then for every subset S of N, {τn}n∈S
is a Bessel sequence for H , because ∑n∈S |�h,τn�|2 ≤ ∑∞

n=1 |�h,τn�|2,∀h ∈ H .

(ii) (cf. Christensen (2016)) Let g ∈ L 2(R) be bounded, compactly supported func-

tion and a,b > 0. Define fn,m : R � x �→ e2πimbxg(x− na) ∈ R, ∀n,m ∈ Z. Then

{ fn,m}n,m∈Z is a Bessel sequence for L 2(R).

(iii) (cf. Christensen (2016)) If {τn}∞
n=1 is an orthonormal basis for H , then {τn +

τn+1}∞
n=1 is a Bessel sequence for H (but not a frame for H ).

Theorem 1.2.58. (cf. Christensen (2016)) A collection {τn}n is a Bessel sequence for

H if and only if the map �2(N) � {τn}n �→ ∑∞
n=1 anτn ∈ H is a well-defined bounded-

linear operator. Moreover, if {τn}n is a Bessel sequence for H , then the operator

H � h �→ ∑∞
n=1�h,τn�τn ∈ H is positive.

Since a Bessel sequence need not be a frame, it is natural to ask the following
question: Given a Bessel sequence, can we add extra elements to it so that the resulting
sequence is a frame? Answer is positive. This result was obtained by Li and Sun (2009).

Theorem 1.2.59. (Li and Sun (2009)) Every Bessel sequence in a Hilbert space can

be expanded to a tight frame. Moreover, we can expand a Bessel sequence in infinitely

many ways to tight frames.

Li and Sun (2009) further observed that if a Bessel sequence for a Hilbert space can
be expanded finitely to get a tight frame, then the number of elements added can not be
small. Precise statement reads as follows.

Theorem 1.2.60. (Li and Sun (2009)) Let {τn}n be a Bessel sequence for H . If {τn}n∪
{ωk}N

k=1 is a λ -tight frame for H , then

N ≥ dim(λ IH −Sτ)(H ). (1.2.7)

Further, the Inequality (1.2.7) can not be improved.
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1.3 RIESZ BASES, FRAMES AND BESSEL SEQUENCES FOR
BANACH SPACES

Definition of Riesz basis, as given in Definition 1.2.19 requires the notion of inner
product. Due to the lack of inner product in a Banach space, Definition 1.2.19 can not
be carried over to Banach spaces. However, Theorem 1.2.25 allows to define Riesz
basis for Banach spaces as follows.

Definition 1.3.1. (Aldroubi et al. (2001)) Let 1 < q < ∞ and X be a Banach space. A

collection {τn}n in X is said to be a

(i) q-Riesz sequence for X if there exist a,b > 0 such that for every finite subset S
of N,

a

�
∑
n∈S

|cn|q
� 1

q

≤
�����∑

n∈S
cnτn

�����≤ b

�
∑
n∈S

|cn|q
� 1

q

, ∀cn ∈K. (1.3.1)

(ii) q-Riesz basis for X if it is a q-Riesz sequence for X and span{τn}n = X .

Example 1.3.2. Let {en}n be the standard Schauder basis for �p(N) and A : �p(N)→
�p(N) be a bounded linear invertible operator. Then it follows that {Aen}n is a p-Riesz

basis for �p(N).

Like Theorem 1.2.22, we have a similar result for p-Riesz basis.

Theorem 1.3.3. (Christensen and Stoeva (2003)) Let { fn}n be a q-Riesz basis for X ∗

and let p be the conjugate index of q. Then there exists a unique p-Riesz basis {τn}n for

X such that

x =
∞

∑
n=1

fn(x)τn, ∀x ∈ X and f =
∞

∑
n=1

f (τn) fn, ∀ f ∈ X ∗.

By realizing that the functional H � h �→ �h,τn� ∈K is bounded linear, Definition
1.2.31 leads to the following in Banach spaces.

Definition 1.3.4. (Aldroubi et al. (2001); Christensen and Stoeva (2003)) Let 1< p<∞
and X be a Banach space.

(i) A collection { fn}n of bounded linear functionals in X ∗ is said to be a p-frame
for X if there exist a,b > 0 such that

a�x� ≤
�

∞

∑
n=1

| fn(x)|p
� 1

p

≤ b�x�, ∀x ∈ X .
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If a can take the value 0, then we say { fn}n is a p-Bessel sequence for X .

(ii) A collection {τn}n in X is said to be a p-frame for X ∗ if there exist a,b > 0
such that

a� f� ≤
�

∞

∑
n=1

| f (τn)|p
� 1

p

≤ b� f�, ∀ f ∈ X ∗.

Example 1.3.5. (i) Let {en}n be the standard Schauder basis for �p(N), {ζn}n be the

coordinate functionals associated to {en}n and A : �p(N)→ �p(N) be a bounded

linear invertible operator. Then it follows that {ζnA}n is a p-frame for �p(N).

(ii) (Aldroubi et al. (2001)) Let 1 ≤ p < ∞ and a ∈ R. Define

Ta : L p(R) � f �→ Ta f ∈ L p(R), Ta f : R �→ (Ta f )(x) := f (x−a) ∈ C.

Define

W :=

�
f : R→ C

����sup
x∈R

∑
k∈Z

|Tk f (x)|< ∞

�

and for 1 < p < ∞, φ ∈W,

Sp :=

�
∑
k∈Z

ckTkφ
����{ck}k∈Z ∈ �p(Z)

�
.

Then Sp is a closed subspace of L p(R) and {Tkφ}k∈Z is a p-frame for L p(R).

Like Theorem 1.2.58, we have a similar result for Banach spaces.

Theorem 1.3.6. (Christensen and Stoeva (2003)) Let X be a Banach space and { fn}n

be a sequence in X ∗.

(i) { fn}n is a p-Bessel sequence for X with bound b if and only if

T : �q(N) � {an}n �→
∞

∑
n=1

an fn ∈ X ∗ (1.3.2)

is a well-defined (hence bounded) linear operator and �T� ≤ b (where q is the

conjugate index of p).

(ii) If X is reflexive, then { fn}n is a p-frame for X if and only if the operator T in

(1.3.2) is surjective.
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Rather working on p-frames, one can consider a general notion of frames, which
are generalizations of �p(N) spaces. For this, we need the notion of BK-space (Banach
scalar valued sequence space or Banach coordinate space).

Definition 1.3.7. (cf. Banaś and Mursaleen (2014)) A sequence space Xd is said to be

a BK-space if it is a Banach space and all the coordinate functionals are continuous,

i.e., whenever {xn}n is a sequence in Xd converging to x ∈ Xd, then each coordinate

of xn converges to each coordinate of x.

Familiar sequence spaces like �p(N), c(N) (space of convergent sequences) and
c0(N) (space of sequences converging to zero) are examples of BK-spaces. We now
recall an example of a sequence space which is not a BK-space.

Example 1.3.8. The space Xd := {{xn}∞
n=0 : xn ∈K,∀n ∈ N∪{0}} equipped with the

metric

d({xn}∞
n=0,{yn}∞

n=0) :=
∞

∑
n=0

1
2n

|xn − yn|
1+ |xn − yn|

, ∀{xn}∞
n=0,{yn}∞

n=0 ∈ Xd

is not a BK-space.

Definition 1.3.9. (Casazza et al. (2005a)) Let X be a Banach space and Xd be an

associated BK-space. A collection { fn}n in X ∗ is said to be a Xd-frame for X if the

following holds.

(i) { fn(x)}n ∈ Xd, for each x ∈ X .

(ii) There exist a,b > 0 such that a�x� ≤ �{ fn(x)}n� ≤ b�x�,∀x ∈ X .

Constants a and b are called as Xd-frame bounds.

Definition 1.3.10. (Casazza et al. (2005a)) Let X be a Banach space and Xd be an

associated BK-space. A collection {τn}n in X is said to be a Xd-frame for X if the

following holds.

(i) { f (τn)}n ∈ Xd, for each f ∈ X ∗.

(ii) There exist a,b > 0 such that a� f� ≤ �{ f (τn)}n� ≤ b� f�,∀ f ∈ X ∗.

Definition 1.3.11. (Gröchenig (1991)) Let X be a Banach space and Xd be an associ-

ated BK-space. Let { fn}n be a collection in X ∗ and S : Xd → X be a bounded linear

operator. The pair ({ fn}n,S) is said to be a Banach frame for X if the following holds.

(i) { fn(x)}n ∈ Xd, for each x ∈ X .
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(ii) There exist a,b > 0 such that a�x� ≤ �{ fn(x)}n� ≤ b�x�,∀x ∈ X .

(iii) S({ fn(x)}n) = x, for each x ∈ X .

Constants a and b are called as lower Banach frame bound and upper Banach frame
bound, respectively. The operator S is called as reconstruction operator and the oper-

ator θ f : X � x �→ θ f (x) := { fn(x)}n ∈ Xd is called as analysis operator.

Example 1.3.12. (i) Let {τn}n be a frame for a Hilbert space H with bounds a and

b. Let f ∈H ∗. Let h f ∈H be such that f (h)= �h,h f �, ∀h∈H and � f�= �h f �.

Then

a� f�2 = a�h f �2 ≤
∞

∑
n=1

|�h f ,τn�|2 =
∞

∑
n=1

| f (τn)|2 ≤ b�h f �2 = b� f�2.

Therefore {τn}n is an �2(N)-frame for H .

(ii) Let {τn}n be a frame for Hilbert space H . We define fn(h) := �h,τn�, ∀h ∈ H ,

∀n and S := S−1
τ θ ∗

τ . Then ({ fn}n,S) is a Banach frame for H .

(iii) Let {τn}n be a frame for H . We define fn(h) := �h,S−1
τ τn�, ∀h ∈ H , ∀n and

S := θ ∗
τ . Then ({ fn}n,S) is a Banach frame for H .

(iv) (Casazza et al. (2005a)) Let {τn}n be an orthonormal basis for a Hilbert space

H . We define

Xd := {{�h,τn + τn+1�}n : h ∈ H }= {{an +an+1}n : {a}n ∈ �2(N)}

equipped with the norm

�{an +an+1}n� :=

�
∞

∑
n=1

|an|2
� 1

2

.

Then Xd is a BK-space. Define fn : H � h �→ �h,τn + τn+1� ∈ K, ∀n, T : H �
h �→ { fn(h)}n ∈ Xd and set S := T−1. Then ({ fn}n,S) is a Banach frame for H .

However, {τn + τn+1}n is not a frame for H .

For Hilbert spaces it follows immediately that every Hilbert space has a frame be-
cause separable spaces have orthonormal bases and an orthonormal basis is a frame.
Using Hahn-Banach theorem, the following result was proved in (Casazza et al. (1999)).

Theorem 1.3.13. (Casazza et al. (1999)) Every separable Banach space admits a Ba-

nach frame.
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The notion of atomic decomposition is studied along with the notion of frames for
Banach spaces. This is defined as follows.

Definition 1.3.14. (Gröchenig (1991)) Let X be a Banach space and Xd be an asso-

ciated BK-space. Let { fn}n be a collection in X ∗ and {τn}n be a collection in X . The

pair ({ fn}n,{τn}n) is said to be an atomic decomposition for X if the following holds.

(i) { fn(x)}n ∈ Xd, for each x ∈ X .

(ii) There exist a,b > 0 such that a�x� ≤ �{ fn(x)}n� ≤ b�x�,∀x ∈ X .

(iii) x = ∑∞
n=1 fn(x)τn, for each x ∈ X .

Constants a and b are called as lower atomic bound and upper atomic bound, respec-

tively.

Example 1.3.15. (i) Let {τn}n be a frame for H . By defining fn(h) := �h,S−1
τ τn�,

∀h ∈ H , ∀n, the pair ({ fn}n,{τn}n) satisfies all the conditions of Definition

1.3.14 and hence it is an atomic decomposition for H .

(ii) Let {τn}n be a frame for H . By defining fn(h) := �h,τn�, ∀h ∈ H , and ωn :=
S−1

τ τn, ∀n, the pair ({ fn}n,{ωn}n) satisfies all the conditions of Definition 1.3.14

and hence it is an atomic decomposition for H .

Now we make a detailed observation that the notions of atomic decompositions and
Banach frames are completely different. Definition 1.3.14 of atomic decomposition
demands the expression of every element of a Banach space as a convergent series in
the same Banach space using a collection of bounded linear functionals on the space
and a collection of elements in the same Banach space. On the other hand, Definition
1.3.11 of Banach frame demands the expression of every element of a Banach space us-
ing a bounded linear operator from the BK-space to the Banach space and a collection
of bounded linear functionals on the same space without bothering about a converging
series expansion. Theorem 1.3.13 guarantees the existence of Banach frame for ev-
ery separable Banach space. However, the following remarkable result gives a lot of
conditions on Banach spaces to admit an atomic decomposition.

Theorem 1.3.16. (Casazza et al. (1999); Johnson et al. (1971); Pelczynski (1971)) For

a Banach space X , the following are equivalent.

(i) X has an atomic decomposition.

(ii) X has a finite dimensional expansion of identity.
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(iii) X is complemented in a Banach space with a Schauder basis.

(iv) X has bounded approximation property.

There is a close relationship between atomic decomposition and Banach frames for
certain classes of Banach spaces. These are exhibited in the following theorems.

Theorem 1.3.17. Casazza et al. (1999) Let X be a Banach space, Xd be a BK-space,

{ fn}n be a collection in X ∗ and S : Xd → X be a bounded linear operator. If the

canonical unit vectors {en}n are in Xd, then the following are equivalent.

(i) ({ fn}n,S) is a Banach frame for X and {en}n is a Schauder basis for Xd.

(ii) ({ fn}n,{Sen}n) is an atomic decomposition for X .

Theorem 1.3.18. (Casazza et al. (1999); Johnson et al. (1971); Pelczynski (1971)) Let

X be a Banach space and Xd be a BK-space. Let { fn}n be a collection in X ∗ and

S : Xd → X be a bounded linear operator. If the canonical unit vectors {en}n are in

Xd, then the following are equivalent.

(i) There exists a BK-space Xd such that ({ fn}n,{τn}n) is an atomic decomposition

for X .

(ii) There exists a BK-space Yd which has canonical unit vectors {en}n as Schauder

basis and a bounded linear operator S : Yd →X such that ({ fn}n,S) is a Banach

frame for X . Further, S can be taken as a projection and Sen = τn, for all n ∈N.

Next theorem shows that there is a relation between atomic decompositions and
projections.

Theorem 1.3.19. (Casazza et al. (1999)) Let X be a Banach space, {τn}n be a collec-

tion in X , { fn}n be a collection in X ∗ and S : Xd →X be a bounded linear operator.

Let {en}n be the standard unit vectors in Xd. Then the following are equivalent.

(i) There is a BK-space Xd such that ({ fn}n,{τn}n) is an atomic decomposition for

X .

(ii) There is a Banach space Z with a Schauder basis {ωn}n such that X ⊆ Z and

there is a bounded linear projection P : Z → X such that Pωn = τn, ∀n ∈ N.

We mention here before passing that it is known, one can simultaneously construct
Banach frames and atomic decompositions for certain classes of Banach spaces such as
coorbit spaces (Gröchenig (1991)), α-modulation spaces (Fornasier (2007)), decompo-
sition spaces (Borup and Nielsen (2007)), homogeneous spaces (Dahlke et al. (2007)),
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weighted coorbit spaces (Dahlke et al. (2004)), generalized coorbit spaces (Dahlke et al.
(2008)), inhomogeneous function spaces (Rauhut and Ullrich (2011)) and Bergman
spaces (Christensen et al. (2017)).

Using approximation property for Banach spaces, Casazza and Christensen (2008)
proved that Xd-frame for a Banach space need not admit representation of every ele-
ment of the Banach space. With regard to this, the following result gives information
when it is possible to express element of the Banach space using series.

Theorem 1.3.20. (Casazza et al. (2005a)) Let Xd be a BK-space and { fn}n be an

Xd-frame for X . Let θ f : X � x �→ { fn(x)}n ∈ Xd (this map is a well-defined linear

bounded below operator). The following are equivalent.

(i) θ f (X ) is complemented in Xd.

(ii) The operator θ−1
f : θ f (X )→ X can be extended to a bounded linear operator

Tf : Xd → X .

(iii) There exists a bounded linear operator S : Xd → X such that ({ fn}n,S) is a

Banach frame for X .

Also, the condition

(iv) There exists a sequence {τn}n in X such that ∑∞
n=1 anτn is convergent in X for

all {an}n in Xd and x = ∑∞
n=1 fn(x)τn,∀x ∈ X .

implies each of (i)-(iii). If we also assume that the canonical unit vectors {en}n form

a Schauder basis for Xd, (iv) is equivalent to the above (i)-(iii) and to the following

condition (v).

(v) There exists an X ∗
d -Bessel sequence {τn}n ⊆ X ⊆ X ∗∗ for X ∗ such that x =

∑∞
n=1 fn(x)τn, ∀x ∈ X .

If the canonical unit vectors {en}n form a Schauder basis for both Xd and X ∗
d , then

(i)-(v) is equivalent to the following condition (vi).

(vi) There exists an X ∗
d -Bessel sequence {τn}n ⊆ X ⊆ X ∗∗ for X ∗ such that f =

∑∞
n=1 f (τn) fn, ∀ f ∈ X ∗.

In each of the cases (v) and (vi), {τn}n is actually an X ∗
d -frame for X ∗.

We end this section by mentioning a perturbation theorem for Banach frames.
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Theorem 1.3.21. (Christensen and Heil (1997)) (Christensen-Heil perturbation) Let

({ fn}n,S) be a Banach frame for a Banach space X . Let {gn}n be a collection in X ∗

satisfying the following.

(i) There exist α,γ ≥ 0 such that

�{( fn −gn)(x)}n� ≤ α�{ fn(x)}n�+ γ�x− y�, ∀x,y ∈ X .

(ii) α�θ f �+ γ ≤ �S�−1.

Then there exists a reconstruction operator T such that ({ fn}n,T ) is a Banach frame

for X with bounds �S�−1 − (α�θ f �+ γ) and �θ f �+(α�θ f �+ γ).

1.4 MULTIPLIERS FOR BANACH SPACES

Let {λn}n ∈ �∞(N) and {τn}n, {ωn}n be sequences in a Hilbert space H . For x,y ∈H ,
the operator defined by H � h �→ �h,y�x ∈ H is denoted by x⊗ y .

The study of operators of the form

∞

∑
n=1

λn(τn ⊗ωn) (1.4.1)

began with Schatten (1960), in connection with the study of compact operators. Schat-
ten studied the operator in (1.4.1) whenever {τn}n and {ωn}n are orthonormal sequences
in a Hilbert space H . He showed that if {λn}n ∈ �∞(N) and {τn}n, {ωn}n are orthonor-
mal sequences in a Hilbert space H , then the map in (1.4.1) is a well-defined bounded
linear operator. Later, operators in (1.4.1) are studied mainly in connection with Gabor
analysis (Feichtinger and Nowak (2003), Benedetto and Pfander (2006), Dorfler and
Torresani (2010), Gibson et al. (2013), Cordero et al. (2012), Skrettingland (2020)).
This was generalized by Balazs (2007) who replaced orthonormal sequences by Bessel
sequences.

Let { fn}n be a sequence in the dual space X ∗ of a Banach space X and {τn}n

be a sequence in a Banach space Y . The operator τ ⊗ f is defined by τ ⊗ f : X �
x �→ f (x)τ ∈ Y . It was Rahimi and Balazs (2010) who extended the operator in (1.4.1)
from Hilbert spaces to Banach spaces. For a Banach space X and dual space X ∗, they
considered the operators (called as multipliers) of the form

Mλ , f ,τ :=
∞

∑
n=1

λn(τn ⊗ fn). (1.4.2)
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Rahimi and Balazs studied the operator in (1.4.2), whenever {τn}n is a p-Bessel se-
quence for X ∗ and { fn}n is a q-Bessel sequence for X (q is the conjugate index of p).
Besides theoretical importance, multipliers also play important role in Physics, signal
processing, acoustics (Stoeva and Balazs (2020)).

Fundamental result obtained by Rahimi and Balazs (2010) is the following. In this
section, q denotes the conjugate index of p.

Theorem 1.4.1. (Rahimi and Balazs (2010)) Let { fn}n be a p-Bessel sequence for a

Banach space X with bound b and {τn}n be a q-Bessel sequence for the dual of a

Banach space Y with bound d. If {λn}n ∈ �∞(N), then the map

T : X � x �→
∞

∑
n=1

λn(τn ⊗ fn)x ∈ Y

is a well-defined bounded linear operator and �T� ≤ bd�{λn}n�∞.

By varying only the symbol in a multiplier, we get a bounded linear operator which
has the nice property stated in the following theorem.

Proposition 1.4.2. (Rahimi and Balazs (2010)) Let { fn}n be a p-Bessel sequence for a

Banach space X with non-zero elements, {τn}n be a q-Riesz sequence for Y and let

{λn}n ∈ �∞(N). Then the mapping

T : �∞(N) � {λn}n �→ Mλ , f ,τ ∈ B(X ,Y )

is a well-defined injective bounded linear operator.

From the spectral theory of compact operators in Hilbert spaces, it easily follows
that the symbol of compact operator converges to zero. Following is a general result for
Banach spaces.

Proposition 1.4.3. (Rahimi and Balazs (2010)) Let { fn}n be a p-Bessel sequence for a

Banach space X with bound b and {τn}n be a q-Bessel sequence for Y with bound d.

If {λn}n ∈ c0(N), then Mλ , f ,τ is a compact operator.

Following theorem shows that multipliers behave nicely with respect to change in
its parameters. These are known as continuity properties of multipliers in the literature.

Theorem 1.4.4. (Rahimi and Balazs (2010)) Let { fn}n be a p-Bessel sequence for X

with bound b, {τn}n be a q-Bessel sequence for Y with bound d and {λn}n ∈ �∞(N). Let

k ∈N and let λ (k) = {λ (k)
1 ,λ (k)

2 , . . .}, λ = {λ1,λ2, . . .}, τ(k) = {τ(k)1 ,τ(k)2 , . . .}, τk
n ∈X ,

τ = {τ1,τ2, . . .}. Assume that for each k, λ (k) ∈ �∞(N) and τ(k) is a q-Bessel sequence

for Y .
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(i) If λ (k) → λ as k → ∞ in p-norm, then

�Mλ (k), f ,τ −Mλ , f ,τ�→ 0 as k → ∞.

(ii) If {λn}n ∈ �p(N) and ∑∞
n=1 �τ(k)n − τn�q → 0 as k → ∞, then

�Mλ , f ,τ(k) −Mλ , f ,τ�→ 0 as k → ∞.

1.5 LIPSCHITZ OPERATORS AND LIPSCHITZ COMPACT
OPERATORS

We first recall the definition of Lipschitz function.

Definition 1.5.1. (cf. Weaver (2018)) Let M , N be metric spaces. A function f : M →
N is said to be Lipschitz if there exists b > 0 such that

d( f (x), f (y))≤ bd(x,y), ∀x,y ∈ M .

One of the most important results in the study of Lipschitz functions is the following
(which is similar to the Banach-Mazur theorem for Banach spaces which shows that
every separable Banach space embeds isometrically in the Banach space of continuous
functions on [0,1] (cf. Albiac and Kalton (2016))).

Theorem 1.5.2. (cf. Aharoni (1974); Kalton and Lancien (2008)) (Aharoni’s theorem)

If M is a separable metric space, then there exists a function f : M → c0(N) and a

constant b > 0 such that

d(x,y)≤ � f (x)− f (y)� ≤ bd(x,y), ∀x,y ∈ M .

Definition 1.5.3. (cf. Weaver (2018)) A metric space M with a reference point which is

usually denoted by 0 is called as a pointed metric space. In this case, we write (M ,0)
is a pointed metric space.

Note that every metric space is a pointed metric space by fixing any point of the
space.

Just like norm of linear operator, a reasonable measure of a Lipschitz function can
be defined. This is exhibited in the next definition.

Definition 1.5.4. (cf. Weaver (2018)) Let X be a Banach space.
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(i) Let M be a metric space. The collection Lip(M ,X ) is defined as Lip(M ,X ) :=
{ f : f : M →X is Lipschitz}. For f ∈ Lip(M ,X ), the Lipschitz number is de-

fined as

Lip( f ) := sup
x,y∈M , x �=y

� f (x)− f (y)�
d(x,y)

.

(ii) Let (M ,0) be a pointed metric space. The collection Lip0(M ,X ) is defined as

Lip0(M ,X ) := { f : f : M →X is Lipschitz and f (0)= 0}. For f ∈Lip0(M ,X ),

the Lipschitz norm is defined as

� f�Lip0
:= sup

x,y∈M ,x �=y

� f (x)− f (y)�
d(x,y)

.

It is well-known that given two Banach spaces X and Y , the collection of all
bounded linear maps from X to Y is a Banach space with respect to operator-norm.
A similar result holds for base point preserving Lipschitz maps from pointed metric
spaces to Banach spaces.

Theorem 1.5.5. (cf. Weaver (2018)) Let X be a Banach space.

(i) If M is a metric space, then Lip(M ,X ) is a semi-normed vector space with

respect to the semi-norm Lip(·).

(ii) If (M ,0) is a pointed metric space, then Lip0(M ,X ) is a Banach space with

respect to the norm � · �Lip0
. Further, Lip0(X ) := Lip0(X ,X ) is a unital Ba-

nach algebra. In particular, if T ∈ Lip0(X ) satisfies �T − IX �Lip0
< 1, then T

is invertible and T−1 ∈ Lip0(X ).

In the study of Lipschitz functions it is natural to shift from metric space to the
setting of Banach spaces and use functional analysis tools on Banach spaces. This is
achieved through the following theorem.

Theorem 1.5.6. (cf. Arens and Eells (1956); Kalton (2004); Weaver (2018)) Let (M ,0)
be a pointed metric space. Then there exists a Banach space F (M ) and an isometric

embedding e : M → F (M ) satisfying the following universal property: for each Ba-

nach space X and each f ∈ Lip0(M ,X ), there is a unique bounded linear operator

Tf : F (M )→ X such that Tf e = f , i.e., the following diagram commutes.
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M

F (M ) X

e f

Tf

Further, �Tf �= � f�Lip0
. This property characterizes the pair (F (M ),e) uniquely upto

isometric isomorphism. Moreover, the map Lip0(M ,X ) � f �→ Tf ∈ B(F (M ),X )

is an isometric isomorphism.

The space F (M ) is known as Arens-Eells space or Lipschitz-free Banach space
(Godefroy (2015)). Theorem 1.5.6 tells that in order to ‘find’ the space Lip0(M ,X ),
we can find first F (M ) and then B(F (M ),X ). In particular, Lip0(M ,K) is iso-
metrically isomorphic to F (M )∗. For this reason F (M ) is also called as predual of
metric space M . The bounded linear operator Tf is called as linearization of f . We
now mention some examples of Lipschitz-free spaces for certain metric spaces.

Example 1.5.7. (cf. Weaver (2018), Dubei et al. (2009))

(i) If R is considered with usual metric, then F (R)∼= L 1(R).

(ii) If M is any separable metric tree, then F (M )∼= L 1([0,1]).

(iii) If M is any set equipped with the metric d(x,y) := 2 whenever x,y ∈ M with

x �= y and d(x,x) := 0, ∀x ∈ M , then F (M )∼= �1(M ).

(iv) If N is considered with usual metric, then F (N)∼= �1(N).

(v) F (�1(N))∼= L 1(R).

In the theory of bounded linear operators between Banach spaces, an operator is said
to be compact if the image of the unit ball under the operator is precompact (Fabian et al.
(2011)). Linearity of the operator now gives various characterizations of compactness
and plays an important role in rich theories such as theory of integral equations, spectral
theory, theory of Fredholm operators, operator algebra (C*-algebra), K-theory, Calkin
algebra, (operator) ideal theory, approximation properties of Banach spaces, Schauder
basis theory. Lack of linearity is a hurdle when one tries to define compactness of non-
linear maps. This hurdle was successfully crossed in the paper (Jiménez-Vargas et al.
(2014)) which began the study of Lipschitz compact operators.
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Definition 1.5.8. (Jiménez-Vargas et al. (2014)) If M is a metric space and X is a

Banach space, then the Lipschitz image of a Lipschitz map (also called as Lipschitz
operator) f : M → X is defined as the set

�
f (x)− f (y)

d(x,y)
: x,y ∈ M ,x �= y

�
. (1.5.1)

We observe that whenever an operator is linear, the set in (1.5.1) is simply the image
of the unit sphere.

Definition 1.5.9. (Jiménez-Vargas et al. (2014)) If (M ,0) is a pointed metric space and

X is a Banach space, then a Lipschitz map f : M → X such that f (0) = 0 is said to

be Lipschitz compact if its Lipschitz image is relatively compact in X , i.e., the closure

of the set in (1.5.1) is compact in X .

As showed in (Jiménez-Vargas et al. (2014)), there is a large collection of Lipschitz
compact operators. To state this, first we need a definition.

Definition 1.5.10. (Chen and Zheng (2012)) Let (M ,0) be a pointed metric space and

X be a Banach space. A Lipschitz operator f : M → X such that f (0) = 0 is said to

be strongly Lipschitz p-nuclear (1 ≤ p < ∞) if there exist operators A ∈B(�p(N),X ),

g ∈ Lip0(M ,�∞(N)) and a diagonal operator Mλ ∈ B(�∞(N),�p(N)) induced by a

sequence λ ∈ �p(N) such that f = AMλ g, i.e., the following diagram commutes.

M X

�∞(N) �p(N)

f

g

Mλ

A

Proposition 1.5.11. (Jiménez-Vargas et al. (2014)) Every strongly Lipschitz p-nuclear

operator from a pointed metric space to a Banach space is Lipschitz compact.

Since the image of a linear operator is a subspace, the natural definition of finite
rank operator is that image is a finite dimensional subspace. The image of Lipschitz
map may not be a subspace. Thus care has to be taken while defining rank of such
maps.

Definition 1.5.12. (Jiménez-Vargas et al. (2014)) If (M ,0) is a pointed metric space

and X is a Banach space, then a Lipschitz function f : M → X such that f (0) = 0 is

said to have Lipschitz finite dimensional rank if the linear hull of its Lipschitz image

is a finite dimensional subspace of X .
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Definition 1.5.13. (Jiménez-Vargas et al. (2014)) If M is a metric space and X is a

Banach space, then a Lipschitz function f : M →X is said to have finite dimensional
rank if the linear hull of its image is a finite dimensional subspace of X .

Next theorem shows that for pointed metric spaces, Definitions 1.5.12 and 1.5.13
are equivalent.

Theorem 1.5.14. (Achour et al. (2016); Jiménez-Vargas et al. (2014)) Let (M ,0) be a

pointed metric space and X be a Banach space. For a Lipschitz function f : M → X

such that f (0) = 0, the following are equivalent.

(i) f has Lipschitz finite dimensional rank.

(ii) f has finite dimensional rank.

(iii) There exist f1, . . . , fn in Lip0(M ,K) and τ1, . . . ,τn in X such that

f (x) =
n

∑
k=1

fk(x)τk, ∀x ∈ M .

In Hilbert spaces (and not in Banach spaces), every compact operator is approx-
imable by finite rank operators in the operator norm (cf. Fabian et al. (2011)). Following
is the definition of approximable operator for Lipschitz maps.

Definition 1.5.15. (Jiménez-Vargas et al. (2014)) If (M ,0) is a pointed metric space

and X is a Banach space, then a Lipschitz function f : M → X such that f (0) = 0 is

said to be Lipschitz approximable if it is the limit in the Lipschitz norm of a sequence

of Lipschitz finite rank operators from M to X .

Theorem 1.5.16. (Jiménez-Vargas et al. (2014)) Every Lipschitz approximable opera-

tor from pointed metric space (M ,0) to a Banach space X is Lipschitz compact.

1.6 OPERATOR-VALUED ORTHONORMAL BASES, RIESZ
BASES, FRAMES AND BESSEL SEQUENCES IN HILBERT
SPACES

Through a decade long research, the frame theory for Hilbert spaces was extended
to larger extent by Kaftal, Larson and Zhang with the introduction of the notion of
operator-valued frame (OVF) in 2009. In the theory of operator-valued frames, the
sequence {Ln}n of operators play an important role. These are defined as follows.
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Definition 1.6.1. (Kaftal et al. (2009)) Given n ∈ N, we define

Ln : H0 � h �→ Lnh := en ⊗h ∈ �2(N)⊗H0,

where {en}n is the standard orthonormal basis for �2(N).

Following proposition shows properties of the operator Ln.

Proposition 1.6.2. (Kaftal et al. (2009)) The operators Ln in Definition 1.6.1 satisfy the

following.

(i) Each Ln is an isometry from H0 to �2(N)⊗H0, and for n,m ∈ N we have

L∗
nLm =

�
IH0 if n = m

0 if n �= m
and

∞

∑
n=1

LnL∗
n = I�2(N)⊗ IH0 (1.6.1)

where the convergence is in the strong-operator topology.

(ii) L∗
m({an}n ⊗ y) = amy, ∀{an}n ∈ �2(N),∀y ∈ H0, for each m in N.

Orthonormal basis for Hilbert spaces are defined in Definition 1.2.8. Considering
Definition 1.2.8 and Parseval identity ((iv) in Theorem 1.2.10) for orthonormal basis,
Sun (2006) defined the notion of orthonormal basis for operators.

Definition 1.6.3. (Sun (2006)) A collection {Fn}n in B(H ,H0) is said to be an or-
thonormal basis or a G-basis in B(H ,H0) if

�F∗
n y,F∗

k z�= δn,k�y,z�, ∀y,z ∈ H0, ∀n,k ∈ N

and ∞

∑
n=1

�Fnh�2 = �h�2, ∀h ∈ H .

We observe �F∗
n y,F∗

k z� = δn,k�y,z�,∀y,z ∈ H0, ∀n,k ∈ N if and only if FnF∗
k =

δn,kIH0 , ∀n,k ∈ N. Hence if {Fn}n is an orthonormal basis, then �Fn�2 = �FnF∗
n � =

1,∀n ∈ N and ∑∞
n=1 F∗

n Fn = IH . Further, using Proposition 1.6.2 we have

�
∞

∑
n=1

A∗
nL∗

n

��
∞

∑
k=1

LkAk

�
= IH .

Consider the case H0 = K. For each n ∈ N, via Riesz representation theorem (cf.
Limaye (2014)), there exists a unique τn ∈ H such that Fnh = �h,τn�,∀h ∈ H . Now
first condition in Definition 1.6.3 tells �F∗

n y,F∗
k z�= yz�τn,τk�= yzδ j,k,∀ j,k ∈N,∀y,z ∈
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K which shows that {τn}n is orthonormal. Second condition in Definition 1.6.3 says that

∑∞
n=1 |�h,τn�|2 = �h�2,∀h ∈H . Theorem 1.2.10 now tells that {τn}n is an orthonormal

basis for H . Hence Definition 1.6.3 generalizes the definition of orthonormal basis.

Example 1.6.4. (i) (Sun (2006)) Let {τn}n be an orthonormal basis for H . Define

Fn : H � h �→ �h,τn� ∈ K, for each n ∈ N. Then {Fn}n is an operator-valued

orthonormal basis in B(H ,K).

(ii) If U : H → H0 is unitary, then {U} is an orthonormal basis in B(H ,H0).

(iii) Let n ≥ 2 and A1, . . . ,An be n isometries on �2(N) such that A1A∗
1 + · · ·+AnA∗

n =

I�2(N) (these are Cuntz algebra generators (Cuntz (1977))). We then have

(A jA∗
j)

2 = A j(A∗
jA j)A∗

j = A jIH A∗
j = A jA∗

j .

Hence A jA∗
j ’s are projections. Further A∗

jAk = 0, ∀ j �= k. Therefore {A∗
j}n

j=1 is

an operator-valued orthonormal basis in B(�2(N)).

(iv) Equation (1.6.1) says that {L∗
n}n is an orthonormal basis in B(�2(N)⊗H0,H0).

Using Theorem 1.2.25, Sun (2006) defined the notion of Riesz basis for operators.

Definition 1.6.5. (Sun (2006)) A collection {An}n in B(H ,H0) is said to be an operator-
valued Riesz basis or G-Riesz basis in B(H ,H0) if it satisfies the following.

(i) {h ∈ H : Anh = 0,∀n ∈ N}= {0}.

(ii) There exist a,b > 0 such that for every finite subset S of N,

a ∑
n∈S

�hn�2 ≤
�����∑

n∈S
A∗

nhn

�����

2

≤ b ∑
n∈S

�hn�2, ∀hn ∈ H0.

Example 1.6.6. (i) (Sun (2006)) Let {τn}n be a Riesz basis for H . Define An : H �
h �→ �h,τn� ∈ K, for each n ∈ N. Then A∗

ny = yτn,∀y ∈ K. Now from Theorem

1.2.25, {An}n is an operator-valued Riesz basis in B(H ,K).

(ii) If U : H → H0 is invertible, then {U} is an operator-valued Riesz basis in

B(H ,H0).

(iii) Let A1, . . . ,An be as in (iii) of Example 1.6.4 and let A,B ∈ B(H ) be invertible.

Then {AA∗
jB}n

j=1 is an operator-valued Riesz basis in B(H ). In fact, if AA∗
jBh=
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0,∀ j, then A∗
jBh = 0,∀ j which gives

h = B−1Bh = B−1

�
n

∑
k=1

AkA∗
kBh

�
= 0

and every finite subset S of N,

(�B−1��A−1�)−1 ∑
j∈S

�h j�2 ≤
�����∑

j∈S
B∗A jA∗h j

�����

2

≤ �B��A� ∑
j∈S

�h j�2,

for all h j ∈ H .

Sun (2006) derived the following result which tells that we can define the notion of
operator-valued Riesz basis in a manner similar to Definition 1.2.19.

Theorem 1.6.7. (Sun (2006)) A collection {An}n in B(H ,H0) is an operator-valued

Riesz basis if and only if there exist an operator-valued orthonormal basis {Fn}n in

B(H ,H0) and an invertible T ∈ B(H ) such that An = FnU,∀n.

Historically, many generalizations of frames for Hilbert spaces are proposed such
as frames for subspaces (Casazza and Kutyniok (2004)), fusion frames (Casazza et al.
(2008b)), outer frames (Aldroubi et al. (2004)), oblique frames (Christensen and Eldar
(2004)), pseudo frames (Li and Ogawa (2004)), quasi-projectors (Fornasier (2004)). It
was in 2006, when Sun gave the definition of G-frame which unified all these notions
of frames for Hilbert spaces.

Definition 1.6.8. (Sun (2006)) A collection {An}n in B(H ,H0) is said to be a G-frame
in B(H ,H0) if there exist a,b > 0 such that

a�h�2 ≤
∞

∑
n=1

�Anh�2 ≤ b�h�2, ∀h ∈ H .

Basic idea for the notion of OVF is the following. Definition 1.2.31 can be written
in an equivalent form as

the map Sτ : H � h �→
∞

∑
n=1

�h,τn�τn ∈ H is a well-defined bounded

positive invertible operator. (1.6.2)

If we now define An : H � h �→ �h,xn� ∈K, for each n ∈ N, then Statement (1.6.2) can
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be rewritten as

∞

∑
n=1

A∗
nAn converges in the strong-operator topology on B(H ) to a

bounded positive invertible operator. (1.6.3)

Now Statement (1.6.3) leads to

Definition 1.6.9. (Kaftal et al. (2009)) A collection {An}n in B(H ,H0) is said to be

an operator-valued frame (OVF) in B(H ,H0) if the series

(Operator-valued frame operator) SA :=
∞

∑
n=1

A∗
nAn

converges in the strong-operator topology on B(H ) to a bounded invertible operator.

Constants a and b are called as lower and upper frame bounds, respectively. Supremum

(resp. infimum) of the set of all lower (resp. upper) frame bounds is called optimal lower

(resp. upper) frame bound. If the optimal frame bounds are equal, then the frame is

called as tight operator-valued frame. A tight operator-valued frame whose optimal

frame bound is one is termed as Parseval operator-valued frame.

Before proceeding, we first show that Definitions 1.6.8 and 1.6.9 are equivalent. For
this, we first need a result.

Theorem 1.6.10. (Sun (2006)) If {An}n in B(H ,H0) is a G-frame, then the map

SA : H � h �→ ∑∞
n=1 A∗

nAnh ∈ H is a well-defined bounded linear invertible operator.

Following theorem will reflect the equivalence of notions of OVF and G-frame.

Theorem 1.6.11. A collection {An}n in B(H ,H0) is a G-frame in B(H ,H0) if and

only if {An}n is an operator-valued frame in B(H ,H0).

Proof. (⇒) Theorem 1.6.10 says that SA is a bounded linear invertible operator. Since
A∗

nAn ≥ 0,∀n ∈ N, SA is positive. Hence {An}n is an OVF.
(⇐) Since ∑∞

n=1 A∗
nAn is positive invertible, there are a,b> 0 such that aIH ≤∑∞

n=1 A∗
nAn

≤ bIH . This implies a�h�2 ≤�∑∞
n=1 A∗

nAnh,h�=∑∞
n=1 �Anh�2 ≤ b�h�2,∀h∈H . Hence

{An}n is a G-frame.

Remark 1.6.12. Even though Sun’s paper (Sun (2006)) published earlier than the pa-

per by Kaftal et al. (2009), it is mentioned in the introduction of paper (Kaftal et al.

(2009)) that authors of paper (Kaftal et al. (2009)) started the work in January 1999.
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Example 1.6.13. (i) (Sun (2006)) Let {τn}n be a frame for H . Define An : H � h �→
�h,τn� ∈K, for each n ∈ N. Then A∗

ny = yτn,∀y ∈K. Now from Theorem 1.2.36,

the map H � h �→ ∑∞
n=1 A∗

nAnh = ∑∞
n=1�h,τn�τn ∈ H is a well-defined positive

invertible operator. Hence {An}n is an operator-valued frame in B(H ,K).

(ii) If A : H → H0 is a bounded below linear operator, then {A} is an operator-

valued frame in B(H ,H0).

(iii) Let A1, . . . ,An be as in (iii) of Example 1.6.4 and let A,B ∈ B(H ) be bounded

below. Then {AA∗
jB}n

j=1 is an operator-valued frame in B(H ).

The fundamental tool used in the study of OVF is the factorization of frame operator
SA. This and other important properties of OVFs are stated in the following theorem.

Theorem 1.6.14. (Kaftal et al. (2009), Sun (2006)) Let {An}n be an OVF in B(H ,H0).

Then

(i) span∪∞
n=1 A∗

n(H0) = H .

(ii) The analysis operator

θA : H � h �→ θAh :=
∞

∑
n=1

LnAnh ∈ �2(N)⊗H0

is a well-defined bounded linear operator. Further,
√

a�h�≤�θAh�≤
√

b�h�,∀h∈
H . In particular, θA is injective and its range is closed.

(iii) We have

a�h�2 ≤ �SAh,h� ≤ b�h�2,∀h ∈ H and a�h� ≤ �SAh� ≤ b�h�,∀h ∈ H .

(iv) h = ∑∞
n=1(AnS−1

A )∗Anh = ∑∞
n=1 A∗

n(AnS−1
A )h,∀h ∈ H .

(v) θ ∗
Az =

∞
∑

n=1
A∗

nL∗
nz, ∀z ∈ �2(N)⊗H0.

(vi) Frame operator factors as SA = θ ∗
AθA.

(vii) θ ∗
A is surjective.

(viii) �S−1
A �−1 is the optimal lower frame bound and �SA�= �θA�2 is the optimal upper

frame bound.

(ix) PA := θAS−1
A θ ∗

A : �2(N)⊗H0 → �2(N)⊗H0 is an orthogonal projection onto

θA(H ).
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(x) {An}n is Parseval if and only if θA is an isometry if and only if θAθ ∗
A is a projec-

tion.

(xi) {AnS−1
A }n is an OVF in B(H ,H0) with bounds b−1 and a−1.

(xii) {AnS−1/2
A }n is a Parseval OVF in B(H ,H0).

(xiii) (Best approximation) If h ∈ H has representation h = ∑∞
n=1 A∗

nyn, for some se-

quence {yn}n in H0, then

∞

∑
n=1

�yn�2 =
∞

∑
n=1

�AnS−1
A h�2 +

∞

∑
n=1

�yn −AnS−1
A h�2.

Similar to the notion of duality, orthogonality and similarity for frames in Hilbert
spaces, there are similar notions for operator-valued frames. We now recall these no-
tions and mention some results.

Definition 1.6.15. (Kaftal et al. (2009)) An OVF {Bn}n in B(H ,H0) is said to be a

dual for an OVF {An}n in B(H ,H0) if ∑∞
n=1 B∗

nAn = IH .

Definition 1.6.16. (Kaftal et al. (2009)) An OVF {Bn}n in B(H ,H0) is said to be

orthogonal to an OVF {An}n in B(H ,H0) if ∑∞
n=1 B∗

nAn = 0.

Proposition 1.6.17. (Kaftal et al. (2009)) Let {An}n and {Bn}n be two Parseval OVFs

in B(H ,H0) which are orthogonal. If C,D,E,F ∈B(H ) are such that C∗C+D∗D=

IH , then {AnC+BnD}n is a Parseval OVF in B(H ,H0). In particular, if scalars c,d,

satisfy |c|2 + |d|2 = 1, then {cAn +dBn}n is a Parseval OVF.

Proposition 1.6.18. (Kaftal et al. (2009)) If {An}n, and {Bn}n are orthogonal OVFs in

B(H ,H0), then {An ⊕Bn}n is an OVF in B(H ⊕H ,H0). Further, if both {An}n

and {Bn}n are Parseval, then {An ⊕Bn}n is Parseval.

Definition 1.6.19. (Kaftal et al. (2009)) An OVF {Bn}n in B(H ,H0) is said to be sim-
ilar or equivalent to an OVF {An}n in B(H ,H0) if there exists a bounded invertible

RA,B ∈ B(H ) such that Bn = AnRA,B,∀n ∈ N.

Similar frames share some nice properties that knowing analysis, synthesis and
frame operators of one give that of another.

Lemma 1.6.20. (Kaftal et al. (2009)) Let {An}n and {Bn}n be similar OVFs and Bn =

AnRA,B,∀n ∈ N, for some invertible RA,B ∈ B(H ). Then

(i) θB = θARA,B.
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(ii) SB = R∗
A,BSARA,B.

(iii) PB = PA.

There is a complete classification of similarity using operators.

Theorem 1.6.21. (Kaftal et al. (2009)) For two OVFs {An}n and {Bn}n, the following

are equivalent.

(i) Bn = AnRA,B,∀n ∈ N, for some invertible RA,B ∈ B(H ).

(ii) θB = θARA,B for some invertible RA,B ∈ B(H ).

(iii) PB = PA.

If one of the above conditions is satisfied, then invertible operators in (i) and (ii) are

unique and are given by RA,B = S−1
A θ ∗

AθB. In the case that {An}n is Parseval, then {Bn}n

is Parseval if and only if RA,B is unitary.

In the study of frames, rather indexing with natural numbers or other indexing sets,
it is more useful in some cases to study frames indexed by groups and generated by a
single operator.

Let G be a discrete topological group and {χg}g∈G be the standard orthonormal basis
for �2(G). Let λ be the left regular representation of G defined by λgχq(r) = χq(g−1r),

∀g,q,r ∈ G and ρ be the right regular representation of G defined by ρgχq(r) = χq(rg),

∀g,q,r ∈ G. By L(G), we mean the von Neumann algebra generated by unitaries
{λg}g∈G in B(�2(G)). Similarly R(G) denotes the von Neumann algebra generated
by {ρg}g∈G in B(�2(G)). We recall that L(G)� = R(G), R(G)� = L(G) (cf. Conway
(2000)), where A � denotes the commutant of A ⊆ B(H ).

Definition 1.6.22. (Kaftal et al. (2009)) Let π be a unitary representation of a discrete

group G on a Hilbert space H . An operator A in B(H ,H0) is called a operator
frame generator (resp. a Parseval frame generator) w.r.t. an operator Ψ in B(H ,H0)

if {Ag := Aπg−1}g∈G is a factorable weak OVF (resp. Parseval) in B(H ,H0). In this

case, we say A is an operator frame generator for π .

Frames generated by groups have the remarkable property that the frame operator
belongs to the commutant of π(G). These and other properties are given in the following
proposition.

Proposition 1.6.23. (Kaftal et al. (2009)) Let A and B be operator frame generators in

B(H ,H0) for a unitary representation π of G on H . Then
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(i) θAπg = (λg ⊗ IH0)θA,θBπg = (λg ⊗ IH0)θB,∀g ∈ G.

(ii) θ ∗
AθB is in the commutant π(G)� of π(G)��. Further, SA ∈ π(G)�.

(iii) θAT θ ∗
A,θAT θ ∗

B ∈R(G)⊗B(H0),∀T ∈ π(G)�. In particular, PA ∈R(G)⊗B(H0).

Following theorem gives a characterization of frames generated by unitary repre-
sentation without using representation.

Theorem 1.6.24. (Kaftal et al. (2009)) Let G be a discrete group, e be the identity of G

and {Ag}g∈G be a Parseval OVF in B(H ,H0). Then there is a unitary representation

π of G on H for which

Ag = Aeπg−1 , ∀g ∈ G

if and only if

AgpA∗
gq = ApA∗

q, ∀g, p,q ∈ G.

One of the most important results obtained by Kaftal et al. (2009) is the connected-
ness of the set of all generators of operator-valued frames generated by groups.

Theorem 1.6.25. (Kaftal et al. (2009)) Let π be a unitary representation of a discrete

group G on H . Suppose

/0 �= FG := {A ∈ B(H ,H0) : {Aπg−1}g∈G is an operator-valued frame in

B(H ,H0)}.

(i) If dimH0 < ∞, then FG is path-connected in the operator-norm topology on

B(H ,H0).

(ii) If dimH0 = ∞, then FG is path-connected in the operator-norm topology on

B(H ,H0) if and only if the von Neumann algebra R(G) generated by the right

regular representations of G is diffuse (i.e., R(G) has no nonzero minimal pro-

jections).

Stability result for OVFs is due to Sun (2007).

Theorem 1.6.26. (Sun (2007)) Let {An}n be an OVF in B(H ,H0) with frame bounds

a and b. Suppose {Bn}n in B(H ,H0) is such that there exist α,β ,γ ≥ 0 with max{α+
γ√
a ,β}< 1 and for all m = 1,2, . . . ,

�����
m

∑
n=1

(A∗
n −B∗

n)yn

�����≤ α

�����
m

∑
n=1

A∗
nyn

�����+β

�����
m

∑
n=1

B∗
nyn

�����+ γ

�
m

∑
n=1

�yn�2

� 1
2

, ∀yn ∈ H0.
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Then {Bn}n is an operator-valued frame in B(H ,H0) with frame bounds

a

�
1−

α +β + γ√
a

1+β

�2

and b

�
1+

α +β + γ√
b

1−β

�2

.

Like Bessel sequences for Hilbert spaces, there is a similar notion for operators.

Definition 1.6.27. (Sun (2006)) A collection {An}n in B(H ,H0) is said to be an

operator-valued Bessel sequence (or G-Bessel sequence) if there exists b > 0 such

that

(Operator-valued Bessel’s inequality)
∞

∑
n=1

�Anh�2 ≤ b�h�2, ∀h ∈ H .

Constant b is called as a Bessel bound for {An}n.

Similar to Theorem 1.6.11 we have the following result.

Theorem 1.6.28. A collection {An}n in B(H ,H0) is an operator-valued Bessel se-

quence if and only if the series ∑n A∗
nAn converges in the strong-operator topology on

B(H ) to a bounded operator.

Following are some examples of operator-valued Bessel sequences.

Example 1.6.29. (i) (Sun (2006)) Let {τn}n be a Bessel sequence for H . Define

An : H � h �→ �h,τn� ∈ K, for each n ∈ N. Then A∗
ny = yτn,∀y ∈ K. Now from

Theorem 1.2.58, the map H � h �→ ∑∞
n=1 A∗

nAnh = ∑∞
n=1�h,τn�τn ∈ H is a well-

defined positive operator. Hence {An}n is an operator-valued Bessel sequence in

B(H ,K).

(ii) From operator-norm inequality, we see that any finite collection of operators is

an operator-valued Bessel sequence.
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CHAPTER 2

FRAMES FOR METRIC SPACES

2.1 BASIC PROPERTIES

In this chapter, we define frames for metric spaces and derive several fundamental prop-
erties.

Definition 2.1.1. (p-frame for metric space) Let M be a metric space and p ∈ [1,∞).

A collection { fn}n of Lipschitz functions in Lip(M ,K) is said to be a metric p-frame
or Lipschitz p-frame for M if there exist a,b > 0 such that

ad(x,y)≤
�

∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤ bd(x,y), ∀x,y ∈ M .

If we do not demand the first inequality, then we say { fn}n is a metric p-Bessel sequence

for M .

We now see that whenever M is a Banach space and fn’s are linear functionals, then
Definition 2.1.1 reduces to Definition 1.3.4. We now give various examples.

Example 2.1.2. Let { fn}n be a p-frame for a Banach space X . Choose any bi-Lipschitz

function A : X → X . Then it follows that { fnA}n is a metric p-frame for X .

Example 2.1.3. Let 1 < a < ∞. Let us take M := [a,∞) and define fn : M → R by

f0(x) := 1, ∀x ∈ M

fn(x) :=
(logx)n

n!
, ∀x ∈ M ,∀n ≥ 1.

Then f �n(x) =
(logx)(n−1)

(n−1)!x , ∀x ∈ M ,∀n ≥ 1. Since f �n is bounded on M , ∀n ≥ 1, it follows
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that fn is Lipschitz on M , ∀n ≥ 1. For x,y ∈ M with x < y, we now see that

∞

∑
n=0

| fn(x)− fn(y)|=
∞

∑
n=0

����
(logx)n

n!
− (logy)n

n!

����=
∞

∑
n=0

(logy)n

n!
−

∞

∑
n=0

(logx)n

n!

= elogy − elogx = y− x = |x− y|.

Hence { fn}n is a metric 1-frame for M .

Example 2.1.4. Let 1 < a < b < ∞. We take M := [ 1
1−a ,

1
1−b ] and define fn : M → R

by

fn(x) :=
�

1− 1
x

�n

, ∀x ∈ M ,∀n ≥ 0.

Then f �n(x) =
n

−x2

�
1− 1

x

�n−1
, ∀x ∈ M ,∀n ≥ 1. Therefore fn is a Lipschitz function, for

each n ≥ 1. We now see that { fn}n is a metric 1-frame for M . In fact, for x,y ∈ M ,

with x < y, we have

∞

∑
n=0

| fn(x)− fn(y)|=
∞

∑
n=0

����
�

1− 1
x

�n

−
�

1− 1
y

�n����=
∞

∑
n=0

�
1− 1

y

�n

−
∞

∑
n=0

�
1− 1

x

�n

= y− x = |x− y|.

Example 2.1.5. Let { fn}n be a p-frame for a Banach space X . Let φ : K → K be

bi-Lipschitz and define gn(x) := φ( fn(x)), ∀x ∈ X , ∀n ∈ N. It then follows that {gn}n

is a metric p-frame for X .

By looking at Theorem 1.3.6 we can ask whether there is a result similar for metric
p-frames. We answer this partially through the following theorem.

Theorem 2.1.6. Let (M ,0) be a pointed metric space and { fn}n be a sequence in

Lip0(M ,K). Then { fn}n is a metric p-Bessel sequence for M with bound b if and only

if

T : �q(N) � {an}n �→ T{an}n ∈ Lip0(M ×M ,K), (2.1.1)

T{an}n : M ×M � (x,y) �→
∞

∑
n=1

an( fn(x)− fn(y)) ∈K

is a well-defined (hence bounded) linear operator and �T�≤ b (where q is the conjugate

index of p).

Proof. (⇒) Let {an}n ∈ �q(N) and n,m ∈N with n < m. First we have to show that the
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series in (2.1.1) is convergent. For all x,y ∈ M ,

�����
m

∑
k=n

ak( fk(x)− fk(y))

�����≤
�

m

∑
k=n

|ak|q
� 1

q
�

m

∑
k=n

| fk(x)− fk(y)|p
� 1

p

≤ b

�
m

∑
k=n

|ak|q
� 1

q

d(x,y).

Therefore the series in (2.1.1) converges. We next show that the map T{an}n is Lips-
chitz. Consider

�T{an}n�Lip0
= sup

(x,y),(u,v)∈M×M ,(x,y)�=(u,v)

|T{an}n(x,y)−T{an}n(u,v)|
d(x,u)+d(y,v)

= sup
(x,y),(u,v)∈M×M ,(x,y)�=(u,v)

|∑∞
n=1 an( fn(x)− fn(u))−∑∞

n=1 an( fn(y)− fn(v))|
d(x,u)+d(y,v)

≤ sup
(x,y),(u,v)∈M×M ,(x,y)�=(u,v)

|∑∞
n=1 an( fn(x)− fn(u))|+ |∑∞

n=1 an( fn(y)− fn(v))|
d(x,u)+d(y,v)

≤ b sup
(x,y),(u,v)∈M×M ,(x,y)�=(u,v)

(∑∞
n=1 |an|q)

1
q d(x,u)+(∑∞

n=1 |an|q)
1
q d(y,v)

d(x,u)+d(y,v)

= b

�
∞

∑
n=1

|an|q
� 1

q

.

Hence T is well-defined. Clearly T is linear. Boundedness of T with bound b will
follow from previous calculation.
(⇐) From the definition of T , it is bounded by Banach-Steinhaus. Given x,y ∈ M , we
define a map

Φx,y : �q(N) � {an}n �→ Φx,y{an}n :=
∞

∑
n=1

an( fn(x)− fn(y)) ∈K

which is a bounded linear functional. Hence { fn(x)− fn(y)}n ∈ �p(N). Let {en}n be
the standard Schauder basis for �p(N). Then

�Φx,y�=
�

∞

∑
n=1

|Φx,y{en}n|p
� 1

p

=

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

.
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Now

b

�
∞

∑
n=1

|an|q
� 1

q

= b�{an}n� ≥ �T{an}n�Lip0

≥ sup
(x,0),(y,0)∈M×M ,(x,0)�=(y,0)

|T{an}n(x,0)−T{an}n(y,0)|
d(x,y)

= sup
(x,0),(y,0)∈M×M ,(x,0)�=(y,0)

|∑∞
n=1 an( fn(x)− fn(y))|

d(x,y)

= sup
(x,0),(y,0)∈M×M ,(x,0)�=(y,0)

|Φx,y{an}n|
d(x,y)

which implies

|Φx,y{an}n|≤ b

�
∞

∑
n=1

|an|q
� 1

q

d(x,y), ∀x,y ∈ M .

Using all these, we finally get

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

= �Φx,y� ≤ bd(x,y), ∀x,y ∈ M .

Hence { fn}n is a metric p-Bessel sequence for M with bound b.

In the spirit of definition of Xd-frame, Definition 2.1.1 can be generalized.

Definition 2.1.7. Let M be a metric space and Md be an associated BK-space. Let

{ fn}n be a sequence in Lip(M ,K). We say that { fn}n is a metric Md-frame (or Lips-
chitz Md-frame) for M if the following conditions hold.

(i) { fn(x)}n ∈ Md, for each x ∈ M ,

(ii) There exist positive a,b such that ad(x,y) ≤ �{ fn(x)− fn(y)}n�Md ≤ bd(x,y),

∀x,y ∈ M .

We say constant a as lower metric Md-frame bound and constant b as upper metric
Md-frame bound. If we do not demand the first inequality, then we say { fn}n is a

metric Md-Bessel sequence.

An easier way of producing metric Md-frame is the following. Let Md be a BK-
space which admits a Schauder basis {τn}n. Let { fn}n be the coefficient functionals
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associated with {τn}n. Let M be a metric space and A : M →Md be bi-Lipschitz with
bounds a and b. Define gn := fnA,∀n. Then gn is a Lipschitz function for all n. Now

ad(x,y)≤ �Ax−Ay�Md = �{ fn(Ax−Ay)}n�Md

= �{ fn(Ax)− fn(Ay)}n�Md = �{gn(x)−gn(y)}n�Md ≤ bd(x,y), ∀x,y ∈ M .

Hence {gn}n is a metric Md-frame for M .
Following result ensures that metric frames are universal in nature.

Theorem 2.1.8. Every separable metric space M admits a metric Md-frame.

Proof. From Theorem 1.5.2 it follows that there exists a bi-Lipschitz function f : M →
c0(N). Let pn : c0(N) → K be the coordinate projection, for each n. If we now set
fn := pn f , for each n, then { fn}n is a metric c0(N)-frame for M .

Given metric Md-frames { fn}n, {gn}n and a nonzero scalar λ , one can naturally
ask whether we can scale and add them to get new frames? i.e., whether { fn +λgn}n

is a frame? In the case of Hilbert spaces, a use of Minkowski’s inequality shows that
whenever {τn}n and {ωn}n are frames for a Hilbert space H , then {τn + λωn}n is a
Bessel sequence for H . In general, this sequence need not be a frame for H . Thus
we have to impose extra conditions to ensure the existence of lower frame bound. For
Hilbert spaces this is done by Favier and Zalik (1995). We now obtain similar results
for metric spaces.

Theorem 2.1.9. Let { fn}n be a metric Md-frame for metric space M with bounds a

and b. Let λ be a non-zero scalar. Then

(i) {λ fn}n is a metric Md-frame for M with bounds aλ and bλ .

(ii) If A : M → M is bi-Lipschitz with bounds c and d, then { fnA}n is a metric

Md-frame for M with bounds ac and bd.

(iii) If {gn}n is a metric Md-Bessel sequence for M with bound d and |λ | < a
d , then

{ fn +λgn}n is a metric Md-frame for M with bounds a− |λ |d and b+ |λ |d.

Proof. First two conclusions follow easily. For the upper frame bound of { fn +λgn}n

we use triangle inequality. Now for lower frame bound, using reverse triangle inequal-
ity, we get

�{( fn +λgn)(x)− ( fn +λgn)(y)}n�Md = �{ fn(x)− fn(y)+λ (gn(x)−gn(y))}n�Md

≥ �{ fn(x)− fn(y)}n�Md −�{λ (gn(x)−gn(y))}n�Md
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≥ ad(x,y)− |λ |d(x,y) = (a− |λ |)d(x,y), ∀x,y ∈ M .

We next define “metric frame" which is stronger than Definition 2.1.7 in light of
definition of Banach frame.

Definition 2.1.10. Let M be a metric space and Md be an associated BK-space. Let

{ fn}n be a sequence in Lip(M ,K) and S : Md →M . We say that ({ fn}n,S) is a metric
frame or Lipschitz metric frame for M if the following conditions hold.

(i) { fn(x)}n ∈ Md, for each x ∈ M ,

(ii) There exist positive a,b such that ad(x,y) ≤ �{ fn(x)− fn(y)}n�Md ≤ bd(x,y),

∀x,y ∈ M ,

(iii) S is Lipschitz and S({ fn(x)}n) = x, for each x ∈ M .

Mapping S is called as Lipschitz reconstruction operator. We say constant a as lower
frame bound and constant b as upper frame bound. If we do not demand the first

inequality, then we say ({ fn}n,S) is a metric Bessel sequence.

We observe that if ({ fn}n,S) is a metric frame for M , then condition (i) in Definition
2.1.10 tells that the mapping (we call as analysis map)

θ f : M � x �→ θ f x := { fn(x)}n ∈ Md

is well-defined and condition (ii) in Definition 2.1.10 tells that θ f satisfies

ad(x,y)≤ �θ f x−θ f y� ≤ bd(x,y), ∀x,y ∈ M .

Hence θ f is bi-Lipschitz and injective. Thus a metric frame puts the space into Md

via θ f and reconstructs every element by using reconstruction operator S. Now note
that Sθ f = IM . This operator description helps us to derive the following propositions
easily.

Proposition 2.1.11. If ({ fn}n,S) is a metric frame for M , then Pf ,S := θ f S : Md →Md

is idempotent and Pf ,S(Md) = θ f (Md).

Proposition 2.1.12. Let { fn}n be a Md-frame for M and S : Md → M be Lipschitz.

Then ({ fn}n,S) is a metric frame for M if and only if S is a left-Lipschitz inverse of θ f

if and only if θ f is a right-Lipschitz inverse of S.
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We now give some explicit examples of metric frames.

Example 2.1.13. Let M , { fn}n be as in Example 2.1.3 and let a = 1. Take

Md := �1({0}∪N) and define

S : Md � {an}n �→ S{an}n := 1+

�����
∞

∑
n=1

an

����� ∈ M .

Then

|S{an}n −S{bn}n|=
�����|

∞

∑
n=1

an|− |
∞

∑
n=1

bn|
�����≤

�����
∞

∑
n=1

an −
∞

∑
n=1

bn

�����

=

�����
∞

∑
n=1

(an −bn)

�����≤
∞

∑
n=1

|an −bn|≤
∞

∑
n=0

|an −bn|

= �{an}n −{bn}n�, ∀{an}n,{bn}n ∈ �1({0}∪N).

Thus S is Lipschitz. Further,

S({ fn(x)}n) = 1+

�����
∞

∑
n=1

fn(x)

�����= 1+
∞

∑
n=1

(logx)n

n!
= x, ∀x ∈ M .

Hence ({ fn}n,S) is a metric frame for M . Note that if we define

T : Md � {an}n �→ S{an}n := 1+
∞

∑
n=1

|an| ∈ M ,

then

|T{an}n −T{bn}n|=
�����

∞

∑
n=1

|an|−
∞

∑
n=1

|bn|
�����=

�����
∞

∑
n=1

(|an|− |bn|)
�����

≤
∞

∑
n=1

����|an|− |bn|
����≤

∞

∑
n=1

|an −bn|≤
∞

∑
n=0

|an −bn|

= �{an}n −{bn}n�, ∀{an}n,{bn}n ∈ �1({0}∪N).

Thus T is Lipschitz. Hence ({ fn}n,T ) is also a metric frame for M .

Example 2.1.14. Let f1 : K→K be bi-Lipschitz and let f2, . . . , fm : K→K be m Lips-

chitz maps such that

f1(x)+ · · ·+ fm(x) = x, ∀x ∈K.
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We now define S : Km � (x1, . . . ,xm) �→ ∑m
j=1 x j ∈K. Then ({ fn}n,S) is a metric frame

for K. Note that the operator S is linear.

After the definition of metric frame, the first question which comes is the existence.
In Theorem 1.3.13 it was proved that every separable Banach space admits a Banach
frame. Even though this result is not known in metric space settings, two results are
derived one is close to the definition of metric frame and another gives existence under
certain assumptions. To do this we prove a result which we derive from Mc-Shane
extension theorem.

Theorem 2.1.15. (Mc-Shane extension theorem) (cf. Weaver (2018)) Let M be a

metric space and M0 be a nonempty subset of M . If f0 : M0 → R is Lipschitz, then

there exists a Lipschitz function f : M →R such that f |M0 = f0 and Lip( f ) = Lip( f0).

Using Theorem 2.1.15 we derive the following.

Corollary 2.1.16. If (M ,0) is a pointed metric space, then for every x∈M , there exists

a Lipschitz function f : M → R such that f (x) = d(x,0), f (0) = 0 and Lip( f ) = 1.

Proof. Case (i) : x �= 0. Define M0 := {0,x} and f0(0) = 0, f0(x) = d(x,0). Then
| f0(x)− f0(0)|= d(x,0) and hence f0 is Lipschitz. Application of Theorem 2.1.15 now
completes the proof.
Case (ii) : x = 0. Take a non-zero point y ∈ M . We use the argument in case (i) by
replacing y in the place of x.

Theorem 2.1.17. Let M be a separable metric space. Then there exist a BK-space

Md, a sequence { fn}n in Lip0(M ,R) and a function S : Md → M such that

(i) { fn(x)}n ∈ Md, for each x ∈ M ,

(ii) �{ fn(x)− fn(y)}n�Md ≤ d(x,y),∀x,y ∈ M ,

(iii) S({ fn(x)}n) = x, for each x ∈ M .

Proof. Let {xn}n be a dense set in M . Then for each n ∈ N, from Corollary 2.1.16
there exists a Lipschitz function fn : M →R such that fn(xn) = d(xn,0), fn(0) = 0 and
Lip( fn) = 1. Let x ∈ M be fixed. Now for each n ∈ N,

| fn(x)|= | fn(x)− fn(0)|≤ � fn�Lip0
d(x,0) = d(x,0)

which gives supn∈N | fn(x)|≤ d(x,0). Since {xn}n is dense, there exists a sub sequence
{xnk}k of {xn}n such that xnk → x as n → ∞. From the inequality

|d(y,z)−d(y,w)|≤ d(z,w), ∀y,z,w ∈ M
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we see then that d(xnk ,0)→ d(x,0) as n → ∞. Consider

d(xnk ,0) = fnk(xnk)≤ | fnk(xnk)− fnk(x)|+ | fnk(x)|
≤ 1.d(xnk ,x)+ | fnk(x)|, ∀k ∈ N

=⇒ lim
k→∞

(d(xnk ,0)−d(xnk ,x))≤ sup
k∈N

(d(xnk ,0)−d(xnk ,x))≤ sup
k∈N

| fnk(x)|.

Therefore

sup
n∈N

| fn(x)|≤ d(x,0) = lim
k→∞

d(xnk ,0) = lim
k→∞

(d(xnk ,0)−d(xnk ,x))

≤ sup
k∈N

| fnk(x)|≤ sup
n∈N

| fn(x)|.

So we proved that

d(x,0) = sup
n∈N

| fn(x)|, ∀x ∈ M . (2.1.2)

Define M 0
d := {{ fn(x)}n : x ∈ M }. Equality (2.1.2) then tells that M 0

d is a subset of
�∞(N). Now we define S0 : M 0

d � { fn(x)}n �→ x ∈ M . Then from Equality (2.1.2),

d(S0({ fn(x)}n),S0({ fn(y)}n)) = d(x,y)≤ d(x,0)+d(0,y)

= sup
n∈N

| fn(x)|+ sup
n∈N

| fn(y)|

= �{ fn(x)}n�+�{ fn(y)}n�, ∀x,y ∈ M .

We also have

�{ fn(x)− fn(y)}n�Md = sup
n∈N

| fn(x)− fn(y)|

≤ sup
n∈N

� fn�Lip0
d(x,y) = d(x,y), ∀x,y ∈ M .

We can now take S as Lipschitz extension of S0 to �∞(N) and Md = �∞(N) which
completes the proof.

Theorem 2.1.18. If A : M → Md is bi-Lipschitz and there is a Lipschitz projection

P : Md → A(M ), then M admits a metric frame.

Proof. Let {hn}n be the sequence of coordinate functionals associated with Md . Define
fn := hnA and S := A−1P. Then

S({ fn(x)}n) = A−1P({hn(Ax)}n) = A−1PAx = A−1Ax = x, ∀x ∈ M .
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Hence ({ fn}n,S) is a metric frame for M .

It is well-known that Mc-Schane extension theorem fails for complex valued Lip-
schitz functions. Thus we may ask whether we can take a complex sequence space in
Theorem 2.1.17. It is possible for certain metric spaces due to the following theorem.

Theorem 2.1.19. (Kirszbraun extension theorem) (cf. Valentine (1945)) Let H be a

Hilbert space and M0 be a nonempty subset of H . If f0 : M0 → K is Lipschitz, then

there exists a Lipschitz function f : H →K such that f |M0 = f0 and Lip( f ) = Lip( f0).

Following proposition shows that given a metric frame, we can generate more metric
frames.

Proposition 2.1.20. Let ({ fn}n,S) be a metric frame for M . If maps A,B : M →
M are such that A is bi-Lipschitz, B is Lipschitz and BA = IM , then ({ fnA}n,BS) is

a metric frame for M . In particular, if A : M → M is bi-Lipschitz invertible, then

({ fnA}n,A−1S) is a metric frame for M .

Proof. Bi-Lipschitzness of A tells that condition (ii) in Definition 2.1.10 holds. Now by
using BA = IM we get BS({ fnAx}n) = BAx = x,∀x ∈ M .

Previous proposition not only helps to generate metric frames from metric frames
but also from Banach frames. Since there are large number of examples of Banach
frames for a variety of Banach spaces, just by operating with bi-Lipschitz invertible
functions on subsets, it produces metric frames for that subset. Next we characterize
metric frames using Lipschitz functions. The following theorem precisely says when
an Md-frame can be converted into a metric frame.

Theorem 2.1.21. Let { fn}n be a metric Md-frame for M . Then the following are

equivalent.

(i) There exists a Lipschitz projection P : Md → θ f (M ).

(ii) There exists a Lipschitz map V : Md → M such that V |θ f (M ) = θ−1
f .

(iii) There exists a Lipschitz map S : Md → M such that ({ fn}n,S) is a metric frame

for M .

Proof. (i) ⇒ (ii) Define V := θ−1
f P. Then for y = θ f (x),x ∈ M we get V y =V θ f (x) =

θ−1
f Pθ f (x) = θ−1

f θ f (x) = θ−1
f y.

(ii) ⇒ (i) Set P := θ fV . Now P2 = θ fV θ fV = θ f IMV = P.
(ii) ⇒ (iii) Define S := V . Then S{ fn(x)}n = Sθ f (x) = V θ f (x) = x, for all x ∈ M .
Hence ({ fn}n,S) is a metric frame for M .
(iii) ⇒ (ii) Define V := S. Then V θ f (x) = Sθ f (x) = S{ fn(x)}n = x, for all x ∈ M .
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2.2 METRIC FRAMES FOR BANACH SPACES

Now we turn onto the representation of elements using metric frames. Naturally, to
deal with sums we must look in to Banach space structure. Following theorem can be
compared with Theorem 1.3.20.

Theorem 2.2.1. Let { fn}n be a metric p-frame for a Banach space X . Assume that

fn(0) = 0 for all n. Then the following are equivalent.

(i) There exists a bounded linear map V : Md → X such that V |θ f (M ) = θ−1
f .

(ii) There exists a bounded linear map S : Md → X such that ({ fn}n,S) is a metric

p-frame for X .

(iii) There exists a sequence {τn}n in X such that ∑∞
n=1 cnτn converges for all {cn}n ∈

�p(N) and x = ∑∞
n=1 fn(x)τn,∀x ∈ X .

(iv) There exists a q-Bessel sequence {τn}n in X ⊆ X ∗∗ such that x = ∑∞
n=1 fn(x)τn,

∀x ∈ X .

(v) There exists a q-Bessel sequence {τn}n in X ⊆X ∗∗ such that f = ∑∞
n=1 f (τn) fn,

∀ f ∈ X ∗.

In each of the cases (iv) and (v), {τn}n is actually a q-frame for X ∗.

Proof. Proof of (i) ⇐⇒ (ii) is similar to the proof of (ii) ⇐⇒ (iii) in Theorem 2.1.21.
(iii) ⇒ (i) Given information tells that the map

V : �p(N) � {cn}n →
∞

∑
n=1

cnτn ∈ X

is well-defined. Banach-Steinhaus theorem now asserts that V is bounded. Now for
y = θ f (x), x ∈ X we get

V y =V θ f (x) =V ({ fn(x)}n) =
∞

∑
n=1

fn(x)τn = x = θ−1
f θ f (x) = θ−1

f y.

(i) ⇒ (iii) Let {en}n be the standard Schauder basis for �p(N) and define τn := Ven,
for all n. Since V is bounded linear and ∑∞

n=1 cnen converges for all {cn}n ∈ �p(N), it
follows that ∑∞

n=1 cnτn converges for all {cn}n ∈ �p(N). Moreover,

x =V θ f (x) =V ({ fn(x)}n) =
∞

∑
n=1

fn(x)τn, ∀x ∈ X .
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(iii) ⇐⇒ (iv) By considering τn in X ∗∗ through James embedding and using Theorem
1.3.20 we get that {τn}n is a q-Bessel sequence in X if and only if ∑∞

n=1 cnτn converges
for all {cn}n ∈ �p(N).
(iv) ⇒ (v) Let b be a Bessel bound for {τn}n. Then for all f ∈ X ∗ and n ∈ N,

����� f −
n

∑
k=1

f (τk) fk

�����
Lip0

= sup
x,y∈X , x �=y

��( f −∑n
k=1 f (τk) fk)(x)− ( f −∑n

k=1 f (τk) fk)(y)
��

�x− y�

= sup
x,y∈X , x �=y

| f (∑∞
k=1 fk(x)τk)− f (∑∞

k=1 fk(y)τk)−∑∞
k=1 f (τk)( fk(x)− fk(y))|

�x− y�

= sup
x,y∈X , x �=y

��∑n
k=1 f (τk)( fk(x)− fk(y))−∑∞

k=1 f (τk)( fk(x)− fk(y))
��

�x− y�

= sup
x,y∈X , x �=y

��∑∞
k=n+1 f (τk)( fk(x)− fk(y))

��
�x− y�

≤ sup
x,y∈X , x �=y

�
∑∞

k=n+1 | f (τk)|q
� 1

q
�
∑∞

k=n+1 | fk(x)− fk(y)|p
� 1

p

�x− y�

≤ b

�
∞

∑
k=n+1

| fk(x)− fk(y)|p
� 1

p

→ 0 as n → ∞.

(v) ⇒ (iv) Let b be a Bessel bound for {τn}n. Let x ∈ X and n ∈ N. Then

�����x−
n

∑
k=1

fk(x)τk

�����= sup
f∈X ∗,� f�=1

����� f (x)−
n

∑
k=1

fk(x) f (τk)

�����

= sup
f∈X ∗,� f�=1

�����

�
∞

∑
k=1

f (τk) fk

�
(x)−

n

∑
k=1

fk(x) f (τk)

�����

= sup
f∈X ∗,� f�=1

�����
∞

∑
k=n+1

fk(x) f (τk)

�����

≤
�

∞

∑
k=n+1

| f (τk)|q
� 1

q
�

∞

∑
k=n+1

| fk(x)− fk(0)|p
� 1

p

≤ b

�
∞

∑
k=n+1

| fk(x)|p
� 1

p

→ 0 as n → ∞.

Now we are left with proving that {τn}n is a q-frame for X . Assume (iv). Let f ∈X ∗.

Then

� f�= sup
x∈X ,�x�=1

| f (x)|= sup
x∈X ,�x�=1

����� f

�
∞

∑
n=1

fn(x)τn

������
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= sup
x∈X ,�x�=1

�����
∞

∑
n=1

fn(x) f (τn)

�����≤ b

�
∞

∑
n=1

| fn(x)|p
� 1

p

.

Since f was arbitrary, the conclusion follows.

Theorem 1.3.20 and Theorem 2.2.1 suggest the following question. For which met-
ric spaces and BK-spaces, does Theorem 2.2.1 hold? We next present a result which
demands only reconstruction of elements using Lipschitz functions on a Banach space
and not frame conditions. First we see a result for this purpose.

Lemma 2.2.2. (cf. Casazza et al. (2005a)) Given a Banach space X and a sequence

{τn}n of non-zero elements in X , let

Yd :=

�
{an}n :

∞

∑
n=1

anτn converges in X

�
.

Then Yd is a Banach space with respect to the norm

�{an}n� := sup
m

�����
m

∑
n=1

anτn

����� .

Further, the canonical unit vectors form a Schauder basis for Yd.

Theorem 2.2.3. Let X be a Banach space and { fn}n be a sequence in Lip0(X ,K).

Then the following are equivalent.

(i) There exists a sequence {τn}n in X such that x = ∑∞
n=1 fn(x)τn,∀x ∈ X .

(ii) Let {τn}n be a sequence in X and define Sn(x) := ∑n
k=1 fk(x)τk, ∀x ∈ X , for

each n ∈ N. Then supn∈N �Sn�Lip0
< ∞ and there exist a BK-space Md and a

bounded linear map S : Md → M such that ({ fn}n,S) is a metric frame for X .

Further, a choice for τn is τn = Sen for each n∈N, where {en}n is the standard Schauder

basis for �p(N).

Proof. (ii) ⇒ (i) This follows from Theorem 2.2.1.
(i) (⇒) (ii) We give an argument which is similar to the arguments given in Casazza
et al. (2005a). Define A := {n ∈ N : τn = 0} and B := N\A. Let c0(A) be the space of
sequences converging to zero, indexed by A, equipped with sup-norm. Let {en}n∈A be
the canonical Schauder basis for c0(A). Since the norm is sup-norm, it easily follows
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that { 1
n(� fn�Lip0+1)en}n∈A is also a Schauder basis for c0(A). Define

Zd :=

�
{cn}n∈A : ∑

n∈A

cn

n(� fn�Lip0
+1)

en converges in A

�
.

We equip Zd with the norm

�{cn}n∈A�Zd
:=

����
cn

n(� fn�Lip0
+1)

����
c0(A)

= sup
n∈A

����
cn

n(� fn�Lip0
+1)

���� .

Then {en}n∈A is a Schauder basis for Zd . Clearly Zd is a BK-space. Let Yd be as
defined in Lemma 2.2.2, for the index set B. Now set Md := Yd ⊕Zd equipped with
norm �y⊕ z�Md

:= �y�Yd +�z�Zd . It then follows that, for each x ∈ X , { fn(x)}n∈B ⊕
{ fn(x)}n∈A ∈Md . We next show that { fn}n is a metric Md-frame for X . Let x,y ∈X .
Then

�x− y�=
�����

∞

∑
n=1

( fn(x)− fn(y))τn

�����= lim
n→∞

�����
n

∑
k=1

( fk(x)− fk(y))τk

�����

≤ sup
n∈N

�����
n

∑
k=1

( fk(x)− fk(y))τk

�����= sup
n∈B

�����
n

∑
k=1

( fk(x)− fk(y))τk

�����

= �{ fn(x)− fn(y)}n∈B�Yd

≤ �{ fn(x)− fn(y)}n∈B�Yd +�{ fn(x)− fn(y)}n∈A�Zd

= �{ fn(x)− fn(y)}n∈B ⊕{ fn(x)− fn(y)}n∈A�Md

and

�{ fn(x)− fn(y)}n∈B ⊕{ fn(x)− fn(y)}n∈A�Md

= �{ fn(x)− fn(y)}n∈B�Yd +�{ fn(x)− fn(y)}n∈A�Zd

= sup
n∈B

�����
n

∑
k=1

( fk(x)− fk(y))τk

�����+ sup
n∈A

����
fn(x)− fn(y)

n(� fn�Lip0
+1)

����

= sup
n∈B

�Sn(x)−Sn(y)�+ sup
n∈A

����
fn(x)− fn(y)

n(� fn�Lip0
+1)

����

≤ sup
n∈B

�Sn�Lip0
�x− y�+ sup

n∈A

� fn�Lip0
�x− y�

n(� fn�Lip0
+1)

≤
�

sup
n∈B

�Sn�Lip0
+1

�
�x− y�.
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We now define

S : Md � {an}n∈B ⊕{bn}n∈A �→ ∑
n∈B

anτn ∈ X .

Clearly S is linear. Boundedness of S follows from the following calculation.

�S({an}n∈B ⊕{bn}n∈A)�=
�����∑

n∈B
anτn

�����≤ sup
n∈B

�����
n

∑
k=1

akτk

�����

= �{an}n∈B�Yd ≤ �{an}n∈B ⊕{bn}n∈A�Md .

Using Theorem 1.5.6 we derive the following result which tells that given a metric
frame for a metric space we can get a metric frame using linear functionals for a subset
of the Banach space.

Theorem 2.2.4. Let { fn}n be a sequence in Lip0(M ,K). For each n ∈ N, let Tfn be

linearization of fn. Let e and F (M ) be as in Theorem 1.5.6. Then { fn}n is a metric

frame for M with bounds a and b if and only if {Tfn}n is a metric frame for e(M )

with bounds a and b. In particular, ({ fn}n,S) is a metric frame for M if and only if

({Tfn}n,eS) is a metric frame for e(M ).

Proof. (⇒) Let u,v ∈ e(M ). Then u = e(x),v = e(y), for some x,y ∈ M . Now using
the fact that e is an isometry,

a�u− v�= a�e(x)− e(y)�= ad(x,y)≤ �{ fn(x)− fn(y)}n�
= �{(Tfne)(x)− (Tfne)(y)}n�= �{Tfn(e(x))−Tfn(e(y))}n�
= �{Tfn(u)−Tfn(v)}n� ≤ bd(x,y) = b�e(x)− e(y)�= b�u− v�.

(⇐) Let x,y ∈ M . Then e(x),e(y) ∈ e(M ). Hence

ad(x,y) = a�e(x)− e(y)� ≤ �{Tfn(e(x))−Tfn(e(y))}n�
= �{ fn(x)− fn(y)}n� ≤ b�e(x)− e(y)�= bd(x,y).

Since x,y were arbitrary, the result follows.

Remark 2.2.5. We can not use Theorem 2.2.4 to view metric frames as Banach frames.

The reason is that e(M ) is just a subset of F (M ) and need not be a vector space.

Moreover, the map eS is Lipschitz and may not be linear.

61



2.3 PERTURBATIONS

Here we present some stability results. These are important as they say that sequences
which are close to metric frames are again metric frames. On the other hand, it asserts
that if we perturb a metric frame we again get a metric frame.

Theorem 2.3.1. Let { fn}n be a p-metric frame for M with bounds a and b. Let {gn}n

be a sequence in Lip(M ,K) satisfying the following.

(i) There exist α,β ,γ ≥ 0 such that β < 1, α < 1, γ < (1−α)a.

(ii) For all x,y ∈ M , and m = 1,2, . . . ,

�
m

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

≤ α

�
m

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+β

�
m

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y).

(2.3.1)

Then {gn}n is a p-metric frame for M with bounds ((1−α)a−γ)
1+β and ((1+α)b+γ)

1−β .

Proof. Using Minkowski’s inequality and Inequality (2.3.1), we get, for all x,y ∈ M

and m ∈ N,

�
m

∑
n=1

|gn(x)−gn(y)|p
� 1

p

≤
�

m

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

+

�
m

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤ (1+α)

�
m

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+β

�
m

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y)

which implies

(1−β )

�
m

∑
n=1

|gn(x)−gn(y)|p
� 1

p

≤ (1+α)

�
m

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+ γ d(x,y),

for all x,y ∈ M . Since the sum ∑∞
n=1 | fn(x)− fn(y)|p converges, ∑∞

n=1 |gn(x)−gn(y)|p
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will also converge. Inequality (2.3.1) now gives

�
∞

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

≤ α

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+β

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y).

(2.3.2)

By doing a similar calculation and using Inequality (2.3.2) we get for all x,y ∈ M ,

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

≤
�

∞

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

+

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤ (1+α)

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+β

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y)

≤ (1+α)bd(x,y)+β

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y)

= ((1+α)b+ γ)d(x,y)+β

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

which gives

(1−β )

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

≤ ((1+α)b+ γ)d(x,y), ∀x,y ∈ M

i.e.,

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

≤ ((1+α)b+ γ)
1−β

d(x,y), ∀x,y ∈ M .

Hence we obtained upper frame bound for {gn}n. For lower frame bound, let x,y ∈ M .
Then

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤
�

∞

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

+

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p
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≤ α

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+(1+β )

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y)

which implies

(1−α)ad(x,y)≤ (1−α)

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤ (1+β )

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y), ∀x,y ∈ M

i.e.,
((1−α)a− γ)

1+β
≤

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

, ∀x,y ∈ M .

Using Theorem 2.3.1 we obtain the following result.

Corollary 2.3.2. Let { fn}n be a p-metric frame for M with bounds a and b. Let {gn}n

be a sequence in Lip(M ,K) such that

r :=

�
∞

∑
n=1

Lip( fn −gn)
p

� 1
p

< a.

Then {gn}n is a p-metric frame for M with bounds a− r and b+ r.

Proof. Define α := 0, β := 0 and γ := r. Then for all x,y ∈ M ,

�
∞

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

≤
�

∞

∑
n=1

Lip( fn −gn)
p d(x,y)p

� 1
p

=

�
∞

∑
n=1

Lip( fn −gn)
p

� 1
p

d(x,y) = r d(x,y)

= α

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+β

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y).

Thus the hypothesis in Theorem 2.3.1 holds. Hence the corollary.

Corollary 2.3.3. Let { fn}n be a p-metric Bessel sequence for M with bound b. Let

{gn}n be a sequence in Lip(M ,K) satisfying the following.

(i) There exist α,β ,γ ≥ 0 such that β < 1.
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(ii) For all x,y ∈ M , and m = 1,2, . . . ,

�
m

∑
n=1

|( fn −gn)(x)− ( fn −gn)(y)|p
� 1

p

≤ α

�
m

∑
n=1

| fn(x)− fn(y)|p
� 1

p

+β

�
m

∑
n=1

|gn(x)−gn(y)|p
� 1

p

+ γ d(x,y).

Then {gn}n is a p-metric Bessel sequence for M with bound ((1+α)b+γ)
1−β .

We next derive a stability result in which we perturb the Lipschitz functions and
then derive the existence of reconstruction operator. This is motivated from Theorem
1.3.21.

Theorem 2.3.4. Let ({ fn}n,S) be a metric frame for a Banach space X . Assume

that fn(0) = 0, for all n ∈ N, and S(0) = 0. Let {gn}n be a collection in Lip0(X ,K)

satisfying the following.

(i) There exist α,γ ≥ 0 such that

�{( fn −gn)(x)− ( fn −gn)(y)}n� ≤ α�{ fn(x)− fn(y)}n�+ γ�x− y�, ∀x,y ∈ X .

(2.3.3)

(ii) α�θ f �Lip0
+ γ ≤ �S�−1

Lip0
.

Then there exists a reconstruction Lipschitz operator T such that ({ fn}n,T ) is a metric

frame for X with bounds �S�−1
Lip0

− (α�θ f �Lip0
+ γ) and �θ f �Lip0

+(α�θ f �Lip0
+ γ).

Proof. Let x∈X . Since gn(0) = 0 and fn(0) = 0 for all n∈N, using Inequality (2.3.3),

�{gn(x)}n� ≤ �{( fn −gn)(x)}n�+�{ fn(x)}n�
≤ (α +1)�{ fn(x)}n�+ γ�x�.

Therefore if we define θg : X � x �→ {gn(x)}n ∈ Md , then this map is well-defined.
Again using Inequality (2.3.3), we show that θg is Lipschitz. For x,y ∈ X ,

�θgx−θgy�= �{gn(x)−gn(y)}n�= �{−gn(x)+gn(y)}n�
≤ �{( fn −gn)(x)− ( fn −gn)(y)}n�+�{ fn(x)− fn(y)}n�
≤ (1+α)�{ fn(x)− fn(y)}n�+ γ�x− y�= (1+α)�θ f x−θ f y�+ γ�x− y�
≤ (1+α)�θ f �Lip0

�x− y�+ γ�x− y�= ((1+α)�θ f �Lip0
+ γ)�x− y�.
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Thus �θg�Lip0
≤ (1+α)�θ f �Lip0

+ γ . Previous calculation also tells that upper frame
bound is ((1+α)�θ f �Lip0

+ γ). We see further that Inequality (2.3.3) can be written as

�(θ f −θg)x− (θ f −θg)y� ≤ α�θ f x−θ f y�+ γ�x− y�
≤ (α�θ f �Lip0

+ γ)�x− y�, ∀x,y ∈ X . (2.3.4)

Now noting Sθ f = IX and using Inequality (2.3.4) we see that

�IX −Sθg�Lip0
= �Sθ f −Sθg�Lip0

≤ �S�Lip0
�θ f −θg�Lip0

≤ �S�Lip0
(α�θ f �Lip0

+ γ)< 1.

Since Lip0(X ) is a unital Banach algebra (Theorem 1.5.5), last inequality tells that Sθg

is invertible and its inverse is also a Lipschitz operator and

�(Sθg)
−1�Lip0

≤ 1
1−�S�Lip0

(α�θ f �Lip0
+ γ)

.

Define T := (Sθg)
−1S. Then T θg = IX and

�x− y�= �T θgx−T θgy� ≤ �T�Lip0
�θgx−θgy�

≤ 1
1−�S�Lip0

(α�θ f �Lip0
+ γ)

�θgx−θgy�, ∀x,y ∈ X

which gives the lower bound stated in the theorem.

Corollary 2.3.5. Let ({ fn}n,S) be a metric Bessel sequence for a Banach space X .

Assume that fn(0) = 0, for all n ∈ N, and S(0) = 0. Let {gn}n be a collection in

Lip0(X ,K) satisfying the following. There exist α,γ ≥ 0 such that

�{( fn −gn)(x)− ( fn −gn)(y)}n� ≤ α�{ fn(x)− fn(y)}n�+ γ�x− y�, ∀x,y ∈ X .

Then there exists a reconstruction Lipschitz operator T such that ({ fn}n,T ) is a metric

Bessel sequence for X with bound �θ f �Lip0
+(α�θ f �Lip0

+ γ).
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CHAPTER 3

MULTIPLIERS FOR METRIC SPACES

3.1 DEFINITION AND BASIC PROPERTIES OF MULTIPLIERS

In this chapter, we introduce and study multipliers for metric spaces. We use the fol-
lowing notation in this chapter. Let M be a metric space and X be a Banach space.
Given f ∈ Lip(M ,K) and τ ∈ X , define

τ ⊗ f : M � x �→ (τ ⊗ f )(x) := f (x)τ ∈ X .

Then it follows that τ ⊗ f is a Lipschitz operator and Lip(τ ⊗ f ) = �τ�Lip( f ).
We first derive a result which allows us to define multipliers for metric spaces. In

the sequel, 1 < p < ∞ and q denotes the conjugate index of p.

Theorem 3.1.1. Let { fn}n in Lip0(M ,K) be a Lipschitz p-Bessel sequence for a pointed

metric space (M ,0) with bound b and {τn}n in a Banach space X be a Lipschitz q-

Bessel sequence for Lip0(X ,K) with bound d. If {λn}n ∈ �∞(N), then the map

T : M � x �→
∞

∑
n=1

λn(τn ⊗ fn)x ∈ X

is a well-defined Lipschitz operator such that T (0) = 0 with Lipschitz norm at most

bd�{λn}n�∞.

Proof. Let n,m ∈ N with n ≤ m. Then for each x ∈ M , using Holder’s inequality,

�����
m

∑
k=n

λk(τk ⊗ fk)(x)

�����=

�����
m

∑
k=n

λk fk(x)τk

�����= sup
φ∈X ∗,�φ�≤1

�����φ
�

m

∑
k=n

λk fk(x)τk

������

= sup
φ∈X ∗,�φ�≤1

�����
m

∑
k=n

λk fk(x)φ(τk)

�����
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≤ sup
φ∈X ∗,�φ�≤1

m

∑
k=n

|λk|| fk(x)||φ(τk)|

≤ sup
n∈N

|λn| sup
φ∈X ∗,�φ�≤1

m

∑
k=n

| fk(x)||φ(τk)|

≤ sup
n∈N

|λn| sup
φ∈X ∗,�φ�≤1

�
m

∑
k=n

| fk(x)|p
� 1

p
�

m

∑
k=n

|φ(τk)|q
� 1

q

≤ sup
n∈N

|λn| sup
φ∈X ∗,�φ�≤1

�
m

∑
k=n

| fk(x)|p
� 1

p

d�φ�

= d sup
n∈N

|λn|
�

m

∑
k=n

| fk(x)|p
� 1

p

.

Since (∑∞
k=1 | fk(x)|p)

1
p converges, ∑∞

k=1 λk(τk⊗ fk)(x) also converges. Now for all x,y∈
M ,

�T x−Ty�=
�����

∞

∑
n=1

λn fn(x)τn −
∞

∑
n=1

λn fn(y)τn

�����=

�����
∞

∑
n=1

λn( fn(x)− fn(y))τn

�����

= sup
φ∈X ∗,�φ�≤1

�����φ
�

∞

∑
n=1

λn( fn(x)− fn(y))τk

������

= sup
φ∈X ∗,�φ�≤1

�����
∞

∑
n=1

λn( fn(x)− fn(y))φ(τk)

�����

≤ sup
n∈N

|λn| sup
φ∈X ∗,�φ�≤1

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p
�

∞

∑
n=1

|φ(τn)|q
� 1

q

≤ sup
n∈N

|λn| sup
φ∈X ∗,�φ�≤1

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

d�φ�

= d sup
n∈N

|λn|
�

∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤ bd sup
n∈N

|λn|d(x,y).

Hence

�T�Lip0
= sup

x,y∈M , x �=y

�T x−Ty�
d(x,y)

≤ bd sup
n∈N

|λn|.

Corollary 3.1.2. Let { fn}n in Lip(M ,K) be a Lipschitz p-Bessel sequence for a met-

ric space M with bound b and {τn}n in a Banach space X be a Lipschitz q-Bessel
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sequence for Lip0(X ,K) with bound d. If {λn}n ∈ �∞(N), then for fixed z ∈ M , the

map

T : M � x �→
∞

∑
n=1

λn(τn ⊗ ( fn − f (z)))x ∈ X

is a well-defined Lipschitz operator with Lipschitz number at most bd�{λn}n�∞.

Proof. Define gn := fn − f (z),∀n ∈ N. Then for all x,y ∈ M ,

�
∞

∑
n=1

|gn(x)−gn(y)|p
� 1

p

=

�
∞

∑
n=1

| fn(x)− fn(y)|p
� 1

p

≤ bd(x,y).

Hence {gn}n is a Lipschitz p-Bessel sequence for the pointed metric space (M ,z) and
we apply Theorem 3.1.1 to {gn}n which gives the result.

Definition 3.1.3. Let { fn}n in Lip0(M ,K) be a Lipschitz p-Bessel sequence for a

pointed metric space (M ,0) and {τn}n in a Banach space X be a Lipschitz q-Bessel

sequence for Lip0(X ,K). Let {λn}n ∈ �∞(N). The Lipschitz operator

Mλ , f ,τ :=
∞

∑
n=1

λn(τn ⊗ fn)

is called as the Lipschitz (p,q)-Bessel multiplier. The sequence {λn}n is called as

symbol for Mλ , f ,τ .

We easily see that Definition 3.1.3 generalizes Definition 3.2 in (Rahimi and Balazs
(2010)). By varying the symbol and fixing other parameters in the multiplier we get
map from �∞(N) to Lip0(M ,X ). Property of this map for Hilbert space was derived
by Balazs (Lemma 7.1 in (Balazs (2007))) and for Banach spaces it is due to Rahimi
and Balazs (Proposition 3.3 in (Rahimi and Balazs (2010))). In the next proposition we
study it in the context of metric spaces.

Proposition 3.1.4. Let { fn}n in Lip0(M ,K) be a Lipschitz p-Bessel sequence for (M ,0)
with non-zero elements, {τn}n in X be a q-Riesz sequence for Lip0(X ,K) and {λn}n ∈
�∞(N). Then the mapping

T : �∞(N) � {λn}n �→ Mλ , f ,τ ∈ Lip0(M ,X )

is a well-defined injective bounded linear operator.

Proof. From the norm estimate of Mλ , f ,τ , we see that T is a well-defined bounded linear
operator. Let {λn}n,{µn}n ∈ �∞(N) be such that Mλ , f ,τ = T{λn}n = T{µn}n = Mµ, f ,τ .
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Then ∑∞
n=1 λn fn(x)τn = Mλ , f ,τx = Mµ, f ,τx = ∑∞

n=1 µn fn(x)τn, ∀x ∈ M ⇒ ∑∞
n=1(λn −

µn) fn(x)τn = 0, ∀x ∈ M . Now using Inequality (1.3.1),

a

�
∞

∑
n=1

|(λn −µn) fn(x)|q
� 1

q

≤
�����

∞

∑
n=1

(λn −µn) fn(x)τn

�����= 0, ∀x ∈ M

=⇒ (λn −µn) fn(x) = 0, ∀n ∈ N,∀x ∈ M .

Let n ∈ N be fixed. Since fn �= 0, there exists x ∈ M such that fn(x) �= 0. Therefore
we get λn − µn = 0. By varying n ∈ N we arrive at λn = µn, ∀n ∈ N. Hence T is
injective.

3.2 CONTINUITY PROPERTIES OF MULTIPLIERS

In Proposition 1.4.3, it was obtained that whenever the symbol is in c0(N), then the mul-
tiplier is compact. Using the notion of Lipschitz compact operator (Definition 1.5.9),
we derive non linear analogue of Proposition 1.4.3.

Proposition 3.2.1. Let { fn}n in Lip0(M ,K) be a Lipschitz p-Bessel sequence for (M ,0)
with bound b and {τn}n in X be a Lipschitz q-Bessel sequence for Lip0(X ,K) with

bound d. If {λn}n ∈ c0(N), then Mλ , f ,τ is a Lipschitz compact operator.

Proof. For each m ∈N, define Mλm, f ,τ := ∑m
n=1 λn(τn⊗ fn). Then Mλm, f ,τ is a Lipschitz

finite rank operator (Theorem 1.5.14). Now

�Mλm, f ,τ −Mλ , f ,τ�Lip0
= sup

x,y∈M , x �=y

�(Mλm, f ,τ −Mλ , f ,τ)x− (Mλm, f ,τ −Mλ , f ,τ)y�
d(x,y)

= sup
x,y∈M , x �=y

��∑∞
n=m+1 λn fn(x)τn −∑∞

n=m+1 λn fn(y)τn
��

d(x,y)

= sup
x,y∈M , x �=y

��∑∞
n=m+1 λn( fn(x)− fn(y))τn

��
d(x,y)

≤ bd sup
m+1≤n<∞

|λn|→ 0 as m → ∞.

Hence Mλ , f ,τ is the limit of a sequence of Lipschitz finite rank operators {Mλm, f ,τ}∞
m=1

with respect to the Lipschitz norm. Thus Mλ , f ,τ is Lipschitz approximable and from
Theorem 1.5.16 it follows that Mλ , f ,τ is Lipschitz compact.

We now study the properties of multiplier by changing its parameters. Following
result extends Theorem 1.4.4.
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Theorem 3.2.2. Let { fn}n in Lip0(M ,K) be a Lipschitz p-Bessel sequence for M with

bound b and {τn}n in X be a Lipschitz q-Bessel sequence for Lip0(X ,K) with bound

d and {λn}n ∈ �∞(N). Let k ∈ N and let λ (k) = {λ (k)
1 ,λ (k)

2 , . . .}, λ = {λ1,λ2, . . .},

τ(k) = {τ(k)1 ,τ(k)2 , . . .}, τk
n ∈ X , τ = {τ1,τ2, . . .}. Assume that for each k, λ (k) ∈ �∞(N)

and τ(k) is a pointed Lipschitz q-Bessel sequence for Lip0(X ,K).

(i) If λ (k) → λ as k → ∞ in p-norm, then

�Mλ (k), f ,τ −Mλ , f ,τ�Lip0
→ 0 as k → ∞.

(ii) If {λn}n ∈ �p(N) and ∑∞
n=1 �τ(k)n − τn�q → 0 as k → ∞, then

�Mλ , f ,τ(k) −Mλ , f ,τ�Lip0
→ 0 as k → ∞.

Proof. (i) Using Theorem 3.1.1,

�Mλ (k), f ,τ −Mλ , f ,τ�Lip0

= sup
x,y∈M , x �=y

�(Mλ (k), f ,τ −Mλ , f ,τ)x− (Mλ (k), f ,τ −Mλ , f ,τ)y�
d(x,y)

= sup
x,y∈M , x �=y

���∑∞
n=1(λ

(k)
n −λn) fn(x)τn −∑∞

n=1(λ
(k)
n −λn) fn(y)τn

���
d(x,y)

= sup
x,y∈M , x �=y

���∑∞
n=1(λ

(k)
n −λn)( fn(x)− fn(y))τn

���
d(x,y)

≤ bd sup
n∈N

|λ (k)
n −λn|= bd�{λ (k)

n −λn}n�∞

≤ bd�{λ (k)
n −λn}n�p → 0 as k → ∞.

(ii) Using Holder’s inequality,

�Mλ , f ,τ(k) −Mλ , f ,τ�Lip0

= sup
x,y∈M , x �=y

�(Mλ , f ,τ(k) −Mλ , f ,τ)x− (Mλ , f ,τ(k) −Mλ , f ,τ)y�
d(x,y)

= sup
x,y∈M , x �=y

���∑∞
n=1 λn fn(x)(τ

(k)
n − τn)−∑∞

n=1 λn fn(y)(τ
(k)
n − τn)

���
d(x,y)

= sup
x,y∈M , x �=y

���∑∞
n=1 λn( fn(x)− fn(y))(τ

(k)
n − τn)

���
d(x,y)
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= sup
x,y∈M , x �=y

sup
φ∈X ∗,�φ�≤1

���∑∞
n=1 λn( fn(x)− fn(y))φ(τ

(k)
n − τn)

���
d(x,y)

≤ sup
x,y∈M , x �=y

sup
φ∈X ∗,�φ�≤1

(∑∞
n=1 |λn( fn(x)− fn(y))|p)

1
p

�
∑∞

n=1 |φ(τ
(k)
n − τn)|q

� 1
q

d(x,y)

≤ sup
x,y∈M , x �=y

sup
φ∈X ∗,�φ�≤1




(∑∞
n=1 |λn|p)

1
p (∑∞

n=1 | fn(x)− fn(y)|p)
1
p

�
∑∞

n=1 |φ(τ
(k)
n − τn)|q

� 1
q

d(x,y)





≤ b�{λn}n�p

�
∞

∑
n=1

�τ(k)n − τn�q

� 1
q

→ 0 as k → ∞.
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CHAPTER 4

p-APPROXIMATE SCHAUDER FRAMES
FOR BANACH SPACES

4.1 p-APPROXIMATE SCHAUDER FRAMES

Let X be a separable Banach space and X ∗ be its dual. Equation (1.2.4) motivated
Casazza, Dilworth, Odell, Schlumprecht, and Zsak, to define the notion of Schauder
frame for X in 2008.

Definition 4.1.1. (Casazza et al. (2008a)) Let {τn}n be a sequence in X and { fn}n be

a sequence in X ∗. The pair ({ fn}n,{τn}n) is said to be a Schauder frame for X if

x =
∞

∑
n=1

fn(x)τn, ∀x ∈ X . (4.1.1)

Definition 4.1.1 was generalized for Rn by Thomas in her Master’s thesis and later
to Banach spaces by Freeman, Odell, Schlumprecht, and Zsak.

Definition 4.1.2. (Freeman et al. (2014); Thomas (2012)) Let {τn}n be a sequence in X

and { fn}n be a sequence in X ∗. The pair ({ fn}n,{τn}n) is said to be an approximate
Schauder frame (ASF) for X if

(Frame operator) S f ,τ : X � x �→ S f ,τx :=
∞

∑
n=1

fn(x)τn ∈ X (4.1.2)

is a well-defined bounded linear, invertible operator.

Note that whenever S f ,τ = IX , the identity operator on X , Definition 4.1.2 reduces
to Definition 4.1.1. Since S f ,τ is invertible, it follows that there are a,b > 0 such that

a�x� ≤
�����

∞

∑
n=1

fn(x)τn

�����≤ b�x�, ∀x ∈ X .
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We call a as lower ASF bound and b as upper ASF bound. Supremum (resp. infimum)
of the set of all lower (resp. upper) ASF bounds is called optimal lower (resp. optimal
upper) ASF bound. From the theory of bounded linear operators between Banach
spaces, one sees that optimal lower frame bound is �S−1

f ,τ�−1 and optimal upper frame
bound is �S f ,τ�. Advantage of ASF over Schauder frame is that it is more easier to get
the operator in (4.1.2) as invertible than obtaining Equation (4.1.1).

Example 4.1.3. (Freeman et al. (2014)) Let 2 < p < ∞ and {λn}n be an unbounded

sequence of scalars. For a ∈ R, define

Ta : L p(R) � f �→ Ta f ∈ L p(R); Ta f : R � x �→ (Ta f )(x) := f (x−a) ∈ C.

Then there exist φ ∈ L p(R) and a sequence { fn}n, fn ∈ (L p(R))∗, ∀n ∈ N such that

({ fn}n,{Tλnφ}n) is an ASF for L p(R).

Definition 4.1.4. An ASF ({ fn}n,{τn}n) for X is said to be a p-approximate Schauder
frame (p-ASF), p ∈ [1,∞) if both the maps

(Analysis operator) θ f : X � x �→ θ f x := { fn(x)}n ∈ �p(N) and (4.1.3)

(Synthesis operator) θτ : �p(N) � {an}n �→ θτ{an}n :=
∞

∑
n=1

anτn ∈ X (4.1.4)

are well-defined bounded linear operators. A Schauder frame which is a p-ASF is called

as a simple p-ASF or Parseval p-ASF.

It can be easily observed that a p-approximate Schauder frame is an approximate
Schauder frame and a Schauder frame is an approximate Schauder frame. We now
give an example to show that the set of all p-approximate Schauder frames is strictly
smaller than the set of all approximate Schauder frames. Let X =K. Define τn := 1

n2 ,
fn(x) = x,∀x ∈K, ∀n ∈N. Then ∑∞

n=1 fn(x)τn =
π2

6 x, ∀x ∈K. Therefore ({ fn}n,{τn}n)

is an approximate Schauder frame for X . Let x ∈ K be non zero. Then for every
p ∈ [1,∞),

m

∑
n=1

| fn(x)|p = m|x|p → ∞ as m → ∞.

Thus { fn(x)}n /∈ �p(N) for any p ∈ [1,∞) and hence ({ fn}n,{τn}n) is not a p-ASF for
any p ∈ [1,∞). We next note that there is a bijection between the set of approximate
Schauder frames and the set of all Schauder frames (Lemma 3.1 in (Freeman et al.
(2014))). We observe that, in terms of inequalities, (4.1.3) and (4.1.4) say that there
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exist c,d > 0, such that

�
∞

∑
n=1

| fn(x)|p
� 1

p

≤ c�x�, ∀x ∈ X and (4.1.5)

�����
∞

∑
n=1

anτn

�����≤ d

�
∞

∑
n=1

|an|p
� 1

p

, ∀{an}n ∈ �p(N). (4.1.6)

We now give various examples of p-ASFs.

Example 4.1.5. Let p ∈ [1,∞) and U : X → �p(N), V : �p(N)→X be bounded linear

operators such that VU is bounded invertible. Let {en}n denote the standard Schauder

basis for �p(N) and let {ζn}n denote the coordinate functionals associated with {en}n.

Define

fn := ζnU, τn :=Ven, ∀n ∈ N.

Then ({ fn}n,{τn}n) is a p-ASF for X . In particular, if U : �p(N)→ �p(N) is bounded

invertible, then ({ζnU}n,{U−1en}n) is a p-ASF for �p(N).

Example 4.1.6. Let p ∈ [1,∞) and {τn}m
n=1 be a basis for a finite dimensional Banach

space X . Choose any basis { fn}m
n=1 for X ∗. We claim that ({ fn}m

n=1,{τn}m
n=1) is a

p-ASF for X . To prove this, since X is finite dimensional, it suffices to prove that the

map X � x �→∑m
n=1 fn(x)τn ∈X is injective. Let x ∈X be such that ∑m

n=1 fn(x)τn = 0.

Since {τn}m
n=1 is a basis for X , we then have f1(x) = · · · = fn(x) = 0. We then have

f (x) = 0,∀ f ∈X ∗. Hahn-Banach theorem now says that x = 0. Hence the claim holds

and consequently ({ fn}m
n=1,{τn}m

n=1) is a p-ASF for X .

Example 4.1.7. Recall that a spanning set is a frame for a finite dimensional Hilbert

space (Han et al. (2007)). We now generalize this for p-ASFs. Let p ∈ [1,∞), X be a

finite dimensional Banach space and {τn}m
n=1 be a spanning set for X . We claim that

there exists a collection { fn}m
n=1 in X ∗ such that ({ fn}m

n=1,{τn}m
n=1) is a p-ASF for X .

Since {τn}m
n=1 spans X , there exists a basis in the collection {τn}m

n=1. By rearranging,

if necessary, we may assume that {τn}r
n=1 is a basis for X . Let { fn}r

n=1 be the dual

basis for {τn}r
n=1. Choose linear operators U,V : X →X such that VU is injective or

surjective. If we now set fr+1 = · · ·= fn = 0, it then follows that ({ fnU}m
n=1,{V τn}m

n=1)

is a p-ASF for X .

Example 4.1.8. Let X be a Banach space which admits a Schauder basis {ωn}n and

let {gn}n be the coordinate functionals associated with {en}n. Let U,V : X → X be
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bounded linear operators such that VU is invertible. Define

fn := gnU, τn :=V ωn, ∀n ∈ N.

Then ({ fn}n,{τn}n) is an approximate Schauder frame for X . If VU = IX , then

({ fn}n,{τn}n) is a Schauder frame for X .

Example 4.1.9. Let p ∈ [1,∞) and U : X → �p(N), V : �p(N)→X be bounded linear

operators such that VU is invertible. Let {en}n denote the canonical Schauder basis for

�p(N) and let {ζn}n denote the coordinate functionals associated with {en}n. Define

fn := ζnU, τn :=Ven, ∀n ∈ N.

Then ({ fn}n,{τn}n) is a p-ASF for X .

Now we have Banach space analogous of Theorem 1.2.36.

Theorem 4.1.10. Let ({ fn}n,{τn}n) be a p-ASF for X . Then

(i) We have

x =
∞

∑
n=1

( fnS−1
f ,τ)(x)τn =

∞

∑
n=1

fn(x)S−1
f ,ττn, ∀x ∈ X . (4.1.7)

(ii) ({ fnS−1
f ,τ}n,{S−1

f ,ττn}n) is a p-ASF for X .

(iii) The analysis operator θ f : X � x �→ { fn(x)}n ∈ �p(N) is injective.

(iv) The synthesis operator θτ : �p(N) � {an}n �→ ∑∞
n=1 anτn ∈ X is surjective.

(v) Frame operator splits as S f ,τ = θτθ f .

(vi) Pf ,τ := θ f S−1
f ,τθτ : �p(N)→ �p(N) is a projection onto θ f (X ).

Proof. First follows from the continuity and linearity of S−1
f ,τ . Because S f ,τ is invertible,

we have (ii). Again invertibility of S f ,τ makes θ f injective and θτ surjective. (v) and
(vi) are routine calculations.

Now we can derive a generalization of Theorem 1.2.39 for Banach spaces.

Theorem 4.1.11. Let {en}n denote the standard Schauder basis for �p(N) and let {ζn}n

denote the coordinate functionals associated with {en}n. A pair ({ fn}n,{τn}n) is a p-

ASF for X if and only if

fn = ζnU, τn =Ven, ∀n ∈ N,
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where U : X → �p(N), V : �p(N)→ X are bounded linear operators such that VU is

bounded invertible.

Proof. (⇐) Clearly θ f and θτ are bounded linear operators. Now let x ∈ X . Then

S f ,τx =
∞

∑
n=1

fn(x)τn =
∞

∑
n=1

ζn(Ux)Ven =V

�
∞

∑
n=1

ζn(Ux)en

�
=VUx. (4.1.8)

Hence S f ,τ is bounded invertible.
(⇒) Define U := θ f , V := θτ . Then ζnUx = ζnθ f x = ζn({ fk(x)}k) = fn(x), ∀x ∈ X ,
Ven = θτen = τn, ∀n ∈ N and VU = θτθ f = S f ,τ which is bounded invertible.

Note that Theorem 4.1.11 generalizes Theorem 1.2.39. In fact, in the case of Hilbert
spaces, Theorem 4.1.11 reads as “A sequence {τn}n in H is a frame for H if and only
if there exists a bounded linear operator T : �2(N) → H such that Ten = τn, for all
n ∈ N and T T ∗ is invertible". Now we know that T T ∗ is invertible if and only if T is
surjective.
Since every separable Hilbert space admits an orthonormal basis, the existence of or-
thonormal basis in Theorem 1.2.40 is automatic. On the other hand, Enflo showed that
there are separable Banach spaces which do not have Schauder basis (Enflo (1973);
James (1982)). Thus to obtain analogous of Theorem 1.2.40 for Banach spaces, we
need to impose condition on X .

Theorem 4.1.12. Assume that X admits a Schauder basis {ωn}n. Let {gn}n denote

the coordinate functionals associated with {ωn}n. Assume that

{gn(x)}n ∈ �p(N), ∀x ∈ X . (4.1.9)

Then a pair ({ fn}n,{τn}n) is a p-ASF for X if and only if

fn = gnU, τn =V ωn, ∀n ∈ N,

where U,V : X →X are bounded linear operators such that VU is bounded invertible.

Proof. (⇐) This is similar to the calculation done in (4.1.8).
(⇒) Let T be the map defined by

T : X �
∞

∑
n=1

anωn �→
∞

∑
n=1

anen ∈ �p(N).

Assumption (4.1.9) then says that T is a bounded invertible operator with inverse T−1 :
�p(N) � ∑∞

n=1 bnen �→ ∑∞
n=1 bnωn ∈ X . Define U := T−1θ f and V := θτT . Then U,V

77



are bounded such that VU = (θτT )(T−1θ f ) = θτθ f = S f ,τ is invertible and for x ∈ X

we have

(gnU)(x) = gn(T−1θ f x) = gn(T−1({ fk(x)}k)) = gn

�
∞

∑
k=1

fk(x)T−1ek

�

= gn

�
∞

∑
k=1

fk(x)ωk

�
=

∞

∑
k=1

fk(x)gn(ωk) = fn(x), ∀x ∈ X

and V ωn = θτT ωn = θτen = τn,∀n ∈ N.

4.2 DUAL FRAMES FOR p-APPROXIMATE SCHAUDER FRA-
MES

Equation (4.1.7) motivates us to define the notion of dual frame as follows.

Definition 4.2.1. Let ({ fn}n,{τn}n) be a p-ASF for X . A p-ASF ({gn}n,{ωn}n) for X

is a dual p-ASF for ({ fn}n,{τn}n) if

x =
∞

∑
n=1

gn(x)τn =
∞

∑
n=1

fn(x)ωn, ∀x ∈ X .

Note that dual frames always exist. In fact, the Equation (4.1.7) shows that the
frame ({ fnS−1

f ,τ}n,{S−1
f ,ττn}n) is a dual for ({ fn}n,{τn}n). We call the frame ({ fnS−1

f ,τ}n,

{S−1
f ,ττn}n) as the canonical dual for ({ fn}n,{τn}n). With this notion, the following

theorem follows easily.

Theorem 4.2.2. Let ({ fn}n,{τn}n) be a p-ASF for X with frame bounds a and b. Then

(i) The canonical dual p-ASF for the canonical dual p-ASF for ({ fn}n,{τn}n) is

itself.

(ii) 1
b ,

1
a are frame bounds for the canonical dual for ({ fn}n,{τn}n).

(iii) If a,b are optimal frame bounds for ({ fn}n,{τn}n), then 1
b ,

1
a are optimal frame

bounds for its canonical dual.

One can naturally ask when a p-ASF has unique dual? An affirmative answer is in
the following result.

Proposition 4.2.3. Let ({ fn}n,{τn}n) be a p-ASF for X . If {τn}n is a Schauder basis

for X and fk(τn) = δk,n,∀k,n ∈ N, then ({ fn}n,{τn}n) has unique dual.
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Proof. Let ({gn}n,{ωn}n) and ({un}n,{ρn}n) be two dual p-ASFs for ({ fn}n,{τn}n).
Then

∞

∑
n=1

(gn(x)−un(x))τn = 0 =
∞

∑
n=1

fn(x)(ωn −ρn), ∀x ∈ X .

First equality gives gn = un,∀n ∈ N and evaluating second equality at a fixed τk gives
ωk = ρk. Since k was arbitrary, proposition follows.

We now characterize dual frames by using analysis and synthesis operators.

Proposition 4.2.4. For two p-ASFs ({ fn}n,{τn}n) and ({gn}n,{ωn}n) for X , the fol-

lowing are equivalent.

(i) ({gn}n,{ωn}n) is a dual for ({ fn}n,{τn}n).

(ii) θτθg = θωθ f = IX .

Like Lemmas 1.2.42, 1.2.43 and Theorem 1.2.44, we now characterize dual frames
using standard Schauder basis for �p(N).

Lemma 4.2.5. Let {en}n denote the standard Schauder basis for �p(N) and let {ζn}n

denote the coordinate functionals associated with {en}n. Let ({ fn}n,{τn}n) be a p-ASF

for X . Then a p-ASF ({gn}n,{ωn}n) for X is a dual for ({ fn}n,{τn}n) if and only if

gn = ζnU, ωn =Ven, ∀n ∈ N,

where U : X → �p(N) is a bounded right-inverse of θτ , and V : �p(N) → X is a

bounded left-inverse of θ f such that VU is bounded invertible.

Proof. (⇐) From the ‘if’ part of proof of Theorem 4.1.11, we get that ({gn}n,{ωn}n)

is a p-ASF for X . We have to check for duality of ({gn}n,{ωn}n). Also, we have
θτθg = θτU = IX , θωθ f =V θ f = IX .
(⇒) Let ({gn}n,{ωn}n) be a dual p-ASF for ({ fn}n,{τn}n). Then θτθg = IX , θωθ f =

IX . Define U := θg,V := θω . Then U : X → �p(N) is a bounded right-inverse of θτ , and
V : �p(N)→X is a bounded left-inverse of θ f such that the operator VU = θωθg = Sg,ω

is invertible. Further,

(ζnU)x = ζn

�
∞

∑
k=1

gk(x)ek

�
=

∞

∑
k=1

gk(x)ζn(ek) = gn(x), ∀x ∈ X

and Ven = θωen = ωn,∀n ∈ N.
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Lemma 4.2.6. Let ({ fn}n,{τn}n) be a p-ASF for X . Then

(i) R : X → �p(N) is a bounded right-inverse of θτ if and only if

R = θ f S−1
f ,τ +(I�p(N)−θ f S−1

f ,τθτ)U

where U : X → �p(N) is a bounded linear operator.

(ii) L : �p(N)→ X is a bounded left-inverse of θ f if and only if

L = S−1
f ,τθτ +V (I�p(N)−θ f S−1

f ,τθτ),

where V : �p(N)→ X is a bounded linear operator.

Proof. (i) (⇐) θτ(θ f S−1
f ,τ +(I�p(N)−θ f S−1

f ,τθτ)U)= IX +θτU−IX θτU = IX . There-
fore θ f S−1

f ,τ +(I�p(N)−θ f S−1
f ,τθτ)U is a bounded right-inverse of θτ .

(⇒) Define U := R. Then θ f S−1
f ,τ + (I�p(N) − θ f S−1

f ,τθτ)U = θ f S−1
f ,τ + (I�p(N) −

θ f S−1
f ,τθτ)R = θ f S−1

f ,τ +R−θ f S−1
f ,τ = R.

(ii) (⇐) (S−1
f ,τθτ +V (I�p(N)− θ f S−1

f ,τθτ))θ f = IX +V θ f −V θ f IX = IX . Therefore
S−1

f ,τθτ +V (I�p(N)−θ f S−1
f ,τθτ) is a bounded left-inverse of θ f .

(⇒) Define V := L. Then S−1
f ,τθτ +V (I�p(N) − θ f S−1

f ,τθτ) = S−1
f ,τθτ + L(I�p(N) −

θ f S−1
f ,τθτ) = S−1

f ,τθτ +L−S−1
f ,τθτ = L.

Theorem 4.2.7. Let {en}n denote the standard Schauder basis for �p(N) and let {ζn}n

denote the coordinate functionals associated with {en}n. Let ({ fn}n,{τn}n) be a p-ASF

for X . Then a p-ASF ({gn}n,{ωn}n) for X is a dual for ({ fn}n,{τn}n) if and only if

gn = fnS−1
f ,τ +ζnU − fnS−1

f ,τθτU,

ωn = S−1
f ,ττn +Ven −V θ f S−1

f ,ττn, ∀n ∈ N

such that the operator

S−1
f ,τ +VU −V θ f S−1

f ,τθτU

is bounded invertible, where U : X → �p(N) and V : �p(N)→ X are bounded linear

operators.

Proof. Lemmas 4.2.5 and 4.2.6 give the characterization of dual frame as

gn = ζnθ f S−1
f ,τ +ζnU −ζnθ f S−1

f ,τθτU = fnS−1
f ,τ +ζnU − fnS−1

f ,τθτU,
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ωn = S−1
f ,τθτen +Ven −V θ f S−1

f ,τθτen = S−1
f ,ττn +Ven −V θ f S−1

f ,ττn, ∀n ∈ N

such that the operator

(S−1
f ,τθτ +V (I�p(N)−θ f S−1

f ,τθτ))(θ f S−1
f ,τ +(I�p(N)−θ f S−1

f ,τθτ)U)

is bounded invertible, where U : X → �p(N) and V : �p(N)→ X are bounded linear
operators. By a direct expansion and simplification we get

(S−1
f ,τθτ +V (I�p(N)−θ f S−1

f ,τθτ))(θ f S−1
f ,τ +(I�p(N)−θ f S−1

f ,τθτ)U)

= S−1
f ,τ +VU −V θ f S−1

f ,τθτU.

We know that a bounded linear operator from �2(N) to H is given by a Bessel
sequence (Theorem 1.2.58). Thus, for Hilbert spaces, Theorem 4.2.7 becomes Theorem
1.2.44.

4.3 SIMILARITY FOR p-APPROXIMATE SCHAUDER FRAM-
ES

We define Definition 1.2.45 to Banach spaces as follows.

Definition 4.3.1. Two p-ASFs ({ fn}n,{τn}n) and ({gn}n,{ωn}n) for X are said to be

similar or equivalent if there exist bounded invertible operators Tf ,g,Tτ,ω : X → X

such that

gn = fnTf ,g, ωn = Tτ,ωτn, ∀n ∈ N.

Since the operators giving similarity are bounded invertible, the notion of similarity
is symmetric. Further, a routine calculation shows that it is an equivalence relation
(hence the name equivalent) on the set

{({ fn}n,{τn}n) : ({ fn}n,{τn}n) is a p-ASF for X }.

We now characterize similarity using just operators. In the sequel, given a p-ASF
({ fn}n,{τn}n), we set Pf ,τ := θ f S−1

f ,τθτ .

Theorem 4.3.2. For two p-ASFs ({ fn}n,{τn}n) and ({gn}n,{ωn}n) for X , the follow-

ing are equivalent.
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(i) gn = fnTf ,g,ωn = Tτ,ωτn,∀n∈N, for some bounded invertible operators Tf ,g,Tτ,ω :
X → X .

(ii) θg = θ f Tf ,g,θω = Tτ,ωθτ , for some bounded invertible operators Tf ,g,Tτ,ω : X →
X .

(iii) Pg,ω = Pf ,τ .

If one of the above conditions is satisfied, then invertible operators in (i) and (ii) are

unique and are given by Tf ,g = S−1
f ,τθτθg,Tτ,ω = θωθ f S−1

f ,τ . In the case that ({ fn}n,{τn}n)

is a simple p-ASF, then ({gn}n,{ωn}n) is a simple p-ASF if and only if Tτ,ωTf ,g = IX if

and only if Tf ,gTτ,ω = IX .

Proof. (i) ⇒ (ii) θgx = {gn(x)}n = { fn(Tf ,gx)}n = θ f (Tf ,gx),∀x ∈ X , θω({an}n) =

∑∞
n=1 anωn = ∑∞

n=1 anTτ,ωτn = Tτ,ω(θτ({an}n)),∀{an}n ∈ �p(N).
(ii) ⇒ (iii) Sg,ω = θωθg = Tτ,ωθτθ f Tf ,g = Tτ,ωS f ,τTf ,g and

Pg,ω = θgS−1
g,ωθω = (θ f Tf ,g)(Tτ,ωS f ,τTf ,g)

−1(Tτ,ωθτ) = Pf ,τ .

(ii) ⇒ (i) ∑∞
n=1 gn(x)en = θg(x) = θ f (Tf ,gx) = ∑∞

n=1 fn(Tf ,gx)en,∀x ∈ X . This clearly
gives (i).
(iii) ⇒ (ii) θg = Pg,ωθg = Pf ,τθg = θ f (S−1

f ,τθτθg), and

θω = θωPg,ω = θωPf ,τ = (θωθ f S−1
f ,τ)θτ .

We show that S−1
f ,τθτθg and θωθ f S−1

f ,τ are invertible. For,

(S−1
f ,τθτθg)(S−1

g,ωθωθ f ) = S−1
f ,τθτPg,ωθ f = S−1

f ,τθτPf ,τθ f = IX ,

(S−1
g,ωθωθ f )(S−1

f ,τθτθg) = S−1
g,ωθωPf ,τθg = S−1

g,ωθωPg,ωθg = IX

and

(θωθ f S−1
f ,τ)(θτθgS−1

g,ω) = θωPf ,τθgS−1
g,ω = θωPg,ωθgS−1

g,ω = IX ,

(θτθgS−1
g,ω)(θωθ f S−1

f ,τ) = θτPg,ωθ f S−1
f ,τ = θτPf ,τθ f S−1

f ,τ = IX .

Let Tf ,g,Tτ,ω : X → X be bounded invertible and gn = fnTf ,g,ωn = Tτ,ωτn,∀n ∈ N.
Then θg = θ f Tf ,g says that θτθg = θτθ f Tf ,g = S f ,τTf ,g which implies Tf ,g = S−1

f ,τθτθg,
and θω = Tτ,ωθτ says θωθ f = Tτ,ωθτθ f = Tτ,ωS f ,τ . Hence Tτ,ω = θωθ f S−1

f ,τ .

It is easy to see that for Hilbert spaces, Theorem 4.3.2 reduces to Theorem 1.2.46.
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Definition 4.2.1 introduced the notion of dual frames. A twin notion associated is the
notion of orthogonality.

Definition 4.3.3. Let ({ fn}n,{τn}n) be a p-ASF for X . A p-ASF ({gn}n,{ωn}n) for X

is orthogonal for ({ fn}n,{τn}n) if

0 =
∞

∑
n=1

gn(x)τn =
∞

∑
n=1

fn(x)ωn, ∀x ∈ X .

Unlike duality, the notion orthogonality is symmetric but not reflexive. Further,
dual p-ASFs cannot be orthogonal to each other and orthogonal p-ASFs cannot be dual
to each other. Moreover, if ({gn}n,{ωn}n) is orthogonal for ({ fn}n,{τn}n), then both
({ fn}n,{ωn}n) and ({gn}n,{τn}n) are not p-ASFs. Similar to Proposition 4.2.4 we have
the following proposition.

Proposition 4.3.4. For two p-ASFs ({ fn}n,{τn}n) and ({gn}n,{ωn}n) for X , the fol-

lowing are equivalent.

(i) ({gn}n,{ωn}n) is orthogonal for ({ fn}n,{τn}n).

(ii) θτθg = θωθ f = 0.

Usefulness of orthogonal frames is that we have interpolation result, i.e., these
frames can be stitched along certain curves (in particular, on the unit circle centered
at the origin) to get new frames.

Theorem 4.3.5. Let ({ fn}n,{τn}n) and ({gn}n,{ωn}n) be two Parseval p-ASFs for X

which are orthogonal. If A,B,C,D : X → X are bounded linear operators and CA+

DB = IX , then

({ fnA+gnB}n,{Cτn +Dωn}n)

is a simple p-ASF for X . In particular, if scalars a,b,c,d satisfy ca+ db = 1, then

({a fn +bgn}n,{cτn +dωn}n) is a simple p-ASF for X .

Proof. By a calculation we find

θ f A+gBx = {( fnA+gnB)(x)}n = { fn(Ax)}n +{gn(Bx)}n = θ f (Ax)+θg(Bx), ∀x ∈ X

and

θCτ+Dω({an}n) =
∞

∑
n=1

an(Cτn +Dωn) =Cθτ({an}n)+Dθω({an}n), ∀{an}n ∈ �p(N).
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So

S f A+gB,Cτ+Dω = θCτ+Dωθ f A+gB = (Cθτ +Dθω)(θ f A+θgB)

=Cθτθ f A+CθτθgB+Dθωθ f A+DθωθgB

=CS f ,τA+0+0+DSg,ωB =CIX A+DIX B = IX .

Using Theorem 4.3.2 we finally relate three notions duality, similarity and orthogo-
nality.

Proposition 4.3.6. For every p-ASF ({ fn}n,{τn}n), the canonical dual for ({ fn}n,{τn}n)

is the only dual p-ASF that is similar to ({ fn}n,{τn}n).

Proof. Let us suppose that two p-ASFs ({ fn}n,{τn}n) and ({gn}n,{ωn}n) are similar
and dual to each other. Then there exist bounded invertible operators Tf ,g,Tτ,ω : X →
X such that gn = fnTf ,g,ωn = Tτ,ωτn,∀n ∈ N. Theorem 4.3.2 then gives

Tf ,g = S−1
f ,τθτθg = S−1

f ,τ IX = S−1
f ,τ and Tτ,ω = θωθ f S−1

f ,τ = IX S−1
f ,τ = S−1

f ,τ .

Hence ({gn}n,{ωn}n) is the canonical dual for ({ fn}n,{τn}n).

Proposition 4.3.7. Two similar p-ASFs cannot be orthogonal.

Proof. Let ({ fn}n,{τn}n) and ({gn}n,{ωn}n) be two p-ASFs which are similar. Then
there exist bounded invertible operators Tf ,g,Tτ,ω : X →X such that gn = fnTf ,g,ωn =

Tτ,ωτn,∀n ∈ N. Theorem 4.3.2 then says θg = θ f Tf ,g,θω = Tτ,ωθτ . Therefore

θτθg = θτθ f Tf ,g = S f ,τTf ,g �= 0.

Remark 4.3.8. For every p-ASF ({ fn}n,{τn}n), both p-ASFs

({ fnS−1
f ,τ}n,{τn}n) and ({ fn}n,{S−1

f ,ττn}n)

are simple p-ASFs and are similar to ({ fn}n,{τn}n). Therefore each p-ASF is similar

to simple p-ASFs.
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4.4 DILATION THEOREM FOR p-APPROXIMATE SCHAUDER
FRAMES

Here we derive a generalization of Theorem 1.2.37 (Naimark-Han-Larson dilation the-
orem) for frames in Hilbert spaces to p-ASFs for Banach spaces. In order to derive the
dilation result we must have a notion of Riesz basis for Banach space. Theorem 1.2.25
gives various characterizations for Riesz bases for Hilbert spaces but all uses (implicitly
or explicitly) inner product structures and orthonormal bases. These characterizations
lead to the notion of p-Riesz basis for Banach spaces using a single sequence in the
Banach space (Definition 1.3.1) but we consider a different notion in this chapter.
To define the notion of Riesz basis, which is compatible with Hilbert space situation,
we first derive an operator-theoretic characterization for Riesz basis in Hilbert spaces,
which does not use the inner product of Hilbert space. To do so, we need a result from
Hilbert space frame theory.

Theorem 4.4.1. For sequence {τn}n in H , the following are equivalent.

(i) {τn}n is a Riesz basis for H .

(ii) {τn}n is a frame for H and

θτS−1
τ θ ∗

τ = I�2(N). (4.4.1)

Proof. (i) =⇒ (ii) From Theorem 1.2.22 that a Riesz basis is a frame. Now there exist
an orthonormal basis {ωn}n for H and a bounded invertible operator T : H → H

such that T ωn = τn, for all n ∈ N. We then have

Sτh =
∞

∑
n=1

�h,τn�τn =
∞

∑
n=1

�h,T ωn�T ωn

= T

�
∞

∑
n=1

�T ∗h,ωn�ωn

�
= T T ∗h, ∀h ∈ H .

Therefore

θτS−1
τ θ ∗

τ {an}n = θτ(T T ∗)−1θ ∗
τ {an}n = θτ(T ∗)−1T−1θ ∗

τ {an}n

= θτ(T ∗)−1T−1

�
∞

∑
n=1

anτn

�
= θτ(T ∗)−1T−1

�
∞

∑
n=1

anT ωn

�

= θτ

�
∞

∑
n=1

an(T ∗)−1ωn

�
=

∞

∑
k=1

�
∞

∑
n=1

an(T ∗)−1ωn,τk

�
ek
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=
∞

∑
k=1

�
∞

∑
n=1

an(T ∗)−1ωn,T ωk

�
ek

=
∞

∑
k=1

�
∞

∑
n=1

anωn,ωk

�
ek = {ak}k, ∀{an}n ∈ �2(N).

(ii) =⇒ (i) From Holub’s theorem (Theorem 1.2.39), there exists a surjective bounded
linear operator T : �2(N) → H such that Ten = τn, for all n ∈ N. Since all separable
Hilbert spaces are isometrically isomorphic to one another and orthonormal bases map
into orthonormal bases, without loss of generality we may assume that {en}n is an
orthonormal basis for H and the domain of T is H . Our job now reduces in showing
T is invertible. Since T is already surjective, to show it is invertible, it suffices to show it
is injective. Let {an}n ∈ �2(N). Then {an}n = θτ(S−1

τ θ ∗
τ {an}n). Hence θτ is surjective.

We now find

θτh =
∞

∑
n=1

�h,τn�en =
∞

∑
n=1

�h,Ten�en = T ∗h, ∀h ∈ H .

Therefore

Kernel(T ) = T ∗(H )⊥ = θτ(H )⊥ = H ⊥ = {0}.

Hence T is injective.

Theorem 4.4.1 leads to the following definition of p-approximate Riesz basis.

Definition 4.4.2. A pair ({ fn}n,{τn}n) is said to be a p-approximate Riesz basis for

X if it is a p-ASF for X and θ f S−1
f ,τθτ = I�p(N).

Example 4.4.3. Let p ∈ [1,∞) and U : X → �p(N), V : �p(N) → X be bounded in-

vertible linear operators. Let {en}n, {ζn}n, { fn}n, and {τn}n be as in Example 4.1.9.

Then ({ fn}n,{τn}n) is a p-approximate Riesz basis for X .

We now derive the dilation theorem.

Theorem 4.4.4. (Dilation theorem for p-approximate Schauder frames) Let ({ fn}n,

{τn}n) be a p-ASF for X . Then there exist a Banach space X1 which contains X

isometrically and a p-approximate Riesz basis ({gn}n,{ωn}n) for X1 such that

fn = gnP|X , τn = Pωn, ∀n ∈ N,

where P : X1 → X is onto projection.
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Proof. Let {en}n denote the standard Schauder basis for �p(N) and let {ζn}n denote the
coordinate functionals associated with {en}n. Define

X1 := X ⊕ (I�p(N)−Pf ,τ)(�
p(N)), P : X1 � x⊕ y �→ x⊕0 ∈ X1

and

ωn := τn ⊕ (I�p(N)−Pf ,τ)en ∈ X1, gn := fn ⊕ζn(I�p(N)−Pf ,τ) ∈ X ∗
1 , ∀n ∈ N.

Then clearly X1 contains X isometrically, P : X1 → X is onto projection and

(gnP|X )(x) = gn(P|X x) = gn(x) = ( fn ⊕ζn(I�p(N)−Pf ,τ))(x⊕0) = fn(x), ∀x ∈ X ,

Pωn = P(τn ⊕ (I�p(N)−Pf ,τ)en) = τn, ∀n ∈ N.

Since the operator I�p(N)−Pf ,τ is idempotent, it follows that (I�p(N)−Pf ,τ)(�
p(N)) is a

closed subspace of �p(N) and hence a Banach space. Therefore X1 is a Banach space.
Let x⊕ y ∈ X1 and we shall write y = {an}n ∈ �p(N). We then see that

∞

∑
n=1

(ζn(I�p(N)−Pf ,τ))(y)τn =
∞

∑
n=1

ζn(y)τn −
∞

∑
n=1

ζn(Pf ,τ(y))τn

=
∞

∑
n=1

ζn({ak}k)τn −
∞

∑
n=1

ζn(θ f S−1
f ,τθτ({ak}k))τn

=
∞

∑
n=1

anτn −
∞

∑
n=1

ζn

�
θ f S−1

f ,τ

�
∞

∑
k=1

akτk

��
τn

=
∞

∑
n=1

anτn −
∞

∑
n=1

ζn

�
∞

∑
k=1

akθ f S−1
f ,ττk

�
τn

=
∞

∑
n=1

anτn −
∞

∑
n=1

ζn

�
∞

∑
k=1

ak

∞

∑
r=1

fr(S−1
f ,ττk)er

�
τn

=
∞

∑
n=1

anτn −
∞

∑
n=1

∞

∑
k=1

ak

∞

∑
r=1

fr(S−1
f ,ττk)ζn(er)τn

=
∞

∑
n=1

anτn −
∞

∑
n=1

∞

∑
k=1

ak fn(S−1
f ,ττk)τn

=
∞

∑
n=1

anτn −
∞

∑
k=1

ak

∞

∑
n=1

fn(S−1
f ,ττk)τn

=
∞

∑
n=1

anτn −
∞

∑
k=1

akτk = 0
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and

∞

∑
n=1

fn(x)(I�p(N)−Pf ,τ)en =
∞

∑
n=1

fn(x)en −
∞

∑
n=1

fn(x)Pf ,τen

=
∞

∑
n=1

fn(x)en −
∞

∑
n=1

fn(x)θ f S−1
f ,τθτen

=
∞

∑
n=1

fn(x)en −
∞

∑
n=1

fn(x)θ f S−1
f ,ττn

=
∞

∑
n=1

fn(x)en −
∞

∑
n=1

fn(x)
∞

∑
k=1

fk(S−1
f ,ττn)ek

=
∞

∑
n=1

fn(x)en −
∞

∑
n=1

∞

∑
k=1

fn(x) fk(S−1
f ,ττn)ek

=
∞

∑
n=1

fn(x)en −
∞

∑
k=1

∞

∑
n=1

fn(x) fk(S−1
f ,ττn)ek

=
∞

∑
n=1

fn(x)en −
∞

∑
k=1

fk

�
n

∑
n=1

fn(x)S−1
f ,ττn

�
ek

=
∞

∑
n=1

fn(x)en −
∞

∑
k=1

fk(x)ek = 0.

By using previous two calculations, we get

Sg,ω(x⊕ y) =
∞

∑
n=1

gn(x⊕ y)ωn

=
∞

∑
n=1

( fn ⊕ζn(I�p(N)−Pf ,τ))(x⊕ y)(τn ⊕ (I�p(N)−Pf ,τ)en)

=
∞

∑
n=1

( fn(x)+(ζn(I�p(N)−Pf ,τ))(y))(τn ⊕ (I�p(N)−Pf ,τ)en)

=

�
∞

∑
n=1

fn(x)τn +
∞

∑
n=1

(ζn(I�p(N)−Pf ,τ))(y)τn

�
⊕

�
∞

∑
n=1

fn(x)(I�p(N)−Pf ,τ)en +
∞

∑
n=1

(ζn(I�p(N)−Pf ,τ))(y)(I�p(N)−Pf ,τ)en

�

= (S f ,τx+0)⊕
�

0+(I�p(N)−Pf ,τ)
∞

∑
n=1

ζn((I�p(N)−Pf ,τ)y)en

�

= S f ,τx⊕ (I�p(N)−Pf ,τ)(I�p(N)−Pf ,τ)y = S f ,τx⊕ (I�p(N)−Pf ,τ)y

= (S f ,τ ⊕ (I�p(N)−Pf ,τ))(x⊕ y).

Since the operator I�p(N) −Pf ,τ is idempotent, I�p(N) −Pf ,τ becomes the identity op-
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erator on the space (I�p(N) − Pf ,τ)(�
p(N)). Hence we get that the operator Sg,ω =

S f ,τ ⊕ (I�p(N) − Pf ,τ) is bounded invertible from X1 onto itself. We next show that
({gn}n,{ωn}n) is a p-approximate Riesz basis for X1. For this, first we find θg and θω .
Consider

θg(x⊕ y) = {gn(x⊕ y)}n = {( fn ⊕ζn(I�p(N)−Pf ,τ))(x⊕ y)}n

= { fn(x)+ζn((I�p(N)−Pf ,τ)y)}n = { fn(x)}n +{ζn((I�p(N)−Pf ,τ)y)}n

= θ f x+
∞

∑
n=1

ζn((I�p(N)−Pf ,τ)y)en = θ f x+(I�p(N)−Pf ,τ)y, ∀x⊕ y ∈ X1

and

θω{an}n =
∞

∑
n=1

anωn =
∞

∑
n=1

an(τn ⊕ (I�p(N)−Pf ,τ)en)

=

�
∞

∑
n=1

anτn

�
⊕
�

∞

∑
n=1

an(I�p(N)−Pf ,τ)en

�

= θτ{an}n ⊕ (I�p(N)−Pf ,τ)

�
∞

∑
n=1

anen

�

= θτ{an}n ⊕ (I�p(N)−Pf ,τ){an}n, ∀{an}n ∈ �p(N).

Therefore

Pg,ω{an}n = θgS−1
g,ωθω{an}n = θgS−1

g,ω(θτ{an}n ⊕ (I�p(N)−Pf ,τ){an}n)

= θg(S−1
f ,τ ⊕ (I�p(N)−Pf ,τ))(θτ{an}n ⊕ (I�p(N)−Pf ,τ){an}n)

= θg(S−1
f ,τθτ{an}n ⊕ (I�p(N)−Pf ,τ)

2{an}n)

= θg(S−1
f ,τθτ{an}n ⊕ (I�p(N)−Pf ,τ){an}n)

= θ f (S−1
f ,τθτ{an}n)+(I�p(N)−Pf ,τ)(I�p(N)−Pf ,τ){an}n

= Pf ,τ{an}n +(I�p(N)−Pf ,τ){an}n = {an}n, ∀{an}n ∈ �p(N).

Corollary 4.4.5. (Han and Larson (2000); Kashin and Kulikova (2002)) Let {τn}n be

a frame for H . Then there exist a Hilbert space H1 which contains H isometrically

and a Riesz basis {ωn}n for H1 such that

τn = Pωn, ∀n ∈ N,

where P is the orthogonal projection from H1 onto H .
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Proof. Let {τn}n be a frame for H . Define

fn : H � h �→ fn(h) := �h,τn� ∈K, ∀n ∈ N.

Then θ f = θτ . Note that now ({ fn}n,{τn}n) is a 2-approximate frame for H . Theorem
4.4.4 now says that there exist a Banach space X1 which contains H isometrically and
a 2-approximate Riesz basis ({gn}n,{ωn}n) for X1 = H ⊕ (I�2(N)−Pτ)(�

2(N)) such
that

fn = gnP|H , τn = Pωn, ∀n ∈ N,

where P : X1 → H is onto projection. Since (I�2(N)−Pτ)(�
2(N)) is a closed subspace

of the Hilbert space �2(N), X1 now becomes a Hilbert space. From the definition of P

we get that it is an orthogonal projection. To prove {ωn}n is a Riesz basis for X1, we
use Theorem 4.4.1. Since {τn}n is a frame for H , there exist a,b > 0 such that

a�h�2 ≤
∞

∑
n=1

|�h,τn�|2 ≤ b�h�2, ∀h ∈ H .

Let h⊕ (I�2(N)−Pf ,τ){ak}k ∈ X1. Then by noting b ≥ 1, we get

∞

∑
n=1

|�h⊕ (I�2(N)−Pτ){ak}k,ωn�|2

=
∞

∑
n=1

|�h⊕ (I�2(N)−Pτ){ak}k,τn ⊕ (I�2(N)−Pτ)en�|2

=
∞

∑
n=1

|�h,τn�|2 +
∞

∑
n=1

|�(I�2(N)−Pτ){ak}k,(I�2(N)−Pτ)en�|2

=
∞

∑
n=1

|�h,τn�|2 +
∞

∑
n=1

|�(I�2(N)−Pτ)(I�2(N)−Pτ){ak}k,en�|2

=
∞

∑
n=1

|�h,τn�|2 +
∞

∑
n=1

|�(I�2(N)−Pτ){ak}k,en�|2

=
∞

∑
n=1

|�h,τn�|2 +�(I�2(N)−Pτ){ak}k�2

≤ b�h�2 +�(I�2(N)−Pτ){ak}k�2

≤ b(�h�2 +�(I�2(N)−Pτ){ak}k�2)

= b�h⊕ (I�2(N)−Pτ){ak}k�2.

Previous calculation tells that {ωn}n is a Bessel sequence for X1. Hence Sω : X1 �
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x⊕ {ak}k �→ ∑∞
n=1�x⊕ {ak}k,ωn�ωn ∈ X1 is a well-defined bounded linear operator.

Next we claim that

gn(x⊕{ak}k) = �x⊕{ak}k,ωn�, ∀x⊕{ak}k ∈ X1,∀n ∈ N. (4.4.2)

Consider

gn(x⊕{ak}k) = ( fn ⊕ζn(I�2(N)−Pτ))(x⊕{ak}k)

= fn(x)+ζn((I�2(N)−Pτ){ak}k) = fn(x)+ζn ({ak}k)−ζn(Pτ{ak}k)

= fn(x)+ζn ({ak}k)−ζn(θτS−1
τ θ ∗

τ {ak}k) = fn(x)+an −ζn

�
θτS−1

τ

�
∞

∑
k=1

akτk

��

= fn(x)+an −ζn

�
∞

∑
k=1

akθτS−1
τ τk

�
= fn(x)+an −ζn

�
∞

∑
k=1

ak

∞

∑
r=1

�S−1
τ τk,τr�er

�

= fn(x)+an −
∞

∑
k=1

ak�S−1
τ τk,τn�= �x,τn�+an −

∞

∑
k=1

ak�S−1
τ τk,τn� and

�x⊕{ak}k,ωn�= �x⊕{ak}k,τn ⊕ (I�2(N)−Pτ)en�
= �x,τn�+ �{ak}k,(I�2(N)−Pτ)en�= �x,τn�+ �{ak}k,en�+ �{ak}k,Pτen�
= �x,τn�+an −

�
{ak}k,θτS−1

τ θ ∗
τ en

�
= �x,τn�+an −

�
{ak}k,θτS−1

τ τn
�

= �x,τn�+an −�{ak}k,{�S−1
τ τn,τk�}k�= �x,τn�+an −

∞

∑
k=1

ak�S−1
τ τn,τk�

= �x,τn�+an −
∞

∑
k=1

ak�τk,S−1
τ τn�= �x,τn�+an −

∞

∑
k=1

ak�S−1
τ τk,τn�.

Thus Equation (4.4.2) holds. Therefore for all x⊕{ak}k ∈ X1,

Sg,ω(x⊕{ak}k) =
∞

∑
n=1

gn(x⊕{ak}k)ωn =
∞

∑
n=1

�x⊕{ak}k,ωn�ωn = Sω(x⊕{ak}k).

Since Sg,ω is invertible, Sω becomes invertible. Clearly Sω is positive. Therefore

1
�Sω�−1�g�2 ≤ �Sωg,g� ≤ �Sω��g�2, ∀g ∈ X1.

Hence

1
�Sω�−1�g�2 ≤

∞

∑
n=1

|�g,ωn�|2 ≤ �Sω��g�2, ∀g ∈ X1.
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Hence {ωn}n is a frame for X1.
Finally we show Equation (4.4.1) in Theorem 4.4.1 for the frame {ωn}n. Consider

θωS−1
ω θ ∗

ω{an}n = θωS−1
ω

�
∞

∑
n=1

anωn

�
= θω

�
∞

∑
n=1

anS−1
ω ωn

�

=
∞

∑
k=1

�
∞

∑
n=1

anS−1
ω ωn,ωk

�
=

∞

∑
k=1

∞

∑
n=1

an�S−1
ω ωn,ωk�

=
∞

∑
k=1

∞

∑
n=1

an�(S−1
τ ⊕ (I�2(N)−Pτ))(τn ⊕ (I�2(N)−Pτ)en),τk ⊕ (I�2(N)−Pτ)ek�

=
∞

∑
k=1

∞

∑
n=1

an�S−1
τ τn ⊕ (I�2(N)−Pτ)

2en,τk ⊕ (I�2(N)−Pτ)ek�

=
∞

∑
k=1

∞

∑
n=1

an(�S−1
τ τn,τk�+ �(I�2(N)−Pτ)en,(I�2(N)−Pτ)ek�)

=
∞

∑
k=1

�
∞

∑
n=1

anS−1
τ τn,τk

�
+

∞

∑
k=1

∞

∑
n=1

an�(I�2(N)−Pf ,τ)en,(I�2(N)−Pτ)ek�

= Pτ{an}n +
∞

∑
k=1

∞

∑
n=1

an�(I�2(N)−Pτ)en,ek�

= Pτ{an}n +
∞

∑
k=1

∞

∑
n=1

an�en,ek�−
∞

∑
k=1

∞

∑
n=1

an�Pτen,ek�

= Pτ{an}n +
∞

∑
k=1

akek −
∞

∑
k=1

∞

∑
n=1

an�θτS−1
τ θ ∗

τ en,ek�

= Pτ{an}n +
∞

∑
k=1

akek −
∞

∑
k=1

∞

∑
n=1

an�S−1
τ τn,θ ∗

τ ek�

= Pτ{an}n +
∞

∑
k=1

akek −
∞

∑
k=1

∞

∑
n=1

an�S−1
τ τn,τk�

= Pτ{an}n +
∞

∑
k=1

akek −Pτ{an}n = {an}n, ∀{an}n ∈ �2(N).

Thus {ωn}n is a Riesz basis for X1 which completes the proof.

We now illustrate Theorem 4.4.4 with an example.

Example 4.4.6. Let p∈ [1,∞). Let {en}n denote the canonical Schauder basis for �p(N)
and let {ζn}n denote the coordinate functionals associated with {en}n respectively. De-

fine

R : �p(N) � (xn)
∞
n=1 �→ (0,x1,x2, . . .) ∈ �p(N),

L : �p(N) � (xn)
∞
n=1 �→ (x2,x3,x4, . . .) ∈ �p(N).
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Then LR = I�p(N). Example 4.4.3 says that ({ fn := ζnR}n,{τn := Len}n) is a p-ASF for

�p(N). Note that θ f = R and θτ = L. Therefore S f ,τ = LR = I�p(N) and Pf ,τ = RL. Then

(I�p(N)−Pf ,τ)(xn)
∞
n=1 = (xn)

∞
n=1 −RL(xn)

∞
n=1

= (xn)
∞
n=1 − (0,x2,x3, . . .) = (x1,0,0, . . .), ∀(xn)

∞
n=1 ∈ �p(N)

which says that (I�p(N)−Pf ,τ)(�
p(N))∼=K. Using Theorem 4.4.4,

X1 = �p(N)⊕ (I�p(N)−Pf ,τ)(�
p(N))∼= �p(N)⊕K∼= �p(N∪{0})

P : �p(N∪{0}) � (xn)
∞
n=0 �→ (xn)

∞
n=1 ∈ �p(N),

ω1 = τ1 ⊕ (I�p(N)−Pf ,τ)τ1 = Le1 ⊕ (I�p(N)−Pf ,τ)Le1 = 0⊕0,

ω2 = τ2 ⊕ (I�p(N)−Pf ,τ)τ2 = Len ⊕ (I�p(N)−Pf ,τ)Le2

= e1 ⊕ (I�p(N)−Pf ,τ)e1 = e1 ⊕RLe1 = e1 ⊕0,

ωn = τn ⊕ (I�p(N)−Pf ,τ)τn = Len ⊕ (I�p(N)−Pf ,τ)Len

= en−1 ⊕ (I�p(N)−Pf ,τ)en−1 = en−1 ⊕RLen−1 = en−1 ⊕ en−1, ∀n ≥ 3,

gn = fn ⊕ζn(I�p(N)−Pf ,τ) = ζnR⊕ζnRL = ζnR(I�p(N)⊕L), ∀n ∈ N

and ({gn}n,{ωn}n) is a p-approximate Riesz basis for �p(N).

4.5 NEW IDENTITY FOR PARSEVAL p-APPROXIMATE SCH-
AUDER FRAMES

Certain classes of Banach spaces known as homogeneous semi-inner product spaces
admit a kind of inner product and can be studied with certain similarities with Hilbert
spaces. These spaces are introduced by Lumer (1961) and studied extensively by Giles
(1967). We now recall the fundamentals of semi-inner products. Let X be a vector
space over K. A map [·, ·] : X ×X → K is said to be a homogeneous semi-inner
product if it satisfies the following.

(i) [x,x]> 0, for all x ∈ X ,x �= 0.

(ii) [λx,y] = λ [x,y], for all x,y ∈ X , for all λ ∈K.

(iii) [x,λy] = λ [x,y], for all x,y ∈ X , for all λ ∈K.

(iv) [x+ y,z] = [x,z]+ [y,z], for all x,y,z ∈ X .
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(v) |[x,y]|2 ≤ [x,x][y,y], for all x,y ∈ X .

A homogeneous semi-inner product [·, ·] induces a norm which is defined as �x� :=�
[x,x]. A prototypical example of homogeneous semi-inner product spaces is the stan-

dard �p(N) space, 1 < p < ∞, equipped with semi-inner product defined as follows. For
x = {xn}n, y = {yn}n ∈ �p(N), define

[x,y] :=





∞
∑

n=1
xnyn|yn|p−2

�y�p−2
p

if y �= 0

0 if y = 0.

For certain classes of Banach spaces we have Riesz representation theorem.

Theorem 4.5.1. (Giles (1967)) (Riesz representation theorem for Banach spaces) Let

X be a complete homogeneous semi-inner product space. If X is continuous and

uniformly convex, then for every bounded linear functional f : X → K, there exists a

unique y ∈ X such that f (x) = [x,y], for all x ∈ X .

Theorem 4.5.1 leads to the notion of generalized adjoint whose existence is assured
by the following theorem. Two state the result we need two definitions.

Definition 4.5.2. (cf. Giles (1967)) Let X be a complete homogeneous semi-inner

product space. Space X is said to be continuous if

Re([x,y+λx])→ Re([x,y]), for all real λ → 0,∀x,y ∈ X such that �x�= �y�= 1.

Definition 4.5.3. (Giles (1967)) A Banach space is said to be uniformly convex if given

ε > 0, there exists an δ > 0 such that if x,y ∈ X are such that �x� = �y� = 1 and

�x− y�> ε , then �x+ y� ≤ 2(1−δ ).

Theorem 4.5.4. (Koehler (1971)) Let X be a complete homogeneous semi-inner prod-

uct space. If X is continuous and uniformly convex, then for every bounded linear

operator A : X → X , there exists a unique map A† : X → X , which may not be

linear or continuous (called as generalized adjoint of A) such that

[Ax,y] = [x,A†y], ∀x,y ∈ X .

Moreover, the following statements hold.

(i) (λA)† = λA†, for all λ ∈K.

(ii) A† is injective if and only if A(X ) = X .
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(iii) If the norm of X is strongly (Frechet) differentiable, then A† is continuous.

Throughout this section we assume that X is a continuous, uniformly convex, ho-
mogeneous semi-inner product space. Let ({ fn}n,{τn}n) be a p-ASF for X . Theo-
rem 4.5.1 then says that each fn can be identified with unique ωn ∈ X which satisfies
fn(x) = [x,ωn], for all x ∈ X . Note that

∞

∑
n=1

[x,(S−1
ω,τ)

†ωn]S−1
ω,ττn = S−1

ω,τ

�
∞

∑
n=1

[S−1
ω,τx,ωn]τn

�
= S−1

ω,τx, ∀x ∈ X .

Hence ({ω̃n := (S−1
ω,τ)

†ωn}n,{τ̃n := S−1
ω,ττn}n) is a p-ASF for X which is called as

canonical dual frame for ({ωn}n,{τn}n). Given M ⊆ N, we define SM : X � x �→
∑n∈M�x,ωn�τn ∈ X . Because of Inequalities (4.1.5) and (4.1.6), the map SM is a well-
defined bounded linear operator. Note that the operator SM may not be invertible. In
Proposition 2.2 in (Balan et al. (2007)) it is derived that if operators U,V : H → H

satisfy U +V = IH , then U −V =U2 −V 2. This remains valid for Banach spaces.

Lemma 4.5.5. If operators U,V : X →X satisfy U +V = IX , then U −V =U2−V 2.

Proof. We follow the ideas in the proof of Proposition 2.2 in (Balan et al. (2007)):

U −V =U − (IX −U) = 2U − IX =U2 − (IX −2U +U2)

=U2 − (IX −U)2 =U2 −V 2.

We now have Banach space version of Theorem 1.2.47.

Theorem 4.5.6. Let ({ωn}n,{τn}n) be a p-ASF for X . Then for every M⊆ N, and for

all x ∈ X ,

∑
n∈M

[x,ωn][τn,x]−
∞

∑
n=1

[SMx, ω̃n][τ̃n,S
†
Mx] = ∑

n∈Mc
[x,ωn][τn,x]−

∞

∑
n=1

[SMcx, ω̃n][τ̃n,S
†
Mcx].

Proof. For notational convenience, we denote S f ,τ by S. We clearly have SM+SMc = S.
Using S−1SM+S−1SMc = IX and Lemma 4.5.5, we get S−1SM−S−1SMc =(S−1SM)2−
(S−1SMc)2 = S−1SMS−1SM−S−1SMcS−1SMc which gives

S−1SM−S−1SMS−1SM = S−1SMc −S−1SMcS−1SMc .

Therefore for all x,y ∈ X ,

[S−1SMx,y]− [S−1SMS−1SMx,y] = [S−1SMcx,y]− [S−1SMcS−1SMcx,y].
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In particular, for all x ∈ X ,

[S−1SMx,S†x]− [S−1SMS−1SMx,S†x] = [S−1SMcx,S†x]− [S−1SMcS−1SMcx,S†x]

which gives

[SMx,x]− [S−1SMx,S†
Mx] = [SMcx,x]− [S−1SMcx,S†

Mcx], ∀x ∈ X . (4.5.1)

Now note that

∞

∑
n=1

[x, ω̃n][τ̃n,y] =
∞

∑
n=1

[x,(S−1)†ωn][S−1τn,y] =
∞

∑
n=1

[S−1x,ωn][S−1τn,y]

=

�
∞

∑
n=1

[S−1x,ωn]S−1τn,y

�
=

�
S−1

�
∞

∑
n=1

[S−1x,ωn]τn

�
,y

�

= [S−1x,y], ∀x,y ∈ X .

Equation (4.5.1) now gives

∑
n∈M

[x,ωn][τn,x]−
∞

∑
n=1

[SMx, ω̃n][τ̃n,S
†
Mx] = ∑

n∈Mc
[x,ωn][τn,x]

−
∞

∑
n=1

[SMcx, ω̃n][τ̃n,S
†
Mcx], ∀x ∈ X .

A look at Theorem 1.2.48 makes a guess of the following statement for Banach
spaces. Let ({ωn}n,{τn}n) be a Parseval p-ASF for X . Then for every M⊆ N,

∑
n∈M

[x,ωn][τn,x]−
����� ∑

n∈M
[x,ωn]τn

�����

2

= ∑
n∈Mc

[x,ωn][τn,x]−
����� ∑

n∈Mc
[x,ωn]τn

�����

2

, ∀x ∈ X .

(4.5.2)

However, the correct Banach space version of Theorem 1.2.48 is not Equation (4.5.2)
but it is stated in the next theorem.

Theorem 4.5.7. (Parseval p-ASF identity) Let ({ωn}n,{τn}n) be a Parseval p-ASF for

X . Then for every M⊆ N,

∑
n∈M

[x,ωn][τn,x]− ∑
n∈M

∑
k∈M

[x,ωn][τn,ωk][τk,x]

= ∑
n∈Mc

[x,ωn][τn,x]− ∑
n∈Mc

∑
k∈Mc

[x,ωn][τn,ωk][τk,x], ∀x ∈ X .
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Proof. Using Theorem 4.5.6, for all x ∈ X ,

∑
n∈M

[x,ωn][τn,x]− ∑
n∈M

∑
k∈M

[x,ωn][τn,ωk][τk,x]

= ∑
n∈M

[x,ωn][τn,x]−
�

∑
n∈M

[x,ωn] ∑
k∈M

[τn,ωk]τk,x

�

= ∑
n∈M

[x,ωn][τn,x]−
�

∑
n∈M

[x,ωn]SMτn,x

�

= ∑
n∈M

[x,ωn][τn,x]−
�

SM

�
∑

n∈M
[x,ωn]τn

�
,x

�

= ∑
n∈M

[x,ωn][τn,x]− [SMSMx,x]

= ∑
n∈M

[x,ωn][τn,x]−
�
SMx,S†

Mx
�

= ∑
n∈M

[x,ωn][τn,x]−
�

∞

∑
n=1

[SMx,ωn]τn,S
†
Mx

�

= ∑
n∈M

[x,ωn][τn,x]−
∞

∑
n=1

[SMx,ωn][τn,S
†
Mx]

= ∑
n∈Mc

[x,ωn][τn,x]−
∞

∑
n=1

[SMcx,ωn][τn,S
†
Mcx]

= ∑
n∈Mc

[x,ωn][τn,x]− ∑
n∈Mc

∑
k∈Mc

[x,ωn][τn,ωk][τk,x].

In terms of SM and Sc
M, Theorem 4.5.7 can be written as

SM−S2
M = SMc −S2

Mc or SM+S2
Mc = SMc +S2

M. (4.5.3)

We now give an application of Theorem 4.5.7. This is Banach space version of Theorem
1.2.49.

Theorem 4.5.8. Let ({ωn}n,{τn}n) be a Parseval p-ASF for X . Let M⊆ N. If x ∈ X

is such that [(SM− 1
2 IX )2x,x]≥ 0, then

∑
n∈M

[x,ωn][τn,x]+ ∑
n∈Mc

∑
k∈Mc

[x,ωn][τn,ωk][τk,x]

= ∑
n∈Mc

[x,ωn][τn,x]+ ∑
n∈M

∑
k∈M

[x,ωn][τn,ωk][τk,x]≥
3
4
�x�2, for that x.
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Proof. We first compute

S2
M+S2

Mc = S2
M+(IX −SM)2 = 2S2

M−2SM+ IX

= 2
�

SM− 1
2

IX

�2

+
1
2

IX .

Hence if x ∈ X satisfies [(SM− 1
2 IX )2x,x]≥ 0, then

[(S2
M+S2

Mc)x,x]≥ 1
2
�x�2.

Now using Equation (4.5.3) we get

2 ∑
n∈M

[x,ωn][τn,x]+2 ∑
n∈Mc

∑
k∈Mc

[x,ωn][τn,ωk][τk,x] = 2[SMx,x]+2[S2
Mcx,x]

= [2(SM+S2
Mc)x,x] = [((SM+S2

Mc)+(SM+S2
Mc))x,x]

= [((SM+S2
Mc)+(SMc +S2

M))x,x] = [(IX +S2
Mc +S2

M)x,x]

= �x�2 +[(S2
M+S2

Mc)x,x]≥ 3
2
�x�2, ∀x ∈ X .

4.6 PALEY-WIENER THEOREM FOR p-APPROXIMATE
SCHAUDER FRAMES

In order to derive Paley-Wiener theorem for p-ASFs, we need a generalization of result
of Hilding (1948).

Theorem 4.6.1. (Casazza and Christensen (1997); Casazza and Kalton (1999); van

Eijndhoven (1996)) (Casazza-Christensen-Kalton-van Eijndhoven perturbation) Let

X ,Y be Banach spaces and A : X → Y be a bounded invertible operator. If a

bounded operator B : X → Y is such that there exist α,β ∈ [0,1) with

�Ax−Bx� ≤ α�Ax�+β�Bx�, ∀x ∈ X ,

then B is invertible and

1−α
1+β

�Ax� ≤ �Bx� ≤ 1+α
1−β

�Ax�, ∀x ∈ X ;

1−β
1+α

1
�A��y� ≤ �B−1y� ≤ 1+β

1−α
�A−1��y�, ∀y ∈ Y .

98



In the sequel, the standard Schauder basis for �p(N) is denoted by {en}n.

Theorem 4.6.2. Let ({ fn}n,{τn}n) be a p-ASF for X . Assume that a collection {τn}n

in X is such that there exist α,β ,γ ≥ 0 with max{α + γ�θ f S−1
f ,τ�,β}< 1 and

�����
m

∑
n=1

cn(τn −ωn)

�����≤α

�����
m

∑
n=1

cnτn

�����+ γ

�
m

∑
n=1

|cn|p
� 1

p

+β

�����
m

∑
n=1

cnωn

����� ,

∀c1, . . . ,cm ∈K, m = 1,2, . . . . (4.6.1)

Then ({ fn}n,{ωn}n) is a p-ASF for X with bounds

1− (α + γ�θ f S−1
f ,τ�)

(1+β )�S−1
f ,τ�

and
�

1+α
1−β

�θτ�+
γ

1−β

�
�θ f �.

Proof. For m = 1,2, . . . and for every c1, . . . ,cm ∈K,

�����
m

∑
n=1

cnωn

�����≤
�����

m

∑
n=1

cn(τn −ωn)

�����+
�����

m

∑
n=1

cnτn

�����

≤ (1+α)

�����
m

∑
n=1

cnτn

�����+ γ

�
m

∑
n=1

|cn|p
� 1

p

+β

�����
m

∑
n=1

cnωn

����� .

Hence

�����
m

∑
n=1

cnωn

�����≤ 1+α
1−β

�����
m

∑
n=1

cnτn

�����+
γ

1−β

�
m

∑
n=1

|cn|p
� 1

p

, ∀c1, . . . ,cm ∈K,m = 1,2, . . . .

Therefore θω is well-defined bounded linear operator with

�θω� ≤
1+α
1−β

�θτ�+
γ

1−β
.

Now Equation (4.6.1) gives

�����
∞

∑
n=1

cn(τn −ωn)

�����≤ α

�����
∞

∑
n=1

cnτn

�����+ γ

�
∞

∑
n=1

|cn|p
� 1

p

+β

�����
∞

∑
n=1

cnωn

����� , ∀{cn}n ∈ �p(N).

That is,

�θτ{cn}n −θω{cn}n� ≤ α�θτ{cn}n�+ γ

�
∞

∑
n=1

|cn|p
� 1

p

+β�θω{cn}n�,
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∀{cn}n ∈ �p(N). (4.6.2)

By taking {cn}n = { fn(S−1
f ,τx)}n = θ f S−1

f ,τx in Equation (4.6.2), we get

�θτθ f S−1
f ,τx−θωθ f S−1

f ,τx� ≤ α�θτθ f S−1
f ,τx�+ γ

�
∞

∑
n=1

| fn(S−1
f ,τx)|p

� 1
p

+β�θωθ f S−1
f ,τx�,

for all x ∈ X . That is,

�x−S f ,ωS−1
f ,τx� ≤ α�x�+ γ�θ f S−1

f ,τx�+β�S f ,ωS−1
f ,τx�

≤ (α + γ�θ f S−1
f ,τ�)�x�+β�S f ,ωS−1

f ,τx�, ∀x ∈ X .

Since max{α+γ�θ f S−1
f ,τ�,β}< 1, we can use Theorem 4.6.1 to get the operator S f ,ωS−1

f ,τ
to be invertible and

�(Sg,ωS−1
f ,τ)

−1� ≤ 1+β
1− (α + γ�θ f S−1

f ,τ�)
.

Hence the operator S f ,ω = (S f ,ωS−1
f ,τ)S f ,τ is invertible. Therefore ({ fn}n,{ωn}n) is a

p-ASF for X . We get the frame bounds from the following calculations:

�S−1
f ,ω� ≤ �S−1

f ,τ��S f ,τS−1
f ,ω� ≤

�S−1
f ,τ�(1+β )

1− (α + γ�θ f S−1
f ,τ�)

and

�S f ,ω� ≤ �θω��θ f � ≤
�

1+α
1−β

�θτ�+
γ

1−β

�
�θ f �.

Remark 4.6.3. Theorem 1.2.55 is a corollary of Theorem 4.6.2. In particular, Theorems

1.2.53 and 1.2.54 are corollaries of Theorem 4.6.2. Indeed, let {τn}n be a frame for H .

We define

fn : H � h �→ fn(h) := �h,τn� ∈K, ∀n ∈ N.

Then θ f = θτ and ({ fn}n,{τn}n) is a 2-approximate frame for H . Theorem 4.6.2 now

says that ({ fn}n,{ωn}n) is a 2-ASF for H . To prove Theorem 1.2.55, it now suffices to

prove that {ωn}n is a frame for H . Since ({ fn}n,{ωn}n) is a 2-ASF for H , it follows

that θω is surjective. We now use the following result to conclude that {ωn}n is a frame

for H .

Theorem 4.6.4. (Christensen (1995b)) A collection {τn}n is a frame for H if and only
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if the map

T : �2(N) � {cn}n �→
∞

∑
n=1

cnτn ∈ H

is a well-defined bounded linear surjective operator.

Corollary 4.6.5. Let q be the conjugate index of p. Let ({ fn}n,{τn}n) be a p-ASF for

X . Assume that a collection {τn}n in X is such that and

λ :=
∞

∑
n=1

�τn −ωn�q <
1

�θ f S−1
f ,τ�q

.

Then ({ fn}n,{ωn}n) is a p-ASF for X with bounds

1−λ 1/p�θ f S−1
f ,τ�

�S−1
f ,τ�

and (�θτ�+λ 1/p).

Proof. Take α = 0,β = 0,γ = λ 1/p. Then max{α + γ�θ f S−1
f ,τ�,β}< 1 and

�����
m

∑
n=1

cn(τn −ωn)

�����≤
�

m

∑
n=1

�τn −ωn�q

� 1
q
�

m

∑
n=1

|cn|p
� 1

p

≤ γ

�
m

∑
n=1

|cn|p
� 1

p

,

∀c1, . . . ,cm ∈K, m = 1,2, . . . .

By using Theorem 4.6.2 we now get the result.

We next derive stability result which does not demand maximum condition on pa-
rameters α and γ .

Theorem 4.6.6. Let ({ fn}n,{τn}n) be a p-ASF for X . Assume that a collection {τn}n

in X and a collection {gn}n in X ∗ are such that there exist r,s, t,α,β ,γ ≥ 0 with

max{β ,s}< 1 and

�����
m

∑
n=1

( fn −gn)(x)en

�����≤ r

�����
m

∑
n=1

fn(x)en

�����+ t�x�+ s

�����
m

∑
n=1

gn(x)en

����� ,

∀x ∈ X ,m = 1,2, . . . ,
�����

m

∑
n=1

cn(τn −ωn)

�����≤ α

�����
m

∑
n=1

cnτn

�����+ γ

�
m

∑
n=1

|cn|p
� 1

p

+β

�����
m

∑
n=1

cnωn

����� ,

∀c1, . . . ,cm ∈K,m = 1,2, . . . .
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Assume that one of the following holds.

(i) ∑∞
n=1(� fn −gn��S−1

f ,ττn�+�gn��S−1
f ,τ(τn −ωn)�)< 1.

(ii) ∑∞
n=1(� fn −gn��S−1

f ,τωn�+� fn��S−1
f ,τ(τn −ωn)�)< 1.

(iii) ∑∞
n=1(�( fn −gn)S−1

f ,τ��τn�+�gnS−1
f ,τ��τn −ωn�)< 1.

(iv) ∑∞
n=1(�( fn −gn)S−1

f ,τ��ωn�+� fnS−1
f ,τ��τn −ωn�)< 1.

Then ({gn}n,{ωn}n) is a p-ASF for X . Moreover, an upper bound is

�
1+α
1−β

�θτ�+
γ

1−β

��
1+ r
1− s

�θ f �+
t

1− s

�
.

Proof. Following the initial lines in the proof of Theorem 4.6.2, we see that θg and θω

are well-defined bounded linear operators. We now consider four cases.
Assume (i). Then

�����x−
∞

∑
n=1

gn(x)S−1
f ,τωn

�����=

�����
∞

∑
n=1

fn(x)S−1
f ,ττn −

∞

∑
n=1

gn(x)S−1
f ,τωn

�����

≤
∞

∑
n=1

� fn(x)S−1
f ,ττn −gn(x)S−1

f ,τωn�

≤
∞

∑
n=1

�
� fn(x)S−1

f ,ττn −gn(x)S−1
f ,ττn�+�gn(x)S−1

f ,ττn −gn(x)S−1
f ,τωn�

�

=
∞

∑
n=1

�
�( fn −gn)(x)S−1

f ,ττn�+�gn(x)S−1
f ,τ(τn −ωn)�

�

≤
�

∞

∑
n=1

�
� fn −gn��S−1

f ,ττn�+�gn��S−1
f ,τ(τn −ωn)�

��
�x�.

Therefore the operator S−1
f ,τSg,ω is invertible.

Assume (ii). Then
�����x−

∞

∑
n=1

gn(x)S−1
f ,τωn

�����=

�����
∞

∑
n=1

fn(x)S−1
f ,ττn −

∞

∑
n=1

gn(x)S−1
f ,τωn

�����

≤
∞

∑
n=1

� fn(x)S−1
f ,ττn −gn(x)S−1

f ,τωn�

≤
∞

∑
n=1

�
� fn(x)S−1

f ,ττn − fn(x)S−1
f ,τωn�+� fn(x)S−1

f ,τωn −gn(x)S−1
f ,τωn�

�

=
∞

∑
n=1

�
� fn(x)S−1

f ,τ(τn −ωn)�+�( fn −gn)(x)S−1
f ,τωn�

�
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≤
�

∞

∑
n=1

�
� fn��S−1

f ,τ(τn −ωn)�+� fn −gn��S−1
f ,τωn�

��
�x�.

Therefore the operator S−1
f ,τSg,ω is invertible.

Assume (iii). Then
�����x−

∞

∑
n=1

gn(S−1
f ,τx)ωn

�����=

�����
∞

∑
n=1

fn(S−1
f ,τx)τn −

∞

∑
n=1

gn(S−1
f ,τx)ωn

�����

≤
∞

∑
n=1

� fn(S−1
f ,τx)τn −gn(S−1

f ,τx)ωn�

≤
∞

∑
n=1

�
� fn(S−1

f ,τx)τn −gn(S−1
f ,τx)τn�+�gn(S−1

f ,τx)τn −gn(S−1
f ,τx)ωn�

�

=
∞

∑
n=1

�
�( fn −gn)(S−1

f ,τx)τn�+�gn(S−1
f ,τx)(τn −ωn)�

�

≤
�

∞

∑
n=1

�
�( fn −gn)S−1

f ,τ��τn�+�gnS−1
f ,τ��τn −ωn�

��
�x�.

Therefore the operator Sg,ωS−1
f ,τ is invertible.

Assume (iv). Then
�����x−

∞

∑
n=1

gn(S−1
f ,τx)ωn

�����=

�����
∞

∑
n=1

fn(S−1
f ,τx)τn −

∞

∑
n=1

gn(S−1
f ,τx)ωn

�����

≤
∞

∑
n=1

� fn(S−1
f ,τx)τn −gn(S−1

f ,τx)ωn�

≤
∞

∑
n=1

�
� fn(S−1

f ,τx)τn − fn(S−1
f ,τx)ωn�+� fn(S−1

f ,τx)ωn −gn(S−1
f ,τx)ωn�

�

=
∞

∑
n=1

�
� fn(S−1

f ,τx)(τn −ωn)�+�( fn −gn)(S−1
f ,τx)ωn�

�

≤
�

∞

∑
n=1

�
� fnS−1

f ,τ��τn −ωn�+�( fn −gn)S−1
f ,τ��ωn�

��
�x�.

Therefore the operator Sg,ωS−1
f ,τ is invertible.

Hence in each of the assumptions we get that ({gn}n,{ωn}n) is a p-ASF for X .

We end this chapter by deriving results on the expansion of sequences to approxi-
mate Schauder frames.

A routine Hilbert space argument shows that a sequence {τn}n is a Bessel sequence
for Hilbert space H if and only if the map Sτ : H � h �→ ∑∞

n=1�h,τn�τn ∈ H is a
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well-defined bounded linear operator. In fact, if {τn}n is a Bessel sequence, then both
maps θτ : H � h �→ θτh := {�h,τn�}n ∈ �2(N) and θ ∗

τ : �2(N) � {an}n �→ θ ∗
τ {an}n :=

∑∞
n=1 anτn ∈ H are well-defined bounded linear operators (Chapter 3 in Christensen

(2016)). Now θ ∗
τ θτ = Sτ and hence Sτ is a well-defined bounded linear operator. Con-

versely, let Sτ be a well-defined bounded linear operator. Definition of Sτ says that it is
a positive operator. Thus there exists b > 0 such that �Sτh,h� ≤ b�h�2, ∀h ∈ H . Again
using the definition of Sτ gives that {τn}n is a Bessel sequence. This observation and
Definition 4.1.2 make us to define the following.

Definition 4.6.7. Let {τn}n be a sequence in a Banach space X and { fn}n be a se-

quence in X ∗. The pair ({ fn}n,{τn}n) is said to be a weak reconstruction sequence or

approximate Bessel sequence (ABS) for X if S f ,τ : X � x �→ S f ,τx := ∑∞
n=1 fn(x)τn ∈

X is a well-defined bounded linear operator.

We next recall the reconstruction property of Banach spaces.

Definition 4.6.8. (Casazza and Christensen (2008)) A Banach space X is said to have

the reconstruction property if there exists a sequence {τn}n in X and a sequence { fn}n

in X ∗ such that x = ∑∞
n=1 fn(x)τn,∀x ∈ X .

Using approximation property of Banach spaces (cf. Casazza (2001)), Casazza
and Christensen proved the following result.

Theorem 4.6.9. (Casazza and Christensen (2008)) There exists a Banach space X

such that X does not have the reconstruction property.

Now we have the following characterization. This is a result which is in contrast
with Theorem 1.2.59.

Theorem 4.6.10. Let ({ fn}n,{τn}n) be a weak reconstruction sequence for X . Then

the following are equivalent.

(i) ({ fn}n,{τn}n) can be expanded to an ASF for X .

(ii) X has the reconstruction property.

Proof. (i) ⇒ (ii) Let {ωn}n be a sequence in X and {gn}n be a sequence in X ∗

such that ({ fn}n ∪{gn}n,{τn}n ∪{ωn}n) is an ASF for X . Let S( f ,g),(τ,ω) be the
frame operator for ({ fn}n ∪{gn}n,{τn}n ∪{ωn}n). Then

x = S−1
( f ,g),(τ,ω)S( f ,g),(τ,ω)x = S−1

( f ,g),(τ,ω)

�
∞

∑
n=1

fn(x)τn +
∞

∑
n=1

gn(x)ωn

�
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=
∞

∑
n=1

fn(x)S−1
( f ,g),(τ,ω)τn +

∞

∑
n=1

gn(x)S−1
( f ,g),(τ,ω)ωn, ∀x ∈ X

which shows that X has the reconstruction property.

(ii) ⇒ (i) {ωn}n be a sequence in X and {gn}n be a sequence in X ∗ such that
x = ∑∞

n=1 gn(x)ωn, ∀x ∈ X . Define hn := gn, ρn := (IX −S f ,τ)ωn, for all n ∈ N.
Then

∞

∑
n=1

fn(x)τn +
∞

∑
n=1

hn(x)ρn =
∞

∑
n=1

fn(x)τn +
∞

∑
n=1

gn(x)(IX −S f ,τ)ωn

= S f ,τx+(IX −S f ,τ)

�
∞

∑
n=1

gn(x)ωn

�

= S f ,τx+(IX −S f ,τ)x = x, ∀x ∈ X .

Therefore ({ fn}n ∪{hn}n,{τn}n ∪{ρn}n) is an ASF for X .

We now show that there are infinitely many ways to expand a weak reconstruction
sequence into an ASF.

Corollary 4.6.11. There exists a Banach space X such that given any weak reconstruc-

tion sequence ({ fn}n,{τn}n) for X , ({ fn}n,{τn}n) can not be expanded to an ASF for

X .

Proof. From Theorem 4.6.9, there exists a Banach space X which does not have the
reconstruction property. Let ({ fn}n,{τn}n) be any weak reconstruction sequence for
X . Theorem 4.6.10 now says that ({ fn}n,{τn}n) can not be expanded to an ASF for
X .

Following corollary is an easy consequence of Theorem 4.6.10.

Corollary 4.6.12. Let ({ fn}n,{τn}n) be a weak reconstruction sequence for X . If X

admits a Schauder basis, then ({ fn}n,{τn}n) can be expanded to an ASF for X .

Note that Theorem 4.6.10 may not add countably many elements to a weak recon-
struction sequence to get an ASF. In the following example we show that it adds just
one element to a weak reconstruction sequence and yields an ASF.

Example 4.6.13. Let p ∈ [1,∞) and let {en}n denote the standard Schauder basis for

�p(N) and let {ζn}n denote the coordinate functionals associated with {en}n. Define

R : �p(N) � (xn)
∞
n=1 �→ (0,x1,x2, . . .) ∈ �p(N),
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L : �p(N) � (xn)
∞
n=1 �→ (x2,x3,x4, . . .) ∈ �p(N).

Clearly ({ fn := ζnL}n,{τn := Ren}n) is a weak reconstruction sequence for �p(N). Note

that S f ,τ = RL and

(I�p(N)−S f ,τ)e1 = e1 −RLe1 = e1 −0 = e1,

(I�p(N)−S f ,τ)en = en −RLen = en −Ren−1 = en − en = 0, ∀n ≥ 2.

Let gn := ζn and ωn := en, ∀n ∈N. Theorem 4.6.10 now says that ({ fn}n∪{h1},{τn}n∪
{ρ1}) is an ASF for �p(N).

It may be possible to expand a weak reconstruction sequence to a tight ASF by
adding finitely many elements Hilbert space. In this case, we can estimate the number
of elements added to a tight ASF. This is given in the following theorem which can be
compared with Theorem 1.2.60.

Theorem 4.6.14. Let ({ fn}n,{τn}n) be a weak reconstruction sequence for X . If

({ fn}n ∪{gk}N
k=1,{τn}n ∪{ωk}N

k=1) is a λ -tight ASF for X , then

N ≥ dim(λ IX −S f ,τ)(X ). (4.6.3)

Further, the Inequality (4.6.3) can not be improved.

Proof. Let S( f ,g),(τ,ω) be the frame operator for ({ fn}n∪{gk}N
k=1,{τn}n∪{ωk}N

k=1). Set
Sg,ω(x) := ∑N

k=1 gk(x)ωk,∀x ∈ X . Then

λx = S( f ,g),(τ,ω)x =
∞

∑
n=1

fn(x)τn +
N

∑
k=1

gk(x)ωk = S f ,τx+Sg,ωx, ∀x ∈ X .

Therefore

N ≥ dimSg,ω(X ) = dim(λ IX −S f ,τ)(X ).

Example 4.6.13 says that inequality in Theorem 4.6.14 can not be improved.

We now state the definition of a p-weak reconstruction sequence and give a exten-
sion theorem for p-weak reconstruction sequences.

Definition 4.6.15. Let p ∈ [1,∞). A weak reconstruction sequence ({ fn}n,{τn}n) for

X is said to be a p-weak reconstruction sequence or p-approximate Bessel sequence
(p-ABS) for X if both the maps θ f : X � x �→ θ f x := { fn(x)}n ∈ �p(N) and θτ : �p(N)�
{an}n �→ θτ{an}n := ∑∞

n=1 anτn ∈ X are well-defined bounded linear operators.
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Theorem 4.6.16. Let p ∈ [1,∞). If ({ fn}n,{τn}n) is a p-weak reconstruction sequence

for �p(N), then ({ fn}n,{τn}n) can be expanded to a p-ASF.

Proof. Let {en}n and {ζn}n be as in Example 4.6.13. Define hn := ζn, ρn := (I�p(N)−
S f ,τ)en, for all n ∈ N. Then it follows that ({ fn}n ∪ {hn}n,{τn}n ∪ {ρn}n) is a p-ASF
for �p(N).
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CHAPTER 5

WEAK OPERATOR-VALUED FRAMES

5.1 BASIC PROPERTIES

Let H ,H0 be Hilbert spaces and B(H ,H0) be the collection of all bounded linear
operators from H to H0. In this chapter, we study a generalization of the notion
of operator-valued frame by studying the convergence of the series ∑∞

n=1 Ψ∗
nAn to a

bounded invertible operator in B(H ,H0).

Definition 5.1.1. Let {An}n and {Ψn}n be collections in B(H ,H0). The pair ({An}n,

{Ψn}n) is said to be a weak operator-valued frame (weak OVF) in B(H ,H0) if the

series

(Operator-valued frame operator) SA,Ψ :=
∞

∑
n=1

Ψ∗
nAn

converges in the strong-operator topology on B(H ) to a bounded invertible operator.

If SA,Ψ = IH , then it is called as a Parseval weak OVF.

We now give various examples of weak OVFs.

Example 5.1.2. (i) By taking Ψn := An, for all n ∈ N, it follows that an operator-
valued frame is a weak OVF. In particular, a G-frame is a weak OVF.

(ii) Let ({τn}n,{ fn}n) be a pseudo-frame for H . If we define Ψn := fn and Anh :=
�h,τn�, for all n ∈ N, for all h ∈ H , then ({An}n,{Ψn}n) is a weak OVF in

B(H ,K). Similarly it follows that frames for subspaces, fusion frames, outer
frames, oblique frames and quasi-projectors are all weak OVFs.

(iii) Let C ∈ B(H ) be invertible and {τn}n be a C-controlled frame for H (Balazs

et al. (2010)). If we define Ψnh := �h,Cτn� and Anh := �h,τn�, for all n ∈ N, for
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all h ∈H , then ({An}n,{Ψn}n) is a weak OVF in B(H ,K). In particular, every

weighted frame is a weak OVF.

(iv) Let ({τn}n,{ fn}n) be an approximate Schauder frame for H (Freeman et al.

(2014)). Note that it is possible for Hilbert spaces to have approximate Schauder

frames which are not frames. If we define Ψn := fn and Anh := �h,τn�, for all

n ∈ N, for all h ∈ H , then ({An}n,{Ψn}n) is a weak OVF in B(H ,K). In

particular, atomic decompositions (Casazza et al. (1999)), framings (Casazza

et al. (1999)), cb-frames (Liu and Ruan (2016)) and Schauder frames (Casazza

et al. (2008a)) for Hilbert spaces are all weak OVFs.

(v) Let {τn}n be a signed frame for H with signs {σn}n (Peng and Waldron (2002)).

If we define Ψn := h := �h,σnτn� and Anh := �h,τn�, for all n ∈ N, for all h ∈ H ,

then ({An}n,{Ψn}n) is a weak OVF in B(H ,K).

Unlike in the case of OVFs, the frame operator SA,Ψ need not be positive. Since
SA,Ψ is invertible, there are a,b > 0 such that

a�h� ≤ �SA,Ψh� ≤ b�h�, ∀h ∈ H .

We call such a,b as lower and upper frame bounds, respectively. Supremum of the set
of all lower frame bounds is called as optimal lower frame bound and infimum of the
set of all upper frame bounds is called as optimal upper frame bound. We easily get that

optimal lower frame bound = �S−1
A,Ψ�−1,

optimal upper frame bound = �SA,Ψ�.

We now define the notion of dual weak OVFs.

Definition 5.1.3. A weak OVF ({Bn}n,{Φn}n) in B(H ,H0) is said to be a dual for a

weak OVF ({An}n,{Ψn}n) in B(H ,H0) if

∞

∑
n=1

Ψ∗
nBn =

∞

∑
n=1

Φ∗
nAn = IH .

Note that dual always exists for a given weak OVF. In fact, a direct calculation
shows that

({�An := AnS−1
A,Ψ}n,{�Ψn := Ψn(S−1

A,Ψ)
∗}n)
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is a weak OVF and is a dual for ({An}n,{Ψn}n). This weak OVF is called as the
canonical dual for ({An}n,{Ψn}n). Canonical dual has two nice properties. Following
two results establish them.

Proposition 5.1.4. Let ({An}n,{Ψn}n) be a weak OVF in B(H ,H0). If h ∈ H has

representation h = ∑∞
n=1 A∗

nyn = ∑∞
n=1 Ψ∗

nzn, for some sequences {yn}n,{zn}n in H0,

then ∞

∑
n=1

�yn,zn�=
∞

∑
n=1

��Ψnh, �Anh�+
∞

∑
n=1

�yn − �Ψnh,zn − �Anh�.

Proof. We start from the right side and see

∞

∑
n=1

��Ψnh, �Anh�+
∞

∑
n=1

�yn,zn�−
∞

∑
n=1

�yn, �Anh�−
∞

∑
n=1

��Ψnh,zn�+
∞

∑
n=1

��Ψnh, �Anh�

= 2
∞

∑
n=1

��Ψnh, �Anh�+
∞

∑
n=1

�yn,zn�−
∞

∑
n=1

�yn,AnS−1
A,Ψh�−

∞

∑
n=1

�Ψn(S−1
A,Ψ)

∗h,zn�

= 2

�
∞

∑
n=1

(S−1
A,Ψ)

∗A∗
nΨn(S−1

A,Ψ)
∗h,h

�
+

∞

∑
n=1

�yn,zn�−
�

∞

∑
n=1

A∗
nyn,S−1

A,Ψh

�

−
�
(S−1

A,Ψ)
∗h,

∞

∑
n=1

Ψ∗
nzn

�

= 2�(S−1
A,Ψ)

∗h,h�+
∞

∑
n=1

�yn,zn�−�h,S−1
A,Ψh�−�(S−1

A,Ψ)
∗h,h�

which gives the left side.

Theorem 5.1.5. Let ({An}n,{Ψn}n) be a weak OVF with frame bounds a and b.

(i) The canonical dual weak OVF for the canonical dual weak OVF for ({An}n,{Ψn}n)

is itself.

(ii) 1
b ,

1
a are frame bounds for the canonical dual of ({An}n,{Ψn}n).

(iii) If a,b are optimal frame bounds for ({An}n,{Ψn}n), then 1
b ,

1
a are optimal frame

bounds for its canonical dual.

Proof. Since (ii) and (iii) follow from the property of invertible operators on Banach
spaces, we have to argue for (i): frame operator for ({AnS−1

A,Ψ}n,{Ψn(S−1
A,Ψ)

∗}n) is

∞

∑
n=1

(Ψn(S−1
A,Ψ)

∗)∗(AnS−1
A,Ψ) = S−1

A,Ψ

�
∞

∑
n=1

Ψ∗
nAn

�
S−1

A,Ψ = S−1
A,ΨSA,ΨS−1

A,Ψ = S−1
A,Ψ.

Therefore, its canonical dual is ({(AnS−1
A,Ψ)SA,Ψ}n,{(Ψn(S−1

A,Ψ)
∗)S∗A,Ψ}n) which is the

original frame.
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For the further study of weak OVFs, we impose some conditions so that the frame
operator splits.

Definition 5.1.6. A weak OVF ({An}n,{Ψn}n) is said to be factorable if both the maps

(called analysis operator)

θA : H � h �→ θAh :=
∞

∑
n=1

LnAnh ∈ �2(N)⊗H0

θΨ : H � h �→ θΨh :=
∞

∑
n=1

LnΨnh ∈ �2(N)⊗H0

are well-defined bounded linear operators.

We next give an example which shows that a weak OVF need not be factorable.

Example 5.1.7. On C, define Anx := x√
n ,∀x ∈ C,∀n ∈ N, and Ψ1x := x,Ψnx := 0,∀x ∈

C,∀n ∈ N\{1}. Then ∑∞
n=1 Ψ∗

nAnx converges to an invertible operator but ∑∞
n=1 LnAnx

does not converge. In fact, using Equation (1.6.1),

�����
m

∑
n=1

LnAn1

�����

2

=
m

∑
n=1

�An1�2 =
m

∑
n=1

1
n
→ ∞ as m → ∞.

Equation (1.6.1) gives the following theorem easily.

Theorem 5.1.8. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0).

(i) Analysis operator

θA : H � h �→ θAh :=
∞

∑
n=1

LnAnh ∈ �2(N)⊗H0

is a well-defined bounded linear injective operator.

(ii) Synthesis operator

θ ∗
Ψ : �2(N)⊗H0 � z �→

∞

∑
n=1

Ψ∗
nL∗

nz ∈ H

is a well-defined bounded linear surjective operator.

(iii) Frame operator factors as SA,Ψ = θ ∗
ΨθA.

(iv) PA,Ψ := θAS−1
A,Ψθ ∗

Ψ : �2(N)⊗H0 → �2(N)⊗H0 is an idempotent onto θA(H ).

We next define the notions of Riesz and orthonormal factorable weak OVFs.
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Definition 5.1.9. A factorable weak OVF ({An}n,{Ψn}n) in B(H ,H0) is said to be

a Riesz OVF if PA,Ψ = I�2(N)⊗ IH0 . A Parseval and Riesz OVF, i.e., θ ∗
ΨθA = IH and

θAθ ∗
Ψ = I�2(N)⊗ IH0 is called as an orthonormal OVF.

Proposition 5.1.10. A factorable weak OVF ({An}n,{Ψn}n) in B(H ,H0) is an or-

thonormal OVF if and only if it is a Parseval OVF and AnΨ∗
m = δn,mIH0 ,∀n,m ∈ N.

Proof. (⇒) We have θAθ ∗
Ψ = I�2(N)⊗ IH0 . Hence

em ⊗ y = θAθ ∗
Ψ(em ⊗ y) =

∞

∑
n=1

LnAn

�
∞

∑
k=1

Ψ∗
kL∗

k(em ⊗ y)

�

=
∞

∑
n=1

LnAnΨ∗
my =

∞

∑
n=1

(en ⊗AnΨ∗
my)

= em ⊗ (AmΨ∗
my)+

∞

∑
n=1,n�=m

(en ⊗AnΨ∗
my),∀m ∈ N, y ∈ H0.

We then have AnΨ∗
my = δn,my,∀y ∈ H0.

(⇐) θAθ ∗
Ψ = ∑∞

n=1 LnAn(∑∞
k=1 Ψ∗

kL∗
k) = ∑∞

n=1 LnL∗
n = I�2(N)⊗ IH0 .

We now derive a dilation result for factorable weak OVFs. First we need a lemma
for this.

Lemma 5.1.11. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Then

the range of θA is closed.

Proof. Let {hn}∞
n=1 in H be such that {θAhn}∞

n=1 converges to y ∈ H0. This gives
SA,Ψhn → θ ∗

Ψy as n → ∞ and this in turn gives hn → S−1
A,Ψθ ∗

Ψy as n → ∞. An application
of θA gives θAhn → θAS−1

A,Ψθ ∗
Ψy as n → ∞. Therefore y = θA(S−1

A,Ψθ ∗
Ψy).

Theorem 5.1.12. Let ({An}n,{Ψn}n) be a Parseval factorable weak OVF in B(H ,H0)

such that θA(H ) = θΨ(H ) and PA,Ψ is projection. Then there exist a Hilbert space

H1 which contains H isometrically and bounded linear operators Bn,Φn : H1 →
H0,∀n such that ({Bn}n,{Φn}n) is an orthonormal OVF in B(H1,H0) and Bn|H =

An,Φn|H = Ψn,∀n ∈ N.

Proof. We first see that PA,Ψ is the orthogonal projection from �2(N)⊗H0 onto θA(H )=

θΨ(H ). Define H1 := H ⊕ θA(H )⊥. From Lemma 5.1.11, H1 becomes a Hilbert
space. Then H � h �→ h⊕ 0 ∈ H1 is an isometry. Set P⊥

A,Ψ := I�2(N)⊗H0
−PA,Ψ and

define

Bn : H1 � h⊕g �→ Anh+L∗
nP⊥

A,Ψg ∈ H0,
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Φn : H1 � h⊕g �→ Ψnh+L∗
nP⊥

A,Ψg ∈ H0, ∀n ∈ N.

Then clearly Bn|H = An,Φn|H = Ψn,∀n ∈ N. Now

θB(h⊕g) =
∞

∑
n=1

LnAnh+
∞

∑
n=1

LnL∗
nP⊥

A,Ψg = θAh+P⊥
A,Ψg, ∀h⊕g ∈ H1.

Similarly θΦ(h⊕g) = θΨh+P⊥
A,Ψg,∀h⊕g ∈ H1. Also

�θ ∗
Bz,h⊕g�= �z,θB(h⊕g)�= �θ ∗

Az,h�+ �P⊥
A,Ψz,g�

= �θ ∗
Az⊕P⊥

A,Ψz,h⊕g�, ∀z ∈ �2(N)⊗H0,∀h⊕g ∈ H1.

Hence θ ∗
Bz = θ ∗

Az ⊕ P⊥
A,Ψz,∀z ∈ �2(N)⊗H0 and similarly θ ∗

Φz = θ ∗
Ψz ⊕ P⊥

A,Ψz, ∀z ∈
�2(N)⊗H0. By using θA(H ) = θΨ(H ) and θ ∗

ΨP⊥
A,Ψ = 0 = P⊥

A,ΨθA, we get

SB,Φ(h⊕g) = θ ∗
Φ(θAh+P⊥

A,Ψg) = θ ∗
Ψ(θAh+P⊥

A,Ψg)⊕P⊥
A,Ψ(θAh+P⊥

A,Ψg)

= (SA,Ψh+0)⊕ (0+P⊥
A,Ψg) = SA,Ψh⊕P⊥

A,Ψg

= IH h⊕ IθA(H )⊥g, ∀h⊕g ∈ H1.

Hence ({Bn}n,{Φn}n) is a Parseval weak OVF in B(H1,H0). We further find

PB,Φz = θBS−1
B,Φθ ∗

Φz = θBθ ∗
Φz = θB(θ ∗

Ψz⊕P⊥
A,Ψz)

= θA(θ ∗
Ψz)+P⊥

A,Ψ(P
⊥
A,Ψz) = PA,Ψz+P⊥

A,Ψz

= PA,Ψz+((I�2(N)⊗ IH0)−PA,Ψ)z = (I�2(N)⊗ IH0)z, ∀z ∈ �2(N)⊗H0.

Therefore ({Bn}n,{Φn}n) is a Riesz weak OVF in B(H1,H0). Thus ({Bn}n,{Φn}n)

is an orthonormal weak OVF in B(H1,H0).

Theorem 5.1.13. A pair ({An}n,{Ψn}n) is a factorable weak OVF in B(H ,H0) if

and only if

An = L∗
nU, Ψn = L∗

nV, ∀n ∈ N,

where U,V : H → �2(N)⊗H0 are bounded linear operators such that V ∗U is bounded

invertible.

Proof. (⇐) Clearly θA and θΨ are well-defined bounded linear operators. Let h ∈ H .
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Then using Equation (1.6.1), we have

SA,Ψh =
∞

∑
n=1

(L∗
nV )∗L∗

nUh =V ∗
�

∞

∑
n=1

LnL∗
n

�
Uh =V ∗Uh. (5.1.1)

Hence SA,Ψ is bounded invertible.
(⇒) Define U := ∑∞

n=1 LnAn, V := ∑∞
n=1 LnΨn. Then

L∗
nU = L∗

n

�
∞

∑
k=1

LkAk

�
=

∞

∑
k=1

L∗
nLkAk = An,

L∗
nV = L∗

n

�
∞

∑
k=1

LkΨk

�
=

∞

∑
k=1

L∗
nLkΨk = Ψn, ∀n ∈ N

and

V ∗U =

�
∞

∑
n=1

Ψ∗
nL∗

n

��
∞

∑
k=1

LkAk

�
=

∞

∑
n=1

Ψ∗
nAn = SA,Ψ

which is bounded invertible.

Using Theorem 5.1.13 we can characterize Riesz and orthonormal factorable weak
OVFs.

Corollary 5.1.14. A pair ({An}n,{Ψn}n) is a Riesz factorable weak OVF in B(H ,H0)

if and only if

An = L∗
nU, Ψn = L∗

nV, ∀n ∈ N,

where U,V : H → �2(N)⊗H0 are bounded linear operators such that V ∗U is bounded

invertible and U(V ∗U)−1V ∗ = I�2(N)⊗H0
.

Proof. (⇐) PA,Ψ =U(V ∗U)−1V ∗ = I�2(N)⊗H0
.

(⇒) Let U and V be as in Theorem 5.1.13. Then U(V ∗U)−1V ∗ = PA,Ψ = I�2(N)⊗H0
.

Corollary 5.1.15. A pair ({An}n,{Ψn}n) is an orthonormal factorable weak OVF in

B(H ,H0) if and only if

An = L∗
nU, Ψn = L∗

nV, ∀n ∈ N,

where U,V : H → �2(N)⊗H0 are bounded linear operators such that V ∗U is bounded

invertible and V ∗U = IH , I�2(N)⊗H0
=UV ∗.
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Proof. We use Corollary 5.1.14.
(⇐) SA,Ψ =V ∗U = IH ,PA,Ψ = θAS−1

A,Ψθ ∗
Ψ = θAθ ∗

Ψ = θFUV ∗θ ∗
F = I�2(N)⊗ IH0 .

(⇒) V ∗U = SA,Ψ = IH , and by using Proposition 5.1.10,

UV ∗ =

�
∞

∑
n=1

L∗
nAn

��
∞

∑
k=1

Ψ∗
kLk

�
=

∞

∑
n=1

LnL∗
n = I�2(N)⊗H0

.

Theorem 5.1.16. Let {Fn}n be an orthonormal basis in B(H ,H0). Then a pair ({An}n,

{Ψn}n) is a factorable weak OVF in B(H ,H0) if and only if

An = FnU, Ψn = FnV, ∀n ∈ N,

where U,V : H → H are bounded linear operators such that V ∗U is bounded invert-

ible.

Proof. (⇐) ∑∞
n=1 Ln(FnU)= (∑∞

n=1 LnFn)U, ∑∞
n=1 Ln(FnV )= (∑∞

n=1 LnFn)V. These show
analysis operators for ({FnU}n,{FnV}n) are well-defined bounded linear operators and
the equality

∞

∑
n=1

(FnV )∗(FnU) =V ∗U

shows that it is a factorable weak OVF.
(⇒) Let ({An}n,{Ψn}n) be a factorable weak OVF. Note that the series ∑∞

n=1 F∗
n An

and ∑∞
n=1 F∗

n Ψn converge. In fact, for each h ∈ H ,

�����
m

∑
n=1

F∗
n Anh

�����

2

=

�
m

∑
n=1

F∗
n Anh,

m

∑
k=1

F∗
k Akh

�

=
m

∑
n=1

�
Anh,Fn

�
m

∑
k=1

F∗
k Akh

��
=

m

∑
n=1

�Anh�2.

which converges to �θAh�2 = �∑∞
n=1 LnAnh�2 = ∑∞

n=1 �Anh�2. Define U := ∑∞
n=1 F∗

n An

and V := ∑∞
n=1 F∗

n Ψn. Then FnU = An,FnV = Ψn,∀n ∈ N and

V ∗U =

�
∞

∑
n=1

Ψ∗
nFn

��
∞

∑
k=1

F∗
k Ak

�
=

∞

∑
n=1

Ψ∗
nAn = SA,Ψ

which is bounded invertible.

Corollary 5.1.17. Let {Fn}n be an orthonormal basis in B(H ,H0). Then a pair

({An}n,{Ψn}n) is
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(i) a Riesz factorable weak OVF in B(H ,H0) if and only if

An = FnU, Ψn = FnV, ∀n ∈ N,

where U,V : H → H are bounded linear operators such that V ∗U is bounded

invertible and U(V ∗U)−1V ∗ = IH .

(ii) an orthonormal factorable weak OVF in B(H ,H0) if and only if

An = FnU, Ψn = FnV, ∀n ∈ N,

where U,V : H → H are bounded linear operators such that V ∗U is bounded

invertible and V ∗U = IH =UV ∗.

Proof. (i) (⇐)

PA,Ψ = θAS−1
A,Ψθ ∗

Ψ =

�
∞

∑
n=1

LnFnU

�
(V ∗U)−1

�
∞

∑
k=1

V ∗F∗
k L∗

k

�

= θFU(V ∗U)−1V ∗θ ∗
F = θFIH θ ∗

F =
∞

∑
n=1

LnFn

�
∞

∑
k=1

F∗
k L∗

k

�

=
∞

∑
n=1

LnL∗
n = I�2(N)⊗ IH0 .

(⇒) Let U and V be as in Theorem 5.1.16. Then

U(V ∗U)−1V ∗ =

�
∞

∑
k=1

F∗
k Ak

�
S−1

A,Ψ

�
∞

∑
n=1

Ψ∗
nFn

�

=

�
∞

∑
r=1

F∗
r L∗

r

��
∞

∑
k=1

LkAk

�
S−1

A,Ψ

�
∞

∑
n=1

Ψ∗
nL∗

n

��
∞

∑
m=1

LmFm

�

=

�
∞

∑
r=1

F∗
r L∗

r

�
θAS−1

A,Ψθ ∗
Ψ

�
∞

∑
m=1

LmFm

�

=

�
∞

∑
r=1

F∗
r L∗

r

�
PA,Ψ

�
∞

∑
m=1

LmFm

�

=

�
∞

∑
r=1

F∗
r L∗

r

�
(I�2(N)⊗ IH0)

�
∞

∑
m=1

LmFm

�

=

�
∞

∑
r=1

F∗
r L∗

r

��
∞

∑
m=1

LmFm

�
=

∞

∑
r=1

F∗
r Fr = IH .
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(ii) We use (i).

(⇐) SA,Ψ = V ∗U = IH ,PA,Ψ = θAS−1
A,Ψθ ∗

Ψ = θAθ ∗
Ψ = θFUV ∗θ ∗

F = θFIH θ ∗
F =

I�2(N)⊗ IH0 .

(⇒) V ∗U = SA,Ψ = IH and using Proposition 5.1.10,

UV ∗ =

�
∞

∑
n=1

F∗
n An

��
∞

∑
k=1

Ψ∗
kFk

�
=

∞

∑
n=1

F∗
n Fn = IH .

We next derive another characterization which is free from natural numbers.

Theorem 5.1.18. Let {An}n,{Ψn}n be in B(H ,H0). Then ({An}n,{Ψn}n) is a fac-

torable weak OVF

(i) if and only if

U : �2(N)⊗H0 � y �→
∞

∑
n=1

A∗
nL∗

ny∈H , and V : �2(N)⊗H0 � z �→
∞

∑
n=1

Ψ∗
nL∗

nz∈H

are well-defined bounded linear operators such that VU∗ is bounded invertible.

(ii) if and only if

U : �2(N)⊗H0 � y �→
∞

∑
n=1

A∗
nL∗

ny∈H , and S : H � g �→
∞

∑
n=1

LnΨng∈ �2(N)⊗H0

are well-defined bounded linear operators such that S∗U∗ is bounded invertible.

(iii) if and only if

R : H � h �→
∞

∑
n=1

LnAnh∈ �2(N)⊗H0, and V : �2(N)⊗H0 � z �→
∞

∑
n=1

Ψ∗
nL∗

nz∈H

are well-defined bounded linear operators such that V R is bounded invertible.

(iv) if and only if

R : H � h �→
∞

∑
n=1

LnAnh∈ �2(N)⊗H0, and S : H � g �→
∞

∑
n=1

LnΨng∈ �2(N)⊗H0

are well-defined bounded linear operators such that S∗R is bounded invertible.
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Proof. We prove (i) and others are similar.
(⇒) Now U = θ ∗

A, V = θ ∗
Ψ and hence VU∗ = θ ∗

ΨθA = SA,Ψ.
(⇐) Now θA =U∗, θΨ =V ∗ and hence SA,Ψ = θ ∗

ΨθA =VU∗.

Now we try to characterize all dual OVFs.

Lemma 5.1.19. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Then

a factorable weak OVF ({Bn}n,{Φn}n) in B(H ,H0) is a dual for ({An}n,{Ψn}n) if

and only if

Bn = L∗
nU, Φn = L∗

nV ∗, ∀n ∈ N

where U : H → �2(N)⊗H0 is a bounded right-inverse of θ ∗
Ψ and V : �2(N)⊗H0 →H

is a bounded left-inverse of θA such that VU is bounded invertible.

Proof. (⇐) “If" part of proof of Theorem 5.1.13, says that ({Bn}n,{Φn}n) is a fac-
torable weak OVF in B(H ,H0). We now check for the duality of ({Bn}n,{Φn}n).
Consider θ ∗

ΦθA =V ∗θA = IH , θ ∗
ΨθB = θ ∗

ΨU = IH .
(⇒) Let ({Bn}n,{Φn}n) be a dual factorable weak OVF for ({An}n,{Ψn}n). Then
θ ∗

ΨθB = IH = θ ∗
ΦθA. Define U := θB,V := θ ∗

Φ. Then U : H → �2(N)⊗ H0 is a
bounded right-inverse of θ ∗

Ψ and V : �2(N)⊗H0 → H is a left inverse of θA such
that VU = θ ∗

ΦθB = SB,Φ is bounded invertible. We now see

L∗
nU = L∗

n

�
∞

∑
k=1

LkBk

�
= Bn, L∗

nV ∗ = L∗
n

�
∞

∑
k=1

LkΦk

�
= Φn, ∀n ∈ N.

Lemma 5.1.20. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Then

(i) R : H → �2(N)⊗H0 is a bounded right-inverse of θ ∗
Ψ if and only if

R = θAS−1
A,Ψ +(I�2(N)⊗H0

−θAS−1
A,Ψθ ∗

Ψ)U,

where U : H → �2(N)⊗H0 is a bounded linear operator.

(ii) L : �2(N)⊗H0 → H is a bounded left-inverse of θA if and only if

L = S−1
A,Ψθ ∗

Ψ +V (I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ),

where V : �2(N)⊗H0 → H is a bounded linear operator.
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Proof. (i) (⇐) Let U : H → �2(N)⊗H0 be a bounded linear operator. Then

θ ∗
Ψ(θAS−1

A,Ψ +(I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ)U) = IH +θ ∗

ΨU −θ ∗
ΨU = IH .

Therefore θAS−1
A,Ψ +(I�2(N)⊗H0

−θAS−1
A,Ψθ ∗

Ψ)U is a bounded right-inverse of θ ∗
Ψ.

(⇒) Let R : H → �2(N)⊗H0 be a bounded right-inverse of θ ∗
Ψ. Define U := R.

Then θAS−1
A,Ψ+(I�2(N)⊗H0

−θAS−1
A,Ψθ ∗

Ψ)U = θAS−1
A,Ψ+(I�2(N)⊗H0

−θAS−1
A,Ψθ ∗

Ψ)R=

θAS−1
A,Ψ +R−θAS−1

A,Ψ = R.

(ii) (⇐) Let V : �2(N)⊗H0 → H be a bounded linear operator. Then

(S−1
A,Ψθ ∗

Ψ +V (I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ))θA = IH +V θA −V θAIH = IH .

Therefore S−1
A,Ψθ ∗

Ψ +V (I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ) is a bounded left-inverse of θA.

(⇒) Let L : �2(N)⊗H0 → H be a bounded left-inverse of θA. Define V := L.
Then S−1

A,Ψθ ∗
Ψ+V (I�2(N)⊗H0

−θAS−1
A,Ψθ ∗

Ψ)= S−1
A,Ψθ ∗

Ψ+L(I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ)=

S−1
A,Ψθ ∗

Ψ +L− IH S−1
A,Ψθ ∗

Ψ = L.

Theorem 5.1.21. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Then

a factorable weak OVF ({Bn}n,{Φn}n) in B(H ,H0) is a dual for ({An}n,{Ψn}n) if

and only if

Bn = AnS−1
A,Ψ +L∗

nU −AnS−1
A,Ψθ ∗

ΨU,

Φn = Ψn(S−1
A,Ψ)

∗+L∗
nV ∗ −Ψn(S−1

A,Ψ)
∗θ ∗

AV ∗, ∀n ∈ N

such that the operator

S−1
A,Ψ +VU −V θAS−1

A,Ψθ ∗
ΨU

is bounded invertible, where U : H → �2(N)⊗H0 and V : �2(N)⊗H0 → H are

bounded linear operators.

Proof. Lemmas 5.1.19 and 5.1.20 give the characterization of dual weak OVF as

Bn = L∗
n(θAS−1

A,Ψ +(I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ)U)

= AnS−1
A,Ψ +L∗

nU −AnS−1
A,Ψθ ∗

ΨU,

Φn = L∗
n(θΨ(S−1

A,Ψ)
∗+(I�2(N)⊗H0

−θΨ(S−1
A,Ψ)

∗θ ∗
A)V

∗)

= Ψn(S−1
A,Ψ)

∗+L∗
nV ∗ −Ψn(S−1

A,Ψ)
∗θ ∗

AV ∗, ∀n ∈ N

120



such that the operator

(S−1
A,Ψθ ∗

Ψ +V (I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ))(θAS−1

A,Ψ +(I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ)U)

is bounded invertible, where U : H → �2(N)⊗H0 and V : �2(N)⊗H0 → H are
bounded linear operators. We expand and get

(S−1
A,Ψθ ∗

Ψ +V (I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ))(θAS−1

A,Ψ +(I�2(N)⊗H0
−θAS−1

A,Ψθ ∗
Ψ)U)

= S−1
A,Ψ +VU −V θAS−1

A,Ψθ ∗
ΨU.

We now define the orthogonality for weak OVFs.

Definition 5.1.22. A weak OVF ({Bn}n,{Φn}n) in B(H ,H0) is said to be orthogonal
to a weak OVF ({An}n,{Ψn}n) in B(H ,H0) if

∞

∑
n=1

Ψ∗
nBn =

∞

∑
n=1

Φ∗
nAn = 0.

Remarkable property of orthogonal frames is that we can interpolate as well as we
can take direct sum of them to get new frames. These are illustrated in the following
two results.

Proposition 5.1.23. Let ({An}n,{Ψn}n) and ({Bn}n,{Φn}n) be two Parseval OVFs in

B(H ,H0) which are orthogonal. If C,D,E,F ∈ B(H ) are such that C∗E +D∗F =

IH , then

({AnC+BnD}n,{ΨnE +ΦnF}n)

is a Parseval weak OVF in B(H ,H0). In particular, if scalars c,d,e, f satisfy c̄e+

d̄ f = 1, then ({cAn +dBn}n,{eΨn + f Φn}n) is a Parseval weak OVF.

Proof. We use the definition of frame operator and get

SAC+BD,ΨE+ΦF =
∞

∑
n=1

(ΨnE +ΦnF)∗(AnC+BnD)

= E∗SA,ΨC+E∗
�

∞

∑
n=1

Ψ∗
nBn

�
D+F∗

�
∞

∑
n=1

Φ∗
nAn

�
C+F∗SB,ΦD

= E∗IH C+E∗0D+F∗0C+F∗IH D = IH .
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Proposition 5.1.24. If ({An}n,{Ψn}n) and ({Bn}n,{Φn}n) are orthogonal weak OVFs

in B(H ,H0), then ({An⊕Bn}n,{Ψn⊕Φn}n) is a weak OVF in B(H ⊕H ,H0). Fur-

ther, if both ({An}n,{Ψn}n) and ({Bn}n,{Φn}n) are Parseval, then ({An⊕Bn}n,{Ψn⊕
Φn}n) is Parseval.

Proof. Let h⊕g ∈ H ⊕H . Then

SA⊕B,Ψ⊕Φ(h⊕g) =
∞

∑
n=1

(Ψn ⊕Φn)
∗(An ⊕Bn)(h⊕g) =

∞

∑
n=1

(Ψn ⊕Φn)
∗(Anh+Bng)

=
∞

∑
n=1

(Ψ∗
n(Anh+Bng)⊕Φ∗

n(Anh+Bng))

=

�
∞

∑
n=1

Ψ∗
nAnh+

∞

∑
n=1

Ψ∗
nBng

�
⊕
�

∞

∑
n=1

Φ∗
nAnh+

∞

∑
n=1

Φ∗
nBng

�

= (SA,Ψh+0)⊕ (0+SB,Φg) = (SA,Ψ ⊕SB,Φ)(h⊕g).

5.2 EQUIVALENCE OF WEAK OPERATOR-VALUED FRAMES

Definition 1.6.19 introduced similarity for OVFs. Here is the similar notion for fac-
torable weak OVFs.

Definition 5.2.1. A factorable weak OVF ({Bn}n,{Φn}n) in B(H ,H0) is said to be

similar to a factorable weak OVF ({An}n,{Ψn}n) in B(H ,H0) if there exist bounded

invertible RA,B,RΨ,Φ ∈ B(H ) such that

Bn = AnRA,B, Φn = ΨnRΨ,Φ, ∀n ∈ N.

Since RA,B and RΨ,Φ are bounded invertible, it easily follows that the notion similar-
ity is symmetric. We further have that the relation “similarity" is an equivalence relation
on the set

{({An}n,{Ψn}n) : ({An}n,{Ψn}n) is a factorable weak OVF} .

Similar frames have nice property that knowing analysis, synthesis and frame operators
of one give that of another.

Lemma 5.2.2. Let ({An}n,{Ψn}n) and ({Bn}n,{Φn}n) be similar factorable weak OVFs

and Bn = AnRA,B,Φn = ΨnRΨ,Φ,∀n ∈N, for some invertible RA,B,RΨ,Φ ∈B(H ). Then
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(i) θB = θARA,B,θΦ = θΨRΨ,Φ.

(ii) SB,Φ = R∗
Ψ,ΦSA,ΨRA,B.

(iii) PB,Φ = PA,Ψ.

Proof. θB = ∑∞
n=1 LnBn = ∑∞

n=1 LnAnRA,B = θARA,B. Similarly θΦ = θΨRΨ,Φ. Now
using operators θB and θΦ we get SB,Φ = ∑∞

n=1 Φ∗
nBn = ∑∞

n=1(ΨnRΨ,Φ)
∗(AnRA,B) =

R∗
Ψ,Φ (∑∞

n=1 Ψ∗
nAn)RA,B = R∗

Ψ,ΦSA,ΨRA,B. We now use (i) and (ii) to get

PB,Φ = θBS−1
B,Φθ ∗

Φ = (θARA,B)(R∗
Ψ,ΦSA,ΨRA,B)

−1(θΨRΨ,Φ)
∗ = PA,Ψ.

We now classify similarity using operators.

Theorem 5.2.3. For two factorable weak OVFs ({An}n,{Ψn}n) and ({Bn}n,{Φn}n),

the following are equivalent.

(i) Bn = AnRA,B,Φn = ΨnRΨ,Φ,∀n ∈ N, for some invertible RA,B,RΨ,Φ ∈ B(H ).

(ii) θB = θARA,B,θΦ = θΨRΨ,Φ for some invertible RA,B,RΨ,Φ ∈ B(H ).

(iii) PB,Φ = PA,Ψ.

If one of the above conditions is satisfied, then invertible operators in (i) and (ii)
are unique and are given by RA,B = S−1

A,Ψθ ∗
ΨθB, RΨ,Φ = (S−1

A,Ψ)
∗θ ∗

AθΦ. In the case that

({An}n,{Ψn}n) is Parseval, then ({Bn}n,{Φn}n) is Parseval if and only if R∗
Ψ,ΦRA,B =

IH if and only if RA,BR∗
Ψ,Φ = IH .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow from Lemma 5.2.2. Assume (ii) holds.
We show (i) holds. Using Equation (1.6.1), Bn = L∗

nθB = L∗
nθAR�

A,B = AnR�
A,B; the

same procedure gives Φn also. Assume (iii). We note the following θB = PB,ΦθB

and θΦ = P∗
B,ΦθΦ. Using these, θB = PA,ΨθB = θA(S−1

A,Ψθ ∗
ΨθB) and θΦ = P∗

A,ΨθΦ =

(θAS−1
A,Ψθ ∗

Ψ)
∗θΦ = θΨ((S−1

A,Ψ)
∗θ ∗

AθΦ). We now try to show that both S−1
A,Ψθ ∗

ΨθB and
(S−1

A,Ψ)
∗θ ∗

AθΦ are invertible. This is achieved via,

(S−1
A,Ψθ ∗

ΨθB)(S−1
B,Φθ ∗

ΦθA) = S−1
A,Ψθ ∗

ΨPB,ΦθA = S−1
A,Ψθ ∗

ΨPA,ΨθA = S−1
A,Ψθ ∗

ΨθA = IH ,

(S−1
B,Φθ ∗

ΦθA)(S−1
A,Ψθ ∗

ΨθB) = S−1
B,Φθ ∗

ΦPA,ΨθB = S−1
B,Φθ ∗

ΦPB,ΦθB = S−1
B,Φθ ∗

ΦθB = IH

and

((S−1
A,Ψ)

∗θ ∗
AθΦ)((S−1

B,Φ)
∗θ ∗

BθΨ) = (S−1
A,Ψ)

∗θ ∗
AP∗

B,ΦθΨ = (S−1
A,Ψ)

∗θ ∗
AP∗

A,ΨθΨ
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= (S−1
A,Ψ)

∗θ ∗
AθΨ = IH ,

((S−1
B,Φ)

∗θ ∗
BθΨ)((S−1

A,Ψ)
∗θ ∗

AθΦ) = (S−1
B,Φ)

∗θ ∗
BP∗

A,ΨθΦ = (S−1
B,Φ)

∗θ ∗
BP∗

B,ΦθΦ

= (S−1
B,Φ)

∗θ ∗
BθΦ = IH .

Let RA,B,RΨ,Φ ∈ B(H ) be invertible. From the previous arguments, RA,B and RΨ,Φ

satisfy (i) if and only if they satisfy (ii). Let Bn = AnRA,B,Φn = ΨnRΨ,Φ,∀n ∈ N.
Using (ii), θB = θARA,B,θΦ = θΨRΨ,Φ =⇒ θ ∗

ΨθB = θ ∗
ΨθARA,B = SA,ΨRA,B,θ ∗

AθΦ =

θ ∗
AθΨRΨ,Φ = S∗A,ΨRΨ,Φ. These imply the formula for RA,B and RΨ,Φ. For the last, we

recall SB,Φ = R∗
Ψ,ΦSA,ΨRA,B.

Corollary 5.2.4. For any given factorable weak OVF ({An}n,{Ψn}n), the canonical

dual of ({An}n,{Ψn}n) is the only dual factorable weak OVF that is similar to ({An}n,

{Ψn}n).

Proof. Let ({Bn}n,{Φn}n) be a factorable weak OVF which is both dual and simi-
lar for ({An}n,{Ψn}n). Then we have θ ∗

BθΨ = IH = θ ∗
ΦθA and there exist invertible

RA,B,RΨ,Φ ∈ B(H ) such that Bn = AnRA,B,Φn = ΨnRΨ,Φ,∀n ∈ N. Theorem 5.2.3
gives RA,B = S−1

A,Ψθ ∗
ΨθB,RΨ,Φ = S−1

A,Ψθ ∗
AθΦ. But then RA,B = S−1

A,ΨIH = S−1
A,Ψ, RΨ,Φ =

(S−1
A,Ψ)

∗IH =(S−1
A,Ψ)

∗. Therefore ({Bn}n,{Φn}n) is the canonical dual for ({An}n, {Ψn}n).

Corollary 5.2.5. Two similar factorable weak OVF cannot be orthogonal.

Proof. Let a factorable weak OVF ({Bn}n,{Φn}n) be similar to ({An}n,{Ψn}n). Choose
invertible RA,B,RΨ,Φ ∈ B(H ) such that Bn = AnRA,B,Φn = ΨnRΨ,Φ,∀n ∈ N. Using
Theorem 5.2.3 and the invertibility of R∗

A,B and S∗A,Ψ, we get

θ ∗
BθΨ = (θARA,B)

∗θΨ = R∗
A,Bθ ∗

AθΨ = R∗
A,BS∗A,Ψ �= 0.

For every factorable weak OVF ({An}n,{Ψn}n), each of ‘OVFs’ ({AnS−1
A,Ψ}n,{Ψn}n)

and ({An}n,{Ψn(S−1
A,Ψ)

∗}n) is a Parseval OVF which is similar to ({An}n,{Ψn}n). Thus
every OVF is similar to Parseval OVFs.

5.3 WEAK OPERATOR-VALUED FRAMES GENERATED BY
GROUPS AND GROUP LIKE UNITARY SYSTEMS

In this section G denotes discrete group and π denotes unitary representation of G.
Identity element of G is denoted by e.
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Definition 5.3.1. Let π be a unitary representation of a discrete group G on a Hilbert

space H . An operator A in B(H ,H0) is called a factorable operator frame gener-
ator (resp. a Parseval frame generator) w.r.t. an operator Ψ in B(H ,H0) if ({Ag :=
Aπg−1}g∈G,{Ψg :=Ψπg−1}g∈G) is a factorable weak OVF (resp. Parseval) in B(H ,H0).

In this case, we write (A,Ψ) is an operator frame generator for π .

Proposition 5.3.2. Let (A,Ψ) and (B,Φ) be operator frame generators in B(H ,H0)

for a unitary representation π of G on H . Then

(i) θAπg = (λg ⊗ IH0)θA,θΨπg = (λg ⊗ IH0)θΨ,∀g ∈ G.

(ii) θ ∗
AθB,θ ∗

ΨθΦ,θ ∗
AθΦ are in the commutant π(G)� of π(G)��. Further, SA,Ψ ∈ π(G)�.

(iii) θAT θ ∗
Ψ,θAT θ ∗

B,θΨT θ ∗
Φ ∈R(G)⊗B(H0),∀T ∈ π(G)�. In particular, PA,Ψ ∈R(G)

⊗B(H0).

Proof. Let g, p,q ∈ G and h ∈ H0.

(i) From the definition of λg and χq, we get λgχq = χgq. Therefore Lgqh = χgq⊗h =

λgχq ⊗h = (λg ⊗ IH0)(χq ⊗h) = (λg ⊗ IH0)Lqh. Using this,

θAπg = ∑
p∈G

LpApπg = ∑
p∈G

LpAπp−1πg = ∑
p∈G

LpAπp−1g

= ∑
q∈G

LgqAπq−1 = ∑
q∈G

(λg ⊗ IH0)LqAπq−1 = (λg ⊗ IH0)θA.

Similarly θΨπg = (λg ⊗ IH0)θΨ.

(ii) θ ∗
AθBπg = θ ∗

A(λg ⊗ IH0)θB = ((λg−1 ⊗ IH0)θA)
∗θB = (θAπg−1)∗θB = πgθ ∗

AθB. In
the same way, θ ∗

ΨθΦ,θ ∗
AθΦ ∈ π(G)�. By taking B = A and Φ = Ψ we get SA,Ψ ∈

π(G)�.

(iii) Let T ∈ π(G)�. Then

θAT θ ∗
Ψ(λg ⊗ IH0) = θAT ((λg−1 ⊗ IH0)θΨ)

∗ = θAT πgθ ∗
Ψ

= θAπgT θ ∗
Ψ = (λg ⊗ IH0)θAT θ ∗

Ψ.

From the construction of L(G), we now get θAT θ ∗
Ψ ∈ (L(G)⊗{IH0})�=L(G)�⊗

{IH0}�=R(G)⊗B(H0). Similarly θAT θ ∗
B,θΨSθ ∗

Φ ∈R(G)⊗B(H0),∀S∈ π(G)�.

For the choice T = S−1
A,Ψ we get PA,Ψ ∈ R(G)⊗B(H0).
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Theorem 5.3.3. Let G be a discrete group and ({Ag}g∈G, {Ψg}g∈G) be a Parseval

factorable weak OVF in B(H ,H0). Then there is a unitary representation π of G on

H for which

Ag = Aeπg−1 , Ψg = Ψeπg−1 , ∀g ∈ G

if and only if

AgpA∗
gq = ApA∗

q, AgpΨ∗
gq = ApΨ∗

q, ΨgpΨ∗
gq = ΨpΨ∗

q, ∀g, p,q ∈ G.

Proof. (⇒)

AgpΨ∗
gq = Aeπ(gp)−1(Ψeπ(gq)−1)∗ = Aeπp−1πg−1πgπqΨ∗

e = ApΨ∗
q, ∀g, p,q ∈ G.

Similarly we get other two equalities.
(⇐) Using assumptions, we use the following three equalities in the proof, among

them we derive the second, remainings are similar. For all g ∈ G,

(λg ⊗ IH0)θAθ ∗
A = θAθ ∗

A(λg ⊗ IH0), (λg ⊗ IH0)θAθ ∗
Ψ = θAθ ∗

Ψ(λg ⊗ IH0),

(λg ⊗ IH0)θΨθ ∗
Ψ = θΨθ ∗

Ψ(λg ⊗ IH0).

Noticing λg is unitary, we get (λg⊗ IH0)
−1 = (λg⊗ IH0)

∗; also we observed in the proof
of Proposition 5.3.2 that (λg ⊗ IH0)Lq = Lgq. So

(λg ⊗ IH0)θAθ ∗
Ψ(λg ⊗ IH0)

∗ =

�
∑
p∈G

(λg ⊗ IH0)LpAp

��
∑

q∈G
(λg ⊗ IH0)LqΨq

�∗

= ∑
p∈G

Lgp

�
∑

q∈G
ApΨ∗

qL∗
gq

�
= ∑

r∈G
Lr

�
∑
s∈G

Ag−1rΨ
∗
g−1sL

∗
s

�

= ∑
r∈G

Lr

�
∑
s∈G

ArΨ∗
s L∗

s

�
= θAθ ∗

Ψ.

Define π : G � g �→ πg := θ ∗
Ψ(λg ⊗ IH0)θA ∈ B(H ). By using the Parsevalness,

πgπh = θ ∗
Ψ(λg ⊗ IH0)θAθ ∗

Ψ(λh ⊗ IH0)θA = θ ∗
ΨθAθ ∗

Ψ(λg ⊗ IH0)(λh ⊗ IH0)θA

= θ ∗
Ψ(λgh ⊗ IH0)θA = πgh, ∀g,h ∈ G

and

πgπ∗
g = θ ∗

Ψ(λg ⊗ IH0)θAθ ∗
A(λg−1 ⊗ IH0)θΨ
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= θ ∗
ΨθAθ ∗

A(λg ⊗ IH0)(λg−1 ⊗ IH0)θΨ = IH ,

π∗
g πg = θ ∗

A(λg−1 ⊗ IH0)θΨθ ∗
Ψ(λg ⊗ IH0)θA

= θ ∗
A(λg−1 ⊗ IH0)(λg ⊗ IH0)θΨθ ∗

ΨθA = IH , ∀g ∈ G.

Since G has the discrete topology, this proves π is a unitary representation. It remains
to prove Ag = Aeπg−1 ,Ψg = Ψeπg−1 for all g ∈ G. Indeed,

Aeπg−1 = L∗
eθAθ ∗

Ψ(λg−1 ⊗ IH0)θA = L∗
e(λg−1 ⊗ IH0)θAθ ∗

ΨθA

= ((λg ⊗ IH0)Le)
∗θA = L∗

geθA = Ag,

and

Ψeπg−1 = L∗
eθΨθ ∗

Ψ(λg−1 ⊗ IH0)θA = L∗
e(λg−1 ⊗ IH0)θΨθ ∗

ΨθA

= ((λg ⊗ IH0)Le)
∗θΨ = L∗

geθΨ = Ψg.

In the direct part of Theorem 5.3.3, we can remove the word ‘Parseval’ since it has
not been used in the proof; same is true in the following corollary.

Corollary 5.3.4. Let G be a discrete group and ({Ag}g∈G,{Ψg}g∈G) be a factorable

weak OVF in B(H ,H0). Then there is a unitary representation π of G on H for

which

(i) Ag = AeS−1
A,Ψπg−1SA,Ψ,Ψg = Ψeπg−1 for all g ∈ G if and only if

AgpS−1
A,Ψ(S

−1
A,Ψ)

∗A∗
gq = ApS−1

A,Ψ(S
−1
A,Ψ)

∗A∗
q, AgpS−1

A,ΨΨ∗
gq = ApS−1

A,ΨΨ∗
q,

ΨgpΨ∗
gq = ΨpΨ∗

q, ∀g, p,q ∈ G.

(ii) Ag = Aeπg−1 ,Ψg = Ψe(S−1
A,Ψ)

∗πg−1SA,Ψ for all g ∈ G if and only if

AgpA∗
gq = ApA∗

q, AgpS−1
A,ΨΨ∗

gq = ApS−1
A,ΨΨ∗

q,

Ψgp(S−1
A,Ψ)

∗S−1
A,ΨΨ∗

gq = Ψp(S−1
A,Ψ)

∗S−1
A,ΨΨ∗

q, ∀g, p,q ∈ G.

Proof. (i) We apply Theorem 5.3.3 to the factorable Parseval OVF ({AgS−1
A,Ψ}g∈G,

{Ψg}g∈G) to get: there is a unitary representation π of G on H for which
AgS−1

A,Ψ = (AeS−1
A,Ψ)πg−1 ,Ψg = Ψeπg−1 for all g ∈ G if and only if

(AgpS−1
A,Ψ)(AgqS−1

A,Ψ)
∗ = (ApS−1

A,Ψ)(AqS−1
A,Ψ)

∗, (AgpS−1
A,Ψ)Ψ

∗
gq = (ApS−1

A,Ψ)Ψ
∗
q,
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ΨgpΨ∗
gq = ΨpΨ∗

q, ∀g, p,q ∈ G.

(ii) We apply Theorem 5.3.3 to the factorable Parseval OVF ({Ag}g∈G, {Ψg(S−1
A,Ψ)

∗}g∈G)

to get: there is a unitary representation π of G on H for which Ag = Aeπg−1 ,
ΨgS−1

A,Ψ = (Ψe(S−1
A,Ψ)

∗)πg−1 for all g ∈ G if and only if

AgpA∗
gq = ApA∗

q, Agp(Ψgq(S−1
A,Ψ)

∗)∗ = Ap(Ψq(S−1
A,Ψ)

∗)∗,

(Ψgp(S−1
A,Ψ)

∗)(Ψgq(S−1
A,Ψ)

∗)∗ = (Ψp(S−1
A,Ψ)

∗)(Ψq(S−1
A,Ψ)

∗)∗, ∀g, p,q ∈ G.

We next address the situation of factorable weak OVF whenever it is indexed by
group-like unitary systems. Group-like unitary systems arose from the study of Weyl-
Heisenberg frames. This was first formally defined by Gabardo and Han (2001). In the
sequel, by T, we mean the standard unit circle group centered at the origin equipped
with usual multiplication.

Definition 5.3.5. (Gabardo and Han (2001)) A collection U ⊆ B(H ) containing IH
is called as a unitary system. If the group generated by unitary system U , denoted by

group(U ) is such that

(i) group(U )⊆ TU := {αU : α ∈ T,U ∈ U }, and

(ii) U is linearly independent, i.e., TU �= TV whenever U,V ∈ U are such that

U �=V,

then U is called as a group-like unitary system.

Let U be a group-like unitary system. As in (Gabardo and Han (2003)), we define
mappings

f : group(U )→ T and σ : group(U )→ U .

in the following way. For each U ∈ group(U ) there are unique α ∈ T,V ∈U such that
U = αV . Define f (U) = α and σ(U) =V . These f ,σ are well-defined and satisfy

U = f (U)σ(U), ∀U ∈ group(U ).

These mappings are called as corresponding mappings associated to U . We can pic-
turize these maps as follows.
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group(U )⊆ TU

U T

σ f

Next result gives certain fundamental properties of corresponding mappings associated
with group-like unitary systems.

Proposition 5.3.6. (Gabardo and Han (2003)) For a group-like unitary system U and

f ,σ as above,

(i) f (Uσ(VW )) f (VW ) = f (σ(UV )W ) f (UV ),∀U,V,W ∈ group(U ).

(ii) σ(Uσ(VW )) = σ(σ(UV )W ),∀U,V,W ∈ group(U ).

(iii) σ(U) =U and f (U) = 1 for all U ∈ U .

(iv) If V,W ∈ group(U ), then

U = {σ(UV ) : U ∈ U }= {σ(VU−1) : U ∈ U }
= {σ(VU−1W ) : U ∈ U }= {σ(V−1U) : U ∈ U }.

(v) For fixed V,W ∈ U , the following mappings are injective from U to itself:

U �→ σ(VU) (resp. σ(UV ),σ(UV−1),σ(V−1U),

σ(VU−1),σ(U−1V ),σ(VU−1W )).

Since group(U ) is a group, we note that, in (iv) of Proposition 5.3.6, we can replace
V by V−1. Hence, whenever V ∈ group(U ), we have ∑U∈U xU = ∑U∈U xσ(VU).

Definition 5.3.7. (Gabardo and Han (2003)) A unitary representation π of a group-

like unitary system U on H is an injective mapping from U into the set of unitary

operators on H such that

π(U)π(V ) = f (UV )π(σ(UV )), π(U)−1 = f (U−1)π(σ(U−1)), ∀U,V ∈ U ,

where f and σ are the corresponding mappings associated with U .
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Since π is injective, once we have a unitary representation of a group-like unitary
system U on H , then π(U ) is also a group-like unitary system.

Let U be a group-like unitary system and {χU}U∈U be the standard orthonormal
basis for �2(U ). We define λ on U by λU χV = f (UV )χσ(UV ),∀U,V ∈ U . Then λ is
a unitary representation which we call as left regular representation of U . Similarly,
we define right regular representation of U by ρU χV = f (VU−1)χσ(VU−1),∀U,V ∈ U

(Gabardo and Han (2003)). Like frame generators for groups, we now define the frame
generator for group-like unitary systems.

Definition 5.3.8. Let U be a group-like unitary system. An operator A in B(H ,H0)

is called an operator frame generator (resp. a Parseval frame generator) w.r.t. Ψ in

B(H ,H0) if ({AU := Aπ(U)−1}U∈U ,{ΨU := Ψπ(U)−1}U∈U ) is a factorable weak

OVF (resp. a Parseval) in B(H ,H0). We write (A,Ψ) is an operator frame generator

for π .

Theorem 5.3.9. Let U be a group-like unitary system, I be the identity of U and

({AU}U∈U ,{ΨU}U∈U ) be a factorable Parseval weak OVF in B(H ,H0) with θ ∗
A

injective. Then there is a unitary representation π of U on H for which

AU = AIπ(U)−1, ΨU = ΨIπ(U)−1, ∀U ∈ U

if and only if

Aσ(UV )A
∗
σ(UW ) = f (UV ) f (UW )AV A∗

W ,

Aσ(UV )Ψ∗
σ(UW ) = f (UV ) f (UW )AV Ψ∗

W ,

Ψσ(UV )Ψ∗
σ(UW ) = f (UV ) f (UW )ΨV Ψ∗

W , ∀U,V,W ∈ U .

Proof. (⇒) For all U,V,W ∈ U , we have

Aσ(UV )A
∗
σ(UW ) = AIπ(σ(UV ))−1(AIπ(σ(UW ))−1)∗

= AI( f (UV )π(U)π(V ))−1 f (UW )π(U)π(W )A∗
I

= f (UV ) f (UW )AIπ(V )−1(AIπ(W )−1)∗

= f (UV ) f (UW )AV A∗
W .

Others can be shown similarly.
(⇐) We have to construct unitary representation which satisfies the stated condi-
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tions. Following observation plays an important role in this part. Let h ∈ H . Then

Lσ(UV )h = χσ(UV )⊗h = f (UV )λU χV ⊗h = f (UV )(λU χV ⊗h)

= f (UV )(λU ⊗ IH0)(χV ⊗h) = f (UV )(λU ⊗ IH0)LV h.

As in the proof of Theorem 5.3.3, we argue the following, for which now we prove the
first. For all U ∈ U ,

(λU ⊗ IH0)θAθ ∗
A = θAθ ∗

A(λU ⊗ IH0), (λU ⊗ IH0)θAθ ∗
Ψ = θAθ ∗

Ψ(λU ⊗ IH0),

(λU ⊗ IH0)θΨθ ∗
Ψ = θΨθ ∗

Ψ(λU ⊗ IH0).

Consider

(λU ⊗ IH0)θAθ ∗
A(λU ⊗ IH0)

∗ =

�
∑

V∈U

(λU ⊗ IH0)LV AV

��
∑

W∈U

(λU ⊗ IH0)LW AW

�∗

=

�
∑

V∈U

f (UV )Lσ(UV )AV

��
∑

W∈U

f (UW )Lσ(UW )AW

�∗

= ∑
V∈U

Lσ(UV )

�
∑

W∈U

f (UV ) f (UW )AV A∗
W L∗

σ(UW )

�

= ∑
V∈U

Lσ(UV )

�
∑

W∈U

Aσ(UV )A
∗
σ(UW )L

∗
σ(UW )

�

=

�
∑

V∈U

Lσ(UV )Aσ(UV )

��
∑

W∈U

Lσ(UW )Aσ(UW )

�∗

= θAθ ∗
A

where last part of Proposition 5.3.6 is used in the last equality.
Define π : U �U �→ π(U) := θ ∗

Ψ(λU ⊗ IH0)θA ∈ B(H ). Then

π(U)π(V ) = θ ∗
Ψ(λU ⊗ IH0)θAθ ∗

Ψ(λV ⊗ IH0)θA

= θ ∗
ΨθAθ ∗

Ψ(λU ⊗ IH0)(λV ⊗ IH0)θA

= θ ∗
Ψ(λU λV ⊗ IH0)θA

= θ ∗
Ψ( f (UV )λσ(UV )⊗ IH0)θA

= f (UV )θ ∗
Ψ(λσ(UV )⊗ IH0)θA

= f (UV )π(σ(UV )), ∀U,V ∈ U
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and

π(U)π(U)∗ = θ ∗
Ψ(λU ⊗ IH0)θAθ ∗

A(λ
∗
U ⊗ IH0)θΨ

= θ ∗
ΨθAθ ∗

A(λU ⊗ IH0)(λ
∗
U ⊗ IH0)θΨ = IH ,

π(U)∗π(U) = θ ∗
A(λ

∗
U ⊗ IH0)θΨθ ∗

Ψ(λU ⊗ IH0)θA

= θ ∗
A(λ

∗
U ⊗ IH0)(λU ⊗ IH0)θΨθ ∗

ΨθA = IH , ∀U ∈ U .

Further,

π(U) f (U−1)π(σ(U−1)) = θ ∗
Ψ(λU ⊗ IH0)θA f (U−1)θ ∗

Ψ(λσ(U−1)⊗ IH0)θA

= f (U−1)θ ∗
ΨθAθ ∗

Ψ(λU ⊗ IH0)(λσ(U−1)⊗ IH0)θA

= f (U−1)θ ∗
Ψ(λU ⊗ IH0)(λσ(U−1)⊗ IH0)θA

= f (U−1)θ ∗
Ψ(λU λσ(U−1)⊗ IH0)θA

= f (U−1)θ ∗
Ψ( f (Uσ(U−1))λσ(Uσ(U−1))⊗ IH0)θA

= θ ∗
Ψ( f (Uσ(U−1I)) f (U−1I)λσ(Uσ(U−1I))⊗ IH0)θA

= θ ∗
Ψ( f (σ(UU−1)I) f (UU−1)λσ(σ(UU−1)I)⊗ IH0)θA

= θ ∗
Ψ(λI ⊗ IH0)θA = IH

⇒ π(U)−1 = f (U−1)π(σ(U−1)) for all U ∈ U . We shall now use θ ∗
A is injective to

show π is injective and thereby to get π is a unitary representation. Let π(U) = π(V ).

Then

θ ∗
Ψ(λU ⊗ IH0)θA = θ ∗

Ψ(λV ⊗ IH0)θA ⇒ θ ∗
Ψ(λU ⊗ IH0)θAθ ∗

A = θ ∗
Ψ(λV ⊗ IH0)θAθ ∗

A

⇒ θ ∗
ΨθAθ ∗

A(λU ⊗ IH0) = θ ∗
ΨθAθ ∗

A(λV ⊗ IH0)⇒ λU ⊗ IH0 = λV ⊗ IH0 .

We show U and V are identical at elementary tensors. For h ∈ �2(U ),y ∈ H0, we get,
(λU ⊗ IH0)(h⊗y) = (λV ⊗ IH0)(h⊗y)⇒ λU h⊗y = λV h⊗y ⇒ (λU −λV )h⊗y = 0 ⇒
0 = �(λU −λV )h⊗ y,(λU −λV )h⊗ y�= �(λU −λV )h�2�y�2. We may assume y �= 0 (if
y = 0, then h⊗ y = 0). But then (λU −λV )(h) = 0, and λ is a unitary representation (it
is injective) gives U = V. We now show AU = AIπ(U)−1 and ΨU = ΨIπ(U)−1 for all
U ∈ U in the following:

AIπ(U)−1 = L∗
I θA(θ ∗

Ψ(λU ⊗ IH0)θA)
∗ = L∗

I (θ
∗
Ψ(λU ⊗ IH0)θAθ ∗

A)
∗

= L∗
I (θ

∗
ΨθAθ ∗

A(λU ⊗ IH0))
∗ = L∗

I (θ
∗
A(λU ⊗ IH0))

∗

= (θ ∗
A(λU ⊗ IH0)LI)

∗ = (θ ∗
A f (UI)(λU ⊗ IH0)LI)

∗
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= (θ ∗
ALσ(UI))

∗ = L∗
U θA = AU

and

ΨIπ(U)−1 = L∗
I θΨ(θ ∗

Ψ(λU ⊗ IH0)θA)
∗ = L∗

I (θ
∗
Ψ(λU ⊗ IH0)θAθ ∗

Ψ)
∗

= L∗
I (θ

∗
ΨθAθ ∗

Ψ(λU ⊗ IH0))
∗ = L∗

I (θ
∗
Ψ(λU ⊗ IH0))

∗

= (θ ∗
Ψ(λU ⊗ IH0)LI)

∗ = (θ ∗
Ψ f (UI)(λU ⊗ IH0)LI)

∗

= (θ ∗
ΨLσ(UI))

∗ = L∗
U θΨ = ΨU .

Note that neither Parsevalness of the frame nor θ ∗
A is injective was used in the direct

part of Theorem 5.3.9. Since θA acts between Hilbert spaces, we know that θA(H ) =

Ker(θ ∗
A)

⊥ and Ker(θ ∗
A) = θA(H )⊥. From Lemma 5.1.11, the range of θA is closed.

Therefore θA(H ) = Ker(θ ∗
A)

⊥. Thus the condition θ ∗
A is injective in the Theorem 5.3.9

can be replaced by θA is onto.

Corollary 5.3.10. Let U be a group-like unitary system, I be the identity of U and

({AU}U∈U ,{ΨU}U∈U ) be a factorable weak OVF in B(H ,H0) with θ ∗
A is injective.

Then there is a unitary representation π of U on H for which

(i) AU = AIS−1
A,Ψπ(U)−1SA,Ψ,ΨU = ΨIπ(U)−1 for all U ∈ U if and only if

Aσ(UV )S
−1
A,Ψ(S

−1
A,Ψ)

∗A∗
σ(UW ) = f (UV ) f (UW )AV S−1

A,Ψ(S
−1
A,Ψ)

∗A∗
W ,

Aσ(UV )S
−1
A,ΨΨ∗

σ(UW ) = f (UV ) f (UW )AV S−1
A,ΨΨ∗

W ,

Ψσ(UV )Ψ∗
σ(UW ) = f (UV ) f (UW )ΨV Ψ∗

W , ∀U,V,W ∈ U .

(ii) AU = AIπ(U)−1,ΨU = ΨI(S−1
A,Ψ)

∗π(U)−1SA,Ψ for all U ∈ U if and only if

Aσ(UV )A
∗
σ(UW ) = f (UV ) f (UW )AV A∗

W ,

Aσ(UV )S
−1
A,ΨΨ∗

σ(UW ) = f (UV ) f (UW )AV S−1
A,ΨΨ∗

W ,

Ψσ(UV )(S
−1
A,Ψ)

∗S−1
A,ΨΨ∗

σ(UW ) = f (UV ) f (UW )ΨV (S−1
A,Ψ)

∗S−1
A,ΨΨ∗

W , ∀U,V,W ∈ U .

Proof. (i) We apply Theorem 5.3.9 to the factorable Parseval OVF ({AU S−1
A,Ψ}U∈U ,

{ΨU}U∈U ). There is a unitary representation π of U on H for which AU S−1
A,Ψ =

(AIS−1
A,Ψ)π(U)−1,ΨU = ΨIπ(U)−1 for all U ∈ U if and only if

(Aσ(UV )S
−1
A,Ψ)(Aσ(UW )S

−1
A,Ψ)

∗ = f (UV ) f (UW )(AV S−1
A,Ψ)(AW S−1

A,Ψ)
∗,
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(Aσ(UV )S
−1
A,Ψ)Ψ

∗
σ(UW ) = f (UV ) f (UW )(AV S−1

A,Ψ)Ψ
∗
W ,

Ψσ(UV )Ψ∗
σ(UW ) = f (UV ) f (UW )ΨV Ψ∗

W , ∀U,V,W ∈ U .

(ii) We apply Theorem 5.3.9 to the factorable Parseval OVF ({AU}U∈U ,{ΨU(S−1
A,Ψ)

∗}U∈U ).
There is a unitary representation π of U on H for which AU =AIπ(U)−1,ΨU(S−1

A,Ψ)
∗=

(ΨI(S−1
A,Ψ)

∗)π(U)−1 for all U ∈ U if and only if

Aσ(UV )A
∗
σ(UW ) = f (UV ) f (UW )AV A∗

W ,

Aσ(UV )(Ψσ(UW )(S
−1
A,Ψ)

∗)∗ = f (UV ) f (UW )AV (ΨW (S−1
A,Ψ)

∗)∗,

(Ψσ(UV )(S
−1
A,Ψ)

∗)(Ψσ(UW )(S
−1
A,Ψ)

∗)∗ = f (UV ) f (UW )(ΨV (S−1
A,Ψ)

∗)(ΨW (S−1
A,Ψ)

∗)∗,

∀U,V,W ∈ U .

5.4 PERTURBATIONS OF WEAK OPERATOR-VALUED FRAMES

In this section we derive stability results for factorable weak operator-valued frames.

Theorem 5.4.1. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Suppose

{Bn}n in B(H ,H0) is such that there exist α,β ,γ ≥ 0 with max{α+γ�θΨ(S∗A,Ψ)
−1�,β}

< 1 and for all m = 1,2, . . . ,

�����
m

∑
n=1

(A∗
n −B∗

n)L
∗
ny

�����≤ α

�����
m

∑
n=1

A∗
nL∗

ny

�����+β

�����
m

∑
n=1

B∗
nL∗

ny

�����+ γ

�
m

∑
n=1

�L∗
ny�2

� 1
2

,

∀y ∈ �2(N)⊗H0. (5.4.1)

Then ({Bn}n,{Ψn}n) is a factorable weak OVF with bounds

1− (α + γ�θΨ(S∗A,Ψ)
−1�)

(1+β )�(S∗A,Ψ)−1� and
�θΨ�((1+α)�θA�+ γ)

1−β
.

Proof. For m = 1,2, . . . , and for every y in �2(N)⊗H0,

�����
m

∑
n=1

B∗
nL∗

ny

�����≤
�����

m

∑
n=1

(A∗
n −B∗

n)L
∗
ny

�����+
�����

m

∑
n=1

A∗
nL∗

ny

�����

≤ (1+α)

�����
m

∑
n=1

A∗
nL∗

ny

�����+β

�����
m

∑
n=1

B∗
nL∗

ny

�����+ γ

�
m

∑
n=1

�L∗
ny�2

� 1
2
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which implies

�����
m

∑
n=1

B∗
nL∗

ny

�����≤ 1+α
1−β

�����
m

∑
n=1

A∗
nL∗

ny

�����+
γ

1−β

�
m

∑
n=1

�L∗
ny�2

� 1
2

, ∀y ∈ �2(N)⊗H0.

(5.4.2)
Since

�y,y�= �(I�2(N)⊗ IH0)y,y�=
�

∞

∑
n=1

LnL∗
ny,y

�
=

∞

∑
n=1

�L∗
ny�2, ∀y ∈ �2(N)⊗H0,

Inequality (5.4.2) shows that ∑∞
n=1 B∗

nL∗
ny exists for all y ∈ �2(N)⊗H0. From the conti-

nuity of norm, Inequality (5.4.2) gives

�����
∞

∑
n=1

B∗
nL∗

ny

�����≤ 1+α
1−β

�����
∞

∑
n=1

A∗
nL∗

ny

�����+
γ

1−β

�
∞

∑
n=1

�L∗
ny�2

� 1
2

=
1+α
1−β

�θ ∗
Ay�+ γ

1−β
�y�, ∀y ∈ �2(N)⊗H0 (5.4.3)

and this gives ∑∞
n=1 B∗

nL∗
n is bounded; therefore its adjoint exists, which is θB; Inequality

(5.4.3) now produces �θ ∗
By� ≤ 1+α

1−β
��θ ∗

Ay
��+ γ

1−β �y�,∀y ∈ �2(N)⊗H0 and from this
�θB�= �θ ∗

B�≤ 1+α
1−β

��θ ∗
A

��+ γ
1−β = 1+α

1−β �θA�+ γ
1−β . Thus we derived SB,Ψ is a bounded

linear operator. Continuity of the norm, existence of frame operators together with
Inequality (5.4.1) give

�θ ∗
Ay−θ ∗

By� ≤ α�θ ∗
Ay�+β�θ ∗

By�+ γ�y�, ∀y ∈ �2(N)⊗H0

which implies

�θ ∗
A(θΨ(S∗A,Ψ)

−1h)−θ ∗
B(θΨ(S∗A,Ψ)

−1h)� ≤ α�θ ∗
A(θΨ(S∗A,Ψ)

−1h)�
+β�θ ∗

B(θΨ(S∗A,Ψ)
−1h)�+ γ�θΨ(S∗A,Ψ)

−1h�,
∀h ∈ H .

But θ ∗
AθΨ(S∗A,Ψ)

−1 = IH and θ ∗
BθΨ(S∗A,Ψ)

−1 = S∗B,Ψ(S
∗
A,Ψ)

−1. Therefore

�h−S∗B,Ψ(S
∗
A,Ψ)

−1h� ≤ α�h�+β�S∗B,Ψ(S
∗
A,Ψ)

−1h�+ γ�θΨ(S∗A,Ψ)
−1h�

≤ (α + γ�θΨ(S∗A,Ψ)
−1�)�h�+β�S∗B,Ψ(S

∗
A,Ψ)

−1h�, ∀h ∈ H .

Since max{α + γ�θΨ(S∗A,Ψ)
−1�,β} < 1, Theorem 4.6.1 tells that S∗B,Ψ(S

∗
A,Ψ)

−1 is in-
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vertible and �(S∗B,Ψ(S∗A,Ψ)−1)−1� ≤ 1+β
1−(α+γ�θΨ(S∗A,Ψ)−1�) . From these, we get

(S∗B,Ψ(S
∗
A,Ψ)

−1)S∗A,Ψ = S∗B,Ψ

is invertible and

�S−1
B,Ψ� ≤ �(S∗A,Ψ)−1��S∗A,ΨS−1

B,Ψ� ≤
�(S∗A,Ψ)−1�(1+β )

1− (α + γ�θΨ(S∗A,Ψ)
−1�) .

Therefore ({Bn}n,{Ψn}n) is a factorable weak OVF. Observing that

�SB,Ψ� ≤ �θΨ��θB� ≤
�θΨ�((1+α)�θA�+ γ)

1−β

and �S−1
B,Ψ�−1 and �SB,Ψ� are optimal lower and upper frame bounds for ({Bn}n,{Ψn}n),

we get the frame bounds stated in the theorem.

Corollary 5.4.2. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Sup-

pose {Bn}n in B(H ,H0) is such that

r :=
∞

∑
n=1

�An −Bn�2 <
1

�θΨ(S∗A,Ψ)
−1�2 .

Then ({Bn}n,{Ψn}n) is a factorable weak OVF with bounds

1−√
r�θΨ(S∗A,Ψ)

−1�
�(S∗A,Ψ)−1� and �θΨ�(�θA�+

√
r).

Proof. We apply Theorem 5.4.1 by taking α = 0,β = 0,γ =
√

r. Then max{α +

γ�θΨ(S∗A,Ψ)
−1�,β}< 1 and for all m = 1,2, . . . ,

�����
m

∑
n=1

(A∗
n −B∗

n)L
∗
ny

�����≤
�

m

∑
n=1

�A∗
n −B∗

n�2

� 1
2
�

m

∑
n=1

�L∗
ny�2

� 1
2

≤ γ

�
m

∑
n=1

�L∗
ny�2

� 1
2

, ∀y ∈ �2(N)⊗H0.

We next derive another stability result with different condition.

Theorem 5.4.3. Let ({An}n,{Ψn}n) be a factorable weak OVF in B(H ,H0). Sup-

pose {Bn}n in B(H ,H0) is such that ∑∞
n=1 �An −Bn�2 converges, and ∑∞

n=1 �An −
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Bn��Ψn(S∗A,Ψ)
−1�< 1. Then ({Bn}n,{Ψn}n) is a factorable weak OVF with bounds

1−∑∞
n=1 �An −Bn��Ψn(S∗A,Ψ)

−1�
�(S∗A,Ψ)−1� and �θΨ�



�

∞

∑
n=1

�An −Bn�2

�1/2

+�θA�


 .

Proof. Let α = ∑∞
n=1 �An − Bn�2 and β = ∑∞

n=1 �An − Bn��Ψn(S∗A,Ψ)
−1�. For m =

1,2, . . . and for every y in �2(N)⊗H0,

�����
m

∑
n=1

B∗
nL∗

ny

�����≤
�����

m

∑
n=1

(A∗
n −B∗

n)L
∗
ny

�����+
�����

m

∑
n=1

A∗
nL∗

ny

�����

≤
m

∑
n=1

�An −Bn��L∗
ny�+

�����
m

∑
n=1

A∗
nL∗

ny

�����

≤
�

m

∑
n=1

�An −Bn�2

� 1
2
�

m

∑
n=1

�L∗
ny�2

� 1
2

+

�����
m

∑
n=1

A∗
nL∗

ny

�����

≤ α
1
2

�
m

∑
n=1

�L∗
ny�2

� 1
2

+

�����
m

∑
n=1

A∗
nL∗

ny

�����

= α
1
2

�
m

∑
n=1

LnL∗
ny,y

� 1
2

+

�����
m

∑
n=1

A∗
nL∗

ny

����� ,

which converges to
√

α�y�+�θ ∗
Ay�. Hence θB exists and �θB� ≤

√
α +�θA�. There-

fore SB,Ψ = θ ∗
ΨθB = ∑∞

n=1 Ψ∗
nBn exists. Now

�IH −SB,Ψ(S∗A,Ψ)
−1�=

�����
∞

∑
n=1

A∗
nΨn(S∗A,Ψ)

−1 −
∞

∑
n=1

B∗
nΨn(S∗A,Ψ)

−1

�����

=

�����
∞

∑
n=1

(A∗
n −B∗

n)Ψn(S∗A,Ψ)
−1

�����

≤
∞

∑
n=1

�An −Bn��Ψn(S∗A,Ψ)
−1�= β < 1.

Therefore SB,Ψ(S∗A,Ψ)
−1 is invertible and �(SB,Ψ(S∗A,Ψ)

−1)−1� ≤ 1/(1−β ). Calculation
of frame bounds is similar to proof of Theorem 5.4.1.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In Chapter 2 we initiated the study of frames for metric spaces. Since metric spaces
are more general objects and have less structure than Banach spaces, study of frames
for metric spaces goes in a different way than that of frames for Hilbert as well as for
Banach spaces. Arens-Eells space is used as a tool which allows to use the functional
analysis technique to Lipschitz functions. However, this works good only when the co
domain of Lipschitz functions is a Banach space. Most of the results in Chapter 2 are
concentrated whenever the codomain of Lipschitz function is a Banach space. In future
we are interested to work on frames for arbitrary metric spaces.

In Chapter 3 we defined multipliers for metric spaces. We obtained some fundamen-
tal properties of multipliers. One of the future work is to explore further on multipliers
in metric spaces.

In Chapter 4 we studied a special class of approximate Schauder frames. We char-
acterized a class of approximate Schauder frames and its duals. It is planned to obtain
the description of frames and its duals for Banach spaces.

In Chapter 5 we initiated the study of the series ∑∞
n=1 Ψ∗

nAn. We mainly obtained
results whenever this series is factored as the product of two bounded linear operators.
In the future we are planning to study the series without factorability condition. We
are also interested in studying path-connectedness of weak OVFs and try to get a result
similar to Theorem 1.6.25.
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APPENDIX A: DILATIONS OF LINEAR MAPS ON
VECTOR SPACES

6.1 DILATIONS OF FUNCTIONS ON SETS

One of the most useful results in the study of isometries on Hilbert spaces is the Wold
decomposition. It describes the structure of an isometry. It uses the notion of a shift.

Definition 6.1.1. (cf. Sz.-Nagy et al. (2010)) Let H be a Hilbert space. An operator

T : H → H is called a shift if ∩∞
n=0T n(H ) = {0}.

Theorem 6.1.2. (cf. Sz.-Nagy et al. (2010); Wold (1954)) (Wold decomposition) Let

T be an isometry on a Hilbert space H . Then H decomposes uniquely as H =

Hu ⊕Hs, where Hu and Hs are T -reducing subspaces of H , T|Hu : Hu → Hu is a

unitary and T|Hs : Hs → Hs is a shift.

Using functional calculus and Weierstrass polynomial approximation theorem, Hal-
mos in 1950 proved an important result that every contraction on a Hilbert space can be
lifted to unitary.

Theorem 6.1.3. (Halmos (1950)) (Halmos dilation) Let H be a Hilbert space and

T : H → H be a contraction. Then the operator

U :=

�
T

√
I −T T ∗

√
I −T ∗T −T ∗

�

is unitary on H ⊕H . In other words,

T = PH U|H ,

where PH : H ⊕H → H ⊕H is the orthogonal projection onto H .

Three years later, Sz. Nagy extended the result of Halmos which reads as follows.

Theorem 6.1.4. (Sz.-Nagy (1953)) (Sz. Nagy dilation) Let H be a Hilbert space and

T : H →H be a contraction. Then there exists a Hilbert space K which contains H

isometrically and a unitary U : K → K such that

T n = PH U|H ,n ∀n = 1,2, . . . ,

where PH : K → K is the orthogonal projection onto H .
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Unitary operator U in Theorem 6.1.4 is known as dilation operator and the space
K is called as dilation space. If

K = span{Unh :,n ∈ Z+,h ∈ H },

then (K ,U) is said to be a minimal dilation. It is known that in Theorem 6.1.4, the
space K can be taken as a minimal space. It was Schaffer (1955) who gave a proof of
Sz. Nagy dilation theorem using infinite matrices. In the following theorem, ⊕∞

n=−∞H

is the Hilbert space defined by

⊕∞
n=−∞H :=

�
{hn}∞

n=−∞,hn ∈ H ,∀n ∈ Z,
∞

∑
n=−∞

�hn�2 < ∞

�

with respect to the inner product

�{hn}∞
n=−∞,{gn}∞

n=−∞� :=
∞

∑
n=−∞

�hn,gn�, ∀{hn}∞
n=−∞,{gn}∞

n=−∞ ∈ ⊕∞
n=−∞H .

Theorem 6.1.5. (Schaffer (1955)) Let H be a Hilbert space and T : H → H be a

contraction. Let U := [un,m]−∞<n,m<∞ be the Schaffer operator defined on ⊕∞
n=−∞H

given by the infinite matrix defined as follows:

u0,0 := T, u0,1 :=
√

I −T T ∗, u−1,0 :=
√

I −T ∗T ,

u−1,1 :=−T ∗ , un,n+1 := I, ∀n ∈ Z,n �= 0,1, un,m := 0, otherwise,

i.e.,

U =




...
...

...
...

...

· · · 0 I 0 0 0 · · ·
· · · 0 0

√
I −T ∗T −T ∗ 0 · · ·

· · · 0 0 T
√

I −T T ∗ 0 · · ·
· · · 0 0 0 0 I · · ·
· · · 0 0 0 0 0 · · ·

...
...

...
...

...




∞×∞

where T is in the (0,0) position (which is in the box), is invertible on ⊕∞
n=−∞H and

T n = PH Un
|H , ∀n ∈ N,
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where PH : ⊕∞
n=−∞H →⊕∞

n=−∞H is the orthogonal projection onto H .

After a year of work of Sz. Nagy, it was Egervary who observed that Halmos dila-
tion of contraction can be extended finitely so that power of dilation will be dilation of
power of contraction.

Theorem 6.1.6. (Egervary (1954)) (N-dilation) Let H be a Hilbert space and T :
H → H be a contraction. Let N be a natural number. Then the operator

U :=




T 0 0 · · · 0
√

I −T T ∗
√

I −T ∗T 0 0 · · · 0 −T ∗

0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · I 0




(N+1)×(N+1)

is unitary on ⊕N+1
k=1 H and

T k = PH Uk
|H , ∀k = 1, . . . ,N,

where PH : ⊕N+1
k=1 H →⊕N+1

k=1 H is the orthogonal projection onto H .

A very useful result which can be derived using Theorem 6.1.6 is the von Neu-
mann’s inequality. It was derived by von Neumann (1951) using the theory of analytic
functions.

Theorem 6.1.7. (von Neumann inequality) (Rainone (2007); Shalit (2021); von Neu-

mann (1951)) Let H be a Hilbert space and T : H → H be a contraction. Then for

every polynomial p ∈ C[z],

�p(T )� ≤ sup
|z|=1

|p(z)|.

Sz. Nagy’s dilation theorem leads to the study of dilating more than one operator
which are commuting. After a decade of work of Sz. Nagy, Ando derived the following
result.

Theorem 6.1.8. (Ando (1963)) (Ando dilation) Let H be a Hilbert space and T1,T2 :
H → H be commuting contractions. Then there exist a Hilbert space K which con-
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tains H isometrically and a pair of commuting unitaries U1,U2 : K → K such that

T n
1 T m

2 = PH Un
1 U2

m
H , ∀n,m = 1,2, . . . ,

where PH : K → K is the orthogonal projection onto H .

An easy consequence of Ando dilation is generalization of von Neumann inequality.

Theorem 6.1.9. (Ando-von Neumann inequality) (cf. Ando (1963); Bhattacharyya

(2002)) Let H be a Hilbert space and T1,T2 : H → H be commuting contractions.

Then for every polynomial p ∈ C[z,w],

�p(T1,T2)� ≤ sup
|z|=|w|=1

|p(z,w)|.

It is known that Ando dilation theorem can not be extended for more than two com-
muting contractions (cf. Bhattacharyya (2002); Crabb and Davie (1975); Drury (1983);
Parrott (1970); Varopoulos (1974)). We next consider inter-twining lifting theorem.
This says that any operator which intertwins contractions can be lifted so that the lifted
operator intertwins dilation operator.

Theorem 6.1.10. (Sz.-Nagy and Foias (1971)) (Inter-twining lifting theorem) Let T1 :
H1 → H1, T2 : H2 → H2 be contractions, where H1, H2 are Hilbert spaces. Let

V1 : K1 → K1, V2 : K2 → K2 be minimal isometric dilations of T1,T2, respectively.

Assume that S : H2 → H1 is a bounded linear operator such that T1S = ST2. Then

there exists a bounded linear operator R : K2 → K1 such that

V1R = RV2, PH1RH ⊥
2
= 0, PH1RH2 = S, �R�= �S�.

Conversely if R : K2 → K1 is a bounded linear operator such that V1R = RV2 and

PH1RH ⊥
2
= 0, then S := PH1RH2 satisfies T1S = ST2.

Next theorem gives a characterization which gives a condition that a given operator
in a larger space becomes a dilation of compression of it to a smaller space.

Theorem 6.1.11. (Sarason (1965)) (Sarason’s lemma) Let H be a closed subspace

of a Hilbert space K and V : K → K be a bounded linear operator. Define T :=
PH V|H . Then T n = PH V n

|H , for all n ∈ N if and only if there are closed subspaces

M ⊆ N ⊆ K both are invariant for V such that

H = N �M ,
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where N �M denotes the orthogonal complement of M in N .

Following Theorems 6.1.3, 6.1.4, 6.1.6, 6.1.8, 6.1.10 and 6.1.11, extension of con-
tractions on Hilbert spaces became an active area of research, known as dilation theory
(Agler and McCarthy (2002); Ambrozie and Muller (2014); Arveson (2010); Levy and
Shalit (2014); Paulsen (2002); Pisier (2001); Shalit (2021); Sz.-Nagy et al. (2010)). This
study of contractions motivated the study of contractions and other classes of operators
not only on Hilbert spaces, but also on Banach spaces (Akcoglu and Sucheston (1977);
Fackler and Gluck (2019); Stroescu (1973)).

Recently, Bhat, De, and Rakshit abstracted the key ingredients in Halmos and Sz.
Nagy dilation theorem and set up a set theoretic version of dilation theory. Following is
the fundamental observation which lead Bhat, De, and Rakshit to set up a set theoretic
notion of dilation theory.

(i) There is an embedding i of the given space in a larger space.

(ii) There is a nice map in the larger space.

(iii) There is an idempotent from the larger space onto the given space.

These observations can be picturized using the following commutative diagram.

K K

H H

Un

PHi

T n

Definition 6.1.12. (Bhat et al. (2021)) Let A be a (non empty) set and f : A → A be

a map. An injective power dilation of f is a quadruple (B, i,g, p), where B is a set,

i : A → B, v : B → B are injective maps, p : B → B is an idempotent map such that

p(B) = i(A) and

i( f n(a)) = p(gn(i(a))), ∀a ∈A,∀n ∈ Z+. (6.1.1)

A dilation (B, i,g, p) of f is said to be minimal if

B=
∞�

n=0

gn(i(A)).

Equation 6.1.1 says that the following diagram commutes for all n.
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B B B

A A

gn p

i
f n

i

Bhat, De, and Rakshit succeeded in obtaining fundamental theorems of dilations. We
now recall these results.

Definition 6.1.13. (Bhat et al. (2021)) (Set shifts) Let A be a set. A map f : A→A is

said to be shift if ∩∞
n=0 f n(A) = /0.

Theorem 6.1.14. (Bhat et al. (2021)) (Wold decomposition for sets) Let f : A → A

be an injective map. Then A decomposes uniquely as A = Ab �As, where Ab, As are

invariant for f , f|Ab
is a bijection and f|As is a shift.

Theorem 6.1.15. (Bhat et al. (2021)) (Halmos dilation for sets) Let f : A → A be a

map. Define B :=A×{0,1},

i : A � a �→ (a,0) ∈B

g : B � (a,m) �→ (a,1−m) ∈B

and p : B→B by

p(a,m) :=
�

(a,0) if m = 0
( f (a),0) if m = 1.

Then i is injective, g is bijective, p is idempotent and

i( f (a)) = p(g(i(a))), ∀a ∈A.

Theorem 6.1.16. (Bhat et al. (2021)) (Sz. Nagy dilation for sets) Every map f : A→A

admits a minimal injective power dilation.

In Bhat et al. (2021), a particular type of minimal injective dilation, called as stan-
dard dilation was defined. This dilation is defined as follows. Let f : A→A be a map.
Define

B :=A×Z+,

i(a) := (a,0), ∀a ∈A,

g(a,m) := (a,m+1), ∀(a,m) ∈B,
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p(a,m) := ( f m(a),0), ∀(a,m) ∈B.

Then (B, i,g, p) is a minimal dilation of f .

Theorem 6.1.17. (Bhat et al. (2021)) (Inter-twining lifting theorem for sets) Let f1 :
A1 → A1, f2 : A2 → A2 be maps and (B1, i1,g1, p1), (B2, i2,g2, p2) be their standard

dilations, respectively. Suppose s : A2 → A1 is a function such that s f2 = f1s. Then

there exists a map r : B2 →B1 such that

rg2 = g1r, rp2 = p1r, ri2 = i1s.

Conversely if r : B2 → B1is a map such that rg2 = g1r, rp2 = p1r, then there exists a

map s : A2 →A1 such that ri2 = i1s and s f2 = f1s.

Theorem 6.1.18. (Bhat et al. (2021)) (Ando dilation for sets) Let J be an index set,

{ f j} j∈J be a family of commuting functions on A. Then there exists a quadruple

(B, i,{g j} j∈J, p), where B is a set, i : A→ B is an injective map, {v j} j∈J be a family

of commuting functions on B, p : B→B is idempotent such that

i( f j1 f j2 · · · f jk(a)) = p(g j1 fg2 · · · fgk(i(a))), ∀ j1, . . . , jk ∈ J,∀a ∈A.

Theorem 6.1.19. (Bhat et al. (2021)) (Sarason’s lemma for sets) Let g : B→B be an

injective map and let A⊆B. Suppose f : A→A is a map such that f (a) = g(a) for all

a ∈ A with g(a) ∈ A. Suppose A= A2 \A1, where A1, and A2 are invariant under g.

Then there exists a map p : B→B such that p2 = p, p(B) =A and

pgn(a) = f n(a), ∀n ∈ N,∀a ∈A.

6.2 WOLD DECOMPOSITION, HALMOS DILATION AND N-
DILATION FOR VECTOR SPACES

In this appendix we consider vector spaces (need not be finite dimensional) over arbi-
trary fields. We note that the Definition 6.1.1 of shift of an operator on a Hilbert space
does not use the Hilbert space structure. Thus it can be formulated for vector spaces
without modifications.

Definition 6.2.1. Let V be a vector space and T : V → V be a linear map. The map T

is said to be a shift if ∩∞
n=0T n(V ) = {0}.
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Theorem 6.2.2. (Wold decomposition for vector spaces) Let T be an injective linear

map on a vector space V . Then V decomposes as V = Vb ⊕Vs, where Vb is a T -

invariant subspace of V , T|Vb
: Vb → Vb is a bijection and T|Vs : Vs → V is a shift.

Proof. Define Vb := ∩∞
n=0T n(V ) and let Vs be a vector space complement of Vb in

V . We clearly have V = Vb ⊕Vs. Now T (Vb) = T (∩∞
n=0T n(V ))⊆ ∩∞

n=0T n(V ) = Vb.
Thus Vb is a T -invariant subspace of V . We now try to show that T|Vb

is a bijection.
Since T is already injective, it suffices to show that T|Vb

is surjective. Let y ∈ Vb.
Then there exists a sequence {xn}∞

n=1 in V such that y = T x1 = T 2x2 = T 3x3 = · · · .
Since T is injective, we then have x1 = T x2 = T 2x2 = · · · . Therefore y = T x1 and
x1 ∈ Vb. Thus T|Vb

is surjective. We are now left with proving that T|Vs is a shift. Let
y ∈ ∩∞

n=0(T|Vs)
n(Vs)⊆ (∩∞

n=0T n(V ))∩Vs = Vb ∩Vs. Hence y = 0 which completes the
proof.

Since vector space complements are not unique, we do not have uniqueness in Wold
decomposition for vector spaces. We next derive Halmos dilation for vector spaces.

Theorem 6.2.3. (Halmos dilation for vector spaces) Let V be a vector space and

T : V → V be a linear map. Then the operator

U :=

�
T I

I 0

�

is invertible on V ⊕V . In other words,

T = PV U|V ,

where PV : V ⊕V → V ⊕V is the first coordinate projection onto V .

Proof. It suffices to produce inverse map for U . A direct calculation says that

V :=

�
0 I

I −T

�

is the inverse of U .

In the sequel, any invertible operator of the form

�
T B

C D

�
,
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where B,C,D : V → V are linear operators, will be called as a Halmos dilation of T .
Now we observe that Halmos dilation for vector spaces is not unique. Using the theory
of block matrices (Lu and Shiou (2002)) we can produce a variety of Halmos dilations
for a given operator. Following are some classes of Halmos dilations.

(i) If T : V → V is an invertible linear map and the linear operators B,C,D : V → V

are such that D−CT−1B is invertible, then the operator

U :=

�
T B

C D

�
is a Halmos dilation of T on V ⊕V whose inverse is

�
T−1 +T−1B(D−CT−1B)−1 −T−1B(D−CT−1B)−1

−(D−CT−1B)−1CT−1 (D−CT−1B)−1

�
.

(ii) D : V → V is an invertible linear map and the linear operators B,C : V → V are
such that T −BD−1C is invertible, then the operator

�
T B

C D

�
is a Halmos dilation of T on V ⊕V whose inverse is

�
(T −BD−1C)−1 −(T −BD−1C)−1BD−1

−D−1C(T −BD−1C)−1 D−1 +D−1C(T −BD−1C)−1BD−1

�
.

(iii) B : V → V is an invertible linear map and the linear operators C,D : V → V are
such that C−DB−1T is invertible, then the operator

�
T B

C D

�
is a Halmos dilation of T on V ⊕V whose inverse is

�
−(C−DB−1T )−1DB−1 (C−DB−1T )−1

B−1 +B−1T (C−DB−1T )−1DB−1 −B−1T (C−DB−1T )−1

�
.

(iv) C : V → V is an invertible linear map and the linear operators B,D : V → V are
such that B−TC−1D is invertible, then the operator

�
T B

C D

�
is a Halmos dilation of T on V ⊕V whose inverse is
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�
−C−1D(B−TC−1D)−1 C−1 +C−1D(B−TC−1D)−1TC−1

(B−TC−1D)−1 −(B−TC−1D)−1TC−1

�
.

Recently, Bhat and Mukherjee (2020) proved that there is certain kind of uniqueness of
Halmos dilation for strict contractions in Hilbert spaces, as shown below.

Theorem 6.2.4. (Bhat and Mukherjee (2020)) Let H be a finite dimensional Hilbert

space and T : H → H be a strict contraction (i.e., �T� < 1). Then Halmos dilation

of T on H ⊕H is unitarily equivalent to

�
T −

√
I −T T ∗W√

I −T ∗T T ∗W

�
, for some unitary operator W : H → H .

We next derive a negative result to Theorem 6.2.4 for Halmos dilation in vector
spaces.

Theorem 6.2.5. Let V be a finite dimensional vector space and T : V → V be a linear

operator with nonzero trace. Then there are Halmos dilations of T which are not similar.

Proof. Note that

�
T T − I

T + I T

�

is an invertible operator and hence is a Halmos dilation of T . It is now enough to show
that the matrices

�
T T − I

T + I T

�
and

�
T I

I 0

�

are not similar. Since V is finite dimensional, we can use the property of trace map to
conclude that these matrices are not similar.

Theorem 6.2.3 can be generalized which gives vector space version of Theorem
6.1.6.

Theorem 6.2.6. (N-dilation for vector spaces) Let V be a vector space and T : V → V
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be a linear map. Let N be a natural number. Then the operator

U :=




T 0 0 · · · 0 I

I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · I 0




(N+1)×(N+1)

is invertible on ⊕N+1
k=1 V and

T k = PV Uk
|V , ∀k = 1, . . . ,N, (6.2.1)

where PV : ⊕N+1
k=1 V →⊕N+1

k=1 V is the first coordinate projection onto V .

Proof. A direct calculation of power of U gives Equation (6.2.1). To complete the
proof, now we need show that U is invertible. Define

V :=




0 I 0 0 · · · 0 0
0 0 I 0 · · · 0 0
0 0 0 I · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 I

I −T 0 0 · · · 0 0




(N+1)×(N+1)

.

Then UV =VU = I. Thus V is the inverse of U .

Note that the Equation (6.2.1) holds only upto N and not for N+1 and higher natural
numbers. We next derive vector space version of Theorem 6.1.5. In the following
theorem, ⊕∞

n=−∞V is the vector space defined by

⊕∞
n=−∞V :=

�
{xn}∞

n=−∞,xn ∈ V ,∀n ∈ Z,xn �= 0 only for finitely many n�s
�

with respect to natural operations.

Theorem 6.2.7. (Sz. Nagy dilation for vector spaces) Let V be a vector space and

T : V → V be a linear map. Let U := [un,m]−∞≤n,m≤∞ be the operator defined on
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⊕∞
n=−∞V given by the infinite matrix defined as follows:

u0,0 := T, un,n+1 := I, ∀n ∈ Z, un,m := 0 otherwise,

i.e.,

U =




...
...

...
...

...

· · · 0 I 0 0 0 · · ·
· · · 0 0 I 0 0 · · ·
· · · 0 0 T I 0 · · ·
· · · 0 0 0 0 I · · ·
· · · 0 0 0 0 0 · · ·

...
...

...
...

...




∞×∞

where T is in the (0,0) position (which is underlined), which is invertible on ⊕∞
n=−∞V

and

T n = PV Un
V , ∀n ∈ N, (6.2.2)

where PV : ⊕∞
n=−∞V →⊕∞

n=−∞V is the first coordinate projection onto V .

Proof. We get Equation (6.2.2) by calculation of powers of operator U . The matrix
V := [vn,m]−∞<n,m<∞ defined by

v0,0 := 0, v1,−1 :=−T, vn,n−1 := I, ∀n ∈ Z, vn,m := 0 otherwise,

i.e.,

V =




...
...

...
...

...
· · · I 0 0 0 0 · · ·
· · · 0 I 0 0 0 · · ·
· · · 0 −T I 0 0 · · ·
· · · 0 0 0 I 0 · · ·
· · · 0 0 0 0 I · · ·

...
...

...
...

...




∞×∞

where 0 is in the (0,0) position (which is underlined), satisfies UV =VU = I and hence
U is invertible which completes the proof.
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6.3 MINIMAL DILATION, INTERTWINING LIFTING THEO-
REM AND VARIANT OF ANDO DILATION FOR VECTOR
SPACES

An important observation associated with Theorems 6.2.5, 6.2.6 and 6.2.7 is that the
dilation is not optimal, i.e., even if the given operator is invertible, then also U is not
same as T . To overcome this, next we move on with the definition of dilation given by
Bhat, De, and Rakshit (Bhat et al. (2021)). Set theoretic definition of dilation, given in
Definition 6.1.12 motivated Bhat, De, and Rakshit, to introduce the dilation of linear
maps on vector spaces.

Definition 6.3.1. (Bhat et al. (2021)) Let V be a vector space and T : V → V be a

linear map. A linear injective dilation of T is a quadruple (W , I,U,P), where W is a

vector space, and I : V → W is an injective linear map, U : W → W is an injective

linear map, P : W → W is an idempotent linear map such that P(W ) = I(W ) and

(Dilation equation) IT nx = PUnIx, ∀n ∈ Z+,∀x ∈ V .

A dilation (W , I,U,P) of T is said to be minimal if

W = span{UnIx : n ∈ Z+,x ∈ V }.

An easier way to remember the dilation equation is the following commutative dia-
gram.

W W W

V V

Un P

I
T n

I

Following result is the vector space version of Theorem 6.1.16.

Theorem 6.3.2. (Bhat et al. (2021)) (Minimal Sz. Nagy dilation for sets) Every linear

map T : V → V admits minimal injective linear dilation.

Proof. We reproduce the proof given by Bhat et al. (2021) for the sake of future use.
Define

W :=
�
(xn)

∞
n=0 : xn ∈ V ,∀n ∈ Z+,xn �= 0 only for finitely many n�s

�
.
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Clearly W is a vector space w.r.t. natural operations. Now define

I : V � x �→ (x,0, . . .) ∈ W ,

U : W � (xn)
∞
n=0 �→ (0,x0, . . .) ∈ W ,

P : W � (xn)
∞
n=0 �→

∞

∑
n=0

IT nxn ∈ W .

Then (W , I,U,P) is a minimal injective linear dilation of T .

We call the dilation (W , I,U,P) constructed in Theorem 6.3.2 as the standard di-
lation of T . We next consider inter-twining lifting theorem.

Theorem 6.3.3. (Inter-twining lifting theorem for vector spaces) Let V1, V2 be vector

spaces, T1 : V1 → V1, T2 : V2 → V2 be linear maps. Let (W1, I1,U1,P1), (W2, I2,U2,P2)

be standard dilations of T1, T2, respectively. If S : V2 → V1 is a linear map such that

T1S = ST2, then there exists a linear map R : W2 → W1 such that

U1R = RU2, RP2 = P1R, RI2 = I1S. (6.3.1)

Conversely if R : W2 → W1 is a linear map such that U1R = RU2,RP2 = P1R, then there

exists a linear map S : V2 → V1 such that

RI2 = I1S, T1S = ST2. (6.3.2)

Proof. Define R : W2 � (xn)
∞
n=0 �→ (Sxn)

∞
n=0 ∈ W1. We now verify three equalities in

Equation (6.3.1). Let (xn)
∞
n=0 ∈ W2. Then

U1R(xn)
∞
n=0 =U1(Sxn)

∞
n=0 = (0,Sx0,Sx1, . . .),

RU2(xn)
∞
n=0 = R(0,x0,x1, . . .) = (0,Sx0,Sx1, . . .),

RP2(xn)
∞
n=0 = R

�
∞

∑
n=0

I2T n
2 xn

�
=

∞

∑
n=0

RI2T n
2 xn

=
∞

∑
n=0

R(T n
2 xn,0,0, . . .) =

∞

∑
n=0

(ST n
2 xn,0,0, . . .),

P1R(xn)
∞
n=0 = P1(Sxn)

∞
n=0 =

∞

∑
n=0

I1T n
1 Sxn

=
∞

∑
n=0

I1ST n
2 xn =

∞

∑
n=0

(ST n
2 xn,0,0, . . .),
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RI2x = R(x,0,0, . . .) = (Sx,0,0, . . .), I1Sx = (Sx,0,0, . . .).

We now consider the converse part. For this, first we have to define linear map S. Let
y ∈ V2. Now RP2(y,0, . . .) = P1R(y,0, . . .) ∈ I1(V1) and I1 is injective implies that there
exists a unique x ∈ V2 such that RP2(y,0, . . .) = P1R(y,0, . . .) = I1(x). We now define
Sy := x. Then S is well-defined and linear. Let y ∈ V2 and x ∈ V2 be such that Sy = x.
Then I1Sy = RP2(y,0, . . .) = RI2y. Thus we verified first equality in (6.3.2). We are left
with verification of second equality. We now calculate

RP2U2(x,0, . . .) = RP2(0,x,0, . . .) = RI2T2x (6.3.3)

and

P1U1R(x,0, . . .) = P1RU2(x,0, . . .) = P1R(0,x,0, . . .) (6.3.4)

= RP2(0,x,0, . . .) = RI2T2x, ∀x ∈ V2. (6.3.5)

Given conditions produce

RP2U2 = P1RU2 = P1U1R. (6.3.6)

Equation (6.3.6) says that (6.3.3) and (6.3.4) are equal which completes the proof.

Following is a variant of Ando dilation for vector spaces.

Theorem 6.3.4. (Ando like dilation for vector spaces) Let V be a vector space and

T,S : V → V be commuting linear maps. Then there are dilations (W , I,U1,P) and

(W , I,U2,P) of T,S respectively, such that

�
0c U

�
=

�
0r

V

�

and

IT nSmx = PUnV mIx, ∀n,m ∈ Z+,∀x ∈ V ,

where 0c denotes the infinite column matrix of zero vectors and 0r denotes the infinite

row matrix of zero vectors.
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Proof. We extend the construction in the proof of Theorem 6.3.2. Define

W :=
�



x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·

...
...

... . . .




∞×∞

: xn,m ∈ V ,∀n,m ∈ Z+,xn,m �= 0

only for finitely many (n,m)�s
�
.

Then W becomes a vector space with respect to natural operations. We now define the
following four linear maps:

I : V � x �→




x 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
... . . .




∈ W

U : W �




x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·

...
...

... . . .




�→




0 0 0
x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·

...
...

... . . .




∈ W

V : W �




x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·

...
...

... . . .




�→




0 x0,0 x0,1 · · ·
0 x1,0 x1,1 · · ·
0 x2,0 x2,1 · · ·
...

...
... . . .




∈ W

P : W �




x0,0 x0,1 x0,2 · · ·
x1,0 x1,1 x1,2 · · ·
x2,0 x2,1 x2,2 · · ·

...
...

... . . .




�→
∞

∑
m=0

∞

∑
n=0

IT nSmxn,m ∈ W .

We then have

�
0c U

�
=




0 0 0 0 · · ·
0 x0,0 x0,1 x0,2 · · ·
0 x1,0 x1,1 x1,2 · · ·
0 x2,0 x2,1 x2,2 · · ·
0

...
...

... . . .




=

�
0r

V

�
.
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Now PUnIx = IT nx, PV nIx = ISmx, ∀x ∈ V , ∀n,m ∈ Z+. Hence (W , I,U1,P) and
(W , I,U2,P) are dilations of T,S, respectively. A calculation now shows that IT nSmx =

PUnV mIx,∀n,m ∈ Z+,∀x ∈ V .

Conclusion and future work : In this appendix we derived some basic results
on dilation of linear maps. Since vector spaces are more general than Hilbert spaces
and tools of Hilbert spaces will not work in vector space, we are interested to explore
algebraic aspects of dilation theory.
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APPENDIX B: COMMUTATORS CLOSE TO THE
IDENTITY

6.4 C*-ALGEBRAS

Israel M. Gelfand defined abstractly the notion of a complete algebra (Gelfand (1941)).
These are Banach spaces in which we can multiply the elements and the multiplication
enjoys continuity.

Definition 6.4.1. (cf. Zhu (1993)) A Banach space A over C is said to be a unital

Banach algebra if it is a unital algebra and the multiplication satisfies the following:

(i) �xy� ≤ �x��y�, ∀x,y ∈ A .

(ii) �e�= 1, where e is the multiplicative identity of A .

Example 6.4.2. (cf. Zhu (1993))

(i) If K is a compact Hausdorff space, then the space C (K) of all complex-valued

continuous functions on K is a commutative unital Banach algebra w.r.t. sup-

norm and pointwise multiplication.

(ii) If X is a Banach space, then the collection B(X ) of all bounded linear opera-

tors on X is a noncommutative unital Banach algebra w.r.t. operator-norm and

operator composition.

Proposition 6.4.3. (cf. Allan (2011)) Every unital Banach algebra A can be isometri-

cally embedded in B(A ).

One of the most important notion associated with the study of Banach algebras is
the notion of spectrum.

Definition 6.4.4. (cf. Zhu (1993)) Let A be a unital Banach algebra with the identity

e. Spectrum of an element x in A is the set of all complex numbers λ such that λe− x

is not invertible.

Theorem 6.4.5. (cf. Zhu (1993)) Spectrum of every element of a unital Banach algebra

is a nonempty compact subset of C.

Following is the first fundamental theorem in the study of Banach algebras which
characterizes Banach algebras using the information of spectrum.
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Theorem 6.4.6. (cf. Zhu (1993)) (Gelfand-Mazur theorem) If every nonzero element

of a Banach algebra is invertible, then it is isometrically isomorphic to C.

A subclass of Banach algebras known as C*-algebras allows to do most of the things
which hold good for complex numbers. Notion of C*-algebras, for first time, appeared
in the work of Gelfand and Neumark (1943).

Definition 6.4.7. (cf. Zhu (1993)) A unital Banach algebra A is called a unital C*-
algebra if there exists a map ∗ : A � x �→ x∗ ∈ A such that following conditions hold.

(i) ((x)∗)∗ = x,∀x ∈ A .

(ii) (x+ y)∗ = x∗+ y∗,∀x,y ∈ A .

(iii) (αx)∗ = αx∗, ∀α ∈K,∀x ∈ A .

(iv) (xy)∗ = y∗x∗,∀x,y ∈ A .

(v) �x∗x�= �x�2,∀x ∈ A .

A map ∗ : A � x �→ x∗ ∈ A satisfying (i)-(iii) is called as involution.

Segal called the term C*-algebra; the letter ‘C’ stands for uniformly closed. C*-
algebras are also known as Gelfand-Naimark algebras (cf. Pietsch (2007)).

Example 6.4.8. (cf. Zhu (1993))

(i) If K is a compact Hausdorff space, then C (K) is a commutative unital C*-algebra

w.r.t. involution f ∗(x) := f (x),∀x ∈ K.

(ii) If H is a Hilbert space, then B(H ) is a noncommutative unital C*-algebra

w.r.t. operator adjoint.

(iii) If H is a Hilbert space, the the space K (H ) of compact operators is a non-

commutative C*-subalgebra of B(H ). If H is infinite dimensional, then this

algebra is non unital.

Following two results characterize unital C*-algebras.

Theorem 6.4.9. (cf. Zhu (1993)) (Gelfand-Naimark theorem) If A is a commutative

unital C*-algebra, then A is isometrically ∗-isomorphic to C (K) for some compact

Hausdorff space K.

Theorem 6.4.10. (cf. Zhu (1993)) (Gelfand-Naimark-Segal theorem) Let A be a uni-

tal C*-algebra. Then there exists a Hilbert space H such that A is isometrically

∗-isomorphic to a C*-subalgebra of B(H ).
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Example 6.4.11. (cf. Kadison and Ringrose (1997)) Consider the unital C*-algebra

C [0,1]. The map

π : C [0,1] � f �→ π( f ) ∈ B(L 2[0,1]);

π( f ) : L 2[0,1] � g �→ (π( f ))(g) := f g ∈ L 2[0,1]

is an isometric ∗-isomorphism to a C*-subalgebra of B(L 2[0,1]).

6.5 COMMUTATORS CLOSE TO THE IDENTITY IN B(H )

Let n ∈N and Mn(K) be the ring of n by n matrices over K. Using the property of trace
map we easily get that there does not exist D,X ∈ Mn(K) such that DX −XD = 1Mn(K)

(Halmos (1982)). This argument will not work for bounded linear operators on infinite
dimensional Hilbert space since the map trace is not defined on the algebra B(H ) of
all bounded linear operators on an infinite dimensional Hilbert space H (it is defined
for a proper subalgebra of B(H ) known as the trace class operators (Schatten (1960))).
Operators of the form DX −XD are called as commutator of D and X and are denoted
by [D,X ]. An operator T ∈ B(H ) is said to be a commutator if T = [D,X ], for some
D,X ∈ B(H ).
Using the property of spectrum of bounded linear operator, Winter in 1947 proved that
the following result.

Theorem 6.5.1. (Wintner (1947)) Let H be an infinite dimensional Hilbert space. Then

there does not exist D,X ∈ B(H ) such that

[D,X ] = 1B(H ). (6.5.1)

After two years, Wielandt (1949) gave a simple proof for the failure of Equation
6.5.1. We note that the boundedness of operators is crucial in Theorem 6.5.1. Following
example shows that Theorem 6.5.1 fails for unbounded operators

Example 6.5.2. (Halmos (1982)) Let H := L 2(R) and define

(D f )(x) :=
d
dx

f , (X f )(x) := x f (x)

Then [D,X ] = 1B(H ).

Theorem 6.5.1 leads to the question that which operators on infinite dimensional
Hilbert spaces can be written as commutators of operators? First partial answer was
given by Halmos.
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Theorem 6.5.3. (cf. Putnam (1967)) Let H be an infinite dimensional Hilbert space.

If C ∈ B(H ) is compact, then IB(H ) +C is not a commutator.

Brown and Pearcy (1965) characterized the set of bounded operators which can be
written as commutators.

Theorem 6.5.4. (Brown and Pearcy (1965)) Let H be an infinite dimensional separa-

ble Hilbert space. Then an operator in B(H ) is a commutator if and only if it is not

of the form λ IB(H ) +C, where λ is a nonzero scalar and C is a compact operator.

Following the paper of Brown and Pearcy (1965) there is a series of papers de-
voted to the study of commutators on sequence spaces, L p-spaces, Banach spaces, C*-
algebras, von Neumann algebras, Banach *-algebras etc (Dosev and Johnson (2010);
Dosev et al. (2013); Dosev (2009); Dykema et al. (2004); Dykema and Skripka (2012);
Kadison et al. (2020); Kaftal et al. (2014); Laustsen (2002); Marcoux (2006, 2010);
Schneeberger (1971); Stasinski (2016); Yood (2008)).

It was Popa (1982) who started a quantitative study of commutators close to the
identity operator. He gave the following quantitative bound given by Popa for the prod-
uct of norm of operators whenever the commutator is close to the identity.

Theorem 6.5.5. (Popa (1982)) Let H be an infinite dimensional Hilbert space. Let

D,X ∈ B(H ) be such that

�[D,X ]−1B(H )� ≤ ε

for some ε > 0. Then

�D��X� ≥ 1
2

log
1
ε
.

Now the problem in Theorem 6.5.5, is the existence of D,X ∈ B(H ) such that the
commutator [D,X ] is close to the identity operator. This was again obtained by Popa
which is stated in the following result. Given real r and positive s, by r = O(s) we mean
that there is positive γ such that |r|≤ γs.

Theorem 6.5.6. (Popa (1982); Tao (2019)) Let H be an infinite dimensional Hilbert

space. Then for each 0 < ε ≤ 1, there exist D,X ∈ B(H ) with

�[D,X ]−1B(H )� ≤ ε

and

�D��X�= O(ε−2).
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Terence Tao improved Theorem 6.5.6 and obtained the following theorem.

Theorem 6.5.7. (Tao (2019)) Let H be an infinite dimensional Hilbert space. Then for

each 0 < ε ≤ 1/2, there exist D,X ∈ B(H ) with

�[D,X ]−1B(H )� ≤ ε

such that

�D��X�= O
�

log5 1
ε

�
.

In (Popa (1982)) there is another result about commutators. Let K (H ) be the ideal
of compact operators in B(H ) and define

C+K (H ) := {λ .1B(H ) +T : λ ∈ C,T ∈ K (H )}.

Theorem 6.5.8. (Popa (1982)) If K ∈ B(H ) is such that

�A�= O(1), �A�= O(dist(A,C+K (H ))
2
3 ),

then there exist D,X ∈ B(H ) with

�D��X�= O(1) such that A = [D,X ].

6.6 COMMUTATORS CLOSE TO THE IDENTITY IN
UNITAL C*-ALGEBRAS

We recall fundamentals of matrices over unital C*-algebras as given in (Murphy (1990)).
Let A be a unital C*-algebra. For n ∈ N, Mn(A ) is defined as the set of all n by n

matrices over A . It is clearly an algebra with respect to natural matrix operations. We
define the involution of an element A := [ai, j]1≤i, j≤n ∈ Mn(A ) as A∗ := [a∗j,i]1≤i, j≤n.
Then Mn(A ) is a *-algebra. From the Gelfand-Naimark-Segal theorem (Theorem
6.4.10) there exists unique universal representation (H ,π), where H is a Hilbert
space, π : Mn(A )→ Mn(B(H )) is an isometric *-homomorphism. This gives a norm
on Mn(A ) defined as

�A� := �π(A)�, ∀A ∈ Mn(A ).

This norm makes Mn(A ) as a C*-algebra.
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In the sequel, A is a unital C*-algebra. We first derive a lemma followed by a corollary
for unital C*-algebras. Proof of the lemma is a direct algebraic calculation.

Lemma 6.6.1. (Commutator calculation) Let u,v,b1, . . . ,bn ∈ A and δ > 0. Let

X :=




0 0 0 · · · 0 δb1

1A 0 0 · · · 0 δb2

0 1A 0 · · · 0 δb3
...

...
... · · · ...

...

0 0 0 · · · 0 δbn−1

0 0 0 · · · 1A δbn




∈ Mn(A )

and

D :=




v
δ 1A 0 · · · 0 δb1u
u
δ

v
δ 2.1A · · · 0 δb2u

0 u
δ

v
δ · · · 0 δb3u

...
...

... · · · ...
...

0 0 0 · · · v
δ (n−1)1A +δbn−1u

0 0 0 · · · u
δ

v
δ +δbnu




∈ Mn(A ).

Then

[D,X ] = 1Mn(A ) +




0 0 0 · · · 0 [v,b1]+0+δb2 +δb1[u,bn]

0 0 0 · · · 0 [v,b2]+ [u,b1]+2δb3 +δb2[u,bn]

0 0 0 · · · 0 [v,b3]+ [u,b2]+3δb4 +δb3[u,bn]
...

...
... · · · ...

...

0 0 0 · · · 0 [v,bn−1]+ [u,bn−2]+ (n−1)δbn +δbn−1[u,bn]

0 0 0 · · · 0 [v,bn]+ [u,bn−1]+0+δbn[u,bn]−n.1A




.

Corollary 6.6.2. Let u,v,b1, . . . ,bn ∈ A . Assume that for some δ > 0, we have equa-

tions

[v,bi]+ [u,bi−1]+ iδbi+1 +δbi[u,bn] = 0, ∀i = 2, . . . ,n−1 (6.6.1)

and

[v,bn]+ [u,bn−1]+δbn[u,bn] = n ·1Mn(A ). (6.6.2)
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Then for any µ > 0, there exist matrices Dµ ,Xµ ∈ Mn(A ) such that

�Dµ� ≤
�u�
µ2δ

+
�v�
µδ

+(n−1)+δ
n

∑
i=1

µn−i−1�bi��u�,

�Xµ� ≤ 1+δ
n

∑
i=1

µn−i+1�bi� and

�[Dµ ,Xµ ]−1Mn(A )� ≤ µn−1�[v,b1]+δb2 +δb1[u,bn]�.

Proof. Let D and X be as in Lemma 6.6.1. Define

Sµ :=




µn−1 0 0 · · · 0 0
0 µn−2 0 · · · 0 0
0 0 µn−3 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · µ 0
0 0 0 · · · 0 1




∈ Mn(K),

Dµ :=
1
µ

SµDS−1
µ , Xµ := µSµXS−1

µ .

Then

�Dµ�=

����������������




v
µδ 1A 0 · · · 0 µn−2δb1u
u

µ2δ
v

µδ 2.1A · · · 0 µn−3δb2u

0 u
µ2δ

v
µδ · · · 0 µn−4δb3u

...
...

... · · · ...
...

0 0 0 · · · v
µδ (n−1)1A +δbn−1u

0 0 0 · · · u
µ2δ

v
µδ +µ−1δbnu




����������������

≤
����

u
µ2δ

����+
����

v
µδ

����+�(n−1)1A �+

���������������




0 0 0 · · · 0 µn−2δb1u

0 0 0 · · · 0 µn−3δb2u

0 0 0 · · · 0 µn−4δb3u
...

...
... · · · ...

...
0 0 0 · · · 0 δbn−1u

0 0 0 · · · 0 µ−1δbnu




���������������

≤ �u�
µ2δ

+
�v�
µδ

+(n−1)+δ
n

∑
i=1

µn−i−1�bi��u�
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and

�Xµ�=

���������������




0 0 0 · · · 0 µnδb1

1A 0 0 · · · 0 µn−1δb2

0 1A 0 · · · 0 µn−2δb3
...

...
... · · · ...

...
0 0 0 · · · 0 µ2δbn−1

0 0 0 · · · 1A µδbn




���������������

≤ �1A �+

���������������




0 0 0 · · · 0 µnδb1

0 0 0 · · · 0 µn−1δb2

0 0 0 · · · 0 µn−2δb3
...

...
... · · · ...

...
0 0 0 · · · 0 µ2δbn−1

0 0 0 · · · 0 µδbn




���������������

≤ 1+δ
n

∑
i=1

µn−i+1�bi�.

Now using (6.6.1) and (6.6.2) we get

�[Dµ ,Xµ ]−1Mn(A )�=

���������������




0 0 0 · · · 0 µn−1([v,b1]+δb2 +δb1[v,bn])

0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0




���������������

≤ µn−1�[v,b1]+δb2 +δb1[u,bn]�.

Let A be a unital C*-algebra. Assume that there are isometries u,v ∈ A such that

u∗u = v∗v = uu∗+ vv∗ = 1A and u∗v = v∗u = 0. (6.6.3)

Examples of such unital C*-algebras are B(H ) (where H is an infinite dimensional
Hilbert space) as well as any unital C*-algebra which contains the Cuntz algebra O2

(Cuntz (1977)). Note that whenever a unital C*-algebra admits a trace map there are
no isometries satisfying Equation (6.6.3). In particular, any finite dimensional unital
C*-algebra does not have such elements. It is also clear that no commutative unital
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C*-algebra can have isometries satisfying Equation (6.6.3).
It is shown in Tao (2019) that whenever H is an infinite dimensional Hilbert space,

then the Banach algebras B(H ) and M2(B(H )) are isometrically isomorphic. We
now do these results for C*-algebras whenever they have isometries satisfying Equation
(6.6.3). To do so we first need a result from the theory of C*-algebras.

Theorem 6.6.3. (cf. Pedersen (2018); Takesaki (2002))

(i) Every *-homomorphism between C*-algebras is norm decreasing.

(ii) If a *-homomorphism between C*-algebras is injective, then it is isometric.

Theorem 6.6.4. Let A be a unital C*-algebra. If there are isometries u,v ∈ A such

that Equation (6.6.3) holds, then the map

φ : A � x �→
�

u∗xu u∗xv

v∗xu v∗xv

�
∈ M2(A ) (6.6.4)

is a C*-algebra isomorphism with the inverse map

ψ : M2(A ) �
�

a b

c d

�
�→ uau∗+ubv∗+ vcu∗+ vdv∗ ∈ A . (6.6.5)

Proof. Using Equation (6.6.3), a direct computation gives

φψ

�
a b

c d

�
= φ(uau∗+ubv∗+ vcu∗+ vdv∗)

=

�
u∗(uau∗+ubv∗+ vcu∗+ vdv∗)u u∗(uau∗+ubv∗+ vcu∗+ vdv∗)v

v∗(uau∗+ubv∗+ vcu∗+ vdv∗)u v∗(uau∗+ubv∗+ vcu∗+ vdv∗)v

�

=

�
1A a1A +1A b0+0c1A +0d0 1A a0+1A b1A +0c0+0d1A

0a1A +0b0+1A c1A +1A d0 0a0+0b1A +1A c0+1A d1A

�

=

�
a b

c d

�
, ∀

�
a b

c d

�
∈ M2(A )

and

ψφx = ψ

�
u∗xu u∗xv

v∗xu v∗xv

�

= u(u∗xu)u∗+u(u∗xv)v∗+ v(v∗xu)u∗+ v(v∗xv)v∗

= uu∗x(uu∗+ vv∗)+ vv∗x(uu∗+ vv∗)
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= uu∗x1A + vv∗x1A = (uu∗+ vv∗)x = x, ∀x ∈ A .

Further,

(φ(x))∗ =

�
u∗xu u∗xv

v∗xu v∗xv

�∗

=

�
u∗x∗u (v∗xu)∗

(u∗xv)∗ v∗x∗v

�

=

�
u∗x∗u u∗x∗v

v∗x∗u v∗x∗v

�
= φ(x∗), ∀x ∈ A .

Hence φ is a *-isomorphism. Using Theorem 6.6.3, to show φ is a C*-algebra isomor-
phism (i.e., isometric isomorphism), it suffices to show that φ is injective. Let x ∈ A

be such that φx = 0. Then

u∗xu = u∗xv = 0, v∗xv = v∗xu = 0.

Using the first equation we get uu∗xuu∗= uu∗xvv∗= 0 which implies uu∗x= uu∗x(uu∗+

vv∗) = 0. Similarly using the second equation we get vv∗x = 0. Therefore x = (uu∗+

vv∗)x = 0. Hence φ is injective which completes the proof.

Along with the lines of Theorem 6.6.4 we can easily derive the following result.

Theorem 6.6.5. Let A be a unital C*-algebra and n ∈ N. If there are isometries

u,v ∈ A such that Equation (6.6.3) holds, then the map

φ : Mn(A ) � X �→
�

u∗Xu u∗Xv

v∗Xu v∗Xv

�
∈ M2n(A )

is a C*-algebra isomorphism with the inverse map

ψ : M2n(A ) �
�

A B

C D

�
�→ uAu∗+uBv∗+ vCu∗+ vDv∗ ∈ Mn(A ),

where if X := [xi, j]i, j is a matrix, and a,b ∈A , by aXb we mean the matrix [axi, jb]i, j. In

particular, the C*-algebras A ,M2(A ),M4(A ), . . . ,M2n(A ), . . . are all *-isometrically

isomorphic.

In the rest of this chapter, we assume that unital C*-algebra A has isometries u,v

satisfying Equation (6.6.3). In the next result we use the following notation. Given a
vector x ∈ A n, xi means its ith coordinate.
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Proposition 6.6.6. Let n ≥ 2 and T : A n → A n−1 be the bounded linear operator

defined by

T (bi)
n
i=1 := ([v,bi]+ [u,bi−1])

n
i=2, ∀(bi)

n
i=1 ∈ A n.

Then there exists a bounded linear right-inverse R : A n−1 → A n for T such that

�Rb�= sup
1≤i≤n

�(Rb)i� ≤ 8
√

2n2 sup
2≤i≤n

�bi�

≤ 8
√

2n2 sup
1≤i≤n

�bi�= 8
√

2n2�b�, ∀b ∈ A n.

Proof. Define

L : A n−1 � (xi)
n
i=2 �→

�
−1

2
xiv∗ −

1
2

xi+1u∗
�n

i=1
∈ A n, where x1 := 0,xn+1 := 0

and

E : A n−1 � (xi)
n
i=2 �→

�
1
2
(vxiv∗+ vxi+1u∗+uxi−1v∗+uxiu∗)

�n

i=2
∈ A n−1.

Then

T L(xi)
n
i=2 = T

�
−1

2
xiv∗ −

1
2

xi+1u∗
�n

i=1
=−1

2
(T (xiv∗)n

i=2 +T (xi+1u∗)n
i=2)

=−1
2
(([v,xiv∗]+ [u,xi−1v∗])n

i=2 +([v,xi+1u∗]+ [u,xiu∗])n
i=2)

=−1
2
(vxiv∗ − xiv∗v+uxi−1v∗ − xi−1v∗u+ vxi+1u∗ − xi+1u∗v+uxiu∗ − xiu∗u)n

i=2

=−1
2
(vxiv∗ − xi +uxi−1v∗ − xi−1v∗u+ vxi+1u∗+uxiu∗ − xi)

n
i=2

= (xi)
n
i=2 −

1
2
(vxiv∗+ vxi+1u∗+uxi−1v∗+uxiu∗)n

i=1

= (1−E)(xi)
n
i=2, ∀(xi)

n
i=2 ∈ A n−1, where 1(xi)

n
i=2 := (xi)

n
i=2.

We next try to show that the operator 1 − E is bounded invertible with the help of
Neumann series. First step is to change the norm on A n to an equivalent norm so that
invertibility property will not affect in both norms. Define a new norm on A n−1 by

�(xi)
n
i=2�� := sup

2≤i≤n

�
2− i2

n2

�−1
2

�xi�.

168



Let x = (xi)
n
i=2 ∈ A n−1 be such that �(xi)

n
i=2�� ≤ 1. Then

�
2− i2

n2

�−1
2

�xi� ≤ sup
2≤i≤n

�
2− i2

n2

�−1
2

�xi� ≤ 1, ∀2 ≤ i ≤ n.

Hence �xi� ≤
�

2− i2
n2

� 1
2 for all 2 ≤ i ≤ n. Using Theorem 6.6.4 we now get

�(Ex)i�=
1
2
�vxiv∗+ vxi+1u∗+uxi−1v∗+uxiu∗�

=
1
2

�����

�
xi xi+1

xi−1 xi

������≤ 1
2

�����

�
�xi� �xi+1�
�xi−1� �xi�

������

≤ 1
2
�
�xi�2 +�xi+1�2 +�xi−1�2 +�xi�2� 1

2

≤ 1
2

��
2− i2

n2

�
+

�
2− (i+1)2

n2

�
+

�
2− (i−1)2

n2

�
+

�
2− i2

n2

�� 1
2

=

�
2− i2

n2 −
1

2n2

� 1
2

≤
�

1− 1
8n2

� 1
2
�

2− i2

n2

� 1
2

≤
�

1− 1
8n2

��
2− i2

n2

� 1
2

, ∀2 ≤ i ≤ n.

Hence

�Ex�� = sup
2≤i≤n

�
2− i2

n2

�−1
2

�(Ex)i� ≤
�

1− 1
8n2

�
�x��, ∀x ∈ A n−1.

Since 1− 1
8n2 < 1, 1−E is invertible and �(1−E)−1x�� ≤ 8n2�x��. Now going back to

the original norm, we get

1√
2
�((1−E)−1x)i� ≤ sup

2≤i≤n

�
2− i2

n2

�−1
2

�((1−E)−1x)i�

= �(1−E)−1x�� ≤ 8n2�x��

= 8n2 sup
2≤i≤n

�
2− i2

n2

�−1
2

�xi�

≤ 8n2 sup
2≤i≤n

�xi�= 8n2�x�, ∀x ∈ A n−1.
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Define R := L(1−E)−1. Then T R = T L(1−E)−1 = (1−E)(1−E)−1 = 1 and

�Rb�= sup
1≤i≤n

�(Rb)i�= �L(1−E)−1b� ≤ �L��(1−E)−1b� ≤ �(1−E)−1b�

= sup
2≤i≤n

�((1−E)−1b)i� ≤ 8
√

2n2�b�= 8
√

2n2 sup
2≤i≤n

�bi�, ∀b ∈ A n−1.

As given in Tao (2019) we try to shift from the systems of equations (6.6.1) and
(6.6.2) to the solution of single equation. Let n ≥ 2. Define a := (0, . . . ,n) ∈ A n,

F : A n � (bi)
n
i=1 �→ (−2b3, . . . ,−(n−1)bn,0) ∈ A n−1

and

G : A n ×A n � ((bi)
n
i=1,(ci)

n
i=1) �→ (−b2[u,cn], . . . ,−bn[u,cn]) ∈ A n−1.

We then have �F� ≤ n−1 and �G� ≤ 2.

Proposition 6.6.7. Systems (6.6.1) and (6.6.2) have a solution b if and only if

T b = a+δF(b)+δG(b,b). (6.6.6)

Proof. Systems (6.6.1) and (6.6.2) have a solution b if and only if

[v,bi]+ [u,bi−1] =−iδbi+1 −δbi[u,bn], ∀i = 2, . . . ,n−1

and

[v,bn]+ [u,bn−1] =−δbn[u,bn]+n ·1Mn(A )

if and only if

([v,bi]+ [u,bi−1])
n
i=2 =

(0, . . . ,n)+δ (−2b3, . . . ,−(n−1)bn,0)+δ (−b2[u,bn], . . . ,−bn[u,bn])

if and only if

T b = a+δF(b)+δG(b,b).
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The above proposition reduces the work of solving systems (6.6.1) and (6.6.2) to a
single operator equation. To solve (6.6.6) we need an abstract lemma from Tao (2019).

Lemma 6.6.8. (Tao (2019)) Let X , Y be Banach spaces, T,F : X → Y be bounded

linear operators, and let G : X ×X → Y be a bounded bilinear operator with bound

r > 0 and let a ∈ Y . Suppose that T has a bounded linear right inverse R : Y → X .

If δ > 0 is such that

δ (2�F��R�+4r�R�2�a�)< 1, (6.6.7)

then there exists b ∈ X with �b� ≤ 2�R��a� that solves the equation

T b = a+δF(b)+δG(b,b).

Theorem 6.6.9. For each n ≥ 2, there exists a solution b to Equation (6.6.6) such that

�b� ≤ 16
√

2n3.

Proof. We apply Lemma 6.6.8 for

δ :=
1

2000n5 .

Then using Proposition 6.6.6, we get

δ (2�F��R�+4r�R�2�a�)≤ 1
2000n5 (2(n−1)8

√
2n2 +4.2.128.n4.n)

≤ 1
2000n5 (16

√
2n3 +1024n5)< 1.

Lemma 6.6.8 now says that there exists a b which satisfies (6.6.6).

Theorem 6.6.10. For each n ≥ 2, let b be an element satisfying Equation (6.6.6) and

�b� ≤ 16
√

2n3. Then for µ = 1
2 , Dµ ,Xµ ∈ Mn(A ) such that

�Dµ�= O(n5), �Xµ�= O(1), �[Dµ ,Xµ ]−1Mn(A )�= O(n32−n).

Proof. Let Dµ ,Xµ ∈ Mn(A ) be as in Corollary 6.6.2. We then have

�Dµ� ≤ 4.2000n5�u�+2.2000n5�v�+(n−1)+
1

2000n5

n

∑
i=1

1
2n−i−1 16

√
2n3�u�

= O(n5),

�Xµ� ≤ 1+
1

2000n5

n

∑
i=1

1
2n−i−1 16

√
2n3 = O(1),
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�[Dµ ,Xµ ]−1Mn(A )� ≤ 2µn−1(�v��b1�+δ�b2�+δ�b1��u��bn�).

≤ 2
1

2n−1 (�u�16
√

2n3 +
1

2000n5 16
√

2n3 +
1

2000n5 16
√

2n3�u�16
√

2n3)

≤ 2
n3

2n−1 (�v�16
√

2+
1

2000n5 16
√

2+
1

2000n5 16
√

2n3�u�16
√

2) = O(n32−n).

Theorem 6.6.11. Let 0< ε ≤ 1/2. Then there exist an even integer n and D,X ∈Mn(A )

with

�[D,X ]−1Mn(A )� ≤ ε

such that

�D��X�= O
�

log5 1
ε

�
.

Proof. Let Dµ ,Xµ ∈ Mn(A ) be as in Corollary 6.6.2. Theorem 6.6.10 says that there
are α,β ,γ > 0 be such that

�Dµ� ≤ αn5, �Xµ� ≤ β , �[Dµ ,Xµ ]−1Mn(A )� ≤ γn32−n.

Since 2n > n4 all but finitely many n’s, γn32−n < ε all but finitely many n’s. We now
choose real c such that n= c log 1

ε is even γn32−n < ε . We then have �Dµ�=O(log5(1
ε ))

and �[Dµ ,Xµ ]−1Mn(A )� ≤ ε .

Theorem 6.6.11 and Theorem 6.6.5 easily give the following.

Theorem 6.6.12. Let A be a unital C*-algebra. Suppose there are isometries u,v ∈A

such that Equation (6.6.3) holds. Then for each 0 < ε ≤ 1/2, there exist d,x ∈ A with

�[d,x]−1A � ≤ ε

such that

�d��x�= O
�

log5 1
ε

�
.

Remark 6.6.13. Let A be a finite dimensional unital C*-algebra. From the structure

theory (Davidson (1996)) we have

A ∼= Mn1(C)⊕ · · ·⊕Mnr(C),
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for unique (upto permutation) natural numbers n1, . . . ,nr. This result says that normal-

ized trace map (a trace map Tr such that Tr(1A ) = 1) exists on A . Using this we make

the following two observations.

(i) A can not have isometries satisfying Equation (6.6.3). Suppose that there are

such isometries. Then

1 = Tr(uu∗+ vv∗) = Tr(uu∗)+Tr(vv∗) = Tr(u∗u)+Tr(v∗v) = 2

which is impossible.

(ii) In (Tao (2019)), Tao observed that if H is a finite dimensional Hilbert space, then

there are no D,X ∈ B(H ) satisfying �[D,X ]− 1B(H )� < 1. We elaborate this

for any finite dimensional unital C*-algebra A , namely, there do not exist d,x ∈
A satisfying �[d,x]− 1A � < 1. In other words, Theorem 6.6.12 fails for every

finite dimensional unital C*-algebra. Let d,x ∈ A be arbitrary. From the struc-

ture theory, we identify that d as D and x as X for some matrices D,X ∈ Mn(C)
and for some n. Using the commutativity of trace we then have Tr([D,X ]) = 0.

Let λ1, . . . ,λn be eigenvalues of [D,X ]. Then ∑n
j=1 λ j = Tr([D,X ]) = 0. This gives

n =

�����
n

∑
j=1

(λ j −1)

�����≤
n

∑
j=1

|λ j −1|.

Previous inequality says that there is atleast one j such that |λ j −1|≥ 1. We next

see that all the eigenvalues of [D,X ]− 1Mn(C) are λ1 − 1, . . . ,λn − 1. Using the

property of operator norm we finally get

�[d,x]−1A �= �[D,X ]−1Mn(C)� ≥ sup
1≤ j≤n

|λ j −1|≥ 1.

Conclusion and future work : In this appendix we showed that the result of Tao’s
is valid in more general spaces. One of the future objectives is to improve the bounds
in Theorem 6.6.12 and Theorem 6.5.8.
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LIST OF SYMBOLS AND ABBREVIATIONS
N : Set of natural numbers
R : Field of real numbers
C : Field of complex numbers
{·}n : Collections/sequences indexed by N
M : Subset of natural numbers
Mc : Complement of M
K : R or C
α,β ,γ : Elements of K
H , H0, . . . : Separable Hilbert spaces
h, h0, . . . : Elements of Hilbert spaces
H ⊗H0, . . . : Tensor product of H and H0

�·, ·� : Inner product which is linear in first variable and conjugate
linear in second variable

X , Y , . . . : Separable Banach spaces
� ·� : Norm
X ∗ : Dual of Banach space X equipped with operator norm
IX : Identity operator on X

B(X ,Y ) : Banach space of bounded linear operators from X to Y

equipped with operator-norm
cf. : Cross reference (reference may not be the first reference

where the notion/result arose)
ASF : Approximate Schauder frame
OVF : Operator-valued frame
p : A real number in [1,∞)

�p(N) : {{an}n : an ∈K,∀n ∈ N,∑∞
n=1 |an|p < ∞}

�∞(N) : {{an}n : an ∈K,∀n ∈ N,supn∈N |an|< ∞}
L p(R) : { f : R ∈ C, f measurable ,

�
R | f (x)|p dx < ∞}

{en}n : Standard Schauder basis for �p(N)
A : C*-algebra
M , N : Metric spaces
d(·, ·) : Metric on a metric space
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G : Locally compact group
µG : Left Haar measure on G

π : Unitary representation of G

U : Group-like unitary system
Xd : BK-space
Lip(·) : Lipschitz number
(M ,0) : Pointed metric space
� ·�Lip0

: Lipschitz norm
Lip(M ,X ) : Space of Lipschitz functions from M to X equipped

with Lipschitz number
Lip0(M ,X ) : Banach space of base point preserving Lipschitz functions

from M to X equipped with Lipschitz norm
Lip0(X ) Lip0(X ,X )

F (M ) : Lipschitz free Banach space of M

c0(N) : {{an}n : an ∈K,∀n ∈ N, limn→∞ an = 0}
c(N) : {{an}n : an ∈K,∀n ∈ N,{an}n converges in K}
T ∗ : Adjoint of the operator T

θτ : Analysis operator for frame {τn}n for Hilbert space
θ ∗

τ : Synthesis operator for frame {τn}n for Hilbert space
Sτ : Frame operator for frame {τn}n for Hilbert space
θ f : Analysis operator for p-ASF ({ fn}n,{τn}n) for Banach space
S f ,τ : Frame operator for p-ASF ({ fn}n,{τn}n) for Banach space
θA : Analysis operator for OVF {An}n

θ ∗
A : Synthesis operator for OVF {An}n

SA : Frame operator for OVF {An}n

SA,Ψ : Frame operator for weak OVF ({An}n,{Ψn}n)

Mλ , f ,τ : Multiplier
τ ⊗ f : Map defined by (τ ⊗ f )(x) := f (x)τ
f−1 : Inverse of map f

χ[0,1] : Characteristic function on [0,1]
dim : Dimension of a subspace of a vector space
P⊥ : IH −P, whenever P is a projection on H

[·, ·] : Semi-inner product
A† : Generalized adjoint of the operator A in a semi-inner product space
A � : Commutant of a set in an algebra
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ker : Kernel of a linear operator
W⊥ : Orthogonal complement of a subspace W of a Hilbert space
T : Unit circle group centered at origin
group(·) : Group generated by a subset of a group
B(H ) : B(H ,H )

H ⊕H0 : Direct sum of Hilbert spaces H and H0

span W : Closure of span of subset W of a Banach space X

Mn(A ) : C*-algebra of n by n matrices over unital C*-algebra A

[A,B] : AB−BA, commutator of A and B

O2 : Cuntz algebra generated by two isometries
K (H ) : C*-algebra of compact operators in B(H )

dist(x,Y ) : Distance between an element x and a subset Y of a metric space
r = O(s) : Asymptotic notation
C (K) : C*-algebra of all complex-valued continuous functions

on compact Hausdorff space K

A : Non empty set
V : Vector space
J : Index set
Z+ : {0}∪N
δn,m : Kronecker delta
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