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Abstract

Recent advancements in hardware and wireless technology enabled the development of low

cost and energy-constrained tiny devices known as sensors that communicate with each other

at short distances through a wireless link. The collaborative settings of these tiny devices form

a Wireless Sensor Network (WSN). In the recent past, it has gained tremendous interest among

researchers and industrial communities due to its wide spectrum of applications in the real

world. One of the important issue is coverage of the given set of targets under specified con-

nectivity constraint. The other main issue is the interference of signals in the wireless media.

This results in message drop and requires message retransmission which in turn affects the en-

ergy efficiency of the network. Energy conservation is the most critical problem in WSN to

extend stability or lifetime of the network. Many artificial intelligence methods are proposed in

the literature to solve these problems in the wireless sensor network. The first objective of the

thesis work is to deploy an optimal number of sensor nodes with k-coverage and m-connectivity

constraints in an area of interest. The problem of ensuring all the targets are covered by at least k

number of sensor nodes and all the sensor nodes have at least m connectivity with other sensors

nodes is termed as k-coverage and m-connectivity problem in WSN. Many meta-heuristic algo-

rithms have been proposed to solve different problems like clustering and localization in WSN.

In this work, a novel meta-heuristic based differential evolution algorithm to solve k-coverage

and m-connectivity problem in WSN is proposed. The second objective of the thesis is inter-

ference minimization in wireless sensor network. Therefore biogeography based optimization

and multi-attribute decision making techniques are proposed for sensor placement which min-

imizes the interference of sensors by preserving connectivity and coverage constraints. The

third objective of the thesis is to propose an energy efficient clustering technique using artificial

intelligence methods. Therefore a hybrid of game theory and fuzzy logic based hierarchical

clustering algorithms are proposed to increase stability of the network. Also, an interference

aware clustering technique is proposed using TOPSIS to extend stability of the network. Sim-

ulations are carried out to check validity of the proposed methods and compared with other

methods.

Keywords: wireless sensor networks; k-coverage and m-connectivity; interference; clustering;

meta-heuristic; optimization; fuzzy logic; game theory; artificial intelligence
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Chapter 1

Introduction

This chapter gives an overview of Wireless Sensor Network (WSN), its components

and architectures. Further, discusses various design challenges and categories of WSN.

Furthermore, this chapter presents few of the applications of WSN in the real world.

1.1 Background of Wireless Sensor Networks

Recent advancements in microelectromechanical systems (MEMS) and wireless tech-

nology have enabled production of low power, inexpensive, and multifunctional tiny

devices with inbuilt communication, computing, and sensing capabilities known as sen-

sor nodes. These sensor nodes forms a collaborative settings called a Wireless Sensor

Network (WSN) which collects useful information from a field of interest (Akyildiz

et al. (2002)). Wireless sensor networks gained tremendous interest in a wide variety of

applications like disaster management, home automation, traffic control, environment

monitoring, agriculture, health care, and military target tracking. Generally, sensors

are equipped with irreplaceable, limited capacity batteries, and deployed in a hostile or

harsh environment such as deep forest and under water to collect required information.

The sensors are deployed in either a random or pre-planned manner. The deployed sen-

sors are required to ensure full coverage and connectivity with other sensors. Sensor

deployment strategy must reduce overall network cost. That is, minimize the number

of sensors to be deployed. A major part of these sensors energy is drained in data trans-

mission and receipt. Another main reason for the quick power drain in WSNs is due
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to the interference of signals in the wireless media. This results in message drop and

requires message retransmission, which in turn affects the energy efficiency of WSNs.

Moreover, the deployed network must be able to monitor all the target points by pre-

serving connectivity of the network. Thus, an energy management of sensors plays an

important role in prolong lifetime of the WSNs. There are many methods proposed

to achieve energy efficiency of the WSNs which includes target coverage solutions for

WSNs (Slijepcevic and Potkonjak (2001a); Cardei et al. (2005)), interference minimiza-

tion methods for WSNs (Buchin (2008); Bilò and Proietti (2008); Panda and Shetty

(2011); Shetty and Lakshmi (2016)), combined target coverage and connectivity solu-

tions for WSNs (Jehan and Punithavathani (2017); Gupta and Jha (2019)), and energy

efficient clustering and routing methods for WSNs (Kuila and Jana (2014); Lalwani

et al. (2018); Nomosudro et al. (2019)).

1.2 Structure of Sensor Node

Power Unit

ADCSensor

CPU

Memory
Transceiver

Location Finding System Mobilizer

Figure 1.1 Block diagram of a sensor node

In general sensor has four subsystems: (i) a sensing subsystem which includes one or

more sensors with associated analog-to-digital converters for data acquisition (ii) a pro-

2



cessing subsystem consists of a micro-controller and memory for local data processing

(iii) a transceiver for data communication and (iv) a power unit. In few applications,

sensor nodes equipped with additional components, like location finding system such

as global positioning system (GPS) to locate their position, a mobilizer to give mobility

to the sensors. The Figure 1.1 depicts the block diagram of a sensor node.

1.2.1 Sensing Unit

The sensing unit of a sensor node differentiates it from other embedded hardware with

its communication capabilities. Each sensing unit may consists of several sensors units

and each sensor unit is responsible for collecting information of a certain type, like

temperature, humidity, and light. The sensing unit has two sub units, a sensor and

an analog-to-digital converter (ADC). The analog signals generated by sensors corre-

sponds to observed phenomenon of a physical world and are converted to digital signals

by the ADC, and finally send to the processing unit.

1.2.2 Processing Unit

The processing unit controls and manages every other units of sensor node. It may

associated with onboard memory or a separate storage unit. The processing unit enables

other subsystems to perform sensing operation, runs algorithms, and collaborate with

other sensor nodes.

1.2.3 Transceiver Unit

The Transceiver unit is responsible for performing communication between any two

sensor nodes. It implements the necessary procedures to convert bits into radio fre-

quency (RF) waves and recover at the other end.

3



1.2.4 Power Unit

Power unit is the essential component of a sensor node. Generally, sensor is equipped

with a battery, but other energy sources are also available. Each unit in the sensor node

gets power through the power unit. The limited capacity of this unit demands energy

efficient operation and tasks, which are performed by the other units.

1.2.5 Location Finding System

Many of the wireless sensor network applications, sensing and routing techniques de-

mands knowledge of the physical location of a node. Thus, sensor node is equipped with

a location finding system. This subsystem may consist of a GPS module for high end

sensor node or may be a software module that implements the localization algorithm,

which provide location information.

1.2.6 Mobilizer

The mobilizer unit is responsible for the movement of a sensor node. Mobility demands

extensive energy resources and should be provided efficiently.The mobilizer operates by

interaction with the sensing unit and processing unit to manage the movements of the

sensor node.

1.3 WSN Architecture

A WSN consists of large number of spatially distributed tiny, battery operated sensor

nodes with one or more base stations. These sensor nodes monitors physical phenomena

of environments in real time such as temperatures, pressure, vibration, or motion and

produce sensory data, finally send to the base station, either via single-hop or multi-hop

communications. The generated data is forwarded to the base station in a continuous,

event-driven, query-driven or hybrid manners depending on the applications of the sen-

4



sor network. In continuous data forwarding, all sensors forwards the sensed data in

periodically to the base station. In event-driven, sensed data is forwarded whenever

event has occurred. In case of query-driven model, the BS sends a query to all the

sensor nodes to get sensed data of interest from the environment. Some application de-

mands combination of continuous, event-driven, and query-driven for data forwarding

in WSN. There are two types of WSN architecture, flat and hierarchical discussed in

the literature (Kuila and Jana (2017).

1.3.1 Flat Architecture

In this type of network, each sensor node has the same responsibility of performing the

task. The sensor nodes forward sensed data to the base station through single-hop or

multi-hop communication.

(b)

(a)

Base station

Figure 1.2 Flat wireless sensor network architecture: (a) single-hop communication
(b) multi-hop communication

5



The Figure 1.2 (a) depicts a single-hop communication model, which is suitable

for small area networks. The Figure 1.2 (b) shows a multi-hop communication model,

which is suitable for a large area network. In this architecture the sensor node may select

another sensor node as a relay-node to forward the sensed data to the base station.

1.3.2 Hierarchical Architecture

In this model, the sensor nodes are divided into several groups called clusters and each

cluster has a cluster head (CH).

(b)

(a)

Base station

Sensors

Figure 1.3 Hierarchical wireless sensor network architecture: (a) CHs to base station
single-hop communication (b)CHs to base station multi-hop communication

All sensor nodes forward sensed data to the base station via CH. The CHs are re-

sponsible for aggregating data received from its members send data directly to the base

station with single-hop communication as shown in Figure 1.3(a) or through multi-hop

communication between CHs as shown in Figure 1.3 (b)
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1.4 Challenges in WSN Design

Main characteristics of wireless sensor networks and their applications are to overcome

various challenges in the design of sensor networks. The WSN demands different re-

quirements based on application and hence it is not feasible to answer all the design

challenges of WSN. However, a few of the main challenges are described in the follow-

ing subsections (Akyildiz and Vuran (2010)).

1.4.1 Power Consumption

Generally, sensor nodes are equipped with a limited power source (< 0.5Ah, 1.2V) and

frequent recharge or replacement of battery is not feasible. Each sensor node in a sensor

field is responsible for detecting events, performing local data processing, and then

transmitting the data to the base station. Power consumption in WSN is divided into

three domains, sensing, communication, and data processing, which are performed by

the sensors, the radio, and the CPU respectively. It is observed that, among these three,

a sensor node spends maximum energy for data communication. WSN lifetime has a

strong dependency on battery lifetime. Therefore the design of hardware, power-aware

protocols, and energy-efficient algorithms for a WSN are given highest importance.

1.4.2 Production Cost

The WSN consists of a large number of sensor nodes and hence cost of each sensor

node decides the cost of the network. If the cost of the network is more expensive than

deploying traditional single-sensor devices, then the sensor network cost will not be

justified. The cost for Bluetooth is usually less than $10 and the cost of the sensor node

should be less than $1 to have a practically feasible network. Further, sensor nodes may

be equipped with additional units like a location-finding system and mobilizer. which

adds cost to the sensor devices. As a result, keeping the cost of a sensor node reasonably

low is very challenging for a given number of functionalities.
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1.4.3 Scalability

The number of sensor nodes deployed in a sensing field may be in the order of hundreds

to thousands. Thus, the networking protocols and algorithms developed for this network

should be able to handle such a large network efficiently. The high-density deployment

of sensor nodes in a field provides redundancy and improves the fault tolerance of the

network and also creates scalability challenges.

1.4.4 WSNs Topology

A large number of sensors are deployed in an inaccessible and harsh environment and

prone to frequent failures making topology maintenance a challenging task. The major

task of deployment of sensor nodes is to monitor required field efficiently and topology

maintenance. After the deployment of sensor nodes, the protocol parameters and opera-

tions must be adapted according to the network topology. Sometimes, the redeployment

of sensor nodes may be necessary if several nodes fail or deplete their energy to prolong

the network lifetime.

1.4.5 Self Organization

In most applications, sensor nodes are deployed in harsh environments, and in such

scenarios network expects to function less or without human intervention or sensor

nodes are capable of self-organization.

1.4.6 Sensing, Processing, and Communication Capabilities

The sensor nodes have limited sensing, processing, and communication capabilities.

Thus, they can perform limited computational functionalities and communicate within

a short-range. These hardware constraints bring many challenges in protocols and algo-

rithms design for WSNs. All the algorithms and protocols for sensor networks should

consider energy, processing, and communication limitations.
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1.5 Categories of WSN

The wireless sensor networks are divided into different categories based on several fac-

tors such as types of nodes, node mobility, and deployment environment. Considering

these factors WSNs are broadly categorized as follows (Pal and Misra (2016)).

1.5.1 Wireless Underwater Sensor Network

The advancement of wireless underwater sensor network provides opportunities for ex-

ploring the flora and fauna of oceanic environments. These networks help in monitoring

underwater resources and structures, such as oil rigs. The networks use acoustic signal

instead of radio signal for communication. The acoustic signal are more suitable for

the underwater environment than radio signal due to their high attenuation. The chal-

lenges of these networks involve high propagation delay, low link capacity, inherent

mobility of nodes, sparse deployment of costly nodes, and failure due to environmental

conditions.

1.5.2 Wireless Underground Sensor Network

This type of networks is used in intelligent agriculture and irrigation, monitoring soil

quality, and border patrol. Both electromagnetic and magnetic induction are used as

the communication medium to interact with ground nodes and underground nodes. The

different parameters like soil temperature, moisture, composition, and depth affect the

quality of communication, maximum communication range of the node is around 4.5 m

when soil moisture is high and the burial depth of the node is 35 cm.

1.5.3 Wireless Multimedia Sensor Network

The nodes of the network are equipped with low cost CMOS cameras and microphones.

The multimedia nodes are deployed in a pre-planned manner for providing proper target
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coverage. The nodes communicate the monitored data in the form video, audio, and

image. In this type of networks, multimedia data is of high volume and faces the delay

in data communications.Thus, multimedia networks demands high bandwidth and high

energy for quality and reliable services.

1.5.4 Wireless Mobile Sensor Network

Recently, mobile sinks and mobile sensors are used in this type of network to reduce

communication overhead of the static nodes. Mobile networks provide good connectiv-

ity, better reliability, and energy efficiency. The networks pose some challenges such as

mobility management, mobility aware transmission, timely detection of mobile nodes,

and data transfer.

1.6 Applications of WSN

The WSN emerged as a attractive technology for development of various commercial

and academic applications. This spectrum of applications include safety and security

systems, weather and climate monitoring system, crop and irrigation systems, and ex-

ploration of solar systems. Some of the important applications are discussed below and

summarized in Figure 1.4 (Akyildiz and Vuran (2010)).

1.6.1 Military Applications

The rapid deployment, fault tolerance, and self organizations nature of WSN made

it an integral part of military command, control and communication systems. Some

of the military applications include military operations, sniper detection, battle field

surveillance and damage assessment, also used in nuclear, biological, and chemical

attack detection.
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Applications of WSN

Military

Environmental

Health

Home

Smart city

Industrial

Military operations,
Sniper detection,

Battle field surveillance

Flood detection,
Forest fire detection,
Precision agriculture

Patient monitoring,
Emergency responses,
Health-care systems

Home appliances,
Water monitoring,
Electricity monitoring

Traffic monitoring,
Sewage monitoring,
Air quality monitoring

Sensing and control,
Structural health monitoring,
Building automation

Figure 1.4 Summary of wireless sensor network applications

1.6.2 Environmental Applications

The self coordination nature of the WSN has an advantage in building various environ-

mental applications such as disaster detection and monitoring systems which are results

of natural forces. Few environmental applications include forest fire detection, early

flood detection, precision agriculture and irrigation, tsunami and volcano detection and

monitoring, and pollution studies.

1.6.3 Health Applications

The development of smart integrated and implanted biomedical devices enhanced usage

of WSN in health applications. Few health-care applications include patient monitoring

and emergency response systems.

1.6.4 Home Applications

Sensors and actuators are inbuilt into home appliances such as washing machines, re-

frigerators, vacuum cleaners, heaters. The sensors that are inside domestic devices
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interact with each other or the outside world using the internet. Few other applica-

tions include electricity monitoring, water monitoring, and air conditioner monitoring

systems.

1.6.5 Smart City Applications

In the recent past, various WSN applications are developed for urban and metropolitan

cities to make human life smooth and comfortable. Some applications include conges-

tion and traffic monitoring systems, vehicle navigation systems, road surface monitoring

systems, sewage chemical monitoring systems, and air quality monitoring systems.

1.6.6 Industrial Applications

Technological advancement in the industrial internet of things (IIOT) increased the us-

age of WSN in a wide variety of applications in industries such as industrial sensing and

control systems, preventive maintenance systems, building automation, and structural

health monitoring. Few commercial applications include material fatigue monitoring

and product quality monitoring systems.

1.7 Thesis Overview

The thesis is organized as follows. Chapter 1 provides a brief introduction to wireless

sensor network. Chapter 2 presents related work on sensor placement and cluster-

ing techniques in WSN, also gives proposed research objectives and contributions of

the thesis. Chapter 3 gives DE based sensor placement in WSN with target coverage

and connectivity requirements. Chapter 4 describes the BBO based method for min-

imum interference sensors placement in WSN with target coverage and connectivity

constraints. Chapter 5 presents a hybrid artificial technique for clustering in WSN.

Chapter 6 presents a combined goal of interference aware sensor placement and clus-

tering using a multi-attribute decision making method. Chapter 7 outlines the thesis
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contributions and provides future research directions.

1.8 Chapter Summary

In this chapter, background of WSNs, structure of a sensor node, WSNs architecture,

and categories of WSN are discussed. Various WSN design challenges are addressed in

the chapter. Few real-world applications of the WSNs are also discussed in the chapter.

Finally, the structure of the thesis is presented in the chapter.
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Chapter 2

Literature Review

This chapter discusses some of the prominent works on wireless sensor networks. Our

discussion is limited to three problems on WSNs that include target coverage problem,

interference minimization problem, and clustering problem. The chapter also briefs

about motivation of the work, research objectives, and contributions of the thesis.

2.1 Target Coverage Problem in WSNs

Figure 2.1 Classifications of coverage problem

Coverage and connectivity are two crucial issues for the quality of service in the

WSNs. The coverage in the WSNs defines how well each target point of a deployed

network is under the vigilance of a sensor node. Also, the connectivity of WSNs defines
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every node pair that can directly or indirectly communicate with each other. There is a

need to monitor different targets or regions in the sensor field for effective information

transmission to the base station. Various class of coverage problems are studied in

the literature (Wang (2011b)). The coverage problems are divided based on network

deployment type, node sensing models, target characteristics, application attributes, and

monitored areas as shown in the Figure 2.1. The classifications of coverage problems

are detailed below:

2.1.1 Network Deployment

2.1.1.1 Determined Network Coverage

These networks based on predefined settings like the shape of the network, the location

of a sensor node, etc., are known in advance. In this type of coverage, sensor nodes

are deployed in a predefined manner; however, many cases sensor nodes cannot be

deployed in a deterministic pattern. In this type of placement, coverage is easier than a

random coverage.

2.1.1.2 Random Coverage

In this type of network, there is no prior information regarding the type of topology

structure or node position in the network. The placements of sensors in an inaccessible

or hostile area demands random deployment. In this type of settings, location for sen-

sors are unevenly distributed, hence some regions are highly dense and some regions

are sparse. In the dense regions, targets are covered by more sensors than the sparse

regions.
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2.1.2 Node Sensing Models

2.1.2.1 Binary Disk Model

In this model, a node senses a region of disk shape which has a radius R (sensing range)

and is centered at c. The target z is sensed or not is indicated by the value 1 or 0. If

dis(z,c)≤ R, then the value is 1, which means that target is within the sensing range of

the sensor and the value is 0 otherwise. Here, dis(z,c) stands for the Euclidean distance

between centre and target. Figure 2.2(c) illustrates such a binary disk model, which

covers target z and Figure 2.2(d) shows the target point z is 3-covered by three disks.

2.1.2.2 Index Model

This model gives information about the chances to sense a target in the network. The

state of a target to be sensed is inversely proportional to the kth power of the distance

between the target (T) and sensor node (S), i.e., sensing chances = c( 1
[dis(T,S)])

k, where

k ≤ 2 and c is a constant which is determined by network characteristics.

2.1.2.3 Probabilistic Model

It is an extension of the binary sensing model. For probabilistic model a quantity, Ru

is defined such that Ru < Rs where Rs is the radius of a circular disk and an interval

(Rs − Ru,Rs + Ru) is defined for the the probability to detect an object is p. Based

on the given probabilistic model, the sensing of a point C(x,y) by a sensor Si is given

below:

C(x,y)(Si) =


0 : Rs +Ru ≤ d(Si, p)

e−ωaβ

: Rs −Ru < d(Si, p)< Rs +Ru

1 : Rs −Ru ≥ d(Si, p)

Where a = d(Si, p)− (Rs −Ru), and ω , β are measured parameters for detection prob-
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abilities, when an object is within a certain distance from a sensor.

2.1.2.4 Binary Sector Coverage Model

The Binary sector coverage model is a Boolean directional coverage model, Figure 2.2(a)

illustrates such a sector model, where φs is is called orientational angle and ω is called

visual angle of the sector model, and Rs is called sensing range.

b
Rs

b b b

b
b b

b

φs

φz
ω

(a) (b) (c) (d)
Rs

z
z z z

s1 s2 s3

s4 s5 s6

s

Figure 2.2 Illustrations of (a) a directional binary sector coverage model; (b) a space
point being 3-covered by three sectors; (c) an isotropic binary disk coverage model;
(d) a space point z being 3-covered by three disks.

The coverage function of the sector model is given by,

f (d(s,z),φz) ==


1 : d(s,z)≤ Rs and φs ≤ φz ≤ φs +ω

0 : othewise

where d(s,z) is the Euclidean distance between a sensor s and a space point z, and φz

is their angle. The coverage function defines a sector and all space points within such a

sector have a coverage measure of 1 and are said to be covered by this sensor. All space

points outside such a sector have a coverage measure of 0 and are said to be not covered

by this sensor. In Figure 2.2(a), the space point marked by a triangle has a coverage

measure of 1 and is covered by the sensor sector. Figure 2.2(b)shows 3-covered by

three sensor sectors s2, s5, and s6.
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2.1.3 Target Characteristics

2.1.3.1 Static Target Coverage

Static targets are stationary targets to the sensing node. This type of coverage works

to maximize coverage and minimize the redundancy of sensor nodes. This approach is

observed in daily life situations such as monitoring temperature.

2.1.3.2 Dynamic Target Coverage

The dynamic targets can move and are not stationary to the sensing node. The main

focus of such a coverage is the movement of the dynamic target. It is complicated as

compared to the static one. This coverage is very useful for military purposes as it can

be used for battlefield surveillance.

2.1.4 Application Attributes

2.1.4.1 Energy-Saving Coverage

Energy-Saving coverage focuses on the energy consumption by the network. Due to

the limited energy resource, coverage is achieved by dividing the sensing nodes into the

subsets of active and sleep nodes in different rounds. This type of coverage is suitable

for maximizing network lifetime with energy preservation.

2.1.4.2 Connectivity Coverage

Connectivity coverage focuses on connectivity constraints like m-connectivity cover-

age. This coverage type finds application in monitoring critical targets. k-coverage of

WSN defines each sensor covers at least k target points. k-coverage and m-connectivity

of WSN define that each sensor covers k targets points by maintaining m connectivity

with their neighbour sensor nodes.
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2.1.5 Monitored Areas

2.1.5.1 Regional Coverage

In regional coverage, a portion of the area or monitored space is under the surveillance

of at least one sensor. This coverage type finds application in forest protection against

fire. Here, sensing nodes are densely deployed that results in overlapped coverage.

2.1.5.2 Point Coverage

Under the point coverage, only a limited number of discrete objects or target points are

to be monitored. In this type of coverage, the sensor nodes are divided into node subsets

under the stochastic distribution. In this type of division, each subset works at a time

that results in the maximization of the network lifetime.

2.1.5.3 Barrier Coverage

Barrier coverage computes the probability of objects movement in the targeted area.

The probability is determined by the movement rate of the object and sensing inten-

sities of the sensors for every point on the path followed by the object. Based on the

calculation the density of sensor nodes can be computed.

2.2 Prominent Works on Coverage Problems in WSNs

A wide range of deployment methods are presented in the literature. These sensor

deployment techniques are proposed to satisfy certain objectives like target coverage,

connectivity, energy efficiency and network cost.

To solve the target coverage problem, the authors Slijepcevic and Potkonjak (2001b)

have discussed a heuristic that produces a disjoint sensor cover, That is, sensor do not

present in more than one sensor cover set. The authors Cardei et al. (2005) have pro-

posed an approximation algorithm to solve a coverage problems in WSNs. Here, the
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lifetime of the network is extended without considering a disjoint set and hence sensor

nodes can present in more than one sensor cover set. The authors Mini et al. (2013)

have used an artificial bee colony algorithm to solve target coverage problem. Here, the

objectives are identifying optimal locations for sensor placement and scheduling these

sensors to maximize the lifetime of the network with the required coverage level. The

authors Panda et al. (2017) have proposed a heuristic method for a target coverage prob-

lem to increase the lifetime of the network. The heuristic method supports 2-connected

target coverage property which provide fault tolerant to the network. The authors Singh

et al. (2018) have proposed a heuristic technique that maximizes the lifetime of the net-

work by generating maximum coverage set and each coverage set can monitor a given

target set. The authors Gupta and Jha (2019) have proposed a solution for a cover-

age and connectivity problem using Biogeography-based optimization meta-heuristic

approach. It finds a minimum number of potential positions to place sensor nodes to

achieve k-coverage of targets and m-connectivity with other sensors for a given set of

location points. The authors Moh’d Alia and Al-Ajouri (2017) have adopted a Har-

mony Search Algorithm (HSA) for sensor placement to maximize the coverage and

minimize the network cost. The authors Barkhoda and Sheikhi (2020) have proposed

a k-coverage and m-connected sensor placement problem in WSNs using Immigrant

imperialist competitive algorithm (IICA).

The authors Mini et al. (2012) have discussed three coverage issues such as simple,

Q-coverage, and k-coverage. In this scheme, the authors solved the coverage prob-

lem by designing cover optimization in the first phase, and M-connected optimization

in the second phase. The main drawback of this algorithm is its high computational

complexity. The authors Kalayci et al. (2007) have proposed a solution for k-coverage

of the network field by maintaining connectivity between the sensor nodes. The au-

thors Chand et al. (2018) have found a cover set with a minimum number of sensors

to prolong the total network lifetime using a Genetic algorithm (GA) based approach.
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Table 2.1 Comparisons of various works on coverage problems in WSNs

Parameters

References Methods Coverage Connectivity Energy Cost

Slijepcevic and Potkonjak (2001b) Heuristic
√

Cardei et al. (2005) Heuristic
√

Panda et al. (2017) Heuristic
√ √

Jehan and Punithavathani (2017) GSA
√ √ √

Gupta et al. (2016) GA
√ √ √

Moh’d Alia and Al-Ajouri (2017) HSA
√ √

Wang et al. (2019) PSOA
√

Gupta and Jha (2019) BBOA
√ √ √

Barkhoda and Sheikhi (2020) IICA
√ √ √

Jaiswal and Anand (2021) GWOA
√ √ √ √

To achieve that, the authors defined target coverage problem as the maximum network

lifetime problem (MLP) and designed using the linear programming. Besides, the au-

thors Rebai et al. (2015) have developed a genetic algorithms to identify the optimal

positions to deploy sensor nodes in a way that the set of sensors cover the entire field

and also ensures connectivity among them. The drawback of this technique is that

the crossover operation may produce an invalid offspring. This problem handled by

authors Gupta et al. (2016) and solved both coverage and connectivity problem using

an improved GA approach. The methods obtains the minimum number of potential

positions to place sensor nodes to achieve k-coverage of targets and m-connectivity.

The authors Jehan and Punithavathani (2017) have proposed a Gravitational Search

Algorithm (GSA)-scheme for wireless sensor node deployment in the network. This

scheme provides l-coverage and n-connectivity in the WSN. The authors Gupta and Jha

(2019) have proposed a Biogeography-Based Optimization (BBO) scheme for solving

the target coverage problem, where optimal sensor locations are computed for achiev-

ing k-coverage and m-connectivity of the given WSN. The authors Jaiswal and Anand

(2021) have proposed a Grey Wolf Optimization Algorithm (GWOA) to deploy sen-
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sors to achieve a good quality of service in the Internet of Things (IoT) applications.

This technique considers coverage, connectivity, energy efficiency, and network cost as

parameters to decide the appropriate locations to deploy sensors. The authors Wang

et al. (2019) have proposed a sensor deployment method for target coverage solution

using Particle Swarm Optimization Algorithm (PSOA). Mobile sensors are used for

coverage patching in the proposed technique. Various sensor deployment methods and

performance indicators considered are summarized in Table 2.1

2.3 Interference Problem in WSNs

One of the fundamental problems of energy drains in WSNs is due to the interference of

signals during sensing, transmission, and receiving data in wireless media. The interfer-

ence leads to packet loss and requires re-transmission of packets, that in turn affects the

energy efficiency of the networks. Therefore, it is essential to minimize the interference

of the networks to enhance the lifetime.

Consider a network model that is denoted by a graph G(V,E). The graph consists of

vertex set V that represents n sensors, edge set E that represents transmission (commu-

nication) range of the sensors. Then, the number of transmission range that covers node

v ∈ V gives the communication interference of node v. In the WSN, if a node v has a

communication range C(v), then we can construct a communication disk centred at v

with a radius equal to its communication range.

The communication disk of a vertex v is defined as a circle centred at v and its com-

munication range C(v) as its radius, denoted by D(v,C(v)). Let Sr and Cr be the sensing

radius and communication radius of each sensor respectively. There are two types of

transmission interference found in the literature namely Sender interference and Re-

ceiver interference as detailed below Shetty and Lakshmi (2016).
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2.3.1 Sender Interference

The number of vertices that lie in v’s communication disk determines the Sender inter-

ference of v, and formally defined as follows:

Is(v) = |{u ∈V \{v},u ∈ D(v,C(v))}| (2.3.1)

2.3.2 Receiver Interference

The Receiver interference of a vertex v is defined as the number of vertices having the

vertex v in their communication disk and given as follows:

Ir(v) = |{u ∈V \{v},v ∈ D(u,C(u))}| (2.3.2)

2.4 Prominent Works on Interference Minimization Problems

To minimize the interference of the WSNs, researchers proposed variants of topology

control-based interference minimization solutions in WSNs. The author Buchin (2008)

has proved that the problem of minimizing maximum receiver interference of the net-

work is NP-hard. The authors Bilò and Proietti (2008) gave algorithms for minimizing

the maximum sender interference. The authors Agrawal and Das (2013) have proposed

an algorithm for minimizing maximum interference as well as total interference of the

network. The Authors Panda et al. (2012) have proposed a heuristic that assigns differ-

ent power levels to sensors such that resulting networks have minimum interference by

preserving connectivity of the network

The authors Panda and Shetty (2011) have proposed two new models SUM and

MAX, and presented algorithms for minimizing maximum and average node interfer-

ence for WSN. The author Rangwala et al. (2006) have presented an algorithm that pro-

duces the best Sender interference spanning tree for the input distribution of the nodes
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Table 2.2 Comparisons of various works on interference minimization problems in
WSNs

Interference minimization parameters

References Methods Sender Receiver Total

Buchin (2008) Heuristic
√

Bilò and Proietti (2008) Heuristic
√

Agrawal and Das (2013) Heuristic
√

Shetty and Lakshmi (2016) Heuristic
√

Mohanty and Udgata (2020) Heuristic
√

in the plane and gives minimum interference value for the WSN. The author Lou and

Lau (2011) try to minimize the average interference of the WSN. The authors Shetty

and Lakshmi (2016) have proposed an algorithm for WSN and broadcast networks that

minimizes maximum receiver interference. The authors Mohanty and Udgata (2020)

have proposed a probabilistic interference model for minimizing the maximum receiver

interference. The summary of various interference problems are presented in Table 2.2

2.5 Clustering in WSNs

Various methods and techniques are found in the literature for clustering in WSNs to

achieve the energy efficiency of the network. The most famous clustering algorithm

LEACH Heinzelman et al. (2000) selects CHs on a rotation basis and ensures energy

consumption is evenly distributed in the network. However, the random rotation to se-

lect CHs leads to uneven distribution of CHs in the network. To overcome this issue,

LEACH-C Heinzelman et al. (2002) algorithm is proposed. In this technique, the base

station elect CHs based on their distance to the base station and energy of the node.

The authors in DEEC Qing et al. (2006) used ratio between residual energy of sen-

sor node and average energy of the network for the election of appropriate CHs in the

network. The algorithm HEED Younis and Fahmy (2004) selects CHs periodically us-

ing residual energy and degree of nodes. Many meta-heuristic techniques are proposed
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Table 2.3 Comparisons of various cluster heads selection techniques

Parameters

References Method R
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Heinzelman et al. (2002) Random
√ √

Qing et al. (2006) Random
√

Younis and Fahmy (2004) Random
√ √

Lalwani et al. (2018) Meta-heuristic
√ √

Nomosudro et al. (2019) Meta-heuristic
√ √ √

Panchal and Singh (2021a) Fuzzy-C means
√ √

Yang et al. (2016) Game theory
√

Baranidharan and Santhi (2016) Fuzzy logic
√ √ √

Toloueiashtian and Motameni (2018) Fuzzy logic
√ √ √

Logambigai and Kannan (2016) Fuzzy logic
√ √ √

Agrawal and Pandey (2018) Fuzzy logic
√ √ √ √

for clustering in the network. The authors Lalwani et al. (2018) have consider energy

and distance to the base station for selecting appropriate CHs. The authors Nomosu-

dro et al. (2019) have used residual energy, distance to the base station, and distance to

neighbouring nodes (member nodes) for selecting CHs.The authors in Edla et al. (2019)

have proposed a load balanced clustering method by considering mean cluster distance,

gateways load and number of heavily loaded gateways in the WSN. The authors Panchal

and Singh (2021a) have proposed a Fuzzy-C means based hybrid hierarchical structure

for clustering that considers energy and distance parameters for CHs selection. The

authors in Panchal and Singh (2021b) have proposed an optimum cluster head selection

method based on residual energy, Euclidean distance, and location of the grid-centroid

of CHs. The authors Yang et al. (2016) have used a game theory based technique for

selecting appropriate CHs. It uses energy and distance to neighbouring CHs to elect
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final CHs. The authors Baranidharan and Santhi (2016) have a proposed a fuzzy logic

based clustering algorithm. The algorithm considers residual energy, node degree, and

distance to the base station as fuzzy input parameters. The authors in Toloueiashtian

and Motameni (2018) have proposed a fuzzy logic based approach for clustering by

considering residual energy, distance to base station, and degree of the node. The clus-

tering by Logambigai and Kannan (2016) have used a fuzzy logic method with resid-

ual energy, node degree, and distance to the base station as fuzzy input variables. The

authors Agrawal and Pandey (2018) have proposed a fuzzy logic based clustering tech-

nique. The authors consider residual energy, node degree, distance to the base station,

and competition radius as fuzzy input variables. It is observed that the cluster head

selection based on node degree drains the energy of the node faster and affects the sta-

bility period of the network. The various clustering methods for WSNs are summarized

in Table 2.3.

2.6 Motivation of the Work

In the recent past, WSNs have gained wide attention among researchers and industrial

communities due to their diverse usage in the Internet of Things (IoT) applications.

The primary goal of WSN is to observe and detect events in the given targets and bar-

riers. One of the fundamental issues of WSN is to monitor or track events by covering

required targets and maintaining reliable connectivity of the network. Also, it is neces-

sary to extend the stability of the WSN for data-sensitive and critical applications. In

this context, many works on sensor placement and clustering have been proposed by

researchers. However, these works never consider interference during the sensor place-

ment and clustering. The interference of nodes cause a message drop and results in

quick energy drain during data transfer between member nodes and cluster heads. It is

also essential to note that the various artificial intelligence techniques or hybridization

of these methods are gaining importance in solving a wide spectrum of science and en-
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gineering problems. Hence, the design of a reliable and robust WSN by considering dif-

ferent network performance parameters like target coverage, connectivity, interference,

network stability, and network cost are essential for many real-world applications.

2.7 Research Objectives (RO’s)

Problem Statement

To design and develop computationally intelligent algorithms for minimum interfer-

ence, energy-efficient clustering, and target coverage with connectivity constraints in

wireless sensor networks.

2.7.1 Objectives

RO1. To design and develop a novel algorithm for k-coverage and m-connectivity prob-

lem in wireless sensor networks.

RO2. To design and develop an intelligent interference minimization algorithm for

wireless sensor networks.

RO3. To design and develop a hybrid clustering technique for wireless sensor networks.
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2.8 Research contribution and mappings

The research contributions and mappings of the RO’s to chapters are shown in Table 2.4.

Table 2.4 Details of contributions of the Thesis

Specifics of research
contribution

Research
objective
addressed

Thesis
chapter
presenting
contribution

Journal publication derived from each chapter

k-coverage and
m-connectivity solution
for WSN

RO 1 Chapter 3

C Naik and Shetty D P: “Differential evolution
meta-heuristic scheme for k-Coverage and
m-Connected optimal node placement in
wireless sensor networks", IJCISIM [Scopus].

Interference minimization
with coverage and
connectivity for WSN

RO 2 Chapter 4

C Naik and Shetty D P:" Optimal sensors placement
scheme for targets coverage with minimized
interference using BBO" Journal of
Evolutionary Intelligence, Springer [ESCI, Scopus].

Hierarchical fuzzy logic
augmented game theoretic
clustering algorithm for WSN

RO 3 Chapter 5

C Naik and Shetty D P: “FLAG: fuzzy logic
augmented game theoretic hybrid hierarchical
clustering algorithm for wireless sensor
networks", IJTS, Springer [SCIE]

Interference aware MADM
for sensor placement
and clustering for WSN

RO2 & RO3 Chapter 6

C Naik and Shetty D P: "MADM: multi-attribute decision
making approach for energy efficient sensor
placement and clustering in wireless sensor
networks" [Communicated]

2.9 Chapter Summary

In this chapter, prominent works on target coverage, interference minimization, and

clustering for WSNs are discussed. Further, motivation for the research work is pre-

sented. The research objectives are listed in the chapter. Finally, the research contribu-

tions and their mappings to the chapters are tabulated.
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Chapter 3

k-Coverage and m-Connected Sensor
Placement Scheme

This chapter discusses the coverage problem in wireless sensor networks. The cover-

age problem is centred around, how well sensors are covered the physical space in a

deployed area (Cardei et al. (2005)). It plays a vital role in extending the lifetime of

wireless sensor networks. Many real-world applications demand a high degree of sen-

sors connectivity and efficient target coverage. Therefore, a novel differential evolution

based scheme is presented in the chapter to solve the k-coverage and m-connectivity

problem of the WSN.

.

3.1 Background

The coverage problem can be termed as a target coverage problem where the sensor

is required to monitor the set of specific locations in the region of interest. The tar-

get coverage problem is divided into simple-coverage, k-coverage and Q-coverage. In

simple-coverage, each target is covered by at least one sensor. In k-coverage, each tar-

get is monitored by at least k sensors. In Q-coverage, each target t j is covered by q j

sensors, where 1≤ j ≤ n and n is a number of targets. Similarly, a sensor is m connected

if at least m sensors are in the transmission range of the sensor.

Sensor node placement is one of the most sought challenges of WSN, where it finds
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optimal locations to place sensor nodes so that some design objective under given con-

straints must be satisfied (Wang (2011b)). Two types of sensor node placement are

found in the literature namely random deployment and deterministic deployment Wang

(2011b); Deif and Gadallah (2014a). A random deployment of the sensor might be

the best choice whenever the sensing field is hostile(e.g.disaster areas). In this type of

deployment, some parts of the sensor field may have a high density of sensor nodes,

and some other parts of the field may have low density. In deterministic deployment,

optimal locations to place sensors are known in advance such that one or many design

objectives of the network must be fulfilled (Wang (2011b)). Therefore, many heuristic

algorithms are proposed to solve target coverage problems like the work in Slijepce-

vic and Potkonjak (2001b). Heuristic techniques are adopted to provide near optima

solutions, whenever exact solutions are unachievable. Thus, most of the real world

problems find solutions by adopting meta-heuristic techniques that do require objective

function and the domain of the variable instead of detailed information about domain

space (Rajpurohit et al. (2017)).

Differential Evolution (DE) is a meta-heuristic technique used in many optimization

problems. This algorithm is useful whenever other bio-inspired algorithm fails (Storn

and Price (1997)). It takes a name from a differentiation operation that is used in the

process of evaluation. The DE algorithm uses similar characteristics of the Genetic

Algorithm (GA) such as mutation, crossover, and selection. The variants of DE, appli-

cations, and its advancement are discussed in the work of Das and Suganthan (2011);

Das et al. (2016); Fan et al. (2018). More detailed technical information and discus-

sion also available in Rajpurohit et al. (2017). The DE based technique used in solving

the clustering problem in WSNs (Kuila and Jana (2014)). The authors Céspedes-Mota

et al. (2018) have adopted DE to place sensor nodes on different geometric shapes which

minimize the energy and increase the coverage area of the network. To the best of our

knowledge no researcher attempted to solve "k-coverage and m-connectivity" problem

of WSNs using DE. The GA has limitations over DE in solving different combinato-

32



rial optimization problems due to its premature convergence. Therefore, we propose a

DE-based approach to solve the “k-coverage and m-connectivity" problem of WSN and

compared it with the GA approach.

3.2 Classical Differential Evolution

Differential evolution is a widely used evolutionary algorithm in many real-world ap-

plications. It is also used in diverse streams of engineering to solve a wide set of opti-

mization problems. The algorithm is divided into five stages that include initialization

of population vector, fitness computation, mutation, crossover, and selection. The algo-

rithm begins with a random population of a specified size. Each vector is a solution to

the optimization problem. The quality of the individual vector is determined using the

fitness value of that vector. Once the vectors are ready, the DE passes through mutation,

crossover, and selection process to obtain feasible solution vectors. Finally, depend-

ing on the fitness value the best vector is selected as the best solution (Kuila and Jana

(2014)). The various stages of classical DE is shown in Fig. 3.1.

3.3 Assumption and Problem Formulation

3.3.1 Assumption

The proposed model is based on how targets are identified and are spread across an area

of interest. A few candidate positions are predetermined to place sensors to sense the

targets. We assume targets, candidate positions, and sensors are stationary. A wireless

sensor node is said to be covering a target if it is in its sensing range. Every sensor

may cover one or more targets. Data acquisition rounds are similar to the technique

proposed in Gupta and Jha (2019). Each sensor node forwards sensed data to the base

station either directly or via other sensor nodes that are in its transmission range as
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Figure 3.1 Flowchart of classical differential evolution

shown in Fig. 3.2.
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3.3.2 Problem Formulation for Node Deployment

Let C = {p1, p2 . . . , pN} denotes the set of the N candidate positions that are predeter-

mined locations on a field of interest and the set of m targets T = {t1, t2, . . . , tM} that are

to be monitored. Then the objective is to select an optimal number of candidate loca-

tions to deploy wireless sensors such that it fulfills “k-coverage and m-connectivity" for

a predetermined value of k and m. Let CR and SR represent communication and sensing

range of the wireless sensor nodes respectively.

Let S(ti), T (si), and C(si) represents set of sensor nodes monitors target ti, set of

target points monitored by sensor node si, and set of sensor nodes with in the commu-

nication range of sensor node si respectively. Formally defined as follows:

S(ti) = {S j |distance(ti,s j)≤ Srange}, ∀ j 1 ≤ j ≤ N (3.3.1)

T (si) = {t j |distance(t j,si)≤ Srange}, ∀ j 1 ≤ j ≤ M (3.3.2)

C(si) = {s j |distance(si,s j)≤Crange}, ∀ j 1 ≤ j ≤ N (3.3.3)

To define the coverage of target, connectivity between sensor nodes, and selection of

final candidate positions, we use variables ti j, si j, and ui respectively. And formally

defined as follows,

ti j =


1, if target ti is in the range of sensor node s j

0, otherwise
(3.3.4)

si j =


1, if sensor si in the communication range of sensor node s j

0, otherwise
(3.3.5)
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ui =


1, if a candidate location pi is selected for node deployment

∀i, 1 ≤ i ≤ N

0, otherwise

(3.3.6)

Final LP-problem formulation is expressed as follows,

Minimize Z =
N

∑
i=1

ui (3.3.7)

Subject to

P

∑
j=1

ti j ≥ k, ∀i, 1 ≤ i ≤ M (3.3.8)

P+1

∑
j=1

si j ≥ m, ∀i, 1 ≤ i ≤ P (3.3.9)

3.4 Proposed Differential Evolution Based Algorithm

Here, we discuss a k-coverage and m-connectivity wireless sensor node deployment in

a wireless sensor network.

Definition 3.4.1. k-coverage and m-connectivity Problem

Let C = {p1, p2 . . . , pN} denote the set of N candidate positions for deploy sensor nodes

to cover set of M targets T = {t1, t2, . . . , tM}, find optimal sensor node placement posi-

tions so that

1. Each target is monitored by at least k sensor nodes, where 1 ≤ k ≤ N

2. Each wireless sensor node in C is in the range of at least m other nodes in C,

where 1 ≤ m ≤ N
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3. Minimize P
N , where P is the obtained candidate locations for deploy sensor

nodes, and N is the total number of candidate locations.

3.4.1 Vector Encoding

In the proposed technique, an array of Boolean values represent each vector. The length

of each vector equals the number of candidate positions on a target area. For a vector,

the ith entry value 1 to indicates a wireless sensor node is deployed on the ith candidate

location, and the entry value 0 represents no wireless sensor node is deployed at the ith

candidate location.

Illustration 1

Let a target based WSN with 5 targets T = {t1, t2, . . . , t5} and 8 candidate positions

C = {p1, p2, . . . , p8} as shown in Fig 3.3(a). The length of the vector is 8 as according

to the number of candidate positions. Fig 3.3(b) represents a vector in which vector

positions p1, p2, p4, p6 and p8 have value 1 that indicates sensor nodes are deployed

on these candidate positions and vector positions p3, p5, and p7 have value 0 that

implies no sensor node is placed on these candidate positions.

3.4.2 Initialization of the Population Vector

The scheme represent vectors as follows. Each vector represent a selection of candidate

positions to place sensors. The Gth generation of ith vector having N components is

indicated as Xi,G = [x1,i,G,x2,i,G,x3,i,G, . . . ,xN,i,G].

3.4.3 Derivation of Fitness Function

Our design objective is to obtain an optimal number of candidate locations to place the

sensor so that each target is k-covered and each sensor node is m-connected with other

sensor nodes for some predetermined values of k and m. We adopt the following pa-
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Figure 3.3 a. A WSN with 5 targets and 8 candidate positions b. Vector representation

rameters to design the fitness function.

1. k-coverage of the targets( f1) To achieve k-coverage of a target at least k wireless

sensor node must monitor the target. So we obtain the first objective of fitness

function as follows:

Maximize f1 =
1

M× k

M

∑
i=1

CovCost(ti) (3.4.1)

Where M is number of target points and CovCost(ti) is defined as follows:

CovCost(ti) =


k, if |S(ti)| ≥ k

k−|S(ti)|, otherwise
(3.4.2)

2. m-connectivity of the sensor nodes( f2) To fulfill m-connectivity, each deployed

sensor node is required to maintain at least m-connectivity among other sensors.
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So we define the second objective of the fitness function as follows:

Maximize f2 =
1

P×m

P

∑
i=1

ConCost(si) (3.4.3)

Where P is the number of selected candidate positions from N candidate positions

to deploy sensor nodes and ConCost(si) is defined as follows:

ConCost(si) =


m, if |C(si)| ≥ m

k−|C(si)|, otherwise
(3.4.4)

3. Selection of optimal candidate positions( f3) The main objective of our scheme

is to determine optimal candidate locations (P) so that each target point must

satisfy k-coverage and each sensor monitor the target must fulfill m-connectivity

with other sensors for the predetermined value of k and m. Therefore, we define

the third objective of the fitness function as follows:

Maximize f3 = (1.0− P
N
) (3.4.5)

On the basis of individual objectives f1, f2, and f3, we devise the final fitness

function F as follows:

Maximize Fitness F = w1 × f1 +w2 × f2 +w3 × f3 (3.4.6)

Where wi is weight, with 0 < wi ≤ 1, 1 ≤ i ≤ 3 and w1 +w2 +w3 = 1. The

objective is to find the better vector having highest fitness value.

3.4.4 Mutation

We adopted DE/best/1/bin scheme (Storn and Price (1997)) for mutation and crossover

operation. DE mutation process is performed on vectors of the population to obtain a
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mutation vector. In this scheme, out of three vectors, the best vector and two random

distinct vectors are selected that are different from the current target vector. Let Xi,G,

Xbest,G, and Vi,G are target, best, and donor vectors respectively. Then the mutation

chromosome is obtained as follows:

Vi,G = Xbest,G +µ ×Di,G (3.4.7)

The scaling factor µ that lies in the interval [0.4, 1] ( Storn and Price (1997)). We set

µ as 1.0 and Di,G = Xr,G −Xs,G with r,s ∈ [1,P], such that r ̸= s ̸= best. This classical

mutation operation does not work for our scenario. The vectors consist of 0’s and 1’s

and subtraction of two components of the vectors gives a difference vector with negative

values. Therefore, we adopted the scheme proposed in Kuila and Jana (2014).

D j,i,G =


1+X j,r,G −X j,s,G if X j,r,G −X j,s,G ≤ 0

X j,r,G −X j,s,G otherwise
(3.4.8)

Again, the same problem may occur at the time of the addition operation. Therefore,

donor vectors are generated as mentioned in ?.

Vj,i,G =


X j,best,G +µ ×D j,r,G −1 if X j,best,G +X j,r,G

> 1

X j,best,G +µ ×D j,r,G otherwise

(3.4.9)

3.4.5 Crossover

A trial vector Ui,G is derived from the target vector Xi,G and the donor vector Vi,G as

shown below:

U j,i,G =


Vj,i,G if Rand() ≤ Cr

X j,i,G otherwise
(3.4.10)
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The crossover probability Cr is set to 0.2. A random number is obtained between 0 and

1 to generate a jth component of a trial vector. If the random number is less than or

equal to Cr, then we select jth component of donor vector as jth component of the trial

vector; otherwise, it is selected from the target vector. The entire process of crossover

is depicted in Fig. 3.4.

Vi,G

Ui,G

Xi,G

j=1

   Rand(0,1) ≤ Cr 
Rand(0,1) ≤ Cr Rand(0,1) ≤ Cr 

Rand(0,1) > Cr Rand(0,1) > Cr Rand(0,1) > Cr Rand(0,1) > Cr 

j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12 j=13 j=14 j=15

Figure 3.4 Crossover operation

3.4.6 Selection

The selection process determines the vector that survives for the next generation, either

the target vector or the trial vector. The vectors are evaluated to find fitness values. The

target vector Xi,G is compared with the trial vector Ui,G and one with the highest fitness

value is selected for the next generation as shown below,

Xi,G+1 =


Ui,G fitness Ui,G ≥ fitness Xi,G

Xi,G otherwise
(3.4.11)

Illustration 2

Consider a wireless sensor network with 5 candidate positions to place sensors C =

{p1, p2, . . . , p5} and 4 targets T = {t1, t2, . . . , t4} as shown in Fig. 3.5. An optimal node

placement shown in Fig. 3.5 (a), which obtains a vector as shown in Table 1. The integer

1 in the cell indicates selection, the integer 0 indicates non selection, and the symbol ‘-’
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Algorithm 3.4.1 The DE based k-coverage and m-connected algorithm for WSN

Input: Set of m targets, set of n candidate positions, values of k and m
Output: Set of optimal candidate positions with k-coverage and m-connectivity.
1. // Generate initial popualtion of size P
2. for i = 1 to P
3. Initialize each ith individual
4. // Using random function.
5. // Differential algorithm starts
6. for itr = 1 to Maxiteration // Generation
7. for each member vector of population Xi,G
8. Compute the fitness using Eq. 3.4.6
9. Select best member vector Xbest,G using best fitness value.
10. Select two random Xr,G and Xs,G, such that r,s ∈ [1,P], r ̸= s ̸= best, and

set µ=1.0.
11. Perform mutation operation using Eq. 3.4.7
12. Set crossover probability(Cr=0.2).
13. Perform crossover operation using Eq. 3.4.10
14. Perform selection operation using Eq. 3.4.11
15. Obtain Best f itness and XBest,G
16. // Obtain optimal positions from XBest,G
17. Obtain set of candidate positions that satisfies k-coverage and m-connectivity.

indicates the empty cell. The variable CovCost(ti) and ConCost(si) represents coverage

cost of targets and connectivity cost of sensors respectively. The fitness value of vector

is computed using the Eq. 3.4.6 is given by, F1 = w1 × f1 +w2 × f2 +w3 × f3, where

w1 = 0.3, w2 = 0.3, w3 = 0.4 and f3 = 1.0− P
N = 1.0− 3

5

F1 = 0.3×1+0.3×1.3+0.4×0.4 = 0.85, here f1, f2 taken from Table 3.1.

The Table 3.2 represents a vector with an extra sensors node placement as shown in

Fig. 3.5(b). The fitness value of vector computed using the Eq. 3.4.6 is given by,

F2 = w1 × f1 +w2 × f2 +w3 × f3, where w1 = 0.3,

w2 = 0.3, w3 = 0.4 and f3 = 1.0− P
N = 1.0− 5

5

F2 = 0.3×1+0.3×1.6+0.4×0.0 = 0.78, here f1, f2 taken from Table 3.2.

Since our objective is to maximize the fitness function, the vector whose fitness value

F1 = 0.85 is better than the vector whose fitness value F2 = 0.78.
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Figure 3.5 2-coverage and 1-connected network scenarios (a) optimal number of placed
wireless sensor nodes and (b) unnecessary and extra placed wireless sensors nodes.

Table 3.1 Optimal sensor nodes placement

(a) CovCost determination

Targets
Sensors

CovCost(ti)p1 p2 p3 p4 p5
1 1 1 0 0

t1 1 1 0 - - 2
t2 1 1 0 - - 2
t3 0 1 1 - - 2
t4 0 1 1 - - 2

f1 =
1

M×k ∑
M
i=1CovCost(ti) = 1

(b) ConCost determination

Sensors
Sensors

ConCost(si)p1 p2 p3 p4 p5
1 1 1 0 0

p1 - 1 0 - - 1
p2 1 - 1 - - 2
p3 0 1 - - - 1
p4 - - - - - -
p5 - - - - - -

f2 =
1

P×m ∑
P
i=1ConCost(si)=1.3

Table 3.2 Unnecessary extra sensor nodes placement

(a) CovCost determination

Targets
Sensors

CovCost(ti)p1 p2 p3 p4 p5
1 1 1 1 1

t1 1 1 0 0 0 2
t2 1 1 0 0 0 2
t3 0 1 1 0 0 2
t4 0 1 1 0 0 2

f1 =
1

M×k ∑
M
i=1CovCost(ti) = 1

(b) ConCost determination

Sensors
Sensors

ConCost(si)p1 p2 p3 p4 p5
1 1 1 1 1

p1 - 1 0 0 0 1
p2 1 - 1 1 1 4
p3 0 1 - 0 0 1
p4 0 1 0 - 0 1
p5 0 1 0 0 - 1

f2 =
1

P×m ∑
P
i=1ConCost(si)=1.6

3.5 Experimental Results

In this section, we discuss the simulation results of the proposed scheme. For simula-

tion, we have used MATLAB R2017b. In our experiment, we have considered random
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and grid scenarios for sensor deployment as shown in Fig. 3.6 and Fig. 3.7. We used

the parameters mentioned in Table 3.3 to carry out simulations.

Base station Candidate position Target point*

Figure 3.6 The first scenario, where candidate positions are on a grid

Base station Candidate position Target point*

Figure 3.7 The second scenario, where candidate positions are random
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Table 3.3 Simulation parameters

Parameters Values
Size of the network field (m2) 300×300
Location of the sink (300,300)
Number of target points 100
Number of potential positions 100-400
Sensing range (m) 15
Communication range (m) 30
Maximum Iteration 100
Population Size 100
Crossover Probability 0.2
Mutation factor (µ) 1.0
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Figure 3.8 Proposed DE scheme

A set of random and grid based wireless sensor networks are generated within a

field size of 300× 300 m2. The number of candidate positions are varied from 100 to

400 in steps of 50; The 100 targets randomly placed on both the scenarios. The network

is assumed to be homogeneous, the initial energy of each sensor is 1J, and sensing

range and communication range of each sensor is 15 m and 30 m respectively. For our

proposed approach, we considered a population of 100 vectors and 100 generations. We

have considered a crossover rate (Cr) and scaling factor (µ) as 0.2 and 1.0 respectively.

The Fig. 3.8a shows performance comparison of different coverage and connectivity
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Figure 3.9 Performance of DE scheme Vs GA scheme

requirements for the grid scenario. The Fig. 3.8b show comparison results of different

coverage and connectivity requirements for random scenario. Both the scenarios show

optimal selected candidate positions by satisfying k-coverage and m-connectivity de-

mands of the wireless sensor networks. The Fig. 3.9a and Fig. 3.9b shows a comparison

between the DE-based approach and the GA-based approach for both the grid and ran-

dom network scenarios respectively, where we considered 100 targets points and 300

sensor nodes. It can be noted that the proposed technique selects a minimum number of

candidate positions for deploying sensor nodes compare to GA-based scheme. It is also

viewed that the selected candidate positions are more for random scenarios compare

to grid scenarios since candidate positions are decided uniformly on a grid. The under

performance of GA-approach over DE-approach is due to premature convergence of

GA-approach.
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3.6 Chapter Summary

In this chapter, DE-based technique for solving k-coverage and m-connectivity prob-

lem in WSN is presented. The technique finds the optimal number of selected candi-

date positions for deploying sensor nodes with specified k-coverage and m-connectivity

constraints. The simulations are performed by varying candidate sensor node positions

and targets points. Finally, the proposed technique is compared with the GA-based ap-

proach. The results confirm that the proposed approach is superior to the GA-based

approach.
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Chapter 4

Interference Aware Sensor Placement Scheme

This chapter addresses obtaining an optimal number of sensors to place in the region of

interest for maximizing target coverage and minimizing the interference of the sensors

while maintaining the connectivity of the network. A novel BBO-based algorithm for

optimal sensor deployment scheme is presented in the chapter. A novel fitness function

with an elegant vector encoding scheme is presented. The proposed method is tested on

random and grid deployment scenarios. Results are compared with other methods and

presented in the later section of this chapter.

4.1 Background

In recent fast, numerous sensor deployment schemes are widely studied by researchers.

Deployment of sensors in a region of interest is categorized into random deployment

and deterministic deployment. Placement of sensors in an inaccessible or hostile area

allows random deployment. Placement of sensors in predetermined locations allow

deterministic deployment or grid deployment (Deif and Gadallah (2014b); Tripathi et al.

(2018); Wang (2011a)).

In random deployment, location for sensors are unevenly distributed, and hence

some regions are highly dense and some regions are sparse. In the dense regions, there

is a possibility for more sensor nodes are interfering during the sensing and transmitting

of the data. One of the main reasons for the quick power drain in WSNs is due to the
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interference of signals in the wireless media. This results in message drop and requires

message retransmission which in turn affects the energy efficiency of WSNs. More-

over, the deployed network must be able to monitor all the target points by preserving

the connectivity of the network. Therefore, It is important to minimize the interfer-

ence of nodes during their deployment to maximize the coverage while maintaining

network connectivity. Due to the advancement of computational intelligence, scientists

have adopted nature inspired techniques to solve real world combinatorial science and

engineering problems such as applications in industry 4.0 (Azizi (2019)). These tech-

niques have been adopted to solve some optimization problems such as k-coverage and

m-connectivity (Barkhoda and Sheikhi (2020)) clustering (Nomosudro et al. (2019);

Lalwani et al. (2018)), and node localization problems in WSNs (Annepu and Rajesh

(2019); Arora and Singh (2017); Nagireddy et al. (2018)).

The proposed scheme employs the Biogeography Based Optimization (BBO) meta-

heuristic technique which is motivated by the study of the geographical distribution

of living beings (Simon (2008)). These geographic regions are well suited for living

beings called habitats or islands. The quality of habitat is determined using Habitat

Suitability Index (HSI). The Suitability Index Variables (SIVs) characterize each habi-

tat. The high HSI habitat has a high emigration rate, where as low HSI habitat has a

high immigration rate. Therefore, low HSI habitats are more dynamic in their species

distribution than high HSI habitats (Simon (2008)). The BBO is considered to be a

powerful search technique because it includes both exploration and exploitation strate-

gies (Ma et al. (2017)). It shows the same characteristic of Genetic Algorithm (GA) and

Differential Evolution (DE) in information sharing among neighbour solutions. The

BBO is adopted in solving combinatorial problems in WSNs such as k-coverage and

m-connectivity (Gupta and Jha (2019)), clustering and routing (Lalwani et al. (2018);

Nomosudro et al. (2019)). Various meta-heuristic techniques are used to solve target

coverage problem alone or target coverage with connectivity problem in WSN. How-

ever, none of them solve a combination of interference and target coverage problems by

50



Start

Compute HSI/Fitness of 
Habitats

Compute Immigration Rate and 
Emigration Rate of Habitats 

Migration Process of Habitats based on 
Immigration Rate and Emigration Rate

Stop

Select Best Habitat based 
on  HSI/Fitness Value

Max 
Iteration ?

Perform Mutation Operation
on Selected Habitats

Compute HSI/Fitness of   
Habitats

No

Yes

Habitats Initialization

Figure 4.1 Flowchart of classical Biogeography-Based Optimization

maintaining connectivity of the WSN and hence a meta-heuristic scheme is adopted to

solve the said combined problem.

4.2 Classical Biogeography-Based Optimization

Biogeography-Based Optimization (BBO) is a widely accepted meta-heuristic algo-

rithm to solve many real world combinatorial problems. It is employed in solving many

science and engineering optimization problems. The algorithm has five stages which

consist of initialization of habitats, fitness calculation, migration, mutation, and selec-

tion. The entire process of BBO is shown in Fig. 4.1.

Fig. 4.2 represent species abundance in a single habitat, where λ and µ are immi-

gration and emigration rate of species respectively. The variables I and E are maximum

immigration and emigration rates respectively. The variable S0 denotes equilibrium

number of species at which immigration and emigration rates are equal. The maximum
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Figure 4.2 Species model of a single habitat in BBO

number of species that can live in a habitat is indicated by Smax.

The species count at habitat i is given by,

Si = Smax ∗
HSIi

∑
Hmax
i=1 HSIi

(4.2.1)

Where Hmax is the number of habitats. The immigration rate of habitat i is given by,

λi = I ∗ (1− Si

Smax
) (4.2.2)

The emigration rate of habitat i is given by,

µi = E ∗ Si

Smax
(4.2.3)

The essential phases of the BBO algorithm are migration and mutation stages as de-

scribed below.

4.2.1 Migration Phase

In this stage, information is shared among habitats. High HSI habitat shares information

with low HSI habitat to obtain a better habitat. The habitats are exchanging their in-
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formation using SIVs. These SIVs are moved between habitats using their immigration

and emigration rates. Suppose the first habitat Hi is chosen based on its immigration

rate and second habitat H j is chosen using the emigration rate, then some SIVs are

moved from H j to Hi.

4.2.2 Mutation Phase

Habitats are prone to undergo sudden changes due to natural catastrophes. The BBO

adopts SIV mutation to model these changes. Each habitat i is associated with a prob-

ability Pi to obtain mutation rate Mi. The value of the Pi is computed using λi and µi.

The high Pi vector has less chance for mutation and a low Pi vector has a high chance

for mutation (Simon (2008))

. The mutation rate is computed using the following formula,

Mi = Mmax ∗ (
1−Pi

Pmax
) (4.2.4)

Where Mmax is user-specified maximum mutation rate, Pi is mutation probability of

ith habitat, Pmax is the maximum mutation probability among habitats, and Mi is the

mutation rate of ith habitat.

4.3 Network Model and Preliminaries

The network is formed using homogeneous nodes having equal energy, same sensing,

and communicating capabilities. Initially, different potential positions for deploying

sensors are identified randomly to monitor set of target points. The sensors that are

deployed in identified locations forward data to the base station directly or via other

nodes. The adopted network architecture for the proposed work is shown in Fig. 5.2.
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Figure 4.3 An instance of a network model

4.3.1 Preliminaries

Suppose P is the set of n potential positions P = {p1, p2 . . . , pn} which are identified

positions on a region of interest. Let T denotes the set of k targets T = {t1, t2, . . . , tk}

are to be monitored. Let S = {s1,s2 . . . ,sm} denotes the set of sensors placed in selected

m potential positions.

Let CR and SR represents the communication and sensing range of the wireless sen-

sor nodes respectively. Euclidean formula is adopted to calculate distance measure

between two points. If p = (x1,y1) and q = (x2,y2) two points on two dimensional

plane then the distance is computed as follows:

distance(p,q) =
√

(x2 − x1)2 +(y2 − y1)2 (4.3.1)

Let αi j, βi, γi, δi j, ψBS
i are sensing interference, target coverage, selection of po-
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tential positions, connectivity between sensors, and connectivity of base station with at

least one sensor respectively. And formally defined as follows:

αi j =


1 distance(si,s j)≤ 2×SR

∀i, ∀ j, 1 ≤ i, j ≤ m

0 otherwise

(4.3.2)

βi =


1 ∃s j ∈ S, Scov(s j, ti) = 1

∀i, 1 ≤ i ≤ k and ∀ j, 1 ≤ j ≤ m

0 otherwise

(4.3.3)

Where Scov(s j, ti) defined as follows,

Scov(s j, ti) =


1 distance(s j, ti)≤ SR

0 otherwise
(4.3.4)

γi =


1 γi is selected for node deployment

∀i, 1 ≤ i ≤ n

0 otherwise

(4.3.5)

δi j =


1 ∃s j ∈ S,distance(si,s j)≤CR

∀i, ∀ j, 1 ≤ i, j ≤ m

0 otherwise

(4.3.6)

ψ
BS
i =


1 ∃si ∈ S, distance(si,BS)≤CR

∀i, 1 ≤ i ≤ m

0 otherwise

(4.3.7)
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Definition 4.1.1

Sensing Interference Ratio (SIR) of the network is the ratio of total sensing inter-

ference experienced by the network to the sum of currently deployed sensors. The

underlying formula for SIR is given in Eq. 4.4.3.

Definition 4.1.2

Target Coverage Ratio (TCR) of the network is the ratio of the sum of target points

covered by the sensors to the total number of target points in the region of interest. The

underlying formula for TCR is given in Eq. 4.4.5.

Definition 4.1.3

Sensor to Potential Position Ratio (SPPR) of the network is the ratio of sum of poten-

tial positions considered for sensor placement to the total number of potential positions.

The underlying formula for SPPR is given in Eq. 4.4.6.

4.4 Proposed Algorithm

Illustration 1

In this work, a BBO based optimal sensor placement algorithm that provides maximum

target coverage and minimum interference is proposed.

Given P = {p1, p2, p3, . . . , pn} and T = {t1, t2, t3, . . . , tk}, the objective is to choose

optimal number of sensors and their positions such that,

1. Minimize the sensing interference for the sensor network

2. Maximize the target point coverage of the sensor network

3. Minimize the selection of potential positions to deploy sensors in the network

while preserving the connectivity of the network.
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Figure 4.4 An instance of vector encoding

4.4.1 Representation of Habitats

In the proposed technique, initial habitats are generated using boolean values. The

number of potential positions in a habitat gives the length of a vector. Placement of a

sensor in ith position is indicated by a boolean value 1 and non placement of a sensor is

indicated by a boolean value 0.

4.4.2 Initialization of Habitats

Each habitat represents selection of potential positions to place sensors. The gth gener-

ation of ith habitat having length n is represented as follows:

Hi,g = [SIV1,i,g,SIV2,i,g,SIV3,i,g, . . . ,SIVn,i,g] (4.4.1)
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The Habitat Suitability Index (HSI) measures the fitness or goodness of ith habitat as

indicated below:

HSIi,g = f ([SIV1,i,g,SIV2,i,g,SIV3,i,g, . . . ,SIVn,i,g]) (4.4.2)

Suppose there are 6 targets T = {t1, t2, . . . , t6} and 8 potential positions P= {p1, p2, . . . , p8}

are considered as shown in Fig. 4.4(a). The number of potential position is the length

of the habitat, which is 8 as according to Fig. 4.4(b).

Fig. 4.4(b) represents a encoded habitat. The binary value 1 in the positions p1, p2, p3, p6, p7

and p8 indicates that the sensor nodes are deployed on these potential positions. The

binary value 0 in the positions p4 and p5 denotes that the sensor nodes are not placed

on these potential positions.

4.4.3 Derivation of Fitness Function

Objective 1

It is to minimize SIR and is formally defined as follows:

Minimize o1 =
1
m

m

∑
i=1

m

∑
j=i+1

αi j (4.4.3)

where m is the number of position selected to deploy sensor nodes.

OR

Maximize o1
′ = 1− 1

m

m

∑
i=1

m

∑
j=i+1

αi j (4.4.4)

Objective 2

It is to maximize TCR and is formally defined as follows:

Maximize o2 =
1
k

k

∑
i=1

βi (4.4.5)
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Objective 3

It is to minimize SPPR and is formally defined as follows:

Minimize o1 =
1
n

n

∑
i=1

γi (4.4.6)

OR

Maximize o3
′ = 1.0− 1

n

n

∑
i=1

γi (4.4.7)

Since all the objectives are conflicting in nature, a final objective function(O) is

devised by applying a weighted sum approach (Atta et al. (2019); Harizan and Kuila

(2019)) as shown below:

Maximize O = w1 ×o1
′+w2 ×o2 +w3 ×o3

′ (4.4.8)

Subject to
1
m

m

∑
i= j=1

δi j × γi +ψ
BS
i = 2 (4.4.9)

Here wi is a weight variable, with 0 < wi ≤ 1, 1 ≤ i ≤ 3, w1 +w2 +w3 = 1, δi j ∈

{0,1}, γi ∈ {0,1} and ψBS
i ∈ {0,1}

The total interference energy loss (ETotal
Loss ) of the network is defined as the total energy

drain due to interference in the network and formally defined as follows:

ETotal
Loss = ITotal

Count ×EInter f erence
Loss (4.4.10)

Where ITotal
Count and EInter f erence

Loss are interference number of the network and the energy

loss per interference respectively.

Illustration 2

Consider an optimal placement of sensors as shown in Fig. 4.4(b) and corresponding

SIR determination and TCR determination are shown in Table 4.1.
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Table 4.1 Optimal sensor nodes placement

(a) SIR determination

Sensors
Sensors and Positions

Icnt(si)p1 p2 p3 p6 p7 p8
s1 s2 s3 s4 s5 s6

s1 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0

o1
′ = 1− 1

m ∑
m
i=1 ∑

m
j=i+1 αi j = 1

(b) TCR determination

Targets
Sensors and Positions

Scov(ti)p1 p2 p3 p6 p7 p8
s1 s2 s3 s4 s5 s6

t1 1 0 0 0 0 0 1
t2 0 1 0 0 0 0 1
t3 0 0 1 0 0 0 1
t4 0 0 0 1 0 0 1
t5 0 0 0 0 1 0 1
t6 0 0 0 0 0 1 1

o2 =
1
k ∑

k
i=1 βi = 1

Table 4.2 Non optimal sensor nodes placement

(a) SIR determination

Sensors
Sensors and Positions

Icnt(si)p1 p2 p3 p4 p5 p8
s1 s2 s3 s4 s5 s6

s1 0 0 0 1 0 0 1
s2 0 0 0 1 0 0 1
s3 0 0 0 0 1 0 1
s4 0 0 0 0 0 0 0
s5 0 0 0 0 0 1 1
s6 0 0 0 0 0 0 0

o1
′ = 1− 1

m ∑
m
i=1 ∑

m
j=i+1 αi j = 0.33

(b) TCR determination

Targets
Sensors and Positions

Scov(ti)p1 p2 p3 p4 p5 p8
s1 s2 s3 s4 s5 s6

t1 1 0 0 0 0 0 1
t2 0 1 0 0 0 0 1
t3 0 0 1 0 0 0 1
t4 0 0 0 0 0 0 0
t5 0 0 0 0 0 0 0
t6 0 0 0 0 0 1 1

o2 =
1
k ∑

k
i=1 βi = 0.67

The variable Icnt(si) and Scov(ti) represents interference count of the sensor si and

sensor coverage of the target ti respectively. The value 1 in the cell indicates whether

the sensor covers another sensor or target and the value 0 indicates the sensor or target

is not covered by another sensor.

The fitness value of the vector is computed using the Eq. 4.4.8 is given by,

O1 = w1 ×o′1 +w2 ×o2 +w3 ×o′3, where w1 = 0.3, w2 = 0.4, w3 = 0.3 and

o′3 = 1.0− m
n = 1.0− 6

8

O1 = 0.3×1+0.4×1.0+0.3×0.25 = 0.775,

here o′1, o2 are taken from Table 4.1.

The non optimal sensor placement of sensors vector is shown in Fig. 4.4(c). The

fitness value of vector computed using the Eq. 4.4.8 is given by,

O2 = 0.3× 0.33+ 0.4× 0.67+ 0.3× 0.25 = 0.442, Here o′1 and o2 are taken from
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Table 4.3 Pictorial view of migration process
Step 1: Randomly generated habitat with
0 and 1 from H1-H5 as shown below

Step 2: Fitness value for each habi-
tat calculated using Eq. 4.4.8

H1 1 1 1 0 0 1 1 1 HSI1 = 0.775

H2 1 1 1 1 1 0 0 1 HSI2 = 0.442

H3 1 1 1 1 0 0 0 0 HSI3 = 0.5

H4 1 1 1 1 1 0 0 0 HSI4 = 0.4325

H5 1 1 1 1 0 0 0 1 HSI5 = 0.4365

Step 3: Let Smax = 1000. Species count
of each habitat are as follows

Step 4: Immigration and Emigration rate
λi = I(1−Si/Smax) and µi = E(Si)/Smax

S1 = 1000× (0.775/2.586) = 299 λ1 = 1× (1−299/1000) = 0.701 and µ1 = 1× (299/1000) = 0.299

S2 = 1000× (0.442/2.586) = 172 λ2 = 1× (1−172/1000) = 0.828 and µ2 = 1× (172/100) = 0.172

S3 = 1000× (0.5/2.586) = 193 λ3 = 1× (1−193/1000) = 0.807 and µ3 = 1× (193/1000) = 0.193

S4 = 1000× (0.4325/2.586) = 167 λ4 = 1× (1−167/1000) = 0.833 and µ4 = 1× (167/1000) = 0.167

S5 = 1000× (0.4365/2.586) = 169 λ5 = 1× (1−169/1000) = 0.831 and µ5 = 1× (169/1000) = 0.169

Step 5: Migration process between selected habitats
H1 1 1 1 0 0 1 1 1

↓ ↓ ↓ ↓
H4 1 1 1 1 1 0 0 0

H
′
4 1 1 1 1 0 1 1 1

Table 4.2. where w1 = 0.3, w2 = 0.4, w3 = 0.3 and o′3 = 1.0− m
n = 1.0− 6

8 .

Since it is a maximization problem, the habitat having fitness value O1 = 0.775 is

better than that of the habitat having fitness value O2 = 0.442. The computed inter-

ference energy loss for the network with non optimal sensor nodes placement using

Eq. 4.4.10 is 0.08Joule and which is ideally zero in the network with optimal sensor

node placement.

4.4.4 Migration

In this stage, habitats Hi and H j are selected stochastically based on immigration rate λi

and emigration rate µ j respectively. After choosing habitats, a random number is gen-

erated between (0,1). If the random number is less than λi, then migration is performed
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Table 4.4 Pictorial view of mutation process

Step 1: Emigration rate of habitats H1 to
H5

Step 2: Mutation probability of habitat Hi
using Mi = Mmax ∗ (1−Pi

Pmax
), where Mmax =

0.2

µ1 = 0.299 M1 = 0.2× (1−0.299)/0.299 = 0.469

µ2 = 0.172 M2 = 0.2× (1−0.172)/0.299 = 0.554

µ3 = 0.193 M3 = 0.2× (1−0.193)/0.299 = 0.540

µ4 = 0.167 M4 = 0.2× (1−0.167)/0.299 = 0.557

µ5 = 0.169 M5 = 0.2× (1−0.169)/0.299 = 0.556

Step 3: Mutation process of the selected habitat
H

′
4 1 1 1 1 0 1 1 1

↓
H

′′
4 1 1 1 0 0 1 1 1

between habitats. To perform the migration, a random position is selected between

(1,n), and SIV are shifted from habitat H j to habitat Hi from the selected position to

the last position of habitat H j. The Table 4.3 depicts the pictorial representation of the

migration process.

4.4.5 Mutation

This process involves the selection of a vector based on the mutation probability of the

respective vector. Once the habitat is selected, check for value at the position, if the

value is 1 then it is changed to 0; otherwise to 1. The Table 4.4 depicts the pictorial

representation of the mutation process.

4.4.6 Pseudo-code of BBO-based Sensor Placement Algorithm

The proposed scheme is depicted in Algorithm 4.4.1. The algorithm consists of two

main stages. They are the migration process (lines 18-29) and the mutation process (lines

30-36). Initially, the best f itness and Mmax are set to value 0 and value 0.2 respec-
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tively (line 1). The habitats are initialized with 0’s and 1’s (lines 2-4). The initial

iteration is set to 1 (line 5) and the entire procedure for the BBO is presented (lines

6-38). Firstly, fitness computation for each habitat and selection of best habitat that has

highest fitness value is performed (lines 7-11). The species count of each habitat is cal-

culated (lines 12-14). Next the immigration rate and emigration rate are computed for

each habitat (lines 15-17). In lines 18-29, the migration procedure is presented. Each

habitat Hi, a associated habitat H j is selected based on the emigration rate to perform

SIV’s migration from habitat H j to habitat Hi (lines 18-19). In this process, a random

number is generated (line 20). If the generated random number is less than the emigra-

tion rate of habitat H j (line 21), then a random position p1 is selected in habitat H j (line

22). Next, all SIV’s from position p1 to position n are moved from habitat H j to habitat

Hi (lines 23-26). In lines 30-36, a habitat mutation procedure is presented. Firstly, im-

migration rate and emigration rate of the each habitat is used to compute its mutation

probability (line 30). A habitat Hi is selected which has maximum mutation probability

(pmax). A random number is generated (line 32). If the generated random number is

less than the maximum mutation probability, then a random position p2 is selected in

habitat Hi (lines 33-34).

Next, if the value of the position p2 is 1, then replace it is with 0; otherwise it is with

1 (line 35). Go to line 6 and repeat the process till the maximum iteration is reached and

the algorithm terminates. Finally, the habitat with best solution is selected for placing

sensors (line 39).

4.5 Simulation and Discussion

This section discusses the performance analysis of the proposed scheme and gives com-

parative analysis with other schemes. The experiments are carried out using MATLAB

2018a on an Intel(R) Core(TM) i5-8250U CPU@1.60 GHz 1.80 GHz and 8 GB RAM

running on Microsoft Windows 10, 64-bit operating system, x64-based processor.
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Algorithm 4.4.1 BBO based Sensors Deployment for Target Coverage with Interfer-
ence Minimization
Input: Set of n candidate positions P = {p1, p2, p3 . . . , pn}, Set of k target points T =

{t1, t2, t3 . . . , tk}, and set of habitats Hn
Output: Optimal sensor nodes placement positions

// Habitat initialization
1: best_ f itness = 0, Mmax = 0.2
2: for habitat i = 1 to Hn do
3: Initialize habitat Hi with 0’s and 1’s
4: end for
5: itr = 1

// BBO algorithm starts
6: while itr < MAXitr do
7: for habitat i = 1 to Hn do
8: Evaluate habitat HSI/fitness( f (Hi))
9: end for

10: Sort habitats based on HSI’s
11: best_ f itness = max( f (Hi),best_ f itness)
12: for habitat i = 1 to Hn do
13: Map habitat species count (Scount) for each habitat (Hi)
14: end for
15: for habitat i = 1 to Hn do
16: Compute immigration rate(λi) and emigration rate (µi)
17: end for

// Habitat migration
18: for habitat i = 1 to Hn do
19: for habitat j = 1 to Hn do
20: Generate random number r1 , 0 ≤ r1 ≤ 1
21: if r1 < µ j then
22: Select random position p1 , 1 ≤ p1 ≤ n
23: while p1 > n do
24: Hi[p1] = H j[p1]
25: p1 = p1 +1
26: end while
27: end if
28: end for
29: end for

// Habitat mutation
30: Compute mutation probability(Mi) of each habitat Hi using immigration rate (

λi ) and emigration rate (µi) using Equation 4.2.4
31: Select a habitat Hi with maximum mutation probability Pmax
32: Generate random number r2, 0 ≤ r2 ≤ 1
33: if r2 < Pmax then
34: Select a random position p2, 1 ≤ p2 ≤ n
35: if the value of the position p2 is 1, then replace it is with 0; Otherwise it is

with 1
36: end if
37: itr = itr+1
38: end while
39: Finally, the habitat with highest fitness value is selected for placing sensors.
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A WSN is created with n number of potential positions and k number of target

points. A 300 × 300 network field is created and sink is placed at the centre of the

field (150,150). The potential positions and target points are randomly generated on

the field. The parameter values for the WSN are mentioned in Table 4.5.

Table 4.5 Simulation parameters

Parameters Values
WSN Field Size 300×300 m2

Sink Position (150,150)
Target points 50−200
Potential Positions 100−200
Sensing Range 10m
Communication Range 50m
Initial Energy of node 2 Joule
Per interference energy loss 0.02 Joule

The proposed technique is compared with Random scheme and GA based scheme

for performance comparisons. In a Random scheme, the potential positions to deploy

sensors to cover the given target points are identified randomly using a uniform dis-

tribution. If the identified potential positions form the connected network, then these

potential positions are considered for placing sensors. The SIR and TCR are computed

for these sensors. The GA algorithm is an optimization technique or heuristic solution-

search method proposed by John Holland. The main components of the GA algorithms

are the chromosome representation, the fitness function evaluation, cross over, muta-

tion, and selection (McCall (2005)). We adopted single-point cross over and roulette

wheel selection method in this algorithm.

The parameter settings for heuristic techniques are decided as follows. The 200

potential positions and 200 target points are used to find appropriate simulation param-

eters. A population size of 100 habitats and 100 generations are considered for the

experiments. Experimentally verified that these generic parameter values are enough

for proper convergence of the proposed algorithm. However, the control parameter mu-

tation probability Mmax for BBO method is adopted from Gupta and Jha (2019) and
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also verified with different values of Mmax and confirmed that results are comparatively

better for Mmax = 0.2. It is observed in the literature that the control parameter like

mutation rate for GA is set between 0.01 to 0.05. Therefore, the mutation rate is set

to 0.02 and varied the crossover rate from 0.1 to 0.9 and confirmed through repeated

experiments that the result is better when crossover rate is 0.2. The final parameter

settings for heuristic methods for the simulations are mentioned in Table 4.6.

Table 4.6 Parameter settings for BBO and GA

Algorithm Parameters Values

BBO

Population Size 100
Maximum Iteration 100
Mutation Probability 0.2

GA

Population Size 100
Maximum Iteration 100
Crossover Probability 0.2
Mutation Probability 0.02

Table 4.7 Weight values and multi-objective results (potential positions=200 and tar-
gets=200)

Weight values BBO GA
w1 w2 w3 SIR TCR SPPR SIR TCR SPPR

0.45 0.1 0.45 0.9704 0.9617 0.7780 1.0808 0.9580 0.7903
0.40 0.2 0.40 0.9735 0.9620 0.7853 1.1056 0.9583 0.7923
0.35 0.3 0.35 0.9776 0.9626 0.7910 1.1103 0.9586 0.8060
0.30 0.4 0.30 0.9809 0.9646 0.7970 1.1175 0.9606 0.8186
0.25 0.5 0.25 0.9889 0.9650 0.8050 1.1238 0.9614 0.8257
0.20 0.6 0.20 1.0103 0.9653 0.8113 1.1297 0.9623 0.8326
0.15 0.7 0.15 1.0953 0.9663 0.8236 1.1324 0.9628 0.8360
0.10 0.8 0.10 1.1076 0.9670 0.8260 1.1331 0.9631 0.8386
0.05 0.9 0.05 1.1093 0.9673 0.8286 1.1397 0.9636 0.8423

In the Equation 4.4.8, the second component (TCR) is the maximization component

and other two components (SIR and SPPR) are the minimization components. There-

fore, weight of second component w2 is varied from 0.1 to 0.9 in steps of 0.1 and
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Table 4.8 BBO multi-objective results (normalized)

BBO BBO (normalized results)
SIR−1 TCR SPPR−1 SIR−1 TCR SPPR−1

1.0305 0.9617 1.2853 0.3501 0.3323 0.3446
1.0272 0.9620 1.2733 0.3489 0.3324 0.3414
1.0229 0.9626 1.2642 0.3474 0.3326 0.3390
1.0194 0.9646 1.2547 0.3475 0.3333 0.3364
1.0112 0.9650 1.2422 0.3435 0.3334 0.3331
0.9898 0.9653 1.2325 0.3362 0.3335 0.3305
0.9129 0.9663 1.2142 0.3101 0.3339 0.3256
0.9028 0.9670 1.2106 0.3066 0.3341 0.3246
0.9015 0.9673 1.2068 0.3062 0.3342 0.3236

Table 4.9 GA multi-objectives results (normalized)

GA GA(normalized results)
SIR−1 TCR SPPR−1 SIR−1 TCR SPPR−1

0.9252 0.9580 1.2653 0.3658 0.3323 0.3457
0.9045 0.9583 1.2621 0.3576 0.3324 0.3448
0.9007 0.9586 1.2407 0.3561 0.3325 0.3389
0.8949 0.9606 1.2216 0.3538 0.3332 0.3338
0.8898 0.9614 1.2111 0.3518 0.3334 0.3309
0.8852 0.9823 1.2011 0.3499 0.3337 0.3282
0.8831 0.9628 1.1962 0.3491 0.3339 0.3268
0.8825 0.9631 1.1925 0.3489 0.3340 0.3258
0.8774 0.9636 1.1872 0.3469 0.3342 0.3244

accordingly equal weights are assigned to w1 and w3 to decide appropriate weight val-

ues. The results are computed for 15 instances of experiments for each set of weight

values for w1, w2 and w3 and mean result is tabulated in Table 4.7. The multi-objective

results for BBO and GA approaches are presented in the normalized form in Table 4.8

and Table 4.9 respectively using the Equation 4.5.1.

xi
normalized =

xi√
∑

n
1 xi2

(4.5.1)

Here, xi denotes each data value and n represents the number of data values present.

The Pareto solution (Atta et al. (2019)) for SIR, TCR, and SPPR on different weight

values is shown in Fig. 4.5. It is required to note that the selection of weight values

in a precise and accurate manner is very difficult even for someone familiar with the
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Figure 4.5 Pareto solutions for SIR, TCR and SPPR on different weight values

problem domain (Konak et al. (2006)). Therefore, we adopted weight values w1 = 0.3,

w2 = 0.4 and w3 = 0.3 in both heuristic methods for simulations.

4.5.1 Result and Analysis

This section details the result analysis of the experiments that are carried out. The ex-

periments are performed using the same data on all three algorithms. The 30 instances

of experiments are carried out for each set of targets to handle the random nature of

these algorithms. Fig. 4.6 shows the performance analysis of BBO-based scheme when

the number of target points increase from 50 to 200. The 30 instances of experiments

are carried out on each set of target points and the graph is drawn by taking the best and

mean of the results. Here, 200 potential positions are identified to deploy sensors. It

is observed that that there is a increase in BBO_SIR when the number of target points

increase. It is because more potential positions are selected to place sensors, which
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Figure 4.6 Performance of proposed scheme

gives scope for more interference of signals. The simulations are performed on grid

and random scenarios as shown in Fig. 4.7 and Fig. 4.8. The Fig. 4.9a and Fig. 4.9b

illustrates the best and mean comparison of SIR and TCR for grid and random scenarios

respectively when target points increase from 25 to 100. The 30 instances of the exper-

iments are carried out on each set of target points and graph is drawn by taking the best

and mean of the results. In these experiments, 100 potential positions are identified to

deploy sensors. In both the graph, it is observed that the best and mean Grid_SIR is

zero, which is to indicates no sensors are interfering with each other because poten-

tial positions are identified on grid cross points. It is also seen that the Random_SIR

increases as the number of target points increase. Grid_TCR is better than that of the

Random_TCR because the targets are optimally covered in grid scenario as compared

to random scenario.
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Table 4.10 Comparison results for SIR (30 instance of experiments are conducted )
Targets Parameters BBO_SIR GA_SIR Random_SIR

50

Best 0.6321 0.6529 0.7984
Worst 0.6872 0.7548 0.9921
Mean 0.6596 0.7257 0.933
SD 0.0169 0.0209 0.0390
95% CI [0.6537, 0.6655] [0.7181, 0.7333] [0.9197, 0.9463]

100

Best 0.7015 0.7898 0.9128
Worst 0.7842 0.8465 1.0861
Mean 0.7431 0.8215 1.0229
SD 0.0193 0.0155 0.0440
95% CI [0.7363, 0.7499] [0.8161, 0.8269] [1.0074, 1.0384]

150

Best 0.8068 0.8942 1.0617
Worst 0.9025 0.9678 1.842
Mean 0.8593 0.9329 1.1815
SD 0.0281 0.0189 0.158121629
95% CI [0.8495, 0.8691] [0.9263, 0.9395] [1.1259, 1.2371]

200

Best 0.9321 0.9806 1.142
Worst 1.0787 1.2386 1.956
Mean 0.9813 1.1201 1.3443
SD 0.0414 0.0578 0.2097
95% CI [0.9667, 0.9959] [1.1003, 1.1399] [1.2705, 1.4181]

Table 4.11 Comparison results for TCR (30 instance of experiments are conducted)
Targets Parameters BBO_TCR GA_TCR Random_TCR

50

Best 1 1 1
Worst 0.98 0.98 0.92
Mean 0.9927 0.9813 0.9707
SD 0.0098 0.0036 0.0179
95% CI [0.9893, 0.9961] [0.9796, 0.983] [0.9647, 0.9767]

100

Best 0.99 0.98 0.98
Worst 0.97 0.96 0.9
Mean 0.978 0.9665 0.9633
SD 0.0071 0.0052 0.0440
95% CI [0.9755, 0.9805] [0.9648, 0.9682] [0.9587, 0.9679]

150

Best 0.98 0.98 0.9733
Worst 0.96 0.95 0.88
Mean 0.9742 0.9623 0.9533
SD 0.0038 0.0067 0.0199
95% CI [0.9724, 0.976] [0.9599, 0.9647] [0.9463, 0.9603]

200

Best 0.98 0.97 0.97
Worst 0.965 0.945 0.86
Mean 0.9665 0.9605 0.9508
SD 0.0023 0.0078 0.0181
95% CI [0.9657, 0.9673] [0.9576, 0.9634] [0.9425, 0.9591]
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Figure 4.7 Scenario 1: candidate positions are on a grid

The comparison results for SIR for different values of targets are tabulated in Ta-

ble 6.5 as best, worst, mean, standard deviation, and 95% Confidence Interval (CI). It

is observed that in all algorithms SIR is increased with an increase in target points. It is

due to more sensors are required to cover as number of target point increases and hence

more scope for interference. Similarly, the comparison results for TCR for different

values of targets is tabulated in Table 6.6 as best, worst, mean, standard deviation, and

95% Confidence Interval (CI). It is noted that the TCR decreases as number of target

points increase in all algorithms. It is also observed that the BBO_TCR decreases when

number of targets increase. Fig. 4.10a and Fig. 4.10b depict the performance compar-

isons of the BBO-based scheme, GA-based scheme, and Random-based scheme for

SIR and TCR respectively. Here, the number of target points increases from 50 to 200.

The 30 instances of experiments are carried out for each set of target points. The best

and mean of these results are depicted in the graph. In these experiments, 200 po-
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Figure 4.8 Scenario 2: candidate positions are random
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Figure 4.9 Performance of BBO scheme

tential positions are identified to deploy sensors. It is observed that the SIR is low in

the BBO-based scheme as compared to the other scheme and TCR is better than that
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Figure 4.10 Performance comparisons between BBO, GA, and Random schemes
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Figure 4.11 Performance comparisons between BBO, GA, and Random schemes

of the other schemes. Fig. 4.11a illustrates the number of selected positions between

BBO-based scheme, GA-based scheme, and Random scheme when number of target

points increase from 50 to 200. The 30 instances of experiments are carried out to ob-

tain results. The graph shows the best and mean of these results. In these experiments,

200 potentials positions are identified to deploy sensors. It is observed that the num-

ber of selected positions to place sensors is less in BBO-based scheme as compared
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with other schemes. The BBO-based scheme outperforms the GA-based scheme due to

the premature convergence behaviour of the GA over BBO. Finally, Fig. 4.11b depicts

performance of the average network energy loss due to interference when number of

target points increases from 50 to 200. In these experiments, 200 potential positions are

identified to deploy sensors. Fig. 4.11b shows average energy loss in network of the

BBO-based scheme is better than that of other schemes. It is also noted that the average

energy loss in network due to interference in BBO-based scheme is 16% less than that

of GA-based scheme and 60% less than that of the Random-based scheme.

4.6 Summary

In this chapter, optimal sensors placement BBO-based scheme is proposed with a com-

bined goal of maximizing target coverage and minimizing interference while maintain-

ing connectivity of the network. An elegant vector encoding for habitat representation

and novel fitness function are formulated for the proposed scheme. The working of

the proposed scheme is illustrated with a suitable example. The performance study of

sensing interference ratio and target coverage ratio on grid and random scenarios were

conducted. A comparison study of the BBO-based scheme with other schemes was car-

ried out. The least energy loss due to interference in the BBO-based scheme confirms

its superiority over other schemes.
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Chapter 5

Hybrid Hierarchical Clustering Algorithm

This chapter presents a hybrid of game theory and fuzzy inference-based clustering

algorithms for wireless sensor networks to improve the stability period of the network,

named FLAG and I-FLAG. The FLAG protocol is a combination of CROSS and fuzzy

inference system, where as I-FLAG is a hybrid of fuzzy inference system and improved

version of CROSS protocol which considers the energy of a sensor node and its distance

to the BS as additional parameters.

5.1 Background

Energy conservation of sensors play an important role in prolonging the lifetime of

the WSNs. There are many methods proposed to achieve the energy efficiency of the

WSNs. Among them, one of the most influential technique is clustering which divides

the entire network into clusters. Each cluster has a cluster head (CH) and many cluster

members. The cluster head is responsible for collecting data from its members, fuse

it, and forward to the base station. Many state-of-the-art algorithms are proposed for

clustering in WSNs.

Game theory is a branch of mathematics and heavily used to analyse the problem

of economics, social science, and computer science. In recent past, It is employed to

solve clustering, routing, resource allocation, and coverage optimization problems in

WSN (Yang et al. (2016)). The first game theoretic algorithm proposed for clustering

in WSN is called CROSS (Clustered Routing for Selfish Sensors). Here, each sensor
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node act as a player and each node plays a clustering game with other players within

the network to decide whether to be CH or not. Later, the authors in Xie et al. (2013)

proposed localized algorithm by considering clustering game within close neighbours.

In the proposed work, a hybrid of game theory and fuzzy inference-based algorithms

are proposed to improve the stability period of the network, named FLAG and I-FLAG.

The FLAG protocol is a combination of CROSS and fuzzy inference system, where

as I-FLAG is a hybrid of fuzzy inference system and an improved version of CROSS

protocol which considers the energy of a sensor node and its distance to the BS as

additional parameters.

The contributions of the work are listed below:

• An improved version of CROSS game theoretic protocol for CHs selection.

• A fuzzy logic system is proposed to elect appropriate SCHs from CHs in FLAG

and I-FLAG.

• Residual energy, centrality, and distance to base station are considered as member

functions to compute SCH election probability.

• The proposed algorithms are compared with other clustering techniques like LEACH,

CHEF, CROSS, and an improved CROSS.

5.2 Network Model and Radio Model

5.2.1 Network Model

The proposed network model consist of homogeneous nodes having equal energy, the

same sensing, and communicating capabilities as shown in Fig. 5.2. Initially, CHs are

selected using game theoretic algorithm (Koltsidas and Pavlidou (2011)). Secondly,

SCHs are selected among CHs using fuzzy logic. The working procedure for proposed

model is similar to the work in Nayak and Devulapalli (2015); Verma et al. (2020).
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5.2.2 Radio Model

Tranmit
Electronics

Tx

Amplifier
Receive
Electronics

l bit message

ETx(l, d) ERx(l)

l ∗ Eele l ∗ ε ∗ dn l ∗ Eele

d

Transmitter Receiver

Figure 5.1 Energy radio model

The radio model adopted from Heinzelman et al. (2000) for communication and

computation energy dissipation and it is shown in Fig. 5.1. The multipath fading chan-

nel (d4 power loss model) is employed whenever distance between sender and receiver

is more than threshold value d0; otherwise, the free space model (d2 power loss model)

is employed as shown in Eq. 5.2.1. Therefore, energy required to transmit l-bit of in-

formation over distance d from sender to destination is calculated as follows

ET x(l,d) =


lEele + lε f sd2 for d ≤ d0

lEele + lεmpd4 for d > d0

(5.2.1)

Here, Eele is the energy dissipated per bit by the transmitter or receiver circuitry. The

constants ε f s and εmp are amplifier characteristics of free space channel and multipath

channel respectively. The variable d is the distance between transmitter and receiver;

The variable d0 =
√

ε f s
εmp

, distinguishes two types of path loss model.

The amount of energy dissipated by the receiver after receiving l-bit data packet is

calculated as follows:

ERx(l) = lEele + lEDA (5.2.2)
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Figure 5.2 An instance of network model

Here, EDA is the energy dissipated by the CH for aggregating a one bit information.

5.3 Proposed Model

5.3.1 Assumptions

• All sensor nodes in the network are homogeneous and having same initial energy,

memory, and communicating capabilities.

• Sensor nodes and base station are stationary after deployment.

• Cluster setup phase is similar to the LEACH or CROSS algorithm to select ap-

propriate cluster heads.
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Table 5.1 List of notations

Notation Description
d distance
l Data packet size in bits
Eele Energy consumed for 1-bit computation
ET x(l,d) Energy consumed to transmit l-bit data over d distance
ERx(l) Enery consumed to recieve l-bit data
εmp Amplifier characteristics of the multi path channel
ε f s Amplifier characteristics of the free space channel
EDA Energy consumed for aggregate data
wmin User defined variable to avoid negative value during CH probability calculation
N Number of sensor nodes
A Actions available for sensor nodes
Ui(ai) Utility gained by a sensor node i after choosing an action ai
D Sensor node declared to be cluster head
ND Sensor node not declared to be cluster head
v Payoff for being cluster member
c Energy overhead for being cluster head
R Average radius of a cluster
Echi Energy drain of node i to become CH
Ecmi Energy drain by a cluster member node i to transmit data to CH
Dri Degree of node i
Ei Residual energy of a sensor node i
Eo Initial energy of a sensor node
di Distance between the sensor node i and base station
dmax Distance between farthest alive node to the base station
BSdistance Distance to base station
Renergy Residual energy of a CH
CHcentrality Centrality of a CH
Espent Energy spent so far by the CH
Nbr Neighbors of CH
β Random variable takes the value between 0 and 1
Q CHEF local distance

• Elected cluster heads notify their residual energy, distance to base station and

centrality to BS.

• After receiving information from CHs base station employs fuzzy logic inference

system to select SCHs.

• Election of SCHs probability is decided on three input parameters residual energy,

distance to base station, and centrality of CHs.
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• Association of member nodes with cluster nodes and association of cluster nodes

with super cluster nodes are established according to their distance metric as de-

scribed in LEACH.

• The data transmission in the network happens in the steady phase of the network.

Firstly, from sensor nodes to CHs and secondly, CHs to SCHs, and finally from

SCHs to Base station as shown in Fig. 5.2.

The proposed FLAG and I-FLAG hybrid hierarchical clustering models are divided

into cluster heads selection phase and super cluster heads selection phase. Table 6.1

shows all the definitions of variables and acronyms that are used in this chapter.

5.3.2 Cluster Heads Selection Phase

In this phase, an existing CROSS and an improved version of CROSS game theoretic

protocol are used.

According to the definition of game theory, clustering game (CG) of WSN with N

nodes, A actions, and U utility function are represented with three tuples as CG(N,A,U).

where tuples N, A, and U denote the player set, strategy set, and payoff set of the game

respectively. Suppose sensor nodes adopt a pure strategy to play the clustering game,

then the strategy space or action profile has two choices; either node is declared (D)

to be cluster head or not declared (ND) to be cluster head. With regard to utility, if

none of the sensor nodes select strategy D, then utility for each sensor node will be 0.

Sensor node payoff will be v, if at least one of its neighbour sensor node is declared

to be cluster head and such cluster head payoff will be v− c, since it plays the role of

forwarding packets to the base station. Suppose there are only two players, then the

Table 5.2 gives utility values of the two player game. Therefore, in general the utility

value for any player i which plays action ai from action profile set A in a N player game

will take the following form
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Ui(ai) =



0 if a j ̸=i = ND, ∀ j ∈ N

vi − ci if ai = D

vi if ai = ND, ∃ j ∈ N,

such that a j ̸=i = D

(5.3.1)

Table 5.2 Utility for two player clustering game

Choices D ND
D (v− c,v− c) (v− c,v)
ND (v,v− c) (0,0)

The payoff or utility value vi for player i when it choose action ND, and if at least

one other player choose action D can be computed as follows (Yang et al. (2016))

vi =
l

Ecmi
(5.3.2)

where l is the size of the data packet and Ecmi is the energy drain to transmit the packet

to its respective CH (Yang et al. (2016)), and can be computed as follows

Ecmi = lEele +
4
9

lε f sR2 (5.3.3)

Here, R is the average radius of each cluster. Suppose node i chooses the action D, then

its utility value is computed as discussed in Yang et al. (2016).

vi − ci =
(Dri +1) l

Echi
(5.3.4)

where ci is the overhead of a node for becoming CH, Dri is the node degree of a palyer

i, and Echi is the energy drain for node i for becoming CH (Yang et al. (2016)). Its

value is obtained as follows:
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Echi = DrilEele +(Dri +1) lEDA + lεmp

(
di

toBS
)4

(5.3.5)

From Eq.5.3.2 and 5.3.4, ci value can be calculated as follows:

ci =
l

Ecmi
− (Dri +1) l

Echi
(5.3.6)

Eq.5.3.6 takes the form by denoting wi =
ci
vi

, as follows

wi = 1− (Dri +1)Ecmi

Echi
(5.3.7)

To avoid the wi value to be negative, a parameter wmin is introduced, and wi is obtained

as follows.

wi = max
(

wmin, 1− (Dri +1)Ecmi

Echi

)
(5.3.8)

Suppose the sensor node i that chooses the action D with probability pi and the

action ND with probability qi = 1− pi. Then, there exists an equilibrium probability pi

based on mixed strategy Nash equilibrium as discussed in CROSS protocol (Koltsidas

and Pavlidou (2011)), and is formally defined as follows:

pi = 1− (wi)
1

N−1 (5.3.9)

Along the above equation we use residual energy and distance of the node to the base

station to get appropriate probability for cluster head selection. The new improved

version of CROSS for cluster head selection can be expressed as follows

pi = 1− (wi)
1

N−1 ×
[(

Ei

Eo

)β

+

(
di

dmax

)1−β
]

(5.3.10)

where β ∈ (0,1) is a weight factor, Ei is the remaining energy and the Eo is the initial

energy of a node i respectively. The variables di and dmax are distance between node i
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Figure 5.3 Outline of fuzzy model

and BS and the distance to the farthest alive node to the BS respectively .

5.3.3 Super Cluster Heads Selection Phase

In this phase, Fuzzy inference System (FIS) is employed to elect appropriate SCHs from

set of CHs.

FIS is a data base generally employed to handle uncertainties and imprecise infor-

mation in the system. It consists of member functions and fuzzy rules. There are three

types of FIS: Mamdani, Sugeno, and Tsukamoto. The Mamdani FIS is a popular and

widely adopted technique in different applications because of its intuitive characteristic

and simple structure (Toloueiashtian and Motameni (2018)).

The main components of FIS are Fuzzifier, Fuzzy rules, Inference engine, and Defuzzi-

fier as shown in Figure 5.3. In the first step, crisp set inputs are transformed into fuzzy

sets using membership functions, and the process is known as fuzzification. In the sec-

ond step, The fuzzy inference engine uses “IF-THEN" rules to map fuzzy input sets for

fuzzy output sets. At last, fuzzy outputs are transferred to crisp values, and the process

is called defuzzification.

Input membership function variables considered for FIS are residual energy, dis-

tance to base station, and centrality of CHs.
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Table 5.3 Fuzzy membership functions

SerialNo Input variable Linguistic variables
1 Residual energy Low Medium High
2 Distance to BS Near Average Far
3 Centrality of CH Close Reachable Distant

• Residual Energy of CH (Renergy): Selection of higher residual energy CH node to

be SCH prolongs the stability of the network.

Renergy = Eo −Espent (5.3.11)

• Centrality of CH (CHcentrality): This value corresponds to position of CH in com-

pared to its neighbours with in the entire network. CHs with low centrality values

have been given high priority than the CHs with high centrality values.

CHcentrality( j) =

√
∑i∈Nbr( j) d2(CH j,CHi)

|Nbr( j)|

M
(5.3.12)

where d(CH j,CHi) is the distance between the jth CH node to the ith CH node,

M is the dimension of the network.

• Distance to Base Station (BSdistance): This value corresponds to distance between

CH to the BS, the lower the value, lower the energy consumption. And hence

CHs which are nearer to the BS have given higher priorities than CHs that are far

away from the BS. The distance is computed using Euclidean formula.

BSdistance(i, j) =
√
(xi − x j)2 +(yi − y j)2) (5.3.13)

The FIS input membership functions for SCH selection with their linguistic variables

are given in Table 5.3.
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Figure 5.4 Residual energy of CH

The membership functions for Renergy, CHcentrality, and BSdistance are represented

in Figure 5.4, 5.5, and 5.6 respectively. These membership functions are mapped to

“IF-THEN" rules which are mentioned in Table 5.4 and Mamdani FIS is employed to

handle the uncertainty of selecting appropriate SCHs. There are 27 rules containing all

combination of 3 input variables. The member function of the output fuzzy variable

is called probability having 9 combinations of linguistic values as shown in Fig.5.7.

The triangular member ship function is used for all input and output variables. The

final value for probability is defuzzified to crisp value using the centroid method. The

centroid is computed as follows

Centroid =
∑i µ(xi)xi

∑i µ(xi)
(5.3.14)

Here, µ(xi) is the membership value for the point xi in the universe of discourse. The

surface view of input/output of membership functions with fuzzy rules are shown in
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Figure 5.5 Centrality of CH

0 20 40 60 80 100

BS Distance (meter)

0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

NearBy Average Far

Figure 5.6 Distance between CH to BS
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Figures[ 5.8-5.10]

Figure 5.8 Surface view of Distance to BS, Residual energy, and Probability

The complete flow of the proposed scheme is depicted in Algorithm 6.3.1.
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Algorithm 5.3.1 FLAG a hybrid hierarchical clustering algorithm
Input: Wireless sensor network with n randomly deployed homogeneous sensors in

100×100 field
Output: Stability period of the wireless sensor network

1: itr = 1
2: while itr < max_itr do
3: if any node alive then
4: Elect probable CHs using Eq.5.3.10
5: Apply fuzzy inference rules to elect right SCHs
6: for each CH do
7: Associate nodes to their CHs using distance metric
8: Aggregate the data received from its member nodes at CHs
9: Send fused data to SCHs

10: end for
11: for each SCH do
12: Associate CHs to SCHs using distance metric
13: Aggregate the data received from its CHs at SCHs
14: Send fused data to BS
15: end for
16: end if
17: itr = itr+1
18: end while

5.4 Results and Discussion

Experiments are carried out using MATLAB R2019a software to evaluate and compare

the performance of proposed protocols with the existing protocols like LEACH (Aky-

ildiz et al. (2002)), CHEF (Kim et al. (2008)), and CROSS (Koltsidas and Pavlidou

(2011)). To conduct experiments 200 sensor nodes are randomly placed on 100m×

100m field with the base station location at coordinate (50,50). All sensors are ho-

mogeneous and the initial energy of each sensor is set to 0.5Joule. The sensed data

size by each sensor is identical and equal to 4000 bits. The energy consumption for

transmitter (receiver) electronic is set to 50nJ/bit. The energy drain for data fusion is

set to 5nJ/bit/message. All simulation parameters used in experiments are mentioned in

Table 5.6.
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Table 5.4 Fuzzy rules

RuleNo Renergy BSdistane CHcentrality SCHprobability
1 Low(0) Near(0) Close(0) Rather Low(2)
2 Low(0) Near(0) Reachable(1) Low(1)
3 Low(0) Near(0) Distant(2) Very Low(0)
4 Low(0) Average(1) Close(0) Rather Low(2)
5 Low(0) Average(1) Reachable(1) Low(1)
6 Low(0) Average(1) Distant(2) Very Low(0)
7 Low(0) Far(2) Close(0) Rather Low(2)
8 Low(0) Far(2) Reachable(1) Low(1)
9 Low(0) Far(2) Distant(2) Very Low(0)
10 Medium(1) Near(0) Close(0) Rather Medium(5)
11 Medium(1) Near(0) Reachable(1) Medium(4)
12 Medium(1) Near(0) Distant(2) Lower Medium(3)
13 Medium(1) Average(1) Close(0) Rather Medium(5)
14 Medium(1) Average(1) Reachable(1) Medium(4)
15 Medium(1) Average(1) Distant(2) Lower Medium(3)
16 Medium(1) Far(2) Close(0) Rather Medium(5)
17 Medium(1) Far(2) Reachable(1) Medium(4)
18 Medium(1) Far(2) Distant(2) Lower Medium(3)
19 High(2) Near(0) Close(0) Very High(8)
20 High(2) Near(0) Reachable(1) High(7)
21 High(2) Near(0) Distant(2) Rather High(6)
22 High(2) Average(1) Close(0) Very High(8)
23 High(2) Average(1) Reachable(1) High(7)
24 High(2) Average(1) Distant(2) Rather High(6)
25 High(2) Far(2) Close(0) Very High(8)
26 High(2) Far(2) Reachable (1) High(7)
27 High(2) Far(2) Distant(2) Rather High(6)

Table 5.6 Simulation parameters

Parameters Values
Network size (number of nodes)n 200
Network area (m2) 100×100
Initial node energy(J) 0.5
Data packet size l (bits) 4000
Eele(nJ/bit) 50
ET x(nJ/bit) 50
ERx(nJ/bit) 50
εmp(pJ/bit/m4) 0.0013
ε f s(pJ/bit/m2) 10
EDA(nJ/bit/message) 5
wmin 0.000001
LEACH p (percentage) 5
CHEF average cluster size(m) 25
BS location(coordinates) (50,50)
R(m) 1089



Figure 5.9 Surface view of Residual energy, CH centrality, and Probability

Figure 5.10 Surface view of CH centrality, Distance to BS, and Probability

Two hybrid clustering protocol for WSN is designed by augmenting fuzzy logic to

basic CROSS and improved-CROSS to increase the stability of the network. Fig. 6.7b

shows lifetime of the network. It is observed that the first node dies faster in other

protocols compared to FLAG and I-FLAG, besides the network stability period is better

in proposed protocols until 10 % of nodes die in the network. Network stability period,

stability period throughput, and network lifetime are tabulated in Table 5.5.

The network lifetime of I-FLAG is better than LEACH, CHEF, and I-CROSS, how-

ever it underperforms over CROSS because of its even energy drain distribution among
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Table 5.5 Stability period, throughput and total network lifetime

Parameters LEACH CHEF CROSS I-CROSS FLAG I-FLAG

Stability period(rounds) 1017 1077 1363 1371 1377 1386

Stability period throughput(bits) 203400 215290 272600 274700 275242 277002

Network lifetime(rounds) 1634 1386 2336 2275 2278 2288
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Figure 5.11 Network lifetime and average network energy comparison

nodes of the network. And hence it prolongs the death of the first node in the I-FLAG.

Fig. 5.11b depicts the average energy drain of the network, and it is smooth in the pro-

posed protocols compared to other protocols. Fig. 5.12a and Fig. 5.12b represents the

number of alive nodes and dead nodes of the network respectively. In the initial period

of the network, number of alive nodes are more, and the number of dead nodes are less

in both FLAG and I-FLAG as compared to other protocols. The network stability period

comparison is shown in Fig. 5.13a. The graph demonstrates that the stability period of

FLAG is 26.2 %, 21.84 %, and 1.08 % better than LEACH, CHEF, and CROSS respec-

tively. Similarly, the stability period of I-FLAG is 26.62 %, 22.29 %, and 1.08 % better

than LEACH, CHEF, and I-CROSS respectively. The network throughput during stabil-

ity period is depicted in Fig. 5.13b. It is observed that the throughput of FLAG during
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Figure 5.13 Network stability period and throughput comparison

the stability period is 26.10 %, 21.78 %, and 0.9 % better than LEACH, CHEF, and

CROSS respectively. Similarly, the stability period throughput of I-FLAG is 26.57 %,

22.28 %, and 0.84 % better than LEACH, CHEF, and I-CROSS respectively. The en-

ergy parameter and distance parameter plays a vital role in selecting CH and hence the

SCH. It infers that the network stability period of I-FLAG is outperforms over all other
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protocols.

5.5 Chapter Summary

Hybrid hierarchical protocols named FLAG and I-FLAG are proposed in the chapter

to extend network stability. Two main phases of these protocols are the CH election

phase and the SCH election phase. The CH election phase is achieved through a game-

theoretic protocol, and the SCH election phase is achieved through a fuzzy inference

system. The simulations are carried out to verify the superiority of the proposed proto-

cols. The results show that the network stability period of FLAG is better than LEACH,

CHEF, and CROSS. The network stability period of I-FLAG is better than LEACH,

CHEF, and I-CROSS. The network stability period is better in the proposed work due

to the balanced energy drain compared to the other protocols.
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Chapter 6

Multi-attribute Decision Making Approach for
Sensor Placement and Clustering

This chapter discusses interference aware sensor deployment followed by an interfer-

ence aware clustering technique on deployed sensors. Various methods and techniques

are proposed for sensor deployment and clustering in wireless sensor networks. How-

ever, none of them considered MADM (Multi attribute decision making) based interfer-

ence aware sensor deployment and clustering. Therefore, we proposed MADM based

interference aware sensor placement and clustering techniques. Simulations are carried

out and results are presented. The simulation results show that the E-TOPSIS MADM

method for sensor placement and clustering outperforms over other methods.

6.1 Background

There are many works in the literature on interference minimization with target cover-

age and connectivity in the wireless sensor network. There are many works on clus-

tering in WSN using different schemes and techniques to handle energy problems in

wireless sensor networks. However, these works never consider interference during the

sensor placement and clustering. The interference of nodes cause a message drop and

results in a quick energy drain during data transfer between member nodes and cluster

heads. Therefore, In the proposed work, a novel interference aware sensor deploy-

ment scheme is developed followed by a clustering technique on deployed sensors. The
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placement method selects suitable positions using coverage, connectivity, and inter-

ference parameters. After the deployment, the MADM method is used for clustering.

Here, the cluster heads are identified using various parameters like the energy of the

nodes, the distance between sensors and the base station, the communication range of

the sensor nodes, and the average distance between the sensor nodes to their member

nodes.

Both the sensor deployment and the clustering are multi-objective problems. More-

over, the objectives of the problems are conflicting in nature. If the problem has mul-

tiple conflicting objectives, then multi-attribute decision making technique can be used

to solve such problem. Therefore, the proposed methods adopts a well known multi-

attribute decision making method (MADM) E-TOPSIS for ranking potential positions

for deployment of the sensors and ranking the sensor nodes for electing cluster heads.

The sensor deployment scheme is compared with TOPSIS and SAW methods and the

clustering technique is compared with TOPSIS, SAW, and Modified LEACH for sta-

bility period and network lifetime. Multi-attribute decision making (MADM) is a pro-

cess of selecting the best alternative from available alternatives based on multiple at-

tributes or constraints. The MADM problem is represented as a decision matrix in

which rows indicate the alternatives and columns indicate the attributes of each alter-

native. Numerous MADM techniques have been proposed to solve real-word science

and engineering decision problems. Technique for Order Preference by Similarity to

Ideal Solution (TOPSIS) is the state-of-the-art method received much attention from

researchers and practitioners Trilok and Gnanasekaran (2021). The technique is devel-

oped by Hwang and Yoon in 1981, which choose the alternative that simultaneously

have shortest distance from the positive ideal solution and farthest distance from the

negative ideal solution. Here, the positive ideal solution maximizes the beneficial crite-

ria and minimizes the non-beneficial criteria; The negative ideal solution minimizes the

beneficial criteria and maximizes the non-beneficial criteria. The method uses the alter-

natives information to provide a ordinal ranking to each alternative. The other widely
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used MADM model is SAW (Simple Additive Weighting). In this technique, the score

of each alternative is computed by aggregating the values of that alternative in different

criteria with the weight of corresponding criteria (Ameri et al. (2018))

The main contributions of the proposed work are listed below:

• A novel entropy-weighted TOPSIS technique for an optimal sensor deployment

scheme is formulated. It considers conflicting attributes like interference of sen-

sor nodes, coverage of target points, and connectivity of sensor nodes.

• A novel entropy-weighted TOPSIS technique for clustering in wireless sensor

networks scheme is formulated. It considers conflicting attributes for election of

cluster heads like residual energy of nodes, interference of sensor nodes, sensor

nodes distance to the base station, the communication range of sensor nodes, and

average distance to its neighbour sensors.

• The deployment scheme is compared with TOPSIS and SAW methods.

• The clustering technique is compared with TOPSIS, SAW, and modified LEACH

schemes.

6.2 Definitions and System Model

Sensing Interference Ratio (SIR): It is defined as the ratio of total sensing interference

experienced by the network to the sum of currently deployed sensors. The underlying

formula for SIR is given in Eq. 6.3.5.

Target Coverage Ratio (TCR): It is defined as the ratio of the sum of target points

covered by the sensors to the total number of target points present in the region of

interest. The underlying formula for TCR is given in Eq. 6.3.6.

Sensor to Sensor Connectivity Ratio (SSCR) : It is defined as the ratio of sum of

sensor to sensor connectivity to the total number of sensors placed in the network. The

underlying formula for SSCR is given in Eq. 6.3.7.
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Table 6.1 List of notations

Notation Description
d distance
k Data packet size in bits
Eele Energy consumed for 1-bit computation
ET x(k,d) Energy consumed to transmit k-bit data over d distance
ERx(k) Energy consumed to receive k-bit data
εmp Amplifier characteristics of the multi path channel
ε f s Amplifier characteristics of the free space channel
EDA Energy consumed for aggregate data
n Number of sensor nodes
Dbs Distance to base station
Re Residual energy of a CH
Cr Communication radius of a sensor node
Cv Number of targets covered by the sensor node
Cn Number of neighbouring nodes in the communication range of a sensor node
Ir Number of neighbouring nodes in the sensing range of a sensor node
Ci Closeness score for entropy-weighted TOPSIS
Di Closeness score for weighted TOPSIS
Ei Score for SAW method
Dnn Average distance of member nodes to the CH node
Nbr Neighbors of CH
Nd Degree of node

6.2.1 Network model

Network architecture is adopted from Heinzelman et al. (2000) for clustering. The

network consists of heterogeneous sensor nodes which have equal initial energy but

different sensing and communicating capabilities. Initially, random potential positions

are identified for placing sensors to monitor a set of target points. A MADM method is

employed to rank potential positions by considering coverage, connectivity, and inter-

ference of the nodes as constraints. The final position for sensor placements are selected

after employing Algorithm 6.3.1. After the deployment, MADM based clustering tech-

nique is proposed to elect CHs. The member nodes forward the sensed data to CHs and

CHs aggregates received data and forward to the base station as shown in Figure 6.1.
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Figure 6.1 Network model

6.2.2 Radio Model

The radio model adopted from Heinzelman et al. (2000) for communication and com-

putation energy dissipation. The multipath fading channel, that is d4 power loss model

is used whenever distance between sender and receiver is more than the threshold value

d0; otherwise, the free space model, that is d2 power loss model is adopted as shown

in Eq. 6.2.1. Therefore, the amount of energy required to transmit k-bit of information

over distance d from the sender node to receiver node is calculated as follows:
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ET x(k,d) =


kEele + kε f sd2 d ≤ d0

kEele + kεmpd4 d > d0

(6.2.1)

Here, Eele is the energy required to transmit or receive one bit information by the

transmitter or receiver circuitry respectively. The constants ε f s and εmp are amplifier

characteristics of free space channel and multipath channel respectively. The variable d

is the distance between transmitter and receiver; The variable d0 =
√

ε f s
εmp

, distinguishes

two types of path loss model.

The energy required for receiving k-bit information by the sensor node is computed

as follows:

ERx(k) = kEele + kEDA (6.2.2)

Here, EDA is the energy dissipated by the CH for aggregating a one bit information.

6.3 Proposed Entropy-weighted TOPSIS Sensor Placement Algo-

rithm

In this Section, a MADM based sensor placement scheme is presented. The method

minimizes Sensing Interference Ratio (SIR), maximizes Target Coverage Ratio (TCR),

and maximizes Sensors to Sensors Connectivity Ratio (SSCR) for wireless sensor net-

works.

Definition 6.3.1. MADM based sensor placement problem

Suppose P = {pos1, pos2 . . . , posp} denote the set of p potential positions to deploy n

sensor nodes S = {s1,s2, . . . ,sn} to cover k targets T = {t1, t2, . . . , tk}. Find appropriate

sensor node placement positions such that,

1. Sensor node si in S is not in the sensing range of any other node in S, where

1 ≤ i ≤ n. The goal is to minimize the sensing interference ratio in the network.
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2. Sensor node si in S is able to monitor maximum number of targets in T , where

1 ≤ i ≤ n. The goal is to maximize the target coverage ratio in the network.

3. Sensor node si is in the communication range of the maximum number of neigh-

bouring nodes in S, where 1 ≤ i ≤ n. The goal is to maximize sensors to sensors

connectivity ratio of the network.

Let Sr(i) and Cr(i) represents sensing and communication range of sensor node i

respectively. Euclidean formula is adopted to calculate distance measure between the

two points. If p = (x1,y1) and q = (x2,y2) are the two points on the two dimensional

plane then the distance d is computed as follows:

d(p,q) =
√
(x2 − x1)2 +(y2 − y1)2 (6.3.1)

Let αi j, βi j, and γi j are sensing interference between the sensors, target coverage by

the sensor, and connectivity between the sensors, and formally defined as follows:

αi j =


1 d(si,s j)≤ Sr(i)+Sr( j)

∀i, ∀ j, 1 ≤ i, j ≤ n

0 otherwise

(6.3.2)

βi j =


1 d(si, t j)≤ Sr(i)

∀i, 1 ≤ i ≤ n, ∀ j, 1 ≤ j ≤ k

0 otherwise

(6.3.3)

γi j =


1 d(si,s j)≤Cr(i)

∀i, ∀ j, 1 ≤ i, j ≤ n

0 otherwise

(6.3.4)

The objectives for sensor placement scheme is formally defined as follows,
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Objective 1

It is to minimize SIR and is formulated as follows:

Minimize o1 =
1
n

n

∑
i=1

n

∑
j=i+1

αi j (6.3.5)

where n is the number of position selected for deploy sensor nodes.

Objective 2

It is to maximize TCR and is formulated as follows:

Maximize o2 =
1
k

n

∑
i=1

k

∑
j=1

βi j (6.3.6)

Objective 3

It is to maximize SSCR and is formulated as follows:

Maximize o3 =
1
n

n

∑
i=1

n

∑
j=i+1

γi j (6.3.7)

6.3.1 Entropy-weight Computation Method for Sensor Placement

Step I : Construct decision matrix
(
xi j

)
p×q, where p is the number of candidate sen-

sor positions and q is the number of constraints employed on these candidate sensor

positions.

Step II : Decision matrix consist of different types of data and comparison between

these data cause inconsistent. Therefore, decision matrix required to be normalized to

handle data. One of the accepted technique to normalize data is vector normalization.

Suppose
(
xi j

)
p×q is normalized matrix and calculated as follows:

If the constraint on the candidate position is positive, that is, maximum value is

better, then normalization is done using the following equation.
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xi j =
xi j√

∑
p
i xi j2

i ∈ [1 . . . p], j ∈ [1 . . .q]

If the constraint on candidate position is negative, that is, minimum value is better,

then normalization is done using the following equation:

xi j =

1
xi j√

∑
p
i

1
xi j

2
i ∈ [1 . . . p], j ∈ [1 . . .q], xi j ̸= 0

In experiments, a small value ′δ ′ is added with xi j to handle divide by error.

Step III :The characteristic proportion value pi j for each candidate position Pi of

constraint C j is computed as follows:

pi j =
xi j√

∑
p
i=1 xi j

2
, j ∈ [1 . . .q]

Step IV : The entropy value e j for each constraint using characteristic proportion

pi j is computed as follows:

e j =− 1
ln(p)

p

∑
i=1

pi j ln(pi j), j ∈ [1 . . .q]

The entropy value range from 0 to 1 and smaller entropy value of jth constraint

indicates more information available from it.

Step V : The computation of degree of divergence d j for each constraint j is per-

formed using the equation below:

d j = 1− e j, j ∈ [1 . . .q]

If the degree of divergence of constraint j is higher, then the degree of information
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Sensor placement methodology

Non-beneficial parameters: IrBeneficial parameters: Cv and Cn

Construct decision matrix:
(

xij

)

p×q

Construct the normalized decision matrix:
(

xij

)

p×q

Construct the weighted normalized decision matrix: vij =
(

xij .wj

)

p×q

Determine ideal solutions
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Figure 6.2 Topsis sensor placement

revealed by the constraint j is also higher.

Step VI : The entropy weight for each constraint j for all candidate positions of set

P is obtained as follows:

w j =
d j

∑
q
j=1 d j

, j ∈ [1,q]

where,

∑
q
j=1 w j = 1

Finally, these weights are used in TOPSIS to rank potential positions and select best

potential positions.

6.3.2 TOPSIS Method for Sensor Placement

Step I : Construction of decision matrix
(
xi j

)
p×q, i ∈ [1 . . . p], j ∈ [1 . . .q]
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Algorithm 6.3.1 Final selection of potential positions for sensor deployment

Input: Ranked set of p candidate positions P = {pos1, pos2, pos3 . . . , posp}, Set of k
target points T = {t1, t2, t3 . . . , tk}

Output: Final sensor placement positions set C which covers targets T
1: Sort candidate positions according to their rank

// Algorithm starts
2: for target j = 1 to k do
3: for positions i = 1 to p do
4: if target t j is covered by sensor in position pi then
5: if pi /∈C then
6: C =C∪ pi
7: break // To break inner loop
8: end if
9: end if

10: end for
11: end for
12: Final potential positions set C is used for sensor deployment
13: Evaluate SIR, TCR, and SSCR.

xi j =

A1

A2

A3

...

Ap

C1 C2 C3 · · · Cq

x11 x12 x13 · · · x1q

x21 x22 x23 · · · x2q

x31 x32 x33 · · · x3q

...
...

... · · · ...

xp1 xp2 xp3 · · · xpq


Step II : Computation of normalized decision matrix is done as follows:

xi j =
xi j√

∑
p
i xi j2

i ∈ [1 . . . p], j ∈ [1 . . .q]

Step III : Weighted normalized matrix vi j is computed by multiplying the normal-

ized matrix with corresponding weights:

vi j = xi j.w j

Step IV : Computation of positive ideal solutions (PIS) V+ and negative ideal solu-
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tions (NIS) V− are done as follows:

V+ =

{
max

i
vi j, j ∈ J1;min

i
vi j, j ∈ J2

}
=

{
v1

+,v2
+, · · · ,vq

+

}

and

V− =

{
min

i
vi j, j ∈ J1;max

i
vi j, j ∈ J2

}
=

{
v1

−,v2
−, · · · ,vq

−
}

where J1 and J2 are the sets of beneficial criteria and non-beneficial criteria respec-

tively; v j
+ and v j

− represents jth column PIS and jth column NIS of the weighted

normalized matrix respectively.

Step V : Computation of Euclidean distance from PIS and NIS for each weighted

normalized values are done as follows:

S+i = [
q

∑
j=1

(
v+j − vi j

)2
]0.5

S−i = [
q

∑
j=1

(
v−j − vi j

)2
]0.5

Step VI : The closeness coefficient of alternative Ai is computed as follows:

Ci =
S−i

S+i +S−i
,(0 ≤Ci ≤ 1), i ∈ [1 . . . p]

Step VII : The best alternatives are ranked according to the Ci value in descending

order.

The ranked candidate positions and the targets are fed to the Algorithm 6.3.1. Firstly,
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the algorithm sorts the candidate positions according to their ranks (line 1). Each tar-

get t j, a candidate position pi that covers the target is identified. if the newly selected

candidate position is not in the sensor placement positions set C, then add the position

pi to set C. In the end, a candidate positions set C is obtained and is used for sensor

placement (lines 2-11). Finally, performance parameter values SIR, TCR, and SSCR are

computed.

In the algorithm, the sorting in line 1 requires O(plogp) time in worst case to sort

potential potential p. The for loop of line 2 requires O(k) time in worst case to identify

each target. The for loop of line 3 requires O(p) time in worst case to identify potential

positions to deploy sensors. The line 6 needs O(1) time to execute it. So, the algorithm

can be executed in O(kp) time. Therefore the time complexity of the above algorithm

is O(kp). if k < log p, then the algorithm requires O(p log p) time.

Illustration 1

Table 6.2 Potential positions ranking for sensor placement

Positions Cv Cn Ir Ci Rank1 Di Rank2 Ei Rank3

p1 1 2 0 0.7878 3 0.6311 6 0.8311 2

p2 2 2 0 1.0000 1 0.6526 5 0.9167 1

p3 2 1 1 0.6691 5 0.6763 4 0.6417 6

p4 2 0 2 0.4033 9 0.5287 8 0.4767 10

p5 2 0 1 0.5137 7 0.7600 2‘ 0.5317 9

p6 2 1 3 0.3999 10 0.3710 9 0.5592 8

p7 2 0 0 0.5889 6 1.0000 1 0.6967 5

p8 2 2 1 0.8152 2 0.5955 7 0.7517 3

p9 1 1 0 0.6818 4 0.7184 3 0.7211 4

p10 1 2 4 0.4111 8 0.3474 10 0.5671 7

Let 5 targets T = {t1, t2, . . . , t5}, 5 sensors S = {s1,s2, . . . ,s5}, and 10 potential posi-

tions P = {p1, p2, . . . , p10}. Suppose Table 6.2 gives coverage, connectivity, and the
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Cluster head selection methodology
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Figure 6.3 Topsis sensor head selection

interference count of potential positions that may be selected for deploying sensors. If

top 5 positions are considered for sensor placement according to their rank, then SIR,

TCR, and SSCR values are 0.4, 1.6, and 1.6 respectively and corresponding interference

energy loss is 20nJ. Instead, worst 5 positions are considered for sensor placement, then

SIR, TCR, and SSCR values are 2, 1.8, and 0.6 respectively and corresponding interfer-

ence energy loss is 100nJ. The Table 6.2 shows ranking of the potential positions using

E-TOPSIS, TOPSIS, and SAW methods.

6.4 Proposed Entropy-weighted TOPSIS Clustering Algorithm

6.4.1 Entropy-weight Computation Method for Clustering

Step I : Construct decision matrix
(
si j
)

n×m, where n is number of sensor nodes and m

is number of constraints employed on these sensors.
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Table 6.3 Sensor nodes ranking for CH selection

Sensors Re(Joule) Cr(meter) Ir(count) Dbs(meter) Dnn(meter) CCi Rank

s1 0.50 75 0 50 40 0.8256 1

s2 0.30 65 0 60 35 0.7166 2

s3 0.35 55 1 65 35 0.6559 3

s4 0.30 85 2 100 55 0.4968 7

s5 0.25 45 1 125 40 0.4956 8

s6 0.15 35 3 135 15 0.3036 10

s7 0.25 40 0 80 50 0.5921 5

s8 0.25 55 1 70 65 0.5310 6

s9 0.30 30 0 90 40 0.6014 4

s10 0.45 80 4 100 10 0.4640 9

Step II : The normalized decision matrix is obtained as follows:

si j =
si j√

∑
n
i xi j2

i ∈ [1 . . .n], j ∈ [1 . . .m] (2)

and

si j =

1
si j√

∑
n
i

1
si j

2
i ∈ [1 . . .n], j ∈ [1 . . .m],si j ̸= 0

In experiments, a small value ′δ ′ is added with si j to handle divide by error.

Step III : The characteristic proportion value ni j for each sensor is computed as

follows:

ni j =
si j√

∑
n
i si j

2
i ∈ [1 . . .n], j ∈ [1 . . .m],xi j ̸= 0

Step IV : The entropy value ev j for each constraint using characteristic proportion

ni j is computed as follows:

ev j =− 1
ln(n)

n

∑
i=1

ni j ln(ni j), i ∈ [1,n], j ∈ [1,m]
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Step V : The computation of degree of divergence dd j for each constraint j is per-

formed using the equation below:

dd j = 1− ev j, j ∈ [1,m]

Step VI : The entropy weight for each constraint j for all sensor set S is obtained as

follows:

wt j =
dd j

∑
m
j=1 dd j

, j ∈ [1,m]

where,

∑
m
j=1 wt j = 1

Finally, these weights are used in TOPSIS to rank sensor nodes to elect suitable

CHs.

6.4.2 TOPSIS Method for Clustering

Step I : Construction of a decision matrix
(
si j
)

n×m, i ∈ [1 . . .n], j ∈ [1 . . .m]

si j =

A1

A2

A3

...

An

C1 C2 C3 · · · Cm

s11 s12 s13 · · · s1m

s21 s22 s23 · · · s2m

s31 s32 s33 · · · s3m

...
...

... · · · ...

sn1 sn2 sn3 · · · snm


Step II : Computation of the normalized decision matrix as follows:

si j =
si j√

∑
n
i si j2

i ∈ [1 . . .n], j ∈ [1 . . .m]

Step III : The weighted normalized matrix ui j is computed by multiplying the nor-
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malized matrix with corresponding weights as shown below:

ui j = si j.wt j

Step IV : Computation of the positive ideal solutions (PIS) I+ and the negative ideal

solutions (NIS) I−.

I+ =

{
max

i
ui j, j ∈ K1;min

i
ui j, j ∈ K2

}
=

{
u1

+,u2
+, · · · ,um

+

}

I− =

{
min

i
ui j, j ∈ K1;max

i
ui j, j ∈ K2

}
=

{
u1

−,u2
−, · · · ,um

−
}

where K1 and K2 are the sets of beneficial criteria and non-beneficial criteria re-

spectively; u j
+ and u j

− represents jth column PIS and jth column NIS of the weighted

normalized matrix respectively.

Step V : Computation of Euclidean distance from the PIS and NIS for each weighted

normalized values are done as follows:

SP+
i = [

m

∑
j=1

(
u+j −ui j

)2
]0.5

SP−
i = [

m

∑
j=1

(
u−j −ui j

)2
]0.5

Step VI : The closeness coefficient of alternative Ai for CHs selection are computed

as follows:
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CCi =
SP−

i

SP+
i +SP−

i
(0 ≤CCi ≤ 1)

Step VII: The best alternatives are ranked according to the CCi value in descending

order.

Illustration 2

Suppose Table 6.3 is constructed with random parameter values of sensors. After

employing entropy weighted-TOPSIS MADM method, the order for CHs selection is

s1, s2, s3, s9, s7, s8, s4, s5, s10, and s6.

6.5 Results and Discussion

Table 6.4 Simulation parameters

Parameters Values
Potential positions p 200
Network size (m2) 300×300
Initial node energy(J) 0.5
Sensing range (m) [5-10]
Communication range(m) [50-100]
Data packet size k (bits) 4000
Eele(nJ/bit) 50
ET x(nJ/bit) 50
ERx(nJ/bit) 50
εmp(pJ/bit/m4) 0.0013
ε f s(pJ/bit/m2) 10
EDA(nJ/bit/message) 5
CH election probability 0.1
BS location(coordinates) (150,150)
Energy loss per interference (nJ) 50
Sensor nodes n 42

This Section details the parameter settings for the simulations and discusses the

performance analysis of MADM techniques for sensor placement and clustering. The

112



Table 6.5 SIR results comparison (30 instance of experiments are conducted )

Targets Parameters E_TOPSIS TOPSIS SAW

25

Best 0 0 0
Worst 0.0909 0.0869 0.0555
Mean 0.0149 0.0194 0.0027
SD 0.0279 0.0285 0.0121
95% CI [0.0049, 0.0249] [0.0092, 0.0297] [0.0020, 0.0071]

50

Best 0 0 0
Worst 0.0975 0.23075 0.0800
Mean 0.0482 0.0557 0.0185
SD 0.0254 0.0477 0.0185
95% CI [0.0392, 0.0574] [0.0387, 0.0729] [0.0119, 0.0252]

75

Best 0.0169 0.02040 0
Worst 0.1694 0.2881 0.0625
Mean 0.0874 0.0914 0.0297
SD 0.0391 0.0474 0.0226
95% CI [0.0734, 0.1010] [0.0744, 0.1080] [0.0216, 0.0378]

100

Best 0.0140 0.0151 0
Worst 0.1621 0.1756 0.1363
Mean 0.0753 0.0861 0.0401
SD 0.03571 0.0438 0.0323
95% CI [0.0625, 0.0881] [0.0704, 0.1020] [0.0286, 0.0517]

simulations are carried out using MATLAB R2019a on an Intel(R) Core(TM) i5-8250U

CPU@1.60 GHz 1.80 GHz and 8 GB RAM running on Microsoft Windows 10, 64-bit

operating system, x64-based processor. An initial wireless network is setup with p

number of potential positions and k number of target points. A network area of 300 ×

300 is created and a sink is placed at the centre of the field (150,150). The potential

positions and target points are randomly generated on the field. The simulations are

carried out for 200 potential positions and targets points are varied in the range of 25 to

100. The sensors are heterogeneous and have equal energy but with different sensing

and communicating capabilities. Each sensor has initial energy of 0.5 joule. The sens-

ing and communication range of sensors are in the range of 5 meter to 10 meter and 50

meter to 100 meter respectively. The data packet size is 4000bits. The energy required

for one bit computation or transmission or receipt is 50 nanojoule(nJ). The energy drain
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Table 6.6 TCR results comparison (30 instance of experiments are conducted )

Targets Parameters E_TOPSIS TOPSIS SAW

25

Best 1 1 0.76
Worst 0.96 0.92 0.36
Mean 0.996 0.982 0.598
SD 0.012 0.0267 0.1098
95% CI [0.992, 1.000] [0.972, 0.992] [0.559, 0.637]

50

Best 1 1 0.76
Worst 0.94 0.88 0.48
Mean 0.974 0.934 0.606
SD 0.018 0.03104 0.0834
95% CI [0.968, 0.980] [0.923, 0.945] [0.576, 0.636]

75

Best 0.9733 0.9866 0.6666
Worst 0.92 0.88 0.48
Mean 0.946666 0.9293 0.5846
SD 0.01738 0.0273 0.0448
95% CI [0.940, 0.953] [0.920, 0.939] [0.569, 0.601]

100

Best 0.98 0.98 0.66
Worst 0.89 0.86 0.5
Mean 0.9325 0.9195 0.5835
SD 0.0229 0.0283 0.0408
95% CI [0.924, 0.941] [0.909, 0.930] [0.569, 0.598]

for one bit transmission in multipath channel and free space channel are 0.0013 pico-

joule(pJ) and 10 picojoule respectively. The energy required for fusing one bit data is

5 nanojoule. The energy loss for per interference is 50 nanojoule. The cluster head

election probability for all methods is 0.1. The parameter list is tabulated in Table 6.4.

6.5.1 Result Analysis

The performance analysis of novel E-TOPSIS based sensor placement scheme and clus-

tering are presented in this chapter. Firstly, results for E-TOPSIS placement scheme are

presented and compared with TOPSIS and SAW methods. The results for SIR, TCR

and SSCR are tabulated in Table 6.5, 6.6 and 6.7 respectively. The 30 instance of
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Figure 6.4 Initial Network: 200 candidate positions and 50 targets

Figure 6.5 Final Network: Selected final positions with 50 targets covered
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Table 6.7 SSCR results comparison (30 instance of experiments are conducted )

Targets Parameters E_TOPSIS TOPSIS SAW

25

Best 2.88 2.36 5
Worst 1.4583 1.2272 1.1666
Mean 1.9131 1.8103 2.9968
SD 0.3411 0.3090 0.8678
95% CI [1.791, 2.035] [1.700, 1.921] [2.686, 3.307]

50

Best 4.1818 3.8333 6.07407
Worst 2.9268 2.5277 2.16
Mean 3.5300 3.2246 4.0862
SD 0.3400 0.3417 0.8860
95% CI [3.408, 3.652] [3.102, 3.347] [3.769, 4.403]

75

Best 6.4000 5.3620 7.714
Worst 4.0727 3.9387 3.531
Mean 4.9946 4.7120 4.992
SD 0.5192 0.3829 1.0394
95% CI [4.809, 5.180] [4.575, 4.849] [4.620, 5.364]

100

Best 7.1486 6.7530 7.1025
Worst 5.3714 4.8125 4.0487
Mean 6.19010 5.96849 5.4456
SD 0.4611 0.5209 0.7982
95% CI [6.025, 6.355] [5.782, 6.155] [5.160, 5.731]

experiments are conducted and results are presented as best, worst, mean, standard de-

viation, and 95% confidence interval. The results show that the E_TOPSIS achieve

better results in terms of target coverage ratio compared to other two MADM methods.

In Table 6.5, the SIR increases as number of targets increase. It is due to more number

of sensors being required to cover more target points and hence an increase in interfer-

ence of the network. The Figure 6.6a depicts the mean SIR results of three methods. It

is noted that the mean SIR for SAW method is better compared to other methods, but

the technique fails to achieve the required target coverage. It is noted from the Table 6.6

is that the target coverage ratio for E-TOPSIS supersedes other MADM methods. The

Figure 6.6b depicts the mean TCR results of three methods and E-TOPSIS outperforms

over other methods. Figure 6.4 depicts initial network with identified potential positions

and targets points. Figure 6.5 represents the final network with the selected potential
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Figure 6.6 SIR and TCR comparisons

positions for sensor deployment and given target points covered. In Table 6.7, SSCR

increases as the number target points increase. It is because of the increase in sensors

to cover more targets and hence each node has more neighbour nodes, which results in

high SSCR values. The Figure 6.7a shows the mean SSCR results and it is better as

the number of targets increases. The good SSCR values are very essential for larger

and reliable networks. After the placement, clustering is performed on these sensors.

Again, E-TOPSIS is employed for clustering and compared with TOPSIS and SAW

MADM methods. Figure 6.8 shows the lifetime of WSN on various MADM methods.

It is observed that the death of first node in the E-TOPSIS later than other protocols.

In other words, the network stability period for E-TOPSIS is better compared to other

MADM protocols. Figure 6.7b shows that the performance indicators like first node

dies (FND), Half of the node dies (HND), and last node dies (LND). Performance of

MADM methods are compared with modified LEACH. Here, cluster heads are able to

receive data from its member nodes, if they are in the communication range of the clus-

ter heads. The results shows that the stability period for clustering using E-TOPSIS is

34.1%, 73.65%, and 83.5% better than TOPSIS, SAW and Modified LEACH methods
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Figure 6.7 SSCR and network lifetime comparisons
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Figure 6.8 Network stability period comparisons
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respectively. The network lifetime in E-TOPSIS is better than the other protocols.

6.6 Chapter Summary

The energy efficient placement and clustering play a crucial role in extending the stabil-

ity period of the wireless sensor networks. To address the issues, a novel MADM based

placement and clustering schemes are proposed in the chapter. The major objectives

of the proposed works are multi-constrained placement and clustering in wireless sen-

sor networks. E-TOPSIS based MADM schemes are formulated for interference aware

sensor placement and clustering. The proposed schemes are illustrated with suitable

examples. The performance analysis of sensing interference ratio, target coverage ratio

and sensor to sensor connectivity ratio are conducted. A comparison study of the E-

TOPSIS methods with other scheme is carried out. The results show that the E-TOPSIS

based schemes for sensor placement and clustering are better than other schemes. The

proposed sensor placement method can be adopted for the placement of under water

sensors in under water environment to minimize interference among them. The results

of clustering show that the stability period for E-TOPSIS is 34.1%, 73.65%, and 83.5%

better than TOPSIS, SAW and Modified LEACH methods respectively.

.
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Chapter 7

Conclusion and Future Scope

WSNs have gained lot of attention by the researchers due to its wide spectrum of appli-

cations in industry, healthcare,military, smart city, and domestic appliances. The WSNs

have various issues like coverage of targets with connectivity constraint, interference

of signal during sensing the environment by the sensors or communication between

the sensor nodes, and also energy conservation of the sensor nodes. In recent fast,

various computational intelligence methods have developed to solve real word science

and engineering problems in general and WSNs in particular to address a wide set of

challenges. This includes coverage, localization, and clustering problems. In this con-

text, the research work presented in this thesis is focused on designing and developing

computational intelligence methods for solving some problems in WSNs.The research

work presented in this thesis is focused on solving k-coverage and m-connectivity, in-

terference minimization, and clustering in WSNs and contributions are summarized as

follows.

In chapter 3, a differential evolution based meta-heuristic technique for solving k-

coverage and m-connectivity problem in WSN is presented. The technique finds an

optimal number of selected candidate positions for the deployment of sensor nodes

with specified k-coverage and m-connectivity demands of the wireless sensor network.

We have adopted an efficient method to represent vectors of the population as well

as for fitness calculation, then applied mutation, crossover, and selection operators to

choose the best vector of the population. The steps of computing fitness values are
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illustrated. The simulations are performed by varying candidate sensor node positions

and targets points along with coverage and connectivity requirement. In addition, we

have compared our proposed technique with a genetic algorithm based approach. The

result confirms that the proposed approach is superior to the GA based approach.

In chapter 4, an optimal sensors placement BBO-based scheme is proposed with a

combined goal of maximizing target coverage and minimizing interference while main-

taining connectivity of the network. An elegant vector encoding for habitat representa-

tion and novel fitness function is formulated for the proposed scheme. The working of

the proposed scheme is illustrated with a suitable example. The performance study of

sensing interference ratio and target coverage ratio on grid and random scenarios were

conducted. A comparison study of the BBO-based scheme with other scheme was car-

ried out. The least energy loss due to interference in BBO-based scheme confirms its

superiority over other schemes.

In chapter 5, Hybrid hierarchical protocols named FLAG and I-FLAG are proposed

to extend network stability. Two main phases of these protocols are CH election phase

and SCH election phase. The CH election phase is achieved through a game-theoretic

protocol, and SCH election phase is achieved through a fuzzy inference system. The

simulations are carried out to verify the superiority of the proposed protocols. The

results show that the network stability period of FLAG is better than LEACH, CHEF,

and CROSS. The network stability period of I-FLAG is better than LEACH, CHEF, and

I-CROSS. Due to the balanced energy drain of the proposed work, the network stability

is better over the other protocols.

Finally, in chapter 6, MADM based placement and clustering schemes are proposed.

The major objectives of the proposed works are multi-constrained placement and clus-

tering in wireless sensor networks. E-TOPSIS based MADM schemes are formulated

for interference aware sensor placement and clustering. The proposed schemes are

illustrated with suitable examples. The performance analysis of sensing interference

ratio, target coverage ratio, and sensor to sensor connectivity ratio were conducted. A
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comparison study of the E-TOPSIS methods with other schemes was carried out. The

results show that the E-TOPSIS based schemes for sensor placement and clustering are

better than other schemes. The proposed sensor placement method can be adapted for

the placement of Internet of Things (IoT) devices to minimize interference among them.

The results of clustering show that the stability period for E-TOPSIS is 34.1%, 73.65%,

and 83.5% better than TOPSIS, SAW and Modified LEACH methods respectively.

In future, one can develop more sophisticated model for handling following scenar-

ios:

1. Dynamic wireless sensor networks have advantages over stationary wireless sen-

sor networks in some applications and hence one can attempt to develop a model

to handle k-coverage and m-connectivity problems in such scenarios. To adapt

dynamic networks, one can consider mobile sensor nodes or mobile sinks.

2. Sophisticated model can be developed for interference minimization problems by

augmenting fuzzy logic as sensor node signals have different degrees of overlap-

ping, they can be easily modelled using fuzzy logic.

3. Zone-based hybrid clustering models can be developed which have the potential

for parallelization to achieve faster computation. This is essential for time critical

applications.
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