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ABSTRACT

Regularization methods are widely used for solving ill-posed problems. In this
thesis we consider the fractional regularization methods for solving equations of
the form T'(z) = y where T': X — Y is a linear operator between the Hilbert
spaces X and Y. In practical applications, we mostly have only the noisy data
y® such that ||y — ¢°|| < 6. Throughout our study, we work in the setting of
Hilbert scales as it improves the order of convergence. We study the Fractional
Tikhonov Regularization method in Hilbert scales and for selecting the regulariza-
tion parameter the adaptive choice method introduced by Pereverzev and Schock
(2005)) is used. Also we introduce a new parameter choice strategy. While per-
forming numerical calculations, it is always easier to work in a finite dimensional
setting than in an infinite dimensional one. For this reason we study the finite
dimensional realization of the fractional Tikhonov and the fractional Lavrentiev
regularization methods in Hilbert scales. We also study the analogous of the dis-
crepancy principle considered in |George and Nair| (1993)) for Fractional Lavrentiev
method.

Keywords: Ill-posed problem; Fractional Tikhonov regularization; Hilbert
scales; Parameter choice strategy; Adaptive parameter choice; Lavrentiev
regularization; Finite dimensional realization; Discrepancy principle.

Mathematics Subject Classification: 47A52, 65R10, 65J10, 47H09, 49J30






Table of Contents

1.4 HILBERT SCALES

.41 INTERPOLATION INEQUALITY IN HILBERT SCALES . 10
1.0 WEIGHTED OR FRACTIONAL REGULARIZATION METHODS 10
1.6 RESEARCH OBJECTIVES 12
1.7 OUTLINE OF THE THESISI 12

2 FRACTIONAL TIKHONOV I
[ REGULARIZATION METHOD IN |




3.2 PARAMETER CHOICE STRATEGY! 62
3.3 NUMBERICAL BEXAMPLEN 5

4 FRACTIONAL LAVRENTIEV I
[ REGULARIZATION METHOD IN |
- HILBERT SCALES

- TIEV REGULARIZATION METHOD [N HILBERT SCALES . . .
4.4 FRROR BOUNDS UNDER DISCREPANCY PRINCIPLE
4.0 NUMBERICAL BEXAMPLES 102

5 CONCLUSIONS AND SCOPE FOR FUTURE WORK|] 117
.l CONCLUDING REMARKS 117
h.2 FUTURE SCOPE OF THE RESHARCH 118

[References| 119

i



List of Figures

[2.1 Filter function ¢q(t) as a functionof ¢.|. . . . . . . .. ... .. .. 24
[2.2  Filter function ¢o(t) for 5=0.5. . . . .. ... ... L. 24
[2.3  Filter function ¢o(t) for 5=0.7.[ . . . . . ... ... L. 25
[2.4  Filter function ¢o(¢) for 5=0.9. . . . .. ... ... L. 25

I 100dWINL  « .« . v oo 34
= = 700 for Fox and Goodwinl . . . . . 34

- = . 35

\ = = zoodwinl . . . .. 35

| example.| . . . ..o 37
[2.10 Solutions with 0 = 0.01 and n = 700 for the Heat example| . . . . . 37
[2.11 Solutions with 0 = 0.01 and n = 700 for the Heat example. | . . . . 38
[2.12 Solutions with 0 = 0.01 and n = 700 for the Heat example | . . . . . 38

| example.| . . . ..o 40
[2.14 Solutions with 0 = 0.01 and n = 700 for the Baart example| . . . . 40
[2.15 Solutions with 0 = 0.01 and n = 700 for the Baart example. | . . . . 41
[2.16 Solutions with 0 = 0.01 and n = 700 for the Baart example | . . . . 41
[2.17 Exact data and noise data for 0 = 0.01, n = 700 and « chosen by |

| (2.5.5) for the Shawn example.[. . . . . . . ... ... ... ... .. 43
[2.18 Solutions with 6 = 0.01, n = 700 and « chosen by (2.5.5)) for the |

| Shawn example.|. . . . . . ... oo 43
[2.19 Solutions with 6 = 0.01, n = 700 and « chosen by (2.5.5) for the |

| Shawn example. | . . . . . . ... Lo 44

[2.20 Solutions with 0 = 0.01, n = 700 and « chosen by (2.5.5)) for the |

| Shawn example | . . . . . . . . ... Lo 44

il



Al

| example using adaptive parameter choice strategy,|. . . . . . . . .. 45
[2.22 Solutions with 0 = 0.01 and n = 700 for the Shawn example using |

| adaptive parameter choice strategy.| . . . . . . . .. ... L. 45
[2.23 Solutions with 0 = 0.01 and n = 700 for the Shawn example using |

| adaptive parameter choice strategy. | . . . . . ... ... ... 46
[2.24 Solutions with 0 = 0.01 and n = 700 for the Shawn example using |

| adaptive parameter choice strategy. | . . . . . ... ... ... ... 46
[2.25 Solutions with 0 = 0.01 and n = 700 for the Shawn example using |

| adaptive parameter choice strategy.| . . . . . . ... ... ... 47
[2.26 Solutions with 0 = 0.01 and n = 700 for the Shawn example using |

| adaptive parameter choice strategy. | . . . . . ... ... ... ... 47
[2.27 Exact data and noise data for 0 = 0.01 and n = 700 for the Phillips |

| example with adaptive method.| . . . . . . .. ... ... ... ... 50
[2.28 Solutions with 0 = 0.01 and n = 700 for the Phillips example using |

| adaptive parameter choice strategy.| . . . . . . ... ... ... ... 50
[2.29 Solutions with 0 = 0.01 and n = 700 for the Phillips example using |

| adaptive parameter choice strategy. | . . . . . ... ... ... ... 51
[2.30 Solutions with 0 = 0.01 and n = 700 for the Phillips example using |

| adaptive parameter choice strategy. | . . . . . ... ... ... o1
[2.31 Solutions for standard Tikhonov regularization with 0 = 0.01 and |

| n = 700 tor Phillips example using adaptive parameter choice strat- |
BV | e 52
[2.32 Solutions for standard Tikhonov regularization with 0 = 0.001 and |

| n = 700 tor Phillips example using adaptive parameter choice strat- |
OBV | 52
= =300] ........ 78

= =3001 ... ... 00 78

3.3 Solutions with 0 = 0.0l and n=300] . . . . . .. ... . ... ... 79
3.4 Solutions with 0 =0.0l and n =300 . . . . ... .. ... ... .. 79

= =500]........ 80

v



3.6 Solutions with ¢ =0.001l and n=5001 . . .. ... ... ... ... 80
= =5001 .. ... 81

3.8 Solutions with ¢ =0.001l and n=5001 . . . ... .. ... ... .. 81
1.1 Filter function ¢1(¢) as a functionof ¢.|. . . . . .. ... ... ... 98
4.2 Filter function @9(t) for « = 0.1 and § = 0.5,0.35,0.25,0.2,0.1.| . . 98
4.3 Exact data and noise data when 0 = 0.01 for Shawn example] . . . . 104
4.4 Solutions with 0 = 0.01 and 5 = 0 for Shawn example.| . . . . . .. 104
[4.5  Solutions with 0 = 0.01 and £ = 0.05 for Shawn example.|. . . . . . 105
4.6 Solutions with 0 = 0.01 and 5 = 0.1 for Shawn example.| . . . . .. 105
[4.7  Solutions with 0 = 0.01 and 5 = 0.15 for Shawn example.|. . . . . . 106
4.8 Solutions with 0 = 0.01 and 5 = 0.2 for Shawn example.| . . . . .. 106
4.9  Exact data and noise data when o0 = 0.01 for Phillips example.| . . . 108
[4.10 Solutions with 0 = 0.01 and 5 = 0 for Phillips example.| . . . . . . . 108
[4.11 Solutions with 0 = 0.01 and 5 = 0.05 tor Phillips example.| . . . . . 109
[4.12 Solutions with 0 = 0.01 and 5 = 0.1 for Phillips example.| . . . . . . 109
[4.13 Solutions with 0 = 0.01 and 5 = 0.15 tor Phillips example.| . . . . . 110
4.14 Solutions with 0 = 0.01 and 5 = 0.2 for Phillips example.| . . . . . . 110
[4.15 Original and noisy input signal: Contaminated with Gaussian noise |
with standard deviation ¢ =0.15.1 . . . . . .. ... .. ... ... 112

[4.16 Lavrentiev regularization | . . . . . .. .. ... ... ... ..... 112
[4.17 Fractional Lavrentiev: 5 =0.1| . . . .. ... ... ... ... ... 113
[4.18 Fractional Lavrentiev: S =0.2| . . . . . ... ... .. ... .... 113
[4.19 Comparison: Gaussian noise and linear blur| . . . . . . . . ... .. 114
[4.20 Comparison: Gaussian noise and linear blur| . . . . . . . . ... .. 115




vi



List of Tables

2.1 Relative errors for Fox and Goodwin. | . . . .. ... ... ... .. 33
[2.2  Relative errors for Heat example. |. . . . . . . ... ... ... ... 36
[2.3  Relative errors for Baart example. | . . . . . . .. ... ... 39
[2.4 Relative errors for Shawn example with « chosen by (2.5.5). [. . . . 42
[2.5 Shawn example with adaptive parameter choice. | . . . . . . . . .. 48
[2.6 RE for Phillips example with adaptive parameter choice. |. . . . . . 49
[3.1 Relative errors for the example. |. . . . . . .. ... ... ... ... 82
4.1 Relative errors for fixed o |. . . . . . o000 103
[4.2  Relative errors under discrepancy principle for Shawn example. | . . 107
4.3 Relative errors for fixed o . . . . . . o000 107
4.4 Relative errors under discrepancy principle for Phillips example. | . 111

1.5 SNR evaluated (in dB) for different 5 values for two different images|115

vil



viil



Chapter 1

INTRODUCTION

An inverse problem determines the causes of a desired or observed result. Inverse
problems is a very useful and active field of research in applied sciences. Many
inverse problems have their mathematical formulation as an operator equation of
the form

T(x)=1y, (1.0.1)

where T : D(T) C X — Y is a linear or nonlinear operator between suitable
normed linear spaces X and Y. Here y is the observation and x is the sought for

solution.

1.1 ILL-POSED PROBLEMS

Inverse problems most often do not fulfill Hadamard’s postulates of well-posedness.
French mathematician Hadamard (1953), formulated the following conditions of
well-posedness of mathematical problems. The problem of solving the operator
equation is said to be well-posed if the following three conditions are ful-
filled:

(1.) Existence: For each y € Y, there is a solution x € X of (1.0.1)) ;
(2.) Uniqueness: The solution z is unique ;
(3.) Stability: The dependence of x upon 7' is continuous .

Problems that are not well-posed in the sense of Hadamard [Hadamard (1953)]

are termed ill-posed.



A typical example would be the Fredholm integral equation of the first kind, with
T : L*[a,b] — L*[a,b] defined by

(Tz)(s) = / k(s,t)z(t)dt =y(s), a<s<b,

where k(.,.) is a non-degenerate square integrable function and y(.) is a known
data. The Fredholm integral equations of the first kind appear in many problems
with practical applications. Hereafter in our study, we consider the operator T to
be a bounded linear operator.

Next we provide two examples where Fredholm integral equations appear.
Example 2.1(A Gravitation problem)(Groetsch, (2007))

Suppose mass is distributed on a circular ring of radius 1/2 centered on the origin
with density f = f(6), where 6 is a polar angle. Let g(y) be the centrally directed
component of gravitational force at the points on the concentric circle of radius 1,
where ¢ is polar angle. Then the relation between density and centrally directed

force is given by

let r be distance between a mass element at position 6 on the inner ring and a

point on the outer ring located at polar angle . Then by law of cosines we have
r? =5/4 — cos(p — 0).

Similarly, by law of cosines, the angle 1 between the centrally directed vector
emanating from the attracted point on the unit circle and the vector from the

attracted point and the gravitating element f(6)df on the inner circle satisfies

1 — 2cos(p —0)

cosy =
,

and hence the total centrally directed force on a point at polar angle at ¢ on the

9(p) = 7/0 ' G i;ccojzf__;)))wf(@)de :

where 7 is the universal gravity constant. The inverse problem of determining the

outer circle is

interior mass distribution f from observation of the force g on the outer ring is

2



thus formulated as an integral equation of the first kind.

Example 2.2(Steady State Heat Distributions)(Groetsch| (2007))

Consider the problem of determining the temperature flux (cause) on the left edge
of a semi-infinite strip from observation of the temperature on that face (effect)
when the temperature in the strip is at steady state. The problem may be stated

mathematically as follows. Let
Q={(z,y):0<2,0<y <7}

and suppose u = u(z,y) is a function defined on the closure of 2 and satisfying

Pu  O%u
—t — = Q
572 + 0 =01in

and

u(z,0) =u(x,m) =0 for x>0.

Suppose we wish to determine the temperature flux

ou
Ox
given the temperature distribution g(y) = u(0,y).

fly)=-0,y), 0<y<m

Elementary separation of variables techniques lead to a representation of the form

Z Tsin(ny).

Proceeding formally, we find that

o

F) = 3 (~na,)sin(ny)
n=1
and hence
2
tn == [ H(©)sintng)ie
while

= Z ansin(ny)
n=1

— _ Z % /07r f(&)sin(né)dEsin(ny)
- | ke,

3



where
oo

k(y, &) = 2 Z %sm(ny)sin(nf) :

m
n=1

Again the inverse problem is modeled by an integral equation of the first kind.

(Tx)(s) = /bk(s,t)a:(t)dt, a<s<b

where k(s,t) = —25°°°  Lgin(ns)sin(nt), z(t) = Y.°°,(—nay)sin(nt) and a =

7 2un=11n n=1
0,b=m.

1.2 BEST APPROXIMATE SOLUTION AND
GENERALIZED INVERSE

In equation (1.0.1) if y € R(T) then we say that y is attainable and condition
(a) of well-posedness holds true. However, in real world problems this need not
happen, but one would want to find some approximate solution to ([1.0.1]). Hence

we look at the following definition

DEFINITION 1.2.1. (Engl et al| (1996)) Let T : X — Y be a bounded linear

operator.
(i) x € X is called least-squares solution of equation if
[Tz —yl| = inf{ITz —ylllz € X}. (1.2.1)
(i) x € X is called best-approximate solution of Tx =y if x is a least-squares

solution of Tx =y and

|z|| = inf{||z]| | z is least-squares solution of Tx = y} (1.2.2)

holds.

DEFINITION 1.2.2. Let T € B(X,Y). The operator TT : D(T") C Y — X,
where D(TY) = R(T) + R(T)*, defined by T'y = &, where % is the least-squares
solution of minimal norm of the equation T'x = vy, is called the generalized inverse

of T.



THEOREM 1.2.3. (Nair (2009))
Let X and Y be Hilbert spaces, Xo be a subspace of X and T : Xog — Y be a

closed linear operator. Then
(i) TT is a closed linear operator, and
(ii) T' is continuous if and only if R(T) is a closed subspace of Y .

So, if R(T) is not closed, then finding a generalized inverse of T is also ill-posed.

In this case one has to consider, regularization methods for solving (1.0.1)).

1.3 REGULARIZATION METHOD

In equation if y € R(T) then we say that y is attainable and if not then
we can find the best approximation to the solution x using the generalized inverse
TT (Engl et al.| (1996))). However if R(T) is not closed, then finding a generalized
inverse 77 of T is also ill-posed. In this case one has to consider, regularization
methods for solving (1.0.1). Regularization is the approximation of an ill-posed
problem by a family of neighbouring well-posed problems. Since is ill-posed
in general, the strong convergence and stability of approximate solutions can be
attained only by exercising some regularization procedure. In practice, most of
the time the exact data is not known and the available data is 3°(called the noisy

data) with
ly =l <4. (1.3.3)

We therefore look for some approximation, say 22, which depends continuously on
the (noisy) data y° with the property that as the noise level § decreases to zero

and if « is chosen appropriately, then 2° tends to 7.

DEFINITION 1.3.1. (Engl et al.| (1996)) Let T : X — Ybe a bounded linear
operator between the Hilbert spaces X and Y and ag € (0,400). For every a €
(0,), let Ry : Y — X be a continuous operator. The family {Ry} is called

a reqularization or a regularization operator(for TT), if, for all y € D(T"), there

>



exists a parameter choice rule o = o(6,%°) such that
limsup{ || Rasyy” — T'yllly’ € Y, [ly =9l <6} =0 (1.3.4)
6—0
holds. Here, o : RT x Y — (0, ) is such that

limsup{a(d,y°)y* € Y, [ly — ¢’ <6} = 0. (1.3.5)

6—0
For a specific y € D(TT), a pair (Ry,«) is called a (convergent) regularization

method (for solving Tx = y) if and hold.

A regularization method therefore consists of a regularization operator and a
parameter choice rule. Since this parameter choice rule is chosen depending on ¢
and 3°, a in Definition ([1.3.1) can be defined as a function

a {(6a y6)|(S > 07 ||y - y6|| S 5} — (0,0lo).

DEFINITION 1.3.2. (Engl et al| (1996)) Let o be a parameter choice rule
according to definition . If o does not depend on y°, but only on &, then we
call oo an a-priori parameter choice rule and write « = «(5). Otherwise, we call

a an a-posteriori parameter choice rule.
The most widely used regularization methods for ((1.0.1)) are:

1. When T is a bounded linear operator, Tikhonov regularization method in

which the solution 2% of the equation
(T*T + al)x = T*y° (1.3.6)

is taken as the approximate solution of (1.0.1))(Groetsch| (1984)). In other

words, 2% is taken as the minimizer of the functional J,(x) with

Jo(a) = ||Tz = y°|* + af|z||. (1.3.7)

2. If T is a positive, self-adjoint operator and X = Y, then one considers

Lavrentiev regularization method, in which the solution z?, of the equation
(T +al)x =1° (1.3.8)

6



is taken as an approximate for Z(Hochstenbach et al.| (2015)). Note that in

this case x° is the minimizer of the functional J,(z) with

Jo(2) = (Tz,2) — 2(y°, x) + afz|.

It is known that if & € R(T*T) and |ly — y°|| < 6 for some § > 0, the convergence
rate || — 22 || = O(6%/3) is optimal (George and Nair (1994)), [Engl (1983), Groetsch
(1984)) and it is usually attained by an a-priori choice o = O(6%*?3) or by an

a-posteriori choice. Morozov(Morozovi (1966)) suggests to choose « such that
|ITao — 3l =6

and the Arcangelis (Arcangeli (1966))method suggests

o
Var
Another type of discrepancy principle is suggested by Schock in which « is chosen
such that

T2, — | =

Tﬁ_ ) _ﬁ
|| xa y”_aqap>0aq>0‘

1.3.1 SOURCE CONDITIONS AND ORDER OPTIMAL-
ITY

DEFINITION 1.3.3. (Nair| (2009)) A priori assumptions on the unknown so-

lution & (orTTy)’, are called source conditions.

For example, suppose T is a compact operator and {(oy,, un,v,) : n € N} be a

singular system of T'. Then, from the representations

Ty = Zan<x,un>vn, x € X,

n=1

D
T"Txr = ZUZ(x,un)un, z € X,
n=1
we have
T, up )|

TeRT) «— i I < 00, (1.3.9)

2
On

7



i€ R(T'T) < Z % < 0. (1.3.10)
n=1

We observe that the source conditions (1.3.9) and (1.3.10]) are special cases of the

o0
(T, up)|
Z 0—41/

for v > 0. This condition is known as a Holder-type source condition.

condition

For a particular regularization method (R,,«), its rate of convergence helps

us determine its effectiveness. Let
To = Ray. (1.3.11)
Consider the rate with which
|za — 2| — 0 as o« — 0, (1.3.12)
where x,, is defined by and & = TTy, or the rate with which
|20 — & — 0 as a — 0 (1.3.13)

where 22 = R,y° and (1.3.3) holds. The rate ||z, — || depends on the parameter
choice tule () and that of ||z% — #|| depends on the regularization operator.
However

29, = &[] <[], — @all + [lza — 2], (1.3.14)

so both the rates are connected. A regularization method R for equation (|1 is
said to be of order optimal with respect to the source condition that z € Ml,’p =
{r =(T*"T)"u:0 < v <1,||ul]] < p} if there exists a constant ¢y independent of ¢

and p such that
||i, _ Ry5|| S copl/(2V+1)52l//(2V+1) (1315)

whenever 3° € Y and |y — ¢°|| < . In order to improve convergence rates in
(1.3:15), many authors studied (George and Nair| (1997), [George et al| (2013),
Mahale and Dadsenal (2018)), Natterer| (1984)), [Tautenhahn| (1993), |Argyros et al.
(2017), [Shobha et al.| (2014), Argyros et al. (2014)), Shobha and George, (2014]),
\George and Kanagaraj| (2019), |George| (2008)), (George and Nair| (2004)), |George)
and Nair| (2003)) regularization methods in the setting of Hilbert scales.

8



1.4 HILBERT SCALES

In order to improve convergence rates we study regularization methods in the

setting of Hilbert scales.

DEFINITION 1.4.1. (Mahale and Nair| (2007)) A family {Xs}ser of Hilbert

spaces is called a Hilbert scale if it satisfies the following conditions:
e Fors<t, Xy C X, and X, is a dense subset of Xj.

o As Hilbert spaces, the above inclusion is a continuous embedding, i.e. there

exists csy > 0 such that

llz]|s < csullz]]e for all z € A,

Let L : D(L) C X — X be a strictly positive definite, unbounded, densely
defined, self-adjoint operator. That is, L satisfies;

(Lz,x) >0,

D(L) is dense in & and
[Lz]| = ||zl], © € D(L).

Let X; be the completion of D := N, D(L*) with respect to the norm ||z, =

|Liz||, (here and below ||.|| denote the norm in X’) induced by the inner product
(u,v)y = (L'u, L'v), u,v € D.

Then, {X,}ser (cf. [George and Nair| (1997)) satisfies the Definition [1.4.1] (George
and Nair| (1997),George and Nair| (2003),Tautenhahn (2002)),Vasin and George
(2014))). In this study, we consider the Hilbert scale { X, }scr. Note that the Hilbert

X, =
|L*z|| (Egger and Hofmann| (2018), see also Krein and Petunin| (1966) [Page 145]).

scale generated by L connects X with X, through the relation ||z|s = ||

9



1.4.1 INTERPOLATION INEQUALITY IN HILBERT SCALES

Let { Hs}ser be a Hilbert scale. We already know that forr < s < t, H, C H; C H,

and there exists constants ¢, s and ¢, such that
Csllelle < flzlls < crsllzllr Vo € Hy.
Another inequality which holds in Hilbert scales is
lzlls < lzllz~Mllp, Vo € H, (1.4.16)

whenever r < s < t, where A = I;:—j The inequality in is called the
interpolation inequality on {H}ser-

It is known that the (Klann and Ramlau (2008)) Tikhonov and Lavrentiev
regularization methods oversmoothen the solution Z, i.e., sharp or fine features
of the reconstructed function are lost. In order to overcome this, the fractional

Tikhonov and fractional Lavrentiev methods were studied.

1.5 WEIGHTED OR FRACTIONAL REGULAR-
IZATION METHODS

Klann and Ramlau (2008) first introduced the fractional or weighted Tikhonov
regularization method. Following this, another approach also referred to as frac-
tional Tikhonov regularization method was investigated by |Hochstenbach and Re-

ichel (2011). By replacing the norm in the first term on the right side of equation
(1.3.7) by the weighted seminorm

lyllw = W 2ylly

with W = (TT*)#=V/2 for some parameter 0 < 3 < 1, where W is the Moore-
Penrose inverse of TT* when 8 < 1 we can derive the method in Hochstenbach
and Reichel (2011)).

In fractional Tikhonov regularization method, xiy 5 the minimizer of the functional

Jaﬁ(x) )
Jog(@) = Tz —y°||% + allz]®, z€ X, a >0 (1.5.1)

10



is taken as an approximation for . Note that mi 5 satisfies the equation
(T T)PHV2 D)o = (T*T)P-D27%7

It is known (Kanagaraj and George| (2019)) that 22, ; reduces the oversmoothing.
In fractional Lavrentiev regularization method in the setting of Hilbert space,

the minimizer 2, ; of the functional
Ji(x) = (Tx,x) — 2(3°,2) + a(TPz,z), a>0 (1.5.2)

is taken as an approximation for z. Here T is a positive self-adjoint operator and
X=Y.

In the equation (L.3.7), a > 0 is the regularization parameter and [|z||? is the
penalty term. The penalty term in Tikhonov regularization( Lavrentiev regular-
ization) oversmoothens the solution. We propose to study the fractional Tikhonov
regularization method and fractional Lavrentiev regularization method which re-
duces oversmoothing; in the setting of Hilbert scales.

Gerth et al| (2015) compared the convergence properties of fractional Tikhonov
regularization method (two different approaches)(Klann and Ramlau| (2008)), Hochsten-
bach and Reichel (2011))) with the results published by some other authors(Louis
(1989), Mathé and Tautenhahn (2011)) and showed that in both their methods

when « is chosen according to the discrepancy principle
|Tx° —°|| =76 (1.5.3)

for some 7 > 1 it gives the optimal convergence rate. But the main drawback of
this method is that it does not provide optimal order O(d 23%) under the assump-
tion Z € R((T*T)?), for all 0 < v < 1.

Reddy| (2018) considered the [Engl (1987)) type discrepancy principle for choos-
ing the regularization parameter a for weighted Tikhonov regularization method.

Reddy| (2018) considered the following discrepancy principles
(8) Glony’) = [a((T°T)5 +al) N(T*T) T T = nd5.m > 0
(b) Gi(e,y’) = [(T*T)al, = T*y°|I* = 25 p > 0,¢ > 0,a > 0.

11



Recently, Kanagaraj and George (2019)), considered Schock-type discrepancy prin-

ciple, namely
5P

T8, =47l = =,

for choosing the regularization parameter a and compared the numerical results
with the numerical results obtained using Morozovs discrepancy principle (|1.5.3)).
In the rest of the chapters, we have extended the above mentioned work in the

setting of Hilbert scales.

1.6 RESEARCH OBJECTIVES

Our central aim in this thesis is to study fractional regularization methods in the

setting of Hilbert scales. The overall objectives can be summarized as follows:

1. To study the fractional Tikhonov regularization method in the setting of

Hilbert scales.

2. To study the finite dimensional realization of fractional Tikhonov and frac-

tional Lavrentiev regularization methods in Hilbert scales.

3. To introduce a new parameter choice strategy for the above methods and

also compare it with the adaptive parameter choice strategy.

1.7 OUTLINE OF THE THESIS

The rest of the thesis is structured as follows.
In Chapter 2, we consider the fractional Tikhonov regularization method in

Hilbert scales wherein we take the solution :L‘Zaﬁ of the operator equation

(T*T)% +al®)ath, = (T°T) 2y’

«

where L : D(L) C X — X is a strictly positive definite, unbounded, densely

defined, self-adjoint operator as an approximation for & and obtain the optimal

12



order error estimate. We further introduce a new parameter choice strategy to

choose the regularization parameter, i.e. « is chosen such that
|0 (L™*(T*T) % L™ + al) 2L™(T"T) 2y | sugs = €0,

where ¢ > 0 is some constant. The adaptive paramether choice strategy is also
used for selecting the regularization parameter and we observe that we get the
optimal order error estimates in both cases. This is further examined through
numerical examples.

In Chapter 3, we study the finite dimensional extention of the fractional
Tikhonov regularization method in Hilbert scales. The parameter choice strat-
egy discussed in Chapter 2 is further modified to suit the finite dimensional set-
ting. We manage to prove that this method also gives us the optimal order error
estimate while also making it easier to perform numerical calculations.

Chapter 4 deals with fractional Lavrentiev regularization method in the setting
of Hilbert scales and its finite dimensional realization. We also study the analogous
of the discrepancy principle considered by George and Nair in (George and Nair,
1993)) for choosing the regularization parameter «. The efficiency of this method
is verified through numerical experiments as well.

Chapter 5 gives the conclusion of the thesis and scope for future work.

13
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Chapter 2

FRACTIONAL TIKHONOV
REGULARIZATION METHOD IN
HILBERT SCALES

2.1 INTRODUCTION
Finding a solution for the equation
Tx =y, (2.1.1)

where T : X — Y is a bounded linear operator between the Hilbert spaces X
and Y is an important problem due to its wide applications. A typical example

of T'is, T : L*[a,b] — L?[a,b] defined by

(Tz)(s) = /bk(s,t)x(t)dt, a<s<b.
where k(s,t) € L*([a,b] x [a,b]). In practice, the available data is y° with
ly =4l < 0. (2.1.2)
Therefore, one has to deal with the equation
Tr=vy

instead of (2.1.1]). In Tikhonov regularization method (Groetsch|(1977)), Engl et al.
(1996)), Egger and Hofmann| (2018))) the minimizer 2%, of the functional

Jo(z) = [Tz — | + o, (2.1.3)

15



is used as an approximation for the solution & (assumed to exist) of (2.1.1)).

It is known that the solution of over smoothens the solution &
and Ramlaul (2008)), to overcome this, fractional Tikhonov regularization method
(Gerth et al.| (2015, [Hochstenbach and Reichel (2011)), Klann and Ramlau| (2008)),
Morigi et al.| (2017)) was studied. In fractional Tikhonov regularization method,

the minimizer .7327 s of the functional
Ji(@) =Tz — | + a ], (2.1.4)

is taken as an approximation for #. Here |z||z = |[(T T*)¥~Y/4z|| for some pa-
rameter 0 < <1 (see |Gerth et al.| (2015); Hochstenbach and Reichel (2011))).

Morigi et al.| (2017)), modified ([2.1.4)) by replacing the L?*—norm in (2.1.4)) by

TV —norm, i.e., the minimizer of the functional

Ja(@) = 1Tz =I5 + o |7y,

was considered as an approximation for z. Klann and Ramlau| (2008) considered

ab ., = (T*T +al) (T*T) Ty’

for some v > % as an approximation for z and refereed the scheme as fractional
Tikhonov method. Note that for v = 1, xgw reduces to the minimizer of
and for v # 1, xiﬁ is not a minimizer of functionals of the form J,(z).

Note that in (2.1.4), o > 0 is the regularization parameter and ||z|? is the
penalty term and the L? norm in the penalty over smooths, the regularized solu-
tion. Further, note that the minimizer of the functional J?(z) in can also

be derived from the minimization problem
e T =P+ ol (7))

for 0 < g < 1. The penalty term ||(TT*)%:E”2 reduces the over smoothing.
The over smoothing of the Tikhonov regularization, was perhaps noticed first by
Natterer| ((1984).

Observe that the minimizer of satisfies the equation

(T*T)"™* + al)x), 5 = (T*T)' T, (2.1.5)

16



where v = % < 0 (Reddy (2018))).

It is observed that the fractional regularization method reduces the over smooth-
ing occurring in the Tikhonov regularization, but the order of convergence is pes-
simistic. In order to overcome this, one can study Fractional Tikhonov Regular-
ization Method(FTRM) in the setting of Hilbert scales, so as to obtain a better
convergence rate as well as to reduce the over smoothing.

The goals of this Chapter are (1) to study the fractional Tikhonov regulariza-
tion method in the setting of Hilbert scales and (2) to study a new discrepancy
principle for FTRM in the setting of Hilbert scales.

The rest of the Chapter is organized as follows: Preliminaries are given in
Section 2.2, the method and its convergence analysis are given in Section 2.3. A
comparison between Standard Tikhonov and Fractional Tikhonov regularization
method in Hilbert scales are given in Section 2.4, error bounds are given in Section

2.5 and the numerical examples are given in Section 2.6.

2.2 PRELIMINARIES

Let {Xs}ser (cf. |George and Nair| (1997)) be the Hilbert scale given in the intro-
duction. We assume throughout this Chapter that, the operator T satisfies:

billz||—a < ||Tx|| < ballz||—a, v € X (2.2.1)

for some a > 0,b; > 0 and by > 0.
Let f(t) := min{b%, b5}, g(t) := max{b:, 05}, t € R and |t| < 1.

With the above notation, we have the following Proposition.

PROPOSITION 2.2.1. (cf. |Natterer| (1984)[Proposition 1]) Let T satisfy .
Then, for |v| <1,

FOall-va < (T*T)P2ll < gW) 2]l -vas = € DU(TT)"?).

For0 < 8 < 1,let F(t) := min{f(57)", g(*7)"}, G(t) := max{f(F?)", g(5°)"}.



PROPOSITION 2.2.2. Let T be a bounded linear operator satisfying .
Then, the following holds:
—s ey 22 7 —s\w
F)|lz]|=5eparas) < [(L7(TT) = L7%)"22]| < G)|lz]|—5((148)ar2s);
z € D(L=(T*T) ¥ L=)/?),s > 0,0< A< 1,|v| < 1.

Proof. By Proposition , with v = #, we obtain

1+5
2

14+ 4 148

I SNzl 152, © € D(TT)F).

S EY]
2]l _ss2y, < 17T 2] < o

Now, the proof follows by taking first, x = L™®x in the above equation and then

applying Proposition for the operator (T*T )#L*S.

2.3 FRACTIONAL TIKHONOV REGULARIZA-
TION IN HILBERT SCALES

In this Section, we introduce the fractional Tikhonov regularization method for
approximately solving the ill-posed operator equation (2.1.1). Let z7 ;5 be the

minimizer of the functional

as(@) =Tz —ylls +allzl},  a>0, (2.3.1)
where 0 < 8 < 1. Then, z7, 5 satisfies the equation

(T*T)% + aL¥)zs , = (T*T)2y. (2.3.2)

Note that, for § =1,s =0, (2.3.2) is Tikhonov regularization of (2.1.1)).
Let

148

Agg = L(T*T) 5 L.

Then

B
2

Top =L (Asp+al) LT 2y (2.3.3)

and let

[Ngey

w2 =L (A +al) L7 (TT) 2y (2.3.4)
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Furthermore, by spectral properties of the self-adjoint operator A;3,s > 0,5 €
[0, 1], we have

[(Agg+al) AL | <o a>00< p <1 (2.3.5)

Next, we present the error estimate for ||z, 5 — xi%” and |2 — 7, 4] using the

above notation and propositions.

LEMMA 2.3.1. Let wiﬁ,xfx’% be as in (2.3.5) and (2.53.4)), respectively. Let the

assumptions in Proposition[2.2.1 and Proposition[2.2.9 hold. Then, for0 < g <1,

5,5 — 'TZ%H < w(s,a,ﬁ)am(gj

(i)

Fagars )/ (-8)

where o(s,a, ) ==

Proof.

By (£33) and (Z:3.4), we have

5,6 s —s —1 7 —s /%
2% —whsl = [IL7(Ags +al) "' L7(T"T)

2y — )|

1 s B
1(Asp +al) ' LT T) 2 (4 — )| s

and = (A, g+al) ' L=(T*T)% (1 —

Therefore, by Proposition[2.2.2, with v = (1+B)—+2s’
y) and (12.3.5)) we obtain in turn that

$,0 s
[E R
1 w7 1y —s e &
< AT (A + o) LT — )
F ((1+5)a+2s>
B 1
2s
F ((1+5)a+2s>
_ 2s4+pBa —(Ba+s)
LT g+l ATFE LD ) (2.36)
25+ 6a —(Bars) 5
< JATS" 5 (Aus + D) M| AT L (T T)3 (5 — )|
( 14+8) a+2s>
—(Ba+s) 5
< - T A(Hﬂ)“““L_S(T*T)?(y‘s — ).
< 14+8) a+2s>
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So the Lemma is proved, if we prove

—(Ba+s)

”A(1+B)a+28 L—S(T T)

(v >||<—G<%)a
ST

[Nl

(2.3.7)

But this can be seen as follows; by taking v = %, and x = L‘S(T*T)g(y5—y)

in Proposition [2.2.2] we obtain

_—(Ba+s)

||A<1+B>a+2sL S(T*T) 2(Ba+ s)

Wl < 6t ) i)

(@ o

_ ( 2(Ba + s) )”@*T)?(yé—y)uga
<
<

B B
2 2

(% = 9)lls+5a

1+ B)a+2s

—2( ,Ba—i—s)
1+ﬁ )a+2s || 5

IN

-9

G —2 ﬁa-l—s) )

(1+B Ja+2s

The last but one step follows again from Proposition [2.2.1] by taking v = —f.
O

We use the following assumption, to obtain an error estimate for [|Z — 3, 4]|-

ASSUMPTION 2.3.2. There exists some E > 0,0 <t < #a + 2s such that
TeMp={reX:|z|: <E}

LEMMA 2.3.3. Let x3, 5 be as in , Assumption holds, 0 < 8 < 1.
Further let the assumptions in Proposition and Proposition[2.2.9 hold. Then

|17 — 25 51| < i(s, a, @t)ai(lwilm,

G’((li(g;a?%)
where 91(s, . B,1) = L.
+B)a+2s

Proof. By (2.3.3) and Assumption [2.3.2] we have in turn that

B
2

Poals = @ ((T*T)HB +al®) " NT*T) 5y
= a((T°T)"%" + aL®) ' L*%
= aL (A, +al) L7,
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that is
& — 3, 5l = all(Asp + o) T L2 .

So, by Proposition [2.2.2 by taking v = (H;%) and ([2.3.5)), we have
|2 — 23 5ll < ||aA<”B)“”S (Asp +al) ' Lo2|

F ( 1+B a+2s>

S |’aA(1+B)a+2s (Asﬁ + O,/I) 1||”A(1+B)a+2sLsx||
F ( (14+8) a+23>
)

< 1+5 a+28 (1+5)a+2s ||1=||t
F ( 1+3) a+2s>
)

S 1+B a+2$ (1+5)a+25E
F ( 1+3) a+25)

O
Combining the Lemma [2.3.1] and Lemma [2.3.3] we obtain the following theo-

rem.

THEOREM 2.3.4. Let xzﬂ,xi’fﬁ be as in (2.3.5) and (2.3.4)), respectively, As-

sumption holds. Further let the assumptions in Proposition [2.2.1, Proposi-
tion[2.2.3, Lemma and Lemma[2.3.3 hold. Then

|z — :L’Z‘;H < (s, a, ﬁ)a<1+f;)z+255 + (s, a, S, t)a(HB;H?s.

. . (A+B)a+2s
In particular, if a« := a(s,a, B,t) = cgd tva for some ¢y > 0, then

|3 — 2% < (s, a, B,t)d7e,

where n(s, a, B,t) = max{p(s, a, B)c, Bt (s, a, B, t)c (1+B)a+2s}

O

REMARK 2.3.5. Note that under the Assumption [2.3.3, and (2.1.9),
the optimal order of error estimate for Tikhonov reqularization in Hilbert scale

is 0(5754%«1), 0 <t < 2s+a (see |Engl et al.| (f]996|); |George and Ncm{ (f]99’7|);
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\Goldenshluger and Pereverzey (2000); |Egger and Hofmann| (2018); |Jin (2000);
\Lu et al| (2010); |Mathé and Pereverzey (2003); |Natterer (1984)); Neubauer| (1988,
1992,12000)). We have obtained the optimal order 0(515%1), for0 <t < %a—l—?s.

Even though, %a + 2s < a+ 2s, the advantage of our method is that, it avoids

the over smoothing of the solution.

2.4 STANDARD TIKHONOV METHOD VS FTRM
IN HILBERT SCALES

In this Section, we compare the filter factors (Hochstenbach et al| (2015))) of

Tikhonov regularization method and fractional Tikhonov regularization method
in the Hilbert scales. Recall (Lu et al| (2010]), Natterer (1984), Neubauer| (1988),
Neubauer| (1992)), Neubauer| (2000)), Tautenhahn| (1996)), Tautenhahn| (1998))) the

Tikhonov regularized solution for (2.1.1f) in Hilbert scales is given by

230 = L7(L7ST*TL ™ + ol ) ' L™5T*y°. (2.4.1)

a

So, using Proposition [2.2.2] with § = 1, we have

1 * Sy * - *
e < gy A A (A A+ ) Ay
s+a
< F(L)H(A A)rera (A*A+al) |
s+a
where A = T L% and hence
2s+a 2
1 laAll [ \stte
012 < T d(E\y° 40 2.4.2
||l’a || = F(HLG)QA N < )\yuy>7 ( )

where {E) : 0 < A < ||A*A]|} is the spectral family of A*A. Similarly by taking
y =0 in (2.3.6), we have

1

0
legsll < ———
F 2s
< (1—|—,8)a+25>

2s+Ba —(s+Ba)

XJATF (A, 4 ol ATFE LT | (2.4.3)
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and hence

F)
H‘TZﬁ

S a 2
1 l4ssll [ \TiBrates
|2 S " )2 /0\ M_—a (244)

F ((1+,3)a+23
—(s+Ba) —(s+Ba)

xd(F\AT; 7™ L (TT) 2y, AT 7™ L(T°T)

B
2

v,
where {F) : 0 < X\ < ||A; ||} is the spectral family of A g. Further, note that

—(s+Ba) —(s+Ba)

A(F\ATS 5 L8 (T T) 3y, ATV L= (T*T)
G < —2(s+pa) >

(1+8)a+2s

= =9

B
29°%)

Iy 1.

Therefore, the quality of the approximate solution x%° and xiéﬁ are depending

ot
2(s+a
% and

on the integrands in (2.4.2) and (2.4.4)), respectively. Let ¢y(t) :=

t+a
2s+Ba
wo(t) == % We call the functions ¢ and sy the filter factors (Hochstenbach

et al.| (2015), Klann and Ramlau (2008)) associated with the standard Tikhonov
regularization method in Hilbert scales and fractional Tikhonov regularization
method in Hilbert scales, respectively. Fig:2.1, displays the filter function t —
¢1(t) for standard Tikhonov regularization method in Hilbert scales. The Fig:2.2
— 2.4, displays the filter function t — 4(t) for fractional Tikhonov regularization
method in Hilbert scales for § = 0.5,0.7,0.9, respectively.

Note that, when the desired solution z is smooth, one would like the filter

functions to satisfy
lim ¢y (t) = 0 and lim @o(t) = 0.
t—0 t—0

We observed that (see Fig: 2.1 — 2.4) the filter function ¢y(t) is smoother than
the filter function ¢;(¢) near 0. So we expect the computed solution obtained
by fractional Tikhonov regularization method in Hilbert scales approximates the
desired solution # better than the standard Tikhonov regularization method in

Hilbert scales.
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t(2 s+a)/( 2 (s+a)) /(t+ G{(l))

alpha=0.1

2r alpha=0.001
alpha=0.001

Figure 2.1: Filter function ¢4(t) as a function of ¢.

p(2s+ M 1+0) a2 8) /04 ()

2.4 T T T
alpha=0.1
22 r alpha=0.001 | |
5 alpha=0.001

Figure 2.2: Filter function ¢o(t) for 5 = 0.5.
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(2SN 1+0) a2 8) /04, ()

alpha=0.1
alpha=0.001
2 alpha=0.001 |

Figure 2.3: Filter function o(t) for 5 = 0.7.

p(2s+Aad1+0) av28) 0y (j))

22 F T T T T =
alpha=0.1
2+ alpha=0.001 E
alpha=0.001

Figure 2.4: Filter function q(t) for 5 = 0.9.
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2.5 DISCREPANCY PRINCIPLE

In this Section, we introduce a new discrepancy principle for choosing the regu-

larization parameter a in FTRM. Let
9t s e £
$a,y’) = [la*(Asg + al)2L7(TT) 2y | pass - (2.5.1)

THEOREM 2.5.1. For each non-zero y°, the function & — ¢(a, y°) for a > 0,
as defined in , 15 continuous and increasing. In addition

. . % B
lim ¢(ar,y*) = 0, lim ¢(a,y") = [(T*T)2y" | g - (2.5.2)

Proof. Let {E) : 0 < X < ||A; ||} be the spectral family of A, 5. Then

Mgl /o \4
o, y’)? = /0 <A+a) d(EXL™(T*T)?*y° L™ (T"T)* %) g

8]

>\+_a)4 for A > 0 is strictly increasing, lim,_ o (A%af = 0 and

Now since o« —» (
limg— oo (/\j%a)4 = 1, by Dominated Convergence Theorem, we have
lim ¢(a,y°) =0, and lim p(a,y’) = (T T) %5 a - (2.5.3)
o— a—r00

O
THEOREM 2.5.2. Suppose holds and
(T T) 39 g 2 6 > 0 (2.5.4)
for some ¢ > 0. Then there exists a unique o = «(9) satisfying
¢, y°) = cb (2.5.5)

Proof. Follows from Intermediate Value Theorem and Theorem 2.5.11

REMARK 2.5.3. Note that, by and Proposition we have

=8
2

19l = |(T*T) = (T*T) 2’| < g(=B)(T*T) 75 pa-
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Now, since [|y°|| > [lyl| - o, if
lyll
§< —
~cg(=B)+1
then 0 satisfies .

LEMMA 2.5.4. Suppose Assumption holds and o := «(§) > 0 is the unique

—2(Ba+s)
G( (1+B)a+2s) Then
)

(28 )1(-p)

(1+8)a+2s

Q> Cgas0 ot (2.5.6)
S(ipass) } {G((&M)E}
—2(Ba+s —2(Ba+s N
F((1+(,85)ai2)8>f(_’8) F((1+(/3B)ai2)5)
Proof. Note that, from Proposition Proposition [2.2.2[ and ([2.5.5)), we

have

solution of (2.5.5) where ¢ >

where cgqs = |C —

1 — 7(6‘1:5)5 —S8 * é
dla,y’) < F(_QT%)QQH(ASWB +al)PASTE LT 7|
(1+B)a+2s
042 (1_—0-(;%% —27—s *
WHAM (Asp+al)"L7(T7T)
(1+B)at2s
2 —(Bats)

JATS P55 (A 5+ o) 2L(T*T) 2 T2

IN
N1y

(" =)l

(0%
—2(Ba+s)
F( (1+pB)a+2s )
((—2(55;1—}-3) )
1+3)a+2s _s *
W“L (T7°T)
1+8)a+2s
2 ~(sats)
I(Asp + ) 2 AL L=(1T) 2L L

B
2

IN

(% = 1)l gars

4 (6%
~3(Bats)
F(@5 pares)
—2(Ba+s)
G((1+B)a+2s) T*T
T@H—S) “ ( )
P arss)

a?

_l’_—
“5(Bats)
F((1+B)a+2s)
( —2(Ba+s) )
(1+8)a+2s
“5(pats)
P farss) [ (—5)
2(s—t)
G aras)

~3(Bats)
F (i aras)

INA
@

¥ = v)llga

a-+t s—t
(Ao +ad)2AT T AT L

IN

ly® -y

a+t
042||(As,,8 + a[)—QAs(’lgB)aJrQs

| L2l
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—2(Bats)
(T aras) H

5
—2(Ba+s) Yy — yH
F(gasss) [ (=F)

() i
1+8)a+2s _ at2s ~
Py I ol AT P2l

(1+B)a+2s
—2(Ba+ts) 2(s—t)
ANepeer) 5, Naerm) | siten
- F(M)Jv(_ﬁ) F(M) '
(1+B)a+2s (1+8)a+2s
Thus
—2(Ba+s) 2(s—t)
B G((H—,B)a-l-?s) G(m et
le —2(Ba+s) Jo =< —2(Ba+s) aUFdes |
F(atmarss) f(=5) F(amarss)

which implies that

(148)a+2s

a>cgas0  ort . (2.5.7)
O
THEOREM 2.5.5. Under the assumptions in Lemma
|# — 23%] = O(57) (2.5.8)
Proof. As in the proof of Lemma [2.3.3, we have
& —aly=al " (Ags+al) ' L°Z. (2.5.9)
So by Proposition we have
I = bl S gyl ATT ™ (g + 0 L
We make use of the following moment inequality
1B 2| < IB 2|/ ||=|I""*,0 S u < w (2.5.10)

where B is a positive self-adjoint operator, to obtain an estimate for [|a A, ; (rAers (As g+
al)TLEz|.
Let u = é, =1+t B = aA<1+B (A s+ al) Tt and 2 = ol w (A, s +

S—
t L OTE)aTTs s a
a])_HEASEB)“”s L%,
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Then Bz = aA];”""* (As 5 + al) "' L*2. Also, from (2.5.10) we have

IB2|| < |BYuz||7a |27
— Hoz2(As75 + Oé]) 2A(1+5)a+23 Lst e
x[la' " (Ay 5 + aI)—”aA;jgﬂ)a“s L5#| 7. (2.5.11)

From Proposition [2.2.1, Proposition and Theorem [2.5.2], we have

—(Ba+s)

B azl| = [la®(Ags +al) 2A A s L
(Ba + ) 2 7 —s e & e L
SG(T?EEI% J02(Au + )L (T T)H (T T) e
2(Ba + s) s oy B
- ( (1+8) a+23 la®(Ass +al)2L™>(T"T)2 (y = v° +5°) | sarts
2(fa+ s) ﬁ
< 6 (o) 1D = 1o + 600
Ba + s
< (D syl o+ st
G( —2(Bats) )
(T+p)a+2s (ﬁa +3)
< O+ Gl a2 0 (2.5.12)
f(=8)
Further, we have
2] < IIA“””““SL“II
2(s—1t)
< G —22 VL2
< 6ot ) vl
2(s—1t)
< Gl—F—7—E 2.5.13
- ((1+6)a+2s) ’ ( )
so by (2.5.11)), (2.5.12)) and (2.5.13)), we have
|2 — 25 5| = O(67). (2.5.14)
Notice that in (2.5.7]) we have o > c[g,a’Sd(HfEHS which implies that
L _ 1
T
1) )
a < a
QT cgg 00t
= St (2.5.15)
C3.a,s

Therefore, by Lemma [2.3.1] (2.5.14]) and (2.5.15)), we have
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. )
12— fngH =

O(67).

2.5.1 ADAPTIVE PARAMETER CHOICE STRATEGY
AND ITS IMPLEMENTATION

By Theorem [2.3.4] one can write

Hj: o x(s)é,:;” S C(amé + am)’ (2516)

where

C =max{ps,a, B),¢(s,a,B,t)}. (2.5.17)

We, shall now briefly discuss the adaptive parameter choice strategy, introduced

by [Pereverzev and Schock| (2005)). This strategy involves the following steps.

Choose i € {0,1,2,--- , N} and o

= jiiog where p > 1 and ag = (8)1H% .

Let
t+a
| := max {z Do T <L 5} < N and (2.5.18)
k= max{ H:L‘a 5 — Ty, BH <4Ca! ”m“”Sé} ,j=0,1,2,--- i—1.
(2.5.19)

THEOREM 2.5.6. Assume that there existsi € {0,1,---

—3%—— and let | and k be as in (2.5.18
(1+,B)a+2s
tions of Theorem [2.3.4] are fulfilled, Then
& — 2

where C'is as in .

and (2.5.19

<k and

Sl < 6Cu(s),

, respectively. If assump-

Proof. To prove [ < k, it is enough to show that, for each i € {1,2,... N},

t
ai(1+‘ Bya+2s < + ||xa 5 xa /5” < 40

T o (FPat2s

k3
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(1+/3)a+29

L Vji=0,1,2,...i—1.

t
, N} such that o) 77"

<



For j <1, we have

,0
I 22 =2lsll < Nalls—al+ 11 —ai, |

S C ai(l+ﬂ)a+23 + _ —f-O a;l+ﬂ)a+25 + _
ai(1+ﬁ)a+25 a(l+ﬁ)a+25
J
__t
< 20a[ Lo0 O
a(1+ﬁ)a+25
J
)
< 40—
(148)a+2s
%

Thus the relation | < k is proved. Further note that

. 0 N
& =g s IS E =2l |+ 1l 2hps — 2o |

where,
ot ) )
| =2l 1S C o™ 4 —— | <20 ———.
b al(1+6)a+25 al(1+B)a+25
Now since [ < k, we have
|af = aify || < 40 —2—
k> l (1+B)a+2s
Q
Hence
)
|3 — a3, [|I<6C ———
a(l+6)a+25

l

___tta ___tta ___tta
Let ay"7*"* = §. Then, oy < as < auyq, hence ag ™7™ = § < o7

t+a t+a
pFPat2s oy TFA)at2s it follows that

IN

5 6 t+ —t t+ t t4
< < u(umgus al“*ﬁ)““s < M<1+5)3+2s g TFMat2s < N(1+B);+2s (5)%

a
a5(1+5)a+2s al(1+ﬁ)a+23

O
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2.5.2 IMPLEMENTATION OF ADAPTIVE CHOICE RULE

The choice of the regularization parameter stated in Theorem has the fol-

lowing steps:
e Choose o > 0 such that (50)1%*%3 < agand p > 1.
e Choose o; := pag,i =0,1,2,--- | N.

Algorithm

1. Set i =0.

2. Solve x; := xfj by using the iteration 1’
3. If ||y — x4 > 400%,]' < i, then take k =i — 1 and return xy.

4. Else set : =7+ 1 and go to 2.

2.6 NUMERICAL EXAMPLES

In this section we consider four examples in the Hilbert scales generated by the
linear operator L : H* N H}[0,1] € L?[0,1] — L*[0,1] by Lz = —z"”. Note that L
is densely defined, self-adjoint and positive definite (Jin (2000)) and the Hilbert
scale { X'} generated by L is given by

X = {r € H0,1) - 2®(0) = (1) = 0.1= 0,1, 2 - i]} (2.6.1)
for any s € R, where H®[0,1] is the usual Sobolev space and ||z||s = fol |2() (¢)|dt
for all s =0,1,2,.... We have taken s = ¢ = 2 in our computation.

The discrete version of the operator 7" in the first four examples are taken from
the Regularization Toolbox by Hansen| (2007). We use the Newton’s method to
solve the nonlinear equations for a with different values £, §. Relative error
Eyp = % , a and the size of the mesh n are presented in the tables for

different values of 5. We have introduced the random noise level 6 = 0.01 and 0.001

in the exact data.
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EXAMPLE 2.6.1. (Baker| (1977)[Fox and Goodwin]) Let

[Tx](s) :

/1(32 +£2)2g(t)dt

y(8)7 - S S S T,

(2.6.2)

where y(s) = 3[(1+ s2)2 — s%]. The solution # is given by #(t) = t. Relative error

and o values for different values of B and & are given in Table [2.1. Ezact data

and noise data are given in Fig:2.5 and Fig9:2.6 - 2.8 for various values of 3.

Table 2.1: Relative errors for Fox and Goodwin.

n = 300

n = 500

n = 700

6 =0.01

0 = 0.001

6 =0.01

0 = 0.001

6 =0.01

0 = 0.001

0.9

1.165426e-03
7.048677e-02

8.877524¢-04
6.424199¢-02

1.032442¢-03
6.436813e-02

8.166164¢-04
6.656812¢-02

9.565734¢-04
7.832835¢-02

7.7]6511e-0/
6.682691¢-02

0.8

1.180655e-03
6.549125¢e-02

8.947242¢-04
5.877244e-02

1.045896e-03
5.884892e-02

8.252822¢-04
6.102979¢-02

9.689167e-04
7.109961e-02

7.810231e-04
6.101624e-02

0.7

1.191958¢e-03
6.525134e-02

8.996208¢-04
5.426629¢-02

1.056228¢-03
5.522432e-02

8.282967e-04
5.6653493¢e-02

9.786773¢e-04
6.459783e-02

7.859925¢e-04
5.631811e-02

0.6

1.199959¢e-03
6.500898¢e-02

9.024373e-0/
5.043934e-02

1.068518¢e-03
5.849323e-02

8.815022¢-04
5.823522e-02

9.866851e-04
5.861911e-02

7.893331e-04
5.255965¢e-02

0.5

1.206698¢e-03
7.286583e-02

9.036926¢-04
4.690518e-02

1.068838¢e-03
5.8061898e-02

8.331773e-04
5.06457/e-02

9.905773¢-04
5.287708e-02

7.911876e-04
4.952055¢e-02

0.4

1.215665¢e-03
9.056197e-02

9.044719e-04
4.821000e-02

1.074225¢e-03
5.635061e-02

8.8415358e-04
4.870151e-02

9.949262¢-04
4.723531e-02

7.921900e-04
4.701206e-02

0.3

1.232036¢e-03
1.255151e-01

9.064131e-0/
3.882/10e-02

1.082293e-03
6.655837e-02

8.357359¢-04
4.737038e-02

1.001165¢-03
4.278472¢-02

7.935109¢-0/
4.499207e-02

0.2

1.263494e-03
1.956613e-01

9.117670e-04
3.300298¢-02

1.095076e-03
1.019581e-01

8.397204¢-04
4.683095¢-02

1.012156¢e-03
4.796712e-02

7.967197e-04
4.863088e-02

0.1

1.820953¢e-03
3.742901e-01

9.21325/¢-0/
3.434926¢-02

1.110233e-03
2.367990e-01

8.476533¢-04
5.041605¢-02

1.029293e-03
1.548342¢e-01

8.03351}¢-04
4.505147e-02

33




E)6a605t data and noise data for Fox and Goodwin Example

exact data [

= = =noise data

Figure 2.5: Fzxact data and noise data for 6 = 0.01 and n = 700 for Fox and
Goodwin.

. Exact solution & computed solution for 6=0.01
exact sol.
C.S.with (=0.9,
08 | C. S. with (3=0.8, i
C.S.with =07,
0.6 ]
04 | 1
0.2 J
0 -
02 L L L L
0 0.2 0.4 0.6 0.8 1

Figure 2.6: Solutions with 6 = 0.01 and n = 700 for Fox and Goodwin.
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Exact solution & computed solution for 6=0.01

exact sol.
C. S. with (=0.8,
08 - C. S. with =0.5, |
’ C. S.with =0.4,
0.6 E
04 E
0.2 E
0 4
0.2 . . . .
0 0.2 0.4 0.6 0.8 1

Figure 2.7: Solutions with 6 = 0.01 and n = 700 for Fox and Goodwin.

5 Exact solution & computed solution for 6=0.01

exact sol.

C. S. with 3=0.3,
C. S. with 3=0.2,
C. S. with 3=0.1,

Figure 2.8: Solutions with 6 = 0.01 and n = 700 for Fox and Goodwin.
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EXAMPLE 2.6.2. (Carasso (1982)[Heat])

Let

[Tx](s) := /0 E(s,t)x(t)dt = y(s), —m < s <,

where, kernel is K(s,t) = k(s —t) with k(t)

3

t—2 e
o/

_ 1
it ,

(2.6.3)

An exact soltuion is constructed, and then the right-hand side y is produced as

y = Tx. Relative error and o values for different values of B and & are given in

Table [2.3. Fig:2.9 and Fig:2.10 - 2.12 displays the exact solution and computed

solution for various values of 3.

Table 2.2: Relative errors for Heat example.

n = 300

n = 500

n = 700

0 =10.01

6 = 0.001

0 =10.01

6 = 0.001

0=10.01

0 = 0.001

0.9

Eap

8.644940e-03
7.089718e-01

1.838503e-03
5.828956¢e-01

0.226313e-03
6.887321e-01

1.603395e-03
5.860828e-01

5.500000e-03
6.930077e-01

1.044832e-03
5.812609e-01

0.8

E(yﬁ

8.486190e-05
6.870727e-01

1.405682¢-03
5.2521/5e-01

6.528550e-03
6.772946¢-01

1.590334e-03
5.556581e-01

5.500000e-03
6.695459¢-01

1.035226¢-03
4.935/62¢-01

0.7

8.859327e-03
6.646556e-01

1.373818e-03
4.854902e-01

6.176976e-03
6.472385e-01

1.162224¢-03
4.841655¢-01

5.500000e-03
6.467766e-01

1.021165¢-03
4.473462¢-01

0.6

8.091878e-03
6.560044e-01

1.339788e-03
4.358438e-01

6.176017e-03
6.533816e-01

1.127667e-03
4.3796"76e-01

5.500000e-03
6.163935¢e-01

1.014529¢-03
4.041838¢-01

0.5

7.58/882¢-03
5.98844e-01

1.511958e-03
3.889747e-01

5.500000e-03
5.792910e-01

<

1.097198e-03
3.858556¢-01

5.500000e-03
5.856005¢-01

1.005180e-03
3.507849e-01

0.4

6.955816e-03
5.567809e-01

1.678801e-03
3.701254e-01

.500000e-03
5.687672e-01

O

1.471606e-03
3.787374e-01

5.500000e-03
5.465494e-01

1.400771e-03
3.529270e-01

0.3

5.500000e-03
5.815138e-01

1.649122¢-03
3.184600e-01

5.500000e-03
5.586211e-01

1.450032¢-03
3.219907e-01

1.93052/e-03
4.785560¢-01

1.377632¢-03
2.990455¢e-01

0.2

5.017099e-05
5.548802¢-01

1.640921e-03
2.729102e-01

5.089394e-03
5.166957e-01

1.738126¢-03
2.729213e-01

4.125522¢-03
4.360582¢-01

1.361925e-03
2.523985¢-01

0.1

1.717764e-03
1.919622e+00

1.2{1515¢-03
2.883435¢-01

1.712944e-03
1.810507e+00

1.442362e-03
2.644205e-01

1.512160e-03
1.287809e+00

1.849326e-03
2.835537e-01
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Exact data and noise data for Heat Example

exact data
= = =noise data

-0.02

-0.04 : : : :

Figure 2.9: Fxact data and noise data for 6 = 0.01 and n = 700 for the Heat
example.

Exact solution & computed solution for 6=0.01

exact sol.

C. S.with =0.9,
C. S. with 3=0.8,
C. S.with 3=0.7,

0 0.2 0.4 0.6 0.8 1

Figure 2.10: Solutions with 6 = 0.01 and n = 700 for the Heat example.
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| Exact solution & computed solution for 6=0.01

exact sol.

C. S. with =0.6,
C. S. with 3=0.5,
08| C.S.with §=0.4, |

0 0.2 0.4 0.6 0.8 1

Figure 2.11: Solutions with 6 = 0.01 and n = 700 for the Heat example.

Exact solution & computed solution for 6=0.01

exact sol.

C. S. with =0.3,
C. S.with 3=0.2,
C.S.with 3=0.1,

Figure 2.12: Solutions with 6 = 0.01 and n = 700 for the Heat example
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EXAMPLE 2.6.3. (Baart (1982)) Let

where k(s,t) =

[Tx](s) := /O7r k(s,t)x(t)dt

y(s), 0<s <

|

(2.6.4)

exp(s * cos(t)),y(s) = 2 x sinh(s)/s. The solution T is given by

Z(t) = sin(t). Relative error and o values for different values of B and 6 are given

in Table|2.5. Ezxact data and noise data are given in Fig:2.13 and Fig:2.14 - 2.16

for various values of 3.

Table 2.3: Relative errors for Baart example.

n = 300

n = 500

n = 700

0 =0.01

6 = 0.001

0 =10.01

6 = 0.001

0=0.01

0 = 0.001

0.9

1.253837e-03
2.663487e-01

9.327035e-04
2.412385¢e-01

1.196487e-03
2.139743e-01

8.62081e-0/
2.310873¢-01

1.167/42¢-03
2.432770e-01

8.235558¢e-04
2.895962¢-01

0.8

1.321125e-03
2.500173e-01

9.431709¢-0
2.274841e-01

1.266124¢-03
1.964376¢-01

8.742179¢-0]
2.165/34e-01

1.239594e-03
2.310267e-01

8.882588e-04
2.232504e-01

0.7

1.897719e-03
2.507527e-01

9.585444e-04
2.161988e-01

1.846093e-03
1.797863e-01

8.844179e-04
2.045156e-01

1.523374e-03
2.2271577e-01

8.482902¢e-04
2.080711e-01

0.6

1.081184e-03
2.727533e-01

9.635923¢-04
2.076083¢e-01

1.437265¢-03
1.650856¢e-01

8.945877e-0/
1.948424¢-01

1.420265¢-03
2.197371e-01

8.534285¢-0/
1.931986¢-01

0.5

1.172276e-03
3.121324e-01

9.733860e-04
2.020755¢-01

1.13/290e-03
1.296917e-01

9.047290e-0
1.870055¢-01

1.128236e-03
2.259017e-01

8.636210e-04
1.769675¢-01

0.4

1.283159e-03
3.742698e-01

9.834866¢e-04
2.005388e-01

1.245362e-03
1.101827e-01

9.152257e-04
1.800166e-01

1.251916e-03
2.473584e-01

8.741161e-0/
1.565571e-01

0.3

1.423333e-03
4.664453e-01

9.951/8e-0/
2.055357e-01

1.880010e-03
1.127394e-01

9.270251e-04
1.720981e-01

1.408987e-03
2.819807e-01

8.856188¢-04
1.274094e-01

0.2

1.603647e-03
6.074621e-01

1.010405e-03
2.242173e-01

1.546148e-03
1.299478e-01

9./16682¢-0
1.602976e-01

1.618175¢-03
3.420304e-01

8.993169¢-0/
1.474094e-01

0.1

1.800377e-03
1.170148e+00

1.031690e-03
3.088854e-01

1.7150531e-03
1.0438151e+00

9.605143e-04
2.066513e-01

1.887841e-03
1.037584e+00

9.161871e-0]
1.988448e-01
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Exact data and noise data for Baart Example

exact data )
0.15 | | = — = noise data f '
!
T !
014 f -y A
018 p » I'I -“‘ ,.’”,l"\:
N 4
1 ! . h II' wd“fh l' ::I
012 F | | i, vl ‘ It ‘|‘|li h
L : Ii'”l:ll'r‘ Ll ‘:||'I I
[ 1 i‘ ",
ot -:: : ;l Wi . 'I'!" -J,ﬂ*.; ":, .! 1]
£ W 4.“\.‘,1 -‘Jl‘ﬁn‘ ) IIII
0.1 f g o e 1 .
¥ JA{ L -fk‘, :{? - KR }
M Y ::‘H X Fl'|”
0.09 iy I i L .
AUH ;‘ll i ,‘!Hi y
i 1 gy | |l 1
ooty & )1} I ]
L |
007 ' 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 2.13: FEzact data and noise data for 6 = 0.01 and n = 700 for the Baart
example.

007 Exact solution & computed solution for 6=0.01

0.06

0.05

0.04
exact sol.

0.03 | C.S. with $=0.9, i
C. S. with =0.8,
C. S. with =0.7,

0 0.2 0.4 0.6 0.8 1

Figure 2.14: Solutions with 6 = 0.01 and n = 700 for the Baart example.
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Exact solution & computed solution for 6=0.01

exact sol.
C. S. with 3=0.6,
C. S. with 3=0.5,
C. S. with 3=0.4,

0 0.2 0.4 0.6 0.8 1

Figure 2.15: Solutions with 6 = 0.01 and n = 700 for the Baart example.

0.5 Exact solution & computed solution for 6=0.01
exact sol.
5 C.S.with (=03,
02 r C.S.with 8=02, |
C.S.with $=0.1,

0 0.2 0.4 0.6 0.8 1

Figure 2.16: Solutions with 6 = 0.01 and n = 700 for the Baart example
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In the next example, we compute the parameter o using the discrepancy prin-

ciple (2.5.5) and the adaptive method considered in Section 2.5.1.

EXAMPLE 2.6.4. (Shau (1979)) Let

[Tx](s) := /7r k(s,t)x(t)dt = y(s), —m < s <, (2.6.5)

—Tr

where k(s,t) = (cos(s)+cos(t))?(224)2 w = 7 (sin(s)+sin(t)). We takey = Tt,
where & is given by T(t) = ajexp(—ci(t — t1)?) + agexp(—ca(t — t2)?). We have
taken ay = 2 = ag, t; = 0.8, t5 = 0.5, ¢y = 6 and co = 2 in our computation.
Relative error and o values chosen according to and the adaptive method
for different values of B and ¢ are given in Table and Table respectively.
FExact data and noise data are given in Fig:2.17 and Fig: 2.18 - 2.20 for various
values of B when « is chosen according to . For the case when « is chosen

according to the adaptive parameter choice strateqy exact data and noise data are

gen in Fig:2.21 and Fig: 2.22 - 2.26.

Table 2.4: Relative errors for Shawn example with o chosen by (2.5.5).

n = 300

n = 500

n =700

0 =0.01

0 =0.001

0=0.01

0 =0.001

6 =0.01

0 =0.001

0.9

1.006267e-03
1.415859e-01

9.708538¢e-04
1.876549e-01

9.2219/}e-0
1.337910e-01

8.942839¢-0
1.351783¢-01

8.7225]2¢-0}
1.389400e-01

8.483506¢e-04
1.375055e-01

0.8

1.020155e-03
1.288415e-01

9.793453¢-0/
1.244267e-01

9.335764¢-0
1.193689¢-01

9.015028e-04
1.226492e-01

8.820363e-04
1.8306375e-01

8.544705¢-04
1.245173e-01

0.7

1.037061e-03
1.171825¢e-01

9.898842¢-0/
1.126929¢-01

9.471880e-0/
1.078020¢-01

9.101683e-04
1.093487e-01

8.939000e-0;
1.145260e-01

8.623115e-04
1.119480e-01

0.6

1.056594e-03
1.017549e-01

1.001994e-03
9.940003¢-02

9.634052¢-0/
9.055903¢-02

9.206038e-04
9.667828¢-02

9.084711e-0/
1.056650e-01

8.716568¢-04
9.852877e-02

0.5

1.078096e-03
9.804808¢e-02

1.014853e-03
8.870781e-02

9.815291e-04
8.811589¢-02

9.3194/1¢-0/
8.390637¢-02

9.242003¢-0
9.065262¢-02

8.819936¢-04
8.665986¢-02

0.4

1.099918e-03
7.697616e-02

1.027352e-03
7.742740e-02

1.000319e-03
6.298939e-02

9.43331e-0/
7.280360e-02

9.416443¢-04
8.215500e-02

8.925363¢-04
7.473445e-02

0.3

1.120677e-03
8.5646921e-02

1.038685¢-03
6.995460e-02

1.019508¢e-03
5.927276e-02

9.589402e-04
6.127571e-02

9.583312¢-04
5.931022e-02

9.026150e-04
0.481339e-02

0.2

1.141456¢e-03
8.942887e-02

1.048665¢-03
6.348320e-02

1.038583¢e-03
5.878102e-02

9.635010e-04
5.223437e-02

9.753445¢e-04
5.115249e-02

9.117726e-04
5.625024e-02

0.1

1.162299¢-03
1.870792e-01

1.058060e-03
6.171721e-02

1.058797e-03
1.076590e-01

9.723786e-04
4.563679e-02

9.922042¢-04
8.892974e-02

9.202463¢-0/
4.939491e-02
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. Exact data and noise data for Shawn Example

exact data
= = =noise data

0 0.2 0.4 0.6 0.8 1

Figure 2.17: Exact data and noise data for 6 = 0.01, n = 700 and « chosen by

for the Shawn example.

os Exact solution & computed solution for 6=0.01
exact sol.
C.S.with =0.9,
5| C.S.with 3=0.8, |
C.S.with =07,

Figure 2.18: Solutions with 6 = 0.01, n = 700 and « chosen by for the
Shawn example.
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Exact solution & computed solution for 6=0.01

25 T
exact sol.
C. S. with 3=0.6,
2L C. S.with =0.5, E
C. S.with =0.4,

Figure 2.19: Solutions with 6 = 0.01, n = 700 and « chosen by for the
Shawn example.

o5 Exact solution & computed solution for 6=0.01
exact sol.
C.S.with (=03,
2+ C.S.with $=0.2, ]
C.S.with 3=0.1,

0 0.2 0.4 0.6 0.8 1

Figure 2.20: Solutions with 6 = 0.01, n = 700 and o chosen by for the
Shawn example
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(b)

4 T T

exact data

= = =noise data
3.5
3 L
25 r
2 .
15
1 L
05 r

Figure 2.21: FExact data and noise data for 6 = 0.01 and n = 700 for the Shawn
example using adaptive parameter choice strategy.

2I55xact solution & computed solution for 6=0.01
exact sol.
C.S. with 3=0.3,
2r C.S.with (=0.2,
C.S. with 3=0.1,
1.5
1 L
0.5 r
0
-2 1 0 1 2

Figure 2.22: Solutions with 6 = 0.01 and n = 700 for the Shawn example using
adaptive parameter choice strategy.
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2I55xact solution & computed solution for 6=0.01

exact sol.
C. S. with 3=0.6,
C. S. with 3=0.5,
2 r C. S. with 3=0.4, ]
1.5 + ]
1r ]
0.5 ]
0 .
-2 1 0 1 2

Figure 2.23: Solutions with 6 = 0.01 and n = 700 for the Shawn example using
adaptive parameter choice strategy.

2I55xact solution & computed solution for 6=0.01
exact sol.
C.S.with =0.9,
C.S. with 3=0.8,
2+ C.S. with =07, 1
15 F 1
1+ J
0.5 J
0
-2 1 0 1 2

Figure 2.24: Solutions with 6 = 0.01 and n = 700 for the Shawn example using
adaptive parameter choice strategy.
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2I55xact solution & computed solution for 6=0.01

exact sol.
C.S. with g=1,
2 L 4
15 r 1
1L ]
0.5 1
0 1
-2 1 0 1 2

Figure 2.25: Solutions with 6 = 0.01 and n = 700 for the Shawn example using
adaptive parameter choice strategy.

E)s(act solution & computed solution for 6=0.001
exact sol.
C.S. with =1,
2 L
1.5
1 L
0.5
0 1 1 1
-2 1 0 1 2

Figure 2.26: Solutions with 6 = 0.01 and n = 700 for the Shawn example using
adaptive parameter choice strategy.
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Table 2.5: Shawn example with adaptive parameter choice.

o) n = 300 n = 500 n = 700
6 =0.01 0 = 0.001 6 =0.01 0 = 0.001 6 =0.01 0 = 0.001

a | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
1 | Eqp | 2.510211e-01 | 2.513059e-01 | 2.565997e-01 | 2.563700e-01 | 2.620544e-01 | 2.620773e-01
a | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
0.9 | Eop | 2.504491e-01 | 2.501763¢-01 | 2.553481e-01 | 2.553361e-01 | 2.613309¢-01 | 2.611969e-01
a | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
0.8 | Eop | 2.493065e-01 | 2.490020e-01 | 2.5453349¢-01 | 2.543061e-01 | 2.604288¢e-01 | 2.602865¢-01
o | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
0.7 | Eop | 2.480771e-01 | 2.477313e-01 | 2.532700e-01 | 2.532161e-01 | 2.594919¢-01 | 2.593387¢e-01
o | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
0.6 | Eoap | 2.461930e-01 | 2.463764e-01 | 2.518656¢-01 | 2.520317e-01 | 2.582635¢-01 | 2.583146e-01
a | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000¢-02
0.5 | Eap | 2.446017e-01 | 2.447880e-01 | 2.505180e-01 | 2.507175e-01 | 2.571769¢-01 | 2.572206e-01
a | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
04| Eyp | 2.427581e-01 | 2.429419e-01 | 2.489849e-01 | 2.492214e-01 | 2.569690e-01 | 2.559989e-01
o | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000¢-02
0.3 | Eap | 2.393526e-01 | 2.406563¢e-01 | 2.473081e-01 | 2.475465e-01 | 2.548616e-01 | 2.547073e-01
o | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000¢-02
0.2 | Eup | 2.362439¢-01 | 2.8379960e-01 | 2.451814e-01 | 2.454880e-01 | 2.532187e-01 | 2.530980e-01
a | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02 | 7.200000e-02
0.1 | Eup | 2.362439e-01 | 2.847846e-01 | 2.425772e-01 | 2.430249e-01 | 2.512441e-01 | 2.511911e-01

REMARK 2.6.5. From Table|2.1- Table one can observe that the relative
error Ey g decreases with 8 to a certain limit and increases thereafter. So one
may fix a B, which yield minimum relative error E, 3. The same behavior (i.e.,
the computed solution get closer to the exact solution as [ decreases upto certain

limit and shoots out thereafter) can be observed in the Figures, Fig: 2.5-Fig: 2.20.

In the next example, we compute the regularization parameter using adaptive

method.

EXAMPLE 2.6.6. (cf. [Phillips (1969))
Define the function

1+ cos (£F)
0 |z| > 3.

lx] <3

¢(r) =

Consider the problem of solving integral equation

—6< 5 <6, (2.6.6)

(Te)(s) = / K(s. ) x(t)dt = g(s),

—6
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where k(s,t) = ¢(s—t), g(s) = (6—|s|) (1 + 3 cos () ) + 5= sin <%) and h = z
The solution of this problem z(t) is given by &(t) = ¢(t). We have introduced the
random noise level § = 0.01 and 0.001 in the exact data. Relative errors and «
values are showcased in Tables 2.6 obtained using adaptive method for different
values of B, n and . Noise data and exact data are given in Fig:2.27 and Fig:2.28
- 2.30 display the computed solution and exact solution, respectively for various

values of B. In Fig:2.31 and Fig:2.32, we have demonstrated the exact solution

and computed solution for Standard Tikhonov Regularization Method(STRM).

Table 2.6: RE for Phillips example with adaptive parameter choice.

B n = 300 n = 500 n = 700
0=0.01 0 =0.001 60=0.01 0 =0.001 0=0.01 0 =0.001
a | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02 | 1.791590e-01 | 7.200000e-02
1 | Eapg | 8.843761e-02 | 4.270015e-02 | 8.633825e-02 | 4.743883e-02 | 8.400357e-02 | 4.967453¢e-02
a | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02
0.9 | Eup | 8.728298e-02 | 4.327196e-02 | 9.441347e-02 | 4.820018e-02 | 9.966629¢-02 | 5.039264e-02
o | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02
0.8 | Eop | 8.728298¢-02 | 4.410263¢-02 | 9.441347e-02 | 4.921456¢e-02 | 9.966629¢-02 | 5.159880e-02
o | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02
0.7 | Eop | 8.728298¢-02 | 4.923591e-02 | 9.441347e-02 | 5.056741e-02 | 9.966629¢-02 | 5.318465¢-02
o | 2.149908e-01 | 8.640000e-02 | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02
0.6 | Eop | 9.827280e-02 | 5.289967e-02 | 1.111988¢-01 | 5.201912¢-02 | 1.186109¢-01 | 5.544085¢-02
o | 2.149908e-01 | 8.640000e-02 | 2.149908e-01 | 7.200000e-02 | 2.149908e-01 | 7.200000e-02
0.5 | Eop | 9.827280e-02 | 5.289967e-02 | 1.111988e-01 | 5.431881e-02 | 1.186109¢-01 | 5.805947Te-02
a | 2.149908e-01 | 8.640000e-02 | 2.149908¢-01 | 7.200000e-02 | 2.149908e-01 | 7.200000¢-02
04| E,p | 9.827280e-02 | 5.289967e-02 | 1.111988e-01 | 5.725935e-02 | 1.186109¢e-01 | 6.137480e-02
o | 2.149908e-01 | 8.640000e-02 | 2.149908¢-01 | 8.640000e-02 | 2.149908e-01 | 7.200000¢-02
0.3 | Eap | 1.314530e-01 | 6.299845e-02 | 1.424821e-01 | 7.048210e-02 | 1.510811e-01 | 6.550096¢-02
o | 2.149908e-01 | 8.640000e-02 | 2.149908¢-01 | 8.640000e-02 | 2.149908e-01 | 7.200000¢-02
02| Eyp | 1.314530e-01 | 6.299845¢e-02 | 1.424821e-01 | 7.048210e-02 | 1.510811e-01 | 6.550096¢-02
o | 2.149908e-01 | 8.640000e-02 | 2.149908¢-01 | 8.640000e-02 | 2.149908e-01 | 7.200000¢-02
0.1 | Eyp | 1.3145830e-01 | 6.299845e-02 | 1.424821e-01 | 7.048210e-02 | 1.510811e-01 | 6.550096e-02
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1.2 ()

exact data
= = =noise data

0.8 -

0.6 r

04 r

0.2 -

Figure 2.27: Exact data and noise data for 6 = 0.01 and n = 700 for the Phillips
example with adaptive method.

0I53xact solution & computed solution for 6=0.01
' ' ' exact sol.
C.S.with 3=0.3,
| C.S. with 3=0.2,
0.25 C.S. with =0.1,
0.2 +
0.15
0.1
0.05 r
0 L
-0.05 :
2 1 0 1 2

Figure 2.28: Solutions with § = 0.01 and n = 700 for the Phillips example using
adaptive parameter choice strategy.
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0I%xact solution & computed solution for 6=0.01

exact sol.
C.S.with 3=0.6,
C.S.with 3=0.5,
0.25 r C.S.with =04,
0.2 f |
0.15 |
0.1 f |
0.05 f |
ol J
-0.05 '
2 1 0 1 2

Figure 2.29: Solutions with 6 = 0.01 and n = 700 for the Phillips example using
adaptive parameter choice strategy.

0E3xact solution & computed solution for 6=0.01
. ' ' exact sol.
C.S.with 8=0.9,
0.25 C.S.with (=08,
C. S.with 3=0.7,
02 r |
0.15 1
0.1 ¢ |
0.05 r A
0 [ -
-0.05 : . .
-2 - 0 1 >

Figure 2.30: Solutions with § = 0.01 and n = 700 for the Phillips example using
adaptive parameter choice strategy.
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0E3xact solution & computed solution for 6=0.01

T

exact sol.

C.S. with p=1,
0.25 1

02 r ]

0.15 1

0.1 ]

0.05

T
1

-0.05

Figure 2.31: Solutions for standard Tikhonov reqularization with 6 = 0.01 and
n = T00 for Phillips example using adaptive parameter choice strategy.

T

(I)E)éact solution & computed solution for 6=0.001

exact sol.
C. S. with =1,
0.25 r ]

0.2 r ]

0.15 r 1

0.1 ]

0.05 r ]

_0-05 1 1 1

Figure 2.32: Solutions for standard Tikhonov reqularization with 6 = 0.001 and
n = 700 for Phillips example using adaptive parameter choice strategy.
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Chapter 3

FINITE DIMENSIONAL
REALIZATION OF FRACTIONAL
TIKHONOV REGULARIZATION
IN HILBERT SCALES

3.1 INTRODUCTION

In Chapter 2, we studied the convergence of xffﬂ to Z. But performing the numer-
ical computation of xi‘sﬁ in an infinite dimensional space is not easy. So one has
to consider the finite dimensional realization of 5”265 The aim of this chapter is to

study the finite dimensional realization of the method considered in Chapter 2.

Let {P,}n>o0 be a family of orthogonal projections of X onto R(P,), range of

P,. We impose the condition

e = IT(T = Bl (3.1.1)
Assume limy,_,ge, = 0. This is satisfied if P, — I pointwise and T is a compact
operator. Let T, = TP, and let hg > 0 be such that

b [ z]| -

p < Va £ 0,h < hy (3.1.2)
2[|| "

LEMMA 3.1.1. Let by = %, by = by + % and h < hg. Then
billz]l-a < | Thz]| < bof|2[| . (3.1.3)
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Proof. Let (3.1.1)) and (3.1.2) hold, then

[ The]

IN

[Tl + |IT(Py — I)x]]

IN

bal| ]| -a + enl|z]]

IA

ba|z ]| —a-

Similarly,

[Th]|

v

[Tz|] = |T(P = D]

v

bz o — enll]

Y]

bl ]|—a-

O
L _ b, if 0<t - by, if 0<t
Clearly by < by. Let f(t) :== ¢ _ and g(t) =4 _
by, if t <0 bi, if t <0.
PROPOSITION 3.1.2. Suppose Lemma holds and |v| < 1, then
F)all-va < ITT0)" 22|l < g2l -var = € DU(T;T3)"). (3.1.4)

Proof. The proof follows from the Proposition by replacing T by Tj,..

PROPOSITION 3.1.3. Let T}, be a bounded linear operator satisfying .
Then, with the hypothesis of Proposition and for 0 < 8 < 1, the following
hold:

n —s * W8 s\ o
F)llzll-g(asppatas) < ILT(TT0) = L)) < G)llall-g(eparas,

_(148
s _ B o<t
v € D((L=*(TyTy) 2 L™*)"/?),5 > 0,|v| < 1, where F(t) := (18,
02 i <0
and "
i} b o<t
G(t) = 18

b2 it <.
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Proof. Using Proposition with v = #, we obtain

1 1 1+
FEED el qsgey, < 10810 2l < 5D el sgny,. 2 € DUGT )

Further, the proof follows by taking first, x = L™®x in the above equation and
then applying Proposition for the operator (T,;‘Th)%[fs.

(]
We consider the unique solution xi’"sﬂ’h of the equation
s B
(TyT) = + al®)ats,, = (TrTh) 2y, (3.1.5)
as an approximation for Z.
Let
Ayp =L (T"T) " L,
and
Agpp = LTy T,) 2 L.
Using the above notation, we define
5= L7 (Agg + ) 'L (TT) 7y, (3.1.6)
o an = L(Agpn +al) 'L (T3Th) 7y (3.1.7)
and
220 = L (Agpn + al) LT (TET) . (3.1.8)
By spectral properties of the self-adjoint operator,
A g, Aspn, s> 0, 5 €[0,1], we have
[(Asp+al) ALY <o a>0,0< p< 1. (3.1.9)
1(Aspp+ad) ALl <o a>00< <1 (3.1.10)
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LEMMA 3.1.4. Let :Egyﬁﬁ,xi’fﬁ’h be as in (3.1.7) and (3.1.8), respectively. If the

assumptions in Proposition holds, then for 0 < 3 <1,

|25 50 — 2% < @(s,a, B, h)aT a5 g,

@(M) p—Ba—2s (lJrlzf)Lifm
L (1+B)a+2s _ (bl )
where (s, a, 8, h) := F(araimss: ) f(-8) by

Proof. By (3.1.7) and (3.1.8), we have

v

2550 — 22 pnll = IIL_S(As,ﬁ,h+OJ)_1L_S(TZTh) (v )l
= [(Aspn+aD) LT3 (0 = y)l| o

Therefore, by using Proposition|3.1.3, with v = (Hﬁ%ﬁ’ x = (Aspptal) L™ (ThTh)g(y
y) and (3.1.10) we obtain in turn that

||5’7 Bih
1 a+2s —17—s/px* 8
: THA(?;’;? T A+ al) LT - )|
F ((1+B)a+25>
B 1
n 2s
F ((1+5)a+2s>
e e =
AT (Augn + ) AT LT3 — ) (3.111)
1 (1?55125 1 fﬁg?;f;s « VS (8
< #HA an(Aspntad)” HHAth L(TRTh) 2 (y° — )|
F (( +B)a+2s>
1 —(Ba+s) 5 s
< e T AT LT R (6 - )
F ((1+B)a+zs
So the Lemma is proved, if we prove
—(Ba+s) G <LZ+S)S)
AT LT W - ) £ — s (3.12)
’ f(=B)
But this can be seen by taking v = (ﬁ(ﬁﬂ)—?:é)s and
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x = [FS(T;L‘Th)g(y‘S —y) in Proposition m

W -l < (%) L7173

2(Pa 1 5) )n( T8 = 9)le

—(Ba+s)

A L (T Th)

B B
2 2

()]

(% = 9)lls+5a

()

1+ B)a+2s

(T mes
( j‘:;;) W
(

INA
Q)

— 9l

—B)
2(Ba+s) )
1+B )a+2s
< ——" 7
(—8)
The last but one step follows again from Proposmon 3.1.2 by taking v = —f.
O

To obtain an estimate for |2} 5, —} 4[|, we make use of the following formula;

B (x) = Si“'z/tZ[(BHJ)—lx—@H---H—l)”@m—lx]dt

sinmz . x Bz B g

[__

T z z-—1

where

0, ifo<t<l1
0(t) =
1, ifl <t<oc

for any positive self-adjoint operator B and for any complex number z such that

0 < Rez < n. Taking z = #, 0< B <1,in (3.1.13) one can see that

wp o osinw(5F) | 2w 148 _
B = 2 2 (B N1 —
x - 1+5+/)\ (B+ M) zdA /)\l(lwd)\
0 1
(3.1.14)
Using (|3 , for z € X we have
14 sin (18 T
()% - ) = I [ @) @) - ()
0
(T*T) + M)~ tzd). (3.1.15)
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LEMMA 3.1.5. Let z}, 5 and x;, 5, be as in and (3.1.7 ' respectively and
Assumption[2.3.4 holds. Further, let the assumptzons i Proposition |2.2. 1, Propo-

sition and Proposition hold. Then for 0 <t < (Hﬁ)a + 2s

”xz,ﬁ,h - sz,,@H < ¢ (57 a, B, h, t)a(u';)i”s €h,

wher’e (1+8)(25+Ba)
— s a (14+8)(Ba+2s)
sin ﬂ)5 (1+P)a+2s %t 2E (1+§>S s ~ b (1+B)a+2s ~
pi(s,a, B, hit) = 22420 (Ohm 28 4 b || T |12 )+ |2,
2 b1(1+ﬁ)a+25 2

14+8)a+2s .
, by , it <s
with Ch = (1+8)(s—t)

bl i s <t

Proof. Note that

Ty = L_S(Aa5+a1)_1L ST g
+8

S

TaBh = ((ThTh) +aL25) (T,;‘Th) 3 §/'+((ThTh) +aL25)

SlisY

X (T¥Ty) 2T — Pyli
and hence
o=ty = (GT)F +al®) (D)5 (3.1.16)
—((T*T)" %" + aL®) NT"T) %" |3
FUTIT = + al®) (T3 T2 T — P,
So,

B
2

s s * 48 s\ — * ~
|25 5.0 — 25l < KN+ N(TRTR) = +aLl®) (T3 Th) 2 T — Bl (3.1.17)

+

where K = [(T;T))"% + aL*) YT 1) % — (T*T)5" + aL®)~N(T*T)"%

We have,

Ji.

* 8 A

(T3 T) =" + aL®) (T, T) 2 T(I — Py
s e £ .

= [Aspn +al] ' L7(T3T) 2 T — Bl
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1

1 a+2s — —s * B A
= F(—2 ||A§,§§?+ (Aspn+al) L7 (TRT,) 2 T — Pii]|
((1+[3)a+25)
1 (e sraer oo v\ 8 )
= 7 [Agsn " (Asgn + o)A gy L(T3T5)2 T — P2
((1+B)a+2s)
@(Lﬁa)) »
S e a T | (TET) 2 T — Pil# s
((1+B)a+2$
(T gers) o
< = arss n|| & || o TPz
2s
F((1+ﬁ)a+2s)f(_6>
(3.1.18)
and since

K = L %[(Aspn+al)  Agpn — (Asp +al) 1A, 5] L52
= L*(Asppn+al) A sn(Asp +al)
—(Aypn+al)Asg)(Ass + o) Lo
= L %(Aspn+ 04[)7104[145757;1
— A 5)(Asp + al) LG
= L°(A, s +al) ol (TiTy) 2

~(T*T)F L% (Asp + o) L0
148 by
= T A+ ad) 1aLs//\ (TF T3, + M)~
T
0

X[T3Ty, — T*T)(T*T + M) "' L™%(A, 5 + o) ' L*2d.

So, by (3.1.10|), Proposition and Proposition 3.1.3, we have

1 sin ﬂ) e
|K| < 2 - 2 |la(Asppn+al)” 1As“ﬁ+i +2
(1+pB)a+2s
oo

—s—fBa

X AT [ = / N (T, 4+ AD) !

(TrT) — (T*T)(T*T) + M) ' L™%(Au 5 + ol) ' Li2d )|
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3 1+ﬁ 2s a
1 55) sin m(£2) L1 T
7 Tipeet 2| Au g+ ad) AT
((1+,8)a+2s)

IA

><||/ ThTh+)\])

[(Th T) = (T*D)((T*T) + A1) 7 L™ (Ags + o) L*2dA | 5o

a —2
Clappares) _sinm(57) oo

Flape) [(=8) =
x / NS (T2 T

0

IA

N

(TrT, + M) T T, — TTNTT + M)~ Zd)||

(3.1.19)

where Z = L™%(A, 5 + al)~'L*Z. Note that

IN

IN

IN

/ NS (T T) 3 (T3 Ty + A TS T, — T°TY(T*T + A)Zd)|
0

/ N \(TET) "2 (TP Ty + M) 72 [(I — POTT + P,TT(I — P)|(T*T + M)~ Z||dA
0

1
/ NE( D)~ 2 (T3 Ty + M) TR T (I — P)|(T7T + A1)~ Z||dA
0

B
2

o 145 * _ % — * * -
n / NN TET) (T T+ A ITENTA = PO II(TT + AT~ Z ]

/Algﬂu(Tz«bTh)ﬁ23
0

(T*T + AI)"N(T*T) 2 (T*T) % Z||dA

+ / N (T~ (T T+ AD T NT I = POIITT + ML)~ Z || dA

1 t —t e T g
/ A%‘15h||(T*T)2zzZ||d/\+/ | A” h 2]l dA
1

2a
~enll(T°T) = Z|| + 2| Tlenll 21, (3.1.20)

(LT + AT = P

where, we used ||T|| < ||T|| and (T;Ty, + M)~ — B,) = 0.

Further, observe that
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1Z|l = [L7°(Aup +al)~ L%
1 s
< — AT (A + al) L]
F ((1-{—5)&—}—25)
G ( 2s >
(I+hatas ) | .
< 1]

2s
oF ((1+,8)a+23>

and

* =t —1

IrnEZ) < o izl
—t —s —17sp
= YOI (Agp +al) L]

g(%t) -1 ATH)aTEs 754
7 sy st al)llIA T Lo
F ((1+B)a+2s>

_ 2(s—t)
9(Z)G (m
2(s—t)
F <(1+ﬁ)a+23>
—t 2(s—t)
g(?)G <(:+5)a+2s) o B
r ((1+B)a+23>

Therefore, by (3.1.19)), (3.1.20) and (3.1.21]), we have

IN

)a_lH-’i"Ht

IN

VAN

(3.1.21)

G(m)sinw(#) 2a —t 2(s —1t)
s —— (790 (T e P
(i [COF (s ) ™
2s

216 (5

) & lenamsierz .

(3.1.23)

2s+Ba —a
Now the result follows from the fact that o @TrAetss 1 = o TFAaTs

61



Combining the Lemma [3.1.4] Lemma [3.1.5] and Lemma [2.3.3] we have the fol-

lowing Theorem.

THEOREM 3.1.6. Let x}, 5,7, 5, and xz’fsﬁ’h be asin (3.1.6), (3.1.7) and (5.1.8),
respectively, Assumption[2.3.9 holds. Further, let Lemma[3.1.4], Lemma and
Lemma hold. Then

|z — :)sa Snll < 20a(s,a, 8, h)a(HB_)Z“S (0 +en) +Ui(s,a,p, t)oz<1+ﬁ§a+23, (3.1.24)

where po(s, a, B, h) = max{¢(s,a, B, h), pi(s,a, B, h)}. In particular, if « == (s, a, B,t) =

(148)a+2s
co(0 +ep) tte  for some ¢y > 0, then

N s _t
Hx - xofﬁ,h” S 77(87 a, B?t)(é + 5h>t+“7

where 1(s,a, 5,) = max{p(s, a, Bl g (s, B, 0l )

3.2 PARAMETER CHOICE STRATEGY

In Chapter 2, we considered the following parameter choice rule, i.e. choose «
satisfying
a2(Ay 5+ al) 2L~ (T*T) 34 || suss = €6 (3.2.25)

where ¢ > 0 is a constant for FTRM in Hilbert scales. In this section, we study

the finite dimensional version of the parameter choice strategy (3.2.25]). Let
d(a,y’, h) = ||a*(Aspp +al) 2L~ (T*Th) || gt s- (3.2.26)

The proof of the following theorem is analogous to the proof of the theorem in

Chapter 2, but for the sake of completion we give the proof as well.

THEOREM 3.2.1. For each non-zero y°, the function o — ¢(ca,y°, h) for
a >0, as defined in , is continuous and increasing. In addition

lim o(0r, 4%, 1) = 0, lim d(a,y’, ) = (T3 T) 4’ (3.2.27)
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Proof. Let {E) : 0 < X < ||A; 54|} be the spectral family of A; 55 . Then

sl £ o \*
¢(oz7y‘5,h)2=/ ( ) AEAL™ (T3 T0) Py, L (T )20 -
0

A«
(3.2.28)
Now since a@ — (Aj%w)4 for A > 0 is strictly increasing, lim,_.o ()\%1)4 = 0 and
limg, o0 (ﬁ)4 = 1, by Dominated Convergence Theorem, we have
lim ¢(a, %, h) = 0, lim ¢(a,y’, h) = (T T3) 5| - (3.2.29)
o—r a—r 00
O
THEOREM 3.2.2. Suppose holds and
I(T;Th) 29| g > 6 + den > 0 (3.2.30)

for some ¢ >0 and d > 0. Then there exists a unique o = a(d, h) satisfying
P, y°, h) = ¢ + dey,. (3.2.31)

Proof. Follows from Intermediate Value Theorem and Theorem [3.2.2] O

REMARK 3.2.3. Note that, by and Pmposz'tion we have

i)
2

* % B _ % B
Iy’ Il = TR T0) = (T T0) 2y |l < 3(=B) (T T) 2l g (3.2.32)

Now, since ||y°|| > |lyll — 9, if

[yl
9(=p)(c+dey/0) + 1’

then equation (3.2.30) is satisfied.

0 <

(3.2.33)
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For convenience we use the following notations

—(ats)(A+B) _ s—
BW()#ZCL || A” (%)Ellig))(aﬁts)’ ift<s
G = = Tt (1+8)(s—t)
by (B — Da +1) (Z—;) (111/3>a+2t5, if s <t
_ —(14B)(a+s) (1+8)s
bl (1+B)a+2s b2(1+6)a+2s 2 .
Cy = (1+8)s HxH
B;lb1(1+ﬁ)a+23 (1 - /6)
=t (1+8)(s—t)
blat2a 12l (%)(1+B)a+2ts7 if t<s
C3 = o~ Tl (1+8)(s=t)
((B—1a+1) (L)@ if s <1
2 .
Cy = (1158)s HxH

b1(1+5)a+2$ (1 - /6)

; B
- sinm(£) [/ =t2a
e G
¢, = (&R

by
B sin(—lgﬁ)
Cy = ————(c1+ e2)cE-1)a0
T
_ =(+B)(ats) 1 (1+8)(1-B)a
B b1(1+ﬂ)a+2s SlIl7T( —;ﬂ)b2(1+ﬁ)a+2s
Cs = — ¢(8-1)a0(cs + Ca)
b, T
and
(1+8)(Ba+ts)

Cy = b, (Cy + Cy).

LEMMA 3.2.4. Suppose Assumption holds and «

unique solution of (3.2.31|) with ¢ > c¢o and d > dy where ¢y
d() — Cl + 04. Th6n7

(1+B)a+2s

G‘( —(Ba+ts) )G( 2(s—t) )

_ (1+B)a+2s (1+B)a+2s .
where ¢z 50 = F( 2 ) p( 22 Emin{c — cy,d — dp}.
(1+B)a+2s (1+B)a+2s

(A+B)(s—t)

(by) TF8eT= | if £ < s

(+B)(s=t)

(b)) 9er | if 5 < 1.

(3.2.34)

= ad) > 0 is the

ne)

F(

—2(Ba+s 7
(1+(3)¢1+2)5 )f(_/B) ’

(3.2.35)

Proof. Note that, from Proposition [3.1.2] Proposition (3.1.10) and
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(13.2.26]) we have

cd+depy = ¢, y° h)

1 _—(Bats)

S = TGare) QP ALG T (Ag g +al) 2 L7 (T*Th) Y|
F(irgeess)
1 2 o At N
S = G @ [(Asgn +ad) A ) L (TRTh) > (y° — w)l
F((1+B)a+2s)
1 2 Lo | AP w \ B
+ Ty 2 [(As .+ al) A 33 LT (TRTh) 2y
((1+,8)a+2$)
= 2(Ba+s)
< G( (1+58) a+2s) ||y _yH

P2y f(=5)

I+P)at2s
1 2 Lo Tl g
|| (Aspp +al) AL L (T Th) 2y |

t = G

—2(Ba+s)

F(iRaras)
(;( —2(Ba+s) )

e 54, (3.2.36)

F(atmaras)f(=5)

—(Ba+s)
where G = ——b0?[[ (A + o) 2ATS 7 L75(T3T) 2yl Note that

( (1+B)a+25)

1 —(Ba+ts)

Woﬂl\(&,g,h +al) A L (T T)

1+p8)a+2s
]' 2 2 (I_Jr(g;l:_j%s * B
a[[(Aspp+al) A gy L(TT) 2y |

(Vg

—(T*T)zy|

o

+—
“3(pats)
F((1+ﬁ)a+2s>
((—25;1-&—5 ) 1
1+3)a+2s
G+ — Gs (3.2.37)
—2(Ba+s) —2(Ba+s) ’
( (1+8) a+2s) F((1+ﬁ)a+28)

IN

where Gy = ||[(T;Th)% — (T*T)g]yﬂﬁa and
—(Ba+s)

Go = 0?|[(Aspp +al) 2ATT D L™ S(T*T)3y||.

Using the fomula ([3.1.13)) and Proposition [3.1.2, we have

1 -8
2

I

B B
2 2

G < (TR Th)> = (T°T) =]yl



IA

sinw('g)
—B)m
H / N (T (TETy + D [(T*T) — (T T)|(T°T + AT)~"yd)|

é
sinm(5)

—B)m
| / AE(TPT3) = (Ty Ty + AD T (T = Ty) + (TF = Tp)T)(T*T + AI) " Tad)||

m

m

ﬁ
sin 2 2] / ST E (I T, + M) TH(T — TY(T*T + AI)~'Tid|,

where (here and below) we used (T3 T, + M)~ = (T3 T+ APyt = (T3 T +)\) 1P,
and (T}Ty, + A\) 7 BT — T} = (T; Ty, + M) "' P,[I — P,]T* = 0. Observe that

I / S(TT) (T Th + A VTET — To(T*T + AI) " \Tad)|
< / N (T 7 (TP Th + AD - TE [T — TW(T*T + M)~ Tid)|
0

+|| / AZ(TPTh) 2 (TpTh + AD T THT — To)(T*T + AT Tad)|
1
=T +1 (3.2.38)

where Iy = ||f0 A% ( T*Th) H(TrTh + M) THT — Th/(T*T + M)~'TadA|| and
Dy =117 A S(TET) % (T T+ M) VT[T = Th)(T*T + M)~ T#dA||. Further, note

that

and

1
I < />‘2H(ThTh) (Th T+ M) T = Tall
0
|(TT + AL~ (T T) 52| || (77T 7 | d s

—t Ly
o(“He / A5 ] v\
a 0

—t 2
= g(— )aEeh (3.2.39)
a

IN

O B e \A=B _
b2 = / N (T 2 (T, + MDY
1

117 = T IH(TT + AL~ HH(TT) 2 2| dA

B

) A5
| el

< 2lyflen (3.2.40)

IN
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Therefore, by (3.2.38)), (3.2.39) and (3.2.40)), we have

Gy < Chep. (3.2.41)
Again, we have
2 (ﬂr(g?jfgs -2 —21 7 —s /e £
Gy < o7f|A 5 T [(Aspn + o)™ = (Asp + ad) 7IL7(TTT) 2y
—(Ba+s)
TP AT (Aus + al) PLT(TUT) 2y |
= G21 + G22, (3242)
—(Barts) 5
where Gy = a2||AS(}£fL)“+25 [(Aspntal) 2= (Asp+al)?|L(T*T)2y| and Gas =
~(Bats)
Q?|ALGY T (A + al)"2L=5(T*T)%y||. Note that
2 4TI 21 42 2
Gy = | As,/j,h)a (Aspn+ad)7[A 5 — AL g +20(Asp — As pn)]
x(Asp + al) 2L(T*T) 2y
—(Bats)
< Na?AT T (Aupn+al)™ (g = Aupa) (Aus +al) 2L (TT) 2y
oD _ g —s e £
AT (A + D) 2(Ags — Aypn)(As +al) L (T T) iy
T, aT, (3.2.43)
2 <I+(§3’Jf%s —1 —27 —s (2
where I'y = [[a® A 57 (As g + al) " (As g — Aspn) (Asg + al) 2L (T"T) 2y
—(Barts)
1 a+2s — — —s * B
and F4 = ||OC2AS(”§:€Z) * (As,@h + Oé]) Q(As”g - As,ﬁ,h)(As,B + aI) 1L (T T)2y||

Let Z = (A, 5+ aI)"2L~*(T*T)%y. Then

~(Ba-ts)
Ty = &[(Aspn+al) TALY T (Asp — Aspn) Z||

2 —1 (1(+1137)i>4;12s (lerBa)Jgjr)Zs —s * 148 * 148 —s
= @ (Aspn +al) A AT LT 2 — (TTh) = 1L 2]
_B)a ' 1+6
< Odﬁsrlﬁ)i)wz*l—smﬂ— 7)
™

—(ats)

x||ASg L / N (T Ty + D)V T — TP T(T°T + M) L2
0
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1+

ISy

sin 7 (1-B)a
( )a(1+5)a+2s+1

w‘

m
—(a+s)

1
HAS(IgZ)G.«kZ@L / )\ 148 (T*Th _'_)\[) IT*[T Th](T*T+ )\I) 1L SZdAH
0

sin 7 ) —(adts)

Bla
am‘Fl ||A(1+5)a+28 L S

—
w‘—i—
ISy

/e

/ N2 (TPT) + N VTPT — Th(T*T + AI) " L Zd)|
1

- TT (Ts + D) (3.2.44)

(1-Ba ate)
where I's = oz(1+5>i+23+1||A5“g’,?“+25L fo /\7 (TFTy, + M)~ 1T*[T T (T*T +
)\I)_lL_de)\H
and
—(a+s)

(1-B)a 1
I's = a(1+ﬁ)a+2s+1”A(1+5>a+2sL fl 16 T*Th—i—)\f) 1T*[T Th] (T*T—l—)\[) 17— de)\H
Using Proposition [3.1.2| and Proposition |3.1.3 we have

F5 e ﬂ a(lgrlg)%-i_l
- (1+5)a+2s
1
I / N (TP (TETy + M) 7T — T(T*T + M) 'L Zd) ||,
0
G ( —2(a+s) ) s
< —(EJF'B)GHS Trpjats 1
- f(=1)
1 /\1;[3
« /0 S el (TDEL (A + al) 2L (D) T a0 sinilar to (120
= —2(a+s) —t o
_ G <(1+,3 a+2s) g( a ) 2a €h||A(1$5)i)+25A(1+ﬂ)a+2s LS’\”
- f_<—1>F <(12(§)—t)2 ) (B — 1)a +t s,8 5,6
+0B)a+2s
A —2(a+s) —t 2(s—t)
G ((1+,3)a+23> 9(5)G ((1+,6’)a+28> 2a )
TEDF (s T (3249)
- (1+,3)a+2s)
and

68



L e rEer
a(1+@)a+25 |’A(1+ﬁ)ﬂ+ SL S

— s,B,h
N (TP T) + A VTET — T)(TT + M) L Zd)\|
1
G( —2(a+s) ) o
< _\UHBats ) et L
f(=1)
AN ST I, - . —1y() 7 -
/ A= (T T+ XD THIIT = T (T T + M) 2] dA.
1
A —2(a+s)
. G ((1+B)a+2s) a(lggfl)&sﬂ
J(=DF (W
00 —3 8 1+5)a+25 -2 ’B'H —sTS8A
S ATTITE (A, + o) 2L (TT) S L L d
1
~ —2(a+s) 2s
G (i) O (widim) [ 2 )
- ” -5 C(8-1)a,0| 2| €n- (3.2.46)
f(=DF (W)
Therefore, by (3.2.44)),(3.2.45)) and (3.2.46) we have
Ty < Coen. (3.2.47)
Similarly, we have for Z; = (A5 +al) ' L™ (T*T)g
. 2 (fﬁfg?jjgs —27—5 * (M) * (ﬂ) —s
Iy = lla”A g (Asﬂh+af) L[(TT) =7 = (T 1) > IL 4|
(- ~(ats) ) .
< o2 (Awsst ad)2AT T AT L) — ()L
<

G —Hats) |\ ol
(1+pB)a+2s

1+8 1
sin7(=57) / A#(T;Th + X)) T*T — T TL)(T*T 4 M) L5 Zyd )|,
0

™

x|
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A —2(a+s) .
G ((1+,@)a+25> sin W(#) (1-p)a

< o (1+B)a+2s
o ™
><||/ ThTh+)\I) [T—Th](T*T+)\I)_1L_8Z1d)\||
~ —2(a+s) .
G ('(1+B)a+2s> sin ﬂ—(#>a(1$ﬁ_)i)fzs
f(=1) m
><H/ ST, 4 AT — T4(T*T + M)~ L Zd)|
_—2(a+ts) ) 148
< ( 1+ﬁ a+2s ) sin W(T)a(lgg}i)ﬁzs
B T
1+ﬁ it
—t +
/ eh|| (T*T)% L™%(As 5+ ) 'L75(T*T) 2 L™°L5%||d\
2 —2(a+s)
G ( 1+,8 a+23> sin W(#)auﬁ@i)ﬁgs
1) T
X / L (Aup + D) L (T TS (TPT)} L Lo
( (a:j;s> SmW(Tﬂ) (1-fa
< p_— o (I+B)a+2s
r 2(s
f(=1)F ((1+B)a+2s> @
*3“1’3 2Ba+2s (1—B)a
X / A +34 enl|(Asp +al)” IA“”)”“SA“*ﬂ)“”sA(”ﬂ)““gLs t|ldA
0
5 —2(a+s) 1+
G ( 1+8) a+25) SmW(T>a(1<+1B—)%
f(_ ((1+ﬁ)a+25>
S8 _3 2Ba+2s (1-—B8)a
X/ A ; Eh“(Asﬁ +a ) 1A(1+B)a+2sA(1+B)a+25A(1+B)a+23 LSAHd)\
1 b
~ —2(a+s) . 1 B (1-B)a 2(s—t)
< G <(1+B)a+2s> Slnﬂ_(T) ( 1+8) a+23> G ((1+5)a+23> c
= 3 (B—1)a,0
f(=1)m
X (c3 4 cq)ep,
= Csen. (3.2.48)

Therefore, by (3.2.43), (3.2.47) and (3.2.48]), we have

Ggl S (QQ + Qg)eh. (3249)
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Also, we have

Goo <

Thus, we have

Gy < (G +Cyen +

A 2(Ba + s) 2 27— 8-
G| —-+- A D)L (T*T)2TZ| 34
() a2 + @) L ()T e

) .

(1+B)a+2 2“ o5 n aI) QA;1EZ)a+2s LsA”
F( —2(Ba+s) >

(1+8)a+2s
a ( —2(Ba+s) >

1+8)a+2s 2“ i i Oé[) QA;1gi)a+2gA;1gZ)a+2sLsAH
F ( —2(5(1"‘5 >

1+8)a+2s
a < —2(Ba+s) ) G ( 2(s—t) >

(1+8)a+2s (1+8)a+2s QMZ)% th

—2(Ba+s)
F ((1+ﬁ)a+2s>

a <(—2(,6’a+s) ) e (( 2(s—t)

1 2 1 2 ) a+tt
+Hat2s +hat2s Fo 0FB)a+2s

—2(Ba+s) \ 7 —2(Ba+ts)
F ((1+ﬂ)a+2s) F<(1+5)a+2s)

Hence from (3.2.37)), (3.2.41) and (3.2.51)), we have

(C - 00)5 + (d — do)eh S

G ( —2(Ba+s) > G ( 2(s—t) )
(1+8)a+2s (1+B)a+2s Ea(bfg)%

—2(Ba+ts) \ 7 —2(Ba+s)
F ((1+B)a+2s> F((1+B)a+zs>

which implies that

(1+B8)a+2s
> cpasn(d+en) o

(3.2.50)

(3.2.51)

(3.2.52)

(3.2.53)

THEOREM 3.2.5. Suppose conditions in Lemma hold with ¢ > ¢y and
d > dy and o := «(0) > 0 is the unique solution of (3.2.51). Then

|2 — 225, 1l = O((6 + ) 7).

Proof. As in Lemma 2.3.3 , we have

B
2

Poals = @ ((T*T)“" +al®) " NT*T) 5y
= a((T*T)"*" + al®) ' L%
= aL (A, +al) 'L3.
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By Proposition we have

HaA“*B)““S (Asp +al) ' L52. (3.2.56)

1 = x5 gl <

((1+,6’)a+23>

In order to proceed with obtaining an error estimate for HO‘A;,lg e (Agp +

)

al)~'L5z|| we make use of the following moment inequality
1Bzl < 1B 2"l 0 Su<w (3.2.57)

where B is a positive self—adjoint operator.

s—t
Letu=Lv="5%D8= OzA“*B)““S (Asptal)tand 2z = Ozl*%(Asﬁ—i—al)*H%AS(’lgm“”S Lég
where p = (22)a + 2s.

Then Bz = aA];”""™ (A, 5+ al)"'L*z. Also, from (3.2.58) we have

1B < ||Bz||7a|z||7a
= |la" i (A + al)‘“*mﬁgﬁ L |

X[l 5 (Ayp + al) 5 ATE Lo,

We also have

. . —(Bats)
1Bzl = llav ™ (Aus + )" V0 (A + al) PATFTE A 5 L0
—(Bats)
< lo?(Asp + a[)_2A;}gﬁ>“+25 A, s L7
—(Bats)
< laPATTTE (A g + o) PLTH(TYT) 2 |
—<6a+s>
< P AT (A +al) ™ = (Ausp + al) ALT(TT) 2y
—(Ba+s)
HI AT (4 al) 2L (1T by
= G21 + G < (QQ + Qg)Eh + C’ by 3249 (3258)
—(Bats) )
where G = [la?Al;7" (Agpp + al)2L7*(T*T)z2y||. Here we make use of
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ar NA s +al) BV <1 > 1 by the condition a > 45 . Further,
B

A _2(561‘*’5) 2 -2
< —_ A, D)™*L=%(T*T)> s
G < G(a+m@+%)wx<ﬁﬁ+a> () syl
= ( —2(Ba+s) 2 27— g g
< —_ AS I L=3{(T*T)2 — (17T}, a+s
< 6 (ot ) e+ aD) LT T = (Tl
Hla?(Awpn + al) L7 (T3 2y | ass)
= (_—2(Ba+s) 2 27— g
< —_ A D=2 L=%(T7T,) 2 s
< O (o) (Gt 1o + ) L () e
< G( —2(Ba + s) >
- (14 B)a+ 2s
(Chen + |02 (As g + o) 2L (T3 T) 2y pacs)- (3.2.59)
Note that
97 —s /e £ B
l0?(Aspn + D) 2L (T3 Th) 2 Y gass
< o (Aupn + D) LT3 (5 — ) s
Hla2(As s + D) 2L (T 2y sas
G [ =2Bats)
(c5553) 5+ d(a,y’ h) (see (B236)).  (3.2.60)

[ ( —=2Bats) \ F
F <(1+,8)a+2s) f(=5)
Therefore from (3.2.58)), (3.2.59) and (3.2.60|) we have

—2(Ba + s) ~
1+ Ba+ 2s> Cren +

1B < @ﬁ@@%+é(

~ [ —2(Bats)
G ((1+5)a+25> 5+ dlonyb, )
_ ( —2(Bats) ) ( 6) 9 )
1+8)a+2s
—2(Ba+s) >
( (+B)at2s ~ [ —2(Ba+s) \ =
< 5+c§+(QQ+Q3+G(—)Cl+d)eh
- [ —2(Ba+s) 1+ +2
F < 1+5) a+23) ( B) ( Bla s
< L0+ €n) (3.2.61)
where
G —2(Ba+s) o )
L = max{ — 2((;115;a+2_) +c, Co+Cs+ G (%) Cy+d
F ((1+,3)a+25> f(=5)
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We further have

Izl < HA(”B)“”SLSW!
2(s —t) .
< Gl —— ) IL°Z||s—s
- ((1—1—5)@—1—25) IL72]
2(s — t)
< G|—F7—"— 3.2.62
Hence by (3.2.56)-(3.2.62)), we see that
12 — 25 5]l = O((8 + ) 7). (3.2.63)
(1+8)a+2s

In Lemma |3.2.4) we have o > ¢gq5,(0 +€,)" o+t which further implies that

1 < 1
- — (1+B)a+2s
@ Chash(0 + €R) ot
5 —|—aeh S (5 —f- €n _
o T +B)at2s ngms’h((s + €h)aT‘t
1 ¢
= (6 + en) 7. (3.2.64)
C3.a,s,h

Therefore by Lemma Lemma and equations (3.2.63]) and (3.2.64)), we

have

A

| — 2% || = O((8 + ) 7). (3.2.65)

O
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3.3 NUMERICAL EXAMPLES

In this Section, we consider an academic example for the numerical discussion to
validate our theoretical results.

Example 3.1 Let
[Tx](s) := /0 E(s,t)x(t)dt = y(s), 0 <s <1, (3.3.1)

where k(s t) = (cos(s) +cos(t))2(22)2 o = 7(sin(s) +sin(t)). We take y = T,
where 7 is given by Z(t) = 2exp(—6(t — 0.8)%) + exp(—2(t + 0.5)%). We have
introduced the random noise level 6 = 0.01 and 0.001 in the exact data.

We consider the Hilbert scales generated by the linear operator L defined by
Lx = Zf(x,uj)uj,
j=1
where u;(t) = v/2sin(jnt), j € N, with domain of L as

D(L) := {x € L*[0,1] : Zj4|(x,uj>|2 < oo} .

=1

In this case the Hilbert scale {X'}¢ generated by L is given by

X, = {xeL?0,1]:)> |z, u;)]* < oo}

J=1

= {r e H(0,1): 2™ (0) =™ (1) =0,1=0,1,.. 5 - ;11},(3.3.2)

where [p] denote the greatest integer less than or equal to p, s € R, and H* is the
usual Sobolev space. Also, one can see that H° = L?[0,1], and for s € N, H, C H*.
We have taken s = 1/2 in our computation. The constants a, b; and by are given
byazl,blzbgzi.

We use a sequence of finite dimensional subspaces of (V,,) of X and P, (h = 1)
denote the orthogonal projection on X with R(P,) = V,. We choose V,, as the
linear span of {vy, vg, ..., v,} with v;,4 = 1,2,...,n—1 are linear splines (Schroter
and Tautenhahn| (1994)) defined by
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nt+1—i (i—1)h<t<ih
ut)={ —nt+1+i ih<t<(i+1)h

0 otherwise.

In this case the matrix corresponding to 7)7}, is given by

My, = (Tor, Tvy))ey = ( / (Toi(s)][To; ()ds)ij .5 =1.2...n— 1,

where

(i+1)h

Tv(s) = / /{;(s,t)(ﬁ +1—d)dt + / k(s,t)(r + 1+ 1)dt.
(i-1)h ih

The matrix corresponding to L?® for s = % is given by

Bh = (<LU¢,U]'>>Z'J‘ (333)
= () m* (o) (v )iy 65 =1,2,...,n—1. (3.3.4)
m=1

One can see (Schroter and Tautenhahn| (1994) [Page 165])

Bh =

SRS

We take the singular value decomposition (SVD) of M), as
M, =ULVT,

where U = [ug, ug, ..., u,] € R™™ and V = [v,vg,...,v,] € R™™ are orthogonal

matrices, and

Y= dmg[/\l, /\2, ce )\n] € Rnxn)
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are the singular values of M), ordered as
M>2X> o > =0 =0.

Substituting the SVD in (3.1.8)) yields

20 = V(ST 4+ aV B, V) SV TS (3.3.5)

Therefore the error between the actual solution and regularised solution is given
by

& — 220 4|l = |2 — V(E'2 + aVT B, V) 2PV Ty (3.3.6)

For a particular § we wish to find the value of o using the parameter choice
. : o frt 2 27 —s(x \5 5
strategy in (4.3.2) i.e. we want an o satisfying [|o0?(Ay g p+al) 2L (T T3) 290 | pass =
cd + dey. We do this using Newton’s method on the function f(a) = |[a?(Assh +
aI)_QL_S(T,’:Th)gy(SHgaJFS — (¢d + dep,) and find the value of o when f(a) = 0.
Substituting the SVD we have

3s+Ba 1
fla) =a?||B, = V(S + aVIB, V) 2VTBESPVTY || — (¢ + dey,).  (3.3.7)

We observe the values of a and the error ||z — xi‘sﬂhH for different values of
£(0.1,0.2....0.9, 1) with random noise levels 6 = 0.01 and § = 0.001.

Relative errors and « values are showcased in Table B.1] for different values of
B, n and §. In Fig: 3.2 - Fig: 3.4 and Fig: 3.6 - Fig: 3.8, contains the computed
solution (C.S) and exact solution for different values of 5 and in Fig: 3.1 and Fig:

3.5, the exact data and noise data are plotted.

REMARK 3.3.1. From Table[3.1], one can observe that the relative error Eq g
obtained using the finite dimensional realization of FTRM in Hilbert scales for
fractional values of B is smaller than that when 5 = 1. However, one can observe
that the relative error E, g decreases with 8 to a certain limit and then increases

thereafter. This can also be observed from the Figures (Fig:3.1-Fig:3.8).

77



Exact data and noise data

3.5

exact data
= = =noise data

Figure 3.1: Exact data and noise data for 6 = 0.01 and n = 300

Exact solution & computed solution for 6=0.01

exact sol.

C.S.with B=1,
C.S.with $=0.9,
2r C.S.with $=0.8,

1.5

0.5

0 0.2 0.4 0.6 0.8 1

Figure 3.2: Solutions with § = 0.01 and n = 300
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Exact solution & computed solution for 6=0.01

exact sol.
3l C.S.with (=04, | |
C.S.with =0.3,
C. S.with 3=0.2,
25 - C. S. with 3=0.1,
2+ 18 I -
15 | R
1 . i
05 ' |
0 i
-0.5 i
-1 . . . .
0 0.2 0.4 0.6 0.8 1

Figure 3.3: Solutions with 6 = 0.01 and n = 300

Exact solution & computed solution for 6=0.01

exact sol.
C. S. with =07,
C. S. with 3=0.6,
C. S. with 3=0.5,

25 r

1.5

0.5

0 0.2 0.4 0.6 0.8 1

Figure 3.4: Solutions with § = 0.01 and n = 300
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a5 Exact data and noise data

exact data
= = =noise data

Figure 3.5: Exact data and noise data for 6 = 0.001 and n = 500

oo Exact solution & computed solution for 0=0.001
exact sol.
2r C.S.with 8=1, :
C.S.with $=0.9,
18 C.S.with $=0.8,

1.6

1.4

1.2

0.8

0.6

0.4

0.2 . . . .

Figure 3.6: Solutions with 6 = 0.001 and n = 500
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Exact solution & computed solution for 6=0.001

25
exact sol.
C. S. with 3=0.4,
C. S.with 3=0.3,
oL C. S. with =0.2, I 4
C. S. with =0.1, ‘ : [H
0
1
15 r [
]
1 . -
vl '
aLotod
0.5 b
0 L L L L
0 0.2 0.4 0.6 0.8 1

Figure 3.7: Solutions with ¢ = 0.001 and n = 500

Exact solution & computed solution for 6=0.001

T

25

exact sol.

C.S.with =0.7,
C. S. with $=0.6,
C. S. with $=0.5,

Figure 3.8: Solutions with 6 = 0.001 and n = 500
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Table 3.1: Relative errors for the example.

n = 300

n = 500

0 =20.01

0 =0.001

0 =20.01

0 =0.001

[0
Eap
Emztio

2.157497e-03
8.086544e-02
1.966310e+-01

2.111102e-03
5.580062e-02
4.290699¢+-01

2.359467¢-03
6.979050e-02
2.190834e+01

2.045106e-03
5.984465e-02
5.940711e+01

0.9

(6]
Ea,ﬁ
Eratio

2.094812¢-03
1.028586e-01
2.501092e+01

2.001696e-03
4.954536e-02
3.809712e+01

2.335022¢-03
7.844515e-02
2.462517e+01

1.999903e-03
5.437206e-02
5.397453e+01

0.8

2.002838e-03
1.423106e-01
3.460401e+01

1.838909¢-03
4.333680e-02
3.332314e+01

2.289867e-03
1.017988e-01
3.195624e+01

1.925116e-03
4.881881e-02
4.846188e+-01

0.7

Eap
Eratio

1.879297e-03
1.952871e-01
4.748569e+-01

1.606383¢-03
3.860271e-02
2.968294e-+01

2.204036e-03
1.453034e-01
4.561301e+-01

1.802906e-03
4.467454e-02
4.434792e+01

0.6

o
Eap
Eratio

2.149673e-03
2.373810e-01
2.772115e+01

1.296593e-03
3.835648¢-02
2.949360e+01

2.073304e-03
2.223598e-01
6.980223e+01

1.610127e-03
4.313786e-02
4.282247e+01

0.5

(6]
Eap
Eratio

2.062660e-03
3.099169e-01
7.535886e+01

1.329601e-03
4.098500e-02
3.151476e+01

1.890583e-03
3.347035¢-01
1.050687e+-02

1.327042e-03
4.923642¢-02
4.887644e+01

0.4

2.526780e-03
3.677623e-01
8.942446e+01

1.333518e-03
4.264501e-02
3.279120e+01

2.112389e-03
4.479871e-01
1.406302e+-02

1.327837e-03
5.680138e-02
5.638609e-+01

0.3

Eap
Eratio

3.600039¢e-03
3.818477e-01
9.284943e+01

1.351594e-03
4.650115e-02
3.575632e+01

2.365584e-03
5.419249e-01
1.701188e+-02

1.262176e-03
6.773099e-02
6.723579e+01

0.2

(6]
Eap
Eratio

4.540330e-03
4.142634e-01
1.007316e4-02

1.472437e-03
4.931446e-02
3.791956e+01

2.741712e-03
6.257286e-01
1.964261e+-02

1.168581e-03
7.788526e-02
7.731582e+01

0.1

(6]
Eap
Eratio

2.973373e-03
3.525842¢-01
8.573378e+01

2.219342e-03
4.961016e-02
3.814694e+01

3.314624e-03
6.943178e-01
2.179573e+02

1.173023e-03
8.458691e-02
8.396847e+01
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Chapter 4

FRACTIONAL LAVRENTIEV
REGULARIZATION METHOD IN
HILBERT SCALES

4.1 INTRODUCTION

Let A : X — X be injective, positive self-adjoint operator defined on a real
Hilbert space X'. We are concerned with the problem of approximating a solution

% (assumed to exist) of the ill-posed equation
Az =y. (4.1.1)

Our aim is to study finite dimensional realization of the fractional Lavrentiev reg-
ularization method for approximately solving (4.1.1)) in the setting of the Hilbert
scales {X;}ser defined in the introduction. Note that the Hilbert scale generated

by L connects X with X, through the relation ||z||s = ||z||x, = ||L°z| (Egger
and Hofmann (2018), see also Krein and Petunin (1966)[Page 145]). We assume

throughout the study that, the operator A satisfies:
djz]|-a < [|Az| < dofl2]-a; © € X (4.1.2)

for some a > 0,d; > 0 and dy > 0.
Let f(t) := min{d!, ds}, g(t) := max{d},ds}, t € R and |¢| < 1.
We shall make use of the following proposition ( (George and Nair| (1997)) in

our analysis.
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PROPOSITION 4.1.1. (cf. |Natterer (1984))[Proposition 1]) Let A : X — X
be a bounded linear operator that satisfies . Then, for |v| <1,

F@)all-va < (A A)2| < g(@)l|z]|-va, @ € D((A*A)"?).

For |7| < 2, let F(t) := min{f(3)", 9(3)"}, G(t) == max{f(5)",9(3)'}. Using
the above Proposition 4.1.1, and notation, we prove the following proposition,

which will be used extensively in our analysis.

PROPOSITION 4.1.2. Let A: X — X be a bounded linear self-adjoint oper-
ator satisfying . Then, the following hold:
(1)
fWlzll-va < |A72 < gW)[|2]|-va, = € D(A"), Jv] <1,
(i)
Pl _zsge < AFL™"a]| < 9] _zsze, o € D(AT2L™2),
s> 0,7 <2,
(iii)
F)l@l|_yzagsy < [(L7PATL™2) )| < G)||z]| -y zats),
€ D((L™2ATL=5/2)/%) s > 0, |7| < 2,|v] < 1.

Proof. Proof of (i) follows from Proposition since A*A = A% Note that,

if we take v = 7/2 in (i), we obtain

T e T e
Fzll-z < [ A22] < g(F)ll2ll-z, = € D(AZ).

Now, (ii) follows by taking = L2z in the above equation. The proof of (iii)
follows by taking A = A™/2L~%/? in Proposition [4.1.1]

O

Let { Py }n>0 be a family of orthogonal projections of X onto R(P,) , the range

of P, as we have seen in Chapter 3. For the results that follow, we impose the

following conditions. Let

en = AU - Pl
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We assume that limj,__,o€;, = 0. The above assumption is satisfied if P, — [

point-wise and if A is a compact operator. Let A, := P,AP,. Then
|AL — Al < ||PLAP, — D)|| 4 [[(Pn — 1) A|| < 2¢p,. (4.1.3)

Let hg > 0 be such that

d[|z]| -
4|

€n >

, for all x # 0 and h < hy. (4.1.4)

Hereafter, we assume that h < hg. Let dy = %1 and dy = dy + %1. Using, the above

notation we have the following lemma;

LEMMA 4.1.3. Let d, and dy be as above. Then,

di||z]|-a < [ Az < daflz]|-. (4.1.5)

Proof. Using (4.1.3) and (4.1.4)), we have

[Apz| < [JAz]| + ||(An — A)z||
< daflz[|—a + 2en||z]]
< dyllz]|-a

and

[Apz]| > [J[Az| — [[(An — A)z]]
> di|z]|—a — 2en||z]]
> dy||z|—a.

O
Let f(t) := min{d},ds}, g(t) := max{d’,ds}, t € R and |t| < 1. Analogously
to the proof of (Natterer| (1984))[Proposition 1]), one can prove the following propo-

sition.

PROPOSITION 4.1.4. Let Ay : X — X be a bounded linear operator that
satisfies (4.1.5). Then, for |v| <1,

FW)lzll-va < 1(A3AR) 2l < gW)l2ll-va, = € D((A5A1)").
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For |7| < 2, let F(t) := min{f(3)",g(})'}, G(t) := max{f(3)",g(5)'}. Us-
ing the above Proposition 4.1.4) and above notation, analogous to the proof of
Proposition [4.1.2] one can prove the following proposition.

PROPOSITION 4.1.5. Let A, : X — X be a bounded linear self-adjoint
operator satisfying . Then, the following hold:

(i)
FO)zll—va < | A%z]l < ()12 —va, ® € D(AY), |v] <1,
(i)
FOMall_ssge < IAFL/2]) < §(5) 10l _ssie, = € D(AT L),
s> 0,1 <2,
(i)

FW)llall_yzopey < ILTPATLT2)Pal| < G) o]l zae),

x € D(L™SPATL=?)/%) s > 0,]7| < 2,|v| < 1.

4.2 FRACTIONAL LAVRENTIEV REGULAR-
IZATION IN HILBERT SCALES: FINITE
DIMENSIONAL REALIZATION

In this Section, we introduce the fractional Lavrentiev regularization method for
approximately solving the ill-posed operator equation (4.1.1)). We consider the

minimizer wy, 5 of the functional
ap(r) = (Az,2) = 2(y, ) + (Aﬁx,@%, a>0, (4.2.1)

where 0 < 8 <1 ( to be precised later), as an approximation for Z. Note that the

minimizer wy, 5 satisfies the equation
(A+ ozABLS)wZVB =y. (4.2.2)
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Note that, for § = s =0, (4.2.2) is Lavrentiev regularization of (4.1.1). Through-
out this study we assume that the available data 3° satisfies (2.1.2)). In this case

instead of (4.2.2]), we consider wi"; , satisfying the equation

(A + Ay LYW, = Puy’, (4.2.3)

as an approximation for Z.

Let
Ay = LPAYPL92,
and
A =LA L2,
Then
wh g =LA, 5+ al)TLT P ATy, (4.2.4)
wh g =L (Aspp+al) 'L A, P Py (4.2.5)
and
wi’f;ﬁ,h = L7 (A p + Oé])_lL_smA,;BPhy‘;. (4.2.6)

Furthermore, by spectral properties of the self-adjoint operators A, 5, As g.n, s > 0,
we have

[(Asp+al) AL <o a>0,0<p<1 (4.2.7)

and

|(Aspn + a[)’lAZ@hH <ol a>00<pu<l. (4.2.8)

. s 576 . .
Next, we present the error estimate for |[w, 5, —w,’s ;|| using the above notation

and propositions.

LEMMA 4.2.1. Let w;, 5, and wi’f;’h be as in (4.2.5) and (4.2.6), respectively.
Let A satisfy and hold. Then, for 0 < 8 < 2% s < q we have

75 ___—a
||w;7ﬁvh - wz,ﬁ,h“ S @3(87 a, ﬁ, h)a(l_ﬁ)a-‘rs 67

G(GFezs)

where @3(87(1,6,}0 = W

87



Proof.

By (£-2) and (f-20), we have

[ —wianll = L7 (Aspn+al) ' L7 AP Py’ — y)|
= |(Aspp+al) ' L7 2A, Po(y’ — y)| —so-

Therefore, by Proposition W, (iii); with v = mﬂ' =1—p and v =
(Aspn+ Oz[)_IL_S/zA;BPh(y‘s —y) and 1' we obtain in turn that

Hwi’%h — wy gl

@H@M”S (Aspn+al) LA P — )
1-B)a+s

F (wers)

__s—Ba —(s—28

AT (A o+ al) ATEIST LS A0 B 08— )| (429)

.
F <<1—5>a+s>
W 24— s
AT LR A Py =yl
1  —a & _
o T—Pats AzK1 Blats] L_s/QAhBPth —y)|-

F <(1—;)a+8

IN

s—pa

_s—fa
Agar (Asgn + o)

IN

IA

So the lemma is proved, if we prove

~ ( ~(s-2Ba)
—(s— 2Ba) G < )
S0 = _ (1-B)a+s
AT LA P — | < s (4.2.10)
ol f(B)
But this can be seen as follows; by taking v = %,T =1—pand z =
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L=%2A;°P,(y° — ) in Proposition m, (iii), we obtain

—(s—28a)

JAZG P L5248 Py (y — )|

— 2ﬁa —s -
(ﬁ) 1745 = )2
—(s —2fa)
(1-08)a+s

IN
)

) 1A Puy® — 1)l s

IN

< — 7/

The last but one step follows again from Proposition 5| (i), by taking v = f.
O

In order to obtain an estimate for ||w;, 5, — w;, 4|, we shall make use of the
formula in (3.1.13). Taking z =1—Ffor0 < < 1and B= A, and B= A in
(3.1.13) and subtracting the two, for any Z € X we get

[(A2)%° —(42) %)z _ sinm(1—5) /OoAlz"(A,%HJ)—I(A?—A,i)(AQHJ)—lZdA

s 0
(4.2.11)

The following assumption is used to estimate ||# — w, 4]|.

ASSUMPTION 4.2.2. There exists some £ >0 and 0 <t < (1—3)§ + s such

LEMMA 4.2.3. Let w}, 5, w;, 5 be as in and , respectively. Let A

satisfy and hold. Then,

w5 = wisll < @als, a. B, R)aT=wey,

where p4(s,a, 5, h) = e IB)aJrs)é (( 2,5)2%) ;||§c|| + Cy, with

A

2|

é(<1_sg)2a+s) sinm(152) ad 9(Z )G(;Qatﬁ (@ SB)Zat+s)
Cp =38 F(a=ya1:)7 (8 k& t Flg3 2t+s Ht + 2||AH s—)t )
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Proof. Note that

Wipn = (A +al) AT By
= (A}ll_ﬂ + aLS)_lA;ﬂPhA[f
= (47 +al) A e+ (AT +al*) A TRA(L - P,
why = (A7 +al®) Ay
= (4 Fy OéLs)_lAl—Bi.
and hence
wz,ﬂ,h - wi,,g = [(A;ll_ﬂ -+ OéLS)_lAfll_’B — (Al_ﬂ + O[LS)_IAI_’B]:%
AP 1 al?) AP PLA(L - Pz
So
% = wisll < NI+ 1A +aL) A RAUT ~ PO, (42.12)

where L = [(A; 7 + aL®) P4, 77 — (A 4 aL#) 1 AFl3.

Further, we have

(A7 + aL®) "A P P AL — B2

< LT3 (Aspp +al) 'L A P PLA(L — P
s—fa Ba
< WH(AS,M +al) AL AL AP A - Py
((1—B)a+s)
< #aﬁ
F(5rs)
Ba
x||ATG T AP PLA(T = By
1 —a — 2ﬁa _
< gm0 G (s ) A PAU - Pl g,
1 o 26a 1
S _ . a(l—ﬁ)a+sG ( ) — ||PhA(_[ - Ph)f%”
F((]_fz)a+3 (1=B)a+s) f(B)
1 ~ 26(1 1 ——a
< = . G ( ) — e || Z || T=Prats | (4.2.13)
F((l—é)a-i,-S) (1=Ba+s) f(B)
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and

[L*S/Q(As,g,h +al) YA — L (Agp +ad) LA 5| L2

—5/2( A

HAspn(Asp +al) — (Aspp + al)Aggl(As s +al)FL23
spn o) oA, pn — Aupl(Asp+al) L2 0

(Aspn+al)”
(A )
2(A sntal)” 1&[ s/2A1 Br-s/2 _ L75/2A175L75/2](A5”3+C¥[)71L%i
2(A )
2(A )

s/2

S2(Agpn+al) 'L2(ATP — AV L3 (A +al) T LEE

PAgpn+al) LA - (A1) )al T (A + al) T LEd

so by (4.2.11)), we have

L

. 1-8
= IS - ad)
7_‘_ 8757

x / NT LT (AR A1) THA? — A7) (A? 4 A aZd)
0

where Z = L’s/2(As,5 + al)7'L*/?%. Therefore,

1Ll

<

IA

IN

IN

. 1-8
1 SIHW(T) ||A2(1 Byats] (Asﬁh + OzI)_l

F(

a=Hats)
< / NFL2(A2 £ ML) (A% — A2)(A2 + AD) " aZld
0

1 sin r(152) 2s—28a_ B
Py oA A aD)!
T Bats

_ —s+2Ba
x/ N AT DT L2 A2 A1) (A — A)(A2 4 AT) A Z]JN
0

1 sin W(—;B) 25—28a
v 2l(1-B)a+s]

F(m> T

o0 —s+28a
x / AT P L2 (A2 £ AT A — A2)(A? 4+ AT) T Z)dA
0

ISy

G(%) sin (L

F(

)a%

l\D|

THars) T

X / AT L2 A2 + AT L (A2 — A2)(A2 4+ AD)'Z s ga dX
0
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~( —s+2Ba . 1-8
- 7G( 13 5)a+3_) SH”T(T)Q%
F((lfg)aﬂ)f(ﬁ) Q

TN (A2)F (A2 £ A [Aw(A — Ap) + (A — A (A% + T2 ]jdA

SIS

X

S~

a Isszfﬁ sin(5%)
T Flgaam)f0)
where Ly = aT e [ N5 [[(A2)5 (A2 + AD) [ An(A — A,)](A2 + AT)~1Z]|dA
and Ly = aToams [ \'5|(A2)5 (A2 + AI)"Y[(A — A))AJ(A2 + AI)~'Z|/d).

(L1 + Lo] (4.2.14)

B
2

L (A2 + M) ALNI(A — AW)[I[[(A2 + M) Aa ||| A= Z]|dA

IN

s—fBa 1 1-8 2
awHin [ 35 (42)
0
+ 04(1_l3§3+/ A7) (A2)
1
s—fBa 1 L—l _t
o (1=B)a+s A2a 2€hl|A aZHd/\

0
s—Ba AR 2en||Z
[ Lizalzl,,
1

B
2

(AR +AD)HHIAR NN (A = A III(A® + A1)~ Z]|dA

IA

+ q0-Bats

A3
s—ga__ | 2a ¢
< qU-Pats {725h\|\|A « Z|| + 4)| An||2en]1 Z]| | - (4.2.15)
Further, observe that
JAZZ| = AT L™(Asp + )L
< G (Ao + ) L2
9(3) 1 TR T s)20
< WH(AS,WFOZI) Al |
(1—Ba+s

9()G (= 5rs)

< — a |z, (4.2.16)
Fizer)
and
1ZIl = |IL7*(Ass + o) L4
G( s—2t )
< Famaye el (4:217)
(1-B)a+s
Therefore, from (4.2.15)), (4.2.16]) and (4.2.17) it follows that
ag(%)G(%) G(f_—ifs) . __—a
Ly <4 |5+ 20 Al g ]| en a7 (4.2.18)
(( B)a-l—s) ((l—ﬁ)a-‘,-s)
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Proceeding in a similar manner for L, we get

a 936 (T Furs) C(Fmrs) a
Ly<4 |7 F D ) |2 ||t+2||A||F(S—)2t)||$|| en a@Aes. (4.2.19)
(1-B)a+s (1-B)ats

The result, follows from (4.2.12), (4.2.13)), (4.2.14) (4.2.18), (4.2.19) and the
fact that || An|| < ||A].

O

LEMMA 4.2.4. Let w;, 5 be as in , A satisfies and suppose that
Assumption holds. Then for 0 < < 2332“, s < a, we have

e
||$ — UJZWBH < @bz(S, a, B3, t)a(l—ﬁ)a+s,
where

Ya(s,a, 8,t) == wE.

F(=pyars)
Proof. By (4.2.4) and Assumption 4.2.2) we have in turn that
F-why, = &— (AP 4al?) Ay
= a(A" P +al®) L
= al (A5 + al) L%,

that is
12— w), 4l = al|(As g + al) LRy o

So, by Proposition m (iii) ( by taking v = m) and 1} we have

1 s
o - ws gl < JaATTF (A, + ) L%
F (wtom)
(1-B)a+s
1 __s=2t
S HaA(l B)a+s (A ,3+Oéf) 1||||A2[(1 ﬁ)a+s LS/2ZE||
F (s
(=B)a+s
G( s—2t )
S (1-B)a+s a(l—,ﬂt)a+s i‘”t
F ((17,83)a+s)
)
< SNTIF) b
F ((1— S)a—i—s)
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(]
Combining the Lemma [£.2.1] Lemma and Lemma [4.2.4] we obtain the

following theorem.

THEOREM 4.2.5. Let wi”%yh be as in (4.2.6), A satisfies (4.1.4) and suppose
that Assumptz'on and hold. Then for 0 < 8 < 22 s < a we have

~

| = will < als,a, B, R)aTH (5 + e4) + s(s, a, B, t)a T,

where ¢5(s,a,5,h) = max{p4(s,a, 5, h),p3(s,a,B,h)}. In particular, if « =

(1-B)ats
a(s,a,B,h,t) = co(0 + €) S for some ¢y > 0, then

~ _t
12 — w2, | < mi(s,a,B.8)(0 + e,) e,

& ot
where 771(87 a, ﬁ? h7 t) = ma’x{<105<57 a, 67 h)c(()l—ﬁ)a+s ) ¢2(37 a, Ba t)C(()l_ﬁ)(H—S }

4.2.1 ORDER OPTIMALITY

As in Micchelli and Rivlin| (1977)), we define the best possible worst error for
identifying the solution 2 of (4.1.1)) from y° € X satisfying (2.1.2)) and & satisfying
Assumption [£.2.2] as

inf . . "
O(M; p,0) = R sup{[|# — RY’|| : @ € My, y° € X, ||Az — ¢°| < 6}.
Here, the minimum is taken over all regularization methods R : X — X. Let

e(M; p,0) :==sup{||z|| : z € My, ||Az| < d}.

Then, since X is Hilbert space and A is positive self-adjoint, we have (see Melkman
and Micchelli (1979) ) e(M; g, 0) = O(M g, 9).

A regularization method R, together with a parameter choice strategy o =
a(0) is said to be of optimal order if

IRay” = &l = O(e(My, 9)).

94



Using the Interpolation Inequality (see |Krein and Petunin (1966)))
lzlls < llzl2ll2li ™0, = € &

where r < s <t and § = =2 with r = —a and s = 0, we obtain

_t _a
=] < =5 =)

t
x|\
< (B o

5\ 7 =
S d_ ||x||t , T € Mt,E:
1

and the above estimate is sharp (c.f. |Vainikko (1987))).
In view of the above observation, a regularization method is called optimal
order yielding regularization method with respect to M, g and (4.1.2)), if it yields

an approximation, say R.y° with ||y — 2°|| < § and satisfies
| Ry = 2] = O(677).

Theorem [4.2.5, shows that we obtained the optimal order for the choice of o :=

(1—B)a+s
a(s,a,B,t) =cyd t+e  for some ¢y > 0.

4.3 STANDARD LAVRENTIEV METHOD VS
FRACTIONAL LAVRENTIEV REGULAR-
IZATION METHOD IN HILBERT SCALES

In this Section, we compare the filter factors (Hochstenbach et al. (2015)) of
Lavrentiev regularization method and fractional Lavrentiev regularization method
in the Hilbert scales. Recall (George and Nair (1997] 2003); George et al.| (2013);
Lu et al.| (2010)), the Lavrentiev regularized solution for in Hilbert scales
is given by

wi, = L™ (LPAL™? + o) L™y, (4.3.1)
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So, using Proposition [4.1.2] (iii) with 7 = 1, we have

1 .
H’LUZH S F(i)||<L_S/2AL_S/2)2(S+G) (L—S/QAL—S/2 +OCI)—1L_S/2yH
s+a
< o )||(L—5/2AL—S/2)@(L—s/2AL—s/2+OJ)_1
s+a
X<L—s/2AL—S/2)2(%fG)L—s/2yH
and hence
s 2
1 ||L73/2AL75/2H )\m
P < 4.3.2
il < re / o a2)

Xd(E\(L™PALT )7 Loy, (L RALR) a0 Loy,

where {E)\ : 0 < X\ < ||L™*/2AL=/?||} is the spectral family of L~%/2AL~%/2,

Similarly, we have

s 1
husoll € ———v
F ((l—ﬁ)a-i-s)
2s—2Ba —(s—2Ba)
x| AZE N (A g + o) TATSTITI LT AT Y| (4.3.3)
and hence
s—pBa 2
1 1Assll ( \T=Bjats
[ws sl < —2/ G (4.3.4)
R Ce=s
(1-B)a+s
_—(s—2Ba) —(s—28

d<F A2(1 B)a+s] L—s/2A 6 A2(1 /3)a+s]L s/gA >
where {F) : 0 < X < ||A; ]|} is the spectral family of A g. Further, note that
d<E)\<L—s/2AL—S/2)2(;7+5a)L—s/2y7 (L—s/QAL—s/Z)Q(%a)L—S/zy>
AL AL 2y Lol
< (LR ALy Ly
Ml

Similarly, we obtain

AN

< G

—(s—2Ba) —(s—2Ba)

d(F A2(1 B)a+s]L 5/2A ﬁ AQ[(l B)a+s]L 3/2A >

—(s—28a) |\
R\ () M
f(B)

IA
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Therefore, the quality of the approximate solution w;, and wy, 5 are depending

on the integrands in (4.3.2) and (4.3.4), respectively. Let @(t) := “:T d
s—Ba
Po(t) == “1;?):“ . We call the functions @1 and @, the filter factors (Hochstenbach

et al.| (2015)); Klann and Ramlaul (2008))) associated with the standard Lavrentiev
regularization method in Hilbert scales and fractional Lavrentiev regularization
method in Hilbert scales, respectively. Fig. 4.1, displays the filter function ¢ —
@1(t) for standard Lavrentiev regularization method in Hilbert scales. The Fig.
4.2, displays the filter function ¢ — @ (t) for fractional Lavrentiev regularization
method in Hilbert scales for 5 = 0.5,0.35,0.25,0.2,0.1.

Note that, when the desired solution z is smooth, one would like the filter

functions to satisfy
lim ¢1(¢) =0 and lim @o(t) = 0.
t—0 t—0

We observed that (see Figs. 4.1 and 4.2) the filter function @s(t) is smoother
than the filter function ¢;(¢) near 0. So we expect the computed solution obtained
by fractional Lavrentiev regularization method in Hilbert scales approximate the
desired solution # better than the standard Lavrentiev regularization method in

Hilbert scales.

REMARK 4.3.1. (cf. |Bianchi et al (2015)[Proposition 10]) Note that, —sh—

o (=B)ats

7t . .
is increasing for 8 € [0, 2], whereas a7+ (see Theorem|4.2.5) is decreasing for

B € [0,2]. Therefore, one has to choose B € [0, 2], such that % = q=9+s
o — a-—+s
in order to obtain an optimal order error estimate for ||& — wi’%,hH. For a fized,

0>0,t>0,s>0,a>0and a € [5%,5#], the best possible choice for 3 is

5 a+t log
=142 — .
p T ( a ) log(d +¢€p)

(1—B)ats

In this case § € [0,2] and o = (6 +&4) <+ . But such a choice of B and «

is not possible in practice, because t is unknown. Therefore, in Section [{.4] we
study George and Nair type (see |George and Naw (1995)) discrepancy principle
for choosing «, for a fized 3.
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305+ 3) /(¢4 (i)

25 L alpha=0.1
alpha=0.001
alpha=0.001

Figure 4.1: Filter function ¢;(t) as a function of ¢.

¢ (s-000) a)y(( 1-6(i) a+ S)/(t+ a(i))

1.15 alpha=0.1 beta=0.5 4
alpha=0.1 beta=0.35
1.1 F alpha=0.1 beta=0.25 4
alpha=0.1 beta=0.2
1.05 alpha=0.1 beta=0.1
1
0.95
0.9
0.85
0.8
0.75
0.7
0.65

Figure 4.2: Filter function @s(t) for « = 0.1 and g = 0.5,0.35,0.25,0.2,0.1.
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4.4 ERROR BOUNDS UNDER DISCREPANCY
PRINCIPLE

In this section we study the analogous of the discrepancy principle considered in

George and Nair (1993). For a fixed s > 0,5 > 0 and p > —1, let
Fopnlo,2) = o™ (Agppn +al) P L2, 2 € X, a >0,
Let ¢ > ¢ 5 and y° € X be such that
0 < c(6+e) <||[L*%°. (4.4.1)
Next, we prove the existence of unique solution for Fj g5 (c, 3°) = (6 + €).

PROPOSITION 4.4.1. Let ¢ be as in . Then, there exists a unique
a:=a(d, B, h,s,y°) > 0 such that

Fopn(a,y’) = e(6 + en). (4.4.2)
Furthermore,
(c—cosg)(0+en) < Fopnlayy) < (e )0 +en). (4.4.3)
Proof. Note that

F25 (0 y?) = a0 0((Ag gy +al) OHIL/2%0,
(Aspn + ol )~ [ 8/2y9)

usal /o N\ 204D s s
= d(F\L™* L 4.4.4
[ (5 ams), )

where {F) : 0 < X\ < ||As s} is the spectral family of A, 5. Now since the map

a )2(P+1)

oo is strictly increasing for A\ > 0,

a — p(a, A) == (
ola,\) — 0asa — 0

and

ola,\) — 1 as a — 00
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by Dominated Convergence Theorem, there exists a unique o := a(6, 8, h, s,°) >

0 satisfying (4.4.2)).

The second part of the proposition follows by noting that

Fogn(ay) < Fognla,y—y°) + Fogn(a, )
IL=(y — ") + Fipn(e, y°)
(cosg+ )3 +er)

IN

IN

and

A%

Fopn(a,y’) — Fogn(a,y —y°)
c(0+en) — 1Ly — )|
> (c—c=20)(0+€n)

Fs,ﬂ,h(a7 y)

v

where we used the relation ||L™%/2z|| < czsollll, x € X.
(]
The proof of the following proposition is analogous to the proof of Proposition

3.5 in |George and Nair| (1993), so details are ignored.

PROPOSITION 4.4.2. (c.f|George and Nairl (1995)[Proposition 3.5]) Let y°

satisfy and 0 #y € X. Let (6 +¢€,) > 0 and o := (6,3, h,5,9°) > 0 be
chosen according to . Then, there exists a, 0o + €n0 > 0 such that

S: = {a(é,ﬁ,h,s,y‘s) : O < (5+€h) S 50+€h,0 and
0 < (b0 + €no) < IL7°9°|l, ly — o°|l < 6}
15 a bounded set.

Next, we state and prove the main results of this section.

THEOREM 4.4.3. Let A satisfy and hold. Suppose &t € X, 0 <
t < min{s + p(s + (1 — 5)&),%}, Y’ satisfies , ;and o =
a(6, B, h, s,y°) satisfies . Then for 0 < g < 2%%, s < a, we have,

||§3 - waB,hH < CI)(s, a, 5’ hv t) (5 + eh) (p+1)[(lt_ﬁ)a+s] )
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where

s+2t

— 2(p+1)[(1-B)a+s]
@(S,(I,ﬁ,h,t) - ma‘X{905(S a B h) ﬁhatcsgp ’

2(p+1)( +1)[(1 B)a+s]

o(s, a, 3, )Ecsgp ? U
~; —2(a+t)
- ||(A5M3’h+a])(p+l)|| o G((lfﬁ)a+s) s—2t
Cs.p = lyl=s/2 (c+ o)y and Cophar = f(s—22§7a+t>)g( Dersppi . In

particular, if p = (ig’;;js, then we have

|2 —w aﬁh” < ®(s,a,83,h t)(5+€h)t+“-
Proof. Note that from (4.4.3)), we have

ap+1||y||—s/2
(A on+ an)orn) = Froalay) S (64 eqep)0 4 en)

so that

a < eS8 + )/ (4.4.5)
Again by ([£.4.3), and ([@.2.), we have

(c—coeo)@+en) < aM|(Agpn +al) PHILT2y|

a+t —(a+t)
S O{P+1H( sBh + a[)*(pﬁ’l)AS(’lﬁji)aJrs |As(lﬂ i)aJrsL S/ZyH
_—(at+t)
< QTP AT LTy, (4.4.6)

Now using Proposition [£.1.5] (iii) and Proposition [1.1.2] (i), we have

—(a+t) —(a+t)

||A;1ﬁi)a+sL s/2y|| _ HA(l Ba+s [ — S/2A$||

s,8,h
) 1L/ Aoy

—2(a+1)
—Ba+s

AN

Q)
N
—

~ ¢ —2(a+t)
< M”Asftx“
- s—2(a+t)
f( 2a )
G( __2(“?)) s— 2t
< — vy 0
=)
G( —2(a+t) ) _ o
(1-B)a+s S
S f(S 2(a+t)) ( 2 )Ct—s/Q,tHx“t (447)
2a



here ¢;_5/9, is the constant in the Definition [1.4.1, Combining (4.4.6) and (4.4.7)),

we obtain

G((f_(g;:_;,)_s) S — 2t

a+t
(¢ =c500)0 < — = 9l JCrs/p B U=,
3 f(%) 2a
so that
ST AT < Ol g p o THas (4.4.8)

The result now follows from Theorem [4.2.5] (4.4.5) and (4.4.8]).

4.5 NUMERICAL EXAMPLES

In this section we consider the Hilbert scales generated by the linear operator L

defined by

Lx = Zj2<x,uj>uj,
j=1

where u;(t) = v/2sin(jzt), j € N, with domain of L as

D(L) := {x € L*[0,1] : Zj4\<a;,uj>|2 < oo} :

j=1

In this case the Hilbert scale {X'}s generated by L is given by

X, = {zeL’0,1]:) j*[z,u)|* < oo}

=1

= {z e H*(0,1): 2®(0) =2 (1) =0,1=0,1,... (% - }11},(4.5.9)

where [p] denote the greatest integer less than or equal to p, s € R, and H* is the
usual Sobolev space. Also, one can see that H° = L?[0, 1], and for s € N, H, C H*.

We consider four examples for the numerical discussion to validate our the-
oretical results. We use a sequence of finite dimensional subspaces of (V,,) of
X and P, (h = ) denote the ortogonal projection on X with R(P,) = V.
We choose V,, as the linear span of {vy,vs,...,v,} with v;;i = 1,2,...,n as
the L?—orthogonalized characteristic functions of the interval [+, £]. Then since

wi’f&h € V,, it is of the form """ | \;v; for some scalars Ay, A, . .., A,. It can be seen
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that wzfﬁ’h = >""  Aw; is the solution of (4.2.3) if and only if A = (A, ..., A,)7T is

the unique solution of
(M,, + aB,)A = W,

where
M, = (Apv;,v;),1,7 =1,2,...,n,
By, = (L%, Av)) i, j =1,2,....n
and
W, = ((4°, 1), ..., @, v,))T.
Here and below (ay,as, ..., a,)’ denote the transpose of (ay,as,...,a,).

We use the Newton’s method to solve the nonlinear equations (4.4.2)) for o with

“ 5
e —ws 5|

different values 3, ¢ and p. Relative error E, g := ), and « are presented

Izl

in the tables for different values of 3, p = (ifg?;js with ¢t = —fa+s/3,n = 300(size

of the mesh) and noise level §. We have introduced the random noise level § =

0.1, 0.01 and 0.001 and €, = €1 = - in the exact data.

EXAMPLE 4.5.1. (Shawj (1972)) Let

[Tx](s) := /7r k(s,t)x(t)dt = g(s), —m <s<m, (4.5.10)

—T

where k(s,t) = (cos(s) + cos(t))2(2)2 o = 7(sin(s) + sin(t)). We take A =

T*T |y and y = T*g for our computation. The solution & is given by T(t) =
arexp(—ci(t —t1)?) + asexp(—ca(t — t2)?). We have taken s =a =1, dy =dy = 5
in our computation. The relative error and o values for different values of B and §
are given in Table[{. 1 and Table[{.3. The figures for ezact data and noise data for
§ = 0.01 is given in Fig. [{.3, solutions with 6 = 0.01 and for 8 = 0,0.05,0.1,0.15

and = 0.2 are given in Figs. [{.4 - [{-8
Table 4.1: Relative errors for fixved a.

B 0 0.05 0.1 0.15 0.2
Eup | 6.801195¢ — 01 | 6.766239¢ — 01 | 6.726160e — 01 | 6.679884e — 01 | 6.626066¢e — 01
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(a)

exact data
= = = noise data

Figure 4.3: Fxact data and noise data when § = 0.01 for Shawn example

(b)

C. S. with =0, §=0.01
exact sol.

25

Figure 4.4: Solutions with § = 0.01 and 5 =0 for Shawn example.

104



(c)

C. S.with 3=0.05, §=0.01
exact sol.

2.5

Figure 4.5: Solutions with 6 = 0.01 and 8 = 0.05 for Shawn example.

(d)

C. S. with =0.1, §=0.01
exact sol.

25

0 0.2 0.4 0.6 0.8 1

Figure 4.6: Solutions with § = 0.01 and 5 = 0.1 for Shawn example.
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(e)

C. S.with 3=0.15, §=0.01
exact sol.

2.5

0 0.2 0.4 0.6 0.8 1

Figure 4.7: Solutions with 6 = 0.01 and 8 = 0.15 for Shawn example.

()

C. S. with =0.2, §=0.01
exact sol.

25

Figure 4.8: Solutions with § = 0.01 and 8 = 0.2 for Shawn example.
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Table 4.2:

Relative errors under discrepancy principle for Shawn example.

J

154 0 0.05 0.1 0.15 0.2
p | 5.000000e-01 | 5.128205e-01 | 5.263158¢e-01 | 5.405405e-01 | 5.555556¢-01
0.1 | a(k) | 5.931937e-04 | 6.229828¢-04 | 6.892837e-04 | 7.511112e-04 | 8.620988¢-04
Eup | 2.016406e-01 | 1.936678e-01 | 2.040882e-01 | 1.878488e-01 | 4.261247e-01
0.01 | a(k) | 5.929687e-04 | 6.232274e-04 | 6.893498e-04 | 7.513056e-04 | 8.627321e-0/
Eup | 9.689599e-02 | 9.855126e-02 | 8.139111e-02 | 9.526484e-02 | 9.511054e-02
0.001 | a(k) | 5.929932e-04 | 6.232488e-04 | 6.893604e-04 | 7.513294e-04 | 8.627484e-04
Euop | 9.617521e-02 | 8.861288e-02 | 8.175922¢-02 | 7.492941e-02 | 7.269160e-02

EXAMPLE 4.5.2. (Phillips (1963)) Let

I.

k(s,t)z(t)dt

where k(s,t) = ¢(s —t), with

¢(r) =

1+ cos(z *7/3),
0,

g(s)a —6 S (4 S 67

lz| <3

o[ >3

(4.5.11)

We take A := T*T |y and y = T*g, where g(s) = (6 — [s]) * (1 + .5 *
cos(s * /3)) + 9/(2 * 7) * sin(|s| * 7/3) for our computation. The solution & is
given by &(t) = ¢(t). We have taken s=a =3, dy =dy =

5 36 n our computation.

The relative error and o values for different values of 5 and § are given in Table
[4.3 and Table[f.4. The figures for exact data and noise data for § = 0.01 is given
in Fig. [£.9, solutions with 6 = 0.01 and for § = 0,0.05,0.1,0.15 and 5 = 0.2 are
gwen in Figs. [{.9 -[4.14 The figure[{.9 contains the exact data and noise data
and remaining figures contains the computed solution (C.S) and exact solution

(exact sol.).

Table 4.3: Relative errors for fixed c.
0.05 0.1 0.15
6.253094e — 01 | 6.174618¢ — 01 | 6.046162¢ — 01

B 0
6.303972e — 01

0.2
5.830876e — 01
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(b)

exact data
= = =noise data

0 0.2 0.4 0.6 0.8 1

Figure 4.9: Fxact data and noise data when 6 = 0.01 for Phillips example.

(a)

C. S. with =0, §=0.01
04 H exact sol.

Figure 4.10: Solutions with 6 = 0.01 and B = 0 for Phillips example.
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(a)

C. S. with 3=0.05, §=0.01
exact sol.

Figure 4.11: Solutions with 6 = 0.01 and = 0.05 for Phillips ezample.

(a)

C. S. with =0.1, §=0.01
exact sol.

Figure 4.12: Solutions with 6 = 0.01 and $ = 0.1 for Phillips example.
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(a)

C. S. with 3=0.15, §=0.01
exact sol.

0 0.2 0.4 0.6 0.8 1

Figure 4.13: Solutions with 6 = 0.01 and § = 0.15 for Phillips ezample.

(a)

C. S. with 3=0.2, §=0.01
exact sol.

0 0.2 0.4 0.6 0.8 1

Figure 4.14: Solutions with 6 = 0.01 and $ = 0.2 for Phillips example.
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Table 4.4: Relative errors under discrepancy principle for Phillips example.

4] 154 0 0.05 0.1 0.15 0.2
p | 5.000000e-01 | 5.263158e-01 | 5.405405e-01 | 5.565556¢e-01 | 5.555556¢-01
0.1 | a(k) | 1.805922e-02 | 2.575646e-02 | 3.576999¢-02 | 4.785191e-02 | 6.326033¢-02
Eop | 3.015146e-01 | 2.815353e-01 | 8.511560e-01 | 3.068689¢e-01 | 2.925603¢e-01
0.01 | a(k) | 1.807031e-02 | 2.576193e-02 | 4.825071e-02 | 4.823351e-02 | 6.338610e-02
Eup | 6.661885e-02 | 5.778094e-02 | 2.705130e-02 | 4.506687¢-02 | 3.913097e-02
0.001 | a(k) | 1.806768e-02 | 2.578385¢-02 | 3.576453e-02 | 4.824909e-02 | 6.336271e-02
Eup | 2.007506e-02 | 1.797936e-02 | 2.382614e-02 | 2.038829¢e-02 | 2.208742e-02

EXAMPLE 4.5.3. (Non-smooth Signal:) In this ezample we generate a square
wave with sharp edges to analyse the performance of the Lavrentiev and fractional
Lavrentiev method. The Lavrentiev regularization results in smoothing of sharp

discontinuities whereas the fractional Lavrentiev retains the sharpness in the sig-

We have taken s = a = %

computation. The results are shown in Figures - . The results of the

nal thus reducing the over-smoothing effect. m our

proposed fractional Lavrentiev regularization model are shown in Figures -

for different 8 values.

In the next example, we consider an image restoration problem.

EXAMPLE 4.5.4. (Image Restoration Example) Here we show some examples to
demonstrate the restoration ability of the method when applied to different images.
IR Tool: a Matlab package for iterative inverse problems in|Gazzola et al. (2019)
and Algebraic IR Tools in|Hansen and Jo rgensen (2018) are being used here for the
numerical implementation of the model for 2D images (both gray-scale and color).
Two test images (a satellite image and a synthetic image) given along with the
IR/AIR tools (package) are tested and the results are demonstrated below. The test
image is synthetically corrupted by Gaussian blur with standard deviation 2 and
Gaussian white noise with zero mean and noise variance 0.05. The test results are
shown for standard Lavrentiev regularization and the proposed model (fractional
Lavrentiev model). The standard Lavrentiev model tends to perform denoising
by penalizing the image details resulting in an over-smoothed data as observed

from the results. Nevertheless, the proposed model restores the images without
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150 T T T T T
Original M
Noisy
PN
100 + M -
50 b i i
Mg
0 J 1 1 1 1 1
0 50 100 150 200 250 300

Figure 4.15: Original and noisy input signal: Contaminated with Gaussian noise
with standard deviation o = 0.15.

150 T T T T T
Original
Tikhonov
100 -
50 .
0 1 1 1 1 1
0 50 100 150 200 250 300

Figure 4.16: Lavrentiev reqularization
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150 T T T T T

Original |~
Fractional Tikhonov
S
100 B
50 - i
VS
0 1 1 1 1 1
0 50 100 150 200 250 300
Figure 4.17: Fractional Lavrentiev: = 0.1
150 T T T T T
Original
Fractional Tikhonov
100 B
50 B
0 1 1 1 1 1
0 50 100 150 200 250 300

Figure 4.18: Fractional Lavrentiev: [ = 0.2
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True solution Noisy data

0.9
08
07
06
05
0.4
0.3
0.2
0.1

(a)

Fractional Lavrentiev.,

(d) (f)

Figure 4.19: (a) Original image (b) blurred and noisy image, (c) restored using
Lavrentiev regularization and (d, e, f) restored using the proposed model for f =
0.1,0.15,0.2, respectively

compromising much on the details. The original, noisy, and restored images are
shown in Figs. and[4.20Q for the two different input test images. The proposed
restoration process is observed to denoise the data and preserve the details as
observed from the results shown for different 5 values. A statistical quantification
has been performed using the well-known measure: Signal to Noise Ratio (SNR)
M. The SNR of the noisy and restored versions of the test images for different (3
values are given in Table [4.5. The SNR measure being inversely proportional to
the root mean square error, it increases with decrease in 8 value unlike the relative

error.

1oNT— T ilo 270 2(0.)° R ] ,
SNR=20log,, SN dB, where x and & are the original and restored im-

i=0 Z;w:() [2(1,5)% = (i,4)]?
ages, respectively.
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Figure 4.20: (a) Original image (b) blurred and noisy image, (c) restored using
Lavrentiev regularization and (d, e, f) restored using the proposed model for f =
0.1,0.15,0.2, respectively

Table 4.5: SNR evaluated (in dB) for different 8 values for two different images

Image B | Noisy € Blurred Image | Restored by the proposed

0 4.12

0.05 5.82

Satellite | 0.1 1.92 6.41
0.15 7.22

0.2 8.19

0 5.21

0.05 6.23

Synthetic | 0.1 2.32 7.22
0.15 8.12

0.2 8.99
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Chapter 5

CONCLUSIONS AND SCOPE FOR
FUTURE WORK

5.1 CONCLUDING REMARKS

We have mainly concentrated our work on solving ill-posed problems involving
bounded, linear operators in a Hilbert scales setting. We have tried using various

discrepancy principles for choosing the regularization parameter.

In Chapter 2, we study fractional Tikhonov regularization method for approx-
imately solving a linear ill-posed operator equation 7'(x) = y in the setting of
Hilbert scales. We obtained optimal order error estimate under an a-priori and
a new discrepancy principle. Using the adaptive parameter choice strategy, we

obtained the optimal order error estimate for fa <t < 2s+ #a.

As explained in the introduction of the Chapter, FTRM reduces the over-
smoothing in the STRM in Hilbert space and Hilbert scales. The regularization
saturation for Tikhonov regularization in Hilbert scales is ¢t = 2s + a, (Engl et al.
(1996)); |George and Nair| (1997); Goldenshluger and Pereverzev| (2000)); Egger and
Hofmann| (2018)); Jin| (2000)); |Lu et al.| (2010); Mathé and Pereverzev, (2003)); Nat-
terer| (1984)); Neubauer| (19881992, [2000)) whereas that of FTRM is ¢ < 23—1—%@.
The magnitude of regularization (smoothing) with reference to the values of g is
observable from the examples illustrated in the Chapter.

We studied the finite dimensional realization of FTRM in Chapter 3. We also
study the finite dimensional version of the parameter choice strategy introduced in
Chapter 2, and obtained the optimal order error estimate for the finite dimensional

FTRM in Hilbert scales . We have given a numerical example for validation of
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our results.

Finite dimensional fractional Lavrentiev regularization method for approxi-
mately solving a linear ill-posed operator equation in the setting of Hilbert scales
is investigated in Chapter 4. We obtained optimal order error estimate under an
a-priori and an a-posteriori parameter choice strategy. The method is applied to
various well known examples in the literature.

We observe that fractional Lavrentiev regularization method reduces the over-
smoothing in the standard Lavrentiev regularization method in Hilbert space and
Hilbert scales. The regularization saturation for Fractional Lavrentiev regulariza-
tion method is ¢ = s+(1—f3)§, whereas that of standard Lavrentiev regularization
method is t = s+a > s+ (1 —f)5. So fractional Lavrentiev regularization method
yields earlier saturation. The magnitude of regularization (smoothing) with refer-
ence to the values of 3 is observable from the example given for image restoration
problem. As the noise variance increases, the value of 8 also needs to be decreased
in order to obtain a proper restoration. Nevertheless the blurring artifacts start
appearing in the resultant data as 8 increases. The value of 8 should provide a
trade-off between smoothing and deblurring as these two are two complementary
requirements.

The choice of optimal value of 3 is still an open problem.

5.2 FUTURE SCOPE OF THE RESEARCH

In the present study, we considered only linear ill-posed problems. To the best
of our knowledge, there is no study on the fractional regularization method for
non-linear ill-posed problems. So it is envisaged to study fractional regularization
method for ill-posed non-linear operator equations. Similarly most of the methods
for solving non-linear ill-posed equations are iterative and the Frechet derivative
of the operator is involved in the iterative methods. We are interested in studying
iterative methods involving fractional powers of the Frechet derivative. Also, we
intend to study higher order iterative methods to obtain fast converging iterative

methods, using assumptions only on the first derivative of the operator involved.
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