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ABSTRACT

A brilliant vision gives us a luscious life. The retina of human eye plays a signif-

icant role in vision. Damage to any part of retina leads to visual impairments or total

blindness. Diagnosis of retinal disorders is a daunting task for ophthalmologists as the

devices are not equipped with automatic retinal analysis. The advent of deep learn-

ing has transformed the necessity of smart medical applications to a reality in recent

years. However, the existing indigenous automatic retinal disorder detection system is

designed to grade a single retinal disorder such as Diabetic Retinopathy.

Motivated by this, the proposed research aims to identify retinal disorders from

multiple retina imaging modalities, namely fundus and Optical Coherence Tomogra-

phy images. As fundus and Optical Coherence Tomography images differ in terms of

image acquisition procedure, different artifacts affect the image quality. Adapting to

the significant difference in image quality in these two modalities, two novel prepro-

cessing approaches are proposed in Chapter 3 of the thesis. Histogram is used along

with statistical analysis to assess the quality of the acquired retinal images. The pro-

posed retinex based non-local total generalized variation restoration method enhances

the fundus images increasing the visibility of the macula region. Realizing the fact that

the speckle, inherent in Optical Coherence Tomography images are multiplicative in

nature, a statistical analysis is incorporated to identify appropriate noise distribution.

The non-local deep image prior, discussed in the thesis, despeckles Optical Coherence

Tomography images eliminating the requirement of a large number of ground truth im-

ages for denoising. The proposed mathematical model using Bayesian MAP estimator

and variational models are assessed through implementation. The qualitative and quan-

titative analysis presented in Chapter 3 of the thesis confirms that the proposed method

outperforms other existing methods. The proposed model restores the image quality

while retaining the edge and texture details in the image. Particularly, metrics such

as Equivalent number of looks and entropy plots demonstrate that the proposed image

restoration model works better than the other existing techniques.

Variants of Generative Adversarial Networks are proposed to classify the input reti-

nal images into normal or abnormal categories. The abnormal categories include Age-

i



related Macular degeneration, Glaucoma, and Diabetic Macular Edema. Multiple pub-

licly available repositories are preprocessed as described in Chapter 3 of the thesis.

The preprocessed images are utilized to train the model and the results are presented

in Chapter 4 of the thesis. Simultaneous segmentation and classification tasks are per-

formed where the segmentation includes blood vessel extraction, optic disc region and

fovea region extraction from fundus images. The performance of Generative Adversar-

ial networks for various tasks such as segmentation and classification of retinal images

is analysed in Chapter 4 of the thesis. The experimental analysis shows classification

accuracy of upto 90% can be achieved proving the stability of a GAN amongst hetero-

geneous datasets. Other classification metrics such as F1-score and sensitivity are used

to compare the proposed GAN model with other deep learning models.

In short, the thesis provides deeper insight into predominant retinal disorders, imag-

ing modalities, existing state-of-the-art works on the retinal image analysis through

Chapters 1 and 2. The significant contributions of the thesis are discussed in Chapters 3

and 4. Finally the conclusion and scope of future work is presented in Chapter 5. This

research work acts as a cornerstone in developing an end-to-end standalone application.

Keywords: Age-related macular degeneration, Fundus, Generative Adversarial

Networks, Glaucoma, Optical Coherence Tomography, Non-local Total Variation, Retinex

theory.

AMS Classification: 68U10, 97R40, 92C50.
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α,ζ : Shape, scale parameters. Γ(.) Gamma function.
Φ(.): Level set function. Gσ : Gaussian kernel

λ ,β ,γ1,γ2,γ3,γ4,γ5,γ6,γ7,γ8 denote regularization parameters.
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Chapter 1

INTRODUCTION

Human eyes are the windows to experience the world around us visually. The com-

plicated structure of the eye has inspired us to invent devices such as the digital camera.

The anatomy of the human eye is shown in Figure 1.1. It has a cornea, pupil, iris, lens,

retina, optic nerve, and sclera, which coordinate with the human brain to produce pic-

tures of the objects. Specifically, the human eye could be divided into three parts - the

anterior portion, which consists of cornea and sclera, the posterior side comprising of

the ciliary body, choroid, and iris and the third part, vitreous chamber, filled with vitre-

ous humor, comprises retina, macula, and optic disc (Khurana (2015)). The anterior and

posterior chambers are filled with aqueous humor. The ciliary body is the muscle that

assists the accommodation process of the lens. The ciliary body, iris, and the choroid

region are together referred to as uvea. The converging lens present in the human eye is

made of proteins.

When an object is illuminated, the lens directs the reflected rays from that object

towards the inner walls of the retina. The retina is a vital part of the human eyes,

responsible for the reception of light from the external source and conversion of this

light into neural impulses (recognized by our brain). The rods and cones (photore-

ceptors) are responsible for color and brightness information. Further, a sharp central

vision is obtained in a macula region within the retina, and an inverted image of the

illuminated object is formed. The image information is sent to the brain through optic

nerves where further processing is carried out. All these materialize in a span of 13

milliseconds (Trafton (2014)). Any image formed beyond the macula region appears as
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Image source: https://www.umkelloggeye.org/conditions-treatments/anatomy-eye

Figure 1.1: Anatomy of human eye.

cloudy/blurred vision.
1.1 RETINA

The retina is composed of several tissues. Derived from Latin, the word "rete" refers

to a net. It covers nearly 65% of the back of the eye (Ehrlich et al. (2011)). The retina

is a layer of tissue comprising the macula, blood vessels, and optic disc. The macula

consists of a foveal pit. The macula region has approximately 5.5mm diameter (Helga

et al. (2007)). Light entering the retinal layers triggers the photochemical reaction at

the photoreceptor layer. The rods function in low light. It detects the motion, and

it is absent in the fovea. The word "fovea" refers to a pit in the Latin language. In

foveal region, the concentration of cone cells is high. Cones are responsible for color

information, and hence the visual acuity is high in the central fovea. The region termed

as a foveal avascular zone (with 0.5mm diameter), is devoid of blood vessels to ensure

high vision. The photochemical reaction activates the bipolar cells and ganglion cells

which carry the information in the form of neural impulses exiting from the optic disc
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region. The occipital lobe of the brain now takes over to process the information and

recognize the image.

As shown in Figure 1.2 (a and b), the layer of tissues present in the retina perform

various tasks. Each layer has a different capacity for reflecting and scattering the optic

ray. The retinal layers are the retinal nerve fiber, ganglion cell, inner and outer plexi-

form, inner and outer nuclear, inner and external limiting membranes, retinal pigment

epithelium, and vascular region defined by the choroid layer. The thickness of a normal

human retinal nerve fiber layer ranges between 45 µ m and 105 µ m (Refer: Jonathan

and Micieli (2019)). The optic disc region is filled with axons of ganglion cells, and it is

from here that the neural impulses travel towards the brain. As the disc region is devoid

of photoreceptors, it is also referred to as the blind spot. The central part of the optic

disc is called optic cup region. The entire retinal layer is nourished by the blood ves-

sels. They provide oxygen necessary for the functioning of the cells. The choroid layer

is sandwiched between the retina and sclera. The choroid layer provides oxygen and

essential nutrients to the neighboring retinal tissue layers. The coordination between

various retinal tissues and the brain leads to a combined image formation, though the

left and right eyes work independently, even in the low-illuminated condition. Thus,

retinal layers play a significant role in vision.

1.2 RETINAL DISORDERS

Loss of vision is a world of darkness. Blindness can be by birth, due to injuries, sys-

temic diseases, or it could also be a natural phenomenon (age, genetic, etc). The reti-

nal disorder is the condition where the blood vessels or the retinal tissue layers are

damaged, leading to poor visibility or disrupted image formation. A plethora of dis-

orders manifest themselves in the retina. Retinal disorders, if untreated, can lead to

severe vision impairment or even total blindness. Ophthalmologists take approximately

5 to 10 minutes or even longer to examine the retina on a case-to-case basis. Certain

commonly identified abnormalities in the retina are described in Table 1.1. Glaucoma,

Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD), Diabetic Mac-

ular Edema (DME), Choroidal Neovascularization (CNV), and Retinitis pigmentosa
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(a) Histology of retina.

(b) Retina visualized through tomography.
Image source: https://www.everydaysight.com/fovea/ and Schaal et al. (2016)

Figure 1.2: Retinal region around foveal pit.

are some of the widespread retinal disorders.

Globally, the World Health Organization (WHO) fact sheet of 2018 reports that

nearly 2.2 billion people or more suffered from visual impairments, of which 75%

are preventable disorders (Refer: Bourne et al. (2017)). Overall, nearly 20.5% of the

global blind population is constituted by the Indian population. In the year 2017, nearly

1,47048 were treated for Glaucoma and DR (Refer: Website (2017)). The economic

impact of this scenario is summarized by Jitendra and Pradeep (2019). The statistics
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Table 1.1: Some abnormalities in the retina.

Abnormality Description
Hemorrhage Abnormal bleeding of blood vessels.
Edema Swollen regions and thickening of macula due to accumu-

lation of fluid.
Drusen Excessive deposition of lipids and proteins under the reti-

nal layers.
Macular Cyst Fluid-filled macular regions that obstructs blood vessels

and shrinks the vitreous region.
Exudates Protein depositions that results in fluid leakage.
Microaneurysms Tiny red dots around yellow rings found on the fundus

indicating the rupture of vascular network.

of visual impairment causes in people of age-group above 50 years is depicted in Fig-

ure 1.3. From Figure 1.3 (a), it is evident that the AMD is the primary cause of visual

impairment globally, contributing about 37% of the total blind population. Other reti-

nal disorders such as Glaucoma and DR are 15% and 17%, respectively. In India, the

number of cataract cases is significant, with about 66% of the blind population. How-

ever, cataracts can be treated by surgery, and it is related to the lens of the eye. When

the retinal disorders are considered together, Glaucoma and AMD are predominant, as

depicted in Figure 1.3 (b). Majority of the retinal disorders, such as AMD, DME, and

Glaucoma are progressive and irreversible. These disorders necessitate frequent visit to

the eye care centers in order to monitor the progression of the disorders. Early diagnosis

of these disorders can thus be highly beneficial. Considering the impact of these retinal

disorders on the elderly community, our research work is limited to AMD, DME, and

Glaucoma. A brief description of these retinal disorders is provided below (Raeba and

Sobha (2014)).

AMD:

Modality: Fundus Fluorescein Angiography (FFA), Optical Coherence Tomography

OCT, Color Fundus Photography (CFP), and Amsler grid examination.

Biomarkers: Drusen, exudates, neovascular structures.

Causes: Genetics, age, high cholesterol.

Description and grading according to ICD:
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(a) Global causes for visual impairments in
people aged above 50 years.(Information
from: https://lowvision.
preventblindness.org/2021/03/07/
latest-statistics-on-prevalence-of-blindness-and-low-vision-worldwide/).

(b) Causes of visual impairments in Indian
population for people aged above 50 years:
Source (NB&VI report - 2020).

Figure 1.3: Statistics of visual impairments.

1. The grading is between H35.30 and H35.35 (Refer International Statistical Clas-

sification of Diseases and Related Health Problems: https://www.icd10data.

com/ICD10CM/Codes), depending on the type of AMD as shown in Figure 1.4

2. The early stage of AMD is diagnosed as Dry AMD or Atrophic AMD. Early

AMD is caused by thinning of vessels near the macula or debris deposition of

deteriorating tissue (Drusen).

3. The later stage of AMD is identified as Wet AMD or Neovascular Atrophy. Late

AMD is caused by abnormal growth of vessels beneath the retina.

DME:

Modality: FFA, OCT

Biomarkers: Macular thickening or edema, exudates, fluid-filled cysts.

Causes: Diabetes Mellitus, damage from radiations.

Description and grading according to ICD:

1. The grading is E11.311 denoting type 2 diabetes with edema and retinopathy

(Refer: https://www.icd10data.com/ICD10CM/Codes).
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Image source: https://imagebank.asrs.org/

Figure 1.4: Age-related Macular Degeneration stages.

2. The condition of diabetic retinopathy graded from mild to the prolific stage is

either associated with edema in the macular region or without edema.

3. The DME is related to swollen macular region as depicted in Figure 1.5.

Image source: https://www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/
multimedia/diabetic-macular-edema/img-20124558

Figure 1.5: Diabetic Macular Edema.

Glaucoma:

Modality: Tonometry, CFP, OCT, Gonioscopy.

Biomarkers: Optic cup disc ratio, retinal nerve fiber layer thickness, interocular pres-

sure
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Causes: Variation in ocular pressure.

Description and grading according to ICD:

1. The ICD 10 grading for glaucoma is H40 (Refer International Statistical Classi-

fication of Diseases and Related Health Problems: https://www.icd10data.

com/ICD10CM/Codes).

2. Figure 1.6 depicts the optic cup and optic disc variation with reference to Glau-

coma.

3. The most common types of glaucoma are open-angle and angle-closure glau-

coma. The open-angle refers to the angle between iris and cornea of the eye.

Image source: https://www.nature.com/articles/nrdp201667/figures/1

Figure 1.6: Glaucoma and healthy fundus image.

1.3 IMAGING MODALITIES

Ophthalmologists examine the retina using various imaging modalities like CFP, OCT,

and Fundus Fluorescein Angiography (FFA) to discern the retinal abnormalities and

diagnose the disorders. It is often necessary to rely on multiple imaging modalities to

accurately detect the disorder on a case-to-case basis, as depicted in Figure 1.7. There
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are several modern retina examining devices available in the market, which is elabo-

rately explained by Panwar et al. (2016). However, retinal disorders are predominantly

diagnosed using CFP. Ophthalmoscopes are used to get the fundus image and spot the

clinical findings such as microaneurysms, hemorrhages, and exudates. Throughout the

rest of the document, the term ’fundus’ refers to images acquired using CFP. In general,

fundus photographs do not give a detailed view of the retina layers and OCT are used

for this purpose. The sample devices used to acquire images through these modalities

are depicted in Figure 1.8. FFA is an invasive procedure, generally considered for de-

tailed diagnosis on the progression of AMD. However, as the introduction of OCT has

paved the way for multi-modal analysis with a wider focal area, our study is based on

CFP and OCT. These modalities are described in the following subsections.

Images curtesy of Rajiv Raman et al. Sankara Nethralaya, India.

Figure 1.7: Images of the right eye of a 60-year-old woman with AMD. A) CFP (top-
left), B) FFA (top-right), and C) OCT (bottom).

1.3.1 Color Fundus Photography

Fundus imaging is a technique to obtain 2D images of the retina. The essential struc-

tures visible from the fundus image are the optic disc, fovea, macula, and retinal blood

vessels. The arteries and veins carry oxygenated and deoxygenated blood from and to

the heart, respectively. Any slight rupture in the blood vessels or variation of the cup

to disc ratio will lead to eye disorders. There could be hemorrhage, cysts, or lesions

of different stages formed in the vessel tissues. If these are left untreated, it can cause
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(a) Spectral Domain OCT of Zeiss. (b) Ophthalmoscope of Heine.

Figure 1.8: Different devices to capture retina image.

blindness. The common abnormalities spotted on the fundus image are depicted in Fig-

ure 1.9. Ophthalmologists diagnose systemic diseases from fundus photography like

DR, hypertensive retinopathy, possibilities of stroke. The fundus images can also iden-

tify other eye disorders like cataracts, myopia, and macular degeneration (Ryan et al.

(2013)). Fundus imaging techniques are non-invasive. The illumination within the eye

is not sufficient to visualize the fundus. So, an external beam of light is projected at a

certain angle to obtain a good field of view of the retina using ophthalmoscopes.

Image Source: https://imagebank.asrs.org

Figure 1.9: Abnormalities visible from Color Fundus Photographs.

There are two types of ophthalmoscopes: direct and indirect. The handheld instru-

ment is called a direct ophthalmoscope. Figure 1.10 depicts the working principle of a

direct ophthalmoscope (George and Michael (2005)). The handheld device has an illu-

mination set up consisting of two lens, an aperture, and a mirror, to focus the beam of

light on the patient’s eye. The illuminated light is converged using lens 2. The light rays

10

https://imagebank.asrs.org


diverge at the mirror and enter the patient’s eye. The image of the patient’s retina will

be formed directly in the viewer’s eye. The compensation lens allows the doctor to fine-

tune the visualization of the patient’s retina. As the device is restricted to a smaller field

of focus, device calibration is necessary to obtain high-quality, high-contrast images.

The indirect ophthalmoscope involves the external placement of a condensing lens and

the device is worn like a headband by the viewer. Artifacts such as low contrast and

blur are common in acquired fundus images. Thus, image enhancement or illumination

inhomogeneity correction is needed prior to fundus images analysis.

Image modified from: https://www.cehjournal.org/article/
understanding-and-caring-for-the-direct-ophthalmoscope/ and https://ophthalmology.

med.ubc.ca/patient-care/ophthalmic-photography/color-fundus-photography/

Figure 1.10: Working principle of direct ophthalmoscope.

1.3.2 Optical Coherence Tomography

OCT is a non-invasive technique to study the superficial tissue layers of the retina. The

primary focus is the macular region. The term OCT is called so because the light is

used as a source instead of ultrasound. The word ’Tomography’ refers to the process of

combining multiple image slices and obtaining a scanned image. The working principle

is based on Michelson’s interferometer, which is used to compute the time of flight. As

depicted in Figure 1.11, a beam of light is split into two paths using a beam splitter.

One beam is projected towards the patient’s eye, and another beam is directed towards

the reference arm. These two beams are reflected and collected at the detector with a
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pinhole exit point. Further, based on the time taken to receive backscattered lights at

the detector, the signal is processed, and the image is reconstructed. White intensity is

assigned for the values where the backscattered light is nonzero, and black is assigned

elsewhere. The beam of light is rotated in all directions, and thus, the intersection of

backscattered beams produces the image of the object. Since the reconstructed image

will be blurred, it is converted to the frequency domain and then filtered to obtain a

sharp image of retinal layers.

There are different types of OCT imaging, namely, Time Domain, Frequency Do-

main (Swept-source and Spatial domain), and Phase Domain (Fujimoto et al. (2000);

Yung et al. (1999)). Recent advancements include High Definition OCT and OCT-A

(Angiography) variants (Malvika and Nadia (2019)). However, the fundamental op-

erating principle (Michelson’s interferometer) remains the same, in all variants of the

device. Since the two waves (reflected from patient’s eye and the reference arm) are

coherent, fringes are formed due to constructive and destructive interference, resulting

in a speckled appearance. Hence denoising these images is a preliminary step to restore

the degraded images. The abnormalities such as drusen depositions, swelling in the

Figure 1.11: Working principle of OCT, (Modified and adapted from source: Hassan
et al. (2019)).
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retinal layers, growth of abnormal vessels, and fluid-filled cysts are located using OCT

images as shown in Figure 1.12. The disorders diagnosed include AMD, Central Serous

Chorioretinopathy (CSC) and DME.

Image source: https://imagebank.asrs.org

Figure 1.12: Abnormalities visible on OCT images.

1.4 THE NEED FOR NOVEL PREPROCESSING ALGORITHMS

Overall, the two modalities (CFP and OCT) differ in terms of acquiring procedure,

operating principle, structures observed, field of view, and degradation. The medical

equipment utilized (such as OCT) possess limited features with respect to image quality

enhancement. Certain artifacts are inevitable. Poor external room lighting, blurred

image due to head movements and eye blinks are some of the instances that degrades

the image quality. Plethora of existing image quality restoration algorithms blindly

restore the image quality. Increasing the brightness and contrast of the image does

not guarantee that the edges and other details of the image are preserved. Similarly,

using traditional filtering techniques to eliminate the inherent speckle is inadequate.

As ophthalmologists rely on multiple modalities to conclusively diagnose the retinal

disorder, it is essential to integrate appropriate preprocessing techniques (adaptive) for

these modalities. The major aim of the proposed thesis work is to implement such

an adaptive preprocessing algorithm that outperforms existing techniques in terms of

image restoration and edge preservation.
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1.5 THE NEED FOR AUTOMATED ANALYSIS

WHO reports that the number of ophthalmologists available worldwide is inadequate

to treat existing record of blindness. In the year 2015, 2,32,866 ophthalmologists were

available for service among 194 countries (Resnikoff et al. (2019)). Considering more

than one billion population of India, merely 15,000 ophthalmologists and about 45,000

optometrists were serving the country by the year 2019, against the required 1,25,000

optometrists, according to a guest blog page (Sandeep (2019)). Therefore, the pri-

mary focus of researchers has been to exploit the latest technologies like deep learning

algorithms and offer cloud-enabled, cost-effective, smart, personalized solutions to di-

agnose eye disorders in such a way that it can reach people in remote locations and also

expedite the overall diagnosis process.

There are some user-friendly, cost-effective devices available in the market, which

the common man can use to capture the retinal fundus images and send the reports

to the nearest ophthalmologist. Some examples for these include D-EYE (ttps://

www.d-eyecare.com/en_IN/product) found by a company in Italy costing approxi-

mately 400 USD, PEEK (https://www.peekvision.org/en_GB/peek-solutions/

peek-retina) for people in Kenya, as shown in Figure 1.13. Biomedical engineers

at Duke University found an innovative solution by developing a low-cost, portable

OCT scanner that promises to bring the vision-saving technology to under-served re-

gions throughout the world, thus preventing blindness. For the Indian market, a fundus

camera set up that can be integrated into a smartphone is developed by researchers

of IIT Delhi - which approximately costs around 50,000 INR, including the ophthal-

moscope (Paul and Kumar (2015)). Furthermore, in Karnataka, a start-up company

named ’Artelus’ has been successful to screen thousands of patients with their innova-

tive doctor-friendly device and applications (with ophthalmologists level of accuracy)

Haloi (2018). A comparative analysis of some of the smartphone-based fundus cam-

eras, including the cost and latest features incorporated is given by Mir et al. (2020).

An insight of challenges in these AI-enabled devices, such as lower image resolution,

poor image quality, lesser field of view, etc are also highlighted in their paper.
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(a) PEEK Retina (b) D-Eye

Figure 1.13: AI-enabled products.

Often, people may not visit ophthalmologists until they suffer from poor visual acu-

ity. This negligence might lead to severe damage of the eye. The release of retinal im-

ages in the public domain in the form of grand challenges imparts the need to develop

an automatic retinal disorder detection system. In other words, though the technology

and the imaging equipment are upgraded in today’s digital world, the imaging devices

are not completely automated. So far, there is no indigenous clinically validated appli-

cation that can be used by end-users to check whether there is an urgent need to refer

an ophthalmologist. The primary implication from the above discussion is that there is

a need to address preventable blindness. Incorporating automatic detection of certain

eye disorders can assist ophthalmologists in treating patients with visual impairments

proactively. There is still some room for further research.

1.6 MOTIVATION

The health of an individual is reflected in the eyes. At present, the clinical findings

are manually examined and diagnosed by medical experts. In order to expedite the

diagnosis procedure, developing an AI-enabled application that can be integrated into

the image acquiring device to detect multiple disorders becomes the need of the hour.

Though several researchers have proposed various deep learning models for automatic

detection of retinal disorders, there is no end-to-end system to identify the disorders us-

ing multiple imaging modalities. The high impact of retinal disorders and the illustrious

benefits of deep learning is the motivation to explore this domain.
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1.7 OBJECTIVES

Medical images are severely degraded during the image acquisition procedure. It is

necessary to analyse the noise distribution in the retinal images acquired from multiple

repositories and appropriately propose an adaptive restoration algorithm. It is essential

to validate the results qualitatively and quantitatively using metrics such as Peak Sig-

nal to Noise Ratio (PSNR), and Structural Similarity (SSIM). Further the preprocessed

images are used to train a a semi-supervised GAN architecture that can perform simul-

taneous segmentation and classification using retinal images. The performance of the

proposed models is quantitatively assessed by comparing it with transfer learning mod-

els1 and other relevant deep learning architectures. The segmentation and classification

are assessed on heterogeneous dataset using metrics such as dice coefficient, sensitivity,

and confusion metrics,and loss plots. Collectively, the research work acts as a baseline

for the multi-modal retinal image analysis to automatically detect retinal disorders. The

overall objectives of the thesis are formulated below:

1. To devise an image restoration algorithm that can enhance fundus images and

denoise OCT images based on the probability mass distribution of the data.

2. To design an appropriate GAN model that can classify fundus and OCT images

into normal, glaucoma, AMD, and DME.

3. To assess the performance of the proposed model with state-of-the-art deep learn-

ing models in terms of classification metrics such as accuracy, sensitivity, speci-

ficity, Area under Region of Characteristic Curve (AUC), and F1-score.

The above-mentioned objectives are met using the overall workflow as shown in Figure

1.14. Accordingly, given any one of the two imaging modalities (CFP or OCT), the

proposed work will enhance and denoise the input image in preprocessing stage, per-

form segmentation, simultaneously classify the input images into normal and abnormal

conditions using the deep learning model. State-of-the-art Convolutional Neural Net-

1Transfer learning is a special technique of deep learning, where a pretrained model is reused for
solving a similar, but a different problem. The model is originally trained on a large set of images.
Further, it is fine-tuned using relatively smaller number of training images. It saves training time.
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work (CNN) models are used to compare the performance of the proposed model in

terms of classification metrics using multiple datasets.

Figure 1.14: Overall workflow.

1.8 CONTRIBUTION OF THE THESIS

Considering the above mentioned factors, the thesis contributes to develop an end-to-

end AI-enabled retinal disorder detection system. The research work aims to segment

prominent regions from retinal images and identify the probability of having an eye

disorder using deep learning architecture combined with image processing techniques.

Two different modalities, namely CFP and OCT are chosen due to the availability of

large datasets in the public domain. The retinal disorders studied include glaucoma and

AMD, as these are the widespread retinal disorders affecting people of age group above

60 years, according to the statistics depicted in Figure 1.3. Acquiring images from

multiple sources has a major setback. These repositories differ significantly in terms

of image quality, resolution, and the number of images. Hence enhancing the image

quality is of utmost importance, which is handled in the proposed work using Non-

local Total Generalized Variational Retinex (NLTGVR) and Deep Image Prior (DIP)

models. The GAN model used for classification in the research work is compared with
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state-of-the-art models using image quality metrics and classification metrics.

The two imaging modalities (CFP and OCT), scan different parts of the eyes. These

imaging modalities have been analyzed in-depth in many research works lately. Though

these images are analyzed independently for ophthalmic disorder detection and analy-

sis systems, a combined effort (by using both modalities) has not been explored to a

deserving level. Since these images give different aspects of information about hu-

man eye, a combined analysis can reveal many disorders that are difficult to analyze

otherwise. Deep learning models generate their own feature maps and maps the input

to its corresponding output. Although some image acquiring devices (like ophthalmo-

scope and OCT) are equipped with retinal layer thickness profile generation, there is

still room to incorporate better image enhancement algorithms. Inspired by AI-enabled

smartphone integrated applications like D-Eye, PEEK Retina, Eye Art etc, that are ca-

pable of grading DR, our aim is to develop an application that can enhance and segment

retinal structures on multi-modal images. Further, the application would classify the

normal and abnormal retinal images. The major contributions of the thesis are:

• A novel perceptually inspired NLTGVR framework is proposed to enhance fun-

dus images and address the illumination inhomogeneity.

• A novel non-local DIP model is proposed to despeckle severely degraded OCT

images under the assumption that the speckle follows Gamma distribution.

• The variants of GAN model - semi-supervised and Wasserstein GAN are trained

to automatically classify the retinal disorders using heterogeneous datasets.

Choice of GAN: GANs are adversarial in nature. It was introduced and predominantly

used to generate realistic fake images. Particularly, it is beneficial to generate synthetic

medical images, as it is a daunting task to obtain massive medical images for exper-

imental purposes. However, the adversarial nature is explored in supervised learning

aspect in recent years. GANs are complex and burdensome to train due to the adver-

sarial nature. Thus, the process of training a GAN is exploited to perform multiple

tasks such as classification along side the generation of fake images. The variants of

GANs including semi-supervised GAN have demonstrated tremendous improvement
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in accuracy compared to the traditional convolutional neural networks in recent years

Haque (2020). In general, a CNN is employed for classification and a U-net model is

recommended for segmentation of images. GANs comprises both CNN and U-net ar-

chitecture within the generator and discriminator modules. Thus, it is possible to alter

the loss functions and achieve multitasking (classification, segmentation, and fake im-

age generation) using the same GAN architecture and partially available labeled data.

The ability to learn from limited data, reliability to perform multitasking are the pri-

mary reasons to select GAN among other deep learning architectures like CNN, for the

proposed research work.

The above-mentioned contributions further aids to address the following research

questions.

1. Does the retinex model aid to enhance the features of the fundus images irrespec-

tive of capturing device?

2. Will the deep image prior model minimize the influence of speckle inherent in

OCT images?

3. Can the GANs be effective or give stable performance in the segmentation and

classification of heterogeneous retinal images acquired from multiple locations?

4. Is there any scope for implementing automatic multi-modal retinal disorder de-

tection using deep learning network architecture?

The novelty of this research work is:

1. To analyze the data distribution of retinal images acquired from multiple re-

sources and then propose an adaptive restoration model.

2. To train the GAN model in order to perform both segmentation and classification

using limited availability of ground-truth images.

3. The concept of Gamma loss integrated to deep image prior model reduces the

effect of speckle in OCT images.
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The significance of the proposed work is limited to the development of an automatic

retinal disorder detection system using a deep learning model. It will be useful for

ophthalmologists to identify various structures from different modalities, which can be

further quantified using appropriate annotation tools. The automatic prediction of the

retinal condition expedites the retinal examination at the primary or secondary eye care

hospitals.

1.9 ORGANIZATION OF THE THESIS

Retinal imaging and analysis has been the limelight of research since the inception of

deep learning. Relevant works in this domain are summarized in Chapter 2. Consid-

ering the rapid evolution of technologies and transformations in the retinal examining

modalities, existing contributions since last five years are elaborated. The primary focus

has been to identify the research gaps in CFP and OCT image analysis. Though several

other variants of modalities exist, these modality images are available in public domain

in large number. Therefore, the focus of Chapter 2 is to obtain a comparative analysis of

different preprocessing strategies performed to enhance and restore the retinal images.

Some of the review works serve as a bedrock to strengthen the concepts of retinal image

analysis.

Chapter 3 is reserved for the preprocessing methods to restore the degraded reti-

nal images. Histogram is used to assess the quality of the acquired retinal images. A

perceptually inspired NLTGVR is proposed to enhance the contrast of the RGB fundus

images. Using the proposed algorithm, the edges and details are well preserved in the

retinal images. Furthermore realizing the fact that the ground-truth clean images of

OCT is unavailable in reality, a DIP approach is proposed to obliterate the speckle. A

mathematical approach is derived using Bayesian estimation to handle the multiplica-

tive noise distribution.

Chapter 4 discusses the automatic diagnosis of disorders such as AMD, DME, and

Glaucoma using CFP and OCT repositories. The deep learning models namely semi-

supervised GAN, and Wasserstein GAN are employed to sequentially train the segmen-

tation and classification tasks using images acquired from different modalities. The
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transfer learning approach is a simple and effective method for classification of retinal

disorders. Even though, these models offer greater reliability and higher range of accu-

racy in classification, the performance is stable only when the test images are processed

and belong to the same distribution set as that of the training images. The performance

of the proposed GAN with transfer learning models is also discussed.

Finally, the conclusion is presented in chapter 5. It outlines how this research work

augments existing contributions and discusses the scope of future works. Additionally,

a conceptual model is designed for automatic classification of Glaucoma from multi-

modal images. The conclusion chapter provides a brief summary of how the objectives

set at the beginning of the research are met using novel algorithms.
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Chapter 2

A COMPREHENSIVE REVIEW OF
RETINAL IMAGE ANALYSIS

This chapter introduces the state-of-the-art research on retinal image analysis re-

stricting the study to the domain of our interest. Figure 2.1 captures the topics con-

sidered in this research, which is self-explanatory. A Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) approach (Page et al. (2021)) is

followed to screen and identify relevant articles. The role of deep learning, retinal imag-

ing modalities, information about public repositories, and the scope of research works

in retinal imaging are discussed through existing review papers in section 2.1. Selected

papers related to restoration of degraded retinal images, segmentation of prominent fea-

tures, and classification of the retinal disorders into normal or abnormal categories are

discussed in further sections.

2.1 STATE-OF-THE-ART REVIEW PAPERS

The scope and application of artificial intelligence and deep learning in ophthalmology

is discussed by Ting et al. (2019). For a juvenile researcher, it offers ample information

about fundus and OCT images, types of diseases that are of utmost importance, and po-

tential challenges. The application of GAN in medical imaging is elaborately discussed

by Yi et al. (2019). The authors compared various modified GAN architectures that can

be suitable for segmentation and classification purposes in medical imaging. Despite

the massive contribution in this domain, limited availability of retinal images or ground-

truth for segmentation, computational restrictions, non-standardized image acquisition
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Figure 2.1: Overview of existing literature on retinal image analysis.

techniques, and inconsistency in the performance metrics prevail as the challenges to

the researchers (Yanagihara et al. (2020)). Amidst these prevailing challenges, several

attempts are in progress to automate the retinal disorder detection primarily using two

modalities: CFP and OCT.

An overview of retinal disorders like DR, Glaucoma, and AMD has been provided

by Abràmoff et al. (2010) and independently by Hossein et al. (2016). They explained

the benefits of retinal vessel extraction, lesion detection, optic cup disc segmentation,

Symptomatic Exudate-associated Derangements (SEAD) segmentation from CFP im-

ages, and the applications of multi-modal imaging. They highlighted the future scope of

these imaging techniques and state the need to obtain a low-cost, highly efficient imag-

ing system. Various datasets available in public domain that can be accessed to study

eye diseases like Glaucoma, DR and AMD are outlined in recent literature (Sengupta

et al. (2018)). They compared the state-of-the-art methodologies that classify these dis-

eases and discussed the feasible future works in ophthalmology. Various methods to

assess the quality of fundus images is surveyed by Raj et al. (2019). They state that

the CFP images are severely degraded due to illumination inhomogeneity. So, contrast

enhancement is often necessary to train the automatic segmentation or classification

models.
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The retinal disorders like, AMD, DME, and CSC are reviewed by El-Baz (2018).

They illustrated the sample OCT scans for each of these disorders. They explained the

need to monitor the retinal layer thickness for early detection of vision disorders. A

similar study was done by Garcia-Layana et al. (2017). Here it is stated that the retinal

layers in OCT images possess different reflectivity patterns that can help to diagnose

eye disorders by spotting the fluid depositions in the retinal layers. Structures such

as retinal layers, cyst regions, edema, and choroidal thickness are assessed from the

OCT images. OCT images are subjected to speckle due to a series of constructive and

destructive interference (Schmitt et al. (1999)).

The speckle is multiplicative in nature, as illustrated in existing literature (Aubert

and Aujol (2008)). Further, contemporary works suggest that the OCT-A is highly sus-

ceptible to bulk motion noise (Spaide et al. (2015)). This is challenging to remove due

to the fact that the incident light and the blood vessel distribution on the image are per-

pendicular to each other. Certain other artifacts affecting OCT images were also listed

by Chhablani et al. (2014). However, they stated that the clinically significant artifact,

such as speckle noise, will hinder the segmentation and automatic classification mech-

anisms. As clean data can highly influence the performance of deep learning models

or automated analysis systems (Vikram (2020)), it is necessary to incorporate an image

enhancement method appropriately.

Recall from Chapter 1, that CFP and OCT modalities differ significantly in terms of

image acquisition procedure, image quality, features extracted, and disorders identified.

However, both are degraded and suffer multiple artifacts that hinder automated analysis.

Considering these factors, retinal image analysis can be broadly classified into three cat-

egories, namely: denoising and enhancement, segmentation, and classification. These

tasks are carried out either using traditional image processing techniques or machine

learning and deep learning methods. Therefore, the remaining content of this chapter

is divided into the following sections. We first discuss various preprocessing models

available to restore both CFP and OCT images in section 2.2. This is followed by the

discussion of the latest works on classification of retinal disorders.
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2.2 PREPROCESSING OF RETINAL IMAGES

Denoising and Contrast enhancement are two different tasks. Contrast enhancement

is a process of modifying the range of intensities used to represent the image, such

that the prominent features are visible clearly. Denoising, on the other hand, refers to

the technique of suppressing the variations (that makes the image noisy) in the image.

Throughout the rest of the content in the thesis, the term image restoration refers to the

process of transforming a degraded image into a visually appealing one either in terms

of denoising, enhancement, or both of these tasks.

2.2.1 Traditional image restoration methods

The effect of applying Contrast Limited Adaptive Histogram Equalization (CLAHE) on

fundus images was assessed by Alwazzan et al. (2021). Accordingly, the green channel

was extracted as it carries maximum information. The Weiner filter was applied be-

fore CLAHE to reduce any noise present in the green channel. The enhanced images

were quantified using contrast improvement index and linear index of fuzziness. They

showed that this method is effective to enhance the severely degraded CFP images. De-

spite the qualitative and quantitative analysis, the effect of pre-processing is unexplored

for automatic segmentation and classification.

A similar attempt was done by Sonali et al. (2019). However, in their approach

the denoising filters and CLAHE were applied on all the three channels (R,G, and B)

independently, and the final fundus image was constructed by combining the enhanced

channels. The quantitative metrics used to assess the quality of enhanced images in-

clude edge preserving index and SSIM. Though CLAHE is an efficient method to

enhance degraded images, the major setback of this method is that it enhances the noise

component and it is primarily applicable for grayscale images.

Denoising depends on certain prior assumptions about the noise distribution in the

image. Statistical models were developed to analyze the noise distribution of OCT

images Jorjandi et al. (2017). Compared to the fundus images, the OCT images are

highly noisy, and the speckle noise is removed using traditional methods such as homo-

morphic Weiner filter (Franceschetti et al. (1995)), Lee filter (Lee (1981)), Kuan filter
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(Kuan et al. (1985)), and other filtering methods or transformation methods. Some other

methods include anisotropic diffusion (Weickert (1998)) and variational models (Duan

et al. (2016)).

Various denoising methods of OCT images are summarized by Muxingzi et al.

(2017). Accordingly, the denoising methods can be broadly categorized into a sin-

gle frame approach or a multi-frame approach. A single-frame approach can be fur-

ther divided into spatial-domain or wavelet-domain. Variational methods, probabilis-

tic approaches, and partial differential equation-based modeling are some examples

of spatial-domain denoising. On the other hand, Gaussian Mixture Model, Block-

matching and 3D filtering (BM3D), and dictionary-based learning are instances of de-

noising in a wavelet-domain. Considering the fact that several B-scans can be acquired

for a particular region of interest, averaging multiple B-frames can be an approach to

generate a cleaner version of the noisy OCT images, referred as a multi-frame approach.

Another approach to solve speckle noise is to consider transforming the input to the log

domain, which subsequently converts the multiplicative noise into an additive noise but

fails categorically to capture the inherent features of the speckles.

Overall, a significant contribution is made to denoise and enhance retinal image

quality. However, removal of inherent speckle noise in OCT images can be treated as

an inverse problem, and more specifically, it is an ill-posed problem. A problem is

referred to as a well-posed problem if it satisfies existence, uniqueness, and continuity

conditions for its solution (Hadamard (1953)). Failing to meet any of these conditions

makes it an ill-posed problem. Further, an inverse problem is related to computing the

cause of event, using the effect. For instance, given a noisy input image, the objective

is to find the cleaner image. The details regarding inverse and ill-posed problems are

highlighted in Appendix A.1. Solving such ill-posed problems is challenging, and often

regularization methods (Rudin et al. (1992)) are used.

Regularization approach is a process of solving an inverse problem by addition

of regularization parameters. The variants include L1,L2, and Tikhonov regulariza-

tion. Details of these frameworks are elaborated in Appendix A.1 and A.2. Variational

methods including Total Variation (TV) approach are another category of regulariza-
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tion methods. These methods are extensively used due to its ability to retain the edge

information while smoothing the data. These models can be tuned to various noise

distributions such as Gaussian, Gamma, Rayleigh, and Posisson. Unlike traditional

denoising approach, despeckling is considered as a daunting task due to the multiplica-

tive nature of the speckle. In a nutshell, formulating the image restoration framework

specifically for despeckling and enhancement using precise statistical modeling is still

an open research problem that can be addressed using variational frameworks.

2.2.2 Variational image restoration models

The variational models (Vese and Guyader (2015)) capable of incorporating the nature

of distortion in the design of the framework are observed to be more efficient in restor-

ing the data, especially in data correlated environments. The idea of TV denoising is

to consider the ill-posed problem as an energy minimization functional, with terms that

constitute of data fidelity and regularity such that the denoising is achieved without

leading to over-smoothing. A scalar positive value acts as a regularization parameter

to monitor the smoothness levels. Certain other preliminaries of the variational frame-

works is presented in Appendix A.2.

A plethora of variants are introduced in the literature for the TV regularization. Per-

ceptually inspired models have shown a considerable improvement to the existing image

restoration paradigms for ill-posed problems. For instance, retinex theory (Bertalmio

et al. (2009)) based models were incorporated in a variational framework to handle var-

ious contrast degradation aspects of the input images (Liu et al. (2017)). A total varia-

tional functional based on block matching was defined by Shengjian et al. (2019). The

TV retinex models perform linear approximations of the input data, eventually leading

to the patch-like appearance of the resultant images (Rudin et al. (1992)). This was

addressed effectively using Total Generalized Variation (TGV) models (Kim and Kudo

(2020)). Further, to improvise the restoration ability of the TGV models, non-local

TGV models were proposed in the literature (Ranftl et al. (2014); Jidesh and Febin

(2020)).
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Figure 2.2: Demonstration of non-local similarity computation.

2.2.3 Non-local image restoration

The variational models are subjected to piecewise approximations and it is local in

nature. This tends to ignore the detailed features or textures in the data. Non-local vari-

ational models are motivated by the initial works of Buades et al. (2005) that is referred

as non-local means filtering approach. Traditional filtering techniques merely perform

averaging of the pixel neighborhood. Unlike these filtering technique, the non-local

means, computes a weighted sum considering all the pixels in the image. The non-local

variational image restoration framework is widely used to despeckle medical images.

The idea of non-local gradient computation (∇NL) is to break down the entire image

of size width× height into smaller windows. Within a window, the weight associated

with every central patch is computed based on the intensities of similar patches in its

neighborhood. This process is repeated for every pixel in the entire image as shown in

Figure 2.2. Accordingly, two reference windows (i and j) are depicted around the cen-

tral patches given by red colored box. The green patches represent the neighborhood.

The size of the patch and the neighborhood considered can be varied intuitively. It can

be observed that increasing the neighborhood (window size), increases the influence of

dissimilar patches, increasing the computational burden. The benefit of incorporating

non-local computation is that the similar patches add more weight and contribute to

enhancing the region of interest. Since the neighborhood strongly influences the given

region of interest, non-local restoration methods preserve the edge information without

blindly over-smoothing the image globally. The computational burden can be greatly

minimized using parallel programming architectures or other fast numerical methods.
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Mathematically, the non-local gradient ∇NLU(x,y) for a pair of points (x,y) is de-

fined as the vector of all discrete derivatives:

∇NLU(x,y) := (U(y)−U(x))
√

W (x,y), for y ∈Ω. (2.1)

The norm of the non-local gradient of U at x is defined as:

|∇NLU |(x) :=
√∫

Ω

(U(y)−U(x))2W (x,y)dy. (2.2)

where the weight function W (x,y) gives the similarity between x and y computed using:

W (x,y) =
1
Tx

∫
Ω

e−
Gσ |q(Nx)−q(Ny)|2

h2 dy
. (2.3)

where Gσ is Gaussian kernel, h is filtering parameter, Tx is normalizing constant, Nx

and Ny denote the neighborhood centered at x,y, respectively.

The non-local variational framework is proposed by Gilboa and Osher (2009). A

patch-based algorithm was proposed using Gaussianization transform for OCT denois-

ing and enhancement by Zahra and Hossein (2017). The major limitation of non-local

variational approach in Gilboa and Osher (2009) is that it considers the noise is ad-

ditive white Gaussian in nature. Recently, Anoop et al. (2019) portrayed various lit-

erature specifically focusing on speckle noise formulated as a Gaussian, a Rayleigh,

or a Gamma distribution. They render qualitative and quantitative results of denois-

ing OCT images using TGV, anisotropic diffusion, iterative adaptive unbiased filter,

wavelet transform, and non-local means filtering techniques. Contrast degradation and

illumination inhomogeneity are not addressed in their work.

An optimized non-local linear minimum mean square error-based approach is pro-

posed by Rahimizadeh et al. (2020). They suggest that the traditional methods fail

to perform well when the image intensity varies in a particular region of the image.

This issue is addressed by them using non-local methods. In all variational models

of restoration, it is necessary to have some prior knowledge about the noise distribu-

tion or appropriate constraints that have to be introduced to monitor the data fidelity.

Deep learning methods, on the other hand, rule out the human intervention of feature

extraction, by automatically identifying the feature maps for a given problem.
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2.2.4 Deep learning architectures

Deep learning has been a game-changer in various fields that have aided in resolving

numerous computationally expensive problems. A wide range of deep learning archi-

tectures have been devised in the last few decades to achieve realistic results of image

restoration. In general, all these architectures involve a series of convolution, down-

sampling, and up-sampling, and nonlinear activation function operations applied to the

input images. Overall, every deep learning model aims to solve the optimization prob-

lem by formulating a loss function. Since there are no straightforward techniques to

design a convolutional neural network, the performance greatly depends on the train-

ing dataset, hyperparameters, and loss functions. Therefore, several combinations are

experimentally verified towards restoring CFP and OCT images.

A deep learning network is proposed by Shen et al. (2021), to enhance the quality

of fundus images. However, it relies on the availability of massive ground-truth images.

To achieve this, they have considered synthetically degrading the image quality. A

modified residual densely connected U-net model is used to enhance the degraded CFP

images by Raj et al. (2022). The fundus images are synthetically degraded and an

ensemble model is constructed using several U-net models where the output of each

U-net is concatenated and fed to a final convolutional layer. Multiple U-net modules

are used to restore the illumination inhomogeneity, and haze affected images. Mean

absolute error and SSIM is used as loss function.

Prioritizing the edge preservation in OCT images, a modified PCANET approach

is proposed by Yu et al. (2018). Accordingly, the deep learning network is trained

to extract features from preprocessed input images. The images are filtered using an

optimized Bayesian non-local means filter in the preprocessing stage. The features

extracted from PCANET are further fed to another PCANET to reconstruct a cleaner

image using a similarity weight matrix. Quantitative results prove that their method

successfully despeckles the noisy images while preserving edge details.

Brunet model is trained to enhance the OCT images acquired from multiple devices

by Apostolopoulos et al. (2020). Although their method performs denoising and en-

hancement of the OCT images, it does not take into consideration any prior information
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about the noise distribution. Obtaining ground-truth images is a major challenge for

medical datasets. In this regard, a multi-frame averaging technique has proved to be

exceptional.

A content loss that can be added to adversarial loss is proposed by Zhao et al. (2020).

Accordingly, the content loss denotes the pixel-wise mean square error. The modified

GAN is coined as speckle modulation GAN and experimental analysis is performed on

OCT images.

Recently, another GAN-based denoising was performed in Sourya et al. (2021).

Here the speckle is assumed to follow multiplicative Gamma noise. The retinal layer

information is preserved using Wavelet transform integrated to the Generator module.

The requirement of ground-truth images to train the model is the setback of this method.

Recent advancements in deep learning paved way to elevate the image denoising pro-

cess with the availability of massive computational power.

As discussed earlier, image denoising using a deep learning approach usually re-

quires an enormous amount of input training data. This notion has been wiped out by

a novel approach, described as Deep Image Prior (Ulyanov et al. (2020)). Lately, the

concept of the deep image prior was explored on a progressively growing Generative

Adversarial Network (GAN) (Refer Sidorenko (2018); Pan et al. (2020)). In addition,

an automatic training halt mode is defined in their work. This is formulated using SSIM.

The overall idea is to grow the network deeper if the SSIM has improved and fall back

to the previous depth, otherwise. Furthermore, the deep image prior model is extended

to non-local domain to include an explicit regularizer (Fan et al. (2020)). Some advan-

tages and disadvantages of existing denoising and enhancement methods are captured

in Table 2.1.

2.3 FUNDUS IMAGE ANALYSIS

As mentioned earlier in Chapter 1, various structures are segmented from the fundus

images. Though automatic segmentation of abnormalities such as exudates and hemor-

rhages is vital, the deep-learning approach necessitates enormous ground-truth images,

which are unavailable in the public domain. Thus, the automatic segmentation of blood

vessels and optic disc region is the major highlight in the literature, due to the avail-
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Table 2.1: Comparison of existing OCT image restoration methods (∗D: Denoising, E:
Enhancement, CNN: Convolutional Neural Network).

Author Task Method Advantages Limitations

Mehdizadeh
et al. (2021)

D

DnCNN is used to de-
speckle OCT images
where the CNN consists of
pretrained VGG models.

Blurring effect on the im-
ages are addressed using
the deep feature loss. This
is quantified using percep-
tual sharpness index.

The higher order variation
is ignored in their work to
preserve the details of the
image and avoid piecewise
approximations.

Guo et al.
(2021)

D

Non-local GAN is de-
signed that learns to
denoise in unsupervised
manner.

Model is tested on mul-
tiple datasets. The non-
local means layer included
in the generator preserves
the edge information.

Contrast enhancement is
not considered. Unsuper-
vised deep learning mod-
els are computationally ex-
pensive.

Song et al.
(2019)

D

Various filtering methods
are assessed including
median filtering, wavelet
threshold method, Wiener
filtering and anisotropic
diffusion.

Compared to other meth-
ods, filtering is compu-
tationally simple method
to restore the OCT im-
ages. Anisotropic diffu-
sion method was found
to perform better than the
other filtering methods.

Speckle is assumed to fol-
low Rayleigh distribution
which may not be applica-
ble for most of the meth-
ods. Filtering in spatial do-
main is local in nature and
result in over-smoothing.

Lou et al.
(2021)

E

The method consists of
noise suppression, edge
detection and applying the
sigmoid energy equation
on the fused image.

The edges in the OCT im-
age are sharpened using
the sigmoid energy equa-
tion and the algorithm is
tested on multiple datasets.

The reflectance and illumi-
nance terms are treated in
same pattern which limits
the contrast enhancement
ability to local domain.

Tao et al.
(2021)

E

Retinex model is consid-
ered to enhance the OCT
images under the assump-
tion that the data distribu-
tion follows Gaussian law.

The retinex model has
significantly increased the
contrast of severely de-
graded images and visu-
ally pleasing results are
obtained to segment the
edema region simultane-
ously.

The data distribution is as-
sumed to be Gaussian and
the benefits of non-local
restoration and higher-
order regularization terms
are not considered.

Liu et al.
(2018)

E

Shock filtering method to
enhance the image under
the assumption that the
data distribution in image
follows Gamma law.

Similar to non-local means
method, a self-similarity
measure is used to control
the effect of smoothing as
well as retain sharpening
effects.

The robustness and scala-
bility of model to restore
severely degraded OCT
images is uncertain.

Huang et al.
(2020)

D &
E

Anisotropic TV is used
to despeckle and retinex
model is applied for con-
trast enhancement of OCT
image in logarithmic do-
main.

Method addresses the
adaptive enhancement
considering the fact that
the background region
of OCT image has noise
dominant region and
recover the speckle noise
map.

The TV model excludes
the speckle following
Gamma distribution.

Xu et al.
(2020)

D &
E

OCTNet deep learning
model is used to obtain
noise free, enhanced, high
quality images.

The model performs well
even if the background re-
gion is dominant near the
retinal layers.

The performance of the
model greatly depends on
the quality of ground truth
images used for training.

ability of ground-truth images. In this direction, the comparative analysis of the deep

learning implementations available for CFP is shown in Table 2.2. Some of the works
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utilize GANs for segmentation, generation or classification of visual disorders as given

in Table 2.3.

Table 2.2: Summary of existing works on fundus image analysis.

Sl.
No.

Paper de-
tails Datasets Task Description Results Advantages Disadvantages

1
Meyer et al.
(2018)

REFUGE
Localization
of fovea and
optic disc.

Pixel-wise dis-
tance is computed
and a regression
based approach is
used with U-net
architecture.

Median
of Eu-
clidean
distance:
0.94 to
1.12

Joint detection of
optic disc and fovea
is favourable for
multiple disoder
detection.

Optic cup to disc
ratio is not mea-
sured and blood
vessels are not
segmented.

2
Lam et al.
(2018)

Kaggle,
eOphta

Retinal Le-
sion Detec-
tion.

Sliding window
based patches
were extracted
and classification
was performed
using standard
convolution
neural networks
like VGG,
GoogleNet,
Resnet and In-
ception

Accuracy:
0.74 to
0.96

Multiple datasets
are analysed.

Only microa-
neurysms are
detected. It could
be extended to
detect multiple
indicators.

3
Leopold
et al. (2019)

DRIVE,
STARE
and
CHASE-
DB1

Retinal ves-
sel segmen-
tation.

Fully residual
autoencoder with
gated residual
streams termed
as PixelBNN.

Accuracy:
0.9106,
Sensistiv-
ity: 0.69,
Speci-
ficity:
0.95,
AUC:
0.82

Histogram en-
hancement is
performed as a
preprocessing step
using CLAHE.
A parallel input
stream is used
along with skip
connections, batch
normalization in
the architecture.

Although good
results are ob-
tained, the dataset
considered consists
of minimal set of
images.

4
Yan et al.
(2018)

DRIVE,
STARE,
CHASE-
DB

Retinal ves-
sel segmen-
tation.

The model con-
sists of three
stages. Thick
segmenter, thin
segmenter and
the fusion part.

Accuracy:
0.95 to
0.97 Sen-
sitivity:
0.76,
Speci-
ficity:
0.95

Both thick and thin
vessels are seg-
mented separately.
This increases the
visibility of retinal
vessels.

The performance
on poor quality
images is unknown.

2.3.1 Classification

A comprehensive study on recent works in fundus image analysis is given in Sarki et al.

(2020). It highlights the existing limitations in deep learning model-based automatic

screening systems. A generic eye disease diagnosis mechanism and automatic conver-

sion method of acquired data into a structured form that can simplify the patient case

analysis are explained by Malik et al. (2019). It emphasizes the need for automatic

screening of retinal disorders. The feature of multi-class and multi-label is utilized to
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Table 2.3: Summary of existing works on fundus image analysis using GANs.

Sl.
No.

Paper de-
tails Datasets Task Description Results Advantages Disadvantages

1
Son et al.
(2017)

DRIVE,
and
STARE

Fundus ves-
sel segmen-
tation

U net based
generator GAN
model

Dice Coeffi-
cient: 0.829
for DRIVE
and .834 for
STARE

The authors per-
formed pixel based,
patch based and
image based dis-
crimination.

Results fail to
detect thin vessels
from fundus im-
ages. DRIVE and
STARE are small
datasets.

2
Bellemo
et al. (2018)

DRIVE,
STARE,
MESSI-
DOR

Generate
fundus
images

A review of
available GANs
used to generate
fundus images

-

Lack of large
datasets necessi-
tates generation
of synthetic im-
ages. This paper
compares available
GAN architectures
for generating
fundus images.

The detailed
biomarkers gen-
erated as fake
images might not
be up to the clinical
standard.

3
Lecouat
et al. (2018)

IDRiD
Diabetic
Retinopathy

Patch based
semi-supervised
GAN enables
visualization
of prominent
features

AUC: 75.8
to 84.5

Semi-supervised
GANs are more
suitable when vari-
ations are present
in the dataset.

Authors used small
dataset of 149 im-
ages for training.
They do not discuss
about the accuracy
of the model when
it is used for classi-
fication.

automate retinal disorder detection using Convolutional Neural Networks (CNN) (Gour

and Khanna (2021)). Here, the authors experimented with two methods. The first one

is to consider left and right fundus images in parallel, while the second method is to

concatenate both images and then feed the CNN. The pre-trained models like Resnet

(He et al. (2016)), Inceptionv3 (Szegedy et al. (2016)), Mobilenet, VGG-16 (Simonyan

and Zisserman (2015)) are used to analyze the performance of the classifier with the

different optimizers, namely, Adam and Stochastic Gradient Descent. They concluded

that the VGG16 model achieves higher performance than the other models.

The Resnet model is used extensively as a backbone network in a similar approach

and spatial correlation module (Islam et al. (2019); Li et al. (2020a)). The output from

this module is then either concatenated, multiplied, or added to analyse the effect of

merging the left and right fundus images. Their implementations illustrate Resnet

101 outperformed Resnet 18, Resnet 34, and Resnet 50 with the concatenate opera-

tion among left and right fundus images. The multiple labels associated with some

fundus images are retained in their method. Yet another paper demonstrates the results

of transfer learning on the Ocular Disease Recognition (ODIR) dataset using VGG-
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16, Resnet-18, Resnet-50, ResNext-50, SE-Resnet-50, SE-ResNext-50, Inceptionv4,

Densenet (Huang et al. (2017)), and CaffeNet (Li et al. (2021)). In their method, the

left and right fundus images are considered independently. The implementation results

in their paper show that the Inception v4 outperforms all other models. The above-

discussed papers primarily focus on analyzing the effect of using both left and right

fundus images to automatically detect retinal disorders. Most of the papers compare

and contrast the performance of various pre-trained models without incorporating the

data cleaning procedures or data preprocessing techniques. To further highlight the

quantitative results, Densenet, Inception, Resnet, MobileNet (Howard et al. (2017)),

Efficientnet (Tan and Le (2019)), VGG, and Xception (Chollet (2017)) models were

engaged in training the classifier (Wang et al. (2020a)). Here, each fundus image was

distinctly passed to a grayscale histogram equalization module and a color histogram

equalization module before feeding the classifier. The results obtained show that Ef-

ficientnet can successfully learn a majority of the features and distinguish the retinal

disorders.

A unique way of using Hessian-based fibermetric filter was proposed by Ram and

Reyes-Aldasoro (2020). The filtered fundus images were then fed to a Convolutional

Neural Network (CNN) to validate the accuracy of the classifier considering a various

number of classes. The results presented in their paper included two classes (Nor-

mal and Cataract), three classes (Normal, Cataract, AMD), and four classes (Normal,

Cataract, AMD, Myopia), respectively. However, they noted that the classifier under-

performed when the number of categories was beyond 4. This is mainly due to the

unbalanced number of images in the dataset. Similar analysis of various classes along

with data augmentation on the fly was attempted by Jordi et al. (2019); Meller (2020).

2.4 OPTICAL COHERENCE TOMOGRAPHY IMAGE ANALY-
SIS

A large and growing body of literature has described the role of deep learning for

automatic detection of retinal disorders from OCT images in recent years. A semi-

supervised deep learning model is proposed by Sedai et al. (2019), to extract the reti-

nal layer from a partially labeled dataset. The deep learning model is comprised of a
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teacher-student module designed using Dense-U-net architecture. The teacher module

was trained using the Bayesian deep learning concept, and it controlled the learning of

the student module. The preprocessing steps included data augmentation. This method

is greatly beneficial when the segmentation labels are unavailable in large numbers.

The downside of this method is that it does not involve denoising OCT images, and the

number of trainable parameters is large due to the use of Dense-U-net architecture.

Deep Retina (Li et al. (2020b)) is another recent work on retinal layer segmenta-

tion. Here, an encoder-decoder architecture was tested with a focal loss function. The

ground-truth images for segmentation were obtained using manual segmentation by ex-

perts. The encoder network involved a pre-trained Xception-65 model. Although this

model provides a sensitivity of up to 92% on the public repository without any prepro-

cessing module, there is a scope to further reduce the complexity of the model.

A Squeeze and Excitation U-Net (SEU-Net) deep learning model was implemented

by Xuehua et al. (2021). Accordingly, the SEU-Net is an improvised version of U-

net model following an encoder-decoder architecture. It was used in combination with

the graph search method to segment 9 retinal layers. The model was trained using

10 3D-retinal data, and the performance was assessed using mean absolute error and

root mean square error. Though the deep learning model performance was improved

by incorporating a post-processing method, the performance of the model on severely

affected retinal layers was not discussed.

2.4.1 Classification

A plethora of convolutional neural network (CNN) models are designed for classifica-

tion purposes (See Negi et al. (2020); Van Hulle et al. (2016); Sharma et al. (2018)).

Transfer learning methods were applied to classify the OCT images into normal and

abnormal categories using a private dataset (Refer Serener and Serte (2019); Wang and

Wang (2019)). The classification accuracy of above 98% is achieved using transfer

learning. However, the performance of transfer learning models greatly depends on the

distribution of the training data set. Therefore, there is a need to have a greater resem-

blance between the quality of images used to obtain the pre-trained model as well as

the testing dataset.

37



To further deal with the overfitting and biased decision of the pre-trained models, an

ensemble model was proposed by Paul et al. (2020). Accordingly, VGG-16, Densenet,

Inception-v3, and a custom designed convolutional neural network models are first fine-

tuned to classify the OCT images. The second step includes merging the feature maps

of the pretrained model and assigning a non-linear weight based on the performance of

each model. The concatenated output is fed to a neural network with fully connected

neurons. Though the classification metrics are in the acceptable range, combining sev-

eral pre-trained models significantly increase the complexity of the model, thereby in-

creasing the number of trainable parameters.

When a limited labeled dataset is available, semi-supervised GAN is appropriate

to classify the OCT images. This was implemented by Das et al. (2020). AOCT-NET

(Alqudah (2020)) and OctNET (Sunija et al. (2021)) are recent CNN models with sim-

ple architecture comprising a series of convolution and max-pool layers, capable of

classifying the input OCT images into normal or abnormal using public repositories.

The accuracy of up to 99% was achieved without any preprocessing module. Although

the model depth is less than 6 layers, the performance of the model on severely degraded

OCT images is uncertain as data denoising was not considered in their works. Over-

all, the majority of the works on OCT image analysis exhibit exemplar performance in

terms of accuracy when trained for a single task. The comparative analysis of the deep

learning implementations available for OCT image segmentation and classification is

shown in Table 2.4.

2.5 RESEARCH GAPS

Recent advancements in deep learning paved way to elevate retinal image restoration

and classification with the availability of massive computational power. Nevertheless,

the following limitations are identified from the related works discussed so far.

• A plethora of existing works on retinal image analysis tend to ignore preprocess-

ing when using deep learning models. Though deep learning models give stable

and reliable performance, when the training images are raw and heterogeneous,

the performance of automatic classification and segmentation can be severely de-
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Table 2.4: Summary of existing OCT image classifiers.

Sl.
No.

Paper de-
tails Datasets Task Description Results Advantages Disadvantages

1
Girish et al.
(2018)

OPTIMA
cyst chal-
lenge

Segmentation
of intrareti-
nal cyst

The method com-
prises of prepro-
cessing stage that
includes image noise
removal followed by
segmentation stage.
Fully convolutional
network with U-net
architecture is used
for segmentation.

Dice co-
effficient:
0.71

The preprocessing
technique incorpo-
rated equalize the
OCT images across
multiple vendors as
fast non-local means
method is used.

Multiple disorder
classification is not
done. Penalizing
False positives result
in smaller cysts get-
ting missed.

2
Asgari et al.
(2019)

Private
hospital,
Austria

Segmentation
of drusen,
RPE,
Bruch’s
Membrane
region,
and the
background
region in
OCT scans

Modified U-net archi-
tecture with spatial
pyramid pooling

Dice co-
efficient:
0.74

The concept of pyra-
mid module with
dimensionality re-
duction strategies are
beneficial.

Segmentation is per-
formed for drusen
to detect the AMD
stages. Other clinical
findings are not taken
into consideration.

3
Li et al.
(2019)

Duke
uni-
versity
dataset

CNV, DME,
DRUSEN,
and NOR-
MAL.

Integrating hand-
crafted features like
curvature and thick-
ness of retina layers
into the Inception v3
model

Accuracy:
0.94 to
0.99,Sen-
sitiv-
ity:0.97,
Speci-
ficity:0.99

Extracting SIFT and
Gabor features, con-
catenating the features
to the deep learning
model is the novelty.

Model is tested on
only one dataset. De-
noising is not incorpo-
rated.

4
Wang et al.
(2019a)

Zhongshan
Oph-
thalmic
Center,
China

Classification
of glaucoma

Performs segmen-
tation followed by
classification to detect
the glaucoma

Accuracy:
0.814,
AUC:
0.864

The RNFL thickness
estimated from seg-
mentation process is
used as an input to
classify the retinal
disorder.

The authors concen-
trated only on one
retinal disorder and
one image modality.

5
Kermany
et al.
(2018b)

Various
hospitals,
China

DRUSEN,
CNV, DME,
NORMAL

Transfer learning us-
ing Inception model

Accuracy
: 0.966

Pretrained models are
finetuned for OCT im-
age dataset. Images
from various hospi-
tal are considered to
achieve good results

The details of the size
of drusen or other
clinical findings is not
estimated.

6
Fauw et al.
(2018)

Moorfields
Hospital
hospital,
UK

Classification
of retinal
disorders.

Segmentation and
classification is per-
formed using OCT
images.

AUC:
0.99

Authors of this pa-
per define classifica-
tion labels as urgent,
semi-urgent, routine,
and observation based
on the referral needed
for a patient.

The authors do not
mention about the
quality of the images
considered.

7
Roy et al.
(2017)

Duke
uni-
versity
SD-OCT
dataset
for DME

Retina lay-
ers and fluid
segmenta-
tion

Fully convolutional
network consisting of
contracting encoder
and expanding de-
coder path without
integrating hand-
crafted features.

Dice Co-
efficient:
0.99

Stability against im-
balanced classes as a
composite loss func-
tion comprising of a
weighted logistic re-
gression loss along
with Dice loss is used.

Although the dice
coefficient value
obtained is accept-
able, reproducible
segmentation results
could not be achieved.
Further, disorder
detection is not per-
formed.

graded.

• The distortion in OCT images is anticipated to be due to speckle. Speckle is
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multiplicative in nature and therefore, it can be formulated as a data correlated

noise. In other words, a small perturbation in speckle affected data leads to am-

plification of intensity points in the data. Despeckling is thus a challenging task.

The existing image restoration algorithms blindly attempt to denoise and enhance

the contrast of images without considering the noise distribution in the data. As

Gaussian noise is additive and data-independent in nature, it does not capture the

inherent properties of the speckle. Therefore, it is necessary to propose a restora-

tion model that is adaptive to various distortions in the image.

• As the deep learning based restoration models rely on availability of the ground-

truth images and plethora of training images, there is a need to propose a restora-

tion model that can eliminate this requirement using concept such as deep image

prior.

• Transfer learning methods are widely applied to classify multiple retinal dis-

orders. Though the classification metrics of transfer learning models achieve

promising accuracy levels, these models may not offer reliable results for het-

erogeneous datasets, especially when the test dataset significantly differs from

training dataset. The adversarial nature of GAN makes it tunable for a variety of

applications such as generation of images, segmentation, and classification even

with partially available labeled data. Therefore, it is the need of the hour to anal-

yse the stability of GANs to classify multi-modal retinal images into normal or

abnormal.

Though a wide range of studies are available on each of these sub-domains, proposing

an end-to-end analysis for multiple retinal disorder detection is an open research prob-

lem. This is performed through the proposed research work. Considering the above

mentioned limitations and the ability of GANs to deal with semi-supervised data, the

performance of GANs for the dual task of segmentation and classification from CFP

and OCT images is explored through this research work.

40



2.6 SUMMARY

The retinal image analysis has been a limelight of research since the times of yore.

Exhaustive research publications are available related to the diverse imaging modal-

ities and disorders under study. The surge of articles has transformed the field of

telemedicine to the reality. The diverse methodologies and non-standardized quantifica-

tion metrics often tend to leave a juvenile researcher perplexed to identify the research

gaps. This chapter highlights some of the relevant works in retinal image analysis (In-

dian and International works), considering the last five years as a major focus. Deep

learning methods are the spotlight due to the availability of massive computational re-

sources. Though the training time is more, often the deep learning methods have out-

performed traditional methods in terms of metrics such as accuracy.

The common underlying theme for automatic retinal disorder detection mechanism

is to acquire training images from relevant imaging modalities, perform preprocessing

to enhance the contrast and denoise the images, further train the deep learning model

using various loss functions and deep learning architecture. The focus of such auto-

mated diagnosis methods is directed towards classification metrics of the deep learning

model or the dice coefficient for segmentation. The proposed work in the thesis shifts

the direction of importance towards restoring the images without oversmoothing or loss

of texture and edge details. When the details of the image is well preserved, it assists

to identify significant features during the segmentation and classification tasks. Vari-

ational methods associated with deep image prior concept are potential techniques to

restore image quality in this regard. Furthermore, the concept of semi-supervised GAN

architecture from the existing literature can be potentially expanded to perform dual

task of segmentation and classification of retinal images.

This chapter provides an insight into assorted preprocessing, segmentation, and

classification techniques trained and tested on private and public datasets. Majority

of these methods are not reproducible due to the incomplete implementation details or

due to the mismatch between input datasets. Therefore, a handful of works are con-

sidered for comparative analysis in this thesis. Apart from stating the pros and cons

for every method, this chapter provides a bird’s eye view of variational methods and
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non-local restoration frameworks. Finally, the chapter is concluded by identifying the

research gaps that are addressed through the proposed works.
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Chapter 3

RESTORATION AND ENHANCEMENT OF
RETINAL IMAGES

This Chapter proposes two different image restoration frameworks based on the fact

that the two modalities differ in image acquiring procedure. Recall from Chapter 1 that

CFP images suffer from contrast degradation. A novel retinex based non-local total

generalized variational framework is proposed in section 3.3 for contrast enhancement.

Further, realizing that speckle is inherent in grayscale OCT images, an adaptive non-

local deep image prior model is proposed in section 3.4. These two preprocessing

techniques restore the images such that the edge and texture related fine details are well

preserved.

As a first step, several CFP and OCT images are acquired from public repositories.

These images collectively differ in terms of resolution since various devices are used

to capture these images. Details of the datasets are elaborated in Chapter 4. Never-

theless, some of the degraded CFPs are demonstrated in Figure 3.1. The first row of

Figure 3.1 corresponds to images of patients with Glaucoma. The second row depicts

the AMD condition, and the last row is the fundus of normal retina. As evident from

this Figure, the illumination is non-uniform. These images are randomly selected from

the ODIR-2019 grand challenge dataset. A fundus image is regarded as degraded if the

structures such as the optic disc region, macula region, or blood vessels are not promi-

nently visible. Certain retinal disorders such as cataract also mask the structures on the

fundus. However, since our study is restricted to retinal disorders such as Glaucoma and

AMD, the degradation is assumed to be due to illumination inhomogeneity and pres-
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ence of drusen deposits. Thus the restoration algorithm should enhance the features

while retaining the structures such as optic disc and macula.

Similar to CFP, OCT images are distorted in terms of quality based on the dataset.

Certain instances of noisy OCT images are depicted in Figure 3.2. The OCT-B scans

of AMD cases are depicted in the first row of the Figure 3.2, while the successive rows

correspond to the DME and Normal conditions, respectively. The OCT images are con-

sidered noisy if the retinal layers are not distinguishable. The degradation is assumed

to be due to speckle, as mentioned earlier in Chapter 2. A detailed data distribution

analysis of fundus and OCT images is presented in next section.

Figure 3.1: Randomly selected degraded fundus images.

3.1 DATA DISTRIBUTION ANALYSIS

In general, the histogram plot of a homogeneous region can be used to identify the

contrast information and data distribution. Hence, the histogram of a relatively cleaner

fundus image and a degraded image is provided in Figure 3.3. Clearly, it can be con-

cluded from Figure 3.3(a) that the well-illuminated fundus image has a greater range of

intensities representing the image. On the other hand, the contrast limited fundus image

has a smaller spread of the RGB channel intensities (Figure 3.3(b)). The X-axis in the

histogram plot of the entire fundus image, represents the intensity values that can range
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Figure 3.2: Randomly selected degraded OCT images.

between [0-255]. The Y-axis denotes the frequency corresponding to a particular inten-

sity value. Furthermore, realizing the working principle of ophthalmoscopes (used to

acquire CFP, discussed in Chapter 1), from the existing literature and our experimental

study, it is observed that the data in CFP follows Gaussian distribution.

A similar histogram plot for OCT images is shown in Figure 3.4. The histogram of the

(a) Well-illuminated RGB fundus image.

(b) RGB fundus image with low contrast.

Figure 3.3: Histogram comparison of CFP.

image shown in subfigure 3.4(a) follows a particular distribution and the retinal layers
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(a) OCT image with distinguishable retina layers.

(b) Degraded OCT image.

Figure 3.4: Histogram comparison of OCT images.

are relatively distinguishable. It corresponds to the OCTID repository (Gholami et al.

(2020)) available in public domain, as discussed in Chapter 4. OCT image depicted in

subfigure 3.4 (b) corresponds to a different public repository (Reza et al. (2018)) and

here the influence of speckle is evident from its histogram plot.

Since OCT images are noisy and grayscale in nature, various formulations are pro-

posed in existing literature, as discussed in Chapter 2. Therefore, the OCT images

considered in the proposed research work, is analysed statistically to obtain the prior in-

formation about the noise model. Motivated by Febin et al. (2018), the data distribution

of image is identified using a similar procedure. Accordingly, a small homogeneous

region of variable size is randomly selected from multiple locations on OCT images.

The normalized patch intensity values are fitted with standard distribution functions,

namely, ’Gaussian’, ’Gamma’, and ’Rayleigh’, and the histogram of the data is plotted

against the standard curves. One example is shown in Figure 3.5(a). Here, the patch
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size is 49×52. The histogram plot appears to be much closer to the Gamma distribu-

tion from Figure 3.5(b). The Jensen–Shannon divergence (JSD) (Fuglede and Topsoe

(2004)) is estimated between the actual data and the fitted distribution. Refer Appendix

D.1.1 for the details of JSD. The smaller the distance, the higher is the similarity of the

data with the corresponding distribution. For most of the patches considered from dif-

ferent OCT images, a lower value of JSD is recorded for Gamma distribution as shown

in Figure 3.5(c). The p-value hypothesis test (Glen (2014)) is yet another way to iden-

Figure 3.5: Analysis of data distribution in a sample OCT image.

Figure 3.6: Data distribution of another OCT image.

tify the data distribution. The NULL hypothesis is: distribution follows Gamma. A

goodness of fit test is performed to confirm the similarity using Chi-square test. The

results are summarized in Figure 3.5(d). Accordingly, a higher p− value indicates that

the NULL hypothesis has to be accepted. In our study, 95% Confidence Interval is

used. This confirms that there is a close proximity of data distribution with Gamma.
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A similar instance is depicted in Figure 3.6 for another randomly selected OCT image.

Further, Bayesian maximum apriori estimate is employed to formulate the data fidelity

term, under the assumption that speckles in OCT images follow Gamma distribution.

3.2 BAYESIAN MAP ESTIMATE FOR GAMMA DISTRIBUTION

As the noise is multiplicative in its characteristics, it follows the following formulation:

U0 =U ∗N. (3.1)

where ’U0’ & ’U’ are noisy and clean images, respectively, ∗ denotes a normal point-

wise multiplication, ’N’ denotes data correlated noise.

Since the speckle noise of OCT images closely approximates Gamma distribution,

the probability density function f (U0) is given as:

f (U0) =
Uα−1

0 e−
U0
ζ

Γ(α)ζ α
. (3.2)

where Γ(α) is standard Gamma function, α & ζ > 0 are the shape and scale parameters,

respectively.

The variational framework for Gamma distribution is derived using Bayesian Max-

imum apriori estimate (Aubert and Aujol (2008); Balaji and Jidesh (2017)). The for-

mulation is restated here to ensure continuity in reading. The posterior estimate for the

noise density function is given as:

p(U0|U) =
p(U |U0)p(U0)

p(U)
, (3.3)

where p(U) denotes the probability function, p(U0|U) and p(U |U0) are posterior and

likelihood estimates, and p(U0) is a prior term associated with Gibbs’s prior denoted

as:

p(U0) =
e−λφ(U0)

Tn
,where Tn is a normalizing constant. (3.4)

The objective is to find the functional that maximizes the posterior estimate. Consider-

ing the log domain, maximizing the posterior is equivalent to minimizing the negative

log function, given as:

max
U0

logp(U0|U) = min
U0

{
− log p(U |U0)− log p(U0)+ log p(U)

}
, (3.5)

Under the assumption that the noise samples on each pixel are independent and identi-

cally distributed, the likelihood estimate is given by the product of sum terms denoted
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as follows:

p(U |U0) = Π
i

p(Ui|U0i) (3.6)

Since log p(U) is a constant, one shall ignore its contribution while estimating the max-

imum posterior. Thus, we can rewrite (3.5) as:

max
U0

logp(U0|U) = min
U0

{
− log

Uα−1
0 e−

U0
ζ

Γ(α)ζ α
− log

e−λφ(U0)

Tn

}
, (3.7)

This can be simplified further assuming that the contribution of constant terms are neg-

ligible. The final optimization model amounts to:

max
U0

logp(U0|U) = min
U0

{∫
Ω

(
logU0 +

U
U0

)
dΩ+λ

∫
Ω

φ(U0)dΩ

}
, (3.8)

where Ω = dxdy represents the entire image domain.

With necessary preliminary understanding about the data distribution in fundus and

OCT images, section 3.3 highlights the retinex framework and non-local variational

model to address the contrast degradation of fundus images.

3.3 RETINEX FRAMEWORK

Variational retinex models (Kimmel et al. (2003)) has been phenomenal in alleviating

the illumination inhomogeneity. Therefore, a perceptually inspired non-local retinex

framework (Zosso et al. (2015)) is adopted to enhance fundus images in our proposed

works. The advantage of using non-local models over traditional image enhancement

methods, like CLAHE is that the non-local methods preserve the texture and other edge

details present in images. Therefore, the quality of image is enhanced without losing

significant information. The retinex based non-local total bounded variational frame-

work is used to restore ultrasound images in earlier works (Febin and Jidesh (2021))

which is modified to fit the requirements of fundus image enhancement. For the sake of

completeness, the retinex based image restoration model is explained here. The retinex

theory states that the intensity function can be decomposed into reflectance (R) and

illuminance (L), respectively. The symbolic representation of this fact is:

U = R∗L, (3.9)

where U is the observed intensity (luminance), 0 < R < 1 is the reflectance component,

and 0 < L < ∞ denotes the illuminance component, respectively, defined in the image
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domain Ω ⊆ R2, and ∗ represents pointwise multiplication operation. Considering the

log domain, (3.9) can be rewritten as:

u = r+ l. (3.10)

where u = logU,r = logR, l = logL. Here the illuminance is the property of the source,

and it is spatially smooth function, while reflectance, substantially depends on the il-

luminated surface, usually represented by a piecewise constant function. Therefore,

these two components have to be treated independently to restore images. In general,

in a retinex based TV image restoration framework (elaborated in Appendix A.2), the

illumination inhomogeneity is minimized by considering the input image as an energy

functional where the objective is to estimate the minimum of the functional that satisfies

a set of constraints. In general, the awareness about limited dynamic range of the re-

flectance is set up as a constraint. This constraint minimization problem is converted to

an unconstrained one by introducing an additional penalty term for data fidelity which

is controlled by a regularization parameter. The formulation (introduced by Ng and

Wang (2011)) is given as:

E(l,r) = min
l,r

{∫
Ω

∥∇r∥dΩ + γ1

∫
Ω

∥∇l∥2
2dΩ + γ2

∫
Ω

(l− r−u)2dΩ + γ3

∫
Ω

l2dΩ

}
.

(3.11)

where dΩ = dxdy, ∥∇r∥ denotes the TV norm of the reflectance, second term ∥∇l∥2
2

is the squared L2 norm of illuminance, γ1,γ2,&γ3 are regularization parameters. The

term (l− r− u) denotes the data fidelity, and the term associated with γ3 is an addi-

tional term for theoretical setting. However, the piecewise approximation causes visual

discrepancies in the output. Moreover, the ordinary TV semi-norm is local in nature.

Therefore, the TV model is extended to a non-local domain (adapted from Febin and

Jidesh (2021)), by incorporating a weighted norm of the reflectance term. The energy

minimization model is denoted as:

E(l,r) = min
l,r

{
γ1

∫
Ω

W (r)∥∇NLTV r∥dΩ+ γ2

∫
Ω

(
exp(r)− 1

2

)2

dΩ (3.12)

+ γ3

∫
Ω

∥∇l∥2
2dΩ+ γ4

∫
Ω

(r+ l−u)2dΩ

}
.

where the first term associated with γ1, corresponds to the non-local weighted norm of

reflectance, where W (r) = 1+ 1
1+∥∇r∥ . The reflectance term is conditioned to be close to

average value as in Febin and Jidesh (2021); Li et al. (2012) using
∫

Ω

(
exp(r)− 1

2

)2
dΩ
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term. As illuminance is spatially smooth, L2 norm is introduced to the model for

the illumination correction. Minimization of error can be obtained by introducing the

constraint
∫

Ω
(r+ l− u)2dΩ for data fidelity. γ1,γ2,γ3,&γ4 are regularization parame-

ters. This functional is solved using Split Bregman (SB) method (Goldstein and Osher

(2009); Goldstein et al. (2009); Liu and Huang (2010)) and Euler-Lagrange equation.

Refer Appendix A.4 for details of SB scheme and Appendix A.3 for Euler-Lagrange

method . Applying SB technique, (3.12) yields three sub-problems denoted as:

E(r) = min
r

{
γ1

∫
Ω

W (r)∥∇r∥dΩ+ γ2

∫
Ω

(
exp(r)− 1

2

)2

dΩ+ γ4

∫
Ω

(r+ l−u)2dΩ

}
.

(3.13)

E(u) = min
u

{
γ4

∫
Ω

(r+ l−u)2dΩ

}
. (3.14)

E(l) = min
l

{
γ3

∫
Ω

∥∇l∥2
2dΩ+ γ4

∫
Ω

(r+ l−u)2dΩ

}
. (3.15)

These sub-problems are solved iteratively to obtain minimal solution, that represents the

restored image. Since the input image is a 3-channel RGB image, in the proposed ap-

proach, the input fundus image (RGB) is initially converted to Hue, Saturation, Values

(HSV) components. As the variations in the image are preserved in the V component

of HSV image, this is used for further processing (Refer Kimmel et al. (2003) for the

concept of HSV retinex framework). Finally, the RGB image is obtained using reverse

mapping of color space HSV to RGB. It is to be noted that the H and S components

are unaltered. The final enhanced RGB fundus image is used for classification. This

method is referred to as Non-local Total Variational Retinex (NLTVR) in the rest of the

document.

3.3.1 Need of L1 and L2 regularizers

Image denoising is treated as an energy minimization problem and solved using math-

ematical models. In general, the ill posed problem such as denoising is formulated

using norm minimization where the objective is to find the minimal solution that sat-

isfies the given constraints. For image denoising, the constraint is to preserve the data

fidelity while minimizing the noise (abrupt changes). Adding regularization terms will

assist to convert the constraint minimization problem to an unconstrained problem. The

L2-norm (Tikhonov regularization) removes the noise content and might result in over-
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smoothing and loss of edge details leading to a blurred image. Hence L1-norm is used

as it has edge-preserving ability. List of assumptions for the proposed work:

• If the image is generated from a physical process, its intensity values are propor-

tional to the energy radiated by a physical source. Therefore the image function is

finite and is expressed as a combination of illumination and reflection functions.

• The illumination function is spatially smooth.

• The reflection function is piecewise constant. It is bounded between 0 and 1.

• A noisy image has higher total variation than a clean image. Thus total variation

minimization is visualized as a convex minimization problem.

• The speckle is multiplicative in nature and follows Gamma distribution.

• The choice of architecture does have any significant impact on the results for a

deep image prior model.

3.3.2 Proposed Non-local TGVR framework

Recall from Chapter 2 and Appendix A.2, that the non-local total variational restoration

models are beneficial for texture preserved image restoration. Among the higher-order

TGV models, second-order TGV model is extensively used for various image process-

ing applications in the literature Kim and Kudo (2020). Since most existing Total Vari-

ation model considers only the first-order derivative, it suffers from problems such as

staircase artifacts and loss in smooth intensity changes for textures and low-contrast

objects, which is a major limitation in improving image quality. The first-order deriva-

tive is too sensitive to the pixel values, even linear intensity changes are detected as

false edges, which leads to staircase artifacts. The higher-order derivatives possesses

a potential risk that, as the order of differentiation is larger, its ability enhance image

edges is smaller leading to an image blurring problem. In the proposed work, we use a

combination of first and second-order TGV to preserve smooth intensity changes well.

The magnitude of first and second-order terms is controlled using a regulating function

to eventually improve the natural outlook of the restored results. The corresponding
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NLTGVR model includes two regularization terms: a non-local total variation (NLTV)

and a non-local total k-split variation (NLTKV). The NLTGV gradient ∇NLT GV R is cal-

culated using the following equation,

∇NLT GV R = t∇NLTV +
(1− t)

8
∇NLT KV , (3.16)

where t is a parameter to control the magnitude of first and second-order derivatives.

The first order derivative ∇NLTV is estimated as in Gilboa and Osher (2009) and second-

order derivative ∇NLT KV of pixels xi and x j is calculated as:

∇NLT KV =
8

∑
k=1
|(ui−uik)− (u j−u jk)|, (3.17)

where the value of k changes from 1 to 8 to find the difference between eight neighbor-

ing pixels (see Kim and Kudo (2020) for more details). For convenience, ∇NLT GV R of

r and u are represented as ∇̃r and ∇̃u, respectively in this document. As stated earlier

(in section 3.1), from the data distribution analysis and histogram of fundus images, it

is evident that contrast upgradation is necessary. However, without loss of generality,

it is assumed that the data follows Gaussian distribution. To address any additive white

Gaussian noise effectively, a weighted non-local total generalized bounded variation of

intensity image u is introduced as given below:∫
Ω

(W (u)∥∇̃u∥+β∥u∥2
2)dΩ, (3.18)

where ∥∇̃u∥ denotes the TV norm computed with non-local gradients, and a high value

of β adds more smoothing into the result by employing L2 norm (for further details refer

Febin and Jidesh (2021)). To enhance contrast of the image, a constraint to enforce the

histogram equalization (see Wang et al. (2020b)) is also included in the proposed model,

given as: ∫ L

l
(HU(τ)−Hc(τ))

2dτ. (3.19)

Here, the pixels are assumed to have integer values τ in the range [l,L] (for an 8 bit gray

scale image, it is in the range [0,255]), Hc is the cumulative histogram of a uniform

histogram image which is calculated as below:

Hc(τ) =
τ− l
L− l

, (3.20)

and HU is the cumulative histogram of output image U which is estimated as follows

HU(τ) =
1
M ∑

i∈Ω

χ[l,τ]Ui, (3.21)
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with

χ[l,τ](Ui) =

{
1, Ui ∈ [l,τ]

0, otherwise
. (3.22)

where M is the total number of points in the image domain Ω. The overall proposed

model for optimization is designed as:

E(l,r,u) = min
l,r,u

{
γ1

∫
Ω

W (r)∥∇̃r∥dΩ+ γ2

∫
Ω

(
exp(r)− 1

2

)2

dΩ (3.23)

+ γ3

∫
Ω

∥∇l∥2
2dΩ+ γ4

∫
Ω

(r−u+ l)2dΩ

+ γ5

∫
Ω

(W (u)∥∇̃u∥+β∥u∥2
2)dΩ+ γ6

∫ L

l
(HU(τ)−Hc(τ))

2dτ

}
,

where W (z) for z∈ {u,r}, is the weight function evaluated as 1+ 1
1+∥∇z∥ as explained in

Febin and Jidesh (2021). It aids to preserve the fine details. The weight increases as the

magnitude of gradient decreases and reaches a maximum value two, for a homogeneous

region. Equation (3.23) can further be split into separate minimization problems as

below:

E(r) = min
r

{
γ1

∫
Ω

W (r)∥∇̃r∥dΩ+ γ2

∫
Ω

(
exp(r)− 1

2

)2

dΩ (3.24)

+ γ4

∫
Ω

(r−u+ l)2dΩ

}
,

E(u) = min
u

{
γ4

∫
Ω

(r−u+ l)2dΩ+ γ5

∫
Ω

(W (u)∥∇̃u∥+β∥u∥2
2)dΩ (3.25)

+ γ6

∫ L

l
(HU(τ)−Hc(τ))

2dτ

}
,

and

E(l) = min
l

{
γ3

∫
Ω

∥∇l∥2
2dΩ+ γ4

∫
Ω

(r−u+ l)2dΩ

}
. (3.26)

3.3.3 Numerical Implementation

The above stated minimization problems can be solved using an efficient numerical im-

plementation. Here we use the SB iteration technique for obtaining a fast convergence

and reducing the parameter sensitivity as mentioned earlier. According to SB model,

new constraints c1 = ∇̃r, c2 = ∇̃u and auxiliary variables a1, a2 are introduced to reform
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the minimization problem in (3.24) and (3.25) as given below:

E(r) = min
r

{
γ1

∫
Ω

W (r)∥c1∥dΩ+ γ2

∫
Ω

(
exp(r)− 1

3

)2

dΩ (3.27)

+ γ4

∫
Ω

(r−u+ l)2dΩ+ γ7

∫
Ω

∥c1− ∇̃r−a1∥2
2dΩ

}
,

E(u) = min
u

{
γ4

∫
Ω

(r−u+ l)2dΩ+ γ5

∫
Ω

(W (u)∥c2∥+β∥u∥2
2)dΩ (3.28)

+ γ6

∫ L

l
(HU(τ)−Hc(τ))

2dτ

+ γ8

∫
Ω

∥c2− ∇̃u−a2∥2
2dΩ

}
.

For solving the equations (3.27) and (3.28) they are split into following sub-problems:

rk+1 = min
r

{
γ2

∫
Ω

(
exp(r)− 1

2

)2

dΩ+ γ4

∫
Ω

(r−u+ l)2dΩ (3.29)

+ γ7

∫
Ω

∥c1− ∇̃r−ak
1∥2

2dΩ

}
,

ck+1
1 = min

r

{
γ1

∫
Ω

W (r)∥c1∥+ γ7

∫
Ω

∥c1− ∇̃r−ak
1∥2

2dΩ

}
, (3.30)

uk+1 = min
u

{
γ4

∫
Ω

(r−u+ l)2dΩ+β∥u∥2
2 + γ6

∫ L

l
(HU(τ)−Hc(τ))

2dτ (3.31)

+ γ8

∫
Ω

∥c2− ∇̃u−ak
2∥2

2dΩ

}
,

and

ck+1
2 = min

u

{
γ5

∫
Ω

W (u) ∥c2∥dΩ+ γ8

∫
Ω

∥c2− ∇̃u−ak
2∥2

2dΩ

}
, (3.32)

The auxiliary variables a1 and a2 are revised in each iteration as given below:

ak+1
1 = ak

1 +(∇̃r− ck+1
1 ). (3.33)

and

ak+1
2 = ak

2 +(∇̃u− ck+1
2 ). (3.34)

Equations (3.30) and (3.32) are solved using shrinkage formula. For any V and Λ the

shrinkage operation is as given below:

shrinkage(V,Λ) =
V
|V |

max(|V |−Λ,0), (3.35)

and using the same, (3.30) and (3.32) can be rewritten as follows

ck+1
1 = shrinkage

(
∇̃r+ak

1,
W (r)

γ7

)
, (3.36)

and

ck+1
2 = shrinkage

(
∇̃u+ak

2,
W (u)

γ8

)
. (3.37)
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To solve minimization problems given in equations (3.29) and (3.31), Euler-Lagrange

equation is applied and later it is solved in Fourier domain as stated below (assuming

γ2 = γ3 = 1 ):

rk+1=F−1
(

γ4F (u−l)−γ9F (exp(r) (exp(r)−1/2))−γ7F (∇.(c1−∇̃r−ak
1))

γ4

)
(3.38)

and

uk+1=F−1
(−γ4F (r+l)+γ6F (HU(U)−Hc(U))−γ8F (∇.(c2−∇̃u−ak

2))

F (β −γ4)

)
(3.39)

where F denoted the Fourier Transform and F−1 is the inverse Fourier Transform. The

step by step procedure for solving the model is explained in Algorithm 1.

Algorithm 1: Algorithm for proposed NLTGVR restoration framework.
Input: U0← Noisy image

Output: Restored image U

1 Initialize k = 1,ε = 0.0001,c1
1 = 0,a1

1 = 0,c1
2 = 0,a1

2 = 0,u1 = log(U0), l1 =

max(u1),and r1 = (l1−u1)

2 while |u
k−uk−1|

uk < ε do

3 Calculate ck+1
1 using equation (3.36).

4 Estimate rk+1 as in (3.38).

5 Update ak+1
1 using (D.8).

6 ck+1
2 is calculated using equation (3.37).

7 Estimate uk+1 as in (3.39).

8 Update ak+1
2 using (3.34).

9 Calculate lk+1 using the following equation lk+1 = F−1
(

γ4F (u−r)
F (γ4+γ3∆)

)
.

10 end

11 Update U as exponential of e(l+r).

3.3.4 Experimental results

The implementation of retinex based non-local total generalized variational model to

enhance the fundus images is implemented using Matlab2018b, on core i5-6200U CPU
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@2.3GHz processor with 4 GB RAM. The visual results of enhancing randomly se-

lected fundus images from the ODIR-2019 dataset are presented in Figure 3.7. Here,

the first column represents input images. The second column denotes the output of

CLAHE. The third and the fourth column depicts the output obtained using NLTVR

and the proposed NLTGVR respectively. It is evident that applying CLAHE on these

images does not necessarily address the illumination inhomogeneity. The proposed

NLTGVR framework handles this issue while preserving the contrast in the optic disc,

fovea, and blood vessel region. Visually, the non-local methods provide similar results.

However, in some images, the staircase effect is visible at the boundary regions in the

case of total variational retinex models which is smoothed out in total generalized vari-

ational model.

Result Analysis:

Further, to quantitatively assess the image enhancement method, the histogram is plot-

ted for these images as given in Figure 3.8. Each histogram plot corresponds to the

images shown in Figure 3.7. The x-axis denotes the pixel intensity and the y-axis repre-

sents the number of pixels. Comparing the first column with the fourth column, we can

infer that the NLTGVR maps the input image with the higher range of intensities. The

CLAHE equalizes the histogram. Furthermore, a total of 50 CFP images are considered

for quantitative analysis. The statistical measure of Contrast is computed as:

C=
max−min
max+min

(3.40)

where max and min are the maximum and minimum intensity values in a randomly

selected patch on the image. From every fundus image, five different patches of size

50×50 are selected around blood vessels, optic disc, and macula region.

The box plot shown in Figure 3.9, represents the average contrast values of the input

fundus images, images enhanced using CLAHE, NLTVR, and the proposed NLTGVR

methods. Here, the whiskers of the box plot corresponds to the maximum and minimum

recorded contrast values. The horizontal strike line inside the boxes denote the median

value. Comparing the CLAHE method with the other non-local enhancement methods,

it can be inferred that the CLAHE has a greater spread of the contrast. This denotes
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Figure 3.7: Input and enhanced fundus images.

that certain structures are over-smoothed in some images. For instance, refer to the

visual output presented in sixth row of Figure 3.7. Here the CLAHE enhanced image

has darkened the region on the right side of the optic disc that appears to resemble

the macular region. However, there is a marginal difference between the proposed

NLTGVR method and the NLTVR method. Since the median value is approximately
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Figure 3.8: Histogram of degraded and enhanced images.

same as that of the input images, it confirms that the texture and edge details are well

preserved in these non-local restoration methods.

Global Contrast Factor (GCF) is measured to obtain the overall contrast enhance-

ment factor as recommended by Matković et al. (2005). Refer Appendix D.1.2 for

further details. The average values are shown in the form of a horizontal bar chart for
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Figure 3.9: Average contrast plot.

Figure 3.10: Global Contrast Factor.

Figure 3.11: Entropy plot.

the unprocessed image and enhanced images in Figure 3.10. Global Contrast Factor is

expressed as a weighted sum of the contrast in the neighborhood. Though the approach

of non-local enhancement method is to consider the neighborhood patches to relatively

enhance the images, Figure 3.10 shows that the proposed method enhances the fundus
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images well.

Finally, entropy (Refer Appendix D.1.3.) is recorded to obtain the amount of infor-

mation retained by each channel (Red, Green, Blue) of the RGB fundus image. Entropy

is a measure of amount of information present in the image. A higher entropy value de-

notes that the structures such as blood vessels and the abnormalities are well preserved.

Since the entropy is measured on a grayscale image, in general, for a RGB fundus im-

age, the entropy is recorded for each channel separately. Accordingly, from Figure 3.11,

the red channel has greater information compared to the green and blue channels in the

input image. This relation holds good for the proposed method as well. CLAHE on the

other hand, tends to equalize the pixel intensities. Overall, the average entropy value

is highest in the fundus image enhanced using the proposed method. There is no sig-

nificant difference in the average entropy values of the fundus images enhanced using

NLTVR and CLAHE methods.

As the name suggests, CFP is a color image (RGB) and it is affected by contrast

degradation more than the noise. The above mentioned qualitative and quantitative

analysis are in favour of the proposed retinex based non-local total generalized variation

restoration model to address the contrast degradation in fundus images. Unlike CFP,

OCT images are grayscale and from the working principle of OCT devices and existing

literature, it is evident that the speckle is inherent. Despeckling algorithm must adapt

to the data distribution and therefore a different preprocessing approach is designed for

OCT images. In the next section, the design of a non-local deep image prior model for

restoring OCT images is elaborated.

3.4 NON-LOCAL DEEP IMAGE PRIOR

Deep learning based restoration models are limelight of research in recent years. Com-

pared to traditional methods like filtering and spatial transformation based methods, the

deep learning models have the ability to automatically learn the features necessary to

map the given input to the output. This rules out the need of prior knowledge to some

extent. However, incorporating explicit prior, ensures the model learns right features
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and the model can produce reliable and stable results. In the deep learning approach,

the input to the model will be noisy image ’U0’. Let ’Û’ be the predicted denoised

image from the deep learning model after a particular set of iterations. The traditional

transfer learning methods of despeckling are primarily based on reducing the error or

the dissimilarity between the groundtruth clean image and the generated image. Thus

the model learns the hyperparameters that have to be applied on the unseen test image

from the training process. However, in the concept of deep image prior (elaborated in

Appendix B.1), instead of using plenty of training images, the training image is kept

constant, and the hyperparameters are searched during the learning process. Since the

ground truth image is not available, it is assumed that the process of mapping the recon-

structed image always passes closely to the domain of the clean image, as illustrated in

Appendix B.1. Therefore, the training is halted when an optimal result (visually pleas-

ing) is obtained. This way, the deep image prior model differs from traditional models

by eliminating the need for groundtruth images and the need of plenty of training im-

ages. Mathematically, it represents mapping of Û and U such that f (θ) =U , where θ is

hyperparameterization. At every iteration, θ is searched, and the corresponding output

image is reconstructed before computing the loss between them, forming an indirect

mapping to traditional loss function. The idea of DIP is to use implicit regularization.

Further Fan et al. (2020) used explicit regularization that minimizes the self-similarity

of the difference image. This is elaborately explained below.

Initially, at each iteration (epoch of training a deep learning model), a difference

image d between the predicted image ’Û’ and input noisy image is computed as:

d = |U−Û |. (3.41)

Then, the similarity between patches of the difference image is estimated using block

matching algorithm, as:

ρdi,d j = σdid j/σdiσd j . (3.42)

where ρ represents the correlation coefficient and σ is standard deviation, ’di’ and

’d j’ are patches centered at i and j respectively. Since despeckling is a process of

minimizing the dissimilarity, the uncorrelation factor is estimated as follows:

ρ
+(Ûi) = 1− 1

l

l

∑
k=1

(ρdi,d j)k. (3.43)
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Furthermore, the uncorrelated values are sorted and the first few values are multiplied

with original image intensity value. This is given as:

ρ
+
s (Û) =U ∗ρ

+(Ûi) (3.44)

Combining the explicit regularization with the mean square error term for image recon-

struction, the objective function proposed by Fan et al. (2020) is:

L = argmin
θ

(∥U−Û∥2
2 +λ∥1−ρ

+
s (Û)∥2

2). (3.45)

As the mean square error term may not address the speckle property, the proposed

non-local deep image prior model is tuned to handle the Gamma noise. The modified

objective function is given as:

L = argmin
θ

(∥ logÛ +
U
Û
∥2 +λ∥1−ρ

+
s (Û)∥2

2). (3.46)

where λ acts as a regularization parameter and controls the effects of over-smoothing,

θ denotes the hyperparameterization (weights and bias of the model). The first term

is specific to denoise the Gamma noise derived using Bayesian MAP as explained in

section 3.2, and the second term is to estimate the similarity of the reconstructed image.

λ is the regularization parameter. The deep learning model in proposed approach is a

U-net (following the similar architecture as given by Fan et al. (2020)). It has a series

of convolution layers doubling at each layer-16, 32, 64, and 128 with a filter size of 3

× 3. A stride of 4 is set at the last layer. The overall depth of the network is 4 layers.

The generic architecture diagram is given in Figure 3.12. Adam optimizer is employed

to solve the above objective function and the number of iterations vary between 1000

and 2000. Based on the empirical analysis, λ value in equation (3.29) is set as 0.25 for

most of the images as it was providing considerably good restoration of the input data.

3.4.1 Experimental results

The implementation of proposed non-local deep image prior model to despeckle OCT

images is implemented using Pytorch and python. The machine type is n1-standard-8 (8

vCPUs, 30 GB memory), with 1 NVIDIA Tesla V100 GPU created using Google Cloud

Platform. The CPU configuration employed is Intel Xeon E5-2698 v4 @2.2GHz, with

51.2MB cache size, 20 cores, and has 265GB RAM. Apart from OCT image, one syn-

thetic image is also considered to estimate the performance, as shown in Figure 3.13(a).
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Figure 3.12: Architecture of proposed non-local deep image prior model.

A clean image represents the original synthetic image before incorporating the noise.

For a normalized image of size 128 × 128, the speckle noise is introduced with mean

1, and the variance 0.1 (Figure 3.13(b)). To handle the division by zero error, a small

constant of 0.0001 is added wherever necessary. The proposed approach produces the

output as shown in Figure 3.13(d). These images show that the proposed approach gen-

erates a clean image relatively better than the non-local deep image prior method shown

in Figure 3.13(c) (Fan et al. (2020)). Some of the related works are chosen for quan-

(a) Clean image (b)
Noisy,(µ=1,σ2=0.1)

(c) Method in Fan
et al. (2020)

(d) Proposed ap-
proach

Figure 3.13: Results of despeckling synthetic image.

titative analysis of the proposed approach. Accordingly, methods discussed in Jidesh

and Banothu (2018), Muxingzi et al. (2017), Ulyanov et al. (2020), Fan et al. (2020),

and Sukesh and Sivaswamy (2018) are henceforth referred as "method_1", "method_2",

"method_3", "method_4", and "method_5" respectively. The quantitative metrics used

to assess the image quality are defined in Appendix D.1. The PSNR value recorded

after despeckling the synthetic image using various methods is plotted using the bar
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chart in Figure 3.14. A higher value of PSNR indicates a better image quality. From

this Figure, it is clear that the proposed approach performs better despeckling under

the multiplicative noise framework. SSIM (Wang et al. (2004)) is another metric for

measuring the similarity between the denoised image and a clean image. It is used

to measure the luminance, contrast, and structure of two different images. The value

of SSIM for normalized images ranges between 0 and 1. Index value 0 indicates that

the two images are not similar, while a value of 1 represents the two images are per-

fectly similar and the structures are well preserved. Since the expected clean image is

available for synthetic image, SSIM is measured, and the plot of the same is given in

Figure 3.15. The bar chart depicts SSIM value close to 1 for the proposed approach.

Therefore, the noise reduction and details preservation of the proposed model is duly

demonstrated in these figures and an inference about the efficiency of the model under

consideration is compared therein. Visual results for despeckling OCT images using

Figure 3.14: PSNR values after restoring synthetic image shown in Figure 3.13 (b).

the proposed approach are depicted in Figure 3.16. The first row represents the input

images. Successive rows display the best results of despeckling using mean square

error (MSE) loss function (Ulyanov et al. (2020)) and the proposed Gamma loss func-

tion, respectively. It can be observed that the retinal layers are well preserved using the

proposed approach. The progressive transformation of noise vector in latent space to

the denoised image is given in Figure 3.17. The reference input for this is the image

in Figure 3.16(c). As it can be seen beyond 1000 iterations, the predicted image re-

sembles the input noisy OCT image. Similarly, multiple images were analysed, which
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Figure 3.15: SSIM values after restoring synthetic image shown in Figure 3.13 (b).

were acquired from public domain (Fang et al. (2012)). For every image, the number

of iterations needed to obtain visually appealing results is varied. Table 3.1 summarizes

the PSNR values obtained for all three images shown in Figure 3.16. The PSNR was

tracked during every iteration, and the final highest value obtained is recorded. It is ev-

ident from this table that the proposed approach is on par with existing methods. The

(a) Input Image 1 (b) Input Image 2 (c) Input Image 3

(d) Method in Ulyanov et al.
(2020)

(e) Method in Ulyanov et al.
(2020)

(f) Method in Ulyanov et al.
(2020)

(g) Proposed approach (h) Proposed approach (i) Proposed approach

Figure 3.16: Three different OCT images are shown in row 1 from left to right. Sec-
ond row corresponds to the deep image prior despeckling using mean square error loss
function. The best output obtained using proposed gamma loss formulation is depicted
in row 3.
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Table 3.1: PSNR values (in dB) of OCT images.

Image no. Method in Ulyanov et al. (2020) Proposed Method
1 26.43 26.65
2 25.795 26.10
3 21.756 22.031

(a) Iteration 0 (b) Iteration 100 (c) Iteration 500

(d) Iteration 800 (e) Iteration 1000 (f) Iteration 1500

Figure 3.17: Progression of despeckling using Gamma loss framework for given input
image. The noise in iteration 0 is transformed to a cleaner version of the input image
by 1500 iterations.

proposed method is compared visually with some of the existing works, as mentioned

earlier. The output obtained for input image Figure 3.16(b) using various approaches

is depicted in Figure 3.18. To highlight the clarity of retinal layers, the output image

is cropped around the fovea region. Here, Figure 3.18(a) represents the input noisy

OCT image. Outputs shown in Figures 3.18(b), 3.18(c), 3.18(d), 3.18(e), and 3.18(f)

corresponds to "method_1", "method_2", "method_3", "method_4", and "method_5".

The proposed framework given by (3.29) is coined as "proposed" henceforth, and the

corresponding result is given in Figure 3.18(g). From these figures, we can observe that

the image enhancement is qualitatively better in Jidesh and Banothu (2018). However,

the gray level values are chopped out in the resultant image making it more closer to a

bi-level image. The methods Ulyanov et al. (2020) and Fan et al. (2020) over-smooth

the retinal layers. It is because the stopping condition is not defined by any constraint.

The proposed approach preserves the retinal layers and abnormalities relatively better

than the comparative methods while despeckling the input OCT image. Statistical anal-

ysis of the proposed approach is performed using the standard image quality metrics,
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(a) Cropped input image (b) Method in Jidesh and
Banothu (2018)

(c) Method in Muxingzi
et al. (2017)

(d) Method in
Ulyanov et al.
(2020)

(e) Method in Fan
et al. (2020)

(f) Method in Sukesh
and Sivaswamy
(2018)

(g) Proposed ap-
proach

Figure 3.18: Partially cropped output images obtained using various methods corre-
sponding to input image (Figure 3.16(b)) to visually highlight the retinal layer region.

namely, Contrast Noise Ratio (CNR) and Equivalent Number of Looks (ENL), which

are most widely used, as discussed in the overview section. CNR is an image quality

assessment metric that is similar to SNR, but it eliminates the bias influence. Ideally,

a higher CNR value signifies a better contrast ratio in the image. ENL is a statistical

measure that is computed as a ratio between the mean and the variance. Since the noise

in an image implies high variance, the higher value of ENL signifies a cleaner image.

Further, to evaluate CNR, homogeneous patches are randomly selected from the out-

put image obtained using different methods ("method_1", "method_2", "method_3",

"method_4", and "method_5"). Two such homogeneous region selections are depicted

in Figure 3.19 (for input image Figures 3.16(a) and 3.16(b)). As shown here, the red

block indicates the background region with dark pixels, and the green block denotes

the foreground region with bright pixels. Although multiple images and multiple ho-

mogeneous regions were analyzed experimentally, the results of randomly selected four

patches are depicted in this section. It is further noted that the results obtained for the

other patches follow a similar pattern. Figure 3.20 is a graph plot of CNR values in
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dB. In the Figure, the horizontal axis denotes various patches. In other words, the no-

tations im1_p1, im1_p2, im2_p1,&im2_p2 represent set of background and foreground

patches (p1, p2) selected from the set of images (im1, im2). It is ensured that the same

patch is considered across all output images obtained using different methods. The

bars represent various methods (method_1− 5) along with the proposed one. Clearly,

the CNR value of the proposed method is higher for most patches. Method_4 also

provides competitive results. The ENL values obtained for randomly selected homo-

geneous patches are obtained and presented in the form of a bar graph in Figure 3.21.

As higher value indicates better image quality, the proposed method projected higher

ENL values compared to method_4. It was observed that, for most patches considered,

the statistical values were in similar scale. In a nutshell, the proposed model outper-

forms other comparative models in terms of both visual and statistical quantification as

observed from the comparative results. The performance of the model is well justified

by the theoretical design of the model. Unlike most other works in the literature, the

proposed one duly considers the distribution of noise in the input data, which accounts

for its better performance in the comparative analysis.

(a) Patches selected from in-
put image (Figure 3.16(a))

(b) Patches from input image
(Figure 3.16(b))

Figure 3.19: Patches of two images, red box indicates the background region and green
box indicate the foreground region. Here red block and green block together is denoted
as a patch (p1 or p2).

3.5 SUMMARY

Restoration of degraded CFP and OCT images is the fundamental requirement, prior to

the development of automatic disorder detection models. As stated in Chapter 2, exist-

ing restoration methods tend to ignore the noise distribution in the image. Moreover,

these methods might result in over-smoothing when tested on images from multiple

repositories.
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Figure 3.20: Average Contrast Noise Ratio for the input images shown in Figure 3.16.

Figure 3.21: Average ENL values for the input images shown in Figure 3.16.

To begin with, the Chapter presents a qualitative comparison of CFP and OCT im-

ages available in the public domain. Further, a statistical method involving hypothesis

testing and distribution fitting is explained, that can be applied to assess the probabil-

ity of data distribution in OCT images. The retinex based non-local total generalized

framework for contrast enhancement is proposed to address the illumination inhomo-

geneity of fundus images. The results of the proposed approach is quantitatively an-

alyzed using metrics such as contrast and entropy. Though the proposed NLTGVR

method is computationally expensive with patch based analysis, the processing time is
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boosted using SB approach and GPU. From the result analysis, it is evident that the

proposed NLTGVR outperforms CLAHE in terms of detail preservation and contrast

enhancement. The GCF has improved due to the proposed non-local image restoration

methods. The limitation of the proposed NLTGVR is that it involves numerous regular-

ization parameters that are decided empirically for every input image. Therefore, as a

scope of future work, an algorithm has to be developed that can automatically estimate

the regularization parameters. As an extension of the proposed NLTGVR method, the

OCT images are despeckled and enhanced by adding an appropriate noise suppress-

ing term related to Gamma distribution. The details of this method is published in a

journal1.

Despeckling OCT images is a daunting task as the speckle is multiplicative in na-

ture. In this Chapter, a novel deep image prior based non-local image restoration is pro-

posed to restore degraded OCT images. Qualitative and quantitative analysis confirms

that the proposed model effectively removes speckle from the input images. The major

benefit of the proposed method is that it does not require ground-truth clean images.

Though this is a deep learning based method, the model is trained using single input

image. A skip connection based U-net is employed as the deep learning architecture.

The method is tested on OCT images of different datasets and also on synthetic images.

The proposed method is compared with other despeckling methods. The results of this

work is published as a research article2. It is evident that the PSNR and SSIM signif-

icantly improved when the proposed method is applied on input synthetic images. As

the proposed work performs a sole task of despeckling, future works include extension

of the deep image prior models for contrast enhancement using retinex framework. The

limitation of the work is that the number of iterations needed to obtain visually pleasing

results is intuitively decided using empirical analysis. Nevertheless, certain techniques

to identify an automatic stopping criteria is proposed in recent years. It is based on the

assessment of the image quality metric such as PSNR in every training iteration. The

1A. Smitha, I.P. Febin, P. Jidesh, A retinex based non-local total generalized variation framework for
OCT image restoration, Biomedical Signal Processing and Control, Volume 71, Part B, 2022, 103234,
ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2021.103234.

2A. Smitha & P. Jidesh (2021) A nonlocal deep image prior model to restore optical coher-
ence tomographic images from gamma distributed speckle noise, Journal of Modern Optics, DOI:
10.1080/09500340.2021.1968052.
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fundamental idea is to train the model until no further improvement is observed in the

image quality. Integrating this aspect to the proposed approach is taken up as a future

work.

To summarize, the first research objective is mapped to this Chapter. The proposed

method answers partial research questions as follows. The retinex based framework

effectively enhances the quality of CFP images. The speckle in OCT images follow

Gamma distribution. The deep image prior model can be successfully employed to

despeckle OCT images. The related works in this direction are reviewed in the previous

Chapter. The effect of applying the proposed preprocessing models for automatic retinal

disorder classification, will be discussed in the next Chapter.
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Chapter 4

GENERATIVE ADVERSARIAL
NETWORKS FOR AUTOMATIC RETINAL
DISORDER DETECTION

This chapter presents novel GAN models to detect the retinal disorders from pre-

processed CFP and OCT images. Images from public repository are used to train the

GAN model. Some of the relevant works described in Chapter 2 are chosen for com-

parative study. The rest of the Chapter is organized as follows. The list of datasets used

in the proposed work is described in section 4.1. The preliminary details of GAN and

its variants is provided in section 4.2. The proposed deep learning architecture for CFP

and OCT image analysis is illustrated in sections 4.3 and 4.4, respectively. Section 4.5

is reserved for experimental results and discussion. Finally, a summary of the Chapter

is presented in section 4.6. Refer Appendix C.3 for a detailed explanation of various

"layers" and "hyperparameters" used in the deep learning architecture.

4.1 DATASETS

Multiple publicly available fundus image datasets are acquired from various sources as

shown in Table 4.1. Based on the available ground truth data, the entire repository is

divided into three groups as three different tasks are performed. Images from Retinal

Fundus Glaucoma Challenge (REFUGE) (Orlando et al. (2020)) and Indian Diabetic

Retinopathy Image Dataset (IDRiD) (Porwal et al. (2018a,b, 2020)) grand challenges

are considered as first group. These are labeled datasets and have groundtruth data

for fovea localization and optic region segmentation. The second group of images in-
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cluded Mendeley-2020 (Akram et al. (2020)), IOSTAR-2016 (Zhang et al. (2016)),

High-Resolution Fundus (HRF)-2013 (Budai et al. (2013)), CHASE-DB-2012 (Fraz

et al. (2012)), Digital Retinal Images for Vessel Extraction (DRIVE)-2004 (Staal et al.

(2004)), and STructured Analysis of the Retina (STARE)-2000 (Hoover et al. (2000)).

These datasets purely provide the gold standard manual segmentation of retinal blood

vessels. Therefore, a combined group of images are used for the blood vessel seg-

mentation task. The final group of images from the ODIR-2019 dataset is used for

classification. Data augmentation on the fly is incorporated in every phase to increase

the number of samples. Random rotation by 2 degrees, horizontal and vertical flip, and

brightness variations are the augmentation considered. All images are normalized and

mean-centered before feeding it to the model. In order to train a deep learning model,

it is necessary to maintain uniform image resolution for every batch of input training

images. After removing the outliers, the average resolution of images is found to be

1538×1394. However, resizing all images to this size and training the model requires

massive resources. To ensure optimal memory usage, the images are resized into 512

× 512.

The OCT datasets used are listed in Table 4.2. It must be noted that, compared to

the CFP images, the number of OCT datasets available in public domain is smaller.

Moreover, the groundtruth segmentation of OCT images is unavailable in public do-

main. Therefore, the OCT images are not subdivided for multiple tasks. Training the

GANs using heterogeneous datasets enables the model to learn multiple features from

the retina, irrespective of the source.

4.2 GENERATIVE ADVERSARIAL NETWORKS-PRELIMINARIES

A GAN (Goodfellow et al. (2014)) consists of a generator ’G’ and a discriminator ’D’

modules as shown in Figure 4.1. The generator tries to generate the fake images while

the discriminator tries to distinguish between real and fake. The generator maps the

noise vector drawn randomly from a probability distribution (Gaussian), to a distribu-

tion similar that of the original input. The discriminator accepts samples of real input
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Table 4.1: List of CFP datasets in public domain.

Sl.
No.

Challenge-
Year

No.
im-
ages

Description Size Format

1 REFUGE-
2018 &
2020

2000 Grand challenge that involves three tasks:
Classification of Glaucoma and normal,
segmentation of Optic Disc region and
Fovea localization. images are acquired
from 2 types of devices.

2056×2124 jpg

2 IDRiD-
2018

400 Images of diabetic retinopathy grading
were acquired from Eye Clinic in Maha-
rashtra, India, using a Kowa VX-10 al-
pha digital fundus camera with 50-degree
field of view. The challenge tasks are sim-
ilar to REFUGE.

1204×1500 jpg

3 Mendeley-
2020

100 Images are taken from Armed Forces
Institute of Ophthalmology (AFIO),
Rawalpindi, Pakistan. Annotated arteries,
veins and combined vessels are provided
along with fundus images

1504×1000 jpg

4 IOSTAR-
2016

30 The images in the IOSTAR vessel seg-
mentation dataset are acquired with an
EasyScan camera (i-Optics Inc., the
Netherlands), which is based on a SLO
technique with a 45 degree Field of View
(FOV)

1024×1024 jpg, tif

5 HRF-2013 45 Fundus images of 15 healthy patients, 15
diabetic retinopathy and 15 glaucoma pa-
tients are acquired using a Canon CR-1
fundus camera with a field of view of 45
degrees. Binary gold standard vessel seg-
mentation images are available for each
image.

3504×2336 jpg

6 CHASE-
DB-2012

28 Retinal image analysis is the major focus
of this project. Blood vessel manuals for
14 left and 14 right eye fundus images are
provided in this repository

1280×960 jpg

7 DRIVE-
2004

40 33 normal and 7 mild diabetic fundus im-
ages and corresponding manual segmen-
tation is available as ground truth. Im-
ages are acquired from The Netherlands.
Masks to obtain the region of interest is
also provided.

768×584 tif

8 STARE-
2000

20 Images acquired from Shiley Eye Center
at the University of California, for blood
vessel segmentation from retinal fundus
images. Manually annotated blood ves-
sels are provided.

700×605 tiff

9 ODIR-
2019

7000 Images are collected from various hospi-
tals by Peking University in China. At
present, this is the largest diverse repos-
itory of fundus images available publicly
for classification. However, only 1000
images, belonging to glaucoma and nor-
mal condition are used in our work.

1800×2400 jpg
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Table 4.2: Details of OCT repositories in public domain.

Dataset Description Year
Dataset 1, (Reza et al.
(2018))

OCT-B scans belonging to three categories, namely: AMD,
DME, and NORMAL. Images are acquired using Heidel-
berg spectral domain-OCT This dataset consists of about
3980 OCT-B scan images.

2017

Dataset 2, (Kermany
et al. (2018a))

This dataset has 83,605 OCT images with 4 categories,
namely: CNV, DME, NORMAL,and DRUSEN. Images are
acquired from various hospitals

2017

OCTID - Dataset 3,
(Gholami et al. (2020))

The OCT images are acquired from Carl Zeiss, High Defi-
nition OCT device. It consists of 59 images corresponding
to Age-related Macular Degeneration and 205 RGB images
belonging to Normal Categories.

2019

and the generator output, thereby working as a binary classifier to predict whether the

input maps to real data or fake data. Since the generator learns the pattern in input data

Figure 4.1: Basic architecture of GAN.

without any other information, the generative modeling is also referred as an unsuper-

vised learning. During the training process, both G and D are trained simultaneously. In

other words, for every batch of input data, the generator generates certain samples. The

generated samples are fed to the discriminator. The error in prediction is then computed

using the real data. Initially, the discriminator will be able to clearly identify the fake

data. Hence, the discriminator weights will be rewarded. On the contrary, the generator

weights are penalized to ensure the generator generates realistic samples in the next

batch. Gradually, the discriminator fails to distinguish the fake samples and it will then

be penalized to improvise its prediction. This scenario of a zero-sum game is referred

as adversarial learning. Finally, when the training is complete, the D is discarded and

only trained G is used for further analysis. The trained features of G can be used for
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applications such as transfer learning. As illustrated by Goodfellow et al. (2014), the

adversarial loss of a GAN architecture is given as:

E[log(D(Xul))]+E[log(1−D(G(z)))]. (4.1)

where ’Xul’ represents the set of input images from sample dataset, ’E’ is the expected

value over all real data instances, G(z) is generator’s output with noise vector z as input,

and D(Xul) is the prediction of the discriminator when real images are fed as input. The

log term refers to the standard log operation with base 10 throughout the rest of the

document unless explicitly mentioned with a different base. However, replacing the log

term with natural log (ln) does not alter the performance of the model. The generator

tries to minimize the component log(1−D(G(z))) in order to fool the discriminator.

The discriminator tries to maximize the log(D(Xul)) term. Hence, this loss function is

termed as a minimax loss function.

Training a GAN is challenging compared to the traditional CNNs, since the weights

associated with G and D are updated using the same batch of images sequentially. More-

over, the performance depends on activation function used, the depth of the network and

the number of training samples. Some of the definitions of activation functions is given

in Appendix C.3. To ease the effort involved in training a GAN model and to boost

the performance, specific best practices are proposed in the recent literature (Salimans

et al. (2016)). Several variants of GANs are introduced in recent years namely, Auxil-

iary Classifier (AC-GAN) (Odena et al. (2017)), Pix-to-pix GAN (Isola et al. (2017)),

Wasserstein Generative Adversarial Network (WGAN) (Arjovsky et al. (2017)), semi-

supervised GAN (Odena (2016)), and so on (Jason (2019)). A semi-supervised GAN

works as a classifier when partially labelled dataset is available. The model learns the

features from unlabeled dataset and it learns the labels to predict from limited labelled

dataset. The discriminator in a semi-supervised GAN is transformed to a multi-class

classifier as it classifies the input image into ′K′ different categories (Odena (2016))

in addition to the discrimination between real and fake samples. This is achieved by

extending the number of classes from K to K + 1, where the extra class denotes the

fake category. The ’D’ of a traditional GAN accepts two inputs - real image and the

generator output. Unlike these traditional GAN, the ’D’ in a semi-supervised GAN ac-
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cepts three inputs - labeled images, unlabeled images, and the generator output. This

aids the discriminator to learn features from broader perspective and therefore, it need

not be discarded after training. The discriminator now has two branches: one branch

is called supervised since it has to compute the loss for multiple class label prediction,

and the other is an unsupervised branch that discriminates real and fake using sigmoid

activation function. The combined objective function, motivated by Odena (2016), for

the semi-supervised GAN is:

E[log(p(Yl|Xl,Yl <K+1))]+E[log(1− p(Yl =K+1|Xl))]+E[log(p(Yul =K+1|Xul))].

(4.2)

where the first term contributes for the supervised classification into ’K’ categories, sec-

ond and third term monitors the distinction between real and fake samples of labeled

(Xl,Yl) and unlabeled (Xul) data samples, respectively. It is recommended by Sali-

mans et al. (2016) that the dropout layers can be used extensively in a semi-supervised

GAN as regularization to avoid over-fitting scenario. Considering the fact that limited

groundtruth segmentation images are available from CFP modality, while relatively a

larger number of images are available as labelled dataset for classification, the obvious

choice to implement the dual task in the proposed work is semi-supervised GAN. How-

ever, the unavailability of groundtruth segmented images for OCT datasets motivates

the adaption of WGAN for the proposed work.

WGAN is an extension of traditional GANs, that conceptually shifts the discrimina-

tor from discriminating between real and fake to grade the realness of the input image.

The discriminator of WGAN is therefore called as a critic model. It works by measuring

the distance between the generated distribution and the real distribution and improves

the stability of training a GAN with limited data. The objective function of WGAN as

recommended by Arjovsky et al. (2017) is expressed as follows:

sup
|| f ||≤1

E[ f (Xl)]−E[ f (z)], (4.3)

where E is standard expectation function, sup is the least upper bound and f is 1-

Lipschitz function satisfying the constraint:

| f (a)− f (b)| ≤ |a−b|. (4.4)

where (.) represents the discriminator or the critic that predicts the output on real images
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and the images generated by the generator. The stability of WGAN, lesser sensitivity

to the model architecture, and hyperparameter configurations are the major benefits for

choosing WGANs in proposed work of OCT image analysis.

4.3 GAN MODEL FOR FUNDUS IMAGEs

Multiple feature extraction from retinal fundus images, like fovea, optic disc, and blood

vessels, along with classification of retinal disorders is the significant contribution of the

proposed work. The appropriate deep learning model to perform multiple tasks is GAN

due to its adversarial nature. The training stage includes two GAN models, namely,

VGAN for segmentation and semi-supervised GAN for classification as depicted in

Figure 4.2. VGAN consists of a generator and a discriminator. The generator accepts

Figure 4.2: Block diagram for fundus image analysis.

input images and generates fake segmented images. Discriminator tries to distinguish

between the ground truth segmentation images and fake images generated by the gener-

ator. The detailed architecture of the generator and discriminator used for segmentation

is shown in Figure 4.3. In the proposed model, the number of filters begins from 16, and
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doubles in every layer. It was observed from multiple trials that the number of filters

less than or equal to 256 gives a good performance. Considering that GV ,DV are gener-

ator and discriminator models of VGAN respectively, the overall objective function of

VGAN is:

LV GAN = argmin
GV

[
max
DV

LGD

]
+αLSeg, (4.5)

where α > 0 is balancing parameter to monitor the segmentation (LSeg) and discrimi-

nation process. The first term corresponds to the minimax game of the VGAN, similar

to 4.1, and is given as:

LGD =−E[log(DV (Xul))]−E[log(1−DV (GV (Xul)))], (4.6)

Considering the segmentation problem to be a mapping of input to groundtruth images,

it can be associated with binary cross entropy loss as given as:

LSeg = E[−Yul log(GV (Xul))− (1−Yul) log(1−GV (Xul))]. (4.7)

In order to perform segmentation, only the trained generator of VGAN is used and the

final discriminator is discarded after training.

Figure 4.3: Architecture of VGAN.

Fovea localization: Consider a fundus image, U of size (width× height) picked

from the REFUGE and IDRiD grand challenge datasets. Let the pixel location of fovea
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be denoted as U(x,y). A distance map is created by computing the Euclidean Distance

of every pixel to this point, given as:√
(xi− x)2 +(y j− y)2; (4.8)

∀(i, j) such that 1 ≤ i ≤ width &1 ≤ j ≤ height. Since the distance of a point to itself

is zero, it is the brightest pixel marked in white color, and as the pixel around this point

is equidistant, the color gradually turns gray. The image is then normalized using:

U(x,y) =
[

1− U(x,y)
max(U(x,y))

]α

, (4.9)

where 0<α ≤ 1. Such distance maps (feature maps) are used as ground truth data. One

such feature map and its corresponding input fundus image are shown in Figures 4.4a

and 4.4b, respectively. Now the GAN is trained to generate such fovea localized images

for any given input image. Once the model is trained, for any given test fundus image,

it generates a fovea distance map. The centroid of the blob region, in the generated

feature map, is computed using:

ψx,y =
( 1

width

width

∑
k=1

xk,
1

height

height

∑
k=1

yk

)
. (4.10)

Optic disc segmentation: For the optic disc, the ground truth images are provided

by REFUGE and IDRiD grand challenge. Hence, the GAN model is trained using these

ground truth images. For a sample given input image (Figure 4.4c), it generates the

optic disc, as shown in Figure 4.4e. The corresponding ground truth is shown in Figure

4.4d. As a next step, the centroid of the blob region is computed using eqn. (4.10).

This central pixel marks the center of the optic disc. A region of 100 × 100 is cropped

around this center from the original input image as shown in Figure 4.4f.

Vessel extraction: The groundtruth data from various resources are combined. The

GAN is trained to segment the blood vessels, for any given fundus image. A sample

input image, corresponding ground truth manual segmentation and generated images

are shown in Figures 4.4g, 4.4h, and 4.4i, respectively.

Classification: Once the image is preprocessed, the entire dataset is distributed

into three sets for training, validation, and testing in the ratio of 60:20:20 (heuristic ap-
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(a) Input fundus image (b) Fovea feature map (c) Input fundus image

(d) Optic disc groundtruth (e) Optic disc predicted (f) cropped optic disc

(g) Input fundus image (h) ground truth (i) Prediction

Figure 4.4: Segmentation of optic disc, fovea and blood vessels of randomly selected
fundus image using GAN.

proach). The semi-supervised GAN model is trained with these images. It works with

partially labeled data. The generator maps the noise vector to fake images that resem-

ble the unlabeled data. The discriminator performs two tasks (as highlighted by Das

et al. (2020)). The first task is to classify the labeled images into normal or abnormal

(CS), termed as a supervised discriminator. The second task is to discriminate between

real and fake images (DS), called as an unsupervised discriminator. This is achieved by

extending the K-category classification problem into K+1 level classification. The addi-

tional level is obtained by normalizing the outputs of the final layer in the discriminator

model. The architecture of the proposed semi-supervised GAN is depicted in Figure

4.5. The loss functions of CS,DS and GS, adapted from 4.2, are given as:

L(CS) =−E[log(p(Yl|Xl,Yl < K +1))], (4.11)

where, K = Number of classes.

L(DS) =−E[log(1− p(Yl = K +1|Xl))]−E[log(p(Yul = K +1|Xul))], (4.12)
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Figure 4.5: Semi-supervised GAN architecture.

where, p denotes the conditional probability. Once the semi-supervised GAN is trained

only the supervised discriminator (CS) is retained to perform classification on different

test datasets and the rest of the model is discarded. Throughout the GAN architecture,

a stride of 2 and kernel size of 5 × 5 is used. The batch size is set to 64. Adam

optimizer and RMS-Prop are used as optimizer for discriminator and generator network,

respectively.

4.4 GAN MODEL FOR OCT IMAGES

As mentioned earlier in this Chapter, among the variants of GANs, WGANs is less

sensitive to modification in hyperparameters and the number of layers giving a stable

performance (Arjovsky et al. (2017); Gulrajani et al. (2017)). So, WGAN is used in

the proposed method. Let ’Gw’ and ’Dw’ denote the generator and discriminator of a

WGAN. As mentioned earlier, the optimization function of a WGAN is given in 4.3,

where the constraint is enforced by 1-Lipschitz function. To enforce this, the weight val-

ues are clipped between a particular range of values (−c,c). This is termed as clipping

constraint. Additionally, a gradient penalty is introduced to ensure stable GAN training

as proposed by Gulrajani et al. (2017). Further, as a modification to this WGAN cost

function, an additional sparse categorical cross-entropy loss (Lsparse) is added, which is
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defined by:

Lsparse =
−1
S

S

∑
i=1

log p(Yi ∈ Kyi), (4.13)

where S denotes total number of samples, Yi represents a particular class predicted

among the total number of classes, K and p(.) corresponds to the probability of ob-

taining a particular class. Combining 4.3, 4.13 and the gradient penalty (recommended

by Gulrajani et al. (2017)), the final objective function of the proposed WGAN is given

by:

min
Gw

max
Dw

E[Dw(Xl)]−E[Dw(Gw(Xl))]+λE[(∥∇Dw(r)∥2−1)2]+Lsparse. (4.14)

where ’r’ denotes random samples picked from (x, x̂). The first two terms in equation

(4.14) represent Wasserstein loss for distinguishing real and fake images, the third term

denotes the gradient penalty term added for stability and the last term represents the

sparse categorical cross entropy. The block diagram representing the proposed method-

ology is given in Figure 4.6 which is self-explanatory. The number of classes are set

as K = 3 for Dataset 1, K = 4 for Dataset 2, respectively. Since the number of images

available in Dataset 3 is relatively smaller, these images are combined with Dataset 1

for AMD and Normal categories.

The retinal layers are marked on denoised OCT images using caserel tool (Computer-

Figure 4.6: Block diagram for OCT image analysis.

Aided SEgmentation of REtinal Layers in OCT images) (Chiu et al. (2010); Teng

(2013)). Further, in retinal disorders like AMD and DME, it is important to observe
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the RPE layer where the drusen could be present and the inner limiting membrane layer

where the edema could be monitored. Hence, the Gabor features (Weldon et al. (1996))

are extracted to enhance the input images before feeding them to the generator. Integrat-

ing handcraft features was attempted first by Li et al. (2019). Applying Gabor features

greatly enhances the retina layers’ visibility and improves the quality of fake images

generated by the generator. The Gabor features aids to retain the texture changes on

the retinal images and hence distinguishes the edges. Two dimensional Gabor filter is

used to extract texture features. The denoised images are enhanced using Gabor filters

and fed to the WGAN. The architecture of the generator and discriminator models are

shown in Figure 4.7. The discriminator performs two tasks: distinguishing real and

fake images and the classification of input images into normal or abnormal categories

(K classes). The generator generates the OCT images. The abnormal categories in-

clude AMD, DME, and Normal, based on the availability of the public repositories.

The input images are resized into 256 × 256 × 3. The generator ’Gw’ accepts the

Figure 4.7: Architecture of Wasserstein GAN.

denoised, feature enhanced input images. It follows a U-net module with skip connec-

tions. The U-net is constructed by two consecutive convolution operations of 5 × 5

kernel size, stride 1, and "relu" activation function, followed by batch normalization.

After two convolution blocks, max-pooling operation is performed to reduce the size
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of the feature map. This is repeated for 4 times, where each time the number of filters

is doubled (16, 32, 64, and 128). Then the concatenation operation is performed after

upsampling the image. A transpose of convolution operation is performed to achieve

upsampling. The final activation function is "tanh" which follows a single convolution

layer with kernel size (7 × 7) to produce a 3 channel image. The discriminator ’Dw’

accepts the original input images along with segmented data as shown in Figure 4.6).

In other words, the concatenate operation is performed on input image and groundtruth

segmentation images while training for real output. The input image is concatenated

with the generator’s fake image output while training the discriminator for fake image

detection. It performs repeated convolution, batch normalization, and "relu" operation,

with intermediate "maxpool" layers like the generator module. The final layer includes

a flattening operation followed by a linear activation function to discriminate between

real and fake images. Another output is a Dense connection of ’K’ classes with a "soft-

max" activation function. The hyperparameters are chosen based on the recommen-

dations given by Arjovsky et al. (2017); Gulrajani et al. (2017) and through empirical

analysis. It was observed that a deeper discriminator model boosts the performance

of the classifier while a stronger generator model improves the quality of segmented

images. Algorithm 2 summarizes the training steps in the proposed method. For the

sake of simplicity, after the dataset is divided into three parts for training, testing, and

validation, the following notations are used to denote the set of training and valida-

tion images. Itr: Training images, Str, Ctr: Segmented images and labels, correspond-

ing to Itr, respectively, Ival , Cval: Validation images and its corresponding labels, B:

Batch Size, E: Epochs, Gw,Dw: Generator and Discriminator of WGAN respectively.
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Algorithm 2: Training and validation steps for the WGAN model.
Input: Itr, Str, Ctr, Ival , Cval , B, and E.

Output: Trained models ’Gw’ and ’Dw’.

1 BPE← Total number of training images
B

2 for i=1 to E ∗BPE do

3 Load batch of images-(Itr,Str,Ctr)

4 Train Dw on batch of (Itr,Ctr) for classification

5 Compute sparse categorical cross entropy loss as in 4.13

6 for j=1 to 3 do

7 Generate batch of fake images using Gw

8 Train Dw on batch of (Itr||Str) with label as 1 (Real images)

9 Train Dw on batch of (Itr||Gim) with label as -1 (Fake images)

10 Compute gradient penalty with random samples of Str & Gim

11 Compute total loss using 4.14 and update its weights.

12 end

13 Freeze the weights and bias of Dw, Train Gw on batch of Itr

14 Compute loss of Gw and update weights.

15 if i=BPE then

16 Validate Dw on batch of Ival,Cval

17 Save Validation and training loss for plotting

18 end

19 end

4.5 EXPERIMENTAL RESULTS

Implementation is done using Keras (Tensowflow-2 backend) and python on Tesla

V100 DGX station with 4 GPUs, each having a memory capacity of 32478MiB, clock

@1.53GHz, and compute capability of 7.0. The CPU configuration employed is Intel

Xeon E5-2698 v4 @2.2GHz, with 51.2MB cache size, 20 cores, and has 265GB RAM.
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Table 4.3: Performance metrics for segmentation.

Task Method Performance parameter Values

Fovea Localization
1. Distance regression Meyer
et al. (2018)

Average Euclidean Distance
23

2. Proposed method 49

Optic Disc Segmentation
1.U-net with CNN Singh et al.
(2018) Dice Coefficient

0.9340

2. 57 layered CNN Agrawal
et al. (2018)

0.88

3. Proposed method 0.9978

Vessel Extraction
1. U-net model Son et al.
(2017)

Dice Coefficient
0.834

2. Proposed method 0.872

4.5.1 Fundus image classifier

Training the GAN model for every stage took around 14 hours when the task was sched-

uled on a single GPU. The segmentation output images obtained for a randomly picked

fundus image from ODIR dataset is shown in Figure 4.8. Table 4.3 summarizes the

Figure 4.8: Segmented output for ODIR dataset.

segmentation results obtained using the proposed combined GAN model (marked in

bold) and compares it with related works. Since REFUGE and IDRiD grand chal-

lenges provide the fovea locations, the Euclidean distance between predicted and actual

fovea location is measured. To compare the results, the pretrained weights provided by

Meyer et al. (2018) was used. Dice Coefficient is measured for optic disc and vessel

segmentation. For the semi-supervised classification, accuracy, precision, Kappa score,
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AUC-ROC, sensitivity, and F1-scores are measured. Refer Appendix D.1.9 for further

details. The test set was grouped into two parts. First part, consists of images randomly

selected from REFUGE and IDRiD datasets. The second had fundus images from the

ODIR dataset. The results for the first part is given in Table 4.4. The classification met-

Table 4.4: Performance metrics of the classifier for IDRID dataset.

Parameter Values
Accuracy 90.63
Precision 0.911
Kappa Score 0.717
AUC-ROC 0.832
Sensitivity 0.83
F1 score 0.94

rics obtained for ODIR dataset is presented in Table 4.5. The proposed semi-supervised

GAN model is compared with the transfer learning methods as illustrated in Gour and

Khanna (2021); Wang et al. (2020a); Li et al. (2021) and it is compared with Incep-

tionResnet model. Considering the classification accuracy of about 87%, the proposed

GAN outperforms the other existing models. The least classification accuracy is ob-

tained using the method in Wang et al. (2020a). The Kappa score is a metric used to

measure the inter-rater reliability. A higher value of Kappa score implies that there is

higher similarity between expected outcome and actual outcome. This measure is ob-

served to be the highest for the method proposed in Gour and Khanna (2021). However,

the proposed GAN model also gives a good level of agreement compared to the other

methods Li et al. (2021); Wang et al. (2020a). The F1-score is considered as a weighted

average of precision and recall terms. Therefore, the higher value of F1-score and AUC

are desirable properties of a good classifier. The proposed GAN model gives an AUC of

0.84 and F1-score of 0.85 which marginally differs from the values obtained using other

methods. A combined metric of evaluation is used to compare these models, termed as

a final score. It is evaluated as the average of Kappa score, F1-score, and the AUC.

The final score of the proposed semi-supervised GAN is 0.833, which is higher than

the transfer learning using combined Inception-Resnet models. There is significant dif-

ference in final score between the proposed GAN model and the models in Wang et al.
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(2020a); Gour and Khanna (2021). The model in Li et al. (2021) is primarily based

on transfer learning. Transfer learning models are considered to be appropriate when

small dataset is available. However, transfer learning models possess complex archi-

tecture and expect the distribution of the originally trained dataset and the test dataset

to be the same. In such situations, the proposed GAN model performs well for both

segmentation and classification tasks. Overall, from the Table 4.5, we can infer that the

proposed semi-supervised GAN is able to achieve an acceptable range of accuracy in

classification.

4.5.2 Analysis of classifier model

Further, the classifier (CS) performance is analyzed by breaking down the five classes

into two categories at a time. The results are recorded and plotted in the form of hor-

izontal column chart as shown in Figure 4.9. Accordingly, the groups considered for

various trials are Normal and AMD (N_A), Normal and DR (N_D), and Normal with

Glaucoma (N_G). The three classes considered for further trials include Normal, Glau-

coma, and AMD (N_G_A), as well as Normal, DR, and Glaucoma (N_D_G). From

Figure 4.9, it is evident that, the highest accuracy of about 90% is obtained for two class

classification of Normal and AMD. The lowest accuracy of around 72% is achieved for

classification of Normal and DR. The Kappa score is highest for three class classifi-

cation (N_D_G). Following this, the classification categories N_A, N_G_A, and N_D

project higher scores compared to the N_G classification. The F1-score and AUC are

in similar range for classification of N_A, N_G_A, and N_D_G. It is found to be least

for N_D classification. Overall, the final score is found to be around 0.89 for N_A and

N_G_A classification. The N_D classification has least final score. Overall, we can

infer from the results that the classifier is under-performing with Diabetic Retinopathy

classes. This is probably because the majority of the images represents the early stages

of Diabetic Retinopathy which might mislead the classifier. On the other hand, the

classifier is able to distinguish between Normal and AMD categories well. The AMD

fundus images are distinguishable compared to the Glaucoma fundus images as the F1-

score is relatively higher for AMD class. Originally, the number of AMD category

fundus images available in the dataset is much lesser compared to the number of DR
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images. Thus, it can be noted that augmentation has positively influenced the classifier

to distinguish AMD from Normal category. As Glaucoma is a condition mostly asso-

ciated with optic cup and disc ratio, training the classifier using segmented optic disc

region can boost the performance of this category. A small subset of images is chosen

Table 4.5: Performance of proposed fundus image classifier on ODIR dataset.

Method Accuracy Kappa F1-score AUC Final score
Gour and Khanna (2021) 0.82 0.89 0.82 0.5 0.7367
Wang et al. (2020a) 0.66 0.43 0.85 0.67 0.65
Li et al. (2021) 0.85 0.76 0.94 0.78 0.8267
InceptionResnet 0.723 0.503 0.8793 0.86 0.7474
Proposed 0.87 0.81 0.85 0.84 0.8333

Figure 4.9: Comparison of semi-supervised GAN performance to classify multiple cat-
egories of retinal disorders.

Figure 4.10: The performance metrics recorded for a subset of images to compare clas-
sifier performance on the preprocessed images and raw images from ODIR dataset.

randomly from Normal and Other disorders categories to verify whether the classifier
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performance is improved with preprocessing. These images are fed to the trained semi-

supervised GAN discriminator model in three different ways. The first method is to

feed the raw images directly (unprocessed images), the second method is to enhance

the images using CLAHE as proposed in other literature, and the third is using nonlo-

cal retinex framework. The results are depicted in Figure 4.10. The nonlocal retinex

method boosts the performance of the classifier to some extent compared to the raw

images. Particularly, from Figure 4.10, it can be noted that the final score improved

from 0.65 to 0.72, for a small subset of images.

4.5.3 OCT image classifier

The proposed GAN model takes about 4 hours (100 epochs) to complete the training on

Dataset 1 and it takes about 6 hours to complete the training on Dataset 2 (60 epochs)

and attain stable accuracy. Data augmentation was included for Dataset 1 with ran-

dom angle rotation. The hyperparameters of the deep learning model are empirically

set by monitoring the total average accuracy. The proposed model is compared with

multiple datasets and with multiple other deep learning models. Figure 4.11 depicts the

sample input image, its corresponding groundtruth segmentation image, and the fake

image generated by the generator of WGAN when Dataset 1 was used as input. The

groundtruth segmentation includes 7 retinal layers. The predicted images favorably

mark 2 retinal layers (ILM and RPE) consistently well. The other 5 retinal layers are

faint. In general, a good classification result is obtained when the generator generates

bad images, as explained in the paper Dai et al. (2017). Therefore, to obtain well seg-

mented output, the generator model has to be trained with better quality images. Since

the proposed model uses the research tool to extract the ground truth images for seg-

mentation and considering the fact that the classification is the major aim of the model,

quantification of segmentation is not highlighted in this work. Transfer learning mod-

els are used to compare the performance of the proposed WGAN for classification on

Dataset 1. The state-of-the-art CNNs, like Resnet-50 He et al. (2016), Densenet Huang

et al. (2017), and Inception-v3 Szegedy et al. (2016) are tested. The last three layers of

these models are removed, and dense connections are added. The classification metrics

such as accuracy, sensitivity, specificity, precision, and recall are used to compare the
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various models. The performances of all models are in a comparable range. The train-

ing loss plots and the corresponding confusion matrices are given in Figure 4.12, and

Figure 4.13, respectively.

Figure 4.11: Segmentation output of Wasserstein GAN.

Figure 4.12: Training and validation loss plot with epochs.

Analysis of Table 4.6: The first three columns project the result of using Resnet-50,

Densenet, and Inception trained on Dataset 1. The last column highlights the classifi-
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Table 4.6: Classification metrics on Dataset 1 (Reza et al. (2018)).

Metric Resnet-
50

Densenet Inception-
v3

Proposed
GAN

Classwise Sensitivity
AMD 76.65 57.58 76.26 86.38
DME 40.63 51.14 42.26 63.01

NORMAL 61.06 62.27 57.54 73.27

Classwise Specificity
AMD 75.23 83.05 65.92 75.23
DME 84.69 84.86 94.08 94.26
NORMAL 80.46 66.80 77.94 92.64

Classwise Accuracy
AMD 75.69 74.81 69.26 78.84
DME 72.54 75.56 79.84 85.64
NORMAL 72.67 64.98 69.77 84.88

Overall Sensitivity 59.43 56.99 58.75 74.22
Overall Specificity 80.13 78.24 79.31 87.22
Average Accuracy 73.63 71.78 72.95 83.12
Recall 0.594 0.57 0.58 0.742
Precision 0.591 0.59 0.628 0.767
F1-score 0.593 0.58 0.607 0.754

Table 4.7: Classification metrics on Dataset 2 (Kermany et al. (2018a)).

Metric Method
in
Alqudah
(2020)

Method
in
Sunija
et al.
(2021)

Proposed
GAN

Classwise Sensitivity
CNV 84.71 93.01 86.29
DME 60.27 22.13 81.97

DRUSEN 42.57 21.57 63.22
NORMAL 79.43 46.43 91.16

Classwise Specificity
CNV 88.34 53.02 92.39

DME 92.86 97.1 95.29
DRUSEN 92.58 93.86 95.18
NORMAL 92.17 93.22 96.29

Classwise Accuracy
CNV 86.72 70.85 89.68

DME 88.41 86.85 93.47
DRUSEN 47.43 86.41 91.89
NORMAL 88.16 78.47 94.67

Overall Sensitivity 66.75 45.79 80.66
Overall Specificity 91.49 84.3 94.79
Average Accuracy 77.68 80.645 92.42
Recall 0.667 0.457 0.806
Precision 0.661 0.552 0.788
F1-score 0.664 0.5 0.797
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Figure 4.13: Confusion matrices of Wasserstein GAN.

cation metrics of the proposed GAN. From this table, we can observe that the overall

average accuracy of the proposed GAN is higher than the transfer learning models.

Among the transfer learning models, Resnet-50 performs better than the Inception-v3,

which in turn is better than the Densenet models in terms of accuracy. A similar pat-

tern is observed for overall sensitivity, specificity, and recall. Observing the per-class

accuracy, it is found that the Densenet and Inception models fail to classify Normal

category images precisely. A deeper insight into the confusion matrix given in Figure

4.13 conveys that the Normal category images are misclassified into AMD category.

However, the proposed GAN model can distinguish these classes in a better way. The

Densenet architecture is more complex compared to Resnet-50, and it consumes more

memory. The dense blocks fail to identify the subtle changes between the three classes

(AMD, DME, and NORMAL). The precision and recall values are in a comparable

range among the transfer learning models. As F1-score depends on the precision and

recall scores, it is evident that the least F1-score is exhibited by Densenet model and

the highest is obtained by the proposed GAN model.

Overall, the proposed GAN-based model performs better than the other transfer

learning methods. Transfer learning could be an optimal choice when the number of

training samples (input image, label pairs) are available in small numbers. Furthermore,

the pre-trained model must be trained using a similar training dataset when compared

to the dataset used while applying the pre-trained model (on a new problem). However,

they do not perform the segmentation of retinal layers. Moreover, the transfer learning

models are complex in architecture and have more trainable parameters. Designing a

model that can efficiently perform both segmentation and classification will facilitate

over-the-air programming. Such a model embraces the property to improve the perfor-
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mance by learning dynamically from new samples.

Analysis of Table 4.7: As a further stratum of evaluation, the performance of the

proposed GAN model is compared with methods in Alqudah (2020) and Sunija et al.

(2021) using Dataset 2. These results are tabulated in Table 4.7. Accordingly, it can

be seen that the proposed model performed well overall compared to others with an

average accuracy of 92.42% and a F1-score of 0.797. It is observed that the sensitivity

for DRUSEN class is relatively low for all the models. This is because the number of

training images available in this class is much smaller than the other classes. Hence the

diversity of the images is not sufficiently predicted by the deep learning models. More-

over, drusen represent the early stages of AMD. This stage has marginal differences

between the normal category and therefore, these subtle variations within the retinal

layers are not captured by the model. The architecture of Alqudah (2020) and Sunija

et al. (2021) are similar in terms of a number of layers and the activation function. How-

ever, the difference in performance is due to the kernel size, optimizer and the learning

rate used in their methods. Compared to Dataset 1, the number of images in Dataset

2 is large. Additionally, the images provided in Dataset 2 are less affected by speckle

noise compared to Dataset 1. Therefore, the proposed GAN performs better on Dataset

2 when compared to Dataset 1.

4.5.4 Design of Wasserstein GAN model

This section elaborates on the empirical analysis conducted to design the proposed

WGAN model. Though several trials were conducted, some of the relevant results

are illustrated here. Since the discriminator is mainly responsible for the classification

of the OCT images, the discussion is limited to the architecture of the discriminator.

For simplicity, the different architectures experimented with are represented as A, B,

and C. This notation denotes how the number of filters are varied in each layer of the

discriminator and is given as:

• A: 16-32-64-128.

• B: 32-64-128-256.

• C: 128-256-512-1024.
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The average accuracy obtained using different architecture layouts of the discrimi-

nator when tested on Dataset 2 is shown in Figure 4.14. However, a similar pattern was

observed when Dataset 1 was utilized for testing. In Figure 4.14, the X-axis represents

various model architectures, and the Y-axis denotes the average accuracy considering

4 classes. The kernel size (KS) and the learning rate (LR) are varied for each model.

This is depicted as a grouped vertical bar plot in Figure 4.14. Accordingly, the highest

accuracy is achieved with a learning rate of 0.005, kernel size of 5, employed on the

discriminator architecture layout following the 32-64-128-256 number of filters in each

layer (B). The number of epoch is selected based on early stopping for each trial. On

average, it is seen that modifying the number of filters, kernel size, and the learning rate

does not significantly influence the performance of the discriminator. This is implied

from Figure 4.14, where the average accuracy is found to vary between 85% and 93%.

Therefore, considering the number of trainable parameters, the discriminator and gen-

erator architectures are designed as shown in Figure 4.7. To highlight the significance

of incorporating handcrafted Gabor features, the proposed WGAN model was tested on

raw images and enhanced (using Gabor features) images. The accuracy and F1-scores

corresponding to this trial is depicted as a bar graph in Figure 4.15. Accordingly, train-

ing on raw images exhibited the lowest accuracy and F1-scores. Incorporating Gabor

feature extraction further boosts the performance of the classifier. A similar trend was

observed for both datasets.

Figure 4.14: Comparison of Wasserstein GAN with different parameters, *KS = Kernel
Size, LR = Learning Rate.
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(a) Average Accuracy. (b) F1-score.

Figure 4.15: Effect of including Gabor feature.

4.6 SUMMARY

Automatic retinal disorder detection has been a prime focus of research with the advent

of deep learning in the recent years. Majority of the works are oriented towards single

task such as segmentation or classification. Furthermore, the deep learning models are

trained and tested on a single dataset. Therefore, the proposed research work aims

to train the GAN using images from multiple repository. Some of the existing works

perform segmentation on retinal images such as the optic disc region and then perform

classification such as Normal and Glaucoma condition. In such cases, the segmentation

performance severely affects the classification results. In the proposed work, GANs

generate the segmentation output that can be used by ophthalmologists to perform other

diagnosis such as estimation of choroidal thickness and optic cup to disc ratio.

This Chapter discusses various datasets available in public domain that are accessed

in the proposed work. As discussed in Chapter 1, a fundus provides information about

optic cup and disc ratio, blood vessels, and the fovea region. Since limited groundtruth

images are available in public domain to perform segmentation of these regions, a semi-

supervised GAN is proposed in this Chapter. It uses partially labeled data in addition to

the unlabeled dataset. The hyperparameters are chosen based on the empirical analysis.

The performance of the proposed GAN is assessed using standard classification metrics

such as accuracy, F-1 score and Kappa score. The results of the fundus image analysis

is published as research articles 1,2.
1Smitha, A., & Jidesh, P. (2021). "A Semi-supervised Generative Adversarial Network for Retinal

Analysis from Fundus Images". Computer Vision and Image Processing, 351–362. doi:10.1007/978-
981-16-1086-8_31.

2Smitha, A., Jidesh, P. Classification of Multiple Retinal Disorders from Enhanced Fundus Im-
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Similar to fundus images, the OCT images are also acquired from public domain.

Apart from the public repositories, OCT images were acquired from a private Indian

hospital - Shankara Nethralaya, Chennai, India. As the number of images are less

than 100, to validate the effect of preprocessing, choroidal thickness was estimated

and compared with annotated values3. The performance of the classifier is compared

with transfer learning approaches and certain other relevant methods. Furthermore,

the design of the WGAN architecture and the effect of preprocessing are discussed in

detail in this Chapter. It is evident from the results that the GAN models can achieve

reliable results to classify retinal disorders from fundus and OCT images, favourably

addressing the research question about the GAN models. The results presented about

the analysis of OCT images using WGAN is submitted to a journal4. Overall upto

90% of an average classification accuracy is obtained on heterogeneous datasets using

semi-supervised GAN and WGAN for fundus and OCT images, respectively.

Deep learning methods have revolutionized the approach of solving complex con-

temporary problems. Nevertheless, it is like a black box method of solving certain

challenging classification problems. In other words, it is unclear what leads the deep

learning model to arrive at a particular output. Thus, the explainability of the model is

still in juvenile stage. Certain methods like Grad-CAM are efficient to some extent in

visualizing the features identified by the deep learning model. This is easily applicable

to a transfer learning model. GANs on the other hand have an adversarial nature and

therefore, methods such as Grad-CAM are not easily adaptable. Some of the metrics

such as Inception score and FID often grade the GAN in comparison to the transfer

learning models. Computing these and exploring the explainability of the proposed

model will thus be taken up as a future work.

ages Using Semi-supervised GAN. SN COMPUT. SCI. 3, 59 (2022).https://doi.org/10.1007/s42979-021-
00945-6

3Smitha, A., Jidesh, P., Jothi Balaji, J., & Lakshminarayanan, V. Development and validation of a
novel automated method for quantification of choroidal thickness in age-related macular degeneration.
In Proc. of SPIE Vol (Vol. 11842, pp. 118422E-1).

4Smitha, A., Jidesh, P. Detection of retinal disorders from OCT images using generative adversarial
networks. Multimedia Tools Applications (2022).
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Chapter 5

CONCLUSION AND FUTURE WORKS

Ophthalmologists often rely on multiple imaging modalities to analyze the abnor-

malities. Motivated by this, an automatic multi-modal retinal disorder detection has

been a novel domain of interest in the recent years. So, a conceptual study in this direc-

tion is presented here.

5.1 MULTI-MODAL ANALYSIS

Multi-modal analysis is the technique of using more than one imaging modality to clas-

sify a particular retinal disorder. As discussed in Chapter 1, various modalities capture

details from different perspective. Therefore, combining the modalities can strengthen

the identification of distinguishing features for various retinal disorders. Some of the

recent works in this direction are summarized in Table 5.1. From this table, it can

be inferred that the transfer learning approaches give promising results in terms of

classification accuracy for multi-modal analysis. The existing works are oriented to-

wards classification of AMD and normal categories using the images acquired from

private hospitals. A multi-modality repository is released in the public domain in the

month of July 2021, to detect the various stages of Glaucoma (GAMMA-2021 avail-

able at https://aistudio.baidu.com/aistudio/competition/detail/90.). This repository has

100 CFP images. For each CFP, 255 corresponding OCT images are provided. The im-

ages are categorized as normal, early stage, and advanced stage Glaucoma. As project

"Macula" offers a small number of images in the public domain for AMD and normal

categories, a novel transfer learning based approach is proposed for multi-modal analy-

sis that combines Macula database with GAMMA-2021 dataset. The number of classes
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can be extended to three - AMD,Glaucoma, and Normal categories.

Table 5.1: Summary of existing works on multi-modal analysis.

Sl.
No.

Paper de-
tails Datasets Task Description Results Advantages Disadvantages

1
Vaghefi
et al. (2020)

Private
hospital

Classify
AMD
and
healthy

Inception with
Resnet v2 architec-
ture is applied for
OCT, OCT-A, and
CFP.

Accuracy
- 0.92 to
0.99

Transfer learning
is applied. Most
recent imaging
modalities are
considered. Output
performance is
measured using
attention maps.

Very small dataset
of 75 patients was
used. Clinical find-
ings like drusen are
not segmented.

2
Wang et al.
(2019b)

Private
hospital

Classify
dry
AMD,
wet
AMD
and nor-
mal

Loose pair train-
ing method (label
based) is adopted
with pretrained
Resnet 18 architec-
ture

Accuracy:
0.97

Multimode class
activation map is
generated for visual
interpretation

Performing seg-
mentation can
enhance the relia-
bility of the model.

3
Yoo et al.
(2018)

Project
Macula
database

Classify
AMD
and nor-
mal

VGG-19 transfer
learning on sin-
gle and multiple
modality

Accuracy:
0.95

First experimental
analysis on multi-
ple mode analysis.

Small dataset with-
out performing
segmentation of
drusen.

Unavailability of images in large number is a huge setback to train the GAN in this

direction. The choice of transfer learning model over the GAN model allows the vi-

sualization of features recognized by the deep learning model using heat maps. The

block diagram for the conceptualization of multi-modal analysis is shown in Figure 5.1.

Accordingly, there are three blocks: feature extraction, feature fusion, and classifica-

tion. The first step is to enhance the quality of the input images using the preprocessing

Figure 5.1: Conceptual diagram for multi-modal analysis.
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algorithms illustrated in Chapter 3 of the thesis. The enhanced images are used for fur-

ther processing. The state-of-the-art deep learning models are employed to extract the

feature maps. The attention mechanism based deep learning architectures can indepen-

dently learn the features to map the input images to their corresponding output labels.

The output of the first stage will be the feature maps. This is obtained by removing

the final activation layer of the deep learning architecture. The feature fusion stage in-

volves merging the feature maps derived from the two imaging modalities. The fusion

is achieved using concatenation operation. Finally the concatenated feature maps are

fed to a pre-trained classifier. The classification module is similar to the feature ex-

traction module in terms of deep learning architecture. The output labels are normal

and abnormal. Further the abnormal category includes AMD and Glaucoma. Once the

model is trained, it can be tested on unseen images. The performance of the model can

be assessed using standard classification metrics as discussed in Chapter 4 of the thesis.

5.2 CONCLUSION

The retinal disorders are automatically detected using deep learning models from two

different modalities - CFP and OCT as illustrated in Chapter 4. Specifically, the GAN

models are explored to classify the input images while segmenting the prominent fea-

tures considered by the ophthalmologists. The semi-supervised and WGAN models

demonstrated in Chapter 4 has lesser depth (in terms of number of layers), simple ar-

chitecture compared to the complex transfer learning models, thereby leading to lesser

number of trainable parameters.

Fundus images are colored (RGB) while OCT images are acquired in grayscale.

The image acquisition principle differs in these two modalities and hence it is neces-

sary to incorporate appropriate processing modules. The objective of the research work

was to propose an adaptive image restoration model that can be tuned to handle multi-

plicative speckle in OCT and illumination inhomogeneity in CFP images. Further, the

performance of GAN towards segmentation of prominent features, and classification of

disorders such as AMD, DME, and Glaucoma, from OCT and CFP images, had to be

compared with other relevant existing models. The proposed model can be fine-tuned to
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test on larger set of images acquired from the Indian hospitals. It contributes to expedite

the diagnosis procedure of retinal disorders. Prior to the research work, we were aware

from the existing literature survey that:

• The fundus images suffer contrast degradation. The illumination inhomogeneity

masks certain prominent structures in the fundus.

• OCT images are severely degraded with speckles, which are inherent according

to the principle of formation of OCT images.

• The transfer learning models perform well in terms of classification accuracy

provided the tested images are similar to the training dataset.

The proposed research work augments to the existing literature by favourably support-

ing the following facts.

• The statistical analysis ascertains that the multiplicative speckle can be formu-

lated to follow a Gamma distribution.

• The Bayesian maximum apriori in addition to deep image prior concept aids

to obtain the despeckling framework that can be tuned to alleviate the effect of

speckles in OCT images.

• The variational models assist to enhance the features in retinal images without

leading to an over-smoothing paradigm.

• The semi-supervised GAN achieves a stable performance in classifying the retinal

images into normal or abnormal even when tested using heterogeneous datasets.

• The multi-modal retinal image analysis, being the limelight of research, is a de-

sirable approach to strengthen the performance of the proposed deep learning

models.

The quantitative and qualitative results of the proposed restoration and classification

models are elaborated in Chapters 3 and 4 respectively. The image quality metrics such

as CNR, GCF, entropy, and ENL values are in favour of the proposed preprocessing

model. Further the enhanced images are used to train the GAN model.
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The computational complexity of the deep learning models is assessed in terms of

execution time for each module, which is highlighted in Chapter 4. When fundus im-

age is considered, the non-local retinex model uses the fast numerical approach called

Split-Bregman and produces the enhanced image in order of seconds depending on

the image size. The time taken by non-local deep image prior model greatly depends

earlystopping criteria and the image resolution. As the non-local computation is not

executed in parallel mode, compared to the proposed NLTGVR method, non-local deep

image prior model takes relatively more time to restore the image. It must be noted

that the Wasserstein and semi-supervised GAN models are trained on machine spec-

ifications as described in Chapter 4, while the non-local deep image prior model is

trained on a different machine, as described in Chapter 3. The proposed preprocessing

algorithm (Chapter 3) enhances the retinal layers, prominent features such as optic disc

and macula region in fundus and OCT images. It can be integrated as an in-built pre-

processing algorithm in image acquiring devices. The processed images can be used

to measure choroidal thickness and choroidal vascularity index. As the era of digital

world is emerging, smartphone enabled applications are available in market to grade

the diabetic retinopathy. The application of the proposed work can also be diverted in

a similar direction, where the disorders such as AMD, DME, and Glaucoma are clas-

sified. The proposed work can be tested on latest fundus images acquired from Indian

hospitals to automatically classify the images as normal or abnormal.

Overall, retinal disorders are automatically detected from fundus and OCT images

using GANs and the performance is analysed qualitatively and quantitatively. Serving

as an end-to-end solution for ophthalmologists, the proposed work acts as a baseline to

extend the automatic grading of disorders such as glaucoma and AMD, that are primary

concerns of elderly population. Such a model embraces the property of over-the-air

programming and can be useful in many such medical applications.

5.3 FUTURE WORKS

The proposed work has certain limitations that paves way for future works. The poten-

tial extension of the proposed work is presented in the summary of the Chapters 3 and
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4. Primarily, the unavailability of large number of retinal images of various modality

is a potential cause for the marginal improvement in performance of the GAN model.

Therefore, it is essential to acquire images from Indian hospitals and validate the perfor-

mance of the proposed GAN model. As explained in Chapter 3, the proposed non-local

deep image prior model is a novel way of despeckling the OCT images. This deep learn-

ing based approach can be further extended to incorporate perceptually inspired retinex

model such that the restoration framework performs enhancement of OCT images in

addition to despeckling. The generative model could be used to produce the retinex

and illuminance components of an image. Further by modifying the loss function to

integrate the contrast enhancement of the image, non-local deep image prior model can

be extended in the variational domain (by incorporating L2 norm and total variational

norm terminologies). The proposed semi-supervised GAN provides the segmented fun-

dus images. The segmented images can be used to extract clinical information such

as optic cup to disc ratio, cyst dimension, and discontinuities in blood vessels. Partic-

ularly, active contour based methods can be utilized to extract the optic cup and disc

region from the segmented images and the cup to disc ratio can be combined with the

image to classify Glaucoma or normal conditions. However, availability of ground truth

data for this quantification is a challenge. The multi-modal retina image analysis is yet

another scope of future work as discussed earlier in this Chapter.
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APPENDIX I

This section highlights the necessary preliminaries, definitions and examples related to

the non-local variational restoration models.

A.1 INVERSE PROBLEMS AND ILL-POSED PROBLEMS

Mathematical minimization problems could be categorized as (Refer Yagola (2010)):

• Well posed problems.

• Ill-posed regularizable problems.

• Ill-posed nonregularizable problems.

According to Hadamard (1953), a problem is well-posed if the following conditions are

satisfied:

• Existence: it has atleast one solution.

• Uniqueness: it has atmost one solution.

• Continuity: the solution depends continuously on data and parameters. In other

words, the unique solution is stable in all conditions.

Any problem that fails to satisfy any one of the above mentioned conditions is termed

as an ill-posed problem. An example for ill-posed problem is:

x = 1+ y,

x = 3+ y.
(A.1)

The above mentioned system of linear equations has no solution. However, if eqn. (A.1)

can be modified as:
x = 1+ y,

x = 3+ y(1+ ε).

(A.2)

where ε ̸= 0, then an unique approximate solution can be sought. Thus, this category of

ill-posed problem is referred as ill-posed and regularizable. Another illustration of this
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category is an inverse problem. Due to the ill-posed nature of these problems, the in-

verse may or may not exist. Even if the solution exist, small perturbations in the data can

lead to large impact in the solution (unstable solution). Penalization techniques seeks

solution to these inverse problems. Consider the system of linear equations represented

as Ax = B. The solution is sought as x = A−1B. To obtain the solution from B, A−1

must exist. Therefore, it is an inverse problem. Using penalization theory, the ill-posed

problem is stated as a constraint minimization problem with a penalty function (P )

such that, addition of P compels to satisfy the condition of well-posed problem. The

penalization theory can be either regularization approach or a sparsity model. Using the

regularization approach, the solution is given as:

min
x
{∥Ax−B∥2 +λ∥Px∥Lp}. (A.3)

where λ is a nonzero regularization parameter, ∥.∥2 is standard L2 norm, and ∥.∥Lp is

Lp norm. If the data is sparsely represented, then Lp norm can be either L0 or L1. When

the data of interest is smooth, regularization approach is used where Lp norm is valid

for all p > 1. Tikhonov Regularization (Tikhonov and Arsenin (1977)) is commonly

used iterative technique of regularization that incorporates L2 norm term. Choosing

∥Px∥L2 ensures smooth regularized approximations. The above discussed approach

can be generalized to non-linear systems as well. Though the penalization theory can

find approximate solutions of the ill-posed problems, in degradation process (denoising

an image), the penalization theory tends to ignore the statistical properties of the distor-

tion (Mohammad-Djafari (2002)). This can be incorporated using Bayesian approach.

Here, the ill-posed problem is transformed to an energy minimization problem using

Bayesian Maximum apriori estimation and then the problem is solved using variational

approach. However, it penalizes the image edges. Refer Aubert and Aujol (2008) for

details.

A.2 REVIEW OF VARIATIONAL FRAMEWORKS

Consider the image degradation problem represented as: U0 = UN, where U0 is ob-

served image, U is clean image, and N is the noise that causes degradation. The degra-

dation is inevitable in observed image due to the acquisition procedure or artifacts in
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devices. The objective of these problems is to estimate U from U0 using some prior

knowledge about the degradation N and image features. It is therefore an instance of

ill-conditioned inverse problem. The distortions in the image can be suppressed by min-

imizing the total variation. Restoration of the clean image can therefore, be formulated

as an energy minimization problem. Formulating a functional (J(U)) that defines the

image quality, a constraint minimization can be given as:

min
U

J(U); such that ∥U0

U
−1∥2

2 = σ
2
N . (A.4)

where σ2
N represents the noise variance, and a smaller value of J(U) indicates better

image quality. Reformulating the constraint minimization problem to an unconstrained

problem as:

min
U

{∫
Ω

J(U)dΩ+
λ

2

∫
Ω

(
U0

U
−1
)2

dΩ

}
. (A.5)

where λ is a regularization parameter. The constraint imposed ensures that the details

of the image is well preserved. In general, the energy minimization problem can be

expressed in the form:

ET = ES +λEF , (A.6)

where, ET denotes the total energy, ES corresponds to the smoothness component and

EF represents the energy of fidelity term. The smoothness term involves derivatives of

Lp norm, and it is called the regularization term. The level of smoothness is controlled

by fidelity term. In other words, addition of fidelity ensures minimum deviation from

the actual solution. The data fidelity term preserves the details and the balance between

these two factors is achieved using the regularization parameter λ . Considering the

fact that, in order to improve the image quality, the total variation has to be minimized,

the term
∫

Ω
J(U)dΩ can now be replaced with a total variation term. This variational

framework is proposed by Rudin et al. (1992). Assuming that the image belongs to

bounded space (Ω⊆ R2), the total variation is defined as:

TV (U0) =
∫

Ω

∥∇U0∥dΩ. (A.7)

where ∇U0 = [∂U0
∂x

∂U0
∂y ]. Therefore, eqn. (A.5) can be written as:

min
U

{∫
Ω

∥∇U0∥dΩ+
λ

2

∫
Ω

(
U0

U
−1
)2

dΩ

}
. (A.8)

The total variation based approach permits discontinuities in the solution. If the above

equation satisfies, TV (U0) < ∞, then it is termed as total bounded variation. Refer
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Gariepy (2001) for more details. Total bounded variation restoration model preserves

the edge and fine details on the image. The solution to eqn. (A.7) can be obtained using

Euler-Lagrange method. The downside of using variational framework is the piecewise

effect or staircase effect in the solution with slow convergence. Moreover, it is local in

nature. To compensate this, non-local variational models are introduced by Aubert and

Aujol (2008). According to this, the variation minimization given by eqn. (A.8) can be

expressed as:

min
U

{∫
Ω×Ω

∥∇NLU0∥dΩ+
λ

2

∫
Ω

(
U0

U
−1
)2

dΩ

}
. (A.9)

Refer Vese and Guyader (2015) for fundamentals of non-local total variational restora-

tion models. Further, the non-local restoration models are formulated to address the

noise distributions that follow Gamma and Poisson distributions using Bayesian maxi-

mum apriori technique (Jidesh and Banothu (2018); Balaji and Jidesh (2017); Holla Kay-

yar and Jidesh (2018)). It is also investigated for enhancement purposes using percep-

tually inspired retinex models (Febin et al. (2020); Jidesh and Febin (2020)).

A.3 EULER-LAGRANGE METHOD

Consider minimization of the Lagrange functional that aims to find a function that min-

imizes the energy given as:

E(u) =
∫ b

a
g(x,u,u′)dx. (A.10)

The solution can then be obtained using Euler-Lagrange equation given as:

∂g/∂u− d
dx

(
∂g
∂u′

)
= 0. (A.11)

A.4 SPLIT-BREGMAN APPROACH

Split-Bregman is the fastest numerical iterative approach to solve minimization prob-

lems (convex), in particular, regularization problems. It is based on the Bregman dis-

tance metric. It is a symmetric measure. Consider the minimization problem of the

form:

min
U
{∥S(U)∥+H(U)}, (A.12)

that follows eqn. (A.6), Here S(U) and H(U) are convex in nature. Applying Split-

Bregman scheme, the problem given in eqn. (A.12) is rewritten as a constrained opti-
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mization problem:

min
U :c1=S(U)

{∥c1∥+H(U)}, such that c1−S(U) = 0. (A.13)

Further, it is converted to an unconstrained problem as:

min
U :c1=S(U)

{∥c1∥+H(U)+
λ

2
∥c1−S(U)∥2

2. (A.14)

where λ is a constant. As the domain is now split into sub problems, it can be solved us-

ing Bregman algorithm. Refer Goldstein et al. (2009); Liu and Huang (2010); Goldstein

and Osher (2009) for further details.

APPENDIX II

This section recalls the concept of deep image prior highlighting the advantages and

how it differs from traditional deep learning mechanism.

B.1 Deep Image Prior

The concept of deep learning based blind image denoising was proposed by Ulyanov

et al. (2020). Accordingly, a randomly initialized convolutional neural network such

as U-net can be used as a prior to solve inverse problems. Consider denoising (an

example of an inverse problem), where the image is degraded due to additive white

gaussian noise, represented as: U0 =U +N. As mentioned in Appendix A.1, the inverse

problems can be formulated as a energy minimization problem expressed in the form:

min
U
{R(U)+E(U ;U0)}, (B.1)

where R(U) is a regularization term and E(U ;U0) is task-dependent term (for example,

denoising) responsible for the data fidelity. Here, the regularizer can be implicit or ex-

plicit. Deep image prior used the deep learning model itself as an implicit regularizer or

a prior term. Therefore, setting the regularizer as zero (R(U) = 0), eqn. (B.1) accounts

to minimizing:

min
U
∥U−U0∥2, (B.2)

where E(U ;U0) = ∥U −U0∥2 is the data fidelity term. A comparison of traditional

denoising approach to the deep image prior method is given in Figure B.1. Accordingly,

in traditional U-net models designed for denoising, for each degraded input image,

a corresponding groundtruth image is fed to the model. Initially, the training begins
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with an initial estimate (U0). The error is computed between the reconstructed image

and the expected image. For every iteration, the gradient of minimization function is

computed with respect to the input (U) and then a new estimate is obtained. Then the

model parameters are updated accordingly after seeing multiple training images. This

process continues until some point of convergence is attained. The updated outputs in

each iteration is denoted as U1,U2,U3 and so on, as shown in Figure B.1(a). Deep

image prior on the other hand, uses a single input image. It searches the space of

model parameters that maps to the expected output. Further, instead of computing the

gradient of the function with respect to the input, it is computed with reference to the

model parameters as depicted in Figure B.1(b). Here, the minimization problem is

Figure B.1: Comparison of traditional deep learning method with parameterized method
of denoising.

solved using optimizers, where the aim is to estimate the model parameters (weights

and biases) that maps input to its corresponding image domain fθ (z). In other words,

minimizing eqn. (B.2) is equivalent to minimizing:

min
θ
∥ fθ (z)−U0∥2. (B.3)

For any noisy image, U0, the U-net is optimized to generate the prior of noisy image,

which is the denoised image or the reconstructed image (Û = fθ (z)) from a random

noise in latent space z. Obtaining minimum value of the optimization problem results

in the situation where the reconstructed image is similar to the noisy image. However, to

achieve denoising, it is assumed a cleaner denoised image is obtained by earlystopping

the model training. This is depicted in Figure B.2, recreated as given by Ulyanov et al.
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(2020). Here the denoising problem is depicted as transforming from one domain to

another. Initially, the deep image prior model begins from noise in latent space. As

the training progresses (instantiated from t0− t4 in Figure B.2), the model parameters

are updated based on the loss computed (E( fθ (z),U0)). When the global minima is

attained, the restored image is in the domain of degraded image (E(U ;U0) = 0), that

is within a gray shaded area depicted in Figure B.2. However, at time t2 depicted in

this Figure, the reconstructed image is much closer to the cleaner groundtruth image.

Therefore, it becomes the optimal stopping point to pause the training of deep image

prior.

Figure B.2: Denoising strategy in deep image prior.

It is assumed that since the model is used as a prior, it always follows the path of

convergence such that, there always crosses the point of closest approximation to the

clean image. The splendid success of deep image prior led to recent advancements such

as incorporating explicit regularizer as explained by Fan et al. (2020). Perceptually

inspired retinex models are also integrated to the deep image prior model Zhao et al.

(2021). It is extended to enhance images using vector bundled variants by Batard et al.

(2021). The deep image prior model does not need massive number of training images

or the groundtruth images. These advantages meet the requirements of restoring OCT

images. Therefore, this method is adapted and further tweaked appropriately to address

speckle as discussed in the thesis.
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APPENDIX III

C.1 LAYERS OF DEEP LEARNING ARCHITECTURE

The GAN architecture proposed in Chapter 4 of the thesis has U-net model and a con-

volutional neural network layout. The details of each of these layers are given below.

• Convolution layer: Convolution is an elementary operation involved in obtaining

the features of a convolutional neural network. It is a linear operation, where a

filter or a kernel slides through the input image and a weighted sum (dot product)

is computed. The sliding operation happens from left to right direction and from

top to bottom. The output of this operation is termed as a feature map. This

operation decreases the size of the input image. The size of the filter is much

smaller than the input image. Generally 3×3, 5×5, or 7×7 are used to extract

the features (Simard et al. (2003)). Some examples of the kernels include edge

detection filters and sharpening filters. The convolution operation is depicted in

Figure C.1. The feature map of the convolution operation is fed to an activation

Figure C.1: Convolution operation.

function. The role of activation function is to detect whether the feature is present

in a given location of the image. Padding is usually incorporated to ensure the

output feature map retains the size of the input image. Stride operation refers to
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the amount of pixels that can be skipped before sliding to neighboring pixel. This

reduces the computation and also downsamples the output feature map. When

the input image is of 3 channels (RGB), the kernel is also of 3 channel, to ensure

the output will be 3-channel. The filter size, stride, and the number of filters are

hyper parameters in convolutional layer.

• Maxpooling: As the name suggests, the maxpooling operation selects the max-

imum element. It is used to reduce the dimension of the feature map. It further

reduces the computations and number of learning parameters of the model. The

outcome is similar to the stride operation. The output size after applying max-

pooling layer is calculated as: h f−k+1
s × w f−k+1

s ×nc, where h f ,w f represents the

height and width of the feature map, k,s denotes the kernel size and stride length,

respectively, and nc corresponds to number of channels. By selecting the maxi-

mum values from the region of feature map, prominent information is passed on

to the next layer thus preserving the necessary image details. Maxpooling also

aids to make the model as insensitive to the location of features in the input.

• Batch normalization: This layer ensures that the convolutional layers in the

model learn independently without overfitting. It normalized the output obtained

in previous layer. It is a method of regularization. It is applied on every batch of

input. Normalization aids to avoid the influence of biased learning and speeds up

the training process. Let X be the input (W,b) be the weights associated hidden

neuron. The output of neural network without batch normalization will be com-

puted as: φ( f (W,X)+ b) where φ corresponds to the activation function and f

is the linear transformation function. When batch normalization is incorporated,

this is modified as: φ(( ( f (W,X)+b)−µ

σ
)α +β ) where, µ,σ denotes the mean and

standard deviation of the neuron’s output, α,β are learning parameters.

• Global Average pooling: Similar to maxpooling, global average pooling is a

downsampling technique. This layer replaces fully connected layers, by consid-

ering the average of feature maps which is vectorized and then fed to the activa-

tion layer. It reduces the number of learning parameters. Computing the average
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aids to preserve the correspondence between feature maps and the outputs. Max-

pooling captures the edge details or variations in the image. Average pooling on

the other hand, extracts the features smoothly. In a nutshell, it avoids overfitting

to a certain extent. This layer does not introduce any learnable parameters to the

model.

• Dropout: Dropout is similar to a L2 regularization method adapted to reduce

overfitting. Certain number of neurons are randomly selected and deactivated

to make the model more robust in terms of features. Dropout can be applied to

any of the hidden layers in the neural network. Dropout layer does not have any

learnable parameters.

• Upsampling or transpose of convolution: In tasks such as semantic segmen-

tation, it is necessary to ensure that the output feature map of the U-net must

be same as that of the input image resolution. However, adding layers such as

strided convolution and maxpooling reduces the image resolution. To restore the

size, upsampling or transpose of convolution operation is performed. In case of

upsampling, as the pixel values are lost during maxpool operation, it uniformly

replicates the intensity values to a higher resolution. It cannot restore any lost de-

tails from the feature map. Upsampling can be applied to ensure that the concate-

nated layers have equal resolution, specifically in skip connection based network

architecture like Unet model.

• Dense connection: Dense layer of a convolutional neural network connects all

outputs of a certain stage (preceding) to every other input of the next stage. Dense

layer preserves the feed-forward nature of the neural network. As the number of

connections increases, the associated learnable parameters such as weights of the

link also increases. This layer is generally used as the last layer of convolutional

neural network. It is useful when there is association between any feature maps

and outputs.
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C.2 ACTIVATION FUNCTIONS

Activation function are the mathematical functions that determine the output of a neural

network. It also helps to normalize the input to some extent. For instance, using acti-

vation functions like simoid, softmax, or tanh, buonds the output values between 0 to 1

or -1 to +1. Any non-linear (or linear) function that continuously differentiable, mono-

tonic, and has a range of values can be used as an activation function. The non-linearity

introduced by activation functions aids to learn the features through backpropagation.

The most common activation functions that are used in this thesis work are defined in

Table C.1

Table C.1: Activation functions.

Name Definition Remarks
Linear φ(x) = mx where m is

slope, and x is input.
It ranges from −∞ to +∞. It is used
in the final/ output layer, establishing a
linear relationship between the feature
maps and the output classes.

Sigmoid φ(x) = 1
1+e−x . It is non-linear activation function that

bounds the output values between 0 to
1. It is used in binary classification,
where output is the prediction proba-
bility for a particular class.

Softmax φ(x) = ex

∑
I
k=1 exk

, where I
is total number of in-
puts.

It can be used at the output layer when
the classes are mutually exclusive.

Relu φ(x) = max(0,x). It is rectified linear unit. it is compu-
tationally less expensive compared to
tanh and softmax. It activates positive
valued neurons.

Leaky
Relu

φ(y) =
{

αy y≤ 0
y y > 0 ,

where α is a constant.

The problem of large negative bias of
relu is avoided by using leaky relu.
This adds a small negative slope and
prevents vanishing gradient problem.

Tanh φ(x) = ex−e−x

ex+e−x . It helps to center the data around zero,
making the learning easier.
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C.3 HYPERPARAMETERS

Model parameters like weights and biases are derived during training process. How-

ever, hyperparameters are those influential parameters which controls the convergence

rate and the learning process. It needs to be initialized before the training process. A

slight modification in the hyperparameters can lead to a different result. Therefore, to

identify the values of hyperparameters that gives best model performance, techniques

such as grid search, random search and Bayesian optimization is used. Some of the hy-

perparameters are epochs, batch size, number of neurons, optimizers, and learning rate.

Optimizers are used to iteratively find the global minima of a minimization problem.

Gradient descent is most commonly used optimizer. It uses gradient of the objective

function to navigate the search space. However it leads to vanishing gradient problem.

Therefore, to accelerate the learning, momentum is provided to optimizers. Adam, Ada-

grad, and RMSProp (Root Mean Square) are examples of fast optimizers. RMSProp is

an adaptive optimization technique. Further details can be obtained from Goodfellow

et al. (2016). In Chapter 4 of the thesis, the hyperparameters are set based on empirical

study and recommendations, and therefore, identifying precise set of hyperparameters

using Bayesian learning, to further improve the performance of the model is left for

future work.

APPENDIX IV

The standard image quality metrics, classification metrics, and certain other statistical

measures are defined in this section along with an insight into the Gabor features.

D.1 STANDARD METRICS FOR QUANTITATIVE ANALYSIS

D.1.1 Jensen–Shannon divergence (JSD)

The Jensen–Shannon divergence (JSD) is a statistical measure that is generally used to

compute the similarity between two distributions. Given two distributions in discrete
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domain, F1 and F2, the JSD is calculated as:

JSD(F1∥F2) =
Q(F1∥F2)

2
+

Q(F1∥F2)

2
,

where Q(A||B) = ∑
i

A(i)∗ log10

(
A(i)
B(i)

)
and Z =

(F1 +F2)

2
.

(D.1)

The square root of the divergence is denoted as a distance metric. JSD is a symmetric

measure and it gives a finite value. Refer Fuglede and Topsoe (2004) for further details.

D.1.2 Global Contrast Factor (GCF)

Global contrast Factor (GCF) corresponds to the human perception of contrast. A local

contrast is the average difference between neighboring pixels. The GCF is measured

using:

GCF =
T

∑
i=1

δiCi,

where C =
1

width×height

width×height

∑
j=1

lc j.

(D.2)

where δ is weight associated with the local average contrast, lc j is the average local

contrast of all pixels in the image of size width× height, and T is the number of iter-

ations for which the local average is measured. In each iteration, the image pixels are

combined to vary the image resolution.

D.1.3 Entropy

Entropy is defined by:

ENT ROPY =−
MAX

∑
j=0

p j log10 p j. (D.3)

where MAX corresponds to the maximum possible intensity value in the image, p j is

the probability of each intensity value in the image. Entropy is smaller if the image is

degraded due to low contrast.

D.1.4 Peak Signal to Noise Ratio (PSNR)

The Peak Signal to Noise Ratio (PSNR) quantifies the extent of denoising an image.

It is a full-reference metric. Let U0 be the observed noisy image, and U be the clean
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image, then PSNR is defined by:

PSNR = 10log10
M 2

U
MSE

), (D.4)

where M 2
U represents maximum possible intensity (pixel) value in the image, MSE

corresponds to mean square error given as:

MSE =
1

width×height

width−1

∑
i=0

height−1

∑
j=0

(U(i, j)−U0(i, j))2. (D.5)

If the noisy image or the restored image significantly differ from the clean image, the

mean square error increases, leading to a lower PSNR value. As the amount of noise

decreases in the image, the PSNR value increases, conveying a better image quality and

a better restoration.

D.1.5 Structural Similarity (SSIM)

The Structural similarity is recommended by Wang et al. (2004). It is used to analyze

the noise reduction, structure and contrast preservation. SSIM is evaluated using:

SSIM(u0,u) =
(2µu0 µu +δ1)(2σu +δ2)(

µ2
u0
+µ2

u +δ1
)(

σ2
u0
+σ2

u +δ2
) . (D.6)

where δ1,δ2 are constants added to stabilize the values, µu0 ,µu denotes the mean,

σ2
u0
,σ2

u denotes variances of u0&u, respectively. It signifies the closeness or similar-

ity of the two images or patches under evaluation.

D.1.6 Contrast Noise Ratio (CNR)

Contrast Noise Ratio (CNR), introduced by Timischl (2015), is a metric that quantifies

the contrast level of the image similar to PSNR. It is computed as:

CNRdB = 10log10
|M f −Mb|√
0.5(Vf +Vb)

. (D.7)

Here, M f ,Mb,Vf ,Vb represents the mean and variance of small homogeneous patches

considered in foreground and background region, respectively. These patches are se-

lected intuitively such that there is considerable change in the intensity levels of the

patches. Similar to the PSNR metric, a better image quality or better contrast is con-

veyed with higher CNR value.

D.1.7 Equivalent Number of Looks (ENL)

Equivalent Number of Looks (ENL) is a blind or referenceless image quality metric

(Refer Gomez et al. (2017)). It is calculated on homogeneous regions or patches of the

120



images, and is given by:

ENL =
µ2

r
σ2

r
. (D.8)

where µr,σ
2
r are the mean and variance measured in the patch of an image. Greater the

variance, smaller is the ENL value, indicating that the image is noisy.

D.1.8 Wasserstein Distance

Wasserstein GAN is based on the Wasserstein distance metric (Vaserstein (1969)). This

distance is also called as Earth Mover’s distance. Traditional GANs are trained on

the basis of JSD. However, since Wasserstein distance is continuous and differentiable

everywhere, it allows the stable training of the GANs using optimizers. Given two

distributions, this metric approaches to zero when the two distributions are similar. In

discrete domain, it is measured as :

Wd = in f
i, j
∥i− j∥p, (D.9)

where (i,j) corresponds to the pair of random variables in corresponding cumulative

distribution function F1,F2.

D.1.9 Classification metrics

The classification metrics such as accuracy, sensitivity, specificity, and F-1 score are

defined from a confusion matrix (Grandini et al. (2020)). Let T P,T N,FP,FN denote

the total true positives, true negatives, false positives, and false negatives respectively

in a binary class confusion matrix.

1. Accuracy: Accuracy conveys how often the classifier predicts correctly. It in-

cludes correct prediction of true positives and true negatives. A higher value of

accuracy indicates better classifier performance.

Accuracy = T P+T N
T P+FP+T N+FN .

2. Sensitivity: It represents the number of correct predictions. It is also referred as

Recall measure. A value closer to 1 is considered to be ideal for a classifier.

Sensitivity = T P
T P+FN .

3. Specificity: The measure of correct negative predictions is obtained from speci-

ficity. The sensitivity and specificity are important to know about the type I and
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type II errors.

Specificity = T N
T N+FP .

4. Precision: Precision is also referred as positive predictive value. A higher value

of precision indicates better (reliable) classifier.

Precision = T P
T P+FP .

5. F1-Score: Often, precision and recall are not sufficient to understand the relia-

bility of the classifier. In other words, a low precision and a high recall (or vice-

versa) may not guarantee a better classifier. F1-score denotes the harmonic mean

between precision and recall measures. A desirable classifier exhibits higher F1-

score with high precision and high recall values.

F1-score = 2∗T P
2∗T P+FP+T N .

6. Kappa: This measure is used as interrater reliability (McHugh (2012)). Its value

can range from -1 to + 1, signifying the amount of agreement between graders.

The value closer to +1 indicates stronger agreement and negative values indicate

no agreement. The Choen’s kappa statistic is measured as k = po−pe
1−pe

where po

is relative observed agreement among raters and pe is hypothetical probability of

chance agreement.

7. Dice coefficient: It is the ratio of twice the area of overlap between the groundtruth

and predicted image to the total number of pixels. When the segmented image

is much similar to the groundtruth image, the overlap is more and hence the dice

coefficient increases. It is expressed as F1-score when it is derived from the con-

fusion matrix.

8. Area under the curve of Receiver Characteristic Operator (AUC): Receiver

Characteristic Operator (ROC) is a plot of true positive rate against the false posi-

tive rate. AUC is a measure of ability of a classifier to distinguish between classes.

It is the area measured using ROC plot. A higher value (closer to 1) represents that

the classifier model is able to distinguish between positive and negative classes

precisely.
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D.2 GABOR FILTER

The 2-D Gabor filter Weldon et al. (1996) is given as:

G =
1

2πσxσy
exp

[
−1
2

((
x

σx

)2

+

(
y

σy

)2
)
+ jω(xcosθ + ysinθ)

]
. (D.10)

where σ denotes spatial spread, θ represents orientation, and ω is the frequency. To

enhance the OCT images, as in Chapter 4 of the thesis, θ is considered as 0, 450, and

900, σ is 2, and ω is empirically set to 0.25. The OCT scans have prominent features in

the horizontal direction. Hence, the Gabor features are extracted at angles 00,450, and

900.
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