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ABSTRACT 

Oxygen transfer limitations result in poor performance in bioreactors and reduced 

efficiency in catalytic and photocatalytic reaction systems where oxygen transfer is 

involved. Adequate oxygen transfer can be achieved by increasing the volumetric 

oxygen transfer coefficient (kLa). Several investigations have shown that the 

enhancement of kLa can be achieved in the presence of nanofluid which is a colloidal 

suspension of nanoparticles in any base fluid.  Nanoparticles may be intentionally added 

to the reactor fluid or may be inherently present in the reactor to form a nanofluid. 

Pulsed plate column (PPC) is widely used as an aerobic bioreactor and gas-liquid 

contactor for various applications. In the present study, the influence of TiO2, SiO2, and 

α-Fe2O3 nanofluids with water as the base fluid on kLa was studied in PPC. The effect 

of nanofluid parameters such as nanofluid type in terms of nanoparticles used, their size 

and loading along with the column parameters such as frequency (f) and amplitude (A) 

of pulsation, pulsing velocity (A×f) and gas velocity (Ug) was studied. The use of 

nanofluids led to kLa enhancement. It was found that kLa increased as the nanoparticle 

loading increased, attained a maximum at the critical loading, and then reduced as the 

loading was further increased. The critical loading depended on the nanofluid. kLa was 

found to increase with the increase in A, f, and Ug. The nanoparticle loading and A×f 

showed an interacting effect on kLa resulting in one or more hydrodynamic regimes 

depending upon the type of nanofluids, size, and loading of the nanoparticles. 

Nanofluids with lower-size nanoparticles showed higher kLa compared to those with 

larger sizes. TiO2 nanofluid provided a better kLa enhancement than SiO2 and α-Fe2O3 

nanofluid. The maximum enhancement factors were obtained with TiO2, SiO2, and α-

Fe2O3 nanofluids at the critical loading conditions. The order of magnitude analysis 

implied that the convective currents caused by the Brownian movement of the 

nanoparticles in the fluid can be the possible reason for mass transfer enhancement in 

PPC. Pseudo-homogeneous model was tested and it was found to accurately predict the 

enhancement only till the critical loading conditions. The developed dimensionless 

correlations and artificial neural network models could accurately predict kLa and thus 

may find potential applications in the design of pulsed plate column when used as gas-

liquid mass transfer contactors, bioreactors, or photocatalytic reactors. The results of 

this study indicate that the pulsing conditions required to achieve the desired mass 

transfer characteristics can be reduced by using a nanofluid instead of the base fluid, 

thus potentially leading to tremendous saving of energy.  

Keywords: Artificial neural network, Nanofluids, Oxygen mass transfer coefficient 

Pulsed Plate Column, Pulsing velocity. 
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CHAPTER 1   INTRODUCTION 

The operations involving the contact between the gas-liquid (g-l) phases are common 

in a variety of chemical process industries. Chemical reactions may include 

hydrogenation, chlorination, oxidation, polymerization of alkenes, etc., comprised of 

the g-l contacting. The globalization of industries has increased the special interests in 

the design and operation of process equipment that achieves lower operating costs, 

energy conservation, effective transfer of gas molecules to a liquid medium, higher 

efficiency, better performance, environmental protection, and enhancement in energy 

efficiency. The major problem in reactions consisting of more than one phase is the 

transfer of gases into aqueous phases. Most frequently, the diffusion of a low or 

moderately soluble gaseous entity across the g-l interface limits the reaction rate due to 

mass transfer (Olle et al. 2006). The g-l mass transfer plays a significant role in various 

fields related to chemical and biochemical industries and environmental pollution 

control, such as wastewater treatment, absorption of pollutants from air or flue gas, and 

others. Efficient gas transfer from gas bubbles to the liquid medium is the primary step 

in such operations. It determines the overall reaction rate in the g-l reactions 

(Dhanasekaran and Karunanithi 2010). Absorption of gases into a liquid phase becomes 

a crucial step in many multiphase processes because the rate of reactions is often 

constrained by the diffusion of sparingly soluble gas across the g-l interface (Olle et al. 

2006). Reactors or columns are used as multiphase contacting for various bioprocess, 

separation processes involving mass transfer, chemical processes (Dhanasekaran and 

Karunanithi 2010; Rahmanian et al. 2015; Shetty et al. 2013; Zhang et al. 2022). 

Transferring oxygen (aerobic) or CO2 (like in bioprocesses involving algal 

development) from the gas to the liquid phase is necessary for biotechnological 

processes involving microorganisms (Moo-Young and Chisti 1994). In most aerobic 

biochemical processes, oxygen is a critical substrate. The performance may be affected 

due to the improper oxygen supply (Garcia-Ochoa and Gomez 2009).  

The efficacy of any aerobic processes is hampered due to the lack of oxygen because 

microorganism metabolic rates drastically decrease (Gomaa and Al Taweel 2005), and 

the culture may react negatively to the accompanying stress (Suresh et al. 2009). The 

inadequacy of the transfer of oxygen results in less efficient bioreactors. Similarly, 
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catalytic and photocatalytic reaction systems may also encounter reduced efficiency 

because of the insufficient oxygen transfer rate. Adequate oxygen transfer is vital, as 

with photocatalytic reactions, where oxygen is used as an electron acceptor to produce 

superoxide radicals (Khanna and Shetty 2014; Saravanan et al. 2017; Shet and Shetty 

2016). So, enhancing the oxygen transfer rate into the aqueous medium is imperative 

to perform these types of processes effectively. Generally, oxygen transfer into the 

liquid is carried out by sparging air or supplying oxygen. However, these reactions 

proceed in aqueous media wherein oxygen has low solubility. Under these 

circumstances, an inadequate supply of oxygen and low fluid turbulence lead to oxygen 

mass transfer limitations in the system. 

Suitable g-l contactors must be selected to enhance the performance and achieve 

effective g-l mass transfer in multiphase systems (Lounes and Thibault 1994). 

Dhanasekaran and Karunanithi (2010) used columns with moving parts to improve the 

g-l mass transfer rate. To achieve high mass transfer rate, different contactors such as 

packed bed columns (Rahmanian et al. 2015), bubble columns (Gómez-Díaz et al. 

2009), stirred tank reactors (Zokaei-Kadijani et al. 2013), fluidized bed reactors (Yang 

et al. 2001), airlift reactors (Moraveji et al. 2012), rotating disk reactors (Yang 1982), 

oscillatory baffled columns (Hewgill et al. 1993), reciprocating plate columns or pulsed 

plate columns (Brauer 1990; Daniel and Brauer 1994; Rangappa et al. 2016; Shetty et 

al. 2013; Shetty and Srinikethan 2010) and liquid pulsating column (Torab-Mostaedi et 

al. 2010) have been used by several researchers.  

The packed bed columns reduce the back mixing in comparison to the spray column. 

However, channeling and clogging are the common disadvantages involved in packed 

columns.  It cannot handle the liquid with higher viscosities. Though plate columns can 

be designed to handle a wider range of liquid and gas flow rates than packed columns, 

they are prone to flooding and may not be suitable to be operated with particulate 

systems involving the use of catalyst, photocatalyst, or biomass. Bubble columns 

provide a uniform distribution due to the high circulation of liquid. However, back 

mixing and low contact efficiency reduce the mass transfer rate. Stirred tank reactors 

and rotating disc reactors provide higher interfacial area, however, high power 

consumption is required and the top-to-bottom mixing is poor. Airlift reactors and 

fluidized bed reactors are simple designs with no moving parts or agitators for less 
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maintenance and less risk of defects. The disadvantage is that inefficient in avoiding 

the foaming and greater air throughput and higher pressures are needed. 

Either oscillating a stack of plates as in a pulsed plate column (also known as a 

reciprocating plate column) or oscillating the liquid phase as in a pulsing liquid column 

can be utilized as a gas-liquid contactor to apply the oscillatory motion that creates an 

oscillation velocity vector between the plates and the phases (Dhanasekaran and 

Karunanithi 2010) to enhance mass transfer.  

Karr (1959) developed a Reciprocating plate column (RPC) or pulsed plate column 

(PPC), which was predominantly used for industrial-scale liquid-liquid extraction 

processes. As an advancement of the bubble column, PPC has been found to provide 

an increased interfacial area for g-l mass transfer and has received much attention 

(Stella et al. 2008) as a g-l contactor. However, unlike bubble columns, in the PPC, the 

mixing between the phases is facilitated by gas flow through the column and more 

predominantly by the reciprocating motion of the axially mounted stack of perforated 

plates (Skala and Veljković 1988). PPC is a multiphase contactor. It combines aeration 

and agitation and ensures favorable hydrodynamics and mass transfer characteristics. 

The pulsing effect provides good mixing, more extensive turbulence, an improved 

interfacial area, and a greater dispersed phase holdup. Hence, it helps to enhance the g-

l mass transfer efficiency (Jiao et al. 2013; Kodialbail and Srinikethan 2011; Lounes 

and Thibault 1994; Panahinia et al. 2017; Shetty et al. 2007) and the excellent g-l mass 

transfer characteristics of PPC (Gomaa and Al Taweel 2005; Lounes and Thibault 1994; 

Shetty and Srinikethan 2010; Skala and Veljković 1988). 

PPCs have been used as biological reactors for several applications, including aerobic 

wastewater treatment (Brauer 1985, 1990; Prabhu et al. 2020; Shetty et al. 2007, 2013). 

The superior g-l mass transfer characteristics of this contactor may lead to it finding 

applications in many other processes such as CO2 absorption, NH3 absorption, and 

catalytic or photocatalytic reactions apart from its use in biochemical reactions, 

involving the transfer of oxygen or other gases from the gas to the liquid phase. It is 

noticed from the literature that g-l mass transfer in this type of contactor may be 

enhanced by increasing the amplitude and frequency of pulsation (Gomaa and Al 

Taweel 2005; Lounes and Thibault 1994; Shetty and Srinikethan 2010). 
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Several investigations have shown that the enhancement of g-l mass transfer can also 

be achieved by the addition of solid particles in the reactor fluid. This improves the rate 

of transfer compared to that in the conventional aqueous medium (Komati and Suresh 

2010; Linek et al. 2008; Manikandan et al. 2012; Nagy et al. 2007; Nagy and Hadik 

2003; Olle et al. 2006). The progressive effect of nanosized particles is utilized to 

overcome the scarcity of oxygen supply to the aqueous medium by enhancing the mass 

transfer coefficient and interfacial area for mass transfer (Jiang et al. 2015; Labbeiki et 

al. 2014; Wenmakers et al. 2016). 

Regarding PPC, if the mass transfer enhancement can be achieved by dispersing the 

nanoparticles in the reactor liquid to form a nanofluid, the column may be operated at 

lower frequencies of pulsation to achieve a similar mass transfer rate. This would result 

in lower operating costs and improved performance with higher energy efficiency. In 

other words, desired mass transfer efficiency can be achieved at lower pulsing 

conditions if a nanofluid replaces the conventional base fluid. The nanoparticles may 

be added into the system fluid to form nanofluids as in biochemical reactors or 

absorption systems to enhance gas-liquid mass transfer. There may be a natural 

presence of nanofluids in the contactors, such as reactors used for catalytic and 

photocatalytic applications, wherein nanosized catalysts may be present in dispersed 

form in the process fluid. In the photocatalytic reactors, oxygen acts as an oxidant, thus 

supplying oxygen. The photocatalytic reactors employed with TiO2 nanoparticles as 

photocatalysts are generally equipped with an air supply to provide oxygen as the 

oxidant (Armaković et al. 2023). Dissolved oxygen plays a vital role in these reactors 

and thus oxygen mass transfer becomes essential. 

Further, nanoparticles may be added to enhance g-l mass transfer (Ghasem 2019; Jiang 

et al. 2015; Olle et al. 2006). In either case of the inherent presence or intentional 

inclusion of nanoparticles, the presence of these nanoparticles as nanofluids may 

influence the oxygen mass transfer characteristics of the column. Thus, there arises a 

need to study the g-l mass transfer in pulsed plate columns in the presence of nanofluids. 

Nanofluids (NFs) are the engineered colloidal suspensions prepared by dispersing 

nano-sized particles (size lesser than 100 nm) into conventional liquids which act as 

base fluids (Das et al. 2007). During the last decade, nanostructured materials have 

received increasing enthusiastic interest in various disciplines such as engineering 
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sciences, chemistry, physics, medical science, and biology (Chang et al. 2005). Choi 

(1995), coined the term nanofluid and proposed that the engineered conventional fluids 

showed better thermal conductivities compared to conventional fluids and enhanced the 

heat transfer characteristics. The particles could be metal nanoparticles such as Cu, and 

Ni; oxides such as TiO2, SiO2, Fe2O3, CuO, Fe3O4, and other materials such as AlN, 

SiC, and graphene (Mahbubul et al. 2012; Pang et al. 2015; Uddin et al. 2016; Yılmaz 

Aydın and Gürü 2022) and composite materials such as core-shell nanoparticles, 

nanocomposites that are well suspended in a base fluid to obtain nanofluid 

(Nithiyanantham et al. 2019). Though different base fluids such as oil, ethylene glycol, 

toluene, kerosene, etc., are used effectively as a carrier in many industrial processes due 

to their unique thermodynamic and transport properties, water is used extensively as a 

base fluid because of its availability, low cost, and friendliness to the environment 

(Saidur et al. 2011). Moreover, the choice of base fluid targeted at nanofluid-mediated 

mass transfer enhancement also depends on the liquid phase being used in the reactors, 

bioreactors, or gas-liquid,liquid-liquid contactors. As, most of the catalytic, 

photocatalytic reactor, or bioreactor systems used for wastewater treatment applications 

or other bioprocesses are operated with the aqueous phase, the base fluid may be 

generally water.  

The use of nanofluids plays a major role in the development of energy-efficient 

equipment. These NFs are said to be superior compared to base fluid, because of 

enhanced thermal and physical properties like thermal conductivity, density, viscosity, 

and diffusivity (Ali et al. 2018) that result in enhancement of heat and mass transfer 

rates. Several researchers have studied the enhancement of heat transfer performance 

using nanofluids (Jiang et al. 2019c; Keblinski et al. 2005; Pang et al. 2015; Prasher et 

al. 2006; Vakilinejad et al. 2018) with improved thermal conductivity, and convective 

and boiling heat transfer properties in various heat exchangers. To understand the 

enhancement (Buongiorno 2006; Krishnamurthy et al. 2006; Serna 2016) investigations 

on various mechanisms are the Brownian movement of the nanoparticles following the 

micro-convection (Keblinski et al. 2005b), thermal diffusion (Rudyak 2015), increased 

conduction through aggregates, or particle-to-particle coupling through the interparticle 

potentials, liquid layering on the nanoparticle-liquid interface and reduction in thermal 

boundary layer thickness (Xue et al. 2004) have been reported. 
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Investigations on possible applications of nanofluids in mass transfer were sparked by 

the success of using nanoparticles to improve heat transfer (Fang et al. 2009). As the 

mass transfer processes are analogous to most of the heat transfer processes in various 

aspects, the tremendous achievement in the usage of nanofluids for improving heat 

transfer performance has robustly motivated the researchers to study their potential 

application in the field of mass transfer for enhancing the g-l mass transfer process 

(Ashrafmansouri and Esfahany 2014; Krishnamurthy et al. 2006; Pang et al. 2015; 

Veilleux and Coulombe 2011). Since some researchers believed that one of the main 

reasons for the intensification of heat transfer was the Brownian movement of 

nanoparticles, exploration of mass transfer enhancement in nanofluids with a similar 

mechanism has been reported. (Jang and Choi 2004; Krishnamurthy et al. 2006; Rahbar 

et al. 2011). 

Several researchers have investigated the effect of nanofluids on mass transfer, mainly 

focused on the absorption of gases such as O2, CO2, NH3, H2S, etc., in various 

nanofluids in different reactors or contractors (Beiki et al. 2013; Darvanjooghi et al. 

2018; Esmaeili-Faraj and Nasr Esfahany 2016; Esmaeili Faraj et al. 2014; Irani et al. 

2019; Kim et al. 2006; Komati and Suresh 2010; Li et al. 2014; Nagy et al. 2007; Olle 

et al. 2006; Su et al. 2015; Torres Pineda and Kang 2016). Various studies have shown 

the mass transfer enhancement in the presence of nanofluids such as the enhancement  

in kLa in the colloidal dispersions of magnetite (Fe3O4) nanoparticles coated with oleic 

acid in an agitated sparged reactor (Olle et al. 2006), by silica nanofluids in Taylor flow 

regime  in the microchannel (Huang et al. 2021), mass transfer enhancement of 

NH3/H2O in absorber with distributer using Al2O3 and CNT nanoparticles (Lee et al. 

2010), enhancement in rate of  absorption of CO2  in packed bed column with Al2O3 and 

SiO2 nanofluids (Salimi et al. 2015),  enhancement in absorption of CO2  by Al2O3 -

methanol and SiO2 – methanol nanofluids in a tray column absorber (Torres Pineda et 

al. 2012),  improvement of absorption of CO2  using Al2O3 nanofluids in a stirred 

thermostatic reactor (Lu et al. 2015), enhancement in CO2 absorption using 

Al2O3/water and Fe3O4/water nanofluids in a wetted-wall column with external 

magnetic field (Samadi et al. 2014), kLa enhancement with  TiO2, Al2O3, and SiO2 NFs 

in water in rotating packed bed column (Ghadyanlou et al. 2022), enhancement in dye 

diffusion rate in liquids containing Al2O3 nanoparticles (Krishnamurthy et al. 2006), 

enhancement in kLa using oxygen –sensitive dye in a helically coiled tube reactor 
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(Jokiel et al. 2017), enhancement of CO2 absorption in Fe2O3, CNT SiO2 and Al2O3 

nanofluid in hollow fiber membrane contactor (Peyravi et al. 2015), mass transfer 

enhancement by Fe2O4 nanoparticles for CO2 absorption in bubbling reactor(Zhang et 

al. 2020a), enhancement in mass transfer coefficient for  carbon dioxide and oxygen 

absorption in wetted wall column and in a capillary tube with magnetic iron oxide 

nanoparticles (Komati and Suresh 2010), kLa enhancement with Fe2O3 - water 

nanofluids in an agitated bioreactor (Manikandan et al. 2012),enhancement in oxygen 

absorption rate with TiO2 and SiO2 nanofluids in a thermostatic stirred tank (Jiang et al. 

2015) and enhancement of g-l mass transfer in the presence of TiO2 nanoparticles in 

the process of droplet evaporation (Jiang et al. 2020).   

In the present work, the influence of the nanofluids on the g-l mass transfer coefficient 

in terms of volumetric oxygen mass transfer coefficient (kLa) in PPC is studied with 

water-based TiO2, SiO2 and, α-Fe2O3 Nanofluids. The studies on the effect of 

nanoparticle loading in the nanofluid, pulsing parameters of the column, superficial air 

velocity, size of nanoparticles, and type of nanofluid are reported. Further, order of 

magnitude analysis to understand the basic mechanism responsible for kLa 

enhancement, evaluation, and assessment of the validity of Pseudo homogeneous model 

along with the development of Multiple regression models in terms of dimensionless 

numbers and Artificial neural network models to predict the kLa in PPC are presented. 
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CHAPTER 2   LITERATURE REVIEW 

This chapter focuses on the review of literature on the subject of this research work. 

The importance of volumetric gas-liquid mass transfer coefficient (kLa), factors 

affecting kLa, nanofluids, and their applications, the influence of nanofluids on mass 

diffusion and convective mass transfer coefficient with special focus on gas-liquid mass 

transfer and oxygen mass transfer in various types of contactors. This chapter also 

discusses the review of literature on PPC, its application, and the effect of various 

operating conditions on kLa in PPC. The literature review on various types of models 

for the prediction of kLa is presented along with the methods for finding the possible 

mechanism behind the enhancement of kLa in the presence of nanofluids. 

2.1. Volumetric gas-liquid mass transfer coefficient (kLa) 

The gas-liquid mass transfer has significant importance in various fields such 

as chemical biochemical industries, environmental pollution control such as wastewater 

treatment, absorption of pollutants from air or flue gas, and others (Ho et al. 2020). 

Transfer of oxygen or gas transfer is essential in wastewater treatment plants to uphold 

the aerobic degradation, dissolve the chlorine gas or ozone, and also to separate or 

remove undesirable volatile chemicals such as carbon tetrachloride, 

tetrachloroethylene, trichloroethylene, chloroform, bromodichloromethane, and 

bromoform from water (Zander et al. 1989). kLa is the primary parameter utilized to 

ensure adequate oxygen transfer and also the key parameter for the design and scale-up 

of the biochemical reactors (Mestre et al. 2019). Oxygen is considered to be the most 

efficient and favored electron acceptor for most microorganisms (Gupta and Ibaraki 

2006; Liu et al. 2022). Oxygen mass transfer is an essential process in aerobic 

bioreactors or other chemical reactors involving the transfer of oxygen to the liquid 

phase from the gas phase. The transport of oxygen from a gaseous phase to a liquid 

phase becomes a rate-limiting step in various bioreactor systems because of the lower 

oxygen solubility in water. Therefore, the oxygen transfer is of greater importance and 

it is essential to achieve higher value of kLa in all the systems where oxygen transfer to 

liquid phase in involved. kLa is an important design parameter which is required in 

designing reactor systems or contactors in chemical, pharmaceutical, food, bio-fuel and 

other bio-chemical process industries. 
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In an aeration system, a gaseous species is transferred through the g-l interface followed 

by the liquid phase diffusion from the air bubble. Whitman's two-film theory states that 

equilibrium at the interface is assumed and that the resistances to mass transfer in the 

two phases are summed to determine the overall resistance. An overall coefficient is 

the overall resistance's reciprocal (Lewis and Whitman 1924). Concentration gradients 

near a gas-liquid interface are shown in Fig.2.1 

 

Fig 2.1: Concentration Gradients near Gas-Liquid Interface. 

Considering the transfer rate to the interface is equal to the transfer rate from the 

interface. They can be expressed as shown below.  

Rate of mass transfer on the gas side,  

𝑟𝐺 =  𝑘𝐺𝐴𝑎(𝑌𝐴 − 𝑌𝐴𝑖
) ………………………….. (2.1) 

Rate of mass transfer on the liquid side, 

𝑟𝐿 =  𝑘𝐿𝐴𝑎(𝑋𝐴𝑖 − 𝑋𝐴) ………………………….. (2.2) 

At a steady state, because there can be no accumulation of A at the interface or 

anywhere else in the system, any A transported through gas must also be transported 

through liquid. This means the following: 

𝑟 = 𝑟𝐺 = 𝑟𝐿 ……………………………………… (2.3) 
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At the interface, between the g-l phase, an equilibrium is attained. For dilute 

concentrations of most gases and a wide range of concentration for some gases, the 

equilibrium concentration in the gas phase is a linear function of liquid concentration. 

Therefore, we can write: 

𝑌𝐴𝑖
= 𝑚𝑋𝐴𝑖

 ……………………………………. (2.4) 

Where m is the distribution factor. 

Since kG>>>kL, i.e. which means all the resistance is in the liquid film, which is 

generally true if the gas is sparingly soluble in the liquid as in the case of reduced 

oxygen solubility in water. 

Then   𝑌𝐴 =  𝑌𝐴𝑖
; 

kG = mass transfer coefficient at gas phase m/s 

kL = mass transfer coefficient at liquid phase m/s 

XA = bulk liquid phase concentration 

XAi= Liquid interphase concentration 

YA = bulk gas phase concentration  

YAi = interface concentration in the gas phase 

Aa = interfacial area 

Therefore, equation (2.1) can be written as 

𝑟 = 𝑘𝐿𝐴𝑎 (
𝑌𝐴

𝑚
− 𝑋𝐴) ……………………. (2.5) 

The driving force is the difference between the concentration of gas species A in the 

liquid and it is in equilibrium with the bulk gas and liquid phase concentration.  

While the transfer of gas is considered for complete reactor volume, then, Aa is the total 

interfacial area and kL is the average mass transfer coefficient. Hence the concentrations 
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in Equation. (2.5) are bulk gas and liquid phase species concentrations. When the 

equation is divided by liquid phase volume V, the resulting term is the amount of gas 

species transferred per unit volume per unit time. The rate of transfer is expressed per 

unit volume of reactor (R) in Equation. (2.6). 

𝑅 = 𝑘𝐿
𝐴𝑎

𝑉
(

𝑌𝐴

𝑚
− 𝑋𝐴) ……………………… (2.6) 

Furthermore, it is convenient to use interfacial area per unit volume, ‘a’ as in Equation. 

(2.7) rather than total area Aa, because the rate of transfer is expressed per unit volume 

of the reactor. 

𝑅 = 𝑘𝐿𝑎 (
𝑌𝐴

𝑚
− 𝑋𝐴) ……………………… (2.7) 

The term, kLa represents the product of the mass transfer coefficient and ‘a’, the 

interfacial area available for mass transfer per unit volume of the reactor. To maintain 

a high interfacial area and increase the rate of transfer, gas is sparged into a reactor 

while the liquid is stirred to break up bubbles. The area "a" in such systems is difficult 

to measure or estimate. However, the term kLa formed by the product of the mass 

transfer coefficient and the interfacial area is easier to quantify. Therefore, the term 

"kLa" is created by adding the terms "interfacial area per unit volume" (a) and "mass 

transfer coefficient" (kL). In Equation (2.7) the term, YA/m can be replaced by 

component gas solubility at the reactor conditions, 𝑋𝐴
∗ . 

R = kLa (𝑋𝐴
∗ – XA) ……………. (2.8) 

Equation 2.8 is used for describing the transfer of gaseous species from a gas phase to 

a liquid phase. 

2.2 Factors affecting g-l mass transfer rates 

Many factors affect mass transfer in g-l dispersions, including (Akita and 

Yoshida 1973; Amaral et al. 2019; Garcia-Ochoa and Gomez 2005; Littlejohns and 

Daugulis 2007; Sideman et al. 1966) gas and liquid properties, different types of gas 

diffusers, column dimensions such as number of plates or baffles, spacing, perforation 

diameter, energy required for the oscillatory motions, flow rates of the gas and liquid, 

presence of third phase as solid catalysts, occurrence of reactions. 
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The most dependent parameters are as follows: 

(i) Bubble size: The bubble size is a very essential factor in designing the g-l 

reactors as it has a direct influence on the gas holdup and the interfacial area 

(Bouaifi et al. 2001; Manjrekar et al. 2017). Wang et al. (2020), have 

experimentally found that decreasing the bubble size can efficiently increase 

the kLa. Ham et al. (2021), studied that a decrease in the bubble size results 

in higher interfacial area and gas holdup values. 

(ii) Gas holdup: Gas holdup is the ratio of occupied volume by the bubbles to 

the total volume, it’s the volume fraction of the dispersed gas in the gas-

liquid system. To enhance the mass transfer rate, higher gas holdup is 

preferred along with the reduced bubble size (Barros et al. 2022). 

Recently, there have been reports on enhancing gas-liquid mass transfer by using 

nanofluids (Ding et al. 2023; Jiang et al. 2019; Ramprasad et al. 2019; Zhang et al. 

2018a). The ability of nanofluids to improve mass and heat transfer processes has been 

demonstrated. (Ashrafmansouri and Esfahany 2014; Dong et al. 2022; Qureshi et al. 

2017; Uddin et al. 2016; Zhang et al. 2022) 

2.3 Nanofluids 

Advancement in nanotechnology has developed a perception of researchers 

towards nanosized materials. The detailed exploration of small materials ranging from 

1 to 100nm has grabbed the attention of developing research areas. This has empowered 

many researchers to construct different unique and improved nanomaterials, 

nanodevices, and, nanotools that are used in various fields such as electronics, 

pharmaceutical, medicine, photography, and energy, etc., (Khalil et al. 2017). 

Nanomaterials are manufactured using a large variety of chemical components for 

example metals, metal oxides, carbon, semiconductors, and, polymers. They can be 

obtained in different forms such as fibers, spheres, wires, tubes, rods, needles, shells, 

plates, coatings, rings, etc., Specific functionalities can be incorporated into the 

nanomaterials by treating or coating a surface. Generally, nanomaterials are preferred 

over bulk-sized materials due to their exceptional adjustable size-dependent physical 

and chemical properties which are not found in their original bulk-sized materials (Liu 

Yang, Jian-nan Huang, Weikai Ji 2020; Souza et al. 2022). 
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The term “Nanofluid” was coined by Choi et al. (1996) at Argonne National 

Laboratory to refer to a new class of fluids consisting of colloidal suspensions of 

nanoparticles into a base fluid. Maxwell in 1881, was the first person to report from his 

research that the usage of colloidal particles that have higher thermal conductivity 

might show improvement in the thermal properties of conventional base fluids. 

Therefore, this suspension of nanoparticle liquid is termed Nanofluids (Gupta et al. 

2020). As discussed in the introduction part, nanofluids possess improved properties 

compared to conventional base fluids. Researchers have done numerous experiments 

on nanofluids due to their anomalous enhancement of heat transfer (Masuda et al. 1993; 

Pang et al. 2015; Souza et al. 2022), and mass transfer (Imran et al. 2022; 

Krishnamurthy et al. 2006; Pahlevaninezhad et al. 2021). Different superior properties 

of nanofluids have initiated many researchers to perform experiments on nanofluids for 

various applications such as solar systems, refrigeration systems with enhanced thermal 

and physical properties, and transfer of heat of various systems, nanomedicines, and 

absorption (Deshmukh et al. 2019; Wang et al. 2023). 

2.3.1 Preparation of Nanofluids 

Nanofluids are prepared to obtain a uniformly dispersed colloidal suspension of 

nanoparticles in the base fluid (Kumar and Subudhi 2019). They are produced by two 

different methods (i) One-step or single-step method and (ii) two-step method and are 

as follows: 

(i) One-step / Single-step Method:  

This method consists of simultaneous production and suspending the 

particles in the base fluid. The agglomeration of nanoparticles is reduced, and 

the stability of nanofluids is increased here by avoiding the drying, storage, 

transportation, and dispersion of nanoparticles. (Bairwa et al. 2015; Mamat and 

Ramadan 2022). The major disadvantage is that as a consequence of incomplete 

reactions a residual may remain in the suspension and large-scale synthesis of 

nanofluids is difficult (Dhinesh Kumar and Valan Arasu 2018). 

(ii) Two-Step Method:  

This method is the most widely used method for the preparation of 

nanofluids. Initially, nanoparticles are produced as dry powders by chemical or 
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physical methods or any other methods. Secondly, the nanosized powder will 

be suspended in a base fluid using either intensive magnetic force agitation, 

ultrasonic agitation, high-shear mixing, or homogenizing (Deshmukh et al. 

2019). The two-step method has proved to be the most economical and 

advantageous method to produce nanofluids, especially for large-scale 

requirements. The only difficulty with this method is the preservation of the 

long-term stability of nanofluids (Aglawe et al. 2020; Ranjbarzadeh et al. 2019). 

 

According to the literature, the nanoparticles may be purposefully added into the system 

fluid to form nanofluids as in biochemical reactors or in absorption systems to enhance 

gas-liquid mass transfer or there may be an inherent presence of nanofluids in the 

contactors such as reactors used for catalytic and photocatalytic applications (Yılmaz 

Aydın and Gürü 2022), wherein nanosized catalyst may be present in dispersed form in 

the process fluid. In the present study, a two-step method for the preparation of 

nanofluids was adopted. 

 

2.3.2 Applications of Nanofluids 

The concept of nanofluids has originated more than a decade ago. The unique 

properties of nanofluids have attracted the attention of researchers from various fields. 

For this reason, nanofluids are utilized for various purposes. The various applications 

of nanofluid are depicted in Fig. 2.2 and are as follows: 

 Nanofluids in cooling application: Nanofluids provide improved thermal 

properties compared to pure water and other coolants (Bairwa et al. 2015). 

They can be used as automotive oil, coolant, lubricant, gear oil, and, 

transmission fluid, brake fluid (Sarafraz and Peyghambarzadeh 2012). 

 Nanofluids in solar devices: Nanofluid-based collector has better 

absorption capacity compared to other working fluids (Mahian et al. 2013). 

Due to their higher thermal conductivity and radiative properties 

nanoparticles, they are being utilized in water heaters, solar cooling systems, 

solar cells, solar stills, and solar absorption refrigeration systems, (Okonkwo 

et al. 2021; Raghav and Dinesh 2016). 
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 Nanofluids in biomedical applications: Nanofluids have been used for, 

cancer therapeutics, sensing, imaging, and Nano-cryosurgery (Agnihotri et 

al. 2019; Deodhar et al. 2014). Magnetic nanofluids for hyperthermia 

(Ghazanfari et al. 2016), magnetic cell separations, and magnetic resonance 

imaging (Imran et al. 2022; Sheikhpour et al. 2020).  

 Nanofluids as media for chemical reactions: Photocatalytic nanofluids 

have been used for the conversion of CO2 into methane, methanol, ethylene, 

and formaldehyde (Tan et al. 2017). Nanofluid-based – fuel (namely 

biodiesel and biofuels) helps to enhance engine efficiency by controlling 

particulate emissions (Chamsa-ard et al. 2017). 

 Other electromagnetic applications: Nanofluids can be potentially 

utilized to produce optical fibers (Khan et al. 2019) or to produce lasers (Lu 

et al. 2021). 

 Applications of nanofluids in domestic refrigerators: Nowadays in 

refrigeration equipment the usage of nanofluids has improved the 

thermodynamic, mechanical performance, and energy efficiency of the 

refrigerating systems associated with the reduction in CO2 emissions. Haque 

et al. (2016), found that by the addition of the TiO2 and Al2O3 nanoparticles 

into the polyester oil energy consumption was less compared to the pure 

POE oil system and it enhanced the performance of the refrigerator. 

 Nanofluids in other applications: The usage of nanofluids helps in 

decreasing the consumption of energy along with the emissions from 

domestic and industrial air conditioning applications. Due to nanofluids' 

high critical heat flux capacity, they have been utilized in defense systems 

like submarines, high-power diode lasers, etc. Nanofluids are potentially 

used in these fields due to the lighter weight components and greater power 

density. Magnetic nanofluids are more cost-effective, environmentally 

friendly, and hazard-proof sealing compared to mechanical sealing to the 

larger number of rotational equipment in the industry (Jama et al. 2016; 

Munyalo and Zhang 2018; Yılmaz Aydın and Gürü 2022).  
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Fig. 2.2: Application of nanofluids in various sectors.  

 

2.4 Heat transfer in Nanofluids 

From the review of literature, in comparison to base fluids like oil or water, 

nanofluids have been found to have improved thermo-physical properties like thermal 

conductivity, thermal diffusivity, viscosity, and convective heat transfer (Choi 1995; 

Dong et al. 2022; K R et al. 2014; Murshed et al. 2020; Park et al. 2006). The research 

on the heat transport in nanofluids mainly focuses on Thermal conductivity and 

convective heat transfer (Keblinski et al. 2005). 

2.4.1 Thermal conductivity 

Enhancement in thermal conductivity concerning base fluid has been observed 

in the Nanofluids of various nanoparticles such as Al2O3 (Purbia et al. 2019), CuO 

(Boukerma and Kadja 2017), Cu (Ali et al. 2021), SiC (Wang et al. 2020), TiO2 (Purbia 

et al. 2019), SiO2 (Jeelani et al. 2020), Au(Li et al. 2015), Ag (Jafarimoghaddam and 

Aberoumand 2017), ZnO (He et al. 2016), etc. prepared with base fluids such as water 

(Hamid et al. 2018), oil (Said et al. 2022) or ethylene glycol (Traciak and Żyła 2022).  

Keblinski et al. (2002) have explained the possible reasons for the significant 

enhancement in the thermal conductivity of nanofluids. The increased collision because 

of the Brownian movement of the nanoparticles through the liquid results in direct heat 

transfer between the particles and hence the thermal conductivity increases. At the solid 
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interface, molecular-level liquid layering provides the more ordered arrangement of the 

atomic structure of the liquid compared to the bulk liquid. Thus this helps in improved 

conduction and enhances the thermal conductivity. 

2.4.2 Convective heat transfer 

The investigations on convective and boiling heat transfer are still few 

compared to the studies on thermal conductivity. Pak and Cho (1998), first 

experimentally found the convective heat transfer coefficient of submicron metal oxide 

particles under turbulent flow conditions. later enhancement in convective heat transfer 

coefficient has been observed in nanofluids with various base fluids and nanoparticles 

(Dong et al. 2022; Eastman et al. 2004; Murshed et al. 2020; Purbia et al. 2019; Wen et 

al. 2009; Xuan and Li 2000).  

2.5 Mass transfer in Nanofluids 

In many aspects, researchers have shown that there is a close resemblance 

between heat and mass transfer. The correlations in mass transfer are analogous to heat 

transfer equations. The interesting investigations on the enhancement of heat transfer 

in the presence of nanofluids created a natural curiosity to explore the rates of mass 

transfer or the enhancement of mass transfer in the presence of nanofluids. The 

investigations on mass transfer in nanofluids were mainly divided into two groups 

(Ashrafmansouri and Esfahany 2014; Cheng et al. 2019; Pang et al. 2015).  

 Studies on diffusion coefficients in nanofluids and  

 Studies on convective mass transfer coefficients in nanofluids. 

2.5.1 Studies on mass diffusion coefficients in nanofluids 

Mass diffusion in nanofluids has not been studied as extensively as heat 

diffusion. A few studies related to mass diffusion in nanofluids are listed in Table 2.1. 

The enhancement factor shown in Table 2.1 is the ratio of molecular diffusivity of the 

nanofluid to that of the base fluid. Table 2.1 shows that the mass diffusivity in 

nanofluids is higher than that with the base fluid and the presence of nanoparticles tends 

to enhance the diffusivity of components. 
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Table 2.1 Studies on mass diffusion in nanofluids 

Experimental 

approach 
Type of Nanofluid 

Enhancement 

factor 
Reference 

Diffusion of 

Fluorescent dye by 

optical method 

Al2O3 – Water 
14 at 0.5% 

Al2O3 

Krishnamurthy 

et al. 2006 

Diffusion of 

Fluorescent 

Rhodamine B dye by 

Taylor dispersion 

method 

Cu- Water 26 at 0.5% Cu Fang et al. 2009 

Diffusion of 

Fluorescein di-

sodium dye by 

diffusiophoretic 

Alumina -water 6-15% 

Dhuriya et al. 

2018 

 

CO2 absorption in 

nanofluids by 

equilibrium cell 

Graphene-Oxide 

(GO)/MDEA 
10.4% Irani et al. 2019 

Mass diffusivity of 

CO2 by pressure 

decay method 

TiO2 – water 

SiO2 – water 

Al2O3 - water 

Maximum 

enhancement 

with TiO2 

nanofluid 

Dehghan et al. 

2020 

Diffusion of CO2 in 

nanofluids using 

Shadow graph 

method 

SiO2 - methanol 
23.04% for 0.05 

vol% 
Lee et al. 2021 
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2.5.2 Studies on convective mass transfer coefficients in nanofluids 

Convective mass transfer coefficients play an important role in various gas-

liquid contactors such as stirred tank contactors, wetted wall columns, bubble columns, 

airlift reactors, fluidized bed columns, packed columns, trickle bed columns, and 

rotating drum reactors. Fig 2.3 presents the schematic representation of the commonly 

used gas-liquid contactors.  Investigations on convective mass transfer in nanofluids 

have been carried out by various researchers in different systems such as agitated 

absorption reactors, three-phase airlift reactors, bubble-type absorption systems, falling 

film absorption systems, tray column absorption systems, gas-liquid hollow fiber 

membrane systems, packed columns, direct measurements of mass transfer coefficients 

in the nanofluid system and liquid-liquid extraction system. The studies related to these 

systems are listed in Table 2.2. Most of the studies on convective mass transfer in 

nanofluids are related to enhancing the liquid side mass transfer coefficients for oxygen 

mass transfer, CO2 absorption, and NH3 absorption. Nanofluids have also been found 

to enhance the mass transfer in liquid-liquid extraction systems. It has been found that 

in most cases, the enhancement factor which is a ratio of the mass transfer coefficient 

in nanofluid to that in base fluid is greater than 1, indicating that nanofluids intensify 

mass transfer and lead to enhancement in mass flux or mass transfer coefficient. 

 

Fig 2.3 Schematic diagrams of various gas-liquid contactors 
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Table 2.2: Studies on convective mass transfer coefficients in nanofluids 

Gas absorption in an agitated vessel 

Studies  Nanofluid 
Enhancement 

factor 
Reference 

Oxygen mass transfer in 

an agitated sparged 

reactor 

Fe3O4-Oleic acid 6 at 4% Fe3O4 Olle et al. 2006 

Oxygen transfer in a 

laboratory-scale stirred 

reactor 

Nanometer n-

hexadecane 

droplets - Water 

2 at 10% vol or 

more droplets 

Nagy et al. 2007 

 

CO2 absorption in an 

agitated microreactor 
SiO2 - Water 

1.55 and 1.9 

without and with 

mercaptan group 

surfactants at 4% 

SiO2 

Zhu et al. 2008 

 

Oxygen absorption in an 

agitated, aerated 

bioreactor 

Fe2O3 - Water 
1.63 at 0.065% 

Fe2O3 

Manikandan et 

al. 2012 

CO2 absorption in 

stirred thermostatic 

reactor 

Al2O3 – Water 

CNT- Water 

1.15 for Al2O3 

and 1.83 for 

CNT 

 

Lu et al. 2013 

 

CO2 annular contactor 

absorption 

Al2O3-methanol 

SiO2-methanol 

TiO2- methanol 

 

1.012(at 56rpm), 

1.011(at 90rpm), 

and 1.046 (at 

112rpm) 

Pineda et al. 

2014 

 

CO2 absorption in an 

isothermal stirred high-

pressure cell 

SiO2 – Water 

ZnO - Water 

14% for ZnO 

and 7% for SiO2 

Haghtalab et al. 

2015 

Oxygen absorption in 

thermostatic stirred tank 

TiO2–Na2SO3 and 

SiO2–Na2SO3 

1.82 – TiO2 

1.70 – SiO2 
Jiang et al. 2015 

CO2 absorption in a 

stirred self-designed cell 

TiO2 – Propylene 

carbonate 
1.6 

Zhang et al. 

2016 
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CO2 absorption in 

stirred thermostatic 

reactor 

CNT - Water 4.5 Lu et al. 2017 

CH4 hydrate formation 

in a stirred tank reactor 

Graphite -

Distilled water 

3% increase 

compared to 

liquid water 

Lu et al. 2021 

Bubble-type absorption systems 

Studies Nanofluid 
Enhancement 

factor 
Reference 

Ammonia Absorption 

Cu-NH3/H2O 

CuO-NH3/H2O 

Al2O3-NH3/H2O 

3.21 

3.11 

3.04 

Kim et al. 2006 

 

Ammonia absorption Cu-NH3/H2O 5.32 Kim et al. 2007 

Ammonia absorption CNTs-NH3/H2O 1.162 Ma et al. 2007 

CO2 absorption  SiO2-water 

SiO2 -

Piperazine/K2CO3 

1.76 

1.12 

Kim et al. 2008 

CO2 bubble absorption 

column 

Al2O3-methanol 

SiO2-methanol 

1.045 

1.056 

Lee et al. 2011 

Ammonia bubble 

absorption column 

Ag-NH3/H2O 1.55 Pang et al. 2012 

CO2 absorption  Al2O3- NaCl/H2O 1.125 Lee and Kang 

2013 

CO2 bubble absorption 

column 

Al2O3-methanol 1.26 Kim et al. 2014 

Ammonia tubular 

bubble absorption 

column 

MWCNTs-

NH3/LiNO3 

1.64 Amaris et al. 

2014 

CO2 bubble absorption 

column 

CNT – Water 

TiO2 – Water 

SiO2 - Water 

1.78 Saeednia et al. 

2015 
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CO2 bubble column 

absorber 

Fe2O3 - Water Enhanced CO2 

solubility and 

average molar 

flux 

 

Karimi 

Darvanjooghi et 

al. 2017 

CO2 absorption in 

ammonia 

TiO2, SiO2, CuO 

in ammonia 

For TiO2 and 

SiO2 >1 

Fang et al. 2017 

CO2 capture in a bubble 

reaction system  

TiO2,Al2O3 and 

SiO2 -TETA 

based nanofluids 

1.29 Jiang et al. 2019 

CO2 absorption in high-

pressure column 

absorber 

Fe2O3 @ 

glutamine - N-

methyl-2-

pyrrolidone 

(NMP) nanofluid 

Absorption of 

CO2 increased 

up to 19.41% 

Elhambakhsh et 

al. 2021 

H2S and CO2 absorption 

in bubble absorber 

NH2 

functionalized 

MWCNTs -water 

2.66 for CO2 and 

4.04 for H2S 

Jafari Farsaani 

and Ameri 2022 

Falling film flow absorption systems 

Studies Nanofluid Enhancement 

factor 

Reference 

CO2 absorption in a 

wetted wall column 

Fe3O4- 

CO2/MDEA 

1.928 - Komati and 

Suresh 2008 

H2O/LiBr falling film 

absorption 

Al2O3-H2O/LiBr 1.77 Lee et al. 2009 

O2 and CO2 mass 

transfer in a wetted wall 

column and a capillary 

tube 

Fe3O4-water 2.74 

1.93 

Komati and 

Suresh 2010 

NH3 absorption in 

falling film flow 

ZnFe2O4, Fe2O3, 

or Al2O3 – 

NH3/H2O solution 

1.7, 1.5, and 1.3 

for Fe2O3, 

ZnFe2O4 and  

Yang et al. 2011 
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Al2O3 

respectively 

CO2 column tray 

absorption 

Al2O3-methanol 

SiO2-methanol 

1.094 

1.097 

Torres Pineda et 

al. 2012 

CO2 membrane 

absorption 

MWCNT-water 

SiO2- water 

1.4 

1.2 

Golkhar et al. 

2013 

CO2 Wetted wall 

column absorption with 

the magnetic field 

Fe3O4-water 1.2235 Samadi et al. 

2014 

H2O/LiBr falling film 

absorption 

Ag - H2O/LiBr Mass transfer 

enhanced by 

60% at solid 

volume fraction 

10% of Ag 

nanoparticles 

Armou et al. 

2017 

NH3 absorption in 

falling film flow 

Al2O3, ZnO, and 

ZrO2 – H2O 

Al2O3 - 1.122, 

ZnO -1.132, 

ZrO2 - 1.105, 

Wu et al. 2017 

Falling film absorption 

of LiBr/H2O system 

Cu, Al2O3 and 

CNT -water 

Absorption 

ration found to 

be above 1 

Zhang et al. 

2018 

CO2 absorption in 

membrane contactor 

CNT, SiO2 - water Absorption rate 

increased upto 

16% with SiO2 

and 34% with 

CNT nanofluid 

Rezakazemi et 

al. 2019 

CO2 absorption in 

falling liquid film 

absorber system 

Fe3O4 – water  Mass transfer 

enhanced by 

29% at loading 

of 0.05 vol% 

Pahlevaninezhad 

et al. 2021 

CO2 absorption in 

laboratory scale wetted 

wall column  

Al2O3 - water 67% increase in 

mass transfer 

coefficient with 

Rashidi and 

Mamivand 2022 
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0.025 %v/v 

nanoparticle. 

Liquid-Liquid Extraction Systems 

Studies Nanofluid Enhancement 

factor 

Reference 

Liquid – liquid 

extraction of kerosene-

acetic acid 

SiO2 –Kerosene + 

Acetic acid 

mass transfer for 

the nanofluids 

enhances 4 –

60%. 

Bahmanyar et 

al. 2011 

Liquid–liquid extraction 

of toluene – acetic acid- 

water. 

Fe3O4 or 

Al2O3/toluene 

Fe3O4:1.157, 

Al2O3:1.121 

Saien and 

Bamdadi 2012 

Liquid–liquid extraction 

of n-butanol–succinic 

acid–water 

ZnO, CNT, and 

TiO2-water 

 

2.2, 1.8 and 1.6 Mirzazadeh 

Ghanadi et al. 

2015 

Liquid-liquid extraction 

of toluene - water 

SiO2 -water The mass 

transfer 

enhanced with 

liquid hold up by 

4% 

Nematbakhsh 

and Rahbar 

Kelishami 2016 

Liquid-liquid extraction 

of toluene-acetic acid 

and water 

Modified TiO2 -

water 

Overall 

enhancement of 

70% with 3 wt% 

of solute. 

Hatami et al. 

2017 

Liquid–liquid extraction 

of n-butanol-water -

succinic acid 

SiO2 -water 0.943 Azimi et al. 

2019 

Liquid–liquid extraction 

of toluene-Aston-water. 

SiO2-water 23% Ghazvehi et al. 

2021 

Liquid–liquid extraction 

of kerosene-acetic acid-

water 

Carbon quantum 

dot nanofluid 

263.5% Jafari et al. 2022 
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2.5.3 Influence of nanofluids on gas-liquid mass transfer coefficient 

The influence of Nanofluids on g-l mass transfer is summarized in Table 2.2. 

Olle et al. (2006), have observed enhancement of oxygen transfer in an agitated sparged 

reactor using the nanofluid of magnetite nanoparticles coated with oleic acid and 

surfactant. They found the improved g-l oxygen mass transfer up to 6-fold (600%) for 

the volume fraction of nanoparticles below 1%. kLa was determined by the physical 

method (Stirred beaker as experimental system) and chemical method (sodium sulfite 

oxidation). Enhancement in kL measured by these methods was found to be almost 

similar and ranged from 20 to 60% approximately. The results showed that the 

enhancement in the kLa is strongly temperature-dependent. The presence of 

nanoparticles enhanced the kLa with a total enhancement of 80% or more. The results 

are applied to a wide range of activities, including fermentation, waste management, 

and hydrogenation reactions, which are restricted by the mass transfer of a solute 

between a gas phase and a liquid phase. 

 

Nagy et al. (2007) also found the enhancement of oxygen mass transfer in the presence 

of organic material nanoparticles, namely 65nm n-hexadecane droplets, in a laboratory-

scale stirred reactor. The enhancement measured reached over 200% for a relatively 

large loading of 10 vol%. Olle et al. (2006) and Nagy et al. (2007) proposed 

homogeneous as well as heterogeneous models of mass transfer enhancement in 

nanofluids considering Brownian motion.  

 

Komati and Suresh (2010), synthesized the ferrofluids and examined its effect on g-l 

mass transfer rates and investigated the absorption of Carbon dioxide and Oxygen gases 

in various reactive and non-reactive liquids. The authors used wetted wall column and 

capillary tube connected to a gas balloon as model g-l contactors. The increase in kLa 

is mainly attributed to the increase in diffusivities of nanoparticles. The enhancement 

due to nanoparticles was correlated with holdup and modified Sherwood number as 

shown below 

𝐸𝑃 = 1.519𝜀0.169 𝑆ℎ𝑚
′ −0.157 

𝑆ℎ′𝑚 =  
𝑑𝑝

𝜆
=  

𝑘𝐿𝑑𝑝 𝐸

𝐷𝐴
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Where, Ep = enhancement in kLa (Ep is defined as the ratio of kLa with particles to kLa 

without particles), dp = diameter of the particle, nm; λ= penetration depth according to 

film theory, μm; kL = mass transfer coefficient m/s; DA = diffusivity of A in the liquid 

phase m2/s; E= Chemical enhancement factor (defined as the difference between an 

interface's average concentration gradient with and without a chemical reaction). 

 

Manikandan et al. (2012), experimentally found the enhancement in kLa in an agitated, 

aerated bioreactor. Nanofluids were prepared by dispersing the Fe2O3, iron oxide 

nanoparticles in water at a pH of 8.5. Results showed that the kLa increased with an 

increase in nanoparticle concentration. An enhancement in kLa was obtained to be 1.63 

fold for 0.065% Fe2O3 – water nanofluids. At operating conditions of 200 rpm and 0.75 

LPM air flow, 63% enhancement in oxygen transfer from gas to liquid was achieved. 

 

Krishnamurthy et al. (2006) and Olle et al. (2006) have attributed the enhancement 

in mass transfer using nanofluids to nanoscale stirring of the liquid by Brownian 

motion. But in agitated aerated reactor, the role of nanoscale stirring was found 

negligible due to highly turbulent environment. Hence under this situation the 

responsible mechanism for enhancement was attributed to either ‘grazing effect’ or 

reduction in film thickness by shearing action. 

 

Saeednia et al. (2015), investigated the effect of nanoparticles (CNT, TiO2, and SiO2) 

on the mass transfer enhancement in absorption of CO2 in a bubble column system. The 

absorption rate was found by determining the CO2 concentration of the nanofluids using 

titration method. The nanofluid prepared with TiO2 and SiO2 in weight percentages of 

0.01, 0.05, 0.1 and 0.5 Wt % and CNT in weight percentages of 0.01, 0.05, 0.07 and 

0.1 Wt % were used. From the results it was found that absorption of CO2 increased 

with the increase in the weight percentage of nanoparticles. Maximum absorption was 

obtained for CNT nanofluid at 0.07 wt % CNT and for TiO2 nanofluid at 0.05% of TiO2 

and SiO2 nanofluid 0.1% of SiO2 nanoparticles. CNT was considered as the most 

effective nanomaterial among others. It was found that gas holdup increases with 

increasing nanomaterials concentration and gas superficial velocity and is higher in 

nanofluids than in water. 
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Jiang et al. (2015) studied the influence of TiO2–Na2SO3 and SiO2–Na2SO3 nanofluids 

in a thermostatic stirred tank. Various working conditions such as the influence of 

nanoparticles (TiO2 and SiO2), nanoparticle solids loading, stirring speed, temperature, 

and particle size on the average oxygen absorption rate were experimentally 

investigated during forced sulphite oxidation. The TiO2 and SiO2 nanoparticles 

improved the g-l mass transfer. The enhancement factor obtained was 1.95 and 1.82 for 

the TiO2 nanoparticle of particle size 10 nm and 20 nm respectively, while for the SiO2 

nanoparticle the enhancement factor was 1.70 with the same loading and with particle 

size of 20 nm. The oxygen absorption enhancement factor was found to increase by 

increasing the stirring speed. 

Fang et al. (2017) investigated the effect of nanoparticles (TiO2, CuO and SiO2) on the 

CO2 absorption in ammonia. Nanofluids were prepared with different concentrations of 

ammonia and different nanoparticles loading. The nanoparticle solid loading was varied 

from 1.0 – 8.0 g/L. They compared the effects of nanoparticle loading, types, ammonia 

concentration on the removal efficiency and removal rate with blank absorption 

experiment. Experimental results showed that the removal rate was enhanced in the 

presence of nanoparticles. They found that initial the enhancement factor increased, 

then decreased with increase in nanoparticle loading. With SiO2 nanofluid the 

enhancement factor was marginally more than 1 for 1.0 g/L, 2.0 g/L and less than 1 for 

other loadings. With CuO nanofluid the enhancement factor was around 1, it was 

observed that CuO nanofluid showed no obvious enhancement or inhibition effect. 

With TiO2 nanofluid the enhancement factor was greater than 1. 

2.5.4 Mechanism of mass transfer enhancement in nanofluids 

Knowledge of the mass transfer mechanism plays a crucial role in understanding 

the behavior of the nanoparticles in enhancing the mass transfer rate by nanoparticles 

in two-phase or multiphase systems. For g-l mass transfer, Kluytmans et al. (2003) have 

explained the possible mechanisms for the mass transfer enhancement.  

a) The particles are expected to increase the mass transfer coefficient by adding 

more gas to the liquid bulk through adsorption in the gas-liquid diffusion layer 

and desorption in the liquid bulk. This effect as a shuttle or grazing has been 
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described by Alper et al. (1980); Ashrafmansouri and Nasr Esfahany (2014); 

Quicker et al. (1987). 

b) The collision of nanoparticles and interaction with the g-l interface may cause 

turbulence at the g-l interface, this results in a reduction in the boundary layer 

thickness (Zhang et al. 2022). Therefore, the mass transfer coefficient could be 

increased in the existence of nanoparticles. 

c) The presence of nanoparticles helps in preventing the bubble coalescence as the 

movement of nanoparticles collides with each other and the bubbles. This results 

in the reduction of bubble size from bigger to smaller and thus the interfacial area 

becomes larger leading to the increase in mass transfer coefficient (Jiang et al. 

2019). 

As discussed by Keblinski et al. (2005), the possibility of enhancement of thermal 

conductivity evolves from different mechanisms. They are the Brownian motion of the 

particles, the molecular level of liquid layering of the liquid at the liquid/particle 

interface, and examined the nature of heat transport in nanoparticles. Therefore, to study 

the possibility of enhancement in mass transport, order-of-magnitude analysis was 

performed to predict the phenomenon clearly (Krishnamurthy et al. 2006).  

Keblinski et al. (2001), studied the Brownian motion time and the time for conduction 

in liquid using an order-of-magnitude analysis. They found that Brownian diffusion 

time is two orders smaller compared to the time for conduction in liquid. However, the 

energy transport due to convection produced by the Brownian movement of 

nanoparticles was not considered. Hence, Prasher et al. (2006) implemented an analysis 

considering the time scale of the Brownian movement of particles and the time scale of 

the convection due to the movement of the particles. They found that the convection 

effects are instantaneous compared to the Brownian diffusion of the particle.  

Krishnamurthy et al. (2006), investigated the effect of the presence of nanoparticles in 

a fluid on mass diffusion by visualizing the mass transport of dye in water and 

nanofluids. they conducted an order-of-magnitude analysis to investigate the reason for 

the observed enhancement in mass transport. They calculated the time (tm) for the dye 

to diffuse through a distance equal to the diameter of the nanoparticles, the time 

required for a Brownian particle to travel its diameter (tb), and further the time required 

for convection currents to travel a particle diameter (tc). From the analysis, they found 
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that tb > tm, clearly indicated that there is no direct contribution of Brownian movement 

of nanoparticles in mass transfer enhancement. Also, tc was smaller compared to both 

tb and tm, Thus, both the rise in the rate of mass transfer and the increases in thermal 

conductivity in nanofluids might be attributed to the disturbance field formed by the 

mobility of the nanoparticles in the fluid. This demonstrates how mass diffusion and 

other convection currents move through space considerably more quickly than 

individual particles. 

2.6 Pulsed Plate Column  

Pulsed plate columns (PPC) or Reciprocating plate columns (RPC) were originally 

developed for liquid-liquid extraction applications. The foremost characteristic of a Pulsed 

Plate Column is the arrangement of the reciprocating perforated plates mounted on a central 

rod inside a column. Initially, it was used for the liquid-liquid extraction process to generate 

a higher degree of turbulence, increase interfacial area, and obtain higher retentions of the 

dispersed phase. PPC provides higher energy to break down the droplets that contribute to 

attaining a large interfacial area to enhance mass transfer efficiency (Jiao et al. 2013a). The 

general principles of reciprocating plate columns were established by Van Dijk in 1935, 

who developed several systems to improve the efficiency of the solid-liquid extraction 

process. Later it was developed by Karr (1959) and has been used increasingly as a g-l 

contactor. Reciprocating plate columns have been extensively studied in recent years 

for their application in the contact of liquid-liquid and g-l phases. They were found 

effective for g-l contacting by offering much higher interfacial areas than a 

conventional tray or bubble columns and at a lower power consumption than those 

estimated for mechanically agitated tanks (H.G. Gomma 1991; Rama Rao and Baird 

1988; Sundaresan and Varma 1990; Al Taweel 1984; VeljkoviC and Skala 1986; Yang 

et al. 1986). The size of the air bubbles reduces as they come in contact with the 

reciprocating motion of the plate stack, resulting in the enhancement of oxygen mass 

transfer. The reciprocating motion of the plate stack reduces the size of the air bubbles 

enhancing the oxygen mass transfer. In general, slightly higher kLa values were 

obtained in a reciprocating plate column compared to other reactors (Gagnon et al. 

1998). Thus, the Reciprocating Plate Column has been ranked as the bioreactor of the 

new generation due to the efficient mass transfer from the gas to the liquid phase 

(Stamenković et al. 2005). 
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Pulsed Plate column has been extensively studied for their application in the contact of 

liquid-liquid and g-l phases. Table 2.6 shows some of the applications of pulsed plate 

column as a bioreactor, chemical reactors, or gas absorption which involves the g-l 

transfer. The efficiency of the column depends on the geometry of the plates, the 

amplitude and the moving speed of the plates, and the flow velocity of each phase, 

factors that also control the velocity of axial mixing. Pulsed plate column has several 

advantages 

 Large mass transfer coefficient due to periodical renewal of the interfacial 

area. 

 the intensity of turbulence is uniform and prevents the dead spaces.  

 The scaling up of the reactor is easier because the medium is open to 

identical conditions regardless of the diameter of the column. 

 High utilization of oxygen contained in the air. 

 High volume-based purification efficiency, at least ten times that of 

conventional bioreactors. 

 A higher level of mixing enhances extended mass transfer from a liquid to 

a solid phase. 

 The mixing of two phases is uniform 

 It reduces the resistance to mass transfer  

The applications cited in Table 2.3, show that pulsed plate column is widely used for 

applications that involve a g-l transfer. 

Table 2.3 Summarizes the application of Pulsed plate column as a bioreactor, 

chemical reactor, or gas absorption which involves the g-l transfer. 

Equipment used Process type References 

Reciprocating jet 

bioreactor 

Wastewater treatment Brauer 1985 

Reciprocating 

plate column 

Air and different aqueous solutions 

(Dextran- Sucrose Fermentation broth)  

Skala and 

Veljković 1988 

Reciprocating 

plate column 

Absorption of CO2 Sundaresan and 

Varma 1990 
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Reciprocating jet 

bioreactor 

Growth of fungi and bacteria Brauer 1990 

Reciprocating jet 

bioreactor 

Continuous production of citric acid Daniel and 

Brauer 1994 

Reciprocating 

plate bioreactor 

Pullulan fermentation Audet et al. 

1996 

Reciprocating 

plate bioreactor 

Vitis vinifera culture Gagnon et al. 

1998 

Pulsed Plate 

bioreactor 

Biodegradation of phenol Shetty et al. 

2007a 

Pulsed Plate 

bioreactor 

Removal of phenol using immobilized cells Shetty et al. 

2007 

Reciprocating 

plate column 

The reaction system of Na2CO3 – CO2 – H2O 

(absorption of CO2) 

An et al. 2010 

Pulsed Plate 

bioreactor 

Phenol degradation using immobilized 

Nocardiahydrocarbonoxydans 

Shetty et al. 

2011 

Reciprocating 

plate bioreactor 

fungal fermentation of Trichoderma 

reesei RUT-C30 

Choy et al. 

2011 

Pulsed Sieve Plate 

Column 

Arsenic removal from natural gas 

condensate 

Chaturabul et 

al. 2012 

Pulsed Plate 

bioreactor 

Biodegradation of Phenol using 

immobilized Nocardia 

hydrocarbonoxydans 

Shetty et al. 

2013 

Pulsed Plate 

bioreactor 

Production of Exopolymeric Substances and 

Biofilm Characteristics during Phenol 

Biodegradation by Immobilized 

Veena et al. 

2016 
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Pseudomonas desmolyticum (NCIM2112) 

Cells  

Pulsed Plate 

bioreactor 

phenol biodegradation using immobilized 

Pseudomonas desmolyticum cells  

Rangappa et al. 

2016 

Pulsed plate 

column 

Bioleaching of copper from electronic waste 

using Acinetobacter sp. Cr B2 

Jagannath et al. 

2017 

Reciprocating 

plate reactor 

Production of biodiesel production from a 

waste pig-roasting lard, methanol and KOH 

Miladinović et 

al. 2019 

Pulsed Plate 

Column 

Biosorption of Pb(II) on Pteris vittata L.  Prabhu et al. 

2020 

Pulsed Sieve Plate 

Column 

Recovery of essential oils from wastewater Najafipour et 

al. 2021 

 

2.6.1 Studies on Gas-Liquid Mass Transfer Coefficient in Pulsed Plate 

Column 

The most important feature of a Pulsed Plate Column is the provision of 

homogeneous g-l dispersion. The main benefit of the column is it can be used as a 

bioreactor since it provides the maximum oxygen transfer to fulfill the demand of 

microorganisms for oxygen. Also reduces the back mixing and energy dissipation. 

Skala and Veljković (1988), conducted experiments to study the mass transfer 

characteristics of g-l reciprocating plate columns of the Karr type by different methods. 

The investigation was divided into two parts (1) determination of liquid phase 

volumetric mass transfer coefficient, kLa (2) determination of interfacial area. kLa was 

investigated using the sulfite oxidation method, the pure physical absorption of oxygen, 

and a dynamic method under culture conditions. The physical absorption method 

appeared to be the most favorable. The kLa values determined by different methods 

under similar operating conditions were approximately the same. They found that kLa 

increased with increasing vibration intensity (Axf), superficial gas velocity, and the 
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number of perforated plates. Liquid phase properties appeared to affect kLa only 

slightly. 

Rama Rao and Baird (1988), measured kLa in a RPC under semi-batch and counter-

current conditions. they reported that kLa increased with the agitation rate and flow rates 

of continuous and dispersed phases. The correlation was developed to relate kLa with 

flowrates of air and water, specific input power. 

Sundaresan and Varma (1990), found kLa and the interfacial area for carbon dioxide 

absorption into water. They found that kLa is strongly influenced by the free area 

available in the plate and the perforation affects the interfacial area of the bubbles. 

Lounes and Thibault (1993), used RPC as a bioreactor and studied the 

hydrodynamics, axial dispersion coefficient, and kLa. Results indicated that the axial 

dispersion coefficient is dependent on the reciprocation motion and it is independent of 

the airflow rate. They determined kLa by two separate methods. (a) sulphite oxidation 

method (b) gassing out method. They also found higher values of kLa than in other types 

of mixing devices like helical ribbon screw mixers and Rushton turbines for identical 

volumetric power input. 

(Vasić et al. (2007), measured the volumetric mass transfer coefficient in 16.6cm i.d. 

multiphase reciprocating plate column by using the sulphite oxidation method and 

studied the effects of vibrational intensity, superficial gas velocity and content of solid 

particles (0 to 10%) on volumetric oxygen mass transfer coefficient. The authors 

reported that kLa increased with increasing vibration intensity and superficial gas 

velocity with decreasing content of solid particles and increased with increasing 

diameter of reciprocating plate column. 

(Shetty and Srinikethan (2010), evaluated volumetric oxygen mass transfer 

coefficients in a three-phase pulsed plate column with a fixed bed of glass particles by 

using the sulphite oxidation methods and found that volumetric oxygen mass transfer 

increased (0.067 to 0.1495 s-1) with an increase in superficial air velocity (0.011 to 

0.047m/s)and vibrational velocity (0.825 to 6cm/s). The authors developed an empirical 

correlation relating kLa with variables such as superficial air velocity and vibrational 

velocity. 
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The literature review suggests that there are no studies on gas-liquid mass in pulsed 

plate column with nanofluids. 

2.7 Dimensionless correlations, theoretical models, and Artificial 

Neural Network (ANN) models for mass transfer in nanofluids. 

Dimensionless correlations are commonly used in engineering to predict the 

behavior of complex systems and enable an improvement of the systems (Ramos et al. 

2022). They are developed with dimensionless numbers, combining a group of 

variables in such a way that they have no units. It is represented as a ratio between the 

measurement of two different phenomena. The correlations for the mass transfer 

coefficient include the dimensionless groups such as Reynolds (Re), Sherwood (Sh), 

and Schmidt (Sc) numbers. These dimensionless groups were created for process scale-

up, thus dimensionless analysis can be used to compare several reactors. (Chiang and 

Pan 2015). There is not much literature on g-l mass transfer in a pulsed plate column, 

and there are limited correlations for estimating it in the presence of nanoparticles. 

Komati and Suresh (2010), have proposed correlations in terms of modified Sherwood 

number and particle volumetric holdup, that support the prediction of mass transfer 

enhancements. In particular, they have investigated the nanoparticle volumetric holdup 

and the size of the nanoparticles to the depth of the penetration of the diffusing solute 

as the important factor that helps in determining the enhancement in the mass transfer.  

Feng and Johnson (2012), investigated that solution viscosity was influenced by the 

presence of nanoparticles and they found that the liquid mass transfer coefficients were 

found to decrease with an increase in viscosity. Hence a dimensionless correlation was 

developed to predict the liquid film mass transfer coefficient and to estimate the 

viscosity effects. 

Bahmanyar et al. (2014), suggested an approach and proposed a correlation to predict 

the effective diffusivity and mass transfer coefficient. The dimensionless numbers 

involved are Reynolds number and Schmidt number. These were related to nanoparticle 

volume fraction in a pulsed liquid-liquid extraction column. The results indicated a 

good fit with the comparison of predicted and experimental results. 
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Khanolkar and Suresh (2015), have studied the effect of TiO2 and SiO2 nanoparticles 

on the rate of g-l mass transfer in capillary tube apparatus and proposed the convective 

diffusion model to explain the observed effects of particle size, holdup, and density of 

the material. The convective motion caused by the Brownian movement of the 

nanoparticles was considered to be the reason for the enhancement. Hence an effective 

convective velocity was suggested and determined by the experimental findings. The 

effective convective velocity was correlated with the modified Sherwood number, 

volume fraction of nanoparticles, and solid Reynolds number. the suggested model 

provided a good fit for the data from the wetted wall column (Komati and Suresh 2010) 

and capillary tube experiment for TiO2, SiO2, and Fe3O4 nanoparticles. 

Nagy and Hadik (2003) and Nagy and Moser (1995), developed theoretical models 

that helped in understanding the ways to improve the mass transfer in the presence of 

nanosized particles. they constructed the two models, a pseudo-homogeneous and 

heterogeneous model. The development of the pseudo-homogeneous model was 

applied; the mass transfer is considered to be instantaneous inside the nanoparticles. 

The other heterogeneous model was applied when the solubility of the component in 

the dispersed phase is much higher than in the liquid phase, similarly as reported by 

Nagy (2007), an organic phase was used to enhance the oxygen mass transfer. 

Hence there is a need to develop a correlation to predict the volumetric gas-liquid mass 

transfer coefficient in the Pulsed plate column with respect to the effect of nanoparticles 

and the experimental operating conditions. 

ANN is a robust tool for modeling and is inspired by the human nervous system. 

For extremely complex simulation models, the ANN may be an effective substitute for 

parametric modeling. Therefore, it can be used for estimation and prediction. ANN can 

be of greater interest in chemical engineering, and it has been used for many purposes 

such as process control (Ungar et al. 1990), prediction of variables, optimization, and 

modeling of bioreactors (Tholudur and Ramirez 1996; Thompson and Kramer 1994) 

and has been applied for kLa estimation in water (Baawain et al. 2007; Kojić and 

Omorjan 2017; Reuss 1995). 

ANN is composed of multiple interrelated processing elements called neurons. It has a 

network structure wherein neurons are arranged in different layers such as, initially an 
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input layer that receives the input variable data, a hidden layer in which the data is 

processed, and finally, an output layer that sends the processed information. Each 

neuron of the hidden layer is interconnected to input and output layers using weights 

and biases. (Janghorban Esfahani et al. 2012). The main advantage of an ANN is that a 

precise output or target can be obtained by training and regulating the determined input 

(Kahani and Vatankhah 2019). From the literature findings, it is reported that ANN is 

used in many applications such as to predict the kLa, gas hold-up, and the average 

bubble diameter in bubble columns using column geometry and operating conditions 

as input parameters (Baawain et al. 2007). Lemoine et al. (2003) have developed 

dimensional and dimensionless back propagation neural networks (BPNNs), 

correlating the volumetric mass transfer coefficient for various gas-liquid systems both 

in surface–aeration reactors and gas-inducing reactors that are operated under different 

industrial conditions. The ANN-based model was also developed for the prediction of 

the biodegradation of phenol in a pulsed plate bioreactor (Shetty et al. 2008). Valera et 

al. (2021) have also developed an ANN model for the prediction of SO2 removal 

efficiency and volumetric mass transfer coefficient at the gas side (kga) for Gas 

Desulfurization in the Spray Tower as a function of the operating conditions and 

configuration of the spray nozzles. Liu et al. (2019) have developed ANN model by 

employing dimensionless variables like the Reynolds number of gas, liquid, Froude 

number, and Weber number used to estimate the mass transfer coefficient of the ozone 

absorption process in a rotating packed bed.  Saha (2009), employed ANN to predict 

mass transfer coefficient in a rotating packed bed. ANN model has been developed by 

García-Ochoa and Castro (2001) to estimate the oxygen mass transfer coefficient in 

stirred tank reactors. A dimensional and dimensionless back-propagation neural 

network has been developed to correlate kLa for surface-aeration reactors and gas-

inducing reactors operating under wide ranges of industrial conditions (Erzin et al. 

2009; Lemoine et al. 2003; Shetty et al. 2008). Several researchers have reported that 

the ANN models exhibit higher prediction performance than the MRA models (Kim 

and Oh 2021; Miloš Madić 2012). 

Based on the literature review, it was proposed to test the existing theoretical model to 

test their validity for the pulse plate column. Further, to account for the inaccurate 

predictions by theoretical models and wider and easier applicability dimensionless 

correlations and ANN models were proposed to be developed. 



37 

 

2.8 Scope of the research work 

With pulsed plate column is used for several g-l contacting operations such as 

for aerobic biological reactions (Brauer 1985; Jagannath et al. 2017; Shetty et al. 2007) 

or gas absorption (Sundaresan and Varma 1990) or chemical reactions involving g-l 

transfer (An et al. 2010), there is a need to study if the gas-liquid mass transfer can be 

enhanced by using different nanofluids so that energy requirement of pulsation is 

reduced. 

Oxygen mass transfer characteristics in the presence of nanofluids have been studied in 

various reactors such as agitated sparged reactors (Olle et al. 2006), stirred laboratory-

scale reactors (Nagy et al. 2007), in an agitated aerobic bioreactor (Manikandan et al. 

2012), bubble column (Darvanjooghi et al. 2018), hydrophobic polypropylene hallow 

fibre membrane contactor (Han et al. 2021) and Stirred tank bioreactor (Ding et al. 

2023). There is no study reported on the influence of nanofluids on gas-liquid mass 

transfer enhancement in pulsed plate column.   

In either case of the inherent presence of nanoparticles as in catalytic or photocatalytic 

reactors or the addition of nanoparticles intentionally to enhance mass transfer 

characteristics, the presence of these nanoparticles as nanofluids may influence the 

oxygen mass transfer characteristics of the column. Thus, there arises a need to study 

the g-l mass transfer in pulsed plate columns in the presence of nanofluids. 

TiO2 nanoparticles may be used as a photocatalyst in several photochemical reactions. 

The photocatalytic reactors are generally equipped with an air supply to provide oxygen 

as the oxidant. Dissolved oxygen plays a vital role in these reactors. The presence of 

TiO2 nanoparticles may influence the oxygen mass transfer characteristics of the 

column. TiO2 nanofluids have excellent stability without any stabilizers and the TiO2 

nanoparticles are chemically more stable compared to other metal oxides. It is also less 

hazardous to humans and living organisms. 

Silicon dioxide (SiO2), is usually known as silica. Silica nanoparticles are widely used 

in nanotechnology since they are easy to prepare on a large scale and inexpensive to 

produce, hydrophilic in nature, good biocompatibility, (Bitar et al. 2012). Silica 

nanoparticles are used for environmental remediation of pollutants such as the removal 

of heavy metals, radioactive elements, metals, non-metals, and the purification of water 
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(Jeelani et al. 2020). They are widely studied as catalysts (Lai 2013; Farzaneh and 

Fourozone 2014). If they are used as catalysts in reactors involving the transfer of 

oxygen or other gases from a gas phase to a liquid phase, their presence may influence 

the oxygen mass transfer characteristics of the column.  

α-Fe2O3 (hematite) iron oxide nanoparticles are abundantly used as biomaterials 

due to their good biocompatibility and minimum toxicity level. More importantly, these 

nanoparticles are available in large quantities, at low cost, show a greater extent of solar 

activity, and have good sustainability towards the environment with smaller bandgap 

energy. The nanoparticle separation from the reaction mixture is also easy with the help 

of an external magnetic field (Basavegowda et al. 2017). Therefore α-Fe2O3 

nanoparticles are significantly used in different areas such as photocatalysis for the 

degradation of organic pollutants (Kusior et al. 2019; Liu et al. 2019a; Mishra and Chun 

2015), photoelectrochemical water splitting (Rufus et al. 2017; Xu et al. 2012), in 

bioreactors to prevent membrane fouling(Sabalanvand et al. 2019) in aerobic 

bioreactors(Hesni et al. 2020), as catalysts  (Zheng et al. 2006;  Ahmad et al 2019) and 

as an effective adsorbent for the removal of pollutants. Apart from these, it was also 

found that these nanoparticles have a higher tendency for the adsorption of trace metals 

and metalloids onto their surface (Chen and Li 2010; Fouad et al. 2019). These 

nanoparticles are added to bioreactors to enhance gas-liquid mass transfer( Labbeiki et 

al. 2014; Ahmad et al. 2019). Generally, TiO2, SiO2, and Fe2O3 are regarded as safe 

materials for human beings as well as for animals. The photocatalytic reactors 

employed with TiO2, SiO2, and α-Fe2O3 nanoparticles as photocatalysts, are generally 

equipped with an air supply to provide oxygen as the oxidant. Dissolved oxygen plays 

a vital role in these reactors and thus oxygen mass transfer becomes important. The 

presence of these nanoparticles may influence the oxygen mass transfer characteristics 

of the column. Further, these nanoparticles may be added to enhance gas-liquid mass 

transfer (Olle et al. 2007; Jiang et al. 2014; Ghasem 2019). 

The scope of this work is to study the effect of TiO2, SiO2, and α-Fe2O3 nanofluids with 

water as the base fluid on kLa in pulsed plate column operated with liquid phase in batch 

mode and with continuous flow of air along with the effect of nanofluids on kLa 

enhancement with reference to the base fluid. The study focuses on the effect of 

nanofluid parameters such as nanofluid type in terms of nanoparticles used, their size, 
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and loading along with the effect of column operating conditions like frequency and 

amplitude of pulsation, pulsing velocity, and gas velocity. Further, the scope involves 

the order of magnitude analysis to determine the prime mechanism causing the oxygen 

mass transfer enhancement in the pulsed plate column. The assessment of the validity 

of a theoretical model and the development of Blackbox models in the form of 

dimensionless correlations and artificial neural network models using the experimental 

data to predict kLa are included in the scope. 
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2.9 Objectives of the research work 

The main objective of the present work is to study the gas-liquid mass transfer 

enhancement in Pulsed plate column operated in batch mode by using nanofluids of 

TiO2, SiO2, and α-Fe2O3 nanoparticles in terms of oxygen transfer. 

Specific objectives are 

 To determine the volumetric oxygen mass transfer coefficients in a pulsed plate 

column in the presence of TiO2, SiO2, and α-Fe2O3 nanofluids. 

 To study the effect of the type of nanoparticles, nanoparticles loading, size of 

nanoparticles, frequency, and amplitude of pulsation of the plates, and gas flow 

rate on volumetric oxygen mass transfer coefficients in pulsed plate column. 

 To study the effect of aforesaid factors on the mass transfer enhancement by 

nanofluids 

 To investigate and determine the mechanism responsible for the enhanced 

oxygen mass transport in nanofluids through Order of Magnitude Analysis.  

 To apply the theoretical model based on first principles such as the Pseudo-

homogenous model to predict Mass transfer enhancement by nanofluids and to 

test its validity. 

 To develop dimensionless correlations based on Multiple Regression Analysis 

using the experimental data to predict the volumetric oxygen mass transfer 

coefficients in pulsed plate columns in the presence of nanofluids. 

 To develop Artificial Neural Network based models to predict the volumetric 

oxygen mass transfer coefficients in pulsed plate columns in the presence of 

nanofluids. 
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CHAPTER 3   Materials and Methodology 

This chapter presents the details of the materials used in the present work along 

with the methodologies adopted to fulfil the objectives. 

3.1 Chemicals used: 

 Sodium sulfite (Na2SO3) (96% Purity) and Sodium thiosulphate Pentahydrate 

(Na2S2O3.5H2O) (99% Purity) were purchased from Nice Chemicals, Kochi, Kerala. 

Cobalt (II) sulfate heptahydrate (CoSO4.7H2O) (98% Purity) was purchased from CDH 

Analytical Reagent, New Delhi. Resublimed iodine (I2) (99.8% Purity) was purchased 

from Fine Chemicals, Bangalore. Iodate-free potassium iodide (KI) (98% Purity) was 

purchased from Hi-Pure Rankem, New Delhi. Potassium dichromate (K2Cr2O7) (99.9% 

Purity), hydrochloric acid (99.9% Purity), and starch were purchased from Nice 

Chemicals, Cochin. 

3.2 Nanomaterials used: 

 TiO2 (average diameter of 25 nm), SiO2 nanoparticles (20-30 nm size range), 

and Iron oxide nanoparticles (α-Fe2O3) (< 80 nm) were purchased from Intelligent 

Materials Pvt. Ltd. Punjab, India with 99.9% Purity. TiO2 (less than 100 nm), SiO2 

nanoparticles of 5-15 nm and Iron oxide nanoparticles (α-Fe2O3) of less than 50 nm 

were purchased from Sigma – Aldrich Chemicals Pvt. Ltd., Bangalore with 99.9% 

Purity.  

3.2.1 Morphology and the average size of nanoparticles 

Scanning Electron Microscopy (SEM) was used to study the morphology and 

average size of the nanoparticles. A high-resolution Scanning Electron Microscopic 

(SEM) analysis of the nanoparticles was performed by JSM-6380A operated at 20kV. 

The resulting images of the nanoparticles with two different sizes of TiO2 (25 nm and 

less than 100 nm); SiO2 (20-30 nm and 5-15 nm) and α-Fe2O3 (less than 50 nm and less 

than 80 nm) are shown in Fig. 3.1 (a) and (b); Fig 3.2 (a) and (b) and Fig.3.3 (a) and (b) 

respectively.  
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As observed in Fig 3.1 (a) and (b) to 3.3 (a) and (b), the particles are nearly 

spherical. The average size of the nanoparticles was obtained from the SEM images 

using Image J analyser. The average particle size of the procured nanoparticles were 

found using ImageJ analysis and are shown in Table 3.1. 

(a) (b) 

  
Fig 3.1 SEM image of TiO2 nanoparticle of size range (a) 25 nm and (b) less than 

100 nm 

 
(a) (b) 

  
Fig 3.2 SEM image of SiO2 nanoparticle of size range (a) 20-30 nm and (b) 5-15 nm 
 

(a) 
(b) 

  

Fig 3.3 SEM image of  α-Fe2O3 nanoparticle of size range (a) less than 50 nm and 

(b) less than 80 nm 
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Table 3.1 Average particle size of TiO2, SiO2, and α-Fe2O3 nanoparticles 

Nanoparticle type Procured size range of 

nanoparticles, nm 

Average particle size using 

ImageJ analysis, nm 

TiO2 
25 25 

< 100 72 

SiO2 
5-15 12 

20-30 24 

α-Fe2O3 
< 50 43 

< 80 76 

3.3 Preparation of Nanofluid 

To prepare the nanofluid, “two-step method” has been followed in the present 

work. Initially required quantity of nanoparticles was weighed and dispersed into 

0.08M aqueous solution of sodium sulphite. This solution was ultrasonicated for 30 

minutes at (Elmasonic P ultrasonicator with 35 khz frequency). The prepared nanofluid 

sample are presented in Fig.3.4. The nanofluid thus prepared was used for further 

experiments. 

TiO2, SiO2 and α-Fe2O3 nanofluids with varying nanoparticle loadings were 

prepared with an aqueous solution of sodium sulphite as the base fluid. The amount of 

nanoparticles dispersed in 1.5L of sodium sulphite solution to prepare nanofluids with 

various nanoparticle loading are presented in Table 3.2. 

Table 3.2. Amount of nanoparticles used to prepare nanofluids of varying nanoparticle 

loading 

Nanoparticle loading 

(% w/v) 

Amount of nanoparticles 

used to prepare 1.5 L 

nanofluid (g) 

0.017 0.25 

0.034 0.5 

0.051 0.75 

0.068 1 

0.085 1.25 

0.102 1.5 
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TiO2 nanofluid prepared with the TiO2 nanoparticles with average particle size of 25 

nm and 72 nm are here in after referred as TiO2 -25 and TiO2- 72 nanofluid respectively. 

Similarly, SiO2 nanofluid prepared with the SiO2 nanoparticles with average particle 

size of 12 nm and 24 nm are here in after referred as SiO2 -12 and SiO2 -24 nanofluid 

respectively. α-Fe2O3 nanofluid prepared with the α-Fe2O3 nanoparticles with average 

particle size of 43 nm and 76 nm are here in after referred as α-Fe2O3 – 43 and α-Fe2O3 

– 76 nanofluid. 

 
Fig 3.4. Prepared Nanofluids (a) TiO2 -25, (b) TiO2 -72, (c) SiO2 -24, (d) SiO2 – 12,  

(e) α-Fe2O3 – 76 and (f) α-Fe2O3 – 43 

 

3.4 Properties of Nanofluid 

(i) The surface tension of TiO2, SiO2 and α-Fe2O3 nanofluid was measured using 

a surface tensiometer (Surface & Electro –Optics; SEO-DST30M). The 

platinum Du-Nouy ring method was used with ASTM D1331. The 

measurement ranges from 1-1000 mNm.  

(ii) The dynamic viscosity of nanofluids at room temperature was measured using 

Rolling ball viscometer (Lovis 2000M Microviscometer) under shear rate 

conditions imparted with a capillary size of 1.59 mm inclined at 45° angle and 
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a ball of dimension 2.5 mm. The measuring accuracy is up to 0.5% and the 

measuring range is 0.3 mPas – 10000 mPas.  

(iii) The density of nanofluids at room temperature was measured using DDM 2911 

automatic Density meter from Rudolph research analytical with high precision 

using mechanical oscillator method. The measuring accuracy up to 

0.00005g/cm3 and the measuring range is 0 to 3 g/cm3. 

3.5 Experimental setup 

The volumetric oxygen mass transfer coefficients (kLa) in the pulsed plate 

column were determined in the presence and absence of nanofluids. The schematic 

diagram of the experimental pulsed plate column (PPC) used for the study is shown in 

Fig 3.5 (a & b). It consisted of a vertical Perspex column of 6.8 cm inner diameter, 7.5 

cm outer diameter, and 62 cm height. The plate stack consisted of five perforated plates 

with 3.5 cm plate spacing, a plate diameter of 6.3 cm, and a 0.1 cm thickness mounted 

over a central shaft. The plate consisted of 104  perforations of 2mm diameter placed 

in square pitch. The fractional free area was 0.961%. The pulsation of the plate stack is 

generated by a variable speed motor with a frequency controller, through a slider/crank 

arrangement. The entire stack of plates can be pulsated at the required frequency and 

amplitude through this arrangement (Shetty et al. 2007). The working volume of the 

column was 1.5 liter. Compressed air was fed continuously through an air inlet port 

provided at the bottom of the column. Airflow was regulated using an air pressure 

regulator and a calibrated rotameter. Using the variable voltage speed regulator, the 

frequency of pulsation could be controlled and by changing the position of the 

crankshaft the amplitude of pulsation could be varied. 
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Fig 3.5  (a) Schematic diagram of an experimental setup 

 

 

Fig 3.5  (b) Schematic diagram of an experimental setup with dimensions 
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3.5.1 Experimental Procedure for the Determination of kLa in PPC 

 The Pulsed plate column was cleaned thoroughly with water. After drying, the 

central rod with the plate stack assembly was inserted into the column and fitted 

properly. The central shaft was then connected to the slider of the slider-crank 

arrangement with the bottom portion of the central rod positioned in the guiding tube. 

After assembling the plate stack and checking for its axial symmetry in the column, the 

active section of the column up to a height of 45cm was filled with the nanofluid. The 

prepared nanofluid (1.5 liters) was then fed into the column. To determine kLa, the 

sulfite oxidation method (Maier et al. 2001) has been adopted. The value of kLa was 

calculated from the maximum oxygen absorption rate and the oxygen solubility in the 

sodium sulfite solution. The oxygen absorption rate was experimentally measured 

utilizing sodium sulfite oxidation in the presence of cobalt sulfate as a catalyst. An 

aqueous solution of sodium sulfite (0.08M) was prepared in a separate vessel by 

dissolving the predetermined amount of sodium sulfite salt in water. Accurately 

weighed cobalt sulfate crystals were added into this sulfite solution and properly mixed 

so that the final catalyst concentration was 10-6 M. A desired quantity of nanoparticles 

as required for the experiment was dispersed in the sodium sulphite solution and the 

solution was ultrasonicated for 30 min. Then this solution was fed into the column. The 

sulfite concentration in the initial stock sulfite solution was determined iodometrically. 

Compressed air was sent from the bottom of the column for aeration at a constant rate. 

The required frequency and amplitude of pulsing motion were set.  

The samples were collected from the bottom of the column at a particular time interval 

of 30 minutes and the collected sample was immediately centrifuged at 10,000 rpm for 

10 minutes. The supernatant was analyzed for final sodium sulfite concentration at the 

end of 30 min of experimental time. It was measured by iodometric titration against 

sodium thiosulphate as described in section 3.6. The initial and final moles of sodium 

sulphite in the reactor volume was determined. The value of the kLa was calculated 

using the Equation 3.4.  

𝒌𝑳𝒂 =  
((𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒇𝒊𝒏𝒂𝒍)𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝑺𝑶𝟑

𝟐−)
𝟏 𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝑶𝟐

𝟐 𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝑺𝑶𝟑
𝟐−

𝒕 𝑽 (𝑪∗− 𝑪𝑳)
 ……… (3.4) 

Where, t = time for which reaction is allowed to carry out (30 min). 



48 

 

V = volume of the working liquid, L; CL is the bulk concentration of oxygen in the 

reactor, mg/L: C* is the saturation solubility of oxygen in sodium sulphite solution, 

mg/L.  

The reaction between oxygen and sulphite ( 2𝑁𝑎2𝑆𝑂3 + 𝑂2 → 2𝑁𝑎2𝑆𝑂4 ) is assumed to 

be instantaneous because it is a fast reaction catalyzed by cobalt ions because of the 

low solubility of oxygen in the liquid phase. This assumption allows to use CL = 0. C* 

was determined using Henry’s Law and was calculated as 7.6 mg/L at 30˚C (Room 

temperature at which the experiment was conducted). All the experiments were 

conducted in duplicates. Fig. 3.6 shows the schematic diagram of the different 

experimental conditions at which the kLa in PPC was determined.  

 
Fig 3.6. Experimental conditions under which the kLa values were determined in PPC  
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3.6 Analysis of sodium sulfite concentration by iodometric method 

3.6.1 Preparation of sodium thiosulphate 

 Sodium thiosulphate solution (0.01N) was prepared by dissolving 0.625g of 

sodium thiosulphate crystals in 250 ml of distilled water in a graduated flask. If the 

solution is to be kept for more than a few days, 0.1g of sodium carbonate or 3 drops of 

chloroform was added. 

3.6.2 Standardization of sodium thiosulphate 

 A standard solution of potassium dichromate was prepared by dissolving 0.49g 

in 100 ml of distilled water. 25ml of this solution was taken in a conical flask. 10ml of 

10% KI solution and 5ml of concentrated HCl were added to it and titrated against 

sodium thiosulphate in the burette. The starch solution was added when pale yellowish 

green colour was obtained to get a dark blue colour which on further titration gives a 

green colour solution. 

3.6.3 Preparation of iodine solution 

 Iodine solution (0.05M) was prepared by dissolving 20g of iodate-free KI in 30 

to 40ml distilled water in a glass stoppered 1000ml standard flask and 12.7g of 

resublimed iodine was added to this KI solution. The glass stopper was inserted into 

the flask and the flask was shaken in the cold until all the iodine had dissolved. The 

solution was allowed to acquire the room temperature and then made up to the mark 

with distilled water. The solution was preserved in a glass stoppered bottle in a cool, 

dark place. 

3.6.4 Preparation of starch indicator  

 A paste of 0.1g of soluble starch was made with little water and the paste was 

poured into 100ml boiling water and boiled for 1 min. the solution was kept in a 

stoppered bottle. 
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3.6.5 Chemical Reactions 

(a) Liberation of free iodine from salt: 

Addition of HCl liberates free iodine from the iodate in the salt sample. Excess 

KI was added to help solubilize the free iodine, which was quite insoluble in pure water 

under normal conditions. 

 𝐼𝑂3
− + 5𝐼− + 6𝐻+   →  3𝐼2 + 3𝐻2        …………………………. (3.1) 

(b) Titration of free iodine with sodium thiosulphate: 

Free iodine was consumed by sodium thiosulphate in the titration step. The 

amount of sodium thiosulphate used was proportional to the amount of free iodine 

liberated from the salt. Starch was added as an external (indirect) indicator of this 

reaction and reacts with free iodine to produce a blue colour. When added towards the 

end point of the titration (that was, when only a trace amount of free iodine was left) 

the loss of blue colour or endpoint, which occurs with further titration, indicated that 

all remaining free iodine was been consumed by sodium thiosulphate. 

2𝑁𝑎2𝑆2𝑂3 +  𝐼2  → 2𝑁𝑎𝐼 +  𝑁𝑎2𝑆4𝑂6 ………………………… (3.2) 

25ml of the sodium sulphite solution was taken in a conical flask and iodine solution 

was added from the burette till a slight orange colour was added. 5ml iodine solution 

was added in excess. Volume of iodine as V1 ml was noted and to this solution, 5ml 

HCl was added and titrated against the Standardised sodium thiosulphate using a starch 

solution as indicator near endpoint (A ml). the procedure was repeated to get V2 ml 

iodine solution and B ml of sodium thiosulphate solution. 

Concentration of sodium sulphite (Na2SO3) was calculated using the following formula 

(3.3): 

Conc. of Na2SO3 = (
{[B X (

V1
V2

⁄ )−A] X  (NNa2S2O3) X (eq.wt of Na2S2O3)X 1500}

25 X 1000
) … .. (3.3) 

Where,  

B= ml of Na2S2O3 required for blank titration 

A = ml of Na2S2O3 required for estimation 

𝑁𝑁𝑎2𝑆2𝑂3
     = Normality of Na2S2O3 

Eq. wt of Na2S2O3 = Equivalent wt of Na2S2O3 = 63.02 

V1= ml of iodine required for estimation 

V2 = ml of iodine required for blank titration  
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CHAPTER 4   Results and Discussion 

In the present work, the influence of the nanofluids on the g-l mass transfer in 

terms of volumetric oxygen mass transfer coefficient (kLa) in PPC operated with liquid 

phase in batch mode and continuous airflow is studied.   

This chapter presents the characterization of TiO2, SiO2, and α-Fe2O3 nanofluids and 

the results on the effect of these nanofluids on kLa and its enhancement in PPC. The 

effect of nanoparticle loading (Φ) in the nanofluid, pulsing parameters such as 

frequency (f), amplitude (A), and pulsing velocity (A×f) along with the superficial air 

velocity (Ug) effect on kLa are presented and discussed. The results and discussions on 

the effect of the size of nanoparticles in the nanofluid and the comparison of different 

nanofluids in terms of enhancement in kLa in PPC are also presented. 

The kLa was experimentally determined at different operating conditions with varying 

amplitudes (3.2 cm, 4.7 cm, 6.3 cm), frequencies of pulsation (0.25, 0.5, 0.75, and 1 s-

1), and superficial air velocities (0.011m/s, 0.019m/s, and 0.029m/s).  Experiments were 

conducted under these conditions with TiO2 -25, TiO2- 72, SiO2 -12, SiO2 -24, α-Fe2O3 

– 43 and α-Fe2O3 – 76 nanofluids containing varying concentrations of nanoparticles 

such as 0.017 % w/v, 0.034 % w/v, 0.051 % w/v, 0.068 % w/v, 0.085 % w/v, and 0.102 

% w/v.  

4.1 Properties of nanofluids 

The properties such as surface tension, dynamic viscosity and density of TiO2, SiO2 and 

α-Fe2O3 nanofluids with varying nanoparticle loading were determined and are 

presented in Fig.4.1 (a), (b) and (c); Fig.4.2 (a), (b) and (c) and Fig 4.3 (a), (b) and (c) 

respectively. 

As observed in Table 4.1 and Fig.4.1 (a) to (c), the surface tension of nanofluid is lesser 

compared to that of the base fluid at lower loadings, though it increased with the 

increase in the loading. However, beyond a certain loading value the surface tension 

becomes higher compared to that of the base fluid. The loading values at and above 

which the surface tension becomes equal to or greater with respect to the base fluid are 

0.102 % w/v for TiO2 -25 and TiO2- 72 nanofluids, 0.085 % w/v and 0.051 % w/v for 
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SiO2-12 and SiO2-24 nanofluids respectively, 0.051 % w/v and 0.017 % w/v for α-

Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids respectively.    

Table 4.1. Surface tension of TiO2, SiO2 and α-Fe2O3 nanofluids. 

Surface tension of nanofluids, mN/m 

Nanoparticle 

type 
TiO2 nanofluid SiO2 nanofluid 

α-Fe2O3 

nanofluid 

Nanoparticle 

Loading, (%w/v) 
Nanoparticle Size, nm 

  25 nm 72 nm 12 nm 24 nm 43 nm 76 nm 

base fluid 72.6 72.6 72.6 72.6 72.6 72.6 

0.017 48.0 61.0 55.2 63.0 63.3 76.4 

0.034 52.3 65.6 61.1 68.6 69.0 78.6 

0.051 58.1 66.8 66.8 73.4 75.0 82.3 

0.068 63.5 70.8 69.2 76.3 78.0 82.5 

0.085 65.7 72.2 72.6 79.0 79.1 83.1 

0.102 75.2 79.0 76.2 81.3 81.6 84.9 

 

 

 



53 

 

 

 

 
Fig.4.1 Effect of nanoparticle loading on the Surface tension of (a) TiO2 ,(b) SiO2 

and (c) α-Fe2O3 nanofluids. 
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The lowered values of surface tension in the dilute nanofluids than the base fluid, is 

because at the g-l interface, the cohesive energy reduces as the nanosized particles are 

added to the base fluid (Becher 1972; Schonhorn 1965; Vavruca 1978). The Brownian 

motion of nanoparticles within the liquid can scatter the nanoparticles present at the g-

l interface to other directions with the reduced free energy of the interface, thus reducing 

the surface tension (Murshed et al. 2005; 2008). Murshed et al. (2008), also attributed the 

reduction to the adsorption of nanoparticles at the interfaces. Such a decrease in the 

surface tension by adding the nanoparticles has been found by Radiom et al. (2009), 

(Murshed et al. 2005, 2008) in TiO2-water nanofluid and by  Vafaei et al. (2009) with 

Bi2Te3/water nanofluids. Tanvir and Qiao (2012), have studied the effect of 

nanoparticle loading on the surface tension of nanofluids and have reported that the 

surface tension decreased at lower particle concentrations than the pure base fluid. They 

attributed it to the reduction of surface free energy due to the repulsive electrostatic 

force among the particles leads to the decrease in surface tension. 

As observed in Fig 4.1 (a) – (c), the surface tension of the TiO2, SiO2 and α-Fe2O3 

nanofluid increased with an increase in the nanoparticle loading. The presence of 

nanoparticles may alter the surface tension based on its nature (Sinha and Singh 2017). 

Tanvir and Qiao (2012) have found that the surface tension of water, ethanol and  n-

decane increased with increase in weight percentage of alumina nanoparticles. Bhuiyan 

et al. (2015), have experimentally shown the increase surface tension of Al2O3, TiO2, 

and SiO2 nanoparticles in distilled water with nanoparticle concentration and size. Żyła 

et al. (2017), experimentally investigated that the increase in surface tension of ethylene 

glycol (EG) nanofluid with increase in volume fraction of  titanium nitride (TiN) 

nanoparticles. 

At low particle concentrations, addition of particles was generally found to have little 

influence on the surface tension because the distance between the particles is large 

enough even at the liquid/gas interface. Such  observations have been made by Tanvir 

and Qiao (2012) and Traciak and Żyła (2022). Tanvir and Qiao (2012) have also found 

that at high particle concentrations, increase in the nanoparticle loading increases the 

nanofluids surface tension and goes above the base fluid. 

As the nanoparticle loading increases, the number of nanoparticles increase in the 

nanofluid resulting in the particles getting closer to each other decreasing the 
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interparticle spacing at the g-l interface. An increased nanoparticle concentration may 

result in nanoparticles exerting large attractive pull at the interfacial water molecules, 

the accumulation of particles at the g-l interface exerts an increased Van der Waals 

force among them and leads to the rigid interface that results in high surface free energy 

causing the increased surface tension (Vafaei et al. 2009, Sinha and Singh 2017). 

Meanwhile the forces of attraction between the particles at the g-l interface increases 

and agglomeration of particles increases due to the exertion of cohesive force between 

the particles. this results in the higher value of surface tension (Bhuiyan et al. 2015; 

Tanvir and Qiao 2012). 

 Surface tension was also found to increase with the increase in the size of nanoparticles 

as observed in Fig 4.1 (a) - (c).   Similar trend of increase in surface tension with 

increase in nanoparticle size has been observed by Bhuiyan et al. (2015) in their studies 

with Al2O3 (13 nm and 50 nm) and SiO2 (5~15 nm and 10~20 nm) nanoparticles; Monji 

and Jabbareh (2017) with Ag-Au alloy nanoparticles (1, 2, 5 and 10 nm) ; Vafaei et al. 

(2009) with Bi2Te3 - water (2.5 and 10.4 nm); Zhang et al. (2021) with Cadmium 

sulphide nanoparticles (>10 nm and <10 nm). The surface charge density is found to be 

higher in the smaller size nanoparticles compared to that of the larger size nanoparticles 

(Abbas et al. 2008), which results in an increase in the electrostatic repulsion force 

between the liquid molecules and the nanoparticles, which promotes the surface 

adsorption and hence reduces the surface tension of nanoparticles with the smaller size 

(Brown et al. 2013). With the increase in the nanoparticle size, the surface area 

decreases along with the surface free energy thus the surface tension of nanofluids 

increases (Bhuiyan et al. 2015). 

Similarly, the viscosity of TiO2, SiO2, and α-Fe2O3 nanofluid increased with the increase 

in the nanoparticle loading and is shown in Fig. 4.2 (a) – (c) respectively. The plot 

shows that the increase in nanoparticle loading increases the viscosity of nanofluid.  
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Fig.4.2 Effect of nanoparticle loading on the Dynamic viscosity of (a) TiO2 ,(b) 

SiO2 and (c) α-Fe2O3 nanofluids. 

It is found that when the nanoparticle loading increased from 0.017 % w/v to 0.102 % 

w/v the viscosity has increased from 0.90 cP to 1.78 cP for TiO2 -25 nanofluid and 1.12 
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cP to 2.11 cP for TiO2 -72 nanofluid as observed in Fig.4.2 (a). Similarly, the increase 

in nanoparticle loading from 0.017 % w/v to 0.102 % w/v has resulted in an increase in 

viscosity from 0.94 cP to 2.14 cP and 1.40 cP to 2.24 cP for SiO2-12 and SiO2-24 

nanofluid, as observed in Fig.4.2 (b). The viscosity increased from 1.43 cP to 2.27 cP 

and from 1.67 cP to 2.41 cP when the nanoparticle loading increased from 0.017 % w/v 

to 0.102 % w/v for α-Fe2O3-43 and α-Fe2O3-76 nanofluids respectively as observed in 

Fig. 4.2 (c). 

Phuoc and Massoudi (2009) in their studies on Fe2O3-Distilled water  (Fe2O3-DW)  

nanofluids have experimentally found that viscosity is dependent on the nanoparticle 

concentration. Duangthongsuk and Wongwises (2009), have reported that the measured 

viscosity of TiO2 –water nanofluids increased with the increased particle concentrations 

and experimental results showed that the measured nanofluid viscosity is higher than 

the base fluid.  Yapici et al. (2018), observed that the increase in nanoparticle mass 

concentration increased the nanofluid viscosity. Minakov et al. (2021) have also 

observed an increase in viscosity with the increase in nanoparticle loading for  Al2O3, 

TiO2, ZrO2, CuO, Fe2O3 nanofluids. They found that the viscosity of nanofluids 

depends on the type of nanoparticles and the loading of nanoparticles. Similar results 

were observed by many researchers wherein they have found that the increase in 

nanoparticle loadings increases the nanofluid viscosity (Abareshi et al. 2011; Hasani 

Goodarzi and Nasr Esfahany 2016; Hatami et al. 2017; Nematbakhsh and Rahbar-

Kelishami 2015; Rahbar et al. 2011; Zhang and Han 2018, Hassan et al. 2022). 

The increase in the viscosity is attributed mainly to the collective effects of Brownian 

motion, Vander Waals force and electric charge repulsive force (Cabaleiro et al. 2018; 

Hu et al. 2020; Nguyen et al. 2007; Phuoc and Massoudi 2009; Said et al. 2022).  Chen 

et al. (2009) explained that a well-dispersed nanofluid suspension exhibits lower 

viscosity as compared to the agglomerated suspension. The tendency of aggregation of 

nanoparticles is enhanced due to the increase in the volume of the nanoparticle loading 

exceeding the dilute regime, particularly when the Van der Waals force of attraction is 

significant. The clustering of nanoparticles leads to the formation of porous particles 

with the liquid of the base fluid packing the space. This hinders the movement of 

additional liquid in the space increasing the effective volume fraction of nanoparticles, 

which influences the enhancement of the viscosity of nanofluid (Gaganpreet and 
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Srivastava 2015; Meyer et al. 2016). The increase in the number of nanoparticles 

dispersed in the base fluid causes the explicit drag effect on each nanoparticle due to 

the Brownian motion, which in turn increases the overall drag effect existing in the base 

fluid. Likewise, the increase in viscosity is explained by the mechanism of the surface 

charge of particles relating to the suspension base fluid. The attraction of counter ion 

onto the surface of the nanoparticles takes place due to the dispersion of charged 

nanoparticles into the polar base fluid. This process leads to the formation of an 

electrical double layer (EDL). The distance between the EDLs is extended and the 

interparticle distance will be reduced by increasing the nanoparticle loading. Hence an 

electroviscous force develops and leads to a further increase in viscosity. Electroviscous 

force is the force of interaction between the EDLs (Anoop et al. 2009). Further, the 

interparticle distances are reduced by the increase in the volume of nanoparticles 

(Larson 1999; Phuoc and Massoudi 2009). Kandelousi (2017) have observed that the 

variations in the viscosity of nanofluids are mainly dependent on the concentration of 

nanoparticles, properties of base fluid and nanofluids such as density and surface 

tension, and nanoparticle properties such as size and density. 

 The viscosity of nanofluids increases with the size of the nanoparticles as observed in 

Fig 4.2 (a) to (c). Similar observations have been reported by He et al. (2007), with 

TiO2/water (95 nm, 145 nm, and 210 nm); Hemmat Esfe et al. (2015) with Fe-water 

nanofluid (with three different sizes 37 nm, 71 nm, and 98 nm); Lee et al. (2016) with 

ZnO nanofluid (average sizes of 40 nm, 70 nm, and 90 nm; Hu et al. (2020) with  Al2O3 

(20 nm, 50 nm, and 100 nm) and ZnO (20 nm, 40 nm, 60 nm, 80 nm and 100 nm) 

nanofluids. Hu et al (2020) have found that the dependency of viscosity on particle size 

varied with nanoparticle type and concentrations. At lower concentrations, the viscosity 

was found to be either unaltered or decreased with an increase in particle size depending 

on the type of the nanoparticles, whereas at higher concentrations it increased with the 

increase in size. This is mainly due to the interparticle spacing and the extent of the 

aggregation of the nanoparticles to be the key factors determining the viscosity of 

nanofluid and these are greatly affected by the variation in the size, type and 

concentration of  the nanoparticles. 

Further, the density of TiO2, SiO2, and α-Fe2O3 nanofluid was found to increase with 

the increase in nanoparticle loading as seen in Fig.4.3. Several studies in the literature 
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signifies that the addition of nanoparticles into the base fluid enhances the density of 

the nanofluids linearly (Naddaf and Zeinali Heris 2019; Said et al. 2022). As the 

nanoparticle concentration increases the density of nanofluid increases due to an 

increased influence of solid mass in the base fluid (Yadav et al. 2020).  

 

 

 
Fig.4.3 Effect of nanoparticle loading on the Density of (a) TiO2 ,(b) SiO2 and (c) 

α-Fe2O3 nanofluids. 
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Diffusivity of oxygen in TiO2, SiO2 and α-Fe2O3 nanofluid (Dnf),  was calculated using 

Equation (4.1) (Feng and Johnson 2012), 

𝑫𝒏𝒇 = 𝑫𝑳  (
𝟏 + 𝛙

𝟏 −
𝛙
𝟐

)               (𝟒. 𝟏) 

where DL is the diffusivity of a solution without nanoparticles which was found 

by using Wilke - Chang correlation (Wilke & Chang 1955) and ψ is nanoparticle 

loading in volume fraction.  

The volume fraction of nanoparticles in the nanofluids (Nurdin and Satriananda 2017) 

is calculated using the Equation (4.2) and the values are given in the Table 4.2 

( 𝛙) =  

𝑴𝒏𝒑

𝝆𝒏𝒑

𝑴𝒏𝒑 

𝝆𝒏𝒑
+ 

𝑴𝒃𝒇

𝝆𝒃𝒇

                      (4.2) 

Where, Mnp is the mass of the nanoparticles, ρnp is the density of the nanoparticles, Mbf 

is the mass of the base fluid, ρbf is the density of the base fluid. The values of density 

of procured TiO2, SiO2 and α-Fe2O3 nanoparticles from Intelligent Materials Pvt. Ltd 

were 4.26 g/cm3, 2.4 g/cm3 and 5.242 g/cm3 respectively.  

The values of Dnf are given in Table 4.3. The variation of Dnf with the increase in 

nanoparticle loading for TiO2, SiO2 and α-Fe2O3 nanofluids are shown in Fig.4.4.  

Table 4.2. Nanoparticle loading in volume fraction. 

Nanoparticle 

Loading in % 

w/v  

Volume fraction 

of TiO2 

nanoparticles 

 

Volume fraction 

of SiO2 

nanoparticles  

Volume fraction of 

α-Fe2O3 

nanoparticles  

0.017 3.91E-05 6.94E-05 3.18E-05 

0.034 7.82E-05 1.39E-04 6.36E-05 

0.051 1.17E-04 2.08E-04 9.54E-05 

0.068 1.56E-04 2.78E-04 1.27E-04 

0.085 1.96E-04 3.47E-04 1.59E-04 

0.102 2.35E-04 4.16E-04 1.91E-04 
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Table 4.3. Values of Diffusivity of oxygen in nanofluids, Dnf  

Diffusivity of oxygen in nanofluids, x 10-9 m2/s 

Nanoparticle 

Loading, 

(%w/v) 

TiO2 

nanofluid 

SiO2 

nanofluid 

α-Fe2O3 

nanofluid 

base fluid 1.030 1.030 1.030 

0.017 1.034 1.040 1.033 

0.034 1.041 1.050 1.038 

0.051 1.047 1.061 1.043 

0.068 1.052 1.072 1.048 

0.085 1.058 1.083 1.053 

0.102 1.065 1.094 1.058 

 

 

Fig.4.4 Diffusivity of oxygen in TiO2, SiO2, and α-Fe2O3 nanofluids. 

 

The plot shows that the increase in nanoparticle loading increases the diffusivity of 

oxygen in nanofluid. It is observed that the diffusivity of SiO2 nanofluid is greater 

compared to TiO2 and α-Fe2O3 nanofluids which is due to the variation in the density 

of nanoparticles. 
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4.2 Effect of nanoparticles loading in the nanofluid on kLa. 

To study the effect of TiO2, SiO2, and α-Fe2O3 nanoparticle loading (Φ) on kLa, 

batch experiments were conducted with different nanoparticle loadings of 0.017 % w/v, 

0.034 % w/v, 0.051 % w/v, 0.068 % w/v, 0.085 % w/v, and 0.102 % w/v with TiO2 -

25, TiO2- 72, SiO2 -12, SiO2 -24, α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids at different 

frequencies and amplitudes of pulsation at airflow rates of 1.8 LPM, 3.2 LPM, and 4.8 

LPM and the results are presented in  Fig. 4.5 to 4.7, Fig. 4.8 to 4.10 and Fig. 4.11 to 

4.13 for TiO2, SiO2 and α-Fe2O3 nanofluids respectively. 

The effect of nanoparticle loadings as a function of frequencies on kLa in TiO2 nanofluid 

at various amplitudes of pulsation of 3.2 cm, 4.7 cm, and 6.3 cm at varying air flow 

rates of 1.8 LPM, 3.2 LPM and 4.8 LPM are shown respectively in Fig. 4.5 (a) to (f); 

Fig.4.6 (a) to (f) and Fig.4.7 (a) to (f) TiO2 -25 and TiO2- 72 respectively. 
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Fig 4.5. Effect of TiO2 nanoparticle Loading on kLa at different frequency of 

pulsation and at an air flow rate of 1.8 LPM for      

                         (a) TiO2-25 at A= 3.2 cm  (b) TiO2-72 at A = 3.2 cm 

                         (c) TiO2-25 at A= 4.7 cm  (d) TiO2-72 at A = 4.7 cm 

                         (e) TiO2-25 at A= 6.3 cm  (f) TiO2-72 at A = 6.3 cm 
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Fig.4.6 Effect of TiO2 nanoparticle Loading on kLa at different frequency of pulsation 

and at an air flow rate of 3.2 LPM for      

                         (a) TiO2-25 at A= 3.2 cm  (b) TiO2-72 at A= 3.2 cm   

                         (c) TiO2-25 at A= 4.7 cm  (d) TiO2-72 at A= 4.7 cm   

             (e) TiO2-25 at A= 6.3 cm  (f) TiO2-72 at A= 6.3 cm   

 

  

  

  
Fig.4.7 Effect of TiO2 nanoparticle Loading on kLa at different frequency of pulsation 

and at an air flow rate of 4.8 LPM for      

                         (a) TiO2-25 at A= 3.2 cm  (b) TiO2-72 at A= 3.2 cm   

                         (c) TiO2-25 at A= 4.7 cm  (d) TiO2-72 at A= 4.7 cm   

                         (e) TiO2-25 at A= 6.3 cm  (f) TiO2-72 at A= 6.3 cm   
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The kLa was found to be enhanced in the presence of nanofluids as compared to that in 

the base fluid.  The kLa was found to increase with the increase in nanoparticle loading 

from 0.017 % w/v to 0.068 % w/v in TiO2 -25 nanofluid as evidenced in Fig 4.5 (a), (c) 

and (e); Fig 4.6 (a), (c) and (e) and Fig 4.7 (a), (c) and (e) at all the frequencies, 

amplitude of pulsation and airflow rates for TiO2 nanoparticles. However, a further 

increase in the loading has led to a decrease in the kLa values. The maximum value of 

kLa with TiO2 -25 nanofluid is obtained with nanoparticles loading of 0.068 % w/v at 

highest frequency of 1s-1 and at all the amplitudes of pulsation and air flow rates. 

Similar trend has been observed with TiO2 -72 nanofluid, with maximum kLa values 

being observed at loading of 0.051 %w/v. The increase in kLa is observed when 

nanoparticle loading was increased from 0.017 % w/v to 0.051% w/v with TiO2 -72 

nanofluid as shown in the Fig. 4.5 (b), (d) and (f); Fig 4.6 (b), (d) and (f) and Fig 4.7 

(b), (d) and (f) at all the frequencies, amplitude of pulsation and air flow rates. Further, 

as observed in Fig. 4.5 to 4.7, there is a decrease in volumetric mass transfer coefficient 

with increase in TiO2 loading above the critical loading of 0.068 % w/v and 0.051 % 

w/v for nanofluids with TiO2 -25, TiO2- 72 nanofluids respectively. Jiang et al (2015) 

have also reported similar trend of the increase in kLa with increasing solid loading in 

a thermostatic stirred tank reactor using TiO2 nanoparticles in aqueous solution by 

determining kLa using sodium sulphite method. They have found an optimum loading 

of 0.4 kg/m3 (equivalent to 0.04 wt%) of TiO2 nanoparticles for the maximum 

enhancement, beyond which loading a decrease in kLa was noticed.  

The effect of SiO2 nanoparticle loadings as a function of frequencies on kLa at various 

amplitudes of pulsation of 3.2 cm, 4.7 cm and 6.3 cm at varying air flow rate of 1.8 

LPM, 3.2 LPM and 4.8 LPM are shown respectively in Fig. 4.8 (a) to (f); Fig.4.9 (a) to 

(f) and Fig.4.10 (a) to (f) with SiO2 -12, SiO2 -24 nanofluids. The kLa values in PPC are 

higher in SiO2 nanofluid than in the base fluid.  

The kLa was found to be increased with the increase in nanoparticles loading 

from 0.017 % w/v to 0.051% w/v, as evidenced in Figure 4.8 to 4.10 with SiO2 -12, 

SiO2 -24 nanofluids at all the frequencies, amplitude of pulsation and air flow rates. 

However, further increase in the loading has led to decrease in the kLa values. 

Maximum value of kLa is obtained with 0.051% w/v at highest frequency of 1s-1 and 

all the amplitudes of pulsation with SiO2 -12, SiO2 -24 nanofluids. Jiang et al (2015) in 
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their studies on kLa in a thermostatic stirred tank reactor have found that kLa increased 

with increase in solid loading in SiO2 nanofluid in aqueous solution by sodium sulphite 

with largest enhancement for an optimum loading of 0.6kg/m3 (equivalent to 0.06 wt%) 

of SiO2 nanoparticles. Nematbaksh and Ahmad (2015) reported that SiO2 nanoparticles 

near the interface forms a resistant layer and when the concentration of nanoparticles 

increased the thickness of solid like layer around the air bubbles and the interface 

resistance (a hindrance to mass transfer) increases which results in the reduced mass 

transfer coefficient. Feng and Johnson (2012) reported that liquid film mass transfer 

coefficients of silica nanofluids reduced with increasing viscosity. Goodarzi and 

Esfahany (2016) observed the decreasing trend in mass transfer coefficient with 

increasing concentration of silica nanoparticles in their investigation of influence of 

hydrophilic silica nanoparticles on mass transfer in liquid-liquid extraction process. 

They attributed their observation of decreasing trend as reduction of the effective 

fraction of gas-liquid contact area due to the presence of higher concentration of 

suspended nanoparticles and also increase in solution viscosity.  
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Fig.4.8 Effect of SiO2 nanoparticle Loading on kLa at different frequency of pulsation 

and at an air flow rate of 1.8 LPM for      

                         (a) SiO2-12 at A= 3.2 cm  (b) SiO2-24 at A= 3.2 cm   

                         (c) SiO2- 12 at A= 4.7 cm  (d) SiO2-24 at A= 4.7 cm   

                         (e) SiO2- 12 at A= 6.3 cm  (f) SiO2 -24 at A= 6.3 cm   

 

  

  

  
Fig.4.9 Effect of SiO2 nanoparticle Loading on kLa at different frequency of pulsation 

and at an air flow rate of 3.2 LPM for      

                         (a) SiO2-12 at A= 3.2 cm  (b) SiO2-24 at A= 3.2 cm   

                         (c) SiO2- 12 at A= 4.7 cm  (d) SiO2-24 at A= 4.7 cm   

            (e) SiO2- 12 at A= 6.3 cm  (f) SiO2 -24 at A= 6.3 cm   
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Fig.4.10 Effect of SiO2 nanoparticle Loading on kLa at different frequency of 

pulsation and at an air flow rate of 4.8 LPM for      

                         (a) SiO2-12 at A= 3.2 cm  (b) SiO2-24 at A= 3.2 cm   

                         (c) SiO2- 12 at A= 4.7 cm  (d) SiO2-24 at A= 4.7 cm   

            (e) SiO2- 12 at A= 6.3 cm  (f) SiO2 -24 at A= 6.3 cm   
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The effect of α-Fe2O3 nanoparticle loadings as a function of frequencies on kLa at 

various amplitudes of pulsation of 3.2 cm, 4.7 cm and 6.3 cm at varying air flow rate 

of 1.8 LPM, 3.2 LPM and 4.8 LPM are shown respectively in Fig. 4.11(a) to (f); 

Fig.4.12 (a) to (f) and Fig.4.13 (a) to (f) with α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids 

respectively. 

  

  

  

Fig.4.11 Effect of α-Fe2O3 nanoparticle loading on kLa at different frequency of 

pulsation and at an air flow rate of 1.8 LPM for      

(a) α-Fe2O3 – 43 at A= 3.2 cm  (b) α-Fe2O3 – 76 at A = 3.2 cm 

(c) α-Fe2O3 – 43 at A= 4.7 cm  (d) α-Fe2O3 – 76 at A = 4.7 cm 

     (e) α-Fe2O3 – 43 at A= 6.3 cm  (f) α-Fe2O3 – 76 at A = 6.3 cm 
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Fig.4.12 Effect of α-Fe2O3 nanoparticle loading on kLa at different frequency of 

pulsation and at an air flow rate of 3.2 LPM for      

(a) α-Fe2O3 – 43 at A= 3.2 cm  (b) α-Fe2O3 – 76 at A = 3.2 cm 

(c) α-Fe2O3 – 43 at A= 4.7 cm  (d) α-Fe2O3 – 76 at A = 4.7 cm 

                 (e) α-Fe2O3 – 43 at A= 6.3 cm  (f) α-Fe2O3 – 76 at A = 6.3 cm 
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Fig.4.13 Effect of α-Fe2O3 nanoparticle loading on kLa at different frequency of 

pulsation and at an air flow rate of 4.8 LPM for      

(a) α-Fe2O3 – 43 at A= 3.2 cm  (b) α-Fe2O3 – 76 at A = 3.2 cm 

(c) α-Fe2O3 – 43 at A= 4.7 cm  (d) α-Fe2O3 – 76 at A = 4.7 cm 

                (e) α-Fe2O3 – 43 at A= 6.3 cm  (f) α-Fe2O3 – 76 at A = 6.3 cm 

The kLa was found to increase with the increase in nanoparticle loading from 0.017 to 

0.034 % w/v in α-Fe2O3 nanofluid as evidenced in Fig. 4.11 to Fig.4.13 with α-Fe2O3 – 

43 and α-Fe2O3 – 76 nanofluids at all the frequencies, amplitude of pulsation and air 

flow rates and a further increase in loading has led to a decrease in the kLa values. The 

maximum value of kLa is obtained with the nanoparticle loading of 0.034 % w/v at the 

highest frequency of 1s-1 and at all the amplitude of pulsation and with α-Fe2O3 – 43 

and α-Fe2O3 – 76 nanofluids. (Olle et al. 2006b), have observed an increase in the mass 

transfer coefficient at a loading below 1 wt % in an agitated sparged reactor with α-
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Fe2O3 nanofluid. Manikandan et al. (2012), have observed that the increase solid 

loading has increased the kLa in an agitated aerated bioreactor using Fe2O3 – water 

nanofluid. They have found the decrease in kLa value beyond the optimum loading of 

0.065 wt% Fe2O3 nanoparticles and for the optimum loading they have achieved the 

maximum enhancement of kLa. 

The results obtained in the present study indicated that the kLa values with TiO2, SiO2 

and α-Fe2O3 nanofluid are higher than that with the base fluid in PPC. Further, 

maximum kLa was obtained at the critical loading, which were found to be 0.068 % w/v 

and 0.051 % w/v with TiO2 -25 and TiO2- 72 nanofluids; 0.051 % w/v with SiO2 -12 

and SiO2 -24 nanofluids; 0.034 % w/v with α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids. 

The maximum enhancement factors with TiO2, SiO2 and α-Fe2O3 nanofluids at 

critical loading conditions are presented in in Table 4.4. As observed in Table 4.4, the 

enhancement factor values are greater than “ONE” with all three nanofluids at the 

nanoparticle loadings and size, which signifies the effect of nanofluid in enhancing kLa 

in PPC. 

Table 4.4 Maximum Enhancement factor obtained at critical loading of TiO2, SiO2 and 

α-Fe2O3 nanofluids with varying amplitude of pulsation, at the lowest (0.25 s-1) and 

Highest (1 s-1) frequency at an air flow rate of 1.8 LPM 

Nano 

particle 

Type 

Nano 

particle 

critical 

loading, 

%w/v 

Average 

Nano 

particle 

Size, nm 

Enhancement factor  

A=3.2 cm A=4.7 cm A=6.3 cm 

0.25 s-1 1s-1 0.25 s-1 1s-1 0.25 s-1 1s-1 

TiO2 
0.068 25 nm 4.37 2.02 3.28 1.98 1.92 1.87 

0.051 72 nm 2.39 1.38 2.35 1.35 1.63 1.31 

SiO2 0.051 
12 nm 2.30 1.33 2.05 1.31 1.57 1.25 

24 nm  2.17 1.27 1.81 1.22 1.33 1.20 

α-Fe2O3 0.034 
43 nm 1.65 1.25 1.61 1.21 1.20 1.16 

76 nm 1.61 1.15 1.56 1.13 1.17 1.12 
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Several studies have indicated that the gas – liquid mass transfer coefficient 

initially increases with nanoparticle loading and then decreases at higher loading. The 

increase in volumetric oxygen mass transfer coefficient with increase in nanoparticle 

loading is because of the following reasons, (i) Brownian motion following micro 

convection and Marangoni flow ( the mass transfer along an interface between two 

phases due to a gradient of the surface tension)  generated by nanoparticles will 

intercept the accumulation of bubbles and helps in increasing the gas hold up and the 

effective area of mass transfer, therefore are reported to be responsible for increasing 

the kLa, thus strengthening the rate of mass transfer (Jiang et al. 2019; Manikandan et 

al. 2012; Mirzazadeh Ghanadi et al. 2015; Saien and Bamdadi 2012; Zhang et al. 2022), 

(ii) due to the shearing action by the particles present in the suspension which may 

decrease the film thickness boosting the mass transfer coefficient (Zhou et al. 2003). 

(iii) Bubble breaking phenomena: in the gas-liquid systems the nanoparticles collide 

with the gas- liquid interface and accordingly break the bigger size bubbles into smaller 

size bubbles and lead to larger interfacial area which actively enhances kLa and leads 

to faster rate of mass transfer from the gas to the liquid (Kim et al. 2008; Torres Pineda 

et al. 2012; Zhang et al. 2022). (iv) Shuttle effect or Grazing effect mechanism: 

According to this mechanism, the nanoparticles suspended in the gas – liquid system 

may adsorb the solute (oxygen ) from the gas phase and immediately desorb or transfer 

in to the bulk liquid (Ashrafmansouri and Nasr Esfahany 2014; Jiang et al. 2015; Lu et 

al. 2013; Saeednia et al. 2015),or in other words grazing effect is nothing but the 

intensity of the fluid movement near the gas-liquid surface and particles pass through 

the concentration film layer and pick up the adsorbate (Darvanjooghi et al. 2018). 

It has also been observed in the present study that beyond a certain nanoparticle loading 

level, the mass transfer coefficient decreases with increase in nanoparticle loading.  

According to many researchers (Beiki et al. 2013; Krishnamurthy et al. 2006; 

Nematbakhsh and Rahbar-Kelishami 2015; Veilleux and Coulombe 2010), the decrease 

in mass transfer coefficient with increase in nanoparticle loading above a certain level 

can be attributed to the particle – particle clustering or agglomeration that occurs at 

higher loading . The higher degree of aggregation of nanoparticles opposes the particle 

motion and hence Brownian motion and micro-convection are decreased ( Saien and 

Bamdadi 2012; Saien and Zardoshti 2015; Zhang et al. 2021). Due to particle 

aggregation, larger and more massive particles are produced with reduced capacity of 
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promoting localized convection (Ashrafmansouri et al. 2016; Nematbakhsh and 

Rahbar-Kelishami 2015). Keshishian et al. (2013), have observed similar deterioration 

of mass transfer coefficient due to saturation of host fluid by nanoparticles and hence 

the prominent positive effects of nanoparticle drops down. Zhang et al. (2020), have 

reported the decreased mass transfer coefficient with an increase in nanoparticle loading 

and have attributed the same to the neighboring nanoparticles which oppose the free 

movement of nanoparticles and increased tendency of precipitation and agglomeration 

that reduces the kLa enhancement. Furthermore, Esmaeili Faraj et al. (2014), suggested 

that saturation of the gas bubble surface by nanoparticles can justify the decreasing 

trend. The higher loading of nanoparticles results in increase in the hydrodynamic 

diameter of the particles due to agglomeration and decrease in the nanofluid stability 

obstructing the shuttle effect phenomenon and micro-convection mechanisms in the 

system leading to the diminishing kLa (Ashrafmansouri et al. 2016; Saien and Bamdadi 

2012). 

Apart from these, the influence of nanofluid properties such as the surface tension and 

dynamic viscosity of nanofluids may also contribute to the reduction in the kLa with 

increase in nanoparticle loading. As discussed in the section 4.1, the surface tension of 

nanofluid has increased with the increase in the loading. The  surface tension favours 

the bubble coalescence leading to an increase in bubble size, which  reduces the 

interfacial area, decreases the gas hold up, and the mass transfer coefficient (Moraveji 

et al. 2013). The increase in surface tension affects the surface renewal rate which 

controls the mass transfer coefficient   and also reduces the available surface area for 

molecular diffusion at the interface, forming a hydration layer at the surface. It further 

gives rise to the higher surface viscosity and increased surface layer thickness, which 

resists the transfer of oxygen (Masutani and Stenstrom 1991). The increase in surface 

tension with increase in nanoparticle loading may have contributed dominantly in 

decreasing the kLa values along with the agglomeration effect at loadings above the 

critical loading values. Hence lower surface tension of the nanofluids is favourable in 

enhancing the mass transfer coefficient. It appears from the present study that one of 

the reasons for the decrease in kLa at high particle concentrations is the result of 

unfavourable influence of high surface tension. 
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Similarly, the viscosity of nanofluids have been found to increase with the increase in 

nanoparticle loading as shown in Fig.4.2 (a), (b) and (c) for TiO2, SiO2 and α-Fe2O3 

nanofluids. Liquid film mass transfer coefficients are known to decrease with an 

increase in viscosity (Feng and Johnson 2012; Hasani Goodarzi and Nasr Esfahany 

2016; Kim et al. 2014; Saien and Hasani 2017; Samadi et al. 2014). The effect of 

increased viscosity may be more pronounced above the critical loading value and thus 

reducing the mass transfer coefficients at higher loading. The reduction in mass transfer 

coefficients with increase in viscosity may be less pronounced than the other effects of 

increased nanoparticle loading at loadings below the critical loading. So, the mass 

transfer coefficient increases at lower loading, despite increase in viscosity. However, 

the influence of increased viscosity is dominant at higher loading causing the mass 

transfer coefficients to reduce with increase in loading.    

It may be concluded that the properties of nanofluid such as surface tension and 

viscosity may be playing a dominant role in reducing kLa at loadings above the critical 

loading values along with the agglomeration effect. 

4.3 Effect of frequency of pulsation on kLa with nanofluids 

Further, the effect of frequency of pulsation on kLa in the presence of TiO2 -25, TiO2- 

72, SiO2 -12, SiO2 -24, α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids with varying 

nanoparticle loading at different frequencies of pulsation of 0.25, 0.5, 0.75, and 1s-1 by 

varying the amplitude, and air flow rates. The effect of frequency of pulsation as a 

function of nanoparticle loadings on kLa at various amplitude of pulsation 3.2, 4.7 and 

6.3cm and at varying air flow rate of 1.8 LPM, 3.2 LPM and 4.8 LPM are shown in Fig. 

4.5 to 4.7, Fig. 4.8 to 4.10 and Fig. 4.11 to 4.13 for TiO2, SiO2 and α-Fe2O3 nanofluids 

respectively.  

The kLa was found to increase with the increase in the frequency of pulsation from 0.25 

s-1 to 1s-1, as shown in Fig. 4.5 to 4.7 (a) –(f); Fig. 4.8 to 4.10 (a) –(f) and Fig. 4.11 to 

4.13 (a) –(f) for  TiO2 -25 and TiO2- 72; SiO2 -12 and SiO2 -24; and α-Fe2O3 – 43 and 

α-Fe2O3 – 76 nanofluids respectively. Maximum values of kLa was obtained at the 

highest frequency of 1s-1 with all the nanoparticle loadings with TiO2 -25, TiO2- 72, 

SiO2 -12, SiO2 -24, α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids. 
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As the frequency of pulsation increases, greater velocity of the reciprocating plate 

motion and movement of nanoparticles in the nanofluid leads to collision of the 

particles with the gas bubbles that cause the breaking and deformation of gas bubbles 

which are dispersed in nanofluids (Haghtalab et al. 2015; Kim et al. 2008). As a result 

of increased frequency of pulsation, the gas bubbles are broken into smaller bubbles 

(Amani et al. 2017; Kim et al. 2008). The formation of smaller bubbles having higher 

mass transfer area leads to the enhancement of interfacial area per unit volume of the 

reactor and thus enhance the volumetric oxygen mass transfer coefficient. The 

turbulence-induced by increasing the frequency is very high and thus the aggregation 

potential of nanoparticles reduces (Pashaei et al. 2018) resulting in enhanced bubble 

dispersion (El-Naas et al. 2017; Stamenković et al. 2005) and bubble residence time 

(Abufalgha 2018; Gomaa and Al Taweel 2005; Lounes and Thibault 1994; Shetty and 

Srinikethan 2010) in the column leading to increase in volumetric oxygen mass transfer 

coefficient. Shetty Kodialbail and Srinikethan (2011), have reported that the frequency 

of pulsation periodically renews the surface available for mass transfer and also reduces 

the liquid film thickness through which mass transfer occurs and hence decreases the 

mass transfer resistance. This increases the mass transfer coefficient with increasing 

frequency. Shetty and Srinikethan (2010) have also reported an increase in kLa with 

increasing frequency of pulsation in a pulsed plate column for three-phase gas-liquid-

solid systems. According to Panahinia et al. (2017), the buoyancy and interfacial 

tensions are responsible for the bubble breakage in the absence of pulsation. However, 

in the  presence of pulsation, smaller size bubbles are obtained due to an intensified 

collision between the bubbles, plates, and the internal wall that helps in increasing the 

rate of breakage. Gwiazda et al. (2020), have observed that the application of liquid 

pulsations at resonance frequencies in classical bubble column has affected the shape 

of the gas bubbles and brought nearly to the spherical shape. It leads to an increase in 

gas hold up and interfacial area enhancing the mass transfer in comparison to the gas 

liquid mass transfer without pulsations.  

Table 4.4 presents the enhancement factors obtained with TiO2, SiO2 and α-Fe2O3 

nanofluids at the respective critical loading conditions at the lowest (0.25 s-1) and 

highest (1 s-1) frequency of pulsation at 1.8 LPM and at the amplitudes of pulsation of 

3.2 cm, 4.7 cm and 6.3 cm. The maximum enhancement factor with reference to the 

base fluid is observed at a lowest frequency of 0.25 s-1. The maximum enhancement 
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factors of 4.37, 2.39, 2.30, 2.17, 1.65 and 1.61 could be achieved with TiO2 - 25, TiO2 

– 72, SiO2-12, SiO2 - 24, α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids respectively under 

the condition at amplitude of 3.2cm and at the lowest frequency of pulsation. This 

shows that the enhancement effect of nanofluid on kLa is more pronounced at lower 

frequency as compared to the higher frequencies. It implies that in order to achieve a 

desired mass transfer characteristic, lower pulsing frequencies may be adequate when 

a nanofluid is used. Thus the frequency required to achieve a desired mass transfer 

characteristic can be reduced by using a nanofluid instead of the base fluid. So enhanced 

oxygen mass transfer characteristics can be achieved with the nanofluids in the pulsed 

plate column with the tremendous saving of energy. 

4.4 Effect of the amplitude of pulsation on kLa in the presence of 

nanofluids. 

To study the effect of amplitude of pulsation on kLa, experiments were conducted at 

three different amplitudes such as 3.2, 4.7 and 6.3 cm by varying the nanoparticle 

loading, frequency of pulsation and air flowrates. The effect of amplitude of pulsation 

as a function of nanoparticle loadings on kLa at varying frequency of 0.25, 0.5, 0.75 and 

1 s-1 with air flow rate of 1.8 LPM are shown in Fig.4.14 and Fig.4.15 for TiO2 – 25 and 

TiO2 – 72 nanofluids; Fig. 4.16 and Fig.4.17 for SiO2-12 and SiO2 – 24 nanofluids; 

Fig.4.18 and Fig.4.19 for α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids. 
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Fig.4.14 Effect of amplitude of pulsation on kLa at different TiO2-25 nanoparticle 

loading at varying frequency of pulsation of (a) 0.25 s-1 (b) 0.5 s-1, (c) 0.75 s-1  and 

(d) 1 s-1 
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Fig.4.15 Effect of amplitude of pulsation on kLa at different TiO2-72  nanoparticle 

loading at varying frequency of pulsation of (a) 0.25 s-1 (b) 0.5 s-1, (c) 0.75 s-1  and 

(d) 1 s-1 

 

  

 
 

Fig.4.16 Effect of amplitude of pulsation on kLa at different SiO2 – 12 nanoparticle 

loading at varying frequency of pulsation of (a) 0.25 s-1 (b) 0.5 s-1, (c) 0.75 s-1  and 

(d) 1 s-1 
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Fig.4.17 Effect of amplitude of pulsation on kLa at different SiO2  - 24 nanoparticle 

loading at varying frequency of pulsation of (a) 0.25 s-1 (b) 0.5 s-1, (c) 0.75 s-1  and 

(d) 1 s-1 

 

 

  

  

Fig.4.18 Effect of amplitude of pulsation on kLa at different α-Fe2O3 – 43 

nanoparticle loading at varying frequency of pulsation of (a) 0.25 s-1 (b) 0.5 s-1, (c) 

0.75 s-1  and (d) 1 s-1 
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Fig.4.19 Effect of amplitude of pulsation on kLa at different α-Fe2O3 – 76 

nanoparticle loading at varying frequency of pulsation of (a) 0.25 s-1 (b) 0.5 s-1, (c) 

0.75 s-1  and (d) 1 s-1
 

Fig. 4.14 to 4.19 show that kLa increases with increase in amplitude from 3.2cm to 

6.3cm for TiO2, SiO2 and α-Fe2O3 nanofluids. As the amplitude increases the mixing 

efficiency increases leading to increased turbulence; the dispersion of gas bubbles 

becomes more effective, and the gas holdup increases. The volumetric oxygen mass 

transfer coefficient is influenced by the increased gas hold-up and prolonged residence 

time of bubbles due to the increased amplitude of pulsation (Oliveira and Ni 2001). The 

agitation intensity is a function of pulsing velocity (A×f) which increases with the 

amplitude of pulsation. Supplying the higher energy into the g-l mixture results in 

smaller size bubbles and a larger portion of volume occupied by the gas in the mixture. 

Hence to achieve this higher mass transfer, sufficient energy should be provided to the 

mixture. According to Gagnon et al. (1998), the average power given to the fluid 

increases with the third power of pulsing velocity (A×f)3. This higher power 

consumption leads to a higher gas holdup. The rate of bubble breakage will exceed the 

rate of bubble coalescence and a large number of smaller bubbles will be sustained in 

the gas-liquid mixture. Ultimately, the interfacial area will begin to increase (Skala and 

Veljkovic 1988; Dhanasekaran and Karunanithi 2010,) and the turbulence created in 

the column reduces the liquid film resistance and increases the volumetric oxygen mass 

transfer coefficient (Lounes and Thibault 1994). Thus, the increase in amplitude leads 

to enhanced gas-liquid mass transfer. Mohagheghian et al. (2018), reported 
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intensification of the volumetric oxygen mass transfer coefficient which they attributed 

to decreased Sauter mean diameter of the bubble which they observed when the 

amplitude and frequency of pulsation were increased. Table 4.4 shows the enhancement 

factors obtained at critical loading of TiO2, SiO2 and α-Fe2O3 nanoparticles with 

different amplitudes and the frequency of 0.25 s-1 and 1 s-1, at an airflow rate of 1.8 

LPM. As observed in the effect of amplitudes of pulsation on kLa, when the amplitude 

of pulsation increases the kLa value increases. However as presented in Table 4.4, the 

enhancement factor is the highest at the lower amplitude (3.2 cm) of pulsation at a 

critical loading with the lowest frequency of pulsation of  0.25 s-1 and an airflow rate 

of 1.8 LPM. Thus a better enhancement factor is observed at lower amplitude of 

pulsation, which implies that the effect of presence of nanofluids in enhancement is 

higher at lower amplitudes and frequency of pulsation. It may be inferred that the 

frequency and amplitude required to achieve a given mass transfer characteristics is 

lesser in the presence of nanofluid and thus energy saving is possible with nanofluids 

in comparison to the base fluid. 

4.5 Effect of superficial air velocity (Ug) on kLa in a pulsed plate 

column 

The effect of superficial air velocity (Ug) on volumetric oxygen mass transfer 

coefficient (kLa) were studied in the presence of TiO2 -25 and TiO2 -72; SiO2, -12, and 

SiO2, -24; α-Fe2O3-43 and α-Fe2O3-76 nanofluids, by conducting experiments at three 

different superficial air velocities of 0.011 m/s, 0.019 m/s and 0.029 m/s corresponding 

to the air flow rates of 1.8, 3.2 and 4.8 LPM respectively with different nanoparticle 

loading, different amplitude and frequency of pulsation. The effect of superficial air 

velocity on kLa at different nanoparticle loading, amplitude, and frequency of pulsation 

are shown in the Fig 4.20 to 4.21; Fig. 4.22 to Fig.4.23; and Fig. 4.24 to Fig.4.25 for 

TiO2 -25 and TiO2 -72; SiO2, -12, and SiO2, -24; α-Fe2O3-43 and α-Fe2O3-76 nanofluids 

respectively.  
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Fig 4.20 Effect of Ug on kLa with TiO2 – 25 nm nanofluid at varying 

(a) TiO2 – 25 nm nanoparticle loading, at A=6.3 cm; f = 1s-1 

(b) amplitude of pulsation at f = 1s-1 and critical loading = 0.068 %w/v 

(c) frequency of pulsation at  A = 6.3 cm and critical loading = 0.068 %w/v 

 

  

 
Fig 4.21 Effect of Ug on kLa with TiO2 – 72 nm nanofluid at varying 

(a) TiO2 – 72 nm nanoparticle loading, at A=6.3 cm ; f = 1s-1 

(b) amplitude of pulsation at f = 1 s-1 and critical loading = 0.051 %w/v  

(c) frequency of pulsation at  A = 6.3 cm and critical loading = 0.051 %w/v 
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Fig 4.22 Effect of Ug on kLa with SiO2 – 12 nm nanofluid at varying 

(a) SiO2 – 12 nm nanoparticle loading, at A=6.3 cm ; f = 1s-1 

(b) amplitude of pulsation at f = 1s-1 and critical loading = 0.051 %w/v 

(c) frequency of pulsation at  A = 6.3 cm and critical loading = 0.051 %w/v 

 

  

 
Fig 4.23 Effect of Ug on kLa with SiO2 – 24 nm nanofluid at varying 

(a) SiO2 – 24 nm nanoparticle loading, at A=6.3 cm ; f = 1s-1 

(b) amplitude of pulsation at f = 1s-1 and critical loading = 0.051 %w/v 

(c) frequency of pulsation at  A = 6.3 cm and critical loading = 0.051 %w/v 
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Fig 4.24 Effect of Ug on kLa with α- Fe2O3 – 43 nm nanofluid at varying 

(a) α- Fe2O3 – 43 nm nanoparticle loading, at A=6.3 cm ; f = 1 s-1 

(b) amplitude of pulsation at f = 1 s-1 and critical loading = 0.034 %w/v 

(c) frequency of pulsation at  A = 6.3 cm and critical loading = 0.034 %w/v 

 

  

 
Fig 4.25 Effect of Ug on kLa with α- Fe2O3 – 76 nm nanofluid at varying 

(a) α- Fe2O3 – 76 nm nanoparticle loading, at A=6.3 cm ; f = 1 s-1 

(b) amplitude of pulsation at f = 1 s-1 and critical loading = 0.034 %w/v 

(c) frequency of pulsation at  A = 6.3 cm and critical loading = 0.034 %w/v 
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As observed in Fig. 4.20 to 4.25, the volumetric oxygen mass transfer 

coefficient increased with an increase in Ug under all the operating conditions. The 

increasing trend is mainly due to the higher mixing and turbulence at higher air 

velocities to decrease the bubble mean diameter and increase in interfacial area, a 

(Dhanasekaran and Karunanithi 2010; Jamialahmadi and Müuller‐Steinhagen 1993). 

An increase in superficial air velocity helps to enhance the turbulence. The increased 

turbulence at higher velocities decreases the stagnant liquid film thickness around the 

gas bubble (Dhanasekaran and Karunanithi 2012; Sundaresan and Varma 1990) and the 

liquid side mass transfer resistance is decreased which increases the kL value. Thus the 

net effect of increase in kL and interfacial area ‘a’ with an increase in superficial air 

velocities results in higher values of kLa (Ghani 2012; Manjrekar et al. 2017).  

As observed in the plots in Fig. 4.20 to 4.25(a), the influence of Ug is very high in the 

absence of nanoparticles as compared to that with nanofluids. When the Ug was 

increased from 0.011 to 0.029 m/s, the kLa increased by 47% in the absence of 

nanoparticles, whereas the increase was 20%,15%, and 42% in presence of 

nanoparticles under critical loading condition with TiO2 -25, SiO2, -12, α-Fe2O3-43 

nanofluids. Thus, the kLa increase caused by increasing Ug in the presence of nanofluid, 

is much lower in comparison with that in base fluid (in the absence of nanoparticles). 

These results imply that the effect of Ug is very high in the absence of nanoparticles. 

Though, in the nanofluids, Ug positively influences kLa, the effect is not as high as that 

in the base fluid. In the absence of nanoparticles, the influence of Ug in bringing about 

agitation and mixing, leading to bubble breakup and turbulence is very high. When the 

nanoparticles are present, the effect of nanoparticles may play a dominant role in 

imparting the agitation and turbulence leading to bubble breakup, as compared to that 

caused by an increase in Ug. It means that higher kLa values can be achieved even at 

lower Ug in the presence of nanoparticles. It is observed that at very high loadings the 

influence of higher Ug on increasing the kLa is comparatively lower. A combination of 

higher gas velocities and high nanoparticle loading leads to an increase in bubble 

coalescence rate because of the increased probability of bubble-bubble interaction and 

increased suspension viscosity (Baz-Rodríguez et al. 2014; Mena et al. 2011). It results 

in a decrease in the interfacial area leading to the reduction of kLa. The effect of increase 

in the turbulence and agitation due to an increase in Ug causing higher kL values is 

countered by a decrease in interfacial area ‘a’ due to the bubble coalescence at higher 



87 

 

loading. Thus the contribution of superficial velocities on increasing the values of kLa 

diminishes at higher loadings. Shah et al. (1982) have also mentioned that the effect of 

solid fractions on kLa depends on the gas velocities. Mena et al. (2011), have observed 

a negative influence of higher gas velocities on kLa when solid fractions are high.  

As observed in the plots in Fig. 4.20 to 4.25 (b), the influence of Ug is high at the lowest 

amplitude of pulsation. When the Ug was increased from 0.011 to 0.029 m/s, the kLa 

increased by 17%, 33%, and 26% at the lowest amplitude of pulsation of 3.2 cm with 

TiO2 -25, SiO2, -12, α-Fe2O3-43 nanofluids respectively, whereas the increase in kLa by 

15%, 18% and 22% was achieved when Ug was increased by a similar range at the 

highest amplitude of pulsation of 6.3 cm. Thus, the kLa increase caused by increasing 

Ug in the lower amplitude is higher in comparison with that at higher amplitudes. This 

implies that, at the lower amplitude of pulsation, the effect of Ug in increasing the gas 

hold up and interfacial area is prominently affecting the increase in kLa, whereas at the 

higher amplitude of pulsation the increase in kLa caused due to the increased mixing 

efficiency and prolonged residence time of bubbles which increases the gas hold up 

becomes more dominant than the effect of Ug on increase in kLa. Thus, the effect of Ug 

on kLa is seen more prominently at the lower amplitudes as compared to that at higher 

amplitudes. 

Similarly, as observed in the plots in Fig. 4.20 to 4.25 (c), the influence of Ug is higher 

at lower frequency of pulsation as compared to that with the higher frequency. When 

the Ug increased from 0.011 to 0.029 m/s at frequency of pulsation of 0.25 s-1, the kLa 

increased by 23%, 28% and 31% with TiO2 -25, SiO2, -12, α-Fe2O3-43 nanofluids 

respectively, whereas at frequency of 1s-1 under similar range of increase in Ug the kLa 

increased by 15%, 19% and 29% with TiO2 -25, SiO2, -12, α-Fe2O3-43 nanofluids 

respectively. The increase in frequency leads to increase in bubble breakup resulting 

from higher turbulence along with the increase in gas hold up. This effect outperforms 

the effect of Ug on kLa at higher frequencies. The contribution of Ug towards increasing 

the turbulence and increasing kLa becomes lesser at high frequencies, whereas the 

superficial air velocity has a dominating effect on kLa than the frequency at lower 

frequencies. 

Superficial air velocity and pulsing parameters such as frequency and amplitude of 

pulsation were found to mutually affect kLa. The extent of rise in kLa with pulsing 
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parameters in comparison to that with increase in Ug depend on the extent of increase 

of gas hold up, interfacial area and turbulence. Dhanasekaran and Karunanithi (2012); 

Sundaresan and Varma (1990) and Yang et al. (2001) have reported that, at low levels 

of agitation, increase in agitation decreases the hold up of gas in the column and at 

particular agitation level the gas hold up in the column is the least. This is the minimum 

gas hold up region or transition region. On increasing the agitation intensity, the gas 

hold up increases (Rama Rao and Baird 1986; Skala and Veljković 1988). Such trends 

have been observed in counter-current (Rama Rao and Baird 1988), cocurrent (Yang et 

al. 1986)  and semi batch (Lounes and Thibault 1994)    reciprocating columns with 

gas-liquid systems. The frequency of pulsation along with superficial gas velocity, 

mutually affect the agitation intensity in the column and the transition region is 

dependent on both the parameters. As reported in literature at agitation above the 

transition region, the increase in interfacial area caused due to bubble break up along 

with increase in gas hold up caused at very high frequencies together lead to enhanced 

effect of Ug on kLa (Skala and Veljković 1988). Thus in the present study the kLa has 

increased with the increase in superficial velocities at all the pulsing conditions. So, the 

effect of higher gas hold-up, higher interfacial area caused by bubble break up due to 

turbulence along with higher turbulence effect caused by increase in frequency and 

amplitudes of pulsation has caused an increase in kLa with rise in Ug.  

Table 4.5 presents the enhancement factors obtained with TiO2 -25 and TiO2 -72; SiO2, 

-12, and SiO2, -24; α-Fe2O3-43 and α-Fe2O3-76 nanofluids at the respective critical 

loading conditions at the lowest frequency of pulsation (0.25 s-1) at varying superficial 

air velocities 0.01m/s, 0.019m/s and 0.029m/s, at the amplitude of pulsation of 3.2cm. 

The maximum enhancement factor with reference to the base fluid is observed at a 

superficial air velocity 0.011 m/s under these conditions. The maximum enhancement 

factors of 4.37, 2.30 and 1.65 could be achieved with TiO2 -25, SiO2, -12, α-Fe2O3-43 

nanofluids respectively at a superficial air velocity of 0.011m/s. This shows that the 

enhancement effect of nanofluid on kLa is more pronounced at the lowest superficial 

air velocity. It suggests that if these nanofluids are used in the PPC, lower superficial 

air velocity may be sufficient to obtain the appropriate enhancement. Therefore, 

improved oxygen mass transfer properties can be accomplished using nanofluids in the 

pulsed plate column while also reducing the fluid power. 
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Table 4.5: Maximum Enhancement factor obtained at critical loading of TiO2, SiO2 

and α-Fe2O3 nanoparticles with different superficial air velocity at amplitude of 

pulsation of 3.2 cm and at the lowest frequency of 0.25 s-1. 

Nanofluid 

Type 

Nanoparticle 

critical 

loading, Φ 

(% w/v) 

 

          Ug, m/s 

 

 

Nanoparticle 

size, nm 

0.011 0.019 0.029 

TiO2 
0.068  25 4.37 2.46 1.97 

0.051  72 2.39 1.76 1.50 

SiO2 0.051  
12 2.30 1.72 1.57 

24 2.17 1.35 1.33 

α-Fe2O3  0.034  
43 1.65 1.32 1.24 

76 1.61 1.25 1.14 

 

4.6 Effect of the pulsing velocity on kLa in the presence of nanofluids 

 The effect of pulsing velocity (A×f) on kLa in PPC in association with different 

nanoparticle loading was experimentally investigated. Pulsing velocity or pulsing 

intensity (A×f), is the product of amplitude (A) and frequency (f) of pulsation (Akhgar 

et al. 2017; Lounes and Thibault 1994; Panahinia et al. 2017). The experimental 

findings have shown that there is a combined effect of (A×f) and nanoparticle loading 

(Φ) in the enhancement or decrement of the kLa in PPC. The effect of pulsing velocity 

at different nanoparticle loadings and different nanoparticle sizes at a constant airflow 

rate of 1.8 LPM is shown in Figure 4.26 to 4.31. 

As observed from Figure 4.26 to 4.31, the volumetric oxygen mass transfer coefficient 

increases with the increase in the pulsing velocity. However, the nature of the increase 

is regime-dependent. 

Many researchers have reported through experimental findings that the mass transfer 

performance enhances with an increase in the pulsing velocity (Bahmanyar et al. 2014; 

Khooshechin et al. 2017; Mirmohammadi et al. 2019; Sen et al. 2018). It is found that 

as the pulsing velocity increases the degree of turbulence effect transmitted in the 

column is more. The mean bubble diameter is affected by the pulsing velocity, as the 
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additional rigorous shear forces that are created by the increased pulsing velocity cause 

the collapse of the bigger bubble into a smaller hence increasing the interfacial area 

which increases kLa (Ardestani et al. 2021; Dhanasekaran and Karunanithi 2010; Lade 

et al. 2014; Panahinia et al. 2017; Rahbar et al. 2011; Shetty and Srinikethan 2010; 

Sincuba et al. 2017; VeljkoviC and Skala 1986).  

 

(a) 

 

(b) 

Fig.4.26 Effect of (A×f) on kLa as a function of TiO2 – 25 nanoparticle loadings at 

an airflow rate of 1.8 LPM. (a) Φ ≤ ΦL (b) Φ > ΦL 
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The effect of pulsing velocity on kLa with TiO2 – 25 nanofluid at different nanoparticle 

loading is shown in Fig 4.26. From Fig 4.26 (a) it is observed that, at Φ ≤ 0.068 % w/v 

(ΦL), the effect of (A×f) on kLa falls into three regimes: (i) the first regime (Regime I) 

of (A × f) ≤ 2.35, wherein a smaller increase in kLa with increase in (A × f) is observed; 

(ii) the second regime (Regime II) of 2.35< (A × f) ≤ 4.7, wherein kLa increases sharply 

with increase in (A × f) and (iii) a third regime (Regime III) of (A × f) ≥ 4.7 at which 

the variation in kLa with (A × f) is negligible. Based on the mixing intensity, three 

separate flow regimes, namely mixer-settler, dispersion, and emulsion regimes, may 

exist in the operation of a pulsed column. The mixer-settler regime is a regime of low 

mixing, and discrete zones are formed in the column. Any one of phases may 

accumulate in regions above or below each of the plates and discontinuity is produced 

in the column. The dispersion regime follows the mixer-settler regime and the 

discontinuity is avoided in this regime. This regime is characterized by a non-uniform 

bubble size distribution and no bubble coalescence occurs (Khooshechin et al. 2017). 

At higher pulsing  velocities good  mixing occurs and  the external energy dissipation 

is even throughout the column (Lounes and Thibault 1994; Vasić et al. 2007). The 

pulsing velocities in the dispersion regime prevent the accumulation of bubbles either 

above or below each perforated plate  as  turbulence stresses dominate over the  bubble 

coalescence tendency (Sundaresan and Varma 1990). As reported by Yadav and 

Patwardhan (Yadav and Patwardhan 2008) and (Akhgar et al. 2017), dispersion regime 

is characterized by formation of bubbles with non-uniform  size distribution.  With 

increase in pulsing velocity, the bubble size decreases and hold-up starts increasing in 

this regime favoring gas-liquid mass trnasfer.   With an increase in the pulsing velocity, 

the bubble size decreases and thus an emulsion is formed. Emulsion regime exists due 

to operation under highly intense mixing conditions (Dhanasekaran and Karunanithi 

2012) and gas bubbles  are uniformly distributed in the column. A relatively sharp 

decrease in bubble diameter with increase in pulsing velocity occurs in the mixer -settler 

regime than in the dispersion regime. The effect of pulsing velocity on mean bubble 

diameter is more pronounced in the mixer-settler regime than in the dispersion regime 

(Usman et al. 2009). The gas hold-up decreases sharply in the mixer settler regime, 

reaches a minimum where transition occurs from mixer settler to dispersion regime and 

then increases with further increase in pulsing velocity  (Akhgar et al. 2017). The 

increase in gas holdup with increasing pulsing velocity is smaller for low pulsing 

velocities, and sharper for higher pulsing velocities (Nikolić et al. 2005). Increase in 
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gas hold-up increases the residence time of the bubbles in the column (Nikolić et al. 

2005) and thus increases kLa. In the mixer -settler regime, the oxygen mass transfer 

depends mainly on aeration rather than pulsation, as the pulsing velocity is lower. In 

this regime pulsed plate column behaves like a bubble column. At high pulsation 

intensities, the breakage of  gas bubbles is more pronounced and the oxygen transfer 

becomes intense. Further increase in pulse velocity, increases the inertial and shear 

forces on bubbles. These forces enhance bubble breakage. Thus, an emulsion is formed 

(Yadav and Patwardhan 2008). This regime occurs at high pulse velocity. In the  

homogeneous dispersion regime kLa is primarily influenced by pulsation (Skala and 

Veljković 1988b).  

 In the emulsion region, due to high pulsing velocities the gas hold up increases 

tremendously causing the bubbles to coalesce rapidly and the dispersion grows strongly 

nonhomogeneous with the motion of larger bubbles  resembling the mixer-settler 

regime and that of smaller bubbles resembling the emulsion regime  (Rathilal 2010). In 

Regime III, the increase in kLa with the increase in pulsing velocity is marginal. This is 

the emulsion regime. This zone comes up with the higher turbulent energy that induces 

the coalescence of bubbles or it may produce many small bubbles that behave as rigid 

spheres (Torab-Mostaedi et al. 2010), which will hinder the internal circulation of 

nanoparticles and bubbles through the column.  It is also important to be noted that the 

higher A×f  intensifies the axial mixing  which negatively influences the mass transfer 

efficiency (Jiao et al. 2013). A higher pulsing velocity increases the agitation rate which 

results in a lower bubble diameter and larger gas holdup which increase the interfacial 

area. However, the higher pulsation intensity leads to a reduction in the  mass transfer 

coefficient as the bubbles become smaller and more rigid (Torab-Mostaedi et al. 2012). 

Bahmanyar et al. (2014), explained that the formation of smaller size bubbles at higher 

pulsing velocities may lead them to behave as rigid spheres and the molecular diffusion 

governs the mass transfer rate. Towards the higher pulsing velocity in Regime III, the 

effect of increase in mass transfer coefficient caused due to turbulence may be 

countered by decrease/ no change in the interfacial area due to the coalescence of 

bubbles/formation of small rigid bubbles, thus leading to only a marginal variation in 

kLa with increase in pulsing velocity in Regime III. 
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The first regime in kLa vs A×f signifies mixer settler regime, wherein the decrease in 

bubble diameter increases the interfacial area to enhance kLa, but the decrease in gas 

holdup counters this increase, thus leading to a slow increase in kLa with pulsing 

velocity in mixer-settler region. In the second regime, which is the dispersion regime, 

both increases in gas hold-up and decreases in bubble diameter with increasing pulsing 

velocity favors the sharp increase in kLa. The third regime of the emulsion regime, in 

which the effect of coalescence of bubbles or the formation of more rigid bubbles may 

counter the effect of increase in turbulence created by higher pulsing velocity thus 

leading to only marginal variation in kLa.   

However, at Φ > 0.068 % w/v, the plot of kLa vs (A × f) in Figure 4.26 (b) seems to 

follow a single trend in the entire range of (A × f). These results clearly indicate that 

A×f and Φ have an interacting effect on kLa. The sharp increase in kLa is observed with 

increase in pulsing velocity, showing that only dispersion regime exists in the range of 

operation when the nanoparticle loading is above the critical loading. As the 

nanoparticle loading increases beyond 0.068 % w/v, mixer settler regime or emulsion 

regime is not observed in the range of operation of the pulsed plate column. Due to 

increase in the nanoparticle loading, the shear rate may be higher causing higher 

turbulence which leads to break up of bubbles into much smaller size and increasing 

the interfacial area along with increase in mixing and turbulence intensity due to the 

presence of more number of particles enhancing the mass transfer coefficient. The 

presence of nanoparticles at higher loading condition, has not only widened the 

dispersion regime, but also has lowered the A×f  value for the onset of dispersion 

regime and has increased that for the onset of emulsion regime. Though the nanofluid 

properties such as dynamic viscosity and surface tension of the nanofluids increase  

with the increase in nanoparticles loading, which may tend to reduce the gas -liquid 

mass transfer either due to agglomeration effect or higher viscosity effect, the 

turbulence effect appears to dominate over the  the effect of properties of nanofluids 

even at higher nanoparticle loading. Thus , only dispersion regime is being observed in 

the entire range of pulsing velocities at higher loading and kLa increases with increase 

in pulsing velocities. The emulsion regime is not formed in the range of operation, 

which may be due to prevention of coalescence of bubbles owing to the presence of 

large number of nanoparticles enhancing the turbulent circulating effect in the liquid 

and higher level of mixing.   
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Fig.4.27 Effect of (A×f) on kLa as a function of TiO2 -72 nanoparticle loadings at 

an airflow rate of 1.8 LPM. 

 

The effect of pulsing velocity on kLa with  TiO2 -72 nanofluid at different nanoparticle 

loading is shown in Fig 4.27. From Fig 4.27 it is observed that the kLa increased with 

increase in  pulsing velocity at different nanoparticle loading and the effect of (A×f) on 

kLa falls into two regimes: the first regime (Regime I) of (A × f) < 4.7, wherein kLa 

increases sharply with increase in pulsing velocity and the second regime (Regime II) 

of A×f ≥ 4.7 at which the variation in kLa with (A × f) is negligibly small. In the Regime 

I, it can be observed that as the pulsing velocity increases , kLa increases sharply 

indicating that the dispersion regime occurs till the pulsing velocity is 4.7 cm/s 

(Roozbahani et al. 2015). This regime may be considered as dispersion regime, where 

in uniform distribution of nanoparticles takes place gradually and helps in breaking up 

of bubbles to increase the interfacial area and thus increasing kLa. As the pulsing 

velocity increases in Regime II, the increase in kLa with the increase in pulsing velocity 

is marginal. This is the emulsion regime.  

These results show that, both the nanoparticles loading and size may dictate the 

occurrence of hydrodynamic regimes and the limit of pulsing velocity for transition 

from one regime to another.  
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Fig.4.28 Effect of (A×f) on kLa as a function of SiO2 -12 nanoparticle loadings at 

an airflow rate of 1.8 LPM. 

The effect of pulsing velocity on kLa with SiO2 -12 nanofluid at different nanoparticle 

loading is shown in Fig 4.28. From Fig 4.28 it is observed that the kLa is increasing 

with increasing pulsing velocity at different nanoparticle loading and the effect of (A×f) 

on kLa falls into only one regime in the entire range of operation: In the entire range, 

kLa increases sharply with increase in (A×f), indicating the existence of only the 

dispersion regime with SiO2 -12 nanofluid.  

 

Fig.4.29 Effect of (A×f) on kLa as a function of SiO2 -24 nanoparticle loadings at 

an airflow rate of 1.8 LPM. 
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The effect of pulsing velocity on kLa with SiO2 -24 nanofluid at different nanoparticle 

loading is shown in Fig 4.29. From Fig 4.29 it is observed that the kLa is increasing 

with increasing pulsing velocity at different nanoparticle loading and the effect of (A×f) 

on kLa falls into two regimes: the first regime (Regime I) of lower (A×f) < 3.2, wherein 

a considerable  increase in kLa with increase in (A×f) is observed showing the presence 

of dispersion regime; the second regime(Regime II) of 3.2 ≤ (A×f) ≤ 6.3, wherein kLa 

increases marginally with increase in  (A×f),indicating the existence of emulsion 

regime at higher pulsing velocities. Roozbahani et al. (2015) demonstrated the effect of 

pulse strength on static and dynamic holdup for the mass transfer from the continuous 

phase  to the dispersed phase. Their analysis revealed a decrease in a static holdup and 

an increase in dynamic hold up with the increase in pulsing velocity in the dispersion 

regimes. The presence of only two regimes , viz. dispersion and emulsion regimes in 

vertically pulsed packed column have been reported by  Khooshechin et al. (2017). The 

present study reports the presence of two regimes with SiO2 -24 nanofluid, whereas 

only one regime with SiO2 -12 nanofluid.  A wider dispersion regime is obtained and 

emulsion regime formation is prevented with smaller size particles, whereas larger size 

particles tend to form emulsion regime with SiO2 nanofluids. 

 

Fig.4.30 Effect of (A×f) on kLa as a function of α-Fe2O3 – 43 nanoparticle loadings 

at an airflow rate of 1.8 LPM. 
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Fig.4.31 Effect of (A×f) on kLa as a function of α-Fe2O3 -76 nanoparticle loadings 

at an airflow rate of 1.8 LPM. 

The effect of pulsing velocity on kLa with α-Fe2O3 -43 and α-Fe2O3 -76 nanofluid at 

different nanoparticle loading is shown in Fig 4.30 and 4.31 respectively. From Fig 4.30 

and 4.31 it is observed that the kLa is increasing with increasing pulsing velocity at 

different nanoparticle loading and the effect of (A×f) on kLa is found to be linear for 

the entire range of (A×f). Two regimes are observed with α-Fe2O3 nanofluids 

irrespective of size of nanoparticles and the nanoparticles loading.  The first regime 

(Regime I) of lower (A×f) < 3.2, is the dispersion regime wherein a kLa increases 

sharply with increase in (A×f); the second regime (Regime II) of 3.2≤ (A×f) ≤ 6.3, 

wherein kLa increases marginally with increase in (A×f), indicating the existence of 

emulsion regime at higher pulsing velocities.  

It is noticed that the mass transfer coefficient increases throughout the entire range of 

pulsing velocity. An increase in gas hold up and higher interfacial area at high pulsing 

velocities (Sen et al. 2018; Somkuwar et al. 2014; Torab-Mostaedi et al. 2012) due to 

bubble breakage leads to dispersion of bubbles and a sharp increase  in the kLa in the 

dispersion regime.  The onset of emulsion regime occurs at A×f of 3.2 cm/s with α-

Fe2O3 -43 and α-Fe2O3 -76 nanofluids. 

The results on the effect of pulsing velocity on kLa in the presence of nanofluids, show 

that one or more regimes may occur depending on the type of nanofluid, size of the 

nanoparticle and the nanoparticle loading. The effect of pulsing velocity on kLa is large 
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in the dispersion regime and increasing the pulsing velocity in the dispersion regime 

favours the gas-liquid mass transfer. In the mixer-settler or emulsion regimes the 

increase in mass transfer coefficient with increasing pulsing velocity is only marginal. 

So, the operation of pulsed plate column in dispersion regime is recommended with the 

nanofluids. The pulsing velocity at which regime transition occurs has been found to 

be dependent on the type of nanofluid, size of the nanoparticles and the nanoparticle 

loading. 

4.7 Effect of size of nanoparticles on kLa in pulsed plate column. 

The effect of size of TiO2, SiO2, and α-Fe2O3 nanoparticles on kLa in pulsed 

plate column was studied by conducting experiments with TiO2, SiO2, and α-Fe2O3 

nanofluids containing nanoparticles of average particle size of 25 nm, 72 nm; 12 nm, 

24 nm and 43 nm ,76 nm respectively at different operating conditions. The effect of 

TiO2, SiO2, and α-Fe2O3 nanoparticle size as a function of nanoparticle loadings on kLa 

at various frequencies of pulsation of 0.25, 0.5, 0.75 and 1 s-1 and amplitude of pulsation 

of 6.3 cm with an air flow rate of 1.8 LPM are shown in Fig. 4.32 to 4.34 respectively.  

 

 

  

Fig. 4.32 Effect of nanoparticle size on kLa at different TiO2 nanoparticle loading and 

at A =6.3 cm at different frequency of pulsation (a) 0.25 s-1 (b) 0.5s-1 (c) 0.75 s-1 and 

(d) 1 s-1 



99 

 

 

 

 

 

 

Fig. 4.33 Effect of nanoparticle size on kLa at different SiO2 nanoparticle loading and 

at A =6.3 cm at different frequency of pulsation (a) 0.25 s-1 (b) 0.5 s-1 (c) 0.75 s-1 and 

(d) 1 s-1 

 

 

 

 

 

Fig. 4.34 Effect of nanoparticle size on kLa at different α-Fe2O3 nanoparticle loading 

and at A=6.3 cm at different frequency of pulsation (a) 0.25 s-1 (b) 0.5 s-1 (c) 0.75 s-1 

and (d) 1 s-1 

As illustrated in Fig. 4.32 to 4.34 the volumetric oxygen mass transfer coefficient 

decreases with an increase in particle size. With increase in particle size the possibility 
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of agglomeration becomes more due to reduced particle -particle separation. The 

aggregation of particles leads to the production of larger particles of greater mass and 

decreased Brownian motion and micro-convection (Jama et al. 2016; Nematbakhsh and 

Rahbar-Kelishami 2015). The probability of sticking of gas molecules to the surface of 

the particle depends on the size of the nanoparticles (Levdanskii and Smolik 2008). 

Smaller particles have more preference for the adhesion to the g-l interface or the 

adhesion rates for the smaller particles are higher than those for larger particles, and 

therefore the larger particles are easily swept away from the gas-liquid interface 

(Darvanjooghi et al. 2018; Ruthiya et al. 2005). The diffusion limitation increases as 

the particle diameter increases which in turn decreases the enhancement of mass 

transfer (Wenmakers et al. 2016). The surface-to-volume ratio will be higher for smaller 

diameter nanoparticles which result in uniform distribution of particles and give the 

best enhancement (Godson et al. 2010). Smaller-size nanoparticles exhibit higher surface 

charge density compared to larger-size nanoparticles (Abbas et al. 2008). As a result, the 

electrostatic repulsion force between the nanoparticles and the liquid molecules increases 

which enhances the adsorption to the surface and the surface tension of nanofluids 

decreases with decrease in  size of nanoparticles (Brown et al. 2013). Moreover, smaller 

particles provide larger surface area, which increases the surface free energy and 

consequently decreases the surface tension of the nanofluids.  

 Bhuiyan et al. (2015b), observed that the surface tension has decreased with decreasing 

nanoparticle size. (Nematbakhsh and Rahbar-Kelishami (2015), experimentally found 

that the  tendency of clustering of nanoparticles increased with the increase in 

nanoparticle size as a result, the nanofluid showed the poor distribution stability, that 

lead to the decrease in mass transfer coefficient. The dispersion stability, viscosity, and 

surface tension of nanofluids show their effect on the efficiency of the transfer 

processes (Wu et al. 2017). Lower surface tension and viscosity favour in increasing 

the kLa (García-Ochoa and Gómez 1998; Kimweri 2001; Patwari et al. 1986). In the 

present study, the surface tension and viscosity increased with the increase in particle 

size as shown in Fig.4.1 and Fig.4.2. As observed in Table 4.6 mass transfer 

enhancement is higher with lower size of the nanoparticles in the nanofluid. Zhang et 

al. (2021), have also reported that the mass transfer enhancement increases with the 

decrease in the size of the nanoparticles and they attributed it to the intensification of 

Brownian motion, which  is inversely proportional to the nanoparticle size. This 
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inferred that the better molecular transport occurred at the smaller size of the 

nanoparticles. 

Table 4.6 Maximum Enhancement factor obtained at critical loading of TiO2, SiO2 and 

α-Fe2O3 nanoparticles with amplitude of pulsation of 3.2 cm at the lowest frequency of 

0.25 s-1, at air flow rate of 1.8 LPM. 

Nanofluid 

type 

Nanoparticle loading, 

% w/v 

Average 

Nanoparticle size, 

nm 

Enhancement 

factor 

TiO2 -25 0.068 

(TiO2 -25 critical 

loading) 

25 4.37 

TiO2 - 72 72 1.84 

TiO2 -25 0.051 

(TiO2 -72 critical 

loading) 

25 3.32 

TiO2 -72 72 2.39 

SiO2 - 12  0.051 

(SiO2 critical loading) 

12 2.30 

SiO2 - 24 24 2.17 

α-Fe2O3 - 43 0.034 

(α-Fe2O3 critical 

loading) 

43 1.65 

α-Fe2O3 - 76 76 1.61 

 

4.8 Comparison of the effect of TiO2 SiO2 and α-Fe2O3 nanofluids on 

volumetric oxygen mass transfer coefficient (kLa) in a pulsed plate 

column 

It is found from the results presented in earlier sections that, TiO2, SiO2, and α-Fe2O3 

nanofluids could be used for the enhancement of gas-liquid mass transfer characteristics 

in pulsed plate columns. This section compares the TiO2, SiO2, and α-Fe2O3 nanofluids 

efficiency in enhancing the gas-liquid mass transfer. Fig 4.35 shows the effect of TiO2 

and SiO2 nanofluids on kLa at different nanoparticle loadings at amplitude of pulsation 

of 6.3 cm, frequency of pulsation of 1 s-1 with similar average nanoparticle size (TiO2 

of 25 nm and SiO2 of 24 nm). Similarly, Fig 4.36 shows the effect of TiO2 and α-Fe2O3 

nanofluids on kLa at different nanoparticle loadings at amplitude of pulsation of 6.3 cm, 

frequency of pulsation of 1 s-1 with similar average nanoparticle size (TiO2 of 72 nm 

and α-Fe2O3 of 76 nm). 
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Fig.4.35. Effect of TiO2 and SiO2 nanofluids on kLa at different nanoparticle loadings 

with similar average particle size (25 nm and 24 nm respectively) at A= 6.3 cm, f =1 s-

1 

  

Fig.4.36. Effect of TiO2 and α-Fe2O3 nanofluids on kLa at different nanoparticle 

loadings with similar average particle size (72 nm and 76 nm respectively) at A= 6.3cm, 

f = 1 s-1. 
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Table 4.7: Enhancement factor obtained at critical loading of TiO2, SiO2 and α-Fe2O3 

nanoparticles with amplitude of pulsation of 6.3 cm at the highest frequency of 1 s-1, 

at air flow rate of 1.8 LPM. 

Nanoparticle 

Type 

Nanoparticle loading, % 

w/v 

Average 

Nanoparticle size, 

nm 

Enhancement 

factor 

TiO2 0.068 

(TiO2 critical loading) 

25 1.87 

SiO2 24 1.35 

TiO2 0.051 

(SiO2 critical loading) 

25 1.81 

SiO2 24 1.20 

TiO2  0.051 

(TiO2 critical loading) 

72 1.31 

α-Fe2O3 76 1.06 

TiO2 0.034 

(α-Fe2O3 critical loading) 

72 1.45 

α-Fe2O3 76 1.12 

As observed in Fig 4.35 and 4.36 the volumetric oxygen mass transfer 

coefficient was higher in TiO2 nanofluid than in SiO2 and α-Fe2O3 nanofluid. The 

enhancement factors obtained at critical loading of TiO2, SiO2 and α-Fe2O3 

nanoparticles with highest amplitude 6.3 cm and frequency of 1 s-1 are given in Table 

4.7. The maximum enhancement factor was observed for the TiO2 nanofluid compared 

with SiO2 and Fe2O3 nanofluid. This is mainly because  TiO2 nanoparticles have more 

O2 adsorption ability than the SiO2 and α-Fe2O3 nanoparticles and the oxygen transport 

capacity of TiO2 nanofluid is greater than that of SiO2 nanofluid (Jiang et al. 2015). 

Due to the polarity of SiO2 being hydrophilic, it would interact with water and form the 

nanofluid with a certain viscosity, so the resistance of gas through the liquid film is 

increased and the number of gas molecules in the liquid phase through the liquid film 

is reduced in the same time which leads to the decrease in the rate of gas-liquid mass 

transfer(Mondragon et al. 2012). The electrostatic repulsion forces exerted between the 

nanoparticles and the liquid molecules vary with the type of nanoparticles used leading 

to variation in absorbability at the interface and the surface tension of nanofluids. The 

surface tension and viscosity of SiO2 and α-Fe2O3 nanofluids were found to be higher 

than that of TiO2 nanofluids, thus leading to a lower gas-liquid mass transfer coefficient 

with SiO2 and α-Fe2O3 nanofluids.   

Therefore, it is observed that the size of nanoparticles in the nanofluid is not the only 

determining factor for gas-liquid mass transfer enhancement. The type of nanoparticles 
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also changes the characteristics of the nanofluid and thus kLa enhancement is also a 

function of the type of nanoparticles. 

Thus, it may be concluded that nanofluids containing suitable types and sizes of 

nanoparticles at optimum loading may be chosen corresponding to the desired column 

operating conditions required for the process. If flexibility in column operating 

conditions is available as per the process requirement, then the optimum pulsing 

velocity conditions to maximize the kLa may be chosen. Table 4.8 presents the 

maximum kLa and kLa enhancement factors along with the optimum conditions for the 

operation of PPC to obtain these values. Table 4.9 presents the Comparison of 

Maximum kLa enhancement factors at the optimum conditions of operation of various 

reactors with this study. 

Table 4.8. Maximum kLa and kLa enhancement factors along with the optimum 

conditions for the operation of PPC 

Nanofluid 

Critical 

Loading, 

%w/v 

Optimum 

conditions 

for Max. 

kLa 

Max. kLa 

Values, s-1 

Optimum 

Conditions 

for Maximum 

Enhancement 

Factor 

Max. 

Enhance

ment 

factor 

TiO2 -25 0.068 

A = 6.3cm 

f = 1s-1 

Ug= 

0.029m/s 

0.161 

A = 3.2cm 

f = 0.25s-1 

Ug = 0.011m/s 

4.37 

TiO2 -72 0.051 0.142 2.39 

SiO2 - 12 

0.051 

0.132 2.30 

SiO2 - 24 0.121 2.17 

α-Fe2O3 - 43 

0.034 

0.112 1.65 

α-Fe2O3 - 76 0.109 1.61 
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Table 4.9. Comparison of Maximum kLa enhancement factors at the optimum 

conditions of operation of various reactors with this study 

Nanofluid Reactors 
Optimum 

conditions  

Maximum 

Enhancement 

Factor 

Reference 

Magnetite 

(Fe3O4)- 

coated with 

oleic acid  

Agitated, 

sparged 

reactor 

volume fractions 

below 1% 
6.0 

(Olle et al. 

2006) 

n-hexadecane 

droplets 

Laboratory 

scale stirred 

reactor 

Volume 

fractions below 

0.01- 0.02%, 

1.04–1.06 
(Nagy et al. 

2007) 

Fe2O3 -water 

Agitated 

aerobic 

bioreactor 

Volume fraction 

of 0.065% 
1.63 

(Manikanda

n et al. 

2012) 

TiO2–water 

and SiO2–

water 

with  

Na2SO3 

thermostatic 

stirred tank 

solids loading of 

0.4 kg/m3 
1.82 and 1.7 

(Jiang et al. 

2015) 

Activated 

carbon 

particles 

Stirred tank 

bioreactor 

Volume fraction 

of 0.006% 
1.4 

(Ding et al. 

2023) 

TiO2 -25 – 

water with 

Na2SO3 

Pulsed plate 

column 

Volume fraction 

of 0.068 % w/v 
4.37 This Study 

SiO2 -12 –

water with 

Na2SO3 

Pulsed plate 

column 

Volume fraction 

of 0.051 % w/v 
2.3 This Study 

α-Fe2O3 water 

with Na2SO3 

Pulsed plate 

column 

Volume fraction 

of 0.034 % w/v 
1.6 This Study 
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As observed in Table 4.9, the kLa enhancement in PPC is as high as 4.37 with TiO2 -25 

nanofluid and is much higher than that which could be achieved in a thermostatic stirred 

tank. The enhancement obtained with α-Fe2O3 nanofluid is around 1.6 which is 

comparable with that obtained in an agitated aerobic bioreactor. The enhancement 

obtained din PPC with SiO2 nanofluid is around 2.3 and is higher than that achieved in 

thermostatic stirred tank. Agitated sparged reactor could give higher enhancement of 

6.0 compared to PPC only with   Fe3O4 nanoparticles coated with oleic acid. On 

comparison,it may be concluded that the effect of nanofluid in kLa enhancement is 

superior in PPC than in other types of contactors.   
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CHAPTER 5   Theoretical Analysis and Modelling Studies 

This chapter presents the results of the verification of the mechanism of mass transfer 

enhancement in TiO2, SiO2, and α-Fe2O3 nanofluids found using order of magnitude 

analysis. A theoretical model is applied and verified to predict the mass transfer 

enhancement in the presence of TiO2, SiO2, and α-Fe2O3 nanofluids. The dimensionless 

correlations using the MRA model and the ANN model relating the column operating 

conditions with kLa are developed for the prediction of kLa in the presence of TiO2, 

SiO2, and α-Fe2O3 nanofluids. 

5.1 Order of magnitude analysis for mass transfer enhancement 

mechanism  

Various mechanisms and models have been proposed to explain the enhanced 

mass transfer in nanofluids. Several researchers (Keblinski et al. 2001; Khanolkar and 

Suresh 2015; Krishnamurthy et al. 2006; Olle et al. 2006) have looked into the cause of 

the observed improvement in mass transport using an order of magnitude analysis based 

on the computation of the characteristic time of the various mechanisms. As discussed 

in Krishnamurthy et al. (2006); Prasher et al. (2005, 2006a), there might be three 

important effects in the mass transport of a nanofluid. Firstly the diffusion time, as 

reported by Krishnamurthy et al. (2006), is the time required for the oxygen to diffuse 

through a distance equal to the diameter of nanoparticle tm was calculated by Equation 

(5.1). 

𝑡𝑚 =  
𝑑2

2 𝐷
        (5.1) 

Secondly, the translational Brownian motion, which is the time required for a Brownian 

particle to travel a distance equal to its diameter ( tb) was calculated by Equation (5.2).  

𝑡𝑏 =  
3 𝜋 𝜂 𝑑3

2 𝐾𝐵𝑇
    (5.2) 

where d = diameter of the nanoparticle (m); D = diffusion coefficient of oxygen in water 

(m2/s) (1.97E-09 m2/s); η = viscosity of water (N.s/m2) (7.89E-04 N.s/m2 at 303.15K); 

KB = Boltzmann constant (J/K) (1.380649E-23), T = temperature (K) (303.15K). 
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and finally the convective motion of the liquid elements in the continuous liquid due to 

the Brownian movement of the nanoparticles. As the nanoparticles in a bulk liquid 

collide with the fluid molecules it might increase the velocity of the surrounding 

molecules. Further to investigate if the mass transfer enhancement is due to the 

increased nanoscale stirring of the liquid caused by the Brownian motion of the 

nanoparticles, it is the time required for convection currents to travel a particle diameter, 

tc as calculated (Prasher et al. 2006) using Equation (5.3) was compared with tm and tb. 

𝑡𝑐 =  
𝑑2

𝜈
      (5.3) 

Where ν is the kinematic viscosity of water, m2/s (8.005E-7 m2/s) 

Hence based on these effects in the present study, to investigate the reason for enhanced 

oxygen mass transport with TiO2, SiO2 and α-Fe2O3 nanofluid as compared to the base 

fluid in PPC, an order of magnitude analysis was performed. The calculated values of 

tm , tb and tc in PPC for TiO2, SiO2 and α-Fe2O3 nanofluid are shown in table 5.1. It is 

observed that tm < tb by two orders of magnitude for different nanofluids irrespective of 

size of nanoparticles. 

Table. 5.1 The values of tm, tb and tc for TiO2, SiO2 and α-Fe2O3 nanofluid. 

Nanoparticle 

Type 

Nanoparticle 

Size tm, (sec) tb, (sec) tc, (sec) 

TiO2 
25 nm 1.59E-07 1.4E-05 7.81E-10 

72 nm 1.32E-06 3.35E-04 6.48E-09 

SiO2 
12 nm 3.65E-04 1.55E-06 1.8E-10 

24 nm 1.46E-07 1.24E-05 7.2E-10 

α-Fe2O3 
43 nm 4.69E-08 7.14E-05 2.31E-09 

76 nm 1.47E-06 3.96E-04 7.23E-09 

Thus, the diffusion rate of oxygen is two orders of magnitude faster than the 

rate of travel of the nanoparticles by Brownian motion. Hence. the Brownian motion of 

the particles does not contribute directly to enhancement in oxygen mass transfer. The 

particles themselves do not physically push the oxygen molecules from one point to 
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another. It is thus concluded that the Brownian motion is not the mechanism responsible 

for oxygen mass transfer enhancement.  

As shown in Table 5.1, tc is three orders of magnitude smaller than tm. It implies that 

the convection currents caused by Brownian motion of the particles is much faster than 

the mass diffusion of oxygen or the Brownian motion of the particle itself. Thus, the 

disturbance field created by the motion of the nanoparticles in the fluid can be the 

possible reason for the enhancement in mass transport.  

Ataíde et al. (2013), in their studies on oxygen transport enhancement by functionalized 

magnetic nanoparticles in cylindrical tanks with impellers, have also found through the 

order of magnitude analysis that the mechanism of micro convection promoted by the 

nanoparticles has an impact on the oxygen mass transfer enhancement. Krishnamurthy 

et al. (2006), have also conducted an order of magnitude analysis for mass transfer in 

Al2O3 nanofluid and found that nanoscale convection induced by the Brownian motion 

of the nanoparticles causes enhanced mixing and mass transfer enhancement in 

nanofluids. 

5.2 Pseudo-homogeneous model 

At the gas-liquid interface, to interpret the mass transport across a liquid 

boundary layer in the presence of solid nanoparticles, a homogeneous model is applied 

and the mass transfer in the particles is instantaneous (Nagy 2013; Nagy et al. 2007). 

The pseudo-homogeneous model is explained considering the differential mass balance 

equation for the boundary layer at the gas-liquid interface and is given in equation (5.4).  

The diffusion time within nanosized particles (tm) as it was shown in section 5.1 is a 

few orders of magnitude less than that through the gas–liquid boundary layer. In the 

case of the pseudo-homogeneous model the size of the dispersed phase (nanosized 

particles) is much smaller than the thickness of the laminar boundary layer. Thus, the 

diffusion process within the nanosized particles (internal mass transfer) can be regarded 

as instantaneous as compared to the diffusion in the laminar boundary layer. The 

differential mass balance equation can be given for the boundary layer at the gas–liquid 

interface is as follows (Nagy 2013; Nagy et al. 2007): 

 

𝐷𝑛𝑓

𝜕2𝐶𝐴

𝜕𝑥
−  

𝛷

1 − 𝛷
 
𝜕𝐶𝐴𝑛𝑓

𝜕𝑡
=  

𝜕𝐶𝐴

𝜕𝑡
                      (5.4) 
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The equation (6) is simplified with boundary conditions  

(i) t = 0, x > 0; CA = 0 = CAnf 

(ii) t = 0, x = 0; CA= CAi 

Applying the surface renewal theory, the rate of mass transfer at gas-liquid 

interface is given (Nagy 2013) in equation (5.5). 

𝐽𝑛𝑓 =  √𝐷𝑛𝑓 𝑠 √
1 − 𝛷 + 𝛷𝐻

1 − 𝛷
×   𝐶∗                              (5.5) 

Where, Jnf = overall mass transfer rate with nanofluids, mol/m2s,  

s = Surface renewal rate, s-1, 

H = Henry’s constant for dissolved oxygen in water at 25ºC, 

Dnf = Diffusivity of the nanofluid is calculated using Equation (3.1) as shown 

in section 4.1. 

Enhancement factor, E is calculated using the equation (5.6), 

𝐸 =  
𝐽𝑛𝑓

𝐽𝑏𝑓
     (5.6) 

 Where Jbf is the overall mass transfer rate with base fluid. 

 From Eq. (5.5) and (5.6)  

𝐸 =  √
𝐷𝑛𝑓

𝐷𝐿
 √

1 − 𝛷 + 𝛷𝐻

1 − 𝛷
                                (5.7) 

 

 

  
 

Fig 5.1. Predicted and experimental Enhancement in mass transfer rate in the 

presence of TiO2 nanofluids. 
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Fig 5.2. Predicted and experimental Enhancement in mass transfer rate in the 

presence of SiO2 nanofluids. 

 

Fig 5.3. Predicted and experimental Enhancement in mass transfer rate in the 

presence of α-Fe2O3 nanofluids.  

 

The experimental enhancement factor and predicted from the pseudo homogeneous 

model for TiO2 SiO2 and α-Fe2O3 nanofluid at the amplitude of pulsation of 6.3 cm, 

frequency of pulsation of 0.25 s-1, and with an air flow rate of 4.8 LPM, are illustrated 

in Fig.5.1, Fig.5.2, and Fig.5.3 respectively.  

The dotted line represents the experimentally found enhancement in mass transfer rate 

and the continuous line represents the model predicted enhancement in mass transfer 

rate. Though the closeness among the predicted and the experimental enhancement in 

mass transfer rate is good as depicted by the Coefficient of determination (R2) and 

minimal Mean absolute error values shown in Table 5.3, the trend of change in the 

enhancement factor with increase in nanoparticle loading is found to differ for 
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experimental and predicted factors. There is a significant increase in the experimental 

enhancement of the mass transfer rate with increase in nanoparticle loading at lower 

loading values, reaching a maximum at a critical loading. This is mainly due to the 

convective currents caused by the Brownian movement of nanosized particles.  Further, 

there is a decrease observed in the enhancement factor with increase in nanoparticle 

loading. As discussed by Nagy et al (2007), the colloidal movement of nanoparticles 

helps in generating the enhanced velocity gradients, which increases the rate of 

diffusion of the absorbed constituent. The rate of mass transfer varies due to the 

aggregation of nanoparticles (Prasher et al 2006). At the higher loading, the problem of 

aggregation arises easily. Hence the enhancement in mass transfer rate has decreased 

with increase in loading values at higher loading. However, there is an increase in 

predicted enhancement in the mass transfer coefficient with the increase in the loading 

at the entire range. This may be due to not considering the aggregation effect in the 

model. The enhancement equation takes into account the volume fraction of 

nanoparticles in the nanofluid and the diffusivity in the nanofluid. But, the model is 

based on the assumption which considers that the surface renewal rate is the same in 

the presence and absence of nanoparticles. However, the deviation of experimental 

enhancement from the predicted enhancement indicates that the surface renewal rate (s) 

gets altered in the presence of nanoparticles. The surface renewal rates were calculated 

using the experimental flux both with the base fluid and nanofluids under different 

conditions using Equation (5.5). The variation in surface renewal rate with varying 

pulsing intensities, and superficial gas velocities (0.011 m/s, 0.019 m/s and 0.029 m/s) 

are shown in Fig 5.4, 5.5 and 5.6 and the values are presented in Table 5.2. respectively. 

As observed in Fig 5.4 to Fig 5.6 the surface renewal rate is the lowest with base fluid 

and higher for nanofluids indicating enhancement of turbulence intensity and the mass 

transfer with nanofluids this is due to convection currents generated by Brownian 

movement of the particles. Further as observed from Figure 5.4 to 5.6, the surface 

renewal rate increases with the increase in both the pulsing velocities and superficial 

air velocities showing that the increase in these operating conditions lead to higher 

turbulent intensities causing the faster renewal of the surface attributing to mass transfer 

enhancement. 
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These results indicate that the pseudo homogeneous model can accurately predict the 

enhancement till the critical loading conditions, but not at loading conditions above the 

critical loading.   

 

Fig 5.4 The variation in Surface renewal rate (s), at critical nanoparticle loading for 

TiO2, SiO2 and α-Fe2O3 nanofluid at varying pulsing velocity at an air flow rate of 

0.011 m/s. 

 

Fig 5.5 The variation in Surface renewal rate (s), at critical nanoparticle loading for 

TiO2, SiO2 and α-Fe2O3 nanofluid at varying pulsing velocity at an air flow rate of 

0.019 m/s. 
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Fig 5.6 The variation in Surface renewal rate (s), at critical nanoparticle loading for 

TiO2, SiO2 and α-Fe2O3 nanofluid at varying pulsing velocity at an air flow rate of 

0.029 m/s. 

Table 5.2 Calculated surface renewal rate values using experimental flux with basefluid 

and nanofluids under critical loading of nanoparticles and varying pulsing velocities 

and superficial gas velocity. 

(A×f

), 

cm/s 

Surface renewal rate (s), s-1 

Superficial air velocity, 

0.011m/s 

Superficial air velocity, 

0.019m/s 

Superficial air velocity, 

0.029m/s 

BF 
Ti

O2 

SiO

2 

α-

Fe2O3 
BF TiO2 SiO2 α-Fe2O3 BF TiO2 SiO2 

α-

Fe2O3 

0.8 0.1 2.4 0.7 0.4 0.5 2.9 1.5 0.7 0.9 3.3 2.0 1.0 

1.17

5 
0.3 2.5 1.1 0.8 0.8 3.0 1.7 1.0 1.3 3.7 2.1 1.4 

1.57

5 
1.0 2.9 1.8 1.4 1.4 3.7 2.6 1.6 1.9 4.1 3.1 2.0 

1.6 1.1 2.9 1.3 1.0 0.8 3.2 2.0 1.0 1.3 3.7 2.4 1.4 

2.35 0.7 3.0 1.6 1.5 1.3 3.3 2.5 1.4 1.8 4.1 3.0 1.9 

2.4 1.6 3.7 1.9 1.8 1.6 4.0 3.1 2.0 2.1 4.3 3.8 2.5 

3.15 1.4 5.8 2.9 1.9 2.3 6.2 3.4 2.5 2.7 7.0 4.4 3.1 

3.2 1.6 6.0 3.0 2.2 2.5 6.9 4.2 2.6 2.7 7.5 4.7 3.2 

3.52

5 
1.4 6.1 3.1 2.1 2.9 7.1 4.4 3.1 3.7 8.1 5.1 3.9 

4.7 2.0 7.3 3.4 2.7 3.4 8.2 4.6 3.8 4.0 8.9 5.6 4.4 

4.72

5 
1.6 7.5 5.0 2.5 3.5 8.4 4.8 3.9 4.3 9.2 6.4 4.6 

6.3 2.0 8.0 5.1 3.0 4.0 9.3 5.6 5.0 4.4 10.4 7.4 5.8 
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Table 5.3 statistical parameters for different nanofluids of the Pseudo homogenous 

model 

Nanoparticle  Statistical Parameters 

R2 MSE MAE 

TiO2 

 

0.98 0.0185 0.1091 

SiO2 

 

0.99 0.0148 

 

0.0323 

 

α-Fe2O3 

 

0.99 0.0118 

 

0.0575 

 

 

5.3 Development of dimensional correlations for kLa: Multiple 

Regression Analysis (MRA) model   

Dimensionless correlations with MRA and Artificial neural network based models may 

be developed with the experimental results to better suit to predict the kLa values in 

PPC. To facilitate the prediction of kLa with TiO2, SiO2, and α-Fe2O3 nanofluids in PPC, 

the kLa values were determined by varying the frequency (0.25 s-1, 0.5 s-1, 0.75 s-1 and 

1 s-1) and amplitude (3.2 cm, 4.7 cm, and 6.3 cm)   of pulsation with different superficial 

air velocities (0.011m/s, 0.019m/s, and 0.029 m/s) and nanoparticle loading (0.017 % 

w/v, 0.034 % w/v, 0.051 % w/v, 0.068 % w/v, 0.081 % w/v, and 0.102 % w/v) 

conditions in PPC. The experiments were conducted at the above conditions with TiO2 

-25, TiO2- 72, SiO2 -12, SiO2 -24, α-Fe2O3 – 43 and α-Fe2O3 – 76 nanofluids. Totally 

1296 experimental data sets covering the entire range of conditions with TiO2 -25, TiO2 

-72, SiO2, -12, SiO2, -24, α-Fe2O3-43 and α-Fe2O3-76 nanofluids were used to develop 

the MRA models are shown in Appendix I, II and III. MRA models for TiO2, SiO2 and 

α-Fe2O3 nanofluid were developed. Each MRA model covered totally 432 data sets 

obtained with both the sizes of the nanoparticles of a particular nanofluid. A single 

dimensionless correlation of the form given in equation (5.8) was used to correlate the 

experimental data in the form of dimensionless numbers. It correlates the Sherwood 

number (Sh) with the Oscillating Reynolds number (Reo)(Abbott et al. 2013), Gas flow 

Reynolds number (Reg), Schmidt number (Sc), and Brownian Reynolds number (ReB) 

(Bahmanyar et al. 2014).  
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𝑺𝒉 = 𝒌 𝑹𝒆𝒐
𝒂 𝑹𝒆𝒈

𝒃  𝑺𝒄𝒄𝑹𝒆𝑩
𝒅                 (𝟓. 𝟖) 

where Sherwood number, Oscillating Reynolds number (Abbott et al. 2013) (Abbott et 

al. 2013), Gas flow Reynolds number, Schmidt number, and Brownian Reynolds 

number (ReB) (Bahmanyar et al. 2014) is defined as follows: 

𝑺𝒉 =
𝑘𝐿𝑎 × 𝑑2

𝐷𝑛𝑓
  ; 𝑹𝒆𝒐 =

2𝜋 ×  𝑑 × (𝐴 × 𝑓) ×  𝜌𝑛𝑓

𝜇𝑛𝑓
;      𝑹𝒆𝒈 =

𝑑𝑠𝑝  ×  𝜌𝐺  ×  𝑈𝑔

𝜇𝐺
;  

𝑺𝒄 =  
𝜇𝑛𝑓

𝜌𝑛𝑓 × 𝐷𝑛𝑓
 ;  𝑅𝑒𝐵 =  

1

𝜈𝑛𝑓
(√

18𝐾𝑏𝑇

𝜌𝑝𝜋 𝑑𝑝
) 

Dnf is the diffusivity of the nanofluid which was calculated using Equation (4.1) (Feng 

and Johnson 2012) as shown in section 4.1.  

We consider the effect of the convection of the liquid near the particles due to their 

Brownian movement. At smaller particle sizes, Brownian movement-based convection 

may dominate, whereas, at larger particle sizes, a diffusional motion-based transfer may 

predominate. An increase in the nanoparticle loading above a certain value lead to a 

decrease in the particle-to-particle separation, and hence greater is the tendency of 

aggregation. Aggregation produces fewer larger particles of greater mass. Any model 

should be able to make a transition such that at small particle sizes or loading some 

mechanism dominates and at larger particle sizes other mechanism dominates. To 

account for the effect of these particles of larger mass and the effect of size of the 

particles on the shift in dominant mechanism of transport, Brownian Reynolds 

number(Krishnamurthy et al. 2006a; Prasher et al. 2006b) is used in the model.  

The correlation was developed using non -linear multiple regression analysis to predict 

the kLa in PPC in the presence of TiO2, SiO2, and α-Fe2O3 nanofluids and is shown in 

equation (5.9), equation (5.10) and Equation (5.11) respectively. 

𝑺𝒉 = 𝟑𝟓𝟒. 𝟐𝟒 𝑹𝒆𝒐
𝟎.𝟒𝟐 𝑹𝒆𝒈

𝟎.𝟏𝟔 𝑺𝒄𝟎.𝟗𝟒𝑹𝒆𝑩
𝟎.𝟒𝟔     (5.9) 

𝑺𝒉 = 𝟐𝟕𝟓. 𝟗𝟓 𝑹𝒆𝒐
𝟎.𝟑𝟗 𝑹𝒆𝒈

𝟎.𝟐𝟑 𝑺𝒄𝟎.𝟕𝟐𝑹𝒆𝑩
𝟎.𝟐𝟑     (5.10) 

𝑺𝒉 = 𝟏𝟎𝟖𝟑. 𝟏𝟒 𝑹𝒆𝒐
𝟎.𝟒𝟔 𝑹𝒆𝒈

𝟎.𝟑𝟒 𝑺𝒄𝟎.𝟒𝟕𝑹𝒆𝑩
𝟎.𝟐𝟏     (5.11) 
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Table 5.4 shows the range of validity of nanoparticle loading, dimensionless numbers, 

and statistical parameters. The statistical parameters such as coefficient of 

determination (R2), mean squared error (MSE) and mean absolute error (MAE) (Kahani 

and Vatankhah 2019) were used to determine the goodness of fit and were calculated 

using Equation (5.12)-Equation (5.14) respectively. The values are shown in Table 5.4.  

𝑅2 = 1 − (
∑ (𝑃𝑖 − 𝐸𝑖)

2𝑁
𝑖=1

∑ (𝐸𝑖)2𝑁
𝑖=1

)        (5.12) 

𝑀𝑆𝐸 =  
1

𝑁
 ∑(𝑃𝑖 − 𝐸𝑖)2

𝑁

𝑖=1

             (5.13) 

𝑀𝐴𝐸 =  
1

𝑁
 ∑ (𝑃𝑖 − 𝐸𝑖)

𝑁
𝑖=1             (5.14) 

Where, N = total number of data points, 𝑃𝑖 = predicted values of Sh from the model, 𝐸𝑖 

= experimental values of Sh from the experimental data. The statistical parameters 

shown in Table 5.4 indicate the goodness of fit and the validity of the model.  The plots 

of experimental values of Sherwood number vs. the predicted values of Sherwood 

number are shown in Fig 5.7 (a), (b) and (c) for TiO2, SiO2, and α-Fe2O3 nanofluids 

respectively. 

This indicates the goodness of fit of the data into correlations, thus proving the validity 

and potential applicability of the correlations to predict the kLa values in PPC in the 

presence of TiO2, SiO2, and α-Fe2O3 nanofluids. The dimensionless correlation 

developed in the present study may be useful to the designers of pulsed plate columns 

used for aerobic bioprocesses such as biological wastewater treatment or production of 

valuable bio products or for photocatalytic processes where, oxygen transfer 

coefficients are one of the important parameters for the design where these 

nanoparticles are either intentionally added to enhance the mass transfer or are present 

in the reactor to serve as a catalyst, adsorbent or as biomass supports.    
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Table 5.4 Range of validity of dimensionless numbers and statistical parameters for 

different nanofluids. 

Nanoparticle 

type and 

Loading (%w/v) 

Nanoparticle 

Size 

Dimensionless 

numbers 

Statistical Parameters 

R2 MSE MAE 

TiO2 

0.017 ≤Φ≤ 0.102 

25 and 72 nm 2000 ≤ Reo ≤ 

30000 

0.135≤ Reg 

≤0.370 

800≤ Sc ≤ 1700 

0.0004≤ ReB≤ 

0.001 

0.99 1.08E-

04 

8.97E-

06 

SiO2 

0.017 ≤Φ≤ 0.102 

12 and 24 nm 2000 ≤ Reo ≤ 

20000 

0.135≤ Reg 

≤0.370 

1300≤ Sc ≤ 2200 

0.0008≤ ReB≤ 

0.002 

0.99 6.03E-

05 

 

5.655E-

05 

 

α-Fe2O3 

0.017 ≤Φ≤ 0.102 

43 and 76 nm 1200 ≤ Reo ≤ 

20000 

0.135≤ Reg 

≤0.370 

1300≤ Sc ≤ 2700 

0.008≤ ReB≤ 

0.023 

0.993 7.12E-

08 

 

1.14E-

04 
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Fig.5.7 Predicted and experimental Sherwood number for (a) TiO2 nanofluid (b) 

SiO2 nanofluid (c) α-Fe2O3 nanofluid 
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5.4 Artificial Neural Network (ANN) 

The ANN model has been developed in the present study by considering all the factors 

in the entire range of data in a single model, to make the model more user-friendly. 

ANN is a powerful modeling tool, which is motivated by the human nervous system. It 

is composed of multiple interrelated processing elements called neurons. It has a 

network structure wherein neurons are arranged in different layers such as, initially an 

input layer that receives the input variable data, a hidden layer in which the data is 

processed, and finally, an output layer that sends the processed information. Each 

neuron of the hidden layer is interconnected to input and output layers using weights 

and biases (Janghorban Esfahani et al. 2012). The main advantage of an ANN is that a 

precise output or target can be obtained by training and regulating the determined input 

(Kahani and Vatankhah 2019). From the literature findings, it is reported that ANN is 

used in many applications such as to predict the kLa, gas hold-up, and the average 

bubble diameter in bubble columns using column geometry and operating conditions 

as input parameters (Baawain et al. 2007). The ANN-based model was also developed 

for the prediction of biodegradation of phenol in pulsed plate bioreactor(Shetty et al. 

2008). Hemmat Esfe et al. (2015), proposed the ANN model to predict the thermal 

conductivity ratio of SiO2-DWCNT/ethylene glycol nanofluid as a function of volume 

concentration and temperature. (Kahani and Vatankhah 2019) developed an optimized 

ANN model to predict the thermal performance of a Wickless heat pipe with 

Al2O3/water nanofluid. The theoretical models cannot predict the kLa accurately in the 

entrie range of nanoparticle loading and different mechansims govern the enhnacement 

under different conditions. As the dependency of kLa on various operating variables is 

highly nonlinear, ANN model was developed  to predict kLa in PPC with nanofluids. 

In the present work, the neural network consisted of five inputs and one output variable. 

The input variables for the neural networks were nanoparticle loading, superficial gas 

velocity, the amplitude of pulsation, frequency of pulsation, and nanoparticle size. kLa 

is the output variable. Fig. 5.8. shows the structure of a feed-forward neural network 

with an input layer, hidden layer, and output layer. Feed-forward neural networks are 

used to learn the relationship between independent variables, which serve as inputs to 

the network, and dependent variables which are designated as outputs of the network. 

Feedforward neural networks (FFNNs) can represent more complex classification 

https://www.sciencedirect.com/topics/engineering/feedforward
https://www.sciencedirect.com/topics/mathematics/neural-network
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functions. An FFNN includes an input, output, and several hidden layers. The number 

of hidden layers represents the depth of the network. All layers include interconnected 

nodes.  The network trains itself by computing differences between the processed 

output by the network and the actual target output. The network then adjusts the weights 

associated with each connection according to a set learning rate and the error values. 

After many such successive adjustments as the network loops over each time in the 

ANN, this way tends to produce outputs that are increasingly similar to the target output 

(results)(Das et al. 2021). 

Totally 432 data points were used, which were obtained from batch experiments at 

different operating parameters and were shown in Annexures I, II, and III. Among them, 

302 (70% of total data points) points were used for network training and 65 points each 

(15% of the total data points) for validation and testing respectively. The network was 

trained with the Levenberg- Marquardt backpropagation algorithm (trainlm) using the 

NN tool of MATLAB R2019a.  It is important to find the optimal neurons in the hidden 

layer, to avoid overfitting, prolonged unnecessary training time, and the complex 

interconnection of weight structure. An insufficient number of neurons may create a 

problem in learning the complete relationship between the data (Patel and Mehta 2018). 

Hence, the number of neurons in the hidden layer was varied through the trial-and-error 

method and the optimal number of neurons was obtained based on the criteria of 

minimum MSE. Fig 5.9 represents the Mean Squared Error (MSE) versus the Number 

of Neurons hidden in the layer. The plots showing the predicted ANN output vs. the 

experimental value of kLa in the presence of TiO2, SiO2, and α-Fe2O3 nanofluids for the 

training, testing, and validation data points are shown in Fig. 5.10, Fig. 5.11, and, 

Fig.5.12 respectively. The fit of these points onto the 45° line passing through the origin 

confirms that (i) the ANN network is well-trained (Fig. 5.10(a), 5.11 (a), 5.12(a) and 

(ii) the model is valid and predicts kLa accurately (Figure 5.10 (b) and (c); 5.11(b) and 

(c); 5.12 (b) and (c)) under the experimental range. The goodness of the ANN was 

tested by statistical parameters such as R2, MSE, and MAE(Kahani and Vatankhah 

2019). 

The R2 value for the model is 0.989 shows an excellent fitting between the ANN-

predicted and experimental values of kLa. The MSE and MAE of the network were 

found and shown in table 5.5. The results have shown a good agreement between the 

https://www.sciencedirect.com/topics/mathematics/neural-network
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experimental data and predicted data. Hence, it is stated that the ANN provides an 

efficient method for predicting the kLa for the pulsed plate column in the presence of 

nanofluids.  

Table 5.5 statistical parameters for different nanofluids 

Nanoparticle  Statistical Parameters 

R2 MSE MAE 

TiO2 

 

0.98 1.44731E-05 

 

1.23E-04 

 

SiO2 

 

0.99 1.02734E-05 

 

2.28517E-05 

 

α-Fe2O3 

 

0.99 5.05608E-06 

 

4.23449E-05 

 

 

 

 

Fig. 5.8 Structure of feed-forward neural network with input, hidden, and output layer 
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Fig.5.9 Mean Squared Error versus Number of Neurons hidden in the layer. 

 

 

Fig. 5.10 Predicted ANN output vs. the experimental value of kLa in the presence of 

TiO2 nanofluid for the (a) training, (b) testing, and (c) validation data points (d) overall 

data points. 
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Fig. 5.11 Predicted ANN output vs. the experimental value of kLa in the presence of 

SiO2 nanofluids for the (a) training, (b) testing and (c) validation data points (d) overall 

data points. 

 

Fig. 5.12 Predicted ANN output vs. the experimental value of kLa in the presence of α-

Fe2O3 nanofluids for the (a) training, (b) testing and (c) validation data points (d) overall 

data points.  
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Chapter 6   Summary and Conclusions 

Volumetric oxygen mass transfer coefficients (kLa) in PPC in the presence of TiO2, 

SiO2 and α- Fe2O3 nanofluids were determined at different experimental conditions. 

The effect of weight percent of nanoparticles, size of nanoparticles, frequency of 

pulsation of plates, amplitude of pulsation of plates and superficial air velocity on 

volumetric oxygen mass transfer coefficient were studied.  

Based on the results of experiments conducted and interpretations thereof, the 

following conclusions were drawn. 

 TiO2 -25, TiO2 -72, SiO2, -12, SiO2, -24, α-Fe2O3-43 and α-Fe2O3-76 nanofluids 

efficiently enhanced kLa in PPC with reference to base fluids. 

 kLa was found to increase with the increase in nanoparticle loading, reached a 

maximum and then decreased with further increase in nanoparticle loading. The 

nanoparticle loading of 0.068 % w/v and 0.051% w/v have been found to be 

optimum for TiO2 -25 and TiO2 -72 nanofluid respectively. Similarly, the 

nanoparticle loading of 0.051 % w/v has been found to be optimum for SiO2 -

12 and SiO2 -24 nanofluids. Also, the nanoparticle loading of 0.034 % w/v has 

been found to be optimum for α-Fe2O3 - 43 and α-Fe2O3 -76 nanofluids. 

 kLa was found to be increased with increase in frequency of pulsation from 

0.25s-1 to 1s-1 and also found that maximum kLa was obtained at frequency of 

pulsation of 1s-1 with all the amplitude conditions studied. whereas, the 

maximum enhancement factor was obtained at the lowest frequency. 

 kLa increased with increase in amplitude of pulsation from 3.2cm to 6.3cm and 

maximum enhancement factor was obtained at lowest amplitude. 

 kLa increased with increase in superficial air velocity from 0.011m/s to 

0.029m/s and maximum enhancement factor was obtained at lowest superficial 

air velocity. 
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 Nanofluids with lower size particles such as TiO2 -25, SiO2, -12, and α-Fe2O3-

43 provided higher kLa compared to those with higher size particles viz. TiO2 -

72, SiO2, -24 and α-Fe2O3-76 nanofluids.  

 One or more of the hydrodynamic regimes could be observed in terms of the 

effect of the pulsing velocity on kLa and the pulsing velocity for regime 

transition depends on the type of nanofluids, size of nanoparticles, and 

nanoparticle loading. 

 kLa enhancement with nanofluid is better at lower pulsing conditions. 

 A maximum enhancement factor of 4.37 could be achieved with TiO2-25 

nanofluid followed by that with TiO2 -72 nm which provided an enhancement 

factor of 2.39 under optimum conditions of A= 3.2 cm, f-0.25 s-1, and Ug=0.011 

m/s. 

 The enhancement factor provided by SiO2 nanofluids was in the range of 2.17 

(SiO2-24 nanofluid) and 2.30 with SiO2-12 nanofluid, whereas the least 

enhancement of around 1.65 and 1.61 could be achieved with α-Fe2O3 -43 and 

α-Fe2O3-76 nanofluid. 

 TiO2 nanofluid provides better kLa enhancement factor than SiO2 and α-Fe2O3 

nanofluid. Therefore, it can be concluded that the size of nanoparticles in the 

nanofluid is not the only determining factor for gas-liquid mass transfer 

enhancement. The type of nanoparticles also changes the characteristics of the 

nanofluid and thus kLa enhancement is also a function of the type of 

nanoparticles.  

 Order of magnitude analysis implies that the convection currents caused by 

Brownian motion of the particles is much faster than the mass diffusion of 

oxygen or the Brownian motion of the particle itself. Thus, the disturbance field 

created by the Brownian motion of the nanoparticles in the fluid can be the 

possible reason for the enhancement in mass transport.  

 Pseudo homogeneous model was applied to predict kLa enhancement with 

nanofluid and these results indicate that the model can accurately predict the 
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enhancement till the critical loading conditions, but not at loading conditions 

above the critical loading.  

 This model could be used to determine the surface renewal rates at critical 

loading conditions, which were found to increase with the pulsing velocities and 

superficial air velocities. 

 Dimensionless MRA models involving Sherwood number, Oscillating 

Reynolds number, Gas flow Reynolds number, Schmidt number, and Brownian 

Reynolds number, were developed to predict kLa with TiO2, SiO2 and α- Fe2O3 

nanofluids. nanofluids in pulsed plate column using the experimental data. 

 Further ANN based model was developed with 10 hidden neurons to predict kLa 

with nanoparticle size, superficial air velocity, amplitude of pulsation, 

frequency of pulsation and nanoparticle loading as the input parameters, by 

training with the experimental input-output data. Further the ANN model was 

tested and validated with the experimental results. 

The results of this study indicate that the pulsing conditions required to achieve the 

desired mass transfer characteristics can be reduced by using a nanofluid instead of 

the base fluid. It is concluded that the enhanced oxygen mass transfer characteristics 

can be achieved with the TiO2, SiO2, and α- Fe2O3 nanofluids in the pulsed plate 

column with the tremendous saving of energy. The contribution of this study to the 

field of mass transfer includes the addition of new knowledge on the extent of mass 

transfer enhancement that could be achieved by using nanofluids in pulsed plate 

column. The dimensionless correlations and ANN models developed in the present 

study can accurately predict kLa and thus may find potential applications in the 

design of pulsed plate column when used as gas-liquid mass transfer contactors, 

bioreactors, or photocatalytic reactors. 
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Future Scope of the Work 

 Studies on the performance of the Pulsed plate column as a bioreactor in the 

presence of nanofluids. 

 Studies on  CO2 absorption in the Pulsed plate column in the presence of 

nanofluids. 

 Studies on mass transfer enhancement in liquid-liquid extraction system in 

the presence of nanofluids in pulsed plate column. 

 Studies on the effect of liquid velocity on gas-liquid mass transfer 

coefficient in a  Pulsed plate column operated under continuous mode. 
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Appendix I. Experimental kLa data in the presence of TiO2 nanofluid. 

 

 

 

 

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0448 0.0526 0.0581 0.0766 0.0718 0.0703 0.028 0.032 0.0399 0.0322 0.0255 0.0237

f = 0.5 s
-1

0.0549 0.0613 0.0672 0.0835 0.0824 0.0812 0.0369 0.0394 0.0531 0.0516 0.0461 0.0455

f = 0.75 s
-1

0.0772 0.0853 0.0882 0.0948 0.0927 0.0855 0.0597 0.0673 0.0757 0.0686 0.0653 0.0541

f = 1 s
-1

0.0979 0.1049 0.1068 0.121 0.112 0.0925 0.0735 0.0762 0.0826 0.0729 0.0718 0.0709

f = 0.25 s
-1

0.0497 0.0572 0.068 0.0789 0.0769 0.0743 0.0441 0.05041 0.0575 0.0483 0.0466 0.0451

f = 0.5 s
-1

0.071 0.0799 0.0844 0.099 0.0879 0.0857 0.0583 0.0675 0.0802 0.0767 0.0755 0.0655

f = 0.75 s
-1

0.1054 0.1108 0.1183 0.1211 0.0994 0.0925 0.0799 0.0851 0.0905 0.081 0.0798 0.0764

f = 1 s
-1

0.118 0.126 0.131 0.135 0.128 0.119 0.0885 0.0911 0.1011 0.097 0.093 0.0891

f = 0.25 s
-1

0.0542 0.0681 0.0788 0.0845 0.0811 0.0798 0.0511 0.055 0.0611 0.0529 0.0513 0.0499

f = 0.5 s
-1

0.079 0.1027 0.1074 0.119 0.0984 0.0954 0.065 0.076 0.0814 0.08 0.0795 0.069

f = 0.75 s
-1

0.112 0.1241 0.127 0.13 0.116 0.1127 0.082 0.0944 0.099 0.089 0.0865 0.0834

f = 1 s
-1

0.126 0.131 0.134 0.1391 0.135 0.1245 0.099 0.1011 0.112 0.1044 0.098 0.0921

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0551 0.059 0.065 0.0839 0.0821 0.0793 0.041 0.0487 0.0598 0.055 0.0495 0.0483

f = 0.5 s
-1

0.063 0.071 0.083 0.091 0.0874 0.0843 0.053 0.063 0.071 0.068 0.0651 0.0623

f = 0.75 s
-1

0.084 0.0911 0.094 0.1022 0.097 0.0943 0.0754 0.077 0.089 0.084 0.081 0.0799

f = 1 s
-1

0.1049 0.1109 0.119 0.129 0.121 0.1105 0.0799 0.0851 0.099 0.095 0.0911 0.086

f = 0.25 s
-1

0.061 0.068 0.079 0.089 0.0851 0.0811 0.055 0.061 0.0699 0.0671 0.0655 0.0629

f = 0.5 s
-1

0.0783 0.089 0.0968 0.1054 0.1011 0.098 0.071 0.079 0.0855 0.083 0.079 0.073

f = 0.75 s
-1

0.1095 0.115 0.122 0.128 0.121 0.116 0.0881 0.092 0.098 0.0899 0.0855 0.0839

f = 1 s
-1

0.128 0.135 0.1395 0.1405 0.129 0.125 0.104 0.11 0.121 0.1085 0.1055 0.1025

f = 0.25 s
-1

0.068 0.0718 0.0866 0.0941 0.0874 0.0855 0.062 0.067 0.078 0.0711 0.0699 0.0633

f = 0.5 s
-1

0.089 0.1068 0.118 0.123 0.116 0.1105 0.078 0.0862 0.0963 0.0911 0.0869 0.0841

f = 0.75 s
-1

0.119 0.129 0.136 0.141 0.128 0.126 0.092 0.1094 0.118 0.1044 0.0963 0.0911

f = 1 s
-1

0.1295 0.138 0.1411 0.15 0.144 0.1437 0.1015 0.115 0.128 0.118 0.1066 0.1032

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0649 0.0697 0.0786 0.089 0.0885 0.0869 0.052 0.0599 0.068 0.0588 0.0562 0.054

f = 0.5 s
-1

0.073 0.0894 0.0859 0.1011 0.096 0.094 0.071 0.075 0.081 0.077 0.074 0.068

f = 0.75 s
-1

0.089 0.0974 0.1011 0.118 0.112 0.1088 0.0836 0.0889 0.0968 0.0948 0.0931 0.089

f = 1 s
-1

0.114 0.121 0.128 0.135 0.127 0.12 0.0911 0.0956 0.1044 0.1022 0.099 0.0945

f = 0.25 s
-1

0.0684 0.0751 0.0797 0.095 0.0932 0.0899 0.0649 0.0696 0.078 0.072 0.0692 0.0672

f = 0.5 s
-1

0.0814 0.091 0.098 0.11 0.1055 0.1022 0.0798 0.086 0.095 0.0876 0.084 0.0821

f = 0.75 s
-1

0.1099 0.119 0.1255 0.1299 0.127 0.126 0.0965 0.1094 0.115 0.1081 0.1011 0.099

f = 1 s
-1

0.1319 0.135 0.141 0.1476 0.139 0.1355 0.1099 0.119 0.131 0.122 0.114 0.11

f = 0.25 s
-1

0.0759 0.086 0.095 0.1046 0.0977 0.0954 0.071 0.081 0.091 0.083 0.078 0.076

f = 0.5 s
-1

0.099 0.112 0.125 0.133 0.127 0.125 0.089 0.0966 0.1055 0.1011 0.097 0.094

f = 0.75 s
-1

0.125 0.128 0.136 0.149 0.1399 0.137 0.109 0.11 0.125 0.112 0.1055 0.1011

f = 1 s
-1

0.1365 0.145 0.1496 0.16 0.15 0.1491 0.119 0.131 0.14 0.129 0.121 0.118

Nanoparticle Loading, 

(w/v%)

A = 3.2cm

A = 4.7cm

A = 6.3cm

A = 3.2cm

Nanoparticle Loading, 

(w/v%)

Nanoparticle Loading, 

(w/v%)

A = 3.2cm

A = 4.7cm

A = 6.3cm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of TiO2 nanofluid at 0.029m/s

Nanoparticle size 25nm 72nm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of TiO2 nanofluid at 0.011m/s

A = 4.7cm

A = 6.3cm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of TiO2 nanofluid at 0.019m/s

Nanoparticle size 25nm 72nm

Nanoparticle size 25nm 72nm
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Appendix II. Experimental kLa data in the presence of SiO2 nanofluid. 

 

 

 

 

 

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0328 0.0383 0.0403 0.0398 0.0357 0.0322 0.031 0.036 0.038 0.035 0.0322 0.0299

f = 0.5 s
-1

0.0489 0.0541 0.0551 0.0534 0.0526 0.0516 0.0429 0.0488 0.0497 0.0475 0.0441 0.0439

f = 0.75 s
-1

0.0593 0.0635 0.0676 0.064 0.061 0.057 0.0528 0.0559 0.0599 0.0561 0.0549 0.0533

f = 1 s
-1

0.0733 0.0781 0.0829 0.079 0.077 0.0749 0.0722 0.0755 0.0793 0.0761 0.0744 0.0711

f = 0.25 s
-1

0.039 0.0458 0.051 0.047 0.046 0.0417 0.0375 0.0412 0.0451 0.0422 0.0391 0.038

f = 0.5 s
-1

0.052 0.061 0.068 0.064 0.0621 0.056 0.0489 0.0529 0.0589 0.0566 0.0544 0.0514

f = 0.75 s
-1

0.065 0.0714 0.0788 0.0733 0.071 0.066 0.0626 0.0661 0.0699 0.0685 0.066 0.0633

f = 1 s
-1

0.0799 0.0844 0.0911 0.088 0.0855 0.0845 0.0756 0.0833 0.0879 0.0865 0.0849 0.0825

f = 0.25 s
-1

0.0569 0.067 0.078 0.074 0.068 0.066 0.0529 0.0581 0.066 0.063 0.059 0.055

f = 0.5 s
-1

0.0755 0.0833 0.0982 0.0933 0.087 0.0863 0.0655 0.074 0.081 0.077 0.075 0.069

f = 0.75 s
-1

0.094 0.099 0.1044 0.0994 0.096 0.0921 0.073 0.081 0.088 0.083 0.08 0.079

f = 1 s
-1

0.0986 0.1066 0.1099 0.1077 0.1049 0.1033 0.087 0.089 0.0968 0.0944 0.091 0.088

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.045 0.049 0.0585 0.057 0.0511 0.05 0.0385 0.0435 0.0459 0.0421 0.041 0.039

f = 0.5 s
-1

0.0589 0.0652 0.071 0.068 0.066 0.0595 0.055 0.058 0.0622 0.0591 0.0583 0.0544

f = 0.75 s
-1

0.0755 0.0799 0.0851 0.0785 0.0772 0.0744 0.069 0.0748 0.0785 0.0765 0.0759 0.0733

f = 1 s
-1

0.089 0.095 0.1018 0.099 0.097 0.0933 0.0799 0.0855 0.0899 0.0871 0.0865 0.0825

f = 0.25 s
-1

0.055 0.0612 0.0711 0.061 0.0588 0.0556 0.049 0.0535 0.057 0.0551 0.0544 0.0527

f = 0.5 s
-1

0.066 0.073 0.081 0.0788 0.073 0.07 0.059 0.0658 0.0685 0.0661 0.0641 0.0622

f = 0.75 s
-1

0.089 0.094 0.099 0.093 0.09 0.0895 0.086 0.0891 0.091 0.088 0.0863 0.0879

f = 1 s
-1

0.099 0.1015 0.1044 0.099 0.0985 0.097 0.0966 0.098 0.1011 0.097 0.095 0.093

f = 0.25 s
-1

0.0654 0.07 0.085 0.075 0.071 0.069 0.0633 0.067 0.075 0.071 0.069 0.065

f = 0.5 s
-1

0.08 0.085 0.1011 0.087 0.084 0.081 0.078 0.0819 0.085 0.0844 0.0819 0.0799

f = 0.75 s
-1

0.095 0.099 0.1098 0.1011 0.096 0.0944 0.0911 0.0966 0.1011 0.099 0.097 0.0923

f = 1 s
-1

0.1044 0.116 0.122 0.119 0.1088 0.1066 0.0988 0.1066 0.118 0.1088 0.1066 0.1055

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0528 0.061 0.071 0.066 0.064 0.059 0.048 0.0498 0.0611 0.0574 0.0562 0.0534

f = 0.5 s
-1

0.071 0.0795 0.0855 0.078 0.074 0.0723 0.062 0.0655 0.0789 0.0767 0.0668 0.0649

f = 0.75 s
-1

0.0825 0.087 0.094 0.0911 0.09 0.0895 0.0789 0.0845 0.0881 0.0839 0.0811 0.0799

f = 1 s
-1

0.098 0.105 0.1099 0.1066 0.1044 0.1011 0.0889 0.0946 0.0984 0.0975 0.0951 0.0922

f = 0.25 s
-1

0.0683 0.0711 0.0835 0.0792 0.0766 0.0743 0.0611 0.0645 0.0673 0.0661 0.0634 0.0628

f = 0.5 s
-1

0.0788 0.0844 0.0983 0.0951 0.0933 0.0911 0.0744 0.0788 0.0823 0.0811 0.0791 0.0781

f = 0.75 s
-1

0.0986 0.1021 0.1055 0.1011 0.0986 0.096 0.0944 0.099 0.1022 0.0988 0.096 0.095

f = 1 s
-1

0.1088 0.1099 0.115 0.112 0.1095 0.1078 0.1045 0.1077 0.1085 0.1069 0.1045 0.1022

f = 0.25 s
-1

0.0766 0.0833 0.0911 0.087 0.0851 0.0844 0.0699 0.0759 0.0881 0.0844 0.0822 0.081

f = 0.5 s
-1

0.092 0.099 0.1088 0.1044 0.0988 0.0944 0.088 0.0933 0.0989 0.0966 0.0942 0.0911

f = 0.75 s
-1

0.1011 0.11 0.1229 0.12 0.1066 0.1011 0.1 0.1049 0.1079 0.1066 0.1045 0.1011

f = 1 s
-1

0.1091 0.1261 0.1316 0.125 0.112 0.11 0.1044 0.1109 0.121 0.116 0.1099 0.1088

Nanoparticle 

Loading, (w/v%)

A = 3.2cm

A = 4.7cm

A = 6.3cm

Nanoparticle 

Loading, (w/v%)

A = 3.2cm

A = 4.7cm

A = 6.3cm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of SiO2 nanofluid at 0.029m/s

Nanoparticle size 12nm 24nm

A = 4.7cm

A = 6.3cm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of SiO2 nanofluid at 0.019m/s

Nanoparticle size 12nm 24nm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of SiO2 nanofluid at 0.011m/s

Nanoparticle size 12nm 24nm

Nanoparticle 

Loading, (w/v%)

A = 3.2cm
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Appendix III. Experimental kLa data in the presence of α- Fe2O3 nanofluid. 

 

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0277 0.029 0.027 0.0251 0.0236 0.0211 0.0261 0.028 0.0261 0.0243 0.0225 0.0199

f = 0.5 s
-1

0.045 0.0499 0.046 0.0399 0.0379 0.035 0.0389 0.0455 0.0433 0.0386 0.0366 0.0346

f = 0.75 s
-1

0.058 0.065 0.0579 0.0561 0.0543 0.052 0.0522 0.0599 0.0571 0.0552 0.0538 0.051

f = 1 s
-1

0.068 0.078 0.071 0.067 0.0653 0.063 0.065 0.071 0.066 0.0643 0.0621 0.058

f = 0.25 s
-1

0.039 0.045 0.0387 0.035 0.032 0.02963 0.0355 0.0393 0.0376 0.02988 0.027 0.0254

f = 0.5 s
-1

0.04863 0.061 0.0551 0.0516 0.0476 0.0442 0.0466 0.0571 0.0499 0.0442 0.0431 0.0411

f = 0.75 s
-1

0.0611 0.073 0.069 0.066 0.0644 0.0611 0.0595 0.071 0.066 0.0634 0.0599 0.0566

f = 1 s
-1

0.0758 0.0833 0.078 0.0754 0.0733 0.072 0.074 0.0781 0.0753 0.0722 0.0681 0.0661

f = 0.25 s
-1

0.051 0.0599 0.0571 0.0544 0.0531 0.052 0.0499 0.0568 0.0533 0.051 0.0477 0.0429

f = 0.5 s
-1

0.0595 0.0681 0.066 0.0653 0.0644 0.0586 0.058 0.0651 0.0622 0.0593 0.0583 0.054

f = 0.75 s
-1

0.0697 0.0775 0.0741 0.0722 0.0677 0.0633 0.067 0.0733 0.0681 0.0663 0.0644 0.0611

f = 1 s
-1

0.081 0.088 0.083 0.07644 0.074 0.0738 0.0784 0.0839 0.0787 0.0744 0.0711 0.0691

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.0377 0.0456 0.0422 0.0381 0.0368 0.0359 0.0349 0.0426 0.0411 0.0377 0.0361 0.0351

f = 0.5 s
-1

0.0496 0.0594 0.0567 0.05469 0.0511 0.0479 0.0478 0.0563 0.0534 0.0471 0.0459 0.0452

f = 0.75 s
-1

0.0681 0.073 0.0679 0.066 0.0651 0.064 0.065 0.0711 0.0654 0.0636 0.0622 0.0611

f = 1 s
-1

0.075 0.0833 0.079 0.0762 0.0754 0.073 0.074 0.0796 0.0761 0.0754 0.0743 0.0724

f = 0.25 s
-1

0.0477 0.0519 0.0488 0.0458 0.044 0.043 0.046 0.0496 0.0445 0.0439 0.0431 0.0428

f = 0.5 s
-1

0.0611 0.0693 0.066 0.0586 0.0571 0.056 0.058 0.0656 0.0611 0.059 0.0566 0.0544

f = 0.75 s
-1

0.0861 0.0882 0.0844 0.0832 0.0811 0.077 0.0831 0.0859 0.0833 0.081 0.0783 0.0756

f = 1 s
-1

0.0941 0.0991 0.0935 0.0928 0.0919 0.089 0.0921 0.0959 0.0891 0.087 0.0845 0.0811

f = 0.25 s
-1

0.0621 0.066 0.0615 0.06 0.0588 0.0575 0.0619 0.0648 0.0586 0.056 0.0543 0.0515

f = 0.5 s
-1

0.0765 0.0811 0.0759 0.0749 0.0741 0.0739 0.075 0.0781 0.0766 0.0743 0.0725 0.0711

f = 0.75 s
-1

0.0911 0.0959 0.09 0.087 0.084 0.0799 0.087 0.0911 0.087 0.0851 0.0837 0.0789

f = 1 s
-1

0.0961 0.1044 0.0953 0.0944 0.0931 0.0929 0.0969 0.1022 0.0963 0.0946 0.0922 0.0911

0.017 0.034 0.051 0.068 0.085 0.102 0.017 0.034 0.051 0.068 0.085 0.102

f = 0.25 s
-1

0.047 0.0599 0.0533 0.0455 0.0449 0.0433 0.0492 0.0538 0.047 0.044 0.0429 0.0415

f = 0.5 s
-1

0.0575 0.0711 0.0667 0.0641 0.0611 0.0571 0.0581 0.0677 0.0633 0.061 0.0576 0.0511

f = 0.75 s
-1

0.0769 0.0816 0.0761 0.0755 0.0749 0.0722 0.0743 0.0796 0.0766 0.0723 0.0718 0.0686

f = 1 s
-1

0.0866 0.0943 0.0859 0.0842 0.0839 0.0811 0.0822 0.0911 0.0861 0.0842 0.0811 0.079

f = 0.25 s
-1

0.0581 0.0677 0.0633 0.061 0.0569 0.0566 0.0572 0.0645 0.0586 0.0551 0.0543 0.0522

f = 0.5 s
-1

0.0753 0.0836 0.0811 0.076 0.074 0.0715 0.0744 0.0795 0.0766 0.0743 0.0725 0.0711

f = 0.75 s
-1

0.0944 0.0983 0.095 0.093 0.0921 0.0911 0.0931 0.0955 0.093 0.092 0.088 0.0866

f = 1 s
-1

0.1019 0.1066 0.1044 0.0966 0.0955 0.0949 0.1015 0.1022 0.099 0.095 0.0941 0.092

f = 0.25 s
-1

0.071 0.0779 0.0733 0.069 0.067 0.065 0.0693 0.0751 0.071 0.0689 0.0673 0.0669

f = 0.5 s
-1

0.0859 0.0896 0.086 0.0834 0.0822 0.0819 0.0841 0.0895 0.0832 0.0813 0.0782 0.0755

f = 0.75 s
-1

0.0981 0.1011 0.0974 0.0961 0.0959 0.0933 0.095 0.1013 0.0911 0.089 0.0881 0.0851

f = 1 s
-1

0.1044 0.11 0.1066 0.1037 0.1029 0.0988 0.1034 0.1088 0.1041 0.0988 0.0973 0.0968

Nanoparticle 

Loading, (w/v%)

A = 3.2cm

A = 4.7cm

A = 6.3cm

Nanoparticle 

Loading, (w/v%)

A = 3.2cm

A = 4.7cm

A = 6.3cm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of α-Fe2O3 nanofluid at 0.029m/s

Nanoparticle size 43nm 76nm

A = 4.7cm

A = 6.3cm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of α-Fe2O3 nanofluid at 0.019m/s

Nanoparticle size 43nm 76nm

Volumetric oxygen mass transfer coeffcient, (kLa, s
-1

) in the presence of α-Fe2O3 nanofluid at 0.011m/s

Nanoparticle size 43nm 76nm

Nanoparticle 

Loading, (w/v%)

A = 3.2cm
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Publication based on the research work 

Journal articles 
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Conference Proceedings 
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National Institute of Technology Karnataka, Surathkal Under TEQIP program. 

 B.E in Chemical Engineering securing 83.1% in the year 2012 from SDM 

College of Engineering & Technology (Autonomous), Dharwad affiliated 

Under VTU, Belgaum. 

 Pre-University securing 68.5 % in the year 2008 from R B Patil Rotary College, 

Hubli. 

 SSLC securing 84% in the year 2006 from Jain Vidyaniketan, Jakkasandra, 

Kanakapura Taluk, Bangalore Karnataka. 

Academic Achievements: 

I have worked on: 

 “Composting and Vermicomposting: An Eco Tool for Organic Solid Waste 

Management”. 

  “Extraction of protein from rice bran”. 

  “Comparison of Dyes using spectrophotography method”. 

  “Photocatalytic Degradation of Phenol using Ag core TiO2 shell nanoparticles”. 

 “Extraction of essential oil from Vetiver roots”. 

 “Synthesis of SiO2 nanoparticles by precipitation method”. 

  “Nanofluid mediated gas-liquid Mass transfer enhancement in Pulsed plate 

column”. 
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Technical skills 

 Computer skills (MS Office). 

 Computer Language (C-Programming). 

 Software (MATLAB, ASPEN PLUS SIMULATION, ImageJ, DWSIM). 

 Design Tool (CHEMCAD, E-DRAW, Solid Edge, Origin). 

 Technical writing/Editing. 

 Instruments Handled (UV Spectrophotometer, Centrifuge, Ultrasonicator, 

Stirred tank reactors, Process controllers). 

 

Areas Of Interest: 

 Nanofluids, Photocatalysis, Transfer Operations, Environmental Engineering. 

Work Experience: 

 Worked as Half Time Teaching Assistant at “National Institute of Technology 

Karnataka” under the TEQIP Programme from July 2012 to June 2015. 

 Worked as Assistant Professor at M V Jayaraman College of Engineering, 

Bangalore from October 2021 to November 2022. 

 Subjects handled Mass Transfer, Heat transfer, Process Control and Dynamics, 

Material Science for Chemical Engineers, and Nanotechnology. 

 

Paper Published 

 Amruta Shet, Vidya Shetty K, (2016), “Solar light mediated photocatalytic 

degradation of phenol using Ag core–TiO2 shell (Ag@ TiO2) nanoparticles in 

batch and fluidized bed reactor”. Solar Energy. 

 Amruta Shet, Vidya Shetty K, (2016), “Photocatalytic degradation of phenol 

using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation”. 

Environmental Science and Pollution Research. 

 Amruta Shet, Vidya Shetty K, (2020), “TiO2 nanofluid for oxygen mass transfer 

intensification in pulsed plate column”.  Chemical Engineering 

Communications. 
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Conferences/Workshop/FDPs Attended: 

 Six Days Faculty Development Programme on Current Trends in Nanomaterials 

and its Applications (CTNA 2022) held from 22nd – 27th August 2022 Organized 

by SRM Institute of Science and Technology Kattankulathur - 603 203, Tamil 

Nadu, India 

 Three days Faculty Development Program (FDP) on “Recent Advances in 

Wastewater Treatment and Recycle” held from 16th -19th November 2021 

organized by the Department of Chemical Engineering, SDM College of 

Engineering and Technology, Dharwad. Karnataka. India. 

 Two-Day State Level Seminar Two-Day State Level Seminar (Online) on 

“Teaching Learning and Assessment Process as per OBE in the Higher 

Education Institutions in line with NEP 2020" on 2nd - 3rd September organized 

by the Sahyadri College of Engineering Bangalore. 

 “International Conference on New Frontiers in Chemical, Energy and 

Environmental Engineering- INCEEE 2019, Organized by the Department of 

Chemical Engineering, National Institute of Technology Warangal, India, 

during 15th-16th February 2019, and presented my work. 

 “International Conference on New Frontiers in Chemical, Energy and 

Environmental Engineering” at the National Institute of Technology Warangal, 

Telangana state, and presented my paper at the same conference in 2015. 

 A one-day workshop on “Drinking water purification and Industrial wastewater 

treatment”, at the National Institute of Technology Warangal, Telangana state 

in 2015. 

 A two-day workshop on “NBA Accreditation Awareness”, at National Institute 

of Technology Karnataka, Surathkal 2018. 

 A one-day workshop on “Energy Sustenance towards a better environment” at 

SDMCET 2012. 
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Personal Information 

Date of Birth: 09-09-1990               

Father’s Name: S. M. Shet         

Mother’s Name: Shashikala Shet 

Marital Status: married  

Nationality: Indian 

Languages: English, Kannada, Hindi,  Konkani, Marathi, and Telugu 

Hobbies: Singing and Listening Music, Playing Shuttle Badminton 

Address: “Amruta Nilaya”, Near Dhareshwar Janata High School, Dhareshwar  

      Kumta – 581327. Ph: +918762328320; Email id: amrutasht@gmail.com 

Declaration:  

 I hereby declare that the above-mentioned information is correct up to my knowledge 

and I bear the responsibility for the correctness of the above-mentioned particulars.  

Place:  

Date:                                                                                    (Amruta S Shet)     
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