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ABSTRACT

The importance of freshwater supply and safely treated wastewater return cannot be

overemphasized. The human race is still a long way from the most efficient, economi-

cal, and reliable ways to ensure our cities with a properly equipped treatment system. It

demands the treatment of polluted/used water without discharging it to receiving water

bodies. Principally, a sudden drop of dissolved oxygen concentration is observed in

receiving water bodies when the organic pollutants are discharged along with the un-

treated wastewater. This reduces the self-purification character of the water body, which

involves the breakdown of complex organic molecules similar to biological treatment

systems. The organic effluent generally contains a large quantity of suspended and set-

tleable solids that will obstruct sunlight to reach the bottom surface of water bodies

which then gives rise to water pollution causing eutrophication. Particularly, this can be

solved by optimizing the aeration rate for better treatment, which intern reduces energy

consumption and any additional chemical dosage in biological Wastewater Treatment

plants (WWTP). One tool that has been successfully implemented to achieve such goals

is the WWTP process model. Model development is necessary for simulating a sys-

tem’s behavior, and optimizing or controlling its performance. The main motive behind

controlling any WWTP is, primarily to abide by the effluent discharge standards and

secondarily to maintain the operational costs as low as possible. The robust controller

designs are plant-specific, but the principle and goal remain the same.

Hence in this research, a mathematical model is identified using two approaches

namely the system identification technique and the Process Reaction curve method for

an Activated Sludge Process (ASP). By keeping this as a benchmark, the controllers

are designed that aimed to control effluent dissolved oxygen or biomass concentration

and substrate concentration by manipulating the aeration rate and recycle sludge flow-

rate. Two types of controllers are designed to govern the ASP system: Centralized

and Decentralized controllers. Each type has its respective pros and cons which are

discussed in the upcoming chapters. To overcome the challenge of the grey box model

for the ASP system, a data-driven approach was selected to fit a model class for the ASP
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unit. This technique will reduce the effort, complex tasks, and time for the process and

control engineer to develop a mathematical model of the plant. Subsequently, it is then

utilized to design a centralized control system for an ASP unit.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Acronyms/Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 INTRODUCTION 1

1.1 Biological Wastewater Treatment . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Suspended Growth Process . . . . . . . . . . . . . . . . . . . . 3

1.2 Multivariable Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Outline of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 THESIS ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . 12

2 REVIEW OF LITERATURE 15

2.1 Literature survey on Wastewater Treatment Plant Layout . . . . . . . . 16

2.2 Literature survey on Wastewater Treatment Plant Modelling . . . . . . 20

2.3 Literature survey on Wastewater Treatment Plant Control . . . . . . . . 26

2.4 Literature survey on Data-driven approach for control studies . . . . . . 33

2.5 Summary of Literature Review . . . . . . . . . . . . . . . . . . . . . . 39

3 SYSTEM DESCRIPTION AND PRELIMINARIES 41

3.1 Activated Sludge Process Model . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Model Identification . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1.1 System Identification (SysId) to estimate FOPTD Model 48

iii



3.1.1.2 Process Reaction Curve method . . . . . . . . . . . . 50

3.2 Wastewater Treatment Plant Control . . . . . . . . . . . . . . . . . . . 51

3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Robustness Performance . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Robust Stability Analysis . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Worst-case gain analysis . . . . . . . . . . . . . . . . . . . . . 55

4 DECENTRALIZED CONTROLLER DESIGN FOR AN ASP 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Decentralized Controller . . . . . . . . . . . . . . . . . . . . . 63

4.2.1.1 Selection of best pairing . . . . . . . . . . . . . . . . 65

4.2.2 Design of Decoupler . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2.1 Equivalent Transfer Function (ETF) . . . . . . . . . . 69
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Chapter 1

INTRODUCTION

Climate change, imbalances in water supply and consumption, and a flourishing

population will cause an unfavorable and dramatic change in the water cycle. There

is a necessity to supply clean and potable water for society to support adverse human

activities. It is clearly evident that in the 21st century, the world will face severe water

scarcity resources (Day, 1996). As reported in various wastewater reuse studies, more

than 80% of the water that is used is disposed of untreated, polluting rivers, lakes, and

oceans. Wastewater is water that has picked up various contaminants during its utiliza-

tion in domestic, commercial, and industrial applications. One of the major causes of

pollution of these water resources is the direct disposal of solid waste generated from

human anthropogenic activities. While other sources can be industrial effluent, pesti-

cides, and fertilizers. The primary source for nutrient pollution in groundwater bodies

is effluent from WWTPs (Jiang et al., 2019). Commonly present organic contents in

this wastewater will reduce the Dissolved Oxygen (DO) level in receiving water bodies

(Degs et al., 2000). In addition, some micro-pollutants in municipal wastewater can

pose a serious threat to the receiving water source (Parrott and Blunt, 2005). As the sci-

entific approach has diversified significantly, the comprehensive study of the character-

istics of wastewater to analyze its health and environmental consequences has become

more frequent.

The used water from municipalities and communities is collected and transported

to a WWTP, where it is treated before being disposed of at the water source, on land,

or reused. Generally, a WWTP consists of preliminary, primary, secondary, and tertiary

treatment stages, where wastewater is treated based on the required effluent standards

Figure. 1.1. Several conventional wastewater treatment techniques like chemical coag-
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ulation, adsorption, and biological treatment can be adopted to reduce the impact on the

receiving environment. Nevertheless, these techniques encounter several limitations,

especially uneconomical operation costs. Hence, it is necessary to develop an optimal

and effective technique for treating wastewater for safe disposal or reuse.

1.1 Biological Wastewater Treatment

Most of the treatment plants across the world adopt biological treatment techniques

for treating wastewater. The principal objective of any biological treatment plant is to:

achieve an acceptable end product by transforming dissolved and particulate biodegrad-

able constituents; develop floc or bio-film to capture suspended and non-settleable col-

loidal solids, eliminate or transmute nutrients, such as nitrogen and phosphorous (Stei-

los and Patrick, 2002). The key processes involve transforming dissolved and suspended

contaminants into stable biomass with the release of some gases like CO2,CH4,N2, and

SO2. This transformation is nothing but biological degradation that can be enhanced by

providing ozonation (Abbassi et al., 2000). Typically, the biological wastewater treat-

ment plant involves a complex ecosystem for microbial ecology studies (Holger et al.,

2006).

Even industrial wastewater can be biologically treated, provided it undergoes the

necessary pre-treatment since it contains toxic constituents for microorganisms. It is

always desirable to have a combined industrial and domestic wastewater treatment sys-

tem to fulfil economically feasible alternatives (Del Borghi et al., 2003). To remove

nutrients from wastewater streams, a combination of different conditions and diverse

microbial populations is always essential (Coma et al., 2012). The removal of nutrients

becomes vital if the treated water has to be used for gardening or irrational applications.

This is mainly because these nutrients, specifically nitrogen and phosphorous, are capa-

ble of stimulating the growth of aquatic plants. If the treated water has to be discharged

to sensitive water bodies, then the nitrogen removal system has to be incorporated into

the WWTP to prevent it from causing eutrophication (Shimura and Tabuchi, 1994; Rim

et al., 1997; Largus et al., 2004). Generally, biological processes adopted for treating

wastewater can be categorized into two main streams: suspended growth and attached

growth processes. In short, if the microorganism responsible for substrate degradation

is kept in liquid suspension, it is known as a suspended growth process; otherwise, in
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the attached growth process, the microorganisms are attached to inert packing material,

also known as a biofilm.

1.1.1 Suspended Growth Process

In the suspended growth process, the microorganism responsible for wastewater treat-

ment is kept in liquid suspension by undertaking appropriate mixing methods. During

this process, microorganisms convert the organic or other substances into a stable end

product (gases or cell tissues). Basically, it is a natural process where organisms break

down the substrate from wastewater and improve the water quality. The most predom-

inantly adopted suspended growth process adopts an aerobic approach. Convention-

ally, this process operates at positive dissolved oxygen concentrations. However, based

on substantial research, some of the advancements and modifications involved keep-

ing anaerobic (no oxygen present) stages for domestic and industrial treatment units.

Although the process demands extensive area for plant set-up, due to the treatment effi-

ciency and economical perspectives, the suspended growth process is widely accepted

over other advanced techniques.

The Activated Sludge Process (ASP) is the most widely used unit because of its

simplicity and smooth operation. But, its processes are very complex due to their bio-

chemical nature and the uncertainty of the incoming waste flow and composition. Al-

though a basic mechanistic model describing the activated sludge kinetics (Henze et al.,

1987) has become available, there are still many difficulties in modelling a particular

plant accurately. Perhaps, this process was investigated by Dr. Angus Smith in the early

1880s, it was first developed by Clark and Gage at the Lawrence Experiment Station in

Massachusetts in 1913 (Metcalf and Eddy, 2003). ASP unit consists of a reactor with

aeration and a settling unit, along with regular physical units for removing floating, sus-

pended inert materials (Figure. 1.1). Either mechanical or diffused aerators are used to

transfer oxygen into the influent stream, with an estimated contact time for microbial

suspension, generally referred to as mixed liquor-suspended solids (MLSS). The por-

tion of settled biomass is recycled back to the aerated reactor, and the rest is removed

periodically as there is excess biomass generation. The formation of floc particles that

can be removed using gravity settling is the key feature of ASP. A complete mix sta-

bilization, high rate method, oxidation ditch, contact stabilization, and conventional

aeration are a few advanced scientific approaches in ASP (Ashish et al., 2016).
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Figure 1.1 Scheme of conventional Activated Sludge Process in Wastewater Treatment
Plant
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1.2 Multivariable Process

Any process that has more than one input and/or more than one output variable is re-

ferred to as a Multivariable process. Most of the operations in process industries are

Multi Input Multi Output (MIMO) systems with input and output parameters having a

high level of interactions. Whereas, the Single Input Single Output (SISO) system has

one variable to yield one output. To reduce the complexity in implementation and easy

understandability, a multi-loop SISO system is considered for controlling interactions

in the MIMO system.

The three major terms associated with process systems are Manipulated variables,

disturbance, and control variables. For each controlled variable, there is an associated

manipulated variable. The control system must adjust the manipulated variables so

that the desired value or set point of the controlled variable is maintained despite any

disturbances Figure. 1.2.

Figure 1.2 Generic process description

If there exists an equal number of inputs to an equal number of outputs, then the sys-

tem is referred to as a square system, whereas different numbers of inputs and outputs

are referred to as a non-square system. A set point is provided for each variable that has

to be controlled. To govern these variables respective manipulated variables are chosen

according to the required output. Due to the high level of interaction, the analysis of the

MIMO system is an extremely complex and time-consuming process (Raviteja et al.,

2016). This means a change in one set point will cause a change in each of the process

variables, not only the output variable corresponding to that set point. Due to the exis-

tence of such cross-coupling among process variables, it imposes a challenging task to

design a controller for a MIMO system.
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1.3 Control system

A control system is a system that can provide a desired response by manipulating one

or more parameters. In 1767, the first control device was invented by James Watt’s

Flyball governor, which controlled the speed of the engine. Later it witnessed several

advancements in various fields of engineering. In recent years, the control system has

contributed to the advancement of modern technologies and civilization. These days,

plant alone does not fit the requirement of any industrial constraints. For precise and

fast working of any plant, the controller is a must in industries. According to the spe-

cific requirement of the industries, the controllers are introduced to meet the desired

specification.

A clear mathematical relationship between the input and output is the key feature

of any effective control system. Based on the number of inputs and outputs, the control

system is broadly classified into the SISO control system and MIMO control system.

The SISO system can be easily controlled and handled conveniently. Whereas, it re-

quires a more complex analysis to control the MIMO systems than that of the SISO

system. Controlling a multivariable system is a difficult and challenging task when

compared to the SISO system (Luan et al., 2015; Truong and Moonyong, 2010). A

very common problem associated with multivariable control systems is the interaction

among the control loops. An acceptable understanding of these interactions is very vital

since it causes the manipulated variable to affect more than the control variable. How-

ever, this challenge can be rectified by selecting the most important loop and tuning it so

as to give a good performance. Meanwhile detuning the other loops till the interaction

with an important loop is acceptable (V. Vijay et al., 2012).

Indeed, the objective of multivariable control includes, maintaining several con-

trolled variables at independent set points. It mainly depends on the goals of the entire

plant and the design of associated equipment. Adopting a multivariable control system

to the real-world system it ensures more richness and alternatives in controlling the pro-

cess. Multi-loop controllers are commonly used due to their simplicity, and robustness.

The fundamental basis of multivariable process control has an enormous database of lit-

erature on dynamic systems modeling, process identification, linear and multivariable

feedback control, and dynamic process optimization (W. Harmon, 1983). The inte-

grated control system has to be considered in a multivariable system study since it is
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not possible to analyze each manipulated-controlled variable connection individually

for determining its performance.

There are various types of controllers reviewed in the literature that can be used to

control multivariable systems. The controllers that are widely used are centralized con-

trollers, decentralized controllers, and decouplers. The decentralized control system is

largely favored over the centralized controller because there are only n controllers for

n output variables in the control system. In the case of a centralized controller for n

output variables there prevails n2 number of controllers. If there exist two inputs vari-

ables namely u1 and u2 and, two outputs variables namely y1 and y2, then the change

in input variable u1 directly influences output y1, meanwhile it also indirectly has an

impact on output y2, similarly change in input u2 directly has an impact on y2, but also

has an indirect influence on output y1. This condition prevails due to the interaction

between the process variables. If the interaction between the loops is moderate or less,

the decentralized control system works well however, they fail if there are more inter-

actions between the loops. Since the decentralized system involves interaction it can be

estimated by the RGA index and Niederlinski method by paring the manipulated and

control variables for a stable system. By virtue of its simplicity and the potential to

achieve failure tolerance, the decentralized controller has been adopted by most of the

process industries (Su et al., 2006).

Wastewater Treatment in urban areas is one of the major importance nowadays and

most civic authorities are forced to consider the issue seriously with urgency. Huge in-

vestment in money and time is allotted for new plant construction or improving/modifying

the existing WWTP to meet the ever-increasing demand of urban sprawl. During the

1920-1960s plant operators carried out manual adjustments and observations where sta-

tistical tools like histograms and charts were utilized to control the WWTP. Expensive

equipment, few control theories, and lack of expertise forced operators to use manual

control operations (Olsson, 2012). Even though computers were used to deduce the

first principle model in the late 1980s, because of its lack of reliability it struggles till

2000 were most of the WWTP adopted its own version of a digital control system.

The most common control operation followed in WWTP is to maintain the set point

using online sensor reading and feedback loop response. Based on the online measure-

ments required operations like blower speed, pumping quantity, and dosage level can

be monitored through SCADA system. For instance, this study uses an ASP system and
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majorly focuses on controlling Dissolved Oxygen (DO) concentration (70% of plant

maintenance expenses and purification) and substrate concentration (meet effluent dis-

charge standard) by manipulating aeration rate and recycle sludge flow rate. Because

of its complexity and interactions between principle variables, it put forwards a chal-

lenging task for modeling and controller design. The primary objective of controlling

any WWTP is to achieve reliable, efficient, and stable outcomes with the bare minimum

cost. The major challenges that a control engineer faces while controlling a WWTP are

(Katebi et al., 1998).

• To abide by strict effluent discharge standards

• Expensive and unavailability of the online parameter (BOD, COD, Biomass, Sub-

strate, TKN, etc.) measuring instruments

• Highly nonlinear system

• Need of expertise on biological and biochemical processes

• Stochastic nature of state variables

Different methods approached from the literature include conventional PI/PID type

controller, advanced strategies like optimal, adaptive, linearizing, robust, etc. (Luca

et al., 2014; Brdys and Zhang, 2001) or based on artificial intelligence techniques like

fuzzy, neuronal network, etc., (Ding et al., 2023; Abdul et al., 2022; Hai et al., 2021).

The proposed algorithms in this report will provide more reliable, feasible, and stable

feedback over the control system for respective WWTP.

1.4 Scope

The importance of freshwater supply and safely treated wastewater return cannot be

overemphasized. No matter how hard we try, we are still a long way from the most

efficient, economical, and reliable ways to ensure our cities are properly equipped and

ready for the challenge. Accordingly, wastewater demand is growing every day with

an increase in population, the standard of living, and industrial activities. In order to

manage the water resource and safeguard nature without letting polluted or used wa-

ter (wastewater) enter water bodies, it demands the treatment of wastewater. Thereby,

8



wastewater treatment plants have to be designed by considering various design param-

eters and standards. As wastewater standards move towards stringent effluent limits,

there is a greater demand for utilities to better manage their existing assets. Thus, it

demands proactive planning and project management to achieve the required and antic-

ipated levels of treatment while saving costs.

One tool that has been successfully implemented to achieve such goals is wastewa-

ter process modeling and control. Wastewater process models have been adopted suc-

cessfully in planning and project development for various applications. By considering

process models, it can benefit plants by avoiding pitfalls, more accurately estimating

potential chemical and energy savings, and evaluating threats and benefits, impacts,

and feasibility. Similarly, the purpose of any WWTP control is primarily to meet ef-

fluent discharge standards and, secondarily, to keep maintenance and operational costs

as low as possible. The best controller design depends on and differs from plant to

plant, but the principle and goal remain the same throughout. Hence, this study aims

at identifying the activated sludge model that assists the prime objective of designing a

controller.

1.5 Research gaps

1. Identification of the Activated Sludge Process Model

2. Investigation of a real-time control study targeting the aeration factor for the con-

ventional biological suspended growth process

3. Controller tuning techniques

4. Implement the data-driven approach to design a controller

1.6 Motivation

Often due to limited resources small-scale WWTPs face various challenges to accom-

plish their designed functions. Generally, two main reasons are, (a) Insufficient treat-

ment capacity, and (b) the requirement of superior treatment by upgrading the existing

practice. Modeling of WWTP can be a valuable tool to overcome these issues and come

up with an upgraded system without much cost and complexity. Even though there is
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a limitation of inadequate monitoring systems in small-scale treatment plants, this ap-

proach may be simple and logical for designing a control system. Model identification

is an essential tool for simulating a system’s behavior, that assists in the control and

optimization study of any system. In general, models derived from first principles de-

mand in-depth knowledge as well as involve significant time and effort. Moreover, such

a model will consist of correlations for process parameters that may have consequential

inaccuracies. Some of these parameters may also have to be recalibrated using plant

data to keep adapting to changing plant states.

The prime objective of the process controller is to improve the stability, robustness,

and performance of any system. Especially, this is important for any biological process

since the risk of adapting to sudden change is extremely slow. There have been very

minimal open-source reported studies on controlling the activated sludge process using

decentralized, decoupler, and centralized approaches. There is a need to design an

effortless technique to design a controller with the best performance with the minimal

investment. Hence, this study focused on designing a controller for a MIMO system

through various techniques and comprehensively compared their performance for better

understanding.

As an alternative, models can also be completely derived from data. With significant

advances in the techniques of model building and improvements in sensor technology

that allow large volumes of data to be collected at high sampling rates, this approach

is becoming increasingly attractive for industrial applications. In process control, such

data-driven models have been used for the last four decades. These types of models are

formulated and developed from historical data that reveal useful information about the

system’s dynamics. One of the major objectives of this research is to assess whether

data-driven models can be used to control and optimize process performance and mon-

itor it effectively.

1.6.1 Research Objectives

1. To identify a simplified model of an Activated Sludge Process for controller de-

sign.

2. To design a decentralized controller for a multivariable Activated Sludge Process.

3. To design a centralized controller for a multivariable Activated Sludge Process.
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4. To develop/design a data-driven multivariable controller for an Activated Sludge

Process.

5. To study the set point tracking and disturbance rejection of the designed con-

trollers.

6. To study the robustness and uncertainty of the designed controllers for an Acti-

vated Sludge Process.

1.7 Outline of the Study

Figure 1.3 Flowchart for research outline

To accomplish the formulated research objectives, the project outline has been designed

as presented in flowchart format below (Figure. 1.3). A model identification can be ac-

complished by undertaking a theoretical approach or/an experimental approach. Gener-

ally, the first principle is used to formulate the model equations, that considers conser-

vation laws i.e., Mass and Component balance. Whereas measured data from existing

WWTP or from pilot-scaled WWTP are utilized for the experimental approach. In this
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study, the methodology is broadly classified into two sections namely model identifi-

cation and simulation studies for controller design. Two approaches namely system

identification and process reaction curve method were adopted to identify the simplest

form of activated sludge process model. Subsequently, the same is utilized to design a

decentralized, decoupler, and centralized controller to govern DO or biomass and sub-

strate concentration by manipulating the aeration rate and recycle sludge flow rate. To

overcome the limitation of First Principle Modeling (FPM) a data-driven approach was

also adopted for designing a centralized controller and the performance of the same is

compared with the reported methods.

1.8 THESIS ORGANIZATION

The thesis is organized according to the following chapters,

Chapter 1: Introduction − The background, environmental issues related to wa-

ter scarcity and management, insight on wastewater treatment and technologies, initial

brief on the control system, and necessity of this study are discussed in this chapter.

Chapter 2: Review of literature − This chapter is subdivided into 4 sections to

review the works of literature. Section one briefs about WWTP layout and various

studies related to it, section two addresses modelling studies related to the ASP system,

and section three and four summarizes studies related to the control of WWTP and data-

driven control of several processes. The research gaps are highlighted followed by the

scope and objectives of the current research work.

Chapter 3: System description and preliminaries − This chapter explains the ASP

system in detail with the model equation and model parameters, control system prereq-

uisites that were considered for all the studies.

Chapter 4: Decentralized controller design for an ASP − Methodology of decen-

tralized controller design and outcome of the study.

Chapter 5: Centralized controller design for an ASP − Describes the procedure of

centralized controller design, comparison of two methods, and outcome of the study.

Chapter 6: Centralized controller design for an ASP using a data-driven approach

− Explains the data-driven approach for designing a centralized controller, a novel op-

timization technique for obtaining controller tuning parameters with results comparison

with the reported method.

12



Chapter 7: Summary and Conclusions − This chapter consists of findings and a

summary of all the above studies, scope, and future perspectives of the research work.

The final section includes references to all the referred reported works (Textbooks,

Journal articles, and Conference articles.)
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Chapter 2

REVIEW OF LITERATURE

This chapter summarises the previous research outcomes that have been referred to

formulate the current research objective. Below pictorial representation provides a brief

idea about four key topics (WWTP layout, WWTP Modeling, WWTP Control studies,

and WWTP Data-driven approach) that were focused on in this survey.

Segments of literature survey
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2.1 Literature survey on Wastewater Treatment Plant Layout

Selecting the wastewater treatment plant layout is the key task which is majorly deter-

mined by aspects like the level of treatment required, economy (initial and maintenance

cost), and availability of resources for existing influent wastewater. Various treatment

units (Aerobic, Anoxic, and Anaerobic) have their own advantage over the nutrient re-

moval process (O’Brien et al., 2005). To achieve biological nitrogen removal, both the

aerobic stage and anoxic stage are must (Norbert and H. Johannes, 1996). Wherein,

biological nitrification occurs in the aerobic unit, followed by biological denitrification

in the anoxic unit (Foscoliano et al., 2016; Shen et al., 2008). Some substrate elimina-

tion studies have been reported where an anoxic chamber has been placed ahead of an

aerobic chamber (Francisco et al., 2011; Jun et al., 2014). investigated This will lead to

NH4 −N oxidation and NO3 −N and NO2 −N reduction to nitrogen gas (Steilos and

Patrick, 2002). Better nitrogen removal was observed when an internal recycling stream

was added for WWTP layout (Michela et al., 2013). However, treatment streams can

also be equipped with a mixing pocket at the beginning of the primary treatment units

(O’Brien et al., 2011; Cristea and Agachi, 2006). Most of the streams consider internal

re-circulation from aeration units (Francisco and Vega, 2007), exceptionally few stud-

ies adopted it from anoxic chamber (Brdys et al., 2008). Conversely for phosphorous

removal, the treatment plant should position the aerobic unit at the beginning, where

the growth of a microorganism is supported, followed by an anoxic unit where denitri-

fication occurs at the cost of the microorganism’s decay (Vega et al., 2014). The next

unit should be anaerobic, which will assist the phosphorous removal process. Table 2.1

provides us with an insight into various combinations of operating units adopted in the

ASP system based upon the study objectives.

Hence, after understanding the above discussions the effluent from primary treat-

ment stages is considered to be treated biologically where organic matter is decom-

posed by aerobic bacteria with the supply of oxygen. A single-stage unit consisting

of an aeration chamber (biological reactor) and a sedimentation chamber is considered

for the current study. Based on the objectives of the study a few assumptions in pro-

cess conditions were recommended. The subsequent stage is the secondary settling unit

from which, some portion of sludge is returned back to the reactor and the remaining is

drawn out for further applications.

16



17 

 

 

 

 Table 2.1: Literature review on WWTP Layout 

Sl. 
No. 

Plant Layout Remarks - Work done Reference 

1. 

 

- Plant for the 

removal of COD and 

N from domestic 

effluents. 

- MPC Controller, 

Sampling rate of 0.16 

hours. 

- The DO 

Concentrations in 

anoxic zone 

assumed 0. 

- Linear state-space 

model was obtained 

Oscar A et 
al., (2002) 

2. 

 

- ASM1 model. 

- Air flow control on 

the final tank for 

dissolved oxygen, and 

optional plant flow 

control on the second 

tank for nitrate. 

- Considers 

treatment plant 

dynamics, that is the 

influent into the 

plant  

- No sewer 

dynamics. 

M. O’ Brien 
et al., (2005) 

3. 

 

- The Benchmark 

European program 

COST-624. 

- Substrate, oxygen 

and nitrogen control. 

- Simplified plant for 

integrated design 

- Basis lies in 

maintaining a 

(biomass). 

- A Sequential 

quadratic 

programming (SQP) 

method to obtain 

plant parameters 

Mario 
Francisco et 

al., (2007) 

4. 

 

- Combines 

nitrification with pre-

denitrification. 

- 5: bioreactor & a 

secondary settler. 

- Effluent composition 

will be sensitive to 

applied control 

Strategy (sludge load) 

The efficiency of 

treatment 

influenced by an 

overload in a local 

community due to 

varying WW 

sources, chemical 

composition, and 

flowrate.  

Wenhao 
Shen et al., 

(2008) 

5. 

 

- P removal, iron 

sulphate (PIX) is 

added to aerobic zone 

to precipitate 

- Sewer network tank 

retention is imbedded 

into the equalisation 

tank retention. 

- Complex Layout 

for Controlling and 

Modelling. 

- Hard constraint on 

the maximum flow 

rate in order to 

prevent wash out of 

the biological 

sludge. 

M.A. Brdys 
et. al., 
(2008) 
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Sl. 
No. 

Plant Layout Remarks - Work done Reference 

6. 

 

- Carbonaceous 

removal, as the 

Nitrifying Trickling 

Filter ensures 

ammonia at the Final 

Effluent. 

- Provided aeration 

control by regulating 

the DO levels. 

- The changes in 

influent load affect 

the aeration 

process under 

closed loop 

control. 

M. O’Brien et 
al., (2011) 

7. 

 

- ASP for substrate 

Elimination. 

- Satisfy the need of 

readily degradable 

organic matter form 

the denitrification 

process the anoxic 

reactor. 

- Assuming 

perfectly mixed 

tanks. 

- Dynamic 

simulations are not 

performed. 

 

M. Francisco 
et. al., (2011) 

8. 

 

- ASP for nitrogen 

removal. 

- Models considered 

are too simple to 

simulate. 

- Improved the design 

procedure by using 

dynamical models. 

- Integrated design 

for optimal and 

control system 

with MPC. 

M. Francisco 
et. al., (2011) 

9. 

 

- Improving N 

removal while 

reducing the 

operational costs. 

- 85% is domestic and 

15% industrial WW. 

- Biogas from sludge 

is used for electricity 

and heat production. 

- Effluent nitrate 

removal in post-

denitrification unit 

by dosing 

methanol. 

- Total N removal 

of approximately 

90%. 

Michela 
Mulas et al., 

(2013) 

10. 

 
- Simplified model 

structure. 

- Compared with 

exogenous input 

(ARX) model. 

-  An Activated 

sludge system for 

carbon removal 

(aerobic process). 

Gaya et al., 
(2013) 
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Sl. 
No. 

Plant Layout Remarks - Work done Reference 

11. 

 

- MPC to optimize the 

aeration by external 

carbon source 

addition under the 

disturbance of 

influent flow rate and 

nitrogen load. 

- Two step 

nitrification was 

modelled by the 

growth of AOB and 

NOB. 

- The results 

suggested that 

optimal external 

carbon source and 

aeration can be 

achieved in 

biological nitrogen 

removal by MPC 

Method. 

 

Jun Wu et. 
al., (2014) 

12. 

 

- Real Time 

Optimization (RTO) 

- 3 multi-linear 

structures are 

compared. 

- Eliminate nutrients 

and organic matter. 

- Oxygen 

requirement. 

- Specific aerator 

consumption. 

P. Vega et 
al., (2014) 

13. 

 

-Homogeneous 

concentration of 

solids and substrates 

in the basin. 

- System is stable and 

is less affected by 

disturbances. 

- Successful as long 

as the dilution rate 

can be maintained 

at constant level. 

 

Mircea V et. 
al., (2014) 

 

14. 

 

- Fully aerobic 

without anoxic or 

anaerobic. 

- Optimizing the 

aeration reduces 

energy by more than 

60%. 

- 48 Diffusers used. 

- Focus on 

reduction of the 

energy 

consumption due 

to the aeration 

process. 

Mustafa 
Cagdas  

Ozturk et 
al., (2016) 

15. 

 

- A PI controller 

regulates aeration. 

- controlled by the 

internal recirculation 

flow rate. 

- Nitrification & 

denitrification. 

- Some of the 

configurations 

used violated the 

effluent limits. 

Chiara 
Foscoliano 

et al., (2016) 



2.2 Literature survey on Wastewater Treatment Plant Modelling

In the era of globalization, wastewater management is important to protect our environ-

ment from deteriorating. A major investment is required in order to set up a wastewater

treatment plant due to high capital cost, operation, and maintenance costs (Shohreh and

Thami, 2013). Generally, models are used for analyzing the design (Bayramoglu et al.,

2000), treatment ability, and efficiency (Park et al., 2014). Currently, various models

have been used in control and optimization (energy consumption) studies (Charpentier

and Martin, 1996; Zahir et al., 2012; Mario and Predrag, 2012). Prediction on quality

of effluent discharge (COD and Nutrient removal) provides us with the opportunity to

measure the effectiveness of treatment processes carried out at the plant (Lukasse et al.,

1996; Marta et al., 2016).

A wastewater treatment plant modeling is a mathematical simplification of a real

existing system. It is a real challenge due to its complexity, non-linear processes be-

haviour, and uncertain influent parameters (Sergiu and Maruan, 2007). The wastewater

treatment modeling started with the development of a steady state model that includes

the hydraulic model. The first dynamic model of an activated sludge system was devel-

oped (Goodman and Englande, 1974) to gauge the performance of the system. Wastew-

ater treatment plant modeling is constructed in a simple manner and yet produced the

true process behaviour. The most widely applied computer simulation of the activated

sludge process is the Activated Sludge Model 1 (ASM1) (Ioana and Ioan, 2016; Ilse

et al., 2003; Nejjari and Quevedo, 2004; C. Gomez et al., 2000) created by a group of

the International Association of Water Quality. The ASM 1 was further developed in

1995 by introducing nitrogen and phosphorus removal to establish ASM 2 (Damir et al.,

2000). Linear time-invariant state-space model, developed can predict the ammonium

and nitrate concentration (Lindberg, 1998; Julien et al., 1998). The commonly used

networks in the modeling and prediction of the wastewater treatment process are the

Feed-Forward Neural Network (Hong and Thomas, 1996), Artificial Neural Network

(Hakan et al., 2008), Fuzzy Logic (Turmel et al., 1997). To conclude, the modeling

approach could increase the affordability of wastewater management systems.

After referring to various reported mathematical models a model with four nonlin-

ear equations was deduced from the traditional widely accepted activate sludge model

(ASM1). The equations included Biomass concentration, substrate concentration, Dis-
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solved oxygen concentration, and Recycle sludge concentration with supporting growth

rate equation (refer to Chapter - 3). A few assumptions were made in order to approxi-

mate the model to overcome some of the uncertainty.

Since ASP is a MIMO process, extensive mathematical knowledge is a must in or-

der to adopt it for the control study. Hence, to overcome this limitation in this study two

model identification approach is considered namely system identification (SysId) and

Process Reaction Curve (PRC) method. Both approaches use the input-output data gen-

erated from the considered model equations. A review of various modeling approaches

and their application is tabulated in Table 2.2. Most of the studies adopted the traditional

ASM1 model or a simplified model derived from it. And based on the application and

purpose, researchers have modified it accordingly. The review also provides insight into

process types and state variables that were considered for respective studies.
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Table 2.2: Literature review on WWTP Modeling 

Sl. 
No. 

Description – Work done Remarks Reference 

1. 

- Grey box modelling for non-linear time 
varying DO dynamics  
- Modelling DO concentration in aerator. 
- Way to excitate r(act) is by manipulating 
substrate concentration in aerator unit. 
- Pilot plant  - very minute sampling 

- Long range prediction – Model 
based predictive control (MBPC). 
- Novelty: Availability of direct 
measurement of non-DO limited 
oxygen uptake rate/actual 
respiration rate – RA 1000. 

Lukasse et 
al., (1996) 

2. 

- A parallel hybrid model of oxidation ditch 
to remove organic matter and nitrogen. 
- Default values by lab experiments. 
- On-line measurements in wastewater 
plants is still very limited. 

- Hybrid model integrating a 
simplified first Principle model 
(FPM) and a neural network is 
preferable. 
- Artificial neural networks. 

Hong Zhao 
et al., (1996) 

3. 

- Alternative method for calculating the 
electricity cost per kilogram of BOD5 from 
the quality objective fixed for NH4+.N or 
TKN in the effluent. 

- Satisfactory method for oxygen 
requirement specific aerator 
electricity consumed for low-load 
ASP. 

J. 
Charpentier 
et al., (1996) 

4. 

- A linear multivariable time-invariant state-
space model used to predict the ammonium 
and nitrate concentration  
- A multivariable linear quadratic (LQ) 
controller designed to control ammonium & 
nitrate concentration. 

- Identification is based on a black-
box model (IAWQ model) 
- Model can predict the ammonium 
& nitrate concentration. 

Carl-Fredrik 
Lindberg  et 

al., (1998) 

5. 

- Structural identifiability and practical 
identification of a reduced order model for 
an ASP by using on-line measurements of 
oxygen and nitrate concentrations. 
- On-line measurements oxygen and nitrate 
concentrations, Off-line ammonia 
concentration. 

- Good fit between the simulated 
solution and the actual behavior of a 
lab scale pilot plant. 
- Parameter identification problem 
has been solved 
- General I.A.W.Q. model no.1. 

S. Julien  et. 
al., (1998) 

6. 

- An integrated model for aerobic and 
denitrifying biological P removal (Delft bio-
P model) was combined with retained 
equations for COD and N conversion of the 
ASM No 2. (COD, N, P modeling.) 
- Simulations were performed in SIMBA3.2 

- Batch tests for model evaluation, 
- Sensitive towards change in kBOD 
- The combined ASM No. 2 and 
Delft BPR model for COD, N and P 
removal proved well capable of 
describing the performance 

Damir 
Brdjanovic 

et. al., (1999) 

7.  

- Proposed reduced nonlinear model of an 
ASP. 
- IAWQ activated sludge model. 
- Identification of model parameters is 
accomplished by using measurements of 
ammonia, nitrate and oxygen coming from 
experimental studies carried out on the pilot 
plant process. 

- A mathematical representation of 
the main system dynamics during 
aerobic and anoxic phases for on-
line estimation and control 
purposes. 
- Final model is a good 
representation of nitrogen dynamics. 

C. Gomez-
Quinter et 
al., (2000) 

8.  

- Model parameters were found by means of 
nonlinear regression analysis,  
- A model for relevant factors was 
established for the oxygen transfer rate. 

- Model for oxygen transfer rate in 
diffused air systems. 
- Preliminary design of diffused air 
aeration tanks 
- Used plant data. - 

M. 
Bayramoglu 
et al., (2000) 
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9. 

-  Reduced nonlinear model of an activated 
sludge process. 
- Four state equations and eleven 
parameters. 
- Derived from IAWQ N° 1 model 
-  Nitrogen dynamics 

- Simple model 
- Model identified by measuring g 
measurements of ammonia, nitrate 
and oxygen coming the pilot plant 
process. 
 -  On-line robust estimation and 
control  

Gomezquintero 
et al., (2000) 

10. 

- Activated Sludge Model no. 3 (ASM 3) 
-  Nitrogen removal and biological 
phosphorus removal 
- Degradable COD measured by 
respiration simulation runs 

- ASM 3 and the EAWAG BioP 
Module. 
- Three real-time WWTP 
comparison. 

Wichern et al., 
(2001) 

11. 

- Biotransformation processes in a common 
activated sludge process with N-removal. 
- Model reduction procedure: 1: data 
generation, 2: linear state space model 
approximation., 3: identification, 4: model 
interpolation 

- A strategy is proposed to reduce 
the complexity of the activated 
sludge model no. 1 (ASM1)  
- Model combines high predictive 
value with very low computation 
time 

Ilse Y. Smets et 
al., (2003) 

12. 

- Mass Balance equations [IAWQ AS Model 
No.1] 
- A complex nonlinear model is used in the 
design of a software sensor and a 
predictive control techniques. 

- Estimate and control of biological 
nitrogen and carbon removal 
process.  
- Modeling, estimation and control 
of a nutrient removal plant 

Fatiha Nejjari 
et al., (2004) 

13. 

- Linear model of an alternating-phase 
activated sludge process. 
- Two phase : aerobic and anoxic. 
- Validation thorugh experimental and 
simulated data. 
- Derivated from the ASM No. 1. 

- Simple to manipulate hence less 
computational effort. 
- Online estimation and control 
purposes. 
- GPSX simulations. 

Claudia et al., 
(2004) 

14. 

- Linear multi-model 
- Three steps followed data generation, 
local model linearization and model 
interpolation. 
- Benchmark configuration, proposed by 
the COST 682. 
- Extremal weights avoided while model 
identification. 

- Simple model for the 
biodegradation processes. 
- Standard carbon and nitrogen 
removing. 
- One anoxic and one aerated tank 
one point settler. 
- High predictive power with low 
complexity 

Smets et al., 
(2004) 

15. 

- Substrate/biomass reduced-order model 
- Numerical model calibration structural 
identifiability and with experimental 
information. 
- Hydraulic mass balance and settler 
mass Balance 

- Modelling, estimation and control 
Techniques. 
- Implementation of reliable control 
laws. 
- PID regulator and linear-
quadratic-integral control. 

Stefano (2005) 

16. 

- Dynamic behaviour of simultaneous 
carbon removal and nitrification process. 
- Carrousel type aerator. 
- Wastewater characterization. 
- Respirometric technique. 

- Activated sludge model 1 (ASM1). 
-  GPS-X simulation software. 
- Erzincan City Wastewater 
Treatment Plant. 

Alper et al., 
(2005) 
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17. 

- Model was applied for 2 cases, one a 
hypothetical WWTP, second ANN modeling 
of ASP in the Iskenderun WWTP. 
- TSSeff was selected model  
- Prediction of CODeff 

- A MATLAB script was developed 
(ANN) - High correlation coefficient 
(R) between the observed and 
predicted output variables. 

Hakan 
Moral et al., 

(2008) 

18. 

- Activated Sludge process: biological 
reactor model without recycle. 
- Continuation methods to determine the 
steady-state behaviour 

- Activated sludge model number 1. 
- Model includes eight processes. 
- 13 differential equations. 
- Fully understand the dynamics of 
the system. 

Nelson et al., 
(2009) 

19. 

- Proposed based on BSM1. 
- Aerobic/Oxic process. 
- ASM1 model for reaction mechanism. 
- Eight biochemical reaction processes. 
- Considers only carbon oxidation process 
and  removal of carbon. 

- Purpose to inspect N and P 
removal. 
- Proposed model includes 13 
components, 5 stoichiometric 
parameters and 14 kinetic 
parameters. 

Yao et al., 
(2010) 

20. 

- Model to predict the COD. 
- Only considers the carbon oxidation 
process, without regard to nitrification 
process and denitrification process. 
- Simplified for three reactions . 

- Benchmark Simulation Model no.1 
(BSM1). 
- Simplifies Activated Sludge Model 
No. 1 (ASM1). 
- Reduces the model components, 
parameters and computational 
effort. 

Yao et al., 
(2010) 

21. 

- Mathematical modelling using three sub 
models (for oxygen electrode, ideally mixed 
stirred tank bioreactor and plug flow 
reactor) 
- Electrode measuring dissolved oxygen. 

- Polarographic oxygen electrodes. 
- Reduction of electrical power. 
- Optimisation of aeration process. 
- Detect the consequences. 
- Reduction of daily working time 

Novak et al., 
(2012) 

22. 

- Model for the secondary settler. 
- Measurements of settling velocities 
determined using zone settling tests. 
- The movement of the sludge blanket in the 
secondary settler using the solid flux theory 
and the velocity settling. 

- To design a model that predicts the 
outlet water quality from secondary 
clarifier.  
- Model will allow better process 
control. 

Zahir Bakiri 
et al., (2012) 

23. 

- Seven models : ASM1; ASM2d; ASM3; 
ASM3 + BioP; ASM2d + TUD; Barker & Dold 
model; and UCTPHO+. 
- Mine processes. 
- Various process conditions. 

- New schematic representation. 
- Gujer matrix notation. 
- Model are compared so that it can 
be choosed upon requirements. 

Hauduc et 
al., (2013) 

24. 

- Two nonlinear ordinary differential 
equations. 
-  Two hyperbolic partial differential 
equations. 
- Two material components; the soluble 
substrate and the particulate sludge. 

- Simplified plant layout. 
- Controlling effluent dissolved 
nutrients concentration and the 
concentration profile in the 
sedimentation tank. 

Stefan et al., 
(2013) 
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25. 

- Varying activated-sludge return rate to 
observe changes in effluent water quality 
and treatment efficiency. 
- Sizes of aeration tank calculated for 
different activated-sludge return rates. 
- System Dynamics modeling software, 
STELLA. 

- System dynamics methodology is 
an effective simulation tool to 
model the dynamic nature. 
- Operating rules and policies 
related to capacity expansion. 
- Return rate of 90% marked the 
highest treatment efficiency. 

S. Park et al., 
(2014) 

26. 

- Use wastewater treatment plant, by 
means of sensitivity analyse. 
- Model calibration and parameter 
estimation prioritization. 
- Simplified ASP single tank reactor model 
- Four differential equations through 
material balance. 

- Monte Carlo simulation outputs 
to priorities the uncertainties 
on Benchmark Simulation Model 
(BSM1). 
- Sensitivity analysis using 
ANOVA decomposition and RS-
HDMR. 

Cristescu et al., 
(2015) 

27. 

- Propose step by step procedure for 
modelling ASP for paper mill industry. 
- Validated on a pilot scale plant. 
- Better accuracy of the proposed model. 
- Application specific more efficient than 
theoretical. 

- Proposed BOD based model is 
compare with CO based ASM1 
model. 
- Three state variables. 
- Two reactions aerobic growth of 
bio-mass and the biomass decay. 

Cadet et al., 
(2016)  

28. 

- Subspace Identification of Dynamical 
Systems. 
- Stable and Unstable Systems. 
- Idification methods: process reaction 
curve method and optimization methods. 
- Experimental evaluations. 

- Equating coefficients method, 
pole placement method, synthesis 
method and stability analysis 
method; controller design methods. 
- Subspace identification methods 
such as N4SID, MOESP, CVA and 
DSR methods, modified MON4SID. 

Chidhambaram 
et al., (2017) 

29. 

- Modelling activate sludge aeration 
reactor 
- Developed model is fitted with plant data 
- Operation parameters: Inlet biomass and 
substrate 
- Varying substrate concentration yielded 
optimized process conditions 

- Predict and optimize the system 
behaviour. 
- Focus on removing organic 
pollutants. 
- Inlet and outlet concentration 
dependency was analysed. 

Ashraf et al., 
(2019) 

30. 

- Activated Sludge Model No 1. 
- INtegrated Simulation Environment 
Language (INSEL). 
- Explicit Euler method. 
- Ludzack-Ettinger layout configuration. 

- Develop a reliable and accurate 
model. 
- Denitrification-nitrification. 
-  Aeration Energy Demand 
Evaluation. 

Calise et al., 
(2020) 

31. 

- A novel five-tank integrated activated 
sludge process (FTIASP) model. 
- Multi-objective optimization method. 
- Seven kinetic parameters calibrated using 
iterative calculation procedure. 

- ASM2d. 
- Experimental validation. 
- Six different batch tests, 
sensitivity analysis and genetic 
algorithm. 

Chen et al., 
(2020) 

32. 

- Dynamic simulation of Activated sludge 
unit. 
- Seven configurations. 
- CSTR, PFR, SBR. 
- Taguchi method and Minitab software. 

- Activated sludge model No.3 
(ASM3) and Wolfram Mathematica. 
- Biochemical reactions in clarifier 
is ignored. 
- Optimized maximum removal 
efficiency. 

Amirfakhri, 
(2023) 

 



2.3 Literature survey on Wastewater Treatment Plant Control

Wastewater treatment plants (WWTPs) are mainly affected by large disturbances and

uncertainties related to the influent wastewater composition. The plants naturally aim

to remove suspended substances, organic material, and nutrients from the water before

releasing it to the recipient. Manual operation is the traditional method for wastewater

process control. These manual adjustments of control elements are made to maintain

parameters within desirable ranges, such as dissolved oxygen. The best technology

available to control the discharge of pollutants is proven in biological processes. As re-

search advanced online instruments began to be used as a replacement for conventional

measurement technology. This enabled better control but there was still a lag between

the time of measurement and the adjustment of control elements. The higher level of

the controller is the automatic controller, which used online measurements. Based on

the changes in wastewater characteristics it causes disturbance to the process, which

intern causes feedback response (Nejjari et al., 1999). The typical example of such a

controller is blower control for cyclic activated sludge based on online measurements

of DO (Burns and Fielden, 1989).

Figure 2.1 Schematic representation of Closed loop feed-back process control system

Major difficulties in controlling the microbial processes lie in the lack of cheap and

reliable sensors for online measurement of the key state variables (Nejjari et al., 1999;

Nejjari et al., 1997). Nevertheless, online measurement does not give any savings, but it

provides ample data with new formations (Marinus and Time, 1995). With the optimal

26



N removal objective: a Receding Horizon Optimal Control (RHOC) strategy was used

to measure NH4 and NO3 enabling feedback control of alteration between anoxic and

aerobic phases (Lukasse et al., 1998). Meanwhile, feed-forward control strategies have

also resulted in optimal performance level (A.Stare et al., 2007). Some of the com-

mon types of controllers available are P, P-I, I-P, P-D, P-I-D and advanced controllers

like Fuzzy network controllers, Genetic Algorithm based Neural network (Chang et al.,

2001) and Artificial Neural Network controllers (Manesis et al., 1998; Santin et al.,

2019). Here, the P controller is mostly used in first-order processes with single energy

storage to stabilize the unstable process. At the same time, the P controller cannot man-

age state error and cause oscillations if sufficiently aggressive in the presence of lag/ or

dead time. Whereas PI controller is mainly used to eliminate steady-state errors result-

ing from P controller (Lee et al., 1998). In the case of I-P controller, the proportional

part of the controller is fed with the feedback variable and not with the error (Alexan-

dros et al., 2015). PID controller has the optimum control dynamics including zero

steady-state error, fast response (short rise time), no oscillations, and higher stability

(Turmel et al., 1997). One of the main advantages of the PID controller is that it can

be used with higher-order processes including more than single energy storage. Model

Predictive Control (MPC) is one such controller where it uses the model of a system to

predict its behavior of it (Holenda et al., 2008). It can handle multi-input multi-output

systems that may have interactions between their inputs and outputs.

There have been many advanced controllers reported in the literature. However, in

order to effortlessly work in a real-world WWTP, a simple and effective controller is

a prerequisite. Hence, three control structures, namely, decentralized, decoupled, and

centralized are selected to control the MIMO system. To the best of the author’s knowl-

edge, there have been limited studies reported in open source where the researchers have

used these structures for controlling WWTP. The merits and demerits of the designed

control structures are discussed in the upcoming chapters. Taking into consideration

of WWTP’s initial and operational cost, a simple and effective PI controller is adopted

to control the process variables. Various types of controllers with their advantages and

disadvantage according to their application are discussed in Table 2.3.
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Table 2.3: Literature review on WWTP Control 
Sl. 
No. 

Description – Work done Remarks Reference 

1. 

- Quantify the practical and financial benefits 
from control system. 
- Automatically Blower to maintain DO. 
- Supervisory, Control and Data Acquisition 
(SCADA) system. 
- Electromagnetic flow meters, liquid level 
detectors, DO & suspended solids 
instruments. 

- Assessments of several main control 
functions showed benefits which include 
cost savings, better operation and early 
warning of equipment failure. 
- Monitoring of effluent quality requires 
further investigations. 
- Sludge wastage control. 

J. M. 
Burns et 

al., (1989) 

2. 

- Four different multivariable control tuning 
methods 
- PI Controller. 
- State space model. 
- New frequency domain performance and 
robustness criteria. 

- Methods proposed by Davison (1976), 
extension proposed by Penttinen and 
Hoivo (1980), modified method 
presented by Maciejowski (1989) and 
developed method (Lieslehto, 1990). 

J. T. 
Tanttu et 
al., (1991) 

3. 

- Decentralized PI controller. 
- MIMO stable system. 
- Robustness analysis. 
- Comparison of multivariable feedback 
designs. 

- Disturbance rejection. 
- Linear Quadratic Gaussian control 
problem. 
- Synthesis method. 
- H-Infinity control theory. 

Perkins 
(1991) 

4. 

- STAR concept for advanced real time 
control. 
- Permanent measurement of ammonia, 
nitrate and phosphate in one of the aeration 
tanks. 
- N removal study. 

- Control strategies are efficient, robust 
for practical implementation. Reduction 
in energy consumption and chemical 
consumption. 
- STAR gives full benefit for the cost of 
measuring systems and maintenance.  

Marinus 
K et al., 
(1995) 

5. 

- Fuzzy & artificial neural network  
controllers. 
- Manipulated variables: oxygen supply, 
mixed liquid returns rate from the aerated 
zone to the anoxic zone, sludge returns rate  
- Controlled variables: ammonia, Nitrate, 
DO, temperature, MLSS, BOD. 

- The results of this study proved very 
favourable and the potential of 
intelligent control of wastewater 
treatment plants appears unlimited. 
- Simple, reliable and inexpensive 
intelligent controller. 

S. A. 
Manesis 

et al., 
(1997) 

 

6. 

- Decentralized controller. 
- MIMO stable system. 
- FORTRAN program used to simulate the 
dynamics. 

- Controlling liquid level. 
- Manipulating flowrate of liquid 
pumped. 
- PI controller is designed with two 
different process conditions. 

Michael 
L. Luyben 

et al., 
(1997) 

7. 

- Designed a nonlinear adaptive feedback-
linearizing control. 
- Nonlinear controller combined with an 
estimation algorithm for the on-line 
estimation of biological states and uncertain 
parameters of the process. 

- Specific growth rate and some of the 
state variables in interest are not 
measured on-line, so they are replaced in 
the control algorithm by on-line 
estimates provided by a joint observer 
estimator (JOE). 

F. Nejjari 
et al., 
(1997) 

8. 

- The aim for control systems is to reduce the 
energy needs and/or increase the effluent 
quality. 
 

- Three control manually tuned PID, auto 
tuned PID and a fuzzy logic controller. 
- Best response is the manually tuned 
PID, more versatile controller is fuzzy 
logic controller. 

Vincent J. 
Tunnel  et 
al., (1997) 
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9. 

- Centralized PI controllers. 
- Using (1) Davison method, (2) the 
Maciejowski method, (3) the decoupler 
design and (4) the Tanttu and Lieslehto 
method. 

- MSF desalination plant. 
- Robustness analysis. 
- Perturbation in the system steady-state 
gains. 
- Decoupler gave best response. 

Reddy et 
al., (1997) 

10. 

- ASMI DO. Model. 
- A Receding Horizon Optimal Control 
(RHOC) strategy using NH4 and NO3 
measurements. 
- Feedback control of the alternation 
between anoxic and aerobic phases. 
- Objective optimal N removal. 
- DO So is treated as control input. 

- Developed an aeration strategy 
yielding optimal N-removal. 
- Both alternating nitrification/ 
denitrification DO-levels might be 
optimal. 
- RHOC application yields globally 
optimal control with a prediction 
horizon. 

L. I. S. 
Lukasse et 
al., (1998) 

11. 

- To develop an automatic control system 
for DO and pH of the ASP in a coke 
WWTP. 
- A discrete type auto tuned PI controller 
using an auto-regressive exogenous (ARX) 
model. 
- Controlling the speed of surface aerators. 
- Nonlinear pH controller using titration 
curve. 

- Automatic control System: on-line data 
acquisition, auto tuning and data 
display. 
- PI controller worked very well and 
there were small deviations of pH and 
DO from the set point. 

B. K. Lee 
et al., 
(1998) 

12. 

- A non-linear adaptive feedback-
linearizing control. 
- The reduction of the organic matter 
concentration and control of DO level. 
-Dilution rate and the air flow rate 
manipulating variable. 

- Lack of cheap and reliable sensors for 
on-line measurement of the key state 
variables. 
- Control action for an acceptable 
pollutant level; provide the biomass with 
energy to carry on the oxidation. 

F. Nejjari 
et al., 
(1999) 

13. 

- Decentralized PI derivative controller. 
- Multiplicate model factor (MMF). 
- Dynamic relative interaction (dRI). 
- SISO SIMC−PID controller tuning for 
controller tuning. 

- MIMO System. 

- Very simple and effective. 
Mao et al., 

(2005) 

14. 

- Evaluated aeration volume control 
strategy. 
- Only sensors for measuring the DO 
concentrations. 
- Ammonium concentration is controlled 
by manipulating the DO set-point. 

- Suggested aeration volume control 
strategy could reduce the effluent nitrate 
and ammonium concentrations 
significantly without increasing the 
aeration energy. 

Mats 
Ekman et 
al., (2006) 

15. 

- Genetic algorithm-based neural network 
(GA-NN) designed as a feed forward 
multi-layered connectionist structure to 
filter the control strategies from a set of 
monitoring data measured (SBR). 
- Petrochemical production process. 

- Develops a genetic algorithm-based 
neural network for the assistance of 
intelligent controller design. 
- Cost-effective tool to capture the 
uncertainties of WWTP. 

Ni-bin 
chang et 
al., (2007) 
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16. 

- Evaluated several control algorithms for 
N removal using a simulation benchmark. 
- Various PI and feedforward controllers 
are evaluated with advanced 
multivariable and nonlinear model 
predictive control. 
- Estimated differences between the 
controllers in terms of operating costs. 

- PI nitrate and feedforward-PI ammonia 
control closely imitates the optimal 
operation strategy as the operating costs 
are only slightly higher compared to the 
case when model predictive control is 
applied. 
- Benchmark simulation model (BSM1). 

A. Stare et 
al., (2007) 

17. 

- Diagonal main controllers and off-

diagonal decoupling controllers 

- Hankel Interaction Index Array (HIIA) 

- Relative Gain Array (RGA) 

- PI/PID controller for MIMO processes 

-  Method is very simple, 

straightforward and easy 

- Higher order processes 

Malwaltk
ar et al., 
(2008) 

18. 

- MPC has been applied to control the 
dissolved oxygen concentration at a 
certain setpoint based on a linear state-
space model. 
- The control strategy was using 
systematic evaluation criteria: in a 
simulation benchmark. 

- MPC can be effectively used for 
dissolved oxygen control. 
- Performance can be considerably 
enhanced by decreasing the sampling 
time. 

B. 
Holenda 

et al., 
(2008) 

19. 

- Robust decentralized PI controller. 
- New method to controller design for 
uncertain LTI MIMO systems. 
- Internal model control (IMC) method for 
local PI controller. 

- Industrial utility boiler system. 
- Robust stability Analysis. 
- Nonlinear model is linearized. 
- Validated with real system. 
- Crucial conditions robust stability and 
diagonal dominance. 

Marquez 
et al., 
(2008) 

20. 

- To control the free gyroscope seeker scan 
loop system 
- Linear model and Nonlinear Model 
- High Gain PI controller 
- RGA is used for input-output pairing 
analysis. 

- Centralized and Decentralized control 
structure 
- Track patterns like conical and rosette 
- Proposed methods was effective. 

Ramin et 
al., (2009) 

21. 

- Decentralized PI/PID controller design. 
- Method based on gain and phase margin 
specifications for tuning. 
- FOPTD using frequency response fitting. 
- Decoupler design. 

- Three TITO systems to measure the 
performance. 
- Level–Temperature reactor process. 

Maghade 
et al., 
(2012) 

22. 

- Centralized PI controller for MIMO 
system. 
- Based on direct synthesis method. 
- Effective transfer function (ETF). 
- Maclaurin series get standard PI form. 

- Relative gain array and relative 
normalized gain array concept. 
- Controller designed from RNGA-
RARTA was better than RGA. 
- Smaller interaction but sluggish. 

Vijay 
Kumar et 
al., (2012) 

23. 

- Extension of simplified decoupling. 
- PID control is obtained by controller 
reduction.  
- Process matrix 2x2 and 3x3. 
- anti-windup schemes 

- Set configuration based on complexity 
of the corresponding decoupler elements 
or the response of apparent processes. 
- Experimental quadruple tank system 
- Slightly complex methodology 

Garrido et 
al., (2012) 
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24. 

- Robust decentralized controller design 
- Pole placement Method. 
- PI controllers. 
- Using damping factor closed loop poles 
region was calculated. 

- Reduces the control problem size to 
subsystem level. 
- Validated by lab scale two coupled 
DC motors. 
- Compared decentralized controller 
with robust controller. 

Holic et al., 
(2013) 

25. 

- Relationship between equivalent 
transfer function (ETF) and the pseudo-
inverse of multivariable transfer matrix is 
derived. 
- RNGA based ETF parameterization 
method extended to nonsquare processes. 

- PI/PID. 
-  Ideal decoupling. 
- Resulting controller is simple and 
easy 
- Effective for both square and 
nonsquare processes. 

Shen et al., 
(2014) 

26. 

- Comparison between PI controller and I 
– P modified controller. 
- I – P controller is different from PI 
controller in that the proportional part of 
the controller is fed with the feedback 
variable and not with the error as it is 
done with the PI controller. 

- I – P controller is better for 
disturbance rejection and process 
settling times comparing to the same 
method using PI controller. 
- Better performance and lower 
complexity, so as to be easier for the 
operators to adjust it. 
- Pole – placement design 

Alexandros D. 
Kotzapetros  et 

al., (2014) 

27. 

- Parameter optimization technique. 
- Reduced burden from Feedback 
controller parameterized using 
multivariable internal model controller. 
- A novel technique for estimating the 
starting values of the controller 
Parameters. 

- MATLAB optimization toolbox. 
- Constraints like singular values, 
internal variable magnitude can be 
directly handed. 
- PI controller. 
- Three benchmark process system. 
- Adopted performance indices.  

Taiwo et al., 
(2014) 

28. 

- Centralized PI controllers. 
- Tuning based on steady state gain 
matrix (SSGM). 
- Combining Static decoupler design and 
SISO PI/PID controllers design for 
centralized controllers. 

- Simple method 
- Results compared with Davison EJ. 
was better. 
- Proven by three simulation example. 
- No knowledge of system dynamics 
required. 

Dhanyaram et 
al., (2015) 

29. 

- Simplified centralized PID tuning. 
- Based on Falb’s row by row decoupling 
(RRDP) concept. 
- Controller parameters formulated in the 
statespace framework. 

- Zero order, first order and second 
order systems. 
- Simultaneous decoupling and set-
point tracking. 
- Accurate sub system dynamics. 

Arati et al., 
(2016) 

30. 

- MIMO System 
- Falb’s row by row decoupling (RRDP) 
concept 
- Decoupling and set-point tracking 

- Simplified centralized controller 
tuning 
- Centralized PID tuning 
- Accurate sub system dynamics 
-  Controller settings for zero order, 
first order and second order systems 

Devi et al., 
(2016) 

31. 

- Designing decentralised PID controllers 
for stable systems 
- Synthesis method extended to unstable 
systems. 
-  Maclariun Series for controller design 

- Two input - two output (TITO) 
systems 
- Simple calculations 
- Decreased interactions 
- Robustness Analysis 

Chandra et al., 
(2016) 
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Sl. 
No. 

Description – Work done Remarks Reference 

32. 

- Two tuning methods 
- PI Controller 
- Genetic algorithms for desired controller 
specification 
- DSM suites for SISO not MIMO 

- Modified Direct Synthesis method 
extended to a multivariable system 
- Robustness analysis showed better 
compared to reported methods 

Lan et al., 
(2017) 

33. 
- Decentralized controller 
- Equivalent Subsystems Method (ESM) 
- Unified frequency-domain methodology 

- SISO and MIMO system 
- Frequency-domain plots 
- Closed-loop stability was verified 
using the Generalized Nyquist 
criterion 

Alena et al., 
(2019) 

34. 

- Influent from BSM1 (ASM1) 
- An optimal setpoint based control 
method. 
- To remove organic substances and N. 
- ADM1 (Anaerobic digester Model 1) 

- Five control strategies were 
developed. 
- Control of DO concentration in 
aeration Unit and N concentration by 
internal recirculation. 

Laurentiu Luca 
et al., (2019) 

35. 

- Benchmark simulation model no. 1. 
- Filters are used to reduce the noise of 
the sensors (Artificial neural networks-
ANN). 
- Predict DO, to compensate the delay 
produced by filters and sensors, and 
anticipate the time needed by actuator to 
obtain the desired value.  
- ANN to predict the appropriate SO 

- Default control strategy (DEFCS). 

- Difficulty of the DO control is due to 
noise and delay in the sensors and 
actuators. 
- The ANN take into account the 
microorganisms present in the WW, as 
well as their food and energy source. 
- PI Control system tries to minimize 
the effects of sensor noise and sensor 
& actuator delays, including noise 
filters. 

I. Santin et al., 
(2019) 

36. 

- Robust decentralized PI controller. 
- Predefined reference model transfer 
function. 
- Parametric uncertainty. 
- Set point tracking and disturbance 
rejection. 

- Level maintenance in coupled tank 
system. 
- Implemented on real-time 
experimentation. 
- Better performance with minimal 
interactions. 

Mahapatro et 
al., (2019) 

37. 

- Multi- Objective Particle Swam 
Optimization (MOPSO) algorithm 
-  PID controller. 
- Distillation column process. 
- Fine tune the PID controller using Multi 
Objective optimization technique. 

- ISE, IAE, ITAE performance indices. 
- Compared with Davison’s and 
Tanttu and Lieslehto methods. 
- Lesser settling time. 

Sivagurunathan 
et al., (2021) 

38. 

- Decentralized PI controller. 
- Biggest Log modulus Tuning method 
(BLT). 
- Ziegler-Nichol’s tuning method. 

- Multivariable coupled tank system. 
- Closed loop stability measured using 
characteristic loci method. 
- Extension of the SISO Nyquist 
stability criterion. 

Mohanraj et al., 
(2021) 

39. 

- Centralized PI controller design. 
- Process matrix inverse calculation. 
- Controller designed using model 
matching technique. 
- Two approach one squares up the 
process transfer function matrix the other 
is based on pseudo-inverse evaluation. 

- Suitable for low and high-
dimensional square/non-square 
MIMO processes. 
- Extended for the non-square MIMO 
processes. 
- Better performance to reported 
methods. 

Ghosh et al., 
(2021) 

 



2.4 Literature survey on Data-driven approach for control studies

Advancement in the production units of industries has led to complex production pro-

cesses. In such a scenario model-based control theory may not work well since the plant

model does not consider the assumed model set (Zhong and Zhuo, 2013). This inaccu-

rate model can lead to bad performances and an unstable closed-loop system. The key

parameter for this error is the difference between the controlled plant and the assumed

plant model. Due to these practical issues, data-driven controller theory is considered

over the model-based controller theory in most industries like chemical (Wang et al.,

2008; Jong and Jay, 2005; Bei et al., 2018), metallurgy (Yiming et al., 2016), com-

puter security (Han et al., 1999; Chaudhuri et al., 2001), instrumentation (Sridhar et al.,

2008), electronics (Shi et al., 2023) and transportation (Murphey et al., 2003; Jiateng

et al., 2020; Kah et al., 2023). Moreover, this could be easily adopted since many in-

dustrial processes were already generating a huge amount of data at every time instant

of every run. And this data contained all valuable information (like state variables, pro-

cess operation, etc.) of the exact plant upon which the controller was supposed to be

designed. This supremacy attracted many researchers in the control theory community

to explore more with this technique.

To be specifically defined, the data-driven controller theory is that study in which the

controller is designed by directly using the online or offline I/O data from the controlled

system without using the implicit or explicit mathematical model of the processes. This

approach is absolutely independent of the plant model omitting the estimation and as-

sumptions. Since the first principle model is often complex, time-consuming to derive

and reduce, and requires human intervention for model validations, this data-driven ap-

proach has clearly an edge over the model-based technique. Most complex to complex

industrial process problems could be solved through this data-driven technique (Li et al.,

2017; Qiu et al., 2017).

In a recent study, Liang adopts this data-driven approach to model a building energy

model that solved many practical problems. The data drive proved to be the effortless

technique for Gioia et al., (2022) where in they designed a controller for Wave Energy

Converter (WEC) that extracted energy from the ocean (Daniele et al., 2022). Advanc-

ing, a real-time data-driven controller is designed for complex equipment by Chaofan

et al., (2022) that enhanced the product quality. Sun et al., (2018) presented their study
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to design a controller for the purification process that adopted a data-driven approach

when model parameters were unknown (Bei et al., 2018). To avoid the modeling ob-

stacle, this study utilizes the Adaptive Dynamic Programming (ADP) technique. The

identical technique was also used to solve the optimal battery energy management and

control problem in a smart grid residential system (Frank et al., 2017). On addressing

the key issue of the ship maneuvering model, Xu et al. developed a data-driven con-

troller with the combination of Gaussian Process (GP) and Model Predictive controller

(MPC) achieving good generalization ability and robustness (Peilong et al., 2023). The

data-driven technique was also adopted in a smart irrigation scheduling for monitoring

soil moisture content in real-world tomato farming. The study considered rainfall, evap-

oration, and irrigation as inputs and soil moisture content as output making it a Multi

Input Single Output (MISO) system (Erion et al., 2023). For a nonlinear nonaffine

system a data drive optimal control scheme was proposed by Lin et al., (2023). that

enhanced the controller performance by introducing an outer set-point updating loop

(Na et al., 2023).

Some of the prominent data-driven techniques are discussed here. The technique

originated with the Ziegler-Nichols technique that assumed zero initial condition and

step responses (Ivan and Paolo, 2008). Later, it was advanced and named as an unfal-

sified control technique that could identify the control laws (Safonov and Tsao, 1997).

This technique recursively falsifies the controller that fails to achieve the desired per-

formance even with the measured data and specified control law. Similarly, Wang

et al., 2007 reported a method named Minimum Variance Control (MVC) for multi-

rate systems that adopted a data-driven approach. Iterative Feedback Tuning (IFT) is

one such kind wherein it uses the closed loop data for tuning the controller parame-

ters (Hjalmarsson and Birkeland, 1998). The next technique named Virtual Reference

Feedback Tuning (VRFT) does not even require parameter initiation nor iterations and

specific experiments to design a controller (Campi et al., 2002). Continuation to the

above technique, Correlation-based Tuning (CbT) is another type wherein it minimizes

the correlation function between closed-loop error and reference signal (Karimi et al.,

2007). To overcome the high cost of train control model validations Yin et al., (2019)

developed three data-driven model approaches namely Linear regression-based Model

(LAM), Nonlinear regression-based Model (NRM), and Deep Neural Network (DNN)

based model that used real-world field data from Beijing Metro (Jiateng et al., 2020).
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The data-driven approach provided an opportunity for wastewater treatment indus-

tries to explore and improve their operations. Various studies were reported based on

specific problem statements like energy optimization, coagulant dosages, pH neutral-

ization, process control, management of wastewater - stormwater network and plant

monitoring-decision making, etc. A detailed discussion on this topic is presented in Ta-

ble 2.4. To the best of the authors’ knowledge, there have been limited reported studies

regarding data-driven approaches to centralized controller design for ASP systems. This

approach can attract many researchers who tend to avoid advancement in the research

due to the complexity of mathematical modeling techniques.
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Table 2.4: Literature review on Data driven WWTP control 
Sl. 
No. 

Description – Work done Remarks Reference 

1. 

- Data-driven modelling to support 

WWTP operation. 

- Redundant measurement were created 

and then replaced with existing sensor. 

- Four different modelling techniques 

generalized least squares regression, 

artificial neural networks, self-

organizing maps and random forests. 

- Presented a procedure to build 
software sensor based on sensor 
data available. 
- Data from SCADA system of the 
real plant. 
- Cost effective. 

D. J. 
Durrenmatt 
et al., (2012) 

2. 

- Data-driven adaptive optimal 
controller (DDAOC). 
- Adaptive dynamical programming. 
- BSM1. 

- Solve optimization problem. 

- Saving energy. 

- Target variables SO,5 and SNO,2. 

Qiao et al., 
(2013) 

3. 

- k-nearest neighbour (k-NN) method. 
- Optimized based on the root mean 
square error. 
- Influent water qualities Mean absolute 
percentage error (MAPE). 

- Predict the influent flow rate and 
COD, SS, T-N, T-P. 
- Both wet and dry weather 
conditions. 

Minsoo et 
al., (2016) 

4. 

- Data-driven intelligent monitoring 
system 
- Fuzzy neural network (FNN) is applied 
for designing the soft sensor model, 
- Principal component analysis (PCA) 
method is used to select the input 
variables. 

- Combination of data-driven soft 

sensor and data distribution service 

- Real-time values of key variables 

- Tested on several real plants 

- A hybrid data transfer software 

insert soft sensor tech. to SCADA. 

Han et al., 
(2018) 

5. 

- Stochastic optimization algorithm and 
unidimensional search algorithm used 
for optimization. 
- 5 Strategies. 

- Remove organic substances and 
nitrogen. 
- Control of DO concentration. 
- PI type controllers. 

Luca et al., 
(2019) 

6. 

- Data-driven energy optimization 
strategy of WWTP variable-frequency 
pumps. 
- Method combines statistical learning 
and deep reinforcement learning. 
- RL control method with data-mining 
algorithms. 

- Designed predictive pump control 
policies. 
- Decrease in electrical energy 
consumption through continuous 
learning and self-adaptation. 

Filipe et al., 
(2019) 

7. 

- A data driven decision making method 
to reduce the membrane fouling. 
- Self-organizing deep belief network 
prediction method. 
- Independent component analysis-
principal component analysis technique 
for multi warning. 
- Kernel function diagnoses method. 

- Long term and multi-step perdition 
strategy. 
- Predict membrane permeability. 
- Diagnose the accurate influencing 
parameter. 
- Can extract Gaussian and non-
Gaussian information. 

Han et al., 
(2020) 
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Sl. 
No. 

Description – Work done Remarks Reference 

8. 

- Data-driven and feature based 
framework. 
- CART classifier decision tree is used to 
classify the operation model. 
- Infrastructure data of Austin Texas 
pumping system in 2017. 

- Improved performance of 
wastewater management and 
pumping system. 
- Minimized the outflow rate to 
prevent the system from pipe 
leakage. 

Rahimian 
et al., (2020) 

9. 

- Sampling approaches. 

- Two conventional monitoring method. 

- Multivariate change point detection was 

applied to identify structural changes in 

the variables. 

- Accurate and efficient method. 

- Reduce N2O sampling frequency. 

- Predict the risk of excess emission. 

Vasilaki et 
al., (2020) 

10. 

- Calculate predictive controller 
parameters using subspace. 
- Identification technique. 
- Receding window Mechanism. 
-  Direct adaptive model predictive 
control (DAMPC). 

- Direct identification of controller 
parameters. 
- Indirect adaptive model-based 
predictive controller (IAMBPC). 
- SVD-based optimisation 
technique. 

Razali et 
al., (2020) 

11. 

- Data-driven multiobjective predictive 
control (MOPC). 
- Adaptive fuzzy neural network 
identifier to obtain the nonlinear 
behaviours. 
- Transfer multiobjective optimization 
algorithm (TMOOA) to obtain the optimal 
solutions. 

- Multiobjective control strategy. 
- Improve the operation 
performance. 
- Fast control actions of MOPC. 

Han et al., 
(2020) 

12. 

- Hybrid influent forecasting model based 

on multimodal and ensemble-based deep 

learning (ME-DeepL). 

- Hilbert–Huang transform (HHT) 

method to identify intrinsic and distinct 

temporal patterns. 

- Forecast the fluctuating influent 

loads on long-term and short-term 

with multisteps forecast horizons. 

- Validated with nine years influent 

data from a full-scale MBR in Korea. 

Heo et al., 
(2021) 

13. 

- Data-driven methods based on deep-

learning algorithms to process modelling, 

process analysis, and process forecasting.  

- Global sensitivity analysis to understand 

emission characteristics and crucial 

influencing parameters. 

- Plant data driven model coupled 

with DNN. 

- Temperature was important factor 

- Forecasting of dynamic N2O 

behaviour. 

Soonho et 
al., (2021) 

14. 

- Data-driven optimization model. 

- Combination of genetic algorithm-based 

optimization and particle swarm 

optimization technique. 

- Regression model analyses. 

- Optimize coagulant dosage 

decision in industrial WWT. 

- Cu removal based on real data. 

- Lowered cost of the chemicals and 

sludge treatment. 

Wang et al., 
(2021) 
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Sl. 
No. 

Description – Work done Remarks Reference 

15. 

- Data-driven strategy consisting of t-

distributed stochastic 38 neighbour 

embedding (t-SNE) and deep neural 

networks to optimize the processes 

configuration. 

- DNNs trained by the classified cluster 

data from t-SNE. 

- 14,647 samples from 10 full-scale 

WWTPs. 

- Relationships between key 

parameters. 

and configuration of WWTPs 

- High accuracy. 

Xu et al., 
(2021) 

16. 

- Data-driven robust model predictive 

control (DRMPC) method. 

- Interval type-2 fuzzy neural network 

(IT2FNN) is used to identify dynamic 

behaviour of WWTP (predictive model). 

- Disturbances are considered. 

- Robust stability controller to 

reduce influence of disturbance. 

- Combining the advantage of fuzzy 

systems and neural networks. 

Han et al., 
(2022) 

17. 

- A data driven approach combination of 
hydraulic modelling and Gaussian 
processes. 
- Gaussian process-based predictive 
control tool. 
- Uncertainty assessment. 

- Aims to reduce the cost of 
infrastructure expansion 
- Proposes a combined framework 
for wastewater and storm water 
- Tested controller performance 
with laboratory setup. 

K. M. Balla 
et al., (2022) 

18. 

- Improved model-free adaptive 

predictive control scheme 

- Monte Carlo experiment based multi-

parameter sensitivity analysis and hybrid 

intelligent optimization. 

- BIBO method to stability check. 

- Control the nitrate concentration 
and dissolved oxygen 
Concentration. 
- Sunny days, rainy days and 
rainstorm days. 

Zhang et 
al., (2022) 

19. 

- Control of neutralization processes. 
- Four models - RF, ANN, XGBoost, and 
KNN exhibited high accuracy. 
- The cross-validation technique 
prevented overfitting problems.  
- Grid search technique importance of 
tuning hyperparameters. 

- Machine learning (ML) models (8). 
- pH prediction and lime dosage 
control. 
- Sensitivity analysis importance of 
temperature, valve position, and 
upstream pH. 

Xu et al., 
(2022) 

20.  

- Mechanism model and data-driven 
model (ASM model and an ANN 
Model) are combined. 
- MLP regression model for online 
intelligent management. 

- Optimize operation strategies. 
- Complete plan library with 2134 
plans. 
- Less labour, energy and chemicals 
costs, and higher efficiency and 
stability. 

Wang et al., 
(2023) 

21.  

- Intelligent control method with tracking 

goal representation heuristic dynamic 

programming. 

- Data driven model network. 

- Classical actor-critic scheme in RL. 

- Applied in two industrial 
simulations. 
- Good performance in tracking 
both constant and dynamic 
trajectories. 
- Theory holds good for robot 
control and power grid system. 

Wang et al., 
(2023) 

 



2.5 Summary of Literature Review

As a result of rapid urbanization, the implementation of wastewater treatment plants

(WWTP) in urban areas has become necessary to protect the environment and address

water management challenges. Typically, the conventional biological treatment system,

such as the Activated Sludge Process, is chosen as the most effective technique for

treating domestic wastewater (sometimes in combination with industrial wastewater),

despite its initial investment and maintenance costs. However, the discharge of organic

pollutants into receiving water bodies can lead to a sudden decrease in dissolved oxygen

(DO) concentration, thereby diminishing the self-purification properties of water.

Organic effluent generally contains a significant amount of suspended and settleable

solids, which can alter both the water and reservoir bed characteristics. Additionally,

these impurities obstruct sunlight from reaching the bottom surface of the reservoir,

resulting in water pollution through eutrophication. Existing literature emphasizes the

crucial need to constantly monitor and control effluent characteristics such as DO con-

centration, biomass, and substrate concentration. Aeration rate, which affects the DO

level in wastewater, and recycle sludge (concentration and flow rate) directly influence

these parameters.

The mathematical identification of WWTP models is a critical step in studying

model parameters and control strategies. This process involves using measured data

and statistical methods to build a mathematical model of the dynamic system. To en-

sure the economical, reliable, and efficient operation of WWTPs, it is imperative to

control physical, chemical, and biological parameters. However, due to the multitude

of variables and the multivariable nature of biological wastewater treatment, designing

a controller for such a complex system is challenging. Various studies have explored

different controllers and design techniques based on specific objectives.

Developing an accurate control strategy requires a comprehensive understanding of

process behavior, which improves effluent quality while reducing energy consumption.

Unregulated aeration rates have been a significant contributing factor to the escalat-

ing operating costs of WWTPs. Similarly, controlling the biomass concentration in

recycle flow represents the optimal method for organic matter removal in wastewater.

Moreover, surveys suggest that a data-driven approach can be adopted to overcome the

difficulties and time constraints associated with developing a mathematical model for a
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plant.

To the best of our knowledge, there are no openly available resources reporting

a comprehensive study on mathematical model identification and the design of cen-

tralized and decentralized controllers, along with the implementation of a data-driven

approach for the activated sludge process.
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Chapter 3

SYSTEM DESCRIPTION AND
PRELIMINARIES

3.1 Activated Sludge Process Model

The wastewater treatment plant that treats wastewater from both municipalities and
industries with soluble organic impurities adopts physical, chemical, and biological
zones or stages of treatment, except in a few objectively specific plants. Among these
three stages, biological treatment is an integral and important part of any treatment
plant. The main reason for this would be due to economic advantages, both in terms of
operating costs and initial capital costs. Hence, the modeling, control, and optimization
of biological wastewater treatment systems have gained a lot of significance due to
stringent effluent norms during the last few decades (Ilse et al., 2003a).

A task group from International Association on Water Quality (IAWQ) worked upon
two goals, firstly to review the existing models and, secondly, to formulate the simplest
biological wastewater treatment plant model that can predict realistic process variables
related to single sludge systems for carbon oxidation, nitrification, and denitrification.
In 1987 it got completed, and later it was renamed Activated Sludge Model No. 1.
(ASM1) (Henze et al., 2006).

A set of ordinary differential equations from ASM1 is given below. The three
processes that affect heterotrophic biomass concentration are aerobic growth, anoxic
growth, and decay.

dXB,H

dt
= µ̂H

SS

KS +SS

SO

KO,H +SO
XB.H +ηgµ̂H

SS

KS +SS

KO,H

KO,H +SO

SN,O

KNO +SNO
XB,H −bHXB,H

(3.1)
Autotrophic biomass concentration will be less complex to formulate since they do not
grow in an anoxic environment.
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dXB,A

dt
= µ̂A

SNH

KNH +SNH

SO

KO,A +SO
XB,A −bAXB,A (3.2)

As heterotrophic bacteria increase, one can observe a decrease in biodegradable sub-
strate concentration. But it eventually increased by hydrolysis of slowly biodegradable
substrate.

dSS

dt
=

[
− µ̂H

YH

(
SS

KS +SS

){(
SO

KO,H +SO

)
+ηg

(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)}
+kh

XS/XB,H

KX +(XS/XB,H)

{(
SO

KO,H +SO

)
+ηh

(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)}]
XB,H (3.3)

According to the death-regeneration hypothesis, the concentration of slowly biodegrad-
able substrate is increased by recycling dead bacteria but decreases with hydrolysis, as
given below

dXS

dt
= (1− fp)(bHXB,H +bAXB,A)− kh

XS/XB,H

KX +(XS/XB,H)

[(
SO

KO,H +SO

)
+

ηh

(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)]
XB,H (3.4)

The simplest form of all is the concentration of inert particulate products from biomass
decay.

dXP

dt
= fp(bHXB,H +bAXB,A) (3.5)

As biomass decays, the concentration of particulate organic nitrogen increases and de-
cease by hydrolysis.

dXND

dt
= (iXB − fPiXP)(bHXB,H +bAXB,A)− kh

XND/XB,H

KX +(XS/XB,H)

[(
SO

KO,H +SO

)
+ηh

(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)]
XB,H (3.6)

Both the Ammonification and hydrolysis process impacts the concentration of soluble
organic nitrogen.

dSND

dt
=

[
− kaSND + kh

XND/XB,H

KX +(XS/XB,H)

{(
SO

KO,H +SO

)
+

ηh

(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)}]
XB,H (3.7)
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A complex differential equation is formulated for ammonia concentration as it is af-
fected by all microorganisms and decreased by the nitrification process.

dSNH

dt
=

[
− iXBµ̂H

(
SS

KS +SS

){(
SO

KO,H +SO

)
+ηg

(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)}
+kaSND

]
XB,H − µ̂A

(
iXB +

1
YA

)(
SNH

KNH +SNH

)(
SO

KO,A +SO

)
XB,A(3.8)

The direct influence of nitrification and denitrification is observed in the concentration
of nitrate as shown below

dSN0

dt
=−µ̂Hηg

(
1−YH

2.86YH

)(
SS

KS +SS

)(
KO,H

KO,H +SO

)(
SNO

KNO +SNO

)
XB,H +

− µ̂A

YA

(
SNH

KNH +SNH

)(
SO

KO,A +SO

)
XB,A (3.9)

Finally, the growth of heterotrophic and autotrophic biomass will directly influence the
oxygen concentration in the wastewater.

dS0

dt
=−µ̂H

(
1−YH

YH

)(
SS

KS +SS

)(
SO

KO,H +SO

)
XB,H

−µ̂A

(
4.57−YA

YA

)(
SNH

KNH +SNH

)(
SO

KO,A +SO

)
XB,A (3.10)

Two numerical values, 2.86 and 4.57, are stoichiometric expressions for the anoxic
growth of heterotrophic biomass and stoichiometric expression for the aerobic growth
of autotrophs. The parameter notations and kinetic parameters are given in Table 3.1.
Keeping this classical model as a reference, four simplified model equations are formu-
lated and used by a few of the researchers since a complete biological treatment stage
model is not essential for control studies. By considering some of the assumptions, a
set of complex ten equations from ASM1 is reduced to four nonlinear equations which
were used for the current control studies.

The goal here is to develop a single-stage biological wastewater treatment plant
mathematical model. A single-stage biological treatment plant consisting of one aera-
tion unit and one settling tank unit is considered for the study (Figure. 3.1). Some of the
sludge from the settling tank is recirculated back to the aeration or biological reactor
unit, and the excess is discarded or sent for further utilization or treatment.

The mathematical model of the considered treatment stages will be comprised of a
set of four non-linear differential equations (Nejjari et al., 1999). There is one biomass
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Table 3.1 IAWQ model parameters (Henze et al., 2006)

Sl. No. Description Notation
Stoichiometric parameters

1. Heterotrophic Yield YH
2. Autotrophic Yield YA
3. Fraction of biomass yielding particulate products fP
4. Mass N/mass COD in biomass iXB
5. Mass N/mass COD in products from biomass iXP

Kinetic parameters
6. Heterotrophic max. specific growth rate µ̂H
7. Heterotrophic decay rate bH
8. Half-saturation coefficient for heterotrophs. Ks
9. Oxygen hsc for heterotrophs KO,H
10. Nitrate hsc for denitrifying heterotrophs KNO
11. Autrotrophic max. specific growth rate µ̂A
12. Autotrophic decay rate bA
13. Oxygen hsc for autotrophs KO,A
14. Ammonia hsc for autotrophs KNH
15. Correction factor for anoxic growth of heterotrophs ηg
16. Ammonification rate ka
17. Max. specific hydrolysis rate kh
18. Hsc. for hydrolysis of slowly biodegradable substrate Kx
19. Correction factor for anoxic hydrolysis ηh

component, one substrate component, one dissolved oxygen component, and lastly one
recycled sludge concentration. This WWTP model will be based on the First Engineer-
ing principle, so exclusively it can be referred to as the white box model (Krist et al.,
2004). Accordingly, a few assumptions were considered while developing a mathemat-
ical model for WWTP as follows:

• The aeration tank is continuously stirred

• There are no biological reactions in settler

• Only the activated sludge is the recycled component back to the reactor

• Composition of the recycled sludge is neglected

• The flow rate of the reactor is the sum of the flow rate of recycle sludge and
WWTP outlet flow

A simplified schematic representation of the ASP stages has been presented in Fig-
ure 3.1. The following set of non-linear equations is derived by adopting the mass
balance calculations around the aerator and the settler.
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The first equation is related to the material balance of the activated sludge from the
aerated bioreactor:

dX(t)
dt

= µ(t)X(t)−D(t)(1+ r)X(t)+ rD(t)Xr(t) (3.11)

The second equation describes the mass balance of the substrate:

dS(t)
dt

=−µ(t)
Y

X(t)−D(t)(1+ r)S(t)+D(t)Sin (3.12)

The third equation represents the mass balance of the oxygen in water mass, the oxy-
gen consumed in a biochemical degradation of the organic matter, and the oxygenation
process:

dC(t)
dt

=−Koµ(t)
Y

X(t)−D(t)(1+ r)C(t)+KLa(CS −C(t))+D(t)Cin (3.13)

The last and fourth equation deals with the balance of activated sludge from the settling
tank:

dXr(t)
dt

= D(t)(1+ r)X(t)−D(t)(β + r)Xr(t) (3.14)

where X(t), S(t), C(t), and Xr(t) are state variables representing biomass, substrate, dis-
solved oxygen concentration, and recycled biomass, respectively. D(t) is the dilution
rate. The ratio of recycled flow to influent flow and the ratio of waste flow to influent
flow is denoted by r and β , respectively. Cin and Sin are the dissolved oxygen concen-
tration and substrate concentration in the feed stream, respectively. Specific growth rate
µ , and yield cell mass Y represents the kinetics of the cell mass production, the term ko

is constant, Cs represents maximum dissolved oxygen concentration, and oxygen mass
transfer coefficient is indicated as KLa.

The specific growth rate (µ) is defined as the rate of increase of biomass of a cell
population per unit of biomass concentration. Equation 3.15 describes the specific
growth rate, which was developed by a series of experiments performed by Monod
(NielsenJohn and Liden., 2003). The specific growth rate is the complex function of
substrate concentration, dissolved oxygen concentration, pH, and other inhibitors that
proclaim to have physicochemical and biological factors affecting it. It is one of the key
parameters to describe biomass growth. There exists much analytical law for determin-
ing the specific growth rate, but the most commonly used is Monod kinetic Law.

A few assumptions like specific growth rate depends on the substrate, dissolved
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Figure 3.1 Schematic representation of single tank ASP unit

oxygen concentration, and several kinetic parameters, were made while developing the

kinetic model, and it is given by

µ(t) = µmax
S(t)

Ks +S(t)
C(t)

Kc +C(t)
(3.15)

Where µmax is the maximum specific growth rate, affinity constant is represented as

Ks, S is pollutant concentration and Kc is saturation constant. The major setback in

modeling and control of these processes involves, online monitoring of key biological

variables to develop an analytical expression for growth rate (Dimitrova and Krastanov,

2012). There exist several parameters in modeling the ASP system. Table 3.2 provides

a list of parameters with values used for the modeling and simulations studies.

3.1.1 Model Identification

"Model Identification" refers to the process of developing a mathematical model that

represents the behavior and dynamics of a particular system or process. This model

is typically derived from data collected from the system or process under study. The

purpose of model identification in process control is to understand and predict the be-

havior of the system, allowing control engineers to design effective control strategies.
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Table 3.2 Model parameters of ASP (Muntean I. et al., 2015)

Sl. No. Parameter Notation Value Unit
1. Influent dissolved oxygen concentration Cin 0.5 mg/l
2. Influent substrate concentration Sin 600 mg/l
3. Maximum dissolved oxygen concentration Cs 10 mg/l
4. Maximum specific growth rate µmax 0.0832 -
5. The ratio of waste flow to influent flow β 0.2 -
6. The ratio of recycled flow to influent flow r 0.8 -
7. Biomass yield factor Y 0.65 -
8. Affinity constant ks 15 -
9. Saturation constant kc 0.5 -
10. Model constant ko 0.4 -
11. Aeration rate W 180 m3/hr
12. Oxygen transfer rate σ 0.024 -
13. Dilution rate D(t) 0.8 -

The identified model can be used for simulation, analysis, and control algorithm de-

sign. Model identification approaches vary depending on the nature of the system and

the available data. Some common approaches include: (i) System identification - It

involves applying known input signals to the system and measuring the corresponding

outputs. The collected input-output data is then used to estimate the system’s mathe-

matical model parameters, such as transfer functions or state-space representations. (ii)

Regression analysis - This technique involves fitting mathematical models to data us-

ing regression algorithms. It can be useful when the system’s underlying dynamics are

not well-known or when specific models, such as linear regression or polynomial re-

gression, are appropriate. (iii) Machine learning - Machine learning algorithms, such as

neural networks, support vector machines, or decision trees, can be employed for model

identification. These algorithms learn patterns and relationships from input-output data

to construct models that can predict system behavior. (iv) Physical modeling - In some

cases, prior knowledge about the system’s physics or underlying principles can be used

to develop a mathematical model. This approach involves formulating equations based

on known physical laws and parameters.

The choice of model identification technique depends on the available data, system

complexity, and the desired level of accuracy. It is often an iterative process involving

data collection, model estimation, and model validation.
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Figure 3.2 closed-loop system identification

A graphical representation of the closed-loop identification is presented in Figure

3.2. Two methods have been adopted to identify the model, namely the system identi-

fication method (Ljung and Singh, 2012; Kollar et al., 2006) and the Process Reaction

Curve (PRC) method (Huang and Jeng, 2005; Sundaresan and Krishnaswamy, 1978;

Chidambaram and C. Sankar, 2017; Prabhu Y. and Sankar, 2019). To solve these iden-

tification problems, the data are generated by simulating the above-mentioned nonlinear

equations. A detailed procedure followed for both identification techniques is discussed

below.

3.1.1.1 System Identification (SysId) to estimate FOPTD Model

System identification is a process of determining the mathematical model of a process

in a system based on input-output data rather than its physics. The prime advantage

of this approach is that a wide range of system dynamics can be handled without any

prior awareness of the physical system (Soumya et al., 2019). In this study, a system

identification matrix method is considered to obtain the accurate and simplest form of

a dynamic model of the ASP system. Accordingly, the System Identification MAT-

LAB toolbox was used to estimate the desired process parameters. This toolbox utilizes

Hammerstein-Wiener and Nonlinear ARX models to estimate the nonlinear system dy-

namics.

Conventionally, it is widely and commonly chosen for grey box model identifica-

tion. A step-by-step procedure followed in this technique is shown in Figure 3.3. The

data is generated by choosing two inputs, namely, aeration rate and recycle sludge flow

rate (manipulating variables), and two output parameters i.e., effluent dissolved oxygen

concentration or biomass concentration and substrate concentration (controlled vari-

ables), are selected respectively. In order to obtain the model parameters in case-I,
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Figure 3.3 Flowchart of procedure for system identification technique

random noise is provided to aeration rate (W), the DO concentration and/or biomass

concentration, and substrate concentration are noted down. Similarly, in case II, ran-

dom noise is fed to recycle sludge flowrate (r), wherein DO concentration and substrate

concentration values are recorded. Likewise, 1000 samples of input and output data sets

are collected from open loop experiments on simplified WWTP, with a sampling time

of 0.1s. Once the data is obtained, the model structure is selected based on the require-

ments. The Prediction Error Method (PEM) is used to determine the model parameters

of the First-Order Plus Time Delay (FOPTD) system. In the final stage, the estimated

model is validated by analyzing the curve fitting, aiming for the best fit, preferably close

to 100% to conclude the process. If the fit is not satisfactory, the process may return

to the data generation step to verify the data or to the data collection stage to re-filter

the data. Alternatively, the model structure may be modified to achieve better model

estimation.
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3.1.1.2 Process Reaction Curve method

PRC is another classical method that is adopted to determine the FOPTD model (Chi-

dambaram and C. Sankar, 2017). The controller gain, integral time, and derivative time

are calculated from a process reaction curve which is generated from the step response

of the open-loop system. To isolate the impact of controller action and process response,

the study is carried out in an open-loop condition. The response of the process variables

is recorded by providing a small stipulated disturbance. The process is allowed to reach

the steady-state or close to the steady state while generating the process reaction curve.

The transient step responses of the process parameters are utilized to develop an

open-loop identification method. The value of t1 and t2 are estimated based on the

fraction responses y1 = 0.353△y∞ and y2 = 0.853△y∞ respectively from step response

curve as shown in Figure 3.4. The generalized form of the FOPTD model and expres-

sions for process gain (Kp), time constant (τ), and time delay (θ ) is given by

Figure 3.4 Typical process reaction curve

Gp(s) =
Kpeθs

τs+1
(3.16)
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Kp =
△Y∞

△U∞

(3.17)

τ = 0.67(t2 − t1) (3.18)

θ = 1.3t1 −0.29t2 (3.19)

3.2 Wastewater Treatment Plant Control

The objective of multivariable control includes maintaining several controlled variables

at independent set points. It mainly depends on the goals of the entire plant and the

design of associated equipment. It requires a more complex analysis to control the

MIMO systems than that of the SISO system.

Figure 3.5 Decentralized controller for Two Input and Two Output System (TITO)

The controllers that are widely used are centralized controllers, decentralized con-

trollers, and decouplers. In a decentralized control system, there are only n controllers

for n output variables, as shown in Figure 3.5. In the case of a centralized controller

for n output variables, there prevails n2 number of controllers (Figure. 3.6). If there

exist two inputs variables, namely u1 and u2, and, two outputs variables, namely y1 and
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y2, then the change in input variable u1 directly influences output y1, meanwhile it also

indirectly has an impact on output y2, similarly change in input u2 directly has an im-

pact on y2, but also has an indirect influence on output y1. This condition prevails due

to the interaction between the process variables. If the interaction between the loops

is moderate or less, the decentralized control system works well; however, they fail if

there are more interactions between the loops. Since the decentralized system involves

interaction, it can be estimated by the RGA index and Niederlinski method by paring

the manipulated and control variables for a stable system. By virtue of its simplicity and

the potential to achieve failure tolerance, the decentralized controller has been adopted

by most of the process industries (Su et al., 2006).

Figure 3.6 Centralized controller for Two Input and Two Output System (TITO)

A decoupler controller structure for a Two-Input Two-Output (TITO) system is de-

picted in Figure 3.7. It demonstrates the distinct nature of decoupler controllers, which

effectively account for the interactions within the MIMO (Multiple-Input Multiple-

Output) process compared to decentralized controllers. The design of a decoupler con-

troller involves the utilization of a co-factor matrix, which converts a multivariable pro-

cess into multiple single loops. By introducing a simplified decoupler matrix into the

process model, the multi-loop system is decoupled or transformed into an equivalent

set of independent single loops. Subsequently, through an appropriate model reduction
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technique, the resulting decoupled process model can be approximated as either a First-

Order Plus Time Delay (FOPTD) or Second-Order Plus Time Delay (SOPTD) model

(Rajapandiyan and Chidambaram, 2012b).

Figure 3.7 Decoupler controller structure for Two Input and Two Output System (TITO)

The PI controller is widely used in industrial applications due to its established posi-

tion in control theory, taking into account both its advantages and limitations. One of the

key benefits of a PI controller is its ability to reduce both the rise time and steady-state

errors of a system. Additionally, a PI controller is resilient against measurement chan-

nel interference and can achieve zero control error. In the case of nonlinear systems,

it is recommended to develop robust PI controllers with uncertainty parameters for im-

proved performance (Aranovskiy et al., 2016). Given that wastewater treatment plants

often encounter large disturbances during operations, a PI controller can significantly

reduce both disturbances and noise. Moreover, the design process for a PI controller is

less burdensome compared to advanced controllers, which tend to be more complex and

time-consuming in simulations. In practical implementation, PI controllers are easily

applicable since they can operate at lower switching frequencies compared to nonlinear

controllers with higher switching frequencies. The use of a PI controller results in better

setpoint tracking and reduces unnecessary wear and tear on the instrumentation setup.

Hence, for the present study, the PI controller was chosen as the preferred option.
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3.3 Performance evaluation

Time Integral Errors (TIE) are used for evaluating the performance of the decentralized

and decoupler systems. The three commonly used measures are Integrated Time Ab-

solute Error (ITAE), Integrated Absolute Error (IAE), and Integrated Square Methods

(ISE).

ITAE =
∫

∞

0
t|e(t)|dt (3.20)

Integrates the absolute error over time. Compared to the ISE response system, IAE

tends to produce a slower response.

IAE =
∫

∞

0
|e(t)|dt (3.21)

ISE integrates the square of the error over time. Using the ISE method in control

systems will tend to eliminate large errors quickly, but will tolerate small errors persist-

ing for longer periods.

ISE =
∫

∞

0
e2(t)dt (3.22)

The best control system can be designed using any of these three mentioned criteria.

Total Variance (TV) is defined as

TV =
∞

∑
i=1

|ui −ui−1|, (3.23)

The principle purpose of estimating the TV is to measure the total variance in the

controller output signal, which describes the performance criteria through the response

of a closed loop. As explained by (Chandra and Chidambaram, 2018), TV is obtained

by calculating the total sum of all its moves up and down by manipulating variables.

The lesser the value of the TV gives better the result in the form of smoothness of the

designed control system

3.4 Robustness Performance

3.4.1 Robust Stability Analysis

The designed control system is said to be robust only if it is insensitive to the difference

caused by the actual system and model of the system. This difference is also referred

to as model uncertainty. There can be several reasons for the origin of uncertainty. For

instance; parameters that are only approximately known, variation of parameters due to

non-linearity or change in operating condition, inaccuracy in the measurement device,
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neglected dynamics, etc. are a few reasons (Maciejowski, 1989). In order to obtain an

effective working control system, the sensitivity of the system should not vary much to

small changes during the processes. The robustness study becomes important when the

parameters containing uncertainties exist in a Multi-loop control system. It is obvious

that the MIMO system will experience a larger sensitivity to uncertainty than the SISO

system. If there prevails the following condition, then it can be concluded that the

system is stable (Chandra and Chidambaram, 2018).

||∆I( jω)||< 1
σI

(3.24)

where σI is maximum singular value of following closed loop system

[I + Gc( jω)G( jω)]−1Gc( jω)G( jω)] Similarly for output multiplicative uncertainty,

G(s)[I + ∆o(s), if it satisfies the following condition then the closed loop system is

stable

||∆o( jω)||< 1
σo

(3.25)

where ∆I(s) and ∆o(s) are stable, σo is maximum singular value of closed loop system

[I +G( jω)Gc( jω)]−1G( jω)Gc( jω)]. (3.26)

A plot is obtained for estimated uncertainties in terms of inverse maximum singular

values and frequency. The characteristics of robustness can be evaluated by calculating

the area under the curve. The more area under the curve, the more the system will be

robust. This method can be utilized for comparing different control settings and their

robustness.

3.4.2 Worst-case gain analysis

Figure 3.8 Uncertain system interconnection
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Figure 3.8 illustrates the block diagram of a stable MIMO linear time-invariant system

G(s) and secured dynamic uncertainty ∆(s). The uncertain system can be given as

P∆(s) =𭟋U(G(s),∆(s) (3.27)

Where dynamic uncertainty is structured and unit-bounded as

∆ := diag(∆1(s), .....∆Nb(s)),∆i(s) is LT I, ||∆i(s)||∞ ≤ 1, i = 1, ....,Nb (3.28)

Since ∆i(s) is a MIMO system it has a dimension of ri × ci. Worst-case gain is defined

as the maximum induced gain upon a set uncertain system. Mathematically,

γ̂ = max
∆ ε ∆

||𭟋U(G(s),∆(s))||∞ (3.29)

From Figure 3.8 is to be assumed that P∆(s) will be robustly stable for all the con-

ditions of ∆(s) which implies γ̂ < ∞. Here peak gain (γ) at frequency ω of P∆(s) is

estimated as

γ = max
Q εϑ

σ̄(𭟋U(G( jω),Q)) (3.30)

wherein, the unit norm bounded complex uncertainty for the set of blocked struc-

tured is given by

ϑ := diag(1, ....,QNb),Qi ε Cri×ci, σ̄(Qi = 1,rank(Qi) = 1, i = 1, ....,Nb (3.31)

For further details regarding the single-frequency interpolation, kindly refer to the fol-

lowing articles (Patartics et al., 2020, 2023).

In process control, robust control techniques are employed to ensure the stability

and performance of a control system in the presence of uncertainties and disturbances.

Worst-case gain analysis is one of the methods used to assess the robustness of a control

system. The worst-case gain analysis involves evaluating the maximum gain of the

uncertain system over a range of possible uncertain parameters (Patartics et al., 2020).

The goal is to determine the maximum amplification of disturbances or uncertainties

that the control system can tolerate while remaining stable and providing satisfactory

performance. The worst-case gain analysis is performed by following the below steps.

• Define the uncertainty: Identify the uncertain parameters or disturbances that

can affect the system performance. These uncertainties can include variations

in process dynamics, model uncertainties, measurement noise, or external distur-

bances.

• Formulate the uncertainty set: Create a set of possible values or ranges for the

uncertain parameters. This set represents the uncertainty that the control system
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needs to handle.

• Perform worst-case gain analysis: Evaluate the system’s closed-loop transfer

function for the entire uncertainty set. Determine the maximum gain (worst-case

gain) over this set that can be tolerated while maintaining stability.

• Assess performance and robustness: Analyze the closed-loop system’s perfor-

mance with respect to the worst-case gain. Evaluate whether the system meets

the desired performance specifications under the worst-case conditions.

• Iterate and refine: If the worst-case gain exceeds acceptable limits or the de-

sired performance is not achieved, refine the controller design or modify the un-

certainty set. Repeat the analysis until satisfactory robustness and performance

are achieved.

Figure 3.9 Generalized representation of worst-case gain analysis

By performing worst-case gain analysis, one can ensure that the control system remains

stable and performs adequately even in the presence of uncertainties and disturbances.

It allows for the quantification of robustness and provides insights into the system’s
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sensitivity to various sources of uncertainty, helping to enhance the reliability and per-

formance of the control system.

Figure 3.9 depicts the magnitude of the frequency response for specific systems.

The critical frequency corresponds to the frequency at which the worst-case gain oc-

curs among all frequencies. The nominal curves are represented by the blue curve,

while the red curve indicates the worst-case gain curve at each frequency. Additionally,

the light blue curve represents various sampled responses of the system. This anal-

ysis encompasses both dynamic uncertainty, which represents assumed or neglected

modeled uncertainty, and parametric uncertainty, which accounts for inaccuracies in

physical parameters. The worst-case gain method is highly valuable for assessing the

robustness of uncertain systems.

58



Chapter 4

DECENTRALIZED CONTROLLER
DESIGN FOR AN ASP

This chapter begins with an introduction to the multivariable processes, controller

configurations with various tuning methods, and the process upon which this study is

oriented. The next section presents a detailed approach to the reader about the decen-

tralized controller, the reason and conditions for the best pairing, and the design of the

decoupler exclusive with set-by-step flowcharts. The simulation results of the designed

controller over the activated sludge process are given in the subsequent section followed

by outcomes of robust stability analysis upon parametric uncertainty. And finally, the

chapter concludes by summarizing the findings of this study on designing a decentral-

ized and decoupled controller for the ASP system.

4.1 Introduction

Various controllers available in the open literature can be used to control multivariable

systems. Some widely adopted controllers are decentralized controllers, centralized

controllers, and decouplers. Since there is only n controller for each of n output vari-

ables, the decentralized controller becomes the most preferred over the centralized con-

troller. In the case of the centralized controller for n output variables, there prevails n2

number of controllers. The decentralized controller comprises n controllers for n output

variables since single loop controllers or diagonal controllers are used in it. Perhaps, a

fully multivariable centralized controller comprises n × n number of controllers since it

is not a diagonal one. In addition, the centralized controllers are individually designed

to ensure specified closed-loop performance for a set of operating conditions. If there
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are two input variables, namely u1 and u2, and two output variables, namely y1 and y2,

then the change in input variable u1 directly influences output y1, while it also indirectly

has an impact on output y2, the change in input variable u2 directly has an impact on

y2, but also has an indirect influence on output y1. This condition prevails due to the

interaction between the process variables. If the interaction between the loops is mod-

erate or less, the decentralized control system works well; however, it fails if there are

more interactions between the loops. By virtue of its simplicity and the potential to

achieve failure tolerance, the decentralized controller has been adopted by most of the

process industries (Su et al., 2006). Meanwhile, the decoupler uses a cofactor matrix

of the process in the control loop so that multivariable processes are modified into sev-

eral multiple single loops (Shen et al., 2010b; Jevtovic and Matausek, 2010). In short,

each output variable can be influenced by only one reference signal by isolating loops

through a reciprocal system. This allows the designer to tune the controller more tightly

because detuning is no longer required to allow delayed effects of interactions. Often

switching this can even yield better set point responses.

In most common cases, different process systems interact with one another, which

means disturbances are caused among different control loops. This interaction among

each loop is commonly faced with challenges in process industries. As discussed in

the above sections, nowadays, these challenges are rectified by detuning less important

loops so that important loops can achieve goop performance (Nordfeldt and Hagglund,

2006). Theoretically, this approach means one of the loops is made to interact poorly

in order to make the other loop have good interaction results, but practically, this is far

from optimal. A comprehensive study has been undertaken to know the interactions

in control loops, thereby deriving different tuning factors for different classes of in-

teractions. It is to be noted that a constant gain decoupler is always insufficient when

it is expected to decouple feedback loops with relatively different dynamic properties

(Schei, 1993). Hence, a simple decoupler can be designed for such types of challenges.

In the case of full decoupling, it is essential to perform the robustness study for the

decoupler to analyze the escalated sensitivity. Perhaps, the existence of significant dif-

ferences in dynamic characteristics among transfer function elements, the decouple fail

to give satisfactory performances (Shen et al., 2010b).

Even under various disturbances and control loop failures, it is been identified that

the decentralized controllers will be intrinsically robust (Hanuma et al., 2014). The de-
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centralized control system works well if interaction among the loops is moderate. If

not, it is always suggested to opt for centralized controllers (Rajapandiyan and Chi-

dambaram, 2012a). The pairing of controlled and manipulated variables plays a major

role in achieving good efficiency for a decentralized control system (Hanuma et al.,

2014). The task solved in a decentralized manner will always be easier for the design,

implementation, and maintenance of the resulting control system (Teck and Min, 2001).

Since the decentralized system involves interaction, it can be estimated by the RGA

index and the Niederlinski method by pairing the manipulated and control variables for

a stable system. An optimal input-output pairing for a MIMO system can be achieved

through an analytical tool named RGA. In other words, RGA describes the impact of

each manipulating variable on the output variables. In its simplest form, it is a normal-

ized form of a gain matrix. This can be obtained by taking the ratio of the open-loop

gain to the closed-loop gain (V. Vijay et al., 2012). To overcome the limitations of the

RGA method, an improvised version of RGA is proposed called RNGA. When com-

pared with the RGA method, the RNGA method considers transient information along

with process-steady state information. Similarly, the dynamic changes caused when all

the loops are open and all the loops are closed are represented as the Relative Average

Residence Time Array (RARTA). Another new approach proposed by Thomas McAvoy

is named Dynamic Relative Normalized Gain Array (dRGA) considers the effect of

process dynamics that employ a transfer function model instead of a steady state gain

matrix to estimate RGA (Witcher, 1977). In dRGA, the denominator played a vital role

in controlling parameters at all frequencies, whereas the numerator was simply an open-

loop transfer function. However, dRGA is more difficult to calculate and understand by

a control engineer due to its controller-dependent operations. The concepts of RGA,

RNGA, and RARTA are adopted in order to obtain the ETF for higher-dimensional

models. This ETF takes into account the loop interaction while designing a multi-loop

controller. The study by Rajapandiyan has also proven that the Effective Open-loop

Transfer Function (EOTF) derived from dRGA is equivalent to the ETF derived from

RNGA and the RARTA technique Rajapandiyan and Chidambaram (2012b).

In order to achieve the desired performance level, the controllers are designed based

on different methodologies and with different structures. For this study, the Proportional

Integral (PI) controller is considered since it will eliminate forced oscillation due to P-

action and steady-state errors due to I-action. Any process that eventually returns to the
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same output, when provided with the same set of inputs and disturbances can adopt a

PI controller. Meanwhile Proportional-Integrative-Derivation (PID) controller result in

excessive oscillation at set point response, when compared with PI controllers (Sesha-

giri et al., 2007). In most control systems, the commonly used controller structure is the

PID controller because of its several advantages. However, the derivative effect is not

always used due to noise in the control process (Concepcion et al., 2010). Further, PI

controllers have two parameters to calculate and give good results in most control sys-

tems. Apart from this, the forced oscillations and steady-state error can be completely

eliminated by adopting a PI controller. In most industrial applications, PI controllers

are used where the speed of the response is not a factor of concern (Chidambaram and

C. Sankar, 2017). Perhaps for decoupling control, the combination of neural network

and layout information achieves a better optimization (Qiao et al., 2019). The standard

PI controller dominates the industrial market when it comes to the application of control

theory, with its advantages and drawbacks accounted for. If the system is nonlinear, it

is always better to develop a procedure to design a robust PI controller with uncertainty

parameters (Aranovskiy et al., 2016).

The activated sludge wastewater treatment plant considered for the present study

demands a closed-loop control system due to its internal processes nonlinearities and

time variability. When viewed as an alternative to a centralized system, decentralized

wastewater management has a greater opportunity for wastewater reuse and reclama-

tion (Kara, 2005). Continuing the discussion in this section, inspired me to study the

direct and indirect interaction among the system parameters, which was necessary for

developing an effective decentralized controller in order to achieve an optimal WWTP.

To the best of our knowledge, this work on a decentralized controller with a decoupler

design on WWTP has been reported in open sources.

For the current study, a mathematical model for the simplified biological treatment

phases has been considered, which consists of four non-linear differential equations.

The transfer function matrix (2× 2) of WWTP has been determined using the system

identification toolbox by considering aeration rate and recycle sludge flow rate as input

variables and substrate and biomass concentration as output variables. The primary ob-

jective of the present study is to design a multivariable control system for the biological

treatment system that can enhance the performance of the WWTP. An attempt has been

made to design a decentralized PI controller and study the closed-loop responses. As
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discussed earlier, the decentralized controller involves interactions, which can be elim-

inated by the decoupler. A comparative study is also carried out to show the superiority

of the designed controllers. The comparison of time integral errors like ITAE, ISE, and

IAE minimization is used for designing the controllers. A robustness against process

parameters (process gain and time constant) uncertainty was also studied to understand

the stability of the control system.

4.2 Methodology

4.2.1 Decentralized Controller

In order to control any process, there should be a manipulated variable that allows one

to control the process and obtain the desired outcome. The multivariable process is

one that has more than one input variable and more than one output variable, which is

known as the MIMO process. Let us consider process G(s) with input variable U and

output variable Y , then its relation can be expressed as

Y (s) = G(s) ·U(s) (4.1)

Where Y (s) and U(s) are the output and input vectors, respectively, as shown below.

Figure 4.1 Decentralized system for two inputs and two outputs (TITO)
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Y (s) =

 y1(s)

y2(s)

 (4.2)

U(s) =

 u1(s)

u2(s)

 (4.3)

In Equation (4.1), G(s) is the process transfer function matrix and is given as

G(s) =

 g11 g12

g21 g22

 (4.4)

Consider a TITO system (2× 2 system) representation with a decentralized controller

shown schematically in Figure 4.1. Where g11, g12, g21, and g22 are four process trans-

fer function, and gc1 and gc2 denote the decentralized controllers. The two inputs are

expressed as u1, u2, and y1, y2 which represent two outputs, respectively. Two set points

are considered yr1 and yr1.

A TITO system with a decentralized controller design is discussed in this section. At

the beginning of developing the decentralized controller, all higher-order transfer func-

tions are converted to FOPTD. The decentralized controller matrix can be represented

by the following equation:

Gc(s) =

 Gc1 0

0 Gc2

 (4.5)

In this study, the decentralized controller is assumed to be the PI controller and given

by the following relation

GC j = KC j

(
1+

1
τi j

s
)

(4.6)

Here controller gain and integral time constant for jth (j = 1,2) are represented as KC j

and τi j respectively. These controllers are designed by minimizing the time integral

errors based on the selected best-paired transfer function models. The selection of the

best pairing is discussed in a subsequent section.
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4.2.1.1 Selection of best pairing

After estimating the FOPTD model through the system identification technique (as dis-

cussed in Chapter-4) the next step is to obtain the best pairing elements. The interac-

tions among the process variables may destabilize the closed-loop system, which tends

to make controller tuning more difficult. To overcome these interactions, pairing up

the controlled and manipulated variables are must. This operation will increase the

controller performance and stability margin. The concept of an RGA was taken up

to determine the best pairing between manipulated and controlled variables. The best

input-output pairing for a multivariable process control system could be achieved by

using the widely accepted RGA method. This method operates by characterizing the

degree of interactions between manipulated and control variables. Processes with large

RGA indexes are fundamentally difficult to control because of their sensitivity to input

uncertainty. This RGA matrix can be calculated as follows:

Λ = RGA = K ⊗ (K−1)T =

 λ11 λ12

λ21 λ22

 (4.7)

where λi j and K are elements of the relative gain array and gain matrix, respectively. ⊗
is the Hadamard product, and the gain matrix is obtained from the process gain matrix

(G) by substituting s = 0, and the relative gain array elements can be found as follows.

λi j =
gain when all other loops are open

gain when all other loops are closed
(4.8)

The two most prominent ways to estimate RGA are experiment and-or theoretical ap-

proach. While calculating RGA, the ultimate steady state values are given the most

important consideration, not the controller parameters. The RGA value tends to be

unity because each row and column sum are normalized. The λi j values calculated

from the steady state gain matrix is unaffected by scaling and invariably dimensionless

entity. One of the outputs and manipulated variables are represented by each row and

column, respectively. Below are interpretations for various values of λi j

i. λi j = 0: Indicates there is no impact of manipulated variable u j over controlled

variable (yi)
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ii. λi j = 1: This means there prevail no interactions among the process variables in

the selected control loops. The manipulated variable (u j) absolutely impacts the

controlled variable (yi). So from the theoretical definition, we can conclude that

the gain loop with all loops open is equal to the gain loop for all loops closed, i.e.,

g11 = g∗11

iii. λi j < 0: This value denotes that the system will be unstable whenever u j is paired

with yi.

iv. 0 < λi j < 1: This condition implies that other control loops interact more than the

selected control loop (u j − yi).

v. λi j = 0.5: All the loops selected have equal levels of interactions to the retaliatory

effects.

vi. λi j > 1: This condition prevails when the control pair is dominant but with the

opposite influence of other loops. Theoretically, the open-loop gain is greater

than the other closed-loop gain.

The best pairing is selected based on the values closer to unity in a row vector of RGA

matrix equation 4.7. Table 4.1 provides the guidelines for selecting the best pairing

between manipulated and control variables.

Table 4.1 Guidelines to select and avoid pairing

λi j Possible pairing
λi j = 0 Avoid pairing u j with Yi
λi j = 1 Pair u j with Yi
λi j < 0 Avoid pairing u j with Yi
λi j ≤ 0.5 Avoid pairing u j with Yi
λi j > 1 Pair u j with Yi

4.2.1.1.0.1 Niederlinski Index (NI) By using the result obtain from RGA, the

stability of the closed-loop system can be estimated using the Niederlinski index. At

steady state, it is given by

NI =
|G|

Πn
i=1gii

(4.9)
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For a TITO system, a negative value of NI indicates that the system is unstable,

whereas a positive value of NI represents the system is stable for the pairing. This

hypothesis may not be accurate for the larger matrices. since the NI theorem is for

system with rational transfer functions where predictions assume apparent feedback, it

is suggested in some of the studies to avoid using NI when the system possesses high

time delay (dead time).

4.2.2 Design of Decoupler

The principle purpose of designing a decoupler is to reduce the interaction among the

loops. A non-iterative control system design is a well-known technique to control in-

teractions between the loops (Prabhu Y. and Sankar, 2019). For the present study, the

input parameter aeration rate should affect only the output parameter DO concentra-

tion, without altering the substrate concentration. Similarly, in the second instance, the

input parameter recycles sludge flow, which should only affect the substrate concentra-

tion without interacting with and affecting the output parameter DO concentration. The

structure of the closed-loop decoupler is depicted in Figure 4.2. A design method for

the decoupler is described in this section.

Figure 4.2 Decentralized system for two inputs and two outputs (TITO)

Analytical or empirical methods can be utilized to simplify higher-order transfer

function models or nonlinear models to a FOPTD model. This approach is followed for

most of the processes in interaction analysis and controller design. Below is the rep-

resentation of the process transfer function model as the FOPTD model, which relates
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input i to output j,

gi j =
kpi je−θi js

(τi js+1)
(4.10)

From Figure 4.1, following relations can be written

y1(s) = g11(s)u1(s)+g12u2(s) (4.11)

y2(s) = g21(s)u1(s)+g22u2(s) (4.12)

There exist two transmission paths when input is introduced from ui to yi during the

second loop is closed. Usually, two combinations of transmission paths are considered

effective open-loop dynamics. Hence comprehensively a closed loop transfer function

between u1 to y1 is given by
y1

u1
= g11 −

g12g21gc2

1+gc2g22
(4.13)

It can be also written as
y1

u1
= g11 −

g12g21(gc2g22)

g22(1+gc2g22)
(4.14)

Similarly for the second loop
y2

u2
= g22 −

g21g12(gc1g11)

g11(1+gc1g11)
(4.15)

The open loop dynamics between controlled variables (yi) and manipulated variables

(ui) depends on other processes and controllers in other loops apart from corresponding

transfer function (gi j). Hence two assumptions were considered to reduce the above

two equations;

1. For other loops the perfect controller approximation was used to simplify the above

equation
(gcigi j)

(1+gcigi j)
= 1 (4.16)

i = 1, 2, 3..... 2. ETF’s when compared with the corresponding open-loop model has

the similar structure

g∗11 =
y1

u1
= g11 −

g12g21

g22
g∗22 =

y2

u2
= g22 −

g21g12

g11
(4.17)

Because of its complexity it is difficult to use EOTF (g∗11 and g∗22) directly for the

controller design. Hence using the Maclaurin series the resulting EOTF is reduced to

FOPTD models. Adopting this method while formulating EOTFs and in model reduc-

tion on higher dimensions systems leads to complications.
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4.2.2.1 Equivalent Transfer Function (ETF)

The response from an open-loop stable system is always simplified by analytical or

empirical methods to a FOPTD model for designing the controllers. To solve this con-

dition, there are various methods available in the literature. RGA, RNGA, and RARTA

concepts are adopted by other researchers to obtain the expression for ETF for higher-

dimensional systems. RGA is the fraction of open loop gain to closed loop gain of each

element between the same two variables when all other loops are closed (V. Vijay et al.,

2012).

Λi j =
gain when all other loops are open

gain when all other loops are closed
(4.18)

That is

=

(
∂yi
∂u j

)
uk ̸= j(

∂yi
∂ui

)
yk ̸= j

(4.19)

Each element of Λi j for RGA. If the above definition is written in another form of

transfer function matrix G(s) = gi j = (∂yi/∂u j)uk and its inverse will be G−1(s) =

ĝi j = (∂yi/∂u j)yk as

Λ(G) =
{

Λi j
}
=
{

gi jĝi j
}
= G(s)⊗G−T (s) (4.20)

where ⊗ denotes the Hadamard Product. The transfer function matrix elements are

expressed in inverse form as {
G−T (s)

}
= ĝi ji =

Λi j

gi j
(4.21)

The normalized gain (KNi j) for a particular transfer function,(gi j(s)) which describes

the dynamic properties of the transfer function is defined as,

KNi j =
ki j

σi j
=

ki j

(τi j +θi j)
(4.22)

The normalized gain matrix is expressed as

KN =

 KN,11 KN,12

KN,21 KN,22

=


k11

(τ11 +θ11)

k12

(τ12 +θ12)
k21

(τ21 +θ21)

k22

(τ22 +θ22)

 (4.23)

Here, Average Residence Time (ART) is σi j = τi j +θi j which represents the response

speed of the controlled variable (yi) to the manipulated variable (ui). The ART rep-

resents the average time it takes for a change in the manipulated variables to be fully

reflected in the response of the transfer function. In simpler terms, the smaller the value
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of ART, the quicker the system responds to changes in the input disturbance. This means

that the effects of adjustments made to the manipulated variables are rapidly observed

in the behavior of the controlled variable. By reducing the average residence time, the

transfer function becomes more sensitive and responsive to any modifications in the

manipulated variables. This enhanced sensitivity allows for faster and more efficient

control of the process, as deviations from the desired set point can be quickly detected

and corrected. Similarly, the larger value of ART indicates slower process dynamics.

Compared to RGA, RNGA is an advanced version that scrutinizes the steady-state and

transient behavior of the process transfer function through thorough measurement of

MIMO systems. Because of this, it provides valuable information without undertaking

frequency-dependent analysis (Mao et al., 2009). A normalized gain matrix can be used

to express relative normalized gain array (RNGA - φ ) and hence

φ = KN ⊗K−T
N (4.24)

where,

φ =

 φ11 φ12

φ21 φ22

 (4.25)

The ratio of loop yi - u j average residence times, during other loops are closed and when

other loops are open, yields Relative average residence time (γi j),

γi j =
σ̂i j

σi j
(4.26)

When a condition emerges of having all loops open and all other loops closed, the

estimation of the RARTA will provide us with the dynamic behavior of the system. The

RARTA concept is generally used to approximate a decomposed process model (Shen

et al., 2011). RARTA can be secured by estimating the relative average residence time

for all the elements of the transfer function matrix,

Γ =

 γ11 γ12

γ21 γ22

 (4.27)

Which is calculated as
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Γ = φ ⊗Λ =

 φ11 φ12

φ21 φ22

⊗
 Λ11 Λ12

Λ21 Λ22

 (4.28)

Here Hadamard division is denoted as ⊗. By definition, the relative average residence

time can be written as

σ̂i j = σi jγi j = τi jγi j +θi jγi j (4.29)

= τ̂i j + θ̂i j (4.30)

where τ̂i j and θ̂i j denote time constant and time delay when other loops are closed

respectively.

The transfer function matrix element of a MIMO process can be possibly obtained

by approximating elements of the transfer function matrix that has the same form as the

open-loop transfer function, by using the above-discussed methods i.e., RGA, RNGA,

and RARTA. Therefore,

ĝi j(s) =
k̂i j

(τ̂i j
s+1)e−θ̂i js (4.31)

It can be written as,

ĝi j(s) =
k̂i j

Λi j

1
(γi jτ̂i j

s+1)e−γi jθi js (4.32)

When other loops are closed the optimal Effective Transfer Function (ETF) is denoted

by ĝi j(s). k̂i j, τ̂i j and θ̂i j represent closed loop process gain, time constant, and dead

time respectively.

4.2.2.2 Relationship between ĝii(s) and g∗ii

The EOTF can be expressed by the elements of dRGA (Truong and Moonyong, 2010b)

g∗ii =
gii

Λii
(4.33)

here, dRGA can be expressed as

Λi j = G(s)⊗ Ĝ(s) (4.34)

Λi j =

 g11(s) g12(s)

g21(s) g22(s)

⊗


1
ĝ11(s)

1
ĝ12(s)

1
ĝ21(s)

1
ĝ22(s)

 (4.35)
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If the controller is Ideal, it is possible to write

U(s) = G−1(s)Y (s) (4.36)

That is when all other loops are closed the gain from U j(s) to Y j(s) is 1
[G−1(s)] i j

Then

Λ(s) = G(s)⊗G−T (s) (4.37)

Λ(s) =

 g11(s) g12(s)

g21(s) g22(s)

⊗
 g11(s) g12(s)

g21(s) g22(s)


−T

(4.38)

Comparing (4.35) and (4.38), it can be noted that
1

ĝ11(s)
1

ĝ12(s)
1

ĝ21(s)
1

ĝ22(s)

=

 g11(s) g12(s)

g21(s) g22(s)


−T

(4.39)

Taking the transpose on both sides,

G−1(s) = Ĝ−T (s) (4.40)

From equation 4.40, it can be interpreted that conventional EOTF (from dRGA) is

identical to the ETF (from RNGA).

4.2.2.3 Controller Design

It is a well-known fact that the output of the system mainly depends on the input; hence,

it is necessary to pair the input and the output in the best possible way. The controllers

are designed using ITAE minimization, IAE minimization, and ISE minimization meth-

ods. One of the aims of the present study is to obtain the optimal controller parameters

(kc, τI , τD). Hence, the objective function f is formulated so as to minimize time inte-

gral errors such as IAE, ITAE, and ISE. Mathematically, it can be defined as

Minimize
(kc, τI , τD) f (4.41)

where f is the objective function depending on the time integral error that can be set

based on the error function, which will be minimized.

For ITAE minimization, f can be as follows
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f =
∞

∑
t=0

t|y(t)− yr(t)| (4.42)

For IAE minimization,

f =
∞

∑
t=0

|y(t)− yr(t)| (4.43)

and for ISE minimization,

f =
∞

∑
t=0

|y(t)− yr(t)|2 (4.44)

In the ITAE minimization method, the error obtained from comparing the set point

and process response for various times is multiplied by the time. The fminsearch in

Matlab routine is used in this work for solving the optimization problem. The procedure

involves developing a single-loop control system in a Simulink environment and then

linking it with Matlab. Each time the objective function is evaluated, the Simulink

model is executed. The Simpsons One-Third rule is used for obtaining the area under

the curve (i.e., IAE, ITAE, and ISE indices). A similar procedure has been followed for

the other two methods (i.e., IAE and ISE).

The Nelder-Mead "Simplex" Algorithm implemented in the fminsearch function is

highly regarded as the most prevalent technique for nonlinear unconstrained optimiza-

tion. Originally introduced in 1965 by Nelder and Mead (Nelder and Mead, 1965), this

algorithm gained widespread adoption in various fields such as chemical engineering,

chemistry, and medicine (Lagarias et al., 1998). As a direct method, it operates solely

based on the functional values of the scalar-valued nonlinear function with n real vari-

ables, making it independent of derivative information. The Nelder-Mead algorithm

is a numerical technique for finding the minimum or maximum of a multidimensional

function. It uses a shape called a simplex, which consists of a set of vertices. Each

vertex represents a point in the function’s domain. The algorithm iteratively updates

the vertices to converge towards the optimal solution. (Idris et al., 2021; Ghanadzadeh,

Gilani, et al., 2019; Moradi and Seyedtabaii, 2022; Erfan et al., 2022).

4.2.2.4 Summary of Decentralized and decoupler controller

This section summarizes the procedure adopted to design a decentralized and decoupled

controller. The FOPTD model is estimated using the System Identification technique,

which will then be used to obtain the RGA matrix that indicates the best pairing for
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which the controllers have to be designed. Accordingly, by using this best pair, the

controllers are designed to minimize the time integral errors. Figure 4.3 summarizes

the steps adopted for designing a decentralized controller

Figure 4.3 Flowchart of steps involved in Decentralized controller design

Similarly, in the case of decoupler controller design, the following steps are carried

out (Figure 4.4). This method also endorses the same FOPTD model that was deter-

mined using the system identification technique for the decentralized controller. Then

followed by a series of steps to estimate RNGA, RART, and RARTA that will lead to

estimating the decoupled controller parameters by an optimization technique.
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Figure 4.4 Flowchart of steps involved in Decoupler controller design

4.3 Simulation Results and Discussion

To test the performance of the control system, several simulation scenarios were con-

sidered using a linear version of a process mathematical model, and the outcome is

explained in the following section. The linearized transfer function matrix obtained

from the system identification approach is given as
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G(s) =


0.0007022e−0.3s

0.60211s+1
1.3019e−0.0306s

0.57229s+1
0.94958e−0.1781s

0.58065s+1
0.7025e−0.0001s

0.58347s+1

 (4.45)

Figure 4.5 represents the dynamic test conducted to validate the model with measured

data. On average, good fits of the model were observed, ranging from 82% - 98% from

a given percentage. These identified models were controllable and observable. The

following expression is adopted for estimating the percentage fit

fit = 100
(

1− ||y− ŷ||
||y−mean(y)||

)
(4.46)

Here, the measured output is expressed by y, and ŷ indicates output obtained from the

identified model.

Figure 4.5 Response comparison of the identified model with the measured output

Decentralized controller

The gain array matrix is estimated as follows

K =

 0.0007022 1.3019

0.94958 0.7025
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The RGA can be calculated using Equation 4.7

Λ =

 −3.9918e−4 1.0004

1.0004 −3.9918e−4


By utilizing the above calculated RGA values, it becomes possible to determine the

most suitable pairing for the values within a row that exhibit proximity to one and

are non-negative. It is apparent from the observation of RGA values that input (u1)

and output (y2) and input (u2) and output (y1) can be paired. Hence, a decentralized

controller must be designed based on the transfer functions relating recycle sludge flow

rate to biomass concentration (G12) and aeration rate to substrate concentration (G21).

The controllers are designed using error minimization methods such as ITAE, IAE, and

ISE, and identified PI settings are mentioned in Table 4.4. Negative gain initiates direct

action on the controller, while positive gain forces the reverse action on the controller.

As we increase the two manipulated variables, the ratio of recycled flow to influent flow

(u1) and Aeration rate (u2), two output variables will favor an inverse action, observing

a decrease in biomass concentration (y1) and substrate concentration (y2).

Figure 4.6 Closed loop response and change in manipulated variables for decentralized
WWTP

At the time t = 0, a unit step input is applied to the set point, followed by the intro-

duction of a disturbance to the process at 10s, enabling the evaluation of the closed-loop
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performances. Figure 4.6 presents the closed-loop response of output and change in

manipulated variables for the decentralized system of WWTP. It is important to high-

light that the three methods produced relatively similar types of closed-loop responses.

However, when comparing the three methods, such as ITAE minimization, IAE mini-

mization, and ISE minimization, the settings derived from IAE minimization demon-

strated a shorter settling time and no oscillation for set point tracking. Additionally, the

closed-loop response achieved with IAE minimization PI settings showed lesser errors

(as indicated in Table 4.2) compared to the ITAE and ISE methods, respectively.

The quantitative analysis in terms of time integral errors such as IAE and ITAE are

given in Table 4.2. It can be found that the IAE minimization method has the lowest

value of the IAE and ITAE indexes for both outputs (y1 and y2). Meanwhile, the IAE

error index when estimated using ITAE, the IAE and ISE minimization methods have

15.44%, 3.67%, and 21.81% of higher percentage Index, respectively. Similarly, for

error ITAE, the PP method had 67.55%, 54.05%, and 62.62% lower percentage index

when compared with ITAE, IAE, and ISE respectively. The Total variance of the ITAE

method, IAE method, and ISE method is shown in Table 4.2. It is clearly noted that the

lowest value of the TV is obtained through the ITAE method, while the highest value is

obtained by the ISE method in both conditions of the outputs (y1 and y2).

Table 4.2 Error Index for Decentralized Controller

y1 y2

Method IAE ITAE TV IAE ITAE TV
IAE 0.0423 3.5743 1.4158 0.1327 3.6746 1.133
ISE 0.0497 3.7733 2.1144 0.1406 3.847 1.8316
ITAE 0.0471 3.8875 1.1347 0.1453 3.9567 0.8518

An uncertainty of 30% has been introduced in the process gain (kp) and time con-

stant (τ) to analyze the robust performance of the closed loop system. From Figure 4.7

and 4.8 (right section) it is evident that the system is robustly stable for the significant

extent of model uncertainty. These figures exhibit the robustness behavior of the sys-

tem (for output y1 and y2 respectively) towards the stipulated uncertainty. The plot also

represents the nominal and worst-case gains of the uncertain system using the dynamic

condition with function as frequency. The nominal curve falls well within the 30% per-
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turbation provided for the process gain (Figure 4.7) and time constant (Figure 4.8). The

system can tolerate up to 333% of uncertainty in process gain for both the outputs y1

and y2, whereas for the time constant it can tolerate upto 321% and 256%, respectively.

In the singular value plots (right-hand side) the solid blue line represents the nominal

curve, and the red line indicates the worst-case gain for the lower and upper bounds

at each frequency. It is distinctly noticeable that the nominal curve falls well with the

acceptable range for perturbation provided for process gain and time constant. The light

blue curves indicate the various sampled responses of the system. And the peak spike

over the worst-case gain curve represents the critical frequency where the worst-case

gain over all the frequencies can be estimated. Correspondingly, the closed loop re-

sponses over a period of uncertainty at various frequencies in process gain and time

constant are presented in Figures 4.7 and 4.8, respectively for both the outputs (y1 and

y2). In both cases, with acute and swift oscillations, the response curves from outputs

(y1 and y2 attain a stable state. The nominal value curve falls well within the random

sample curves in the closed-loop response plots. The lower and upper bound values of

worst-case peak gain tend to be around 1.2 and 1.1 for perturbation is provided to pro-

cess gain and time constant, respectively (refer Table 4.3). The frequency at which the

worst-case peak gain occurs is 5.657 and 6.617 respectively for stipulated perturbation

given to process gain and time constant. Then the value for destabilizing elements for

uncertain elements and the value of uncertain elements that cause worst-case gain is

denoted as wcu and wcug in Table 4.3.

Table 4.3 Worst-case gain scenario for Decentralized controller

Uncertainty LB UB CF wcu wcug Tolerance %

Kp 1.2491 1.2518 5.6570 -2.3648E-14 1.2345
y1 - 333
y2 - 333

τ 1.1953 1.1979 6.6178 0.1347 0.4065
y1 - 321
y2 - 256

LB: Worst case gain lower bound, UB: Worst case gain upper bound,
CF: Critical frequency, wcu: Worst case peak gain at critical frequency,
wcug: Worst case gain at all specified frequency
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Figure 4.7 Closed loop step responses for 30% uncertainty in process gain (left-hand
side), and Singular values for nominal, random samples, and worst-case gain for 30%
uncertainty in process gain (right-hand side)(Decentralized)

Figure 4.8 Closed loop step responses for 30% uncertainty in time constant (left-hand
side), and Singular values for nominal, random samples, and worst-case gain for 30%
uncertainty in time constant (right-hand side)(Decentralized)
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Decoupler

The normalized gain matrix (KN), dynamic Relative Gain Array (dRGA - Λ), Rela-

tive Normalized Gain Matrix (RNGA - φ ) , Relative Average Residence Time Array

(RARTA - Γ) is calculated as

KN =

 0.0008 2.1591

1.2515 0.7952

 Λ =

 −0.0004 1.0004

1.0004 −0.0004



φ =

 −0.0002 1.0002

1.0002 −0.0002

 Γ =

 0.0008 2.1591

1.2515 0.7952


The above estimated RGA and RNGA values are utilized to get the ETF model param-

eters and are given by

K̂c =

 −0.0018 0.0013

0.0009 −1.7598

 τ̂ =

 0.3456 0.5722

0.5806 0.3349



θ̂ =

 0.1722 0.0307

0.1781 0.1722


Hence the Effective Transfer Function (ETF-ĝ) can be expressed as

ĝ(s) =


−0.0018e−0.1722

0.3456s+1
0.0013e−0.0307

0.5722s+1

0.0009e−0.1781

0.5806s+1
−1.7598e−0.1722

0.3349s+1

 (4.47)

The decoupler was implemented and tested for the present system, and the performance

of the decoupler is shown in Figure 4.9. During its first testing period, the input param-

eter aeration rate should affect only the output parameter DO concentration without al-

tering the substrate concentration. Similarly, in the second instance, the input parameter

recycle sludge flow, should only affect the substrate concentration without interacting

with and affecting the output parameter, i.e., DO concentration. Figure 4.9 describes

the time response by the system of two inputs and two outputs, where it can be noted
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that interaction among the loops reduces with interestingly quite intuitive action.

Figure 4.9 Closed loop performance of WWTP with Decoupler

Table 4.4 PI controller Settings

Decentralized controller
Gc1 Gc2

Method kc τI kc τI

IAE criterion 1.3788 0.6445 1.9009 0.6359
ISE criterion 1.8767 2.5995 0.9108 0.9126
ITAE criterion 1.1746 0.5922 1.6195 0.5896

Decoupler
IAE criterion -0.7473 0.4047 -7.26E-04 0.3937
ISE criterion -1.0296 0.5653 -0.001 0.55
ITAE criterion -0.6249 0.3673 -6.07E-04 0.3572

There exist several methods for estimating the robustness of multivariable systems.

One method that is easy to apply and compares the different control system stabili-

ties is the inverse of the maximum singular value method (V. Vijay et al., 2012). For

the present study, the illustrated robustness stability analysis has been evaluated and is
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shown in Figure 4.10. This plot describes the frequency plot of the inverse of the maxi-

mum singular value, which represents the stability of WWTP. The lower portion of the

curve indicates the stability region, whereas the upper portion of the curve describes

the instability region. Here, the area under the curve is directly proportional to stability,

which indicates that the more area under the curve, the more stable the system’s per-

formance. All the methods give almost similar stability, both in the lower and higher

frequency regions. It can be seen in the output uncertainty plot that the IAE method

curve shows slightly more stabilization than the ISE method curve and almost similar

stability conditions with the ITAE method.
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Figure 4.10 Input and Output sensitivity robustness

Table 4.5 Error Index for Decoupler

y1 y2

Method IAE ITAE TV IAE ITAE TV

IAE criterion 0.3128 0.0599 0.1789 0.3132 0.0600 1.58e-04

ISE criterion 0.3170 0.1116 0.4612 0.3164 0.1099 4.35e-04

ITAE criterion 0.3392 0.0614 0.0564 0.3393 0.0616 3.89e-05

Table 4.5 presents the outcome of quantitative analysis by adopting time integral

errors (ITAE, ISE, and IAE) methods. It is clear that the time integral IAE method has

better decoupler performance compared with the ITAE method, and the ISE method.
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The IAE method has 1.34%, and 8.43% lesser percentage index value, in the IAE in-

dex; similarly, in the ITAE index, the IAE method has 86.31% and 2.50% lesser error

percentage compared with ISE and ITAE methods, respectively, for output y1. Identi-

cally, for output y2 also the IAE method has a lesser error response when compared with

the other two methods. In the IAE index, the percentage reduction for the IAE method

is 1.02% and 8.33%, whereas, in the ITAE index, it is 83.16% and 2.16% reduction

when compared with the ITAE method and ISE method, respectively. By comparing

the Total Variance (TV) value from Table 4.5, it is clear that the ITAE method gives

smoother controller performance when compared with the IAE and ISE methods.

Analysis of the robustness plots (Figure 4.11 and 4.12 right section) reveals a signif-

icant observation regarding the system’s ability to withstand substantial perturbations

while maintaining its stability. Despite subjecting the process parameters (process gain

and time constant) to their most extreme magnitudes, with perturbation levels reach-

ing a substantial ± 30%, the system demonstrates an impressive capacity for stability

and prediction. It is apparent that the nominal curve is well within the range of per-

missible perturbation, whereas serving as robustness indicators, the red line curves act

as critical thresholds, defining the upper and lower limits of the process gain and time

constant variability. They serve as a tangible benchmark, offering precise guidance on

the maximum permissible range of acceptable variability, essential for effective process

control. From this uncertainty study, it was evident that the system can tolerate up to

333% variation in process gain, and 267% and 260% of the uncertainty in time constant,

respectively. Correspondingly, the closed-loop responses from the process outputs also

indicate that the system handles the perturbations exceptionally well caused by model

uncertainty with a short oscillation at the beginning (Figure 4.11 and 4.12). It is also

noted that the output y2 response has less oscillation and faster-settling behaviour than

the output y1 response. From Table 4.6, it is observed that the lower and upper bound

of worst-case peak gain is around 1.49 and 1.33 when the perturbation is provided to

process gain and time constant, respectively. Whereas, 6.995 and 7.939 are two fre-

quencies when the worst-case peak gain occurs for perturbation in process gain and

time constant, respectively. wcug represents the value of uncertain elements that cause

worst-case gain. Next, wcu and wcug represent the value of the destabilizing elements

for uncertain elements and uncertain elements that cause a worst-case gain for stipulated

uncertainty, respectively.
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Figure 4.11 Closed loop step responses for 30% uncertainty in process gain (left-hand
side), and Singular values for nominal, random samples, and worst-case gain for 30%
uncertainty in process gain (right-hand side)(Decoupler)

Figure 4.12 Closed loop step responses for 30% uncertainty in time constant (left-hand
side), and Singular values for nominal, random samples, and worst-case gain for 30%
uncertainty in time constant (right-hand side)(Decoupler)
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Table 4.6 Worst-case gain scenario for Decoupler controller

Uncertainty LB UB CF wcu wcug Tolerance %

Kp 1.495 1.498 6.995 3.024E-11 -2.287E+03
y1 - 333
y2 - 333

τ 1.331 1.334 7.939 0.063 0.234
y1 - 267
y2 - 260

LB: Worst case gain lower bound, UB: Worst case gain upper bound,
CF: Critical frequency, wcu: Worst case peak gain at critical frequency,
wcug: Worst case gain at all specified frequency

4.4 Conclusion

This article presents a decentralized controller and decoupler controller design for an

ASP system. The decentralized controller is mainly preferred for its simplicity, eas-

ier maintenance, and fewer tuning parameters when compared to the full multivariable

controller. The implemented method utilizes a relative gain array concept, which is ob-

tained by inversing the process transfer function matrix. The closed-loop control system

was further improved by adopting a normalized gain array with an equivalent transfer

function for each element of the process transfer function matrix. As stated earlier,

by choosing a suitable control loop configuration, the interaction strength between two

control loops can be nearly reduced. However, it is impossible to completely eliminate

the interactions by selecting a favorable pair of manipulating variables.

In the present study, one can appreciate the ability of the controller to track the con-

trol parameters using their desired values in response to a step change of the substrate

set-point and its robustness by neglecting the disturbances due to changes in kinetic

parameters. Simulation studies of the closed-loop system of WWTP indicated that the

controller designed based on IAE minimization criteria gives improved performance

compared to ISE and ITAE minimization criteria methods. These observations were

also supported by error indices, where the IAE method had the lowest error compared

to the ITAE and the ISE methods, respectively. The robust stability and performance

of the proposed controller are analyzed by undertaking a ±30% parametric uncertainty

study for the time constant, and process gain in the normal system. This examination

proved that even after providing the stipulated perturbation to process parameters the

system retained its robust nature. This method was relatively simple, straightforward to

be understood by practical control engineers, and can be easily embedded in the com-
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puter control system. To overcome the limitations of the decentralized controller, a de-

coupler controller is designed for the same ASP system. The closed-loop response was

better than the decentralized controller since the decoupler considers a decoupled sys-

tem that could manage system interactions effectively. In particular, the ITAE method

produced almost negligible overshoot, undershoot, and settled faster than the IAE and

ISE methods. By providing 30% perturbation to process gain, the system was tested for

robustness with a decentralized and decoupler controller. The nominal and worst-case

plots clearly showed that the system could tolerate up to 333% of perturbation. Sup-

ported by the closed-loop response behavior of two outputs with exceptionally fewer

oscillations before achieving stable responses.
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Chapter 5

CENTRALIZED CONTROLLER DESIGN
FOR AN ASP

This chapter provides an introduction to centralized controllers and their crucial

role in effectively managing multivariable processes. The initial section highlights the

importance of these controllers and their significance in achieving control objectives.

Furthermore, the section presents a comprehensive overview of two interaction meth-

ods, namely RNGA and dRGA, which serve as valuable tools for centralized PI con-

troller design. The subsequent section focuses on a detailed design approach for these

controllers, offering practical guidelines for implementation. In order to evaluate the

effectiveness of the aforementioned methods, a simulation study is performed, compar-

ing their performance and highlighting key insights. Additionally, robust uncertainty

analysis is performed to assess the system’s resilience against perturbations in process

parameters. Finally, the last section summarizes all the obtained results and offers in-

depth discussions regarding the centralized PI controller study for an ASP (Activated

Sludge Process) system.

5.1 Introduction

The MIMO process with interacting loops stands as the most prevalent process in var-

ious process control industries. Its primary objective is to attain exceptional product

quality while optimizing energy and material consumption. However, designing a con-

troller that takes into account the interaction among process variables poses significant

challenges. Decentralized controllers have gained widespread usage due to their sim-

plicity and ease of operation. To ensure system stability, decentralized controllers are
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typically loosely tuned, which can impact their efficiency and performance, particu-

larly for systems with mild or less interactive loops. During the course of the study,

a decoupled controller was introduced to transform the MIMO system into individual

SISO systems, enabling separate controller designs for each component. Subsequently,

Ram and Chidambaram combined these decoupled controllers to form a single central-

ized controller, utilizing a steady-state gain matrix as a basis for integration (V. Dhanya

and Chidambaram, 2015). Further advancements led to the direct design of a central-

ized controller, which exhibited even better performance compared to the combined

decoupled controller, even for higher-order multivariable systems (Xiong et al., 2007;

X. et al., 2014). Consequently, the centralized controller surpasses both the decentral-

ized and decoupled controllers in terms of performance for interactive MIMO systems

(Ghosh and Pan, 2021).

Initially, E. Davison proposed the centralized PI controller design that used just

a steady-state gain matrix yet lacked empirically derived controller settings (Davison,

1976). Later by adopting a trial and error approach V. Ram et al., (V. Dhanya and

Chidambaram, 2015) further refined the tuning parameters that were suggested by E.

Davison. This was further extended to the non-square and unstable MIMO system by

K. Sarma et al., (Sarma and Chidambaram, 2013) and V. Ram et al., (V. Dhanya and

Chidambaram, 2015). The other simple and popular detuning technique named Biggest

Log Modulus tuning (BLT) method was proposed by Luyben (1976) (Luyben, 1986).

Eventually, during the last decade, Equivalent Transfer Function (ETF) based controller

design has attracted many researchers due to their simple approach (Luan et al., 2015;

Shen et al., 2014). V. Kumar et al.,(V. Vijay et al., 2012) suggested ETF-based central-

ized controller (2 × 2) design from multi-loop Direct Synthesis (DS) method (Truong

and Moonyong, 2010b). However, the complexity of controller tuning increased with

the increase in the order of the process. In fact, the ETF-based dRGA method was

first presented by Witcher and Mc Avoy (Witcher and McAvoy, 1977) in 1977 where

they considered transfer function by replacing the traditional steady-state model, and

the RNGA method by He et al. (2009) (Mao et al., 2009). These methods are simple,

and easy to implement (Truong and Moonyong, 2010b) but cannot be implemented on

the non-square system due to its difficulties in ETF parametrization.

Even though the RNGA method was easy for calculations in practical applications,

it was limited to multivariable systems making it only suitable for industrial processes.
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The dRGA pairing method considers the process dynamics by overcoming the limita-

tions of the RGA-based loop pairing technique that often uses conjunction with Nieder-

linski index (NI) to assure system stability. Since the dRGA considers the dynamics

so it also takes care of disturbance caused in the MIMO process. In dRGA, the perfect

control actions at all frequencies are attained by the denominator, while the numer-

ator is a simple open-loop transfer function. The dRGA method can be useful if at

all it involves relatively less interaction among the controller actions (Mc Avoy et al.,

2003). Even though these methods include several tuning parameters, these methods

are widely adopted in industrial processes due to their simple, straightforward forward,

and easy-to-implement operations.

As evident from the above discussions, the current study on WWTP adopts a cen-

tralized controller that offers more freedom, plus overcomes the limitation of decoupler

for stability challenges as compared to decentralized controller design (Sanjith and Rao,

2020). An ETF-based controller which is easy to implement in real-world engineering

processes was considered here. In this chapter, two methods namely RNGA (Shen

et al., 2014) and dRGA (Yadav et al., 2020) were adopted for designing a centralized

PI controller for an ASP system. The study considers multivariable PI controller since

it is a promising alternative for these complex controllers. Full matrix PI controller can

constructively achieve the desired performance and independent set-point tracking with

interaction suppression goals. The study aims at controlling the effluent DO and Sub-

strate concentration by manipulating the aeration rate and recycle sludge flow rate. The

study employs two ETF-based methods to demonstrate the effectiveness of the designed

centralized PI controller supported by performance indices and robustness analysis.

5.2 Methodology

The transfer function for the TITO system of size 2 × 2 with s-domain is represented

by Gp(s). This multivariable system is defined as

Y (s) = Gp(s) ·U(s) (5.1)

Here, the output variable is the vector denoted by Y, U is manipulated variable and the

transfer function matrix (n×n) is designated as Gp. In this study each transfer function

Gp,i j(s) is considered as First Order Plus Time Delay (FOPTD) system.
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Gp =

 g11 g12

g21 g22

 (5.2)

Accordingly, the 2 × 2 system with a centralized control structure is shown in Figure

1, representing the control structure and corresponding feedback loop. All the manipu-

lated variables are calculated simultaneously by utilizing a single control algorithm in

the centralized control system. Converting all higher-order transfer functions to FOPTD

is the crucial preliminary stage while designing a centralized controller. The centralized

controller matrix can be given by,

Gc(s) =

 Gc11 Gc12

Gc21 Gc22

 (5.3)

In this study, the PI Controller type is considered for designing the centralized con-

troller, and it is expressed as

GCi j = KCi j

(
1+

1
τi j

s
)

(5.4)

where, Kci j and τi j are controller gain and integral time constants respectively for ith

and jth (i, j = 1, 2) controller. In order to assist the design of the control system, the

Figure 5.1 Centralized scheme of multivariable system with PI controller
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responses from the higher-order processes are simplified to the FOPTD model either by

empirical or analytical approach in the below section.

5.3 Effective open-loop Transfer Function (EOTF)

Once the FOPTD model is developed through the PRC method (as discussed in Chapter-

4) the next step is to obtain the EOTF elements. Consider a 2 × 2 system, wherein the

input-output relations for the process are given by

y1 = g11(s)u1 +g12(s)u2 (5.5)

y2 = g21(s)u1 +g22(s)u2 (5.6)

From the block diagram shown in Figure 5.1, the open loop transfer function for the

control variable y1, and manipulated variable u1, is defined as,

y1(s)
u1(s)

= G11(s) (5.7)

In the case of the closed-loop, it is

y1 = G11u1 +Gc2G12(s)y2 (5.8)

Similarly,

y2 = G21u1 +Gc2G22(s)y2 (5.9)

y2 =
G21u1

1+Gc2G22
(5.10)

Substituting value of y2 from equation 5.10 in equation 5.8, we get

y1 = G11u1 −
Gc21G12G21u1

1+Gc2G22
(5.11)

y1

u1
= G11 −

Gc21G12G21

1+Gc2G22
(5.12)

Two assumptions are made to reduce the above-complicated relationship. First, the

study achieves a perfect controller approximation for the other loop. Second, the re-

spective ETFs have the same structure as the corresponding open-loop model.

Gci jGi j

1+Gci jGi j
= 1, i = 1,2 (5.13)

Hence, we get

y1

u1
= G11 −

G12G21

G22
= Ge f f

11 (5.14)
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Similarly, when the first loop is closed, the transfer function relating u2 with y2 may be

expressed as
y2

u2
= G22 −

G21G12

G11
= Ge f f

22 (5.15)

But the effective open-loop transfer functions (Ge f f
11 and Ge f f

22 ) are complicated and

cannot be used directly for the controller design. Hence to adopt EOTF for controller

design, it is further reduced to FOPTD models using Maclaurin Series. The present

study utilizes RNGA and dRGA concepts to derive the ETF expressions for higher-

order systems.

5.4 Equivalent Transfer Function (ETF)

As discussed earlier, the controller is designed by estimating the FOPTD model for a

simplified open-loop stable system, using analytical or empirical methods. ETF meth-

ods are easy and simple to implement in real-world conditions. Based on the ETF of

a closed-loop system, the controller can be designed using existing PI tuning methods.

Through RNGA and dRGA methods, the parameters of the ETF model can be easily

estimated and are explained in the following sections.

5.5 RNGA Method

The Relative Normalized Gain Array (RNGA) is defined as the ratio of normalized gain

to the average residence time for loop i - j. While average residence time represents the

response time of a control variable for change in manipulated variables, which can be

estimated by (τ + θ ). The procedure involved in designing the PI controller using the

RNGA method is comprehensively explained in this section. The study utilizes Relative

Gain Array (RGA), Relative Normalized Gain Array (RNGA), and Relative Average

Residence Time Array (RARTA) concepts to derive the ETF. Mathematically, RGA can

be secured by taking a fraction of the open loop gain to the closed loop gain of each

element, between the same two variables when all other loops are closed.

Λi j =
gain when all other loops are open

gain when all other loops are closed
=

(
∂yi
∂u j

)
uk ̸= j(

∂yi
∂ui

)
yk ̸= j

(5.16)
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RGA contains each element of Λi j. The value closer to unity is selected as the best

pairing in a row vector of the RGA Matrix. Meanwhile, the negative values should not

be considered for pairing and even the sum of all values within a row should be equal

to 1. Transfer function matrix can be used to formulate similar expression G(s) = gi j =

( ∂yi
∂u j

)yk , and its inverse will be G−1(s) = ĝi j = ( ∂yi
∂u j

)yk as

Λ(G) =
{

Λi j
}
=
{

gi jĝi j
}
= G(s)⊗G−T (s) =

 Λ11 Λ12

Λ21 Λ22

 (5.17)

The Hadamard Product is denoted by ⊗. Accordingly, the inverse form of transfer

function matrix elements will be

G−T (s) = ĝi j =
Λi j

gi j
(5.18)

The normalized gain (KNi j) in terms of dynamic properties of a particular transfer func-

tion (gi j(s)) is given by,

KNi j =
ki j

σi j
=

ki j

(τi j +θi j)
(5.19)

And the normalized gain matrix is calculated as,

NGA = KN =

 KN,11 KN,12

KN,21 KN,22

=


k11

(τ11 +θ11)

k12

(τ12 +θ12)
k21

(τ21 +θ21)

k22

(τ22 +θ22)

 (5.20)

Where average residence time is given by σi j = τi j + θi j that represents the response

speed of the control variable to manipulated variable.

RNGA can be formulated using the normalized gain matrix as follows,

RNGA = φ = KN ⊗K−T
N (5.21)

here,

φ =

 φ11 φ12

φ21 φ22

 (5.22)

Then, the Relative Average Residence Time Array (RARTA) is derived from the ratio

of RNGA and RGA and given by
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φ =

 φ11 φ12

φ21 φ22

 (5.23)

Each element of the matrix can be obtained from

γi j =
σ̂i j

σi j
(5.24)

This can also be written as

σ̂i j = σi jγi j = τi jγi j +θi jγi j (5.25)

= τ̂i j + θ̂i j (5.26)

The time constant and time delay are considered when other loops are closed. Ulti-

mately, the above-discussed procedure is adapted to approximate elements of the trans-

fer function matrix that has the same form as the open-loop transfer function. An il-

lustrative step-by-step procedure for the RNGA method is presented as flowcharts in

Figure 5.2.

5.6 dRGA Method

This approach utilizes the ETF of a multivariable process. The normalized steady state

gain matrix of G(s) is given by

KN = K ⊙TAR (5.27)

here, the average residence time of gi j(s) is represented as K = [gi j(0)]mxn , TAR =

[τar.i j(s)]nxm. Accordingly, a steady state gain matrix of Ĝ(s) is expressed as

K̂N = K̂ ⊙ T̂AR (5.28)

The generalized relative gain array (GRGA) for MIMO system is calculated as

Λ = K ⊗K†T (5.29)

here the pseudo inverse matrix of K = G (0) is indicated by K†. Subsequently, the

Generic Relative Normalized Gain Array (GRNAGA) is estimated as

ΛN = KN ⊗ K̂N = KN ⊗K†T

N (5.30)

By considering the equations (5.28), (5.28) in equation (5.30), we get
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Figure 5.2 Methodology flowchart for RNGA method

ΛN = Λ⊙Γ (5.31)

wherein, the RARTA, is defined as

Γ = [γi j]nxm = T̂AR ⊙TAR (5.32)

Hence, by utilizing equation (5.30) and (5.32), the equivalent transfer matrix parame-

ters can be expressed as

K̂ = K ⊙Λ (5.33)

Followed by
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T̂AR = TAR ⊗Γ (5.34)

Meanwhile the average residence time matrix of ĝi j(s) can be estimated as

T̂AR = T̂ + Θ̂ (5.35)

Where, time delay Θ̂ = [θ̂i j]mxn and the time constant of equivalent transfer function

matrix T̂ = [τ̂i j]nxm can be also written as

T̂ = T̂AR − Θ̂ (5.36)

Θ̂ = Θ⊗Γ (5.37)

Remarks: If there prevails a condition where in zero is divided by zero terms, when

ĝi j(s) = 0, the ETF of ĝi j(s) is modeled as

ĝi j(s) = k̂i j (5.38)

Eventually, the generalized form of Relative Dynamic Gain Array (RDGA) for a TITO

system is given by

Λ(s) = G(s)⊗ Ĝ(s) (5.39)

The above-discussed RNGA and dRGA concepts lay the foundation for centralized

control design methodology. These obtained ETF parameters are considered while

designing the centralized controller by the existing PI tuning rule as discussed in the

section below.

5.6.1 Multivariable PI Controller design

The ideal multivariable process control can be related by the following expression

Gc(s)G(s) =
1
s
⇔ gc,i j(s)ĝ ji(s) =

1
s

(5.40)

The target of the multivariable process control problem

Gc(s)G(s) =

 kα,1e−l,s

s
kα,2e−l,s

s

 (5.41)

This can be calculated by designing a single-loop controller as

gc,i j(s)ĝ ji(s) =
kα, je−l,s

s
(5.42)
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where, l j = min θ̂ ji, I = 1,2,3...,n; are the regulatory parameters and 0 < kα, j ≤ 1..

gc,i j(s) =
I
s
F(s) (5.43)

F value is obtained from the below expression

Fji(s) =
kα, je−l,s

ĝ ji(s)
=

kα, j

ĝ ji(s)
(5.44)

By using the Maclaurin series above equation can be expanded followed by the con-

troller equation from it

gc,i j(s) =
1
s
[Fji(0)+ sF ′

ji(0)+ s2F ′′
ji(0)+ .....] (5.45)

From Fji values, equation (5.44) can be written as

gc,i j(s) =
kα, j/ĝ ji(0)

s

[
1− s

ĝ′ji(0)

ĝ ji(0)
+ s2

(
2

ĝ′2ji(0)

ĝ2
ji(0)

−
ĝ′′ji(0)

ĝ ji(0)

)
+ ...

]
(5.46)

The standard form of PI controller is expressed as

gc,i j(s) = kc,i j +
kI,i j

s
(5.47)

here, kc,i j and ki,i j indicates two control variables. These controller parameters are

derived by comparing the following equations

kc,i j = kα, jĝ ji(0)/ĝ2
ji(0) (5.48)

ki,i j = kα, j/ĝ ji(0) (5.49)

Therefore, the designed PI controller can be given by comparing ETF elements with

the FOPTD model,

kc,i j = kα, j(τ̂ar, ji − l j)/k̂ ji (5.50)

ki,i j = kα, j/k̂ ji (5.51)

A descriptive step-by-step algorithm briefing the methodology for the dRGA method

is presented as flowcharts in Figure 5.3.
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Figure 5.3 Methodology flowchart for dRGA method

5.7 Simulation studies

The purpose of the study is to design a centralized controller to govern the dissolved

oxygen (y1) and substrate (y2) concentration by manipulating aeration rate (u1) and

recycle sludge flowrate (u2). Since there exists interaction among each manipulated

variable, selecting a suitable pairing will avoid the complication. Controlling the MIMO

system like ASP is a tedious task since the interactions within the system have to be

addressed (Ujjwal et al., 2017). A skilled operator is required to tune the centralized

controller because it requires pairing of input-output variables and trial of error steps

(Reddy et al., 1997).

Several simulation studies were executed to understand the performance of the de-
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signed centralized controllers with respective tuning strategies. The model input and

kinetic parameters considered for the study are recorded in Table 4.1 (refer to Chapter

- 4). The study considers the following equation of transfer function obtained through

the PRC method:

G(s) =


1.796e−0.0491s

0.0201s+1
0.0017e−0.1271s

0.0603s+1
−0.8429e−0.0361s

0.0134s+1
−149.478e−0.1473s

0.0603s+1

 (5.52)

5.7.1 RNGA Method

As discussed in the above section the following are estimated Relative Average Res-

idence Time Array (RARTA), Normalized Gain Array (NGA), Relative Normalized

Gain Matrix (RNGA)

RARTA(Γ) =

 1.0000 1.5487

1.5487 1.0000

 , NGA(KN) =

 25.9538 0.0091

−17.028 −720.028

 ,

RNGA(φ) =

 1.000 −8.266e−6

−8.266e−6 1.000


By the above-obtained values, the deduced ETF model parameters are given by

K̂c =

 1.7960 −318.496

1.579e05 −149.477

 , τ̂ =

 0.0201 0.0934

0.0208 0.0603

 , θ̂ =

 0.0491 0.1968

0.0559 0.1473


Hence, the estimated ETF can be expressed as

G(s) =


1.796e−0.0491s

0.0201s+1
−318.496e−0.1968s

0.00934s+1
−1.5792e−0.0559s

0.0208s+1
−149.478e−0.1473s

0.0603s+1

 (5.53)

5.7.2 dRGA Method

The following are outcomes of dRGA analysis particularly, Relative Average Residence

Time Array (RARTA), Normalized Gain Array (NGA), Generalized Relative Normal-

ized Gain Matrix (RNGA)
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RARTA(Γ) =

 1.0000 0.6457

0.6457 1.0000

 , NGA(KN) =

 0.1243 3.1857e−04

−0.0417 −31.0316



RNGA(φ) =

 1.000 −3.1858e−04

−3.4465e−06 1.000


The Kα value estimated after optimization is given below

Kα =

[
8.9665 2.6004

]
(5.54)

By the above-obtained values, the deduced ETF model parameters are given by

K̂c =

 1.7960 −318.496

1.5792e05 −149.477

 , τ̂ =

 0.0201 0.0389

0.0087 0.0603



θ̂ =

 0.0491 0.0821

0.0233 0.1473


Hence, the estimated ETF can be expressed as

G(s) =


1.796e−0.0491s

0.0201s+1
−318.496e−0.0821s

0.0389s+1
−1.5792e−0.0234s

0.0087s+1
−149.478e−0.1473s

0.0603s+1

 (5.55)

The controller sets obtained from the RNGA and dRGA methods are shown in Table

5.1.

Table 5.1 PI controller settings from RNGA and dRGA methods

Method Kc Ki

RNGA

 0.1188 −0.0005

1.3517 −0.0011


 1.4765 −0.0079

1.6592 −0.0168



dRGA

 0.1004 −6.8125e−08

0.0020 −0.0030


 4.9925 1.6467e−05

−0.0282 −0.0174
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Figure 5.4 shows the responses of process output and controller performance for set

point change at yr1. The designed controller had good set-point tracking and fast distur-

bance rejection action with minimum settling time. Since controllers are tuned for good

disturbance rejection, both methods produced extremely low or negligible overshoot

and undershoot. It can be observed that the dRGA method provided better process out-

put and controller output performances when compared with the RNGA method. Even

the response action of the dRGA method is quicker than the RNGA method. Similarly,

Figure 5.5 presents the process output and controller performance response for set point

change at yr2. From the figure, it is clearly noticeable that the dRGA method provides

smooth process output and controller output performances when compared with the

RNGA method. In addition, here also the dRGA method has faster response behavior

when compared with the RNGA method.

Figure 5.4 Closed loop performance for change in y1
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Figure 5.5 Closed loop performance for change in y2

The closed-loop response of the designed control system is presented in Figure 5.6

for a perturbation provided at d1. The dRGA method yields more favorable responses

with faster dynamics compared to the RNGA method. However, a slightly higher level

of oscillation is observed for the dRGA method when compared to the RNGA method.

Consequently, Figure 5.7 illustrates the closed-loop response of the process output and
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controller behavior for a perturbation provided at d2. The dRGA method demonstrates

faster settling time, lower overshoot, and reduced oscillation compared to the RNGA

method. Thus, the dRGA method provides acceptable responses for both the process

output and controller output when compared with the RNGA method.

Figure 5.6 Closed loop performance for change in d1

Table 5.2 illustrates the results of performance index analysis using TIE. The study

considers three commonly used error indices, namely IAE, ITAE, and ISE, along with

the TV index. The dRGA method exhibits significantly lower error indices and TV val-

ues compared to the main responses and interactions for a centralized control scheme.

Notably, the dRGA method achieves a remarkable reduction in IAE indices of 79.36%

and 4.04% when a step change is applied to yr1 and yr2, respectively, compared to the

RNGA method. Similarly, the ITAE indices decrease by 79.80% and 2.86% for step

changes in yr1 and yr2, respectively. The ISE indices also exhibit decreased error values

of 44.75% and 0.1% for step changes in yr1 and yr2. Moreover, the evaluation of TV in-

dices demonstrates favorable results for the dRGA method in comparison to the RNGA
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method.

Figure 5.7 Closed loop performance for change in d2

The stability of the system is examined through robustness analysis (Figure 5.8).

The area underneath the curve indicates the stability region, whereas the area above

the curve represents instability. Accordingly, the dRGA method is exceptionally robust

and stable since the area under the curve is substantially more than the RNGA method.

Thus the dRGA method proves to be simple, and effective and offers significantly better
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control performances than the RNGA method for highly non-linear systems like ASP

systems.

Figure 5.8 Robustness for input and output uncertainty
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Figure 5.9 Singular values for nominal, random samples, and worst-case gain for 30%
uncertainty in process gain.

Figures 5.9 and 5.11 provide a detailed analysis of the worst-case gain uncertainty

and its impact on the system. In this analysis, a specified 30% uncertainty is inde-

pendently applied to the process gain (refer to Figure 5.9) and time constant (refer to

Figure 5.11). The purpose of this analysis is to assess the system’s stability under vary-

ing levels of model parameter uncertainties. Remarkably, both cases demonstrate that

the system remains stable even when subjected to significant model parameter uncer-

tainties of up to 1000%. This indicates that the control system is robust and capable of
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tolerating a wide range of uncertainties without losing stability. To evaluate the impact

of the uncertainty on the process outputs, the nominal curve (solid blue) is compared

with the worst perturbation curve (blue dotted), and the upper and lower bound curves

represent the worst-case gain uncertainty (red). The proximity of these curves suggests

that the uncertainty has minimal effect on the process outputs. When the curves are

closely aligned, it indicates that the system’s performance remains stable and robust de-

spite the presence of uncertainty. Therefore, based on the results of the worst-case gain

uncertainty analysis, it can be concluded that the control system exhibits remarkable

stability and resilience, even when subjected to significant uncertainties in the model

parameters. The close alignment of the curves indicates the system’s ability to maintain

reliable performance under varying conditions, contributing to its robustness in practi-

cal applications.

Figures 5.10 and 5.12 depict the closed-loop responses obtained during the worst-

case gain uncertainty analysis. In these analyses, specific uncertainty conditions were

imposed to assess the system’s dynamic behavior under different scenarios. In the first

case, a 30% uncertainty was introduced to the process gain, resulting in a sample curve

that exhibited moderation and dispersion. This behavior represents the potential shift in

the process output caused by the uncertainty (refer to Figure 5.10). Thus, it is evident

that the uncertainty in the process gain can have a noticeable impact on the system’s

response. Conversely, in the second case, the sample curve closely followed the nominal

curve, indicating minimal effects of uncertainty on the close loop system (refer to Figure

5.10). This observation suggests that the system’s response remains relatively stable

and robust, even when subjected to uncertainty in the process parameter. Importantly,

both cases demonstrated stable process outputs without any oscillations induced by

the uncertainty. This finding highlights the system’s ability to effectively mitigate the

effects of uncertainty and maintain reliable performance. To summarize, the results of

the worst-case gain uncertainty analysis underscore the significance of considering and

understanding the impact of uncertainties in control systems. They reveal that while

certain uncertainty conditions may lead to moderate shifts in the process output, the

system can still maintain stability and reliable performance overall.
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Figure 5.11 Singular values for nominal, random samples, and worst-case gain for 30%
uncertainty in time constant.
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Figure 5.12 Closed loop step responses for 30% uncertainty in time constant.

5.8 Conclusion

Based on the transfer function matrix of a single tank ASP system, a centralized PI con-

troller is designed using RNGA and dRGA methods. A Maclaurin series expansion is

used to determine the multivariable PI controller. The aeration rate and recycle sludge

flow rate are manipulated to control the dissolved oxygen and substrate concentrations

in the effluent stream. The designed controllers were capable of tracking the desired

set-point most effectively. The overall outcomes from several simulation studies sug-

gested that the dRGA method provides high stability and less settling time requirement

when compared to the RNGA method. Practically, even though the RNGA method
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is easy to estimate using step response, it might lead to invalid results since it does

not consider the system dynamics. The performances of the designed PI controller are

tested over operations in terms of IAE, ITAE, ISE error indices, and TV. To obtain the

constructive outcome, the minimized error indices of IAE, ITAE, and ISE for the dRGA

method were recorded and compared with the RNGA method for cumulative y1 and y2

responses. The cumulative error indices of dRGA responses decreased significantly by

79.36%, 79.84%, and 95.21% for IAE, ITAE, and ISE values when compared with the

RNGA method. The TV index value of the dRGA method was also observed to be sat-

isfactory as compared to the RNGA method. These outcomes are also authenticated by

performing a robustness analysis that justifies the dRGA method to be more robust and

stable when compared with the RNGA method. Due to its simplicity, the method can

be also used by field engineers for high-dimensional processes with acceptable inter-

actions. Furthermore, the designed controllers were capable of rejecting the uncertain

disturbance also.
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Figure 5.10 Closed loop step responses for 30% uncertainty in process gain.
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Chapter 6

CENTRALIZED CONTROLLER DESIGN
FOR AN ASP USING DATA-DRIVEN
APPROACH

This chapter presents the application of a data-driven approach for modeling and

controlling a biological wastewater treatment plant, overcoming the limitations of con-

ventional mathematical modeling. The subsequent section details the approach for de-

signing a centralized controller, including the existing and proposed tuning methods for

estimating PI controller parameters. The chapter then proceeds to discuss the results of

simulation studies, accompanied by a robust analysis that strengthens the obtained out-

comes. Finally, the chapter concludes by summarizing all the outcomes and findings,

providing a comprehensive overview of the study.

6.1 Introduction

Water pollution and portable water scarcity have been key challenges for living crea-

tures globally. These circumstances demand treating the used/consumed water through

sophisticated wastewater treatment plants. Since economic factor plays a significant

role, most consultants follow the biological ASP, which is economical in terms of capi-

tal cost and maintenance (Marquez et al., 2022). Due to its dynamic variation of input

flow rate and concentrations, the ASP system is highly complex in nature. In a practical

scenario, the WWTP faces variation in influent flow rate, influent concentrations, feed-

ing rates, etc., which increases the challenges and complexity for modeling and control

operations (Muntean I. et al., 2015; Javier et al., 2011).

Large and complex chemical plants often accumulate vast amounts of data from on-
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going processes. However, due to the intricacies involved, researchers have tradition-

ally been cautious about using a data-driven approach to solve problems based on the

physical data generated by these plants. Nonetheless, recent advancements in sensors,

computers, and data availability have sparked a revolution in various research fields.

Control engineering (Mu et al., 2023; Masti et al., 2023; Ding et al., 2023; Mahmood

et al., 2023; Sakai et al., 2023), computer security (Shameli-Sendi, 2020; Chaudhuri

et al., 2001; Han et al., 1999), power grid and systems (Kim et al., 2023; Grimaldi et al.,

2023), energy sectors (Song et al., 2023; Ye et al., 2023), aerospace (Allaire et al., 2012;

Hao et al., 2023; Chen et al., 2022), medical research (Hypponen et al., 2019; Bak et al.,

2023; Zahid and Sharma, 2023; Chen et al., 2022), environmental sectors (Balla et al.,

2022; Zamani et al., 2023; Abraham et al., 2023), and transportation (Huang et al.,

2023; Karatug et al., 2023; Kecman and Goverde, 2015; Liu et al., 2023) are just a few

examples of domains where the data-driven approach has successfully addressed real-

world industrial problems. These advancements have opened up new possibilities for

effectively utilizing data-driven approaches in solving real-world industrial challenges.

In the current study, a data-driven approach was adopted for the control study. This

approach becomes handy since it does not require a plant mathematical model. The

relationship between the system state variables (input and output) can be effortlessly

obtained from a data-driven approach without prior knowledge of the system (Layla

et al., 2018). All the information regarding the system is obtained by providing suf-

ficiently rich experiments at given operation points from the data. So in specific, the

three key points of the data-driven approach are: Firstly, it directly uses the measured

I/O data. Secondly, it adopts data-driven modeling in place of first principle modeling;

and thirdly, it guarantees the theoretical analysis. Accordingly, the controller in the

data-driven approach does not depend on the accuracy of the plant model, and the twin-

born problem of unmodeled dynamics does not prevail under a data-driven framework

(Zhong and Zhuo, 2013).

In the current study, the control system uses a multivariable PI controller pro-

posed by Penttinen that adopts a manual controller tuning approach based on conven-

tional Ziegler-Nichols tuning (Jaromir and Pavel, 2019) counterparts for SISO systems.

Ziegler-Nichols is one of the popular methods for tuning the P, PI, and PID controllers

(Ellis, 2012). The proportional gain is raised until the system is unstable when the in-

tegral and differential gain is kept at zero. This value of Kp is denoted as Kmax with
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frequency oscillation as fo. In the next step, it backs off the proportional gain and set

the integral and differential gain as a function of fo. But this tuning method involved

the tedious task of regulating the tuning values manually until a stable response with

minimum performance indices is obtained. In an attempt to overcome the limitations of

manual tuning, this study proposes a new tuning method based on optimization princi-

ples for designing a centralized controller for the multivariable process. Principally, the

Davison (Davison, 1976) and Penttinen (Penttinen and Koivo, 1980) algorithms use a

manual tuning approach similar to Ziegler and Nichols for SISO controllers, while the

proposed technique poses the controller tuning as an optimization problem. In the opti-

mization problem formulation, Integral Square Error (ISE) was chosen as an objective

function, and the fine-tuning parameters of Davison and Pentinen methods as decision

variables. The fine-tuning parameters obtained from optimization along with the the-

oretical results proposed by Pentinen et al., are used to calculate the controller tuning

parameters. In addition, the proposed method is compared with the reported method

(Shen et al., 2014) to examine their performances and stability properties.

6.2 Methodology

6.2.1 Design of Centralized Controller

The prime objective of the current study is to govern the dissolved oxygen concentra-

tion and substrate concentration in the effluent stream. Therefore, the aeration rate and

recycle sludge flow rate were chosen as two manipulated variables that have a signifi-

cant influence on the two control variables. Accordingly, a centralized controller of 2

× 2 system is considered as shown in Figure 5.1, representing the control structure and

corresponding feedback loop. All the manipulated variables were calculated simultane-

ously by utilizing a single control algorithm in the centralized control system.

Converting all higher-order transfer functions to First Order Plus Time Delay (FOPTD)

system is a crucial preliminary stage while designing a centralized controller. The cen-

tralized controller matrix can be given below,

Gc(s) =

 Gc11 Gc12

Gc21 Gc22

 (6.1)
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This study considers PI Controller type while designing the centralized controller,

and it is expressed as,

GCi j = KCi j

(
1+

1
τi j

s
)

(6.2)

where Kci j and τi j indicates controller gain and integral time constant for jth ( j = 1,2)

controller respectively. By considering the following process transfer function g11, g12,

g21 and g22, the centralized controllers designed are represented as gc11 , gc12 , gc21 and

gc22 respectively.

6.2.2 Davison method

According to the empirical method proposed by Davison (Davison, 1976), the Kc and

Ki matrices are obtained from the following equations.

Kc = δ1[GP(s = 0)]−1 (6.3)

Ki = δ2[GP(s = 0)]−1 (6.4)

where, [GP(s = 0)]−1 is referred as rough tuning parameters. This can be obtained by

calculating the inverse of the steady-state gain matrix. Generally, the value ranges from

0-1 and recommended values are 0.1-0.5 for δ1 and 0.05-0.2 for δ2. In the case of stable

and integrating systems, KP can be substituted for GP(s = 0). The system model was

identified using the PRC method, which is discussed in Chapter-4.

6.2.3 Proposed method

Various studies related to the design of control systems for MIMO processes with the

known models are reported in numerous literature’s (Jin et al., 2016; Nordfeldt and

Hagglund, 2006; Fradkov et al., 1999; Yong et al., 2013). A few case studies were

found in the reported literature where both model identification and controller design

were undertaken simultaneously. This approach will assist researchers while developing

a complex first-principles model of the process. Accordingly, Davison (Davison, 1976),

and Penttinen (Penttinen and Koivo, 1980) have proposed a method, to simultaneously

identify the process model and design only the Integral and the Proportional Integral
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controller, respectively.

6.2.3.1 Multivariable PI controller system

In the current study, the controller parameters are obtained by adopting the Penttinen

and Koivo method of identification till the precursor matrices. The proposed approach

differs from the Penttinen and Koivo work in posing the controller tuning problem as an

optimization problem. For the tuning rules, the reader is directed to the classical work of

Penttinen, and Koivo (Penttinen and Koivo, 1980). This study only refers to the design

of the control system and does not include the system identification approach from

Penttinen and Koivo. The major advantage of the proposed method is that it eliminates

manual tuning approach, as suggested by Penttinen and Koivo, thereby minimizing the

effort of tuning the controller.

In general, tuning the PI controller refers to a weighted sum of proportional and

integral terms for controller yield that governs the process variables to achieve the de-

sired output. This tuning operation can be accomplished by controller design tools or

mathematical methods. The following expressions present the generalized form of the

system for multivariable PI tuning,

ẋ = Ax+Bu (6.5)

y = Cx (6.6)

e = yr − y (6.7)

Equations 6.5 and 6.6 represent the state and output equation respectively, x indi-

cates the state vector, u as the control vector, y specifies the output vector, and the set

point is represented as yr. Correspondingly, A, B, and C are the system matrix, input

matrix, and output matrix, respectively.

By adopting Laurent series expansion for the plant in state space form,

G(s) =C(sI −A)−1 +B (6.8)

the transfer function matrix can be written as

G(s) =
CB
s

+
CAB

s2 +
CA2B

s3 + ...... (6.9)

As a rule, Penttinen and Koivo observe a multivariable system to be stable and consider
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it as a significant assumption while designing the PI controller. A system is said to

be stable if a bounded input(s) leads to the bounded output(s). Penttinen and Koivo

proposed a method to design a feedback PI controller for MIMO systems assuming

the system is bounded. Manipulated variable PI controller proposed by Penttinen and

Koivo has the structure given in Equation 6.10,

U = Kce+Kiv (6.10)

here, the error vector is represented as e, and the integral of the errors summed over

time as v. The prime intent of control system design is to obtain Kc and Ki matrices with

stable system response for both servo and regulatory cases. This is viable if the designed

controller could quickly respond to the change in operating range if needed and elim-

inate the disturbance effectively. Through Penttinen and Koivo method (Penttinen and

Koivo, 1980), the Kc and Ki values are determined from the output data obtained by

subjecting the system to the step inputs, which are linearly independent.

Kc = α1(CB)−1 (6.11)

Ki = α2(−CA−1B)−1 (6.12)

The expressions to obtain Kc and Ki can be Equation 6.13 and Equation 6.14, respec-

tively.

Kc = diag(p1, p2, p3, ....., pn)×P0 (6.13)

Ki = α2T † (6.14)

where Kc is the proportional gain of a P controller, diag(p1, p2, , pn) is a diagonal ma-

trix with the tuning parameters p1, p2, , pn. ′†′ symbol denotes the pseudo-inverse of

a matrix. The precursor matrix P0 is obtained from the step inputs provided to the

system, and outputs are obtained from the system for the proportional part of the con-

troller. The tuning parameter for an integral part of the controller is indicated as α2, and

T is a precursor matrix for an integral part of the controller, which is again obtained

from step inputs given to the system and the responses from the systems, respectively.

Correspondingly, P0 and T matrices are determined using Equations 6.15 and 6.16 re-

spectively from the step inputs and responses, and are given by

CB = [ẏ1, ẏ2, ẏ3, ...., ẏm][u1,u2,u3, ....,um]
−1 (6.15)

T = [y1,y2,y3, ....,ym][u1,u2,u3, ....,um]
−1 (6.16)

where y1,y2,y3, ....,ym is the response matrices for a set of independent step inputs of

unit magnitude vectors u1,u2,u3, ....,um respectively, and ẏ1, ẏ2, ẏ3, ...., ẏm is the ma-
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trices containing the slopes of the response matrices for the corresponding input vec-

tors u1,u2,u3, ....,um. The proportional control segment of the Penttinen and Koivo

approach is modified as represented in Equation 6.17 in the proposed method

Kc = α1P0 (6.17)

Where, α1 is a tuning parameter, and these fine-tuning parameters (α1 and α2) can be

obtained from the solution of an optimization problem. Mathematically, the optimiza-

tion problem can be defined as follows

J = min
α1,α2

t∫
0

(yr − y)2dt (6.18)

where, y = f (Kc,τ1,α1,α2)

Figure 6.1 Flowchart of methodology to design Data-driven centralized controller

Such modifications to the P-controller part of Penttinen (Penttinen and Koivo, 1980)

work was already reported in the article by (Norhaliza et al., 2009). The study by

Nor’Azlan et al. has earlier used optimization as a tool to perform the tuning opera-

tions (Nor’Azlan et al., 2018). However, the optimization formulations reported in this
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literature utilize state-space models of process to calculate the precursor matrices and

objective function. Meantime the solution to the optimization problems was obtained

using Lyapunov’s stability criteria to identify the optimal tuning parameters. However,

in the proposed work, the input-output data is directly utilized to calculate the precursor

matrices. The formulation of an optimization problem comprises ISE as the objective

function and the decision variables as the tuning parameters. This modification can

directly calculate precursor matrices instead of obtaining them using the state space

form of process models to formulate the objective function. This operation will reduce

the time taken for tuning the control parameters over the conventional trial and error

method.

6.3 Simulation Results

Simulation studies were performed to understand the behavior of the designed central-

ized PI controller. The principal intent of the study is to control the dissolved oxy-

gen (y1) and substrate (y2) concentration by manipulating the aeration rate and recycle

sludge flow rate in the ASP unit. Since the system is Two-input, Two-output, a step

input change is separately provided among each of the set points. For instance, the

step change in y1 set point outputs y1 & y2 will reach 1 and 0 respectively at steady

state condition. This is due to the presence of an integral mode in the control sys-

tem. Corresponding, the steady-state value in the manipulated variables is noted as

u1 = [u1,1 u2,1]
T . The same procedure is repeated for the step change in y2 and u2

values are recorded, respectively. The interaction phenomenon could occur between

the control variables by each manipulated variable. In order to reduce the interac-

tions among the process variables, a proper pairing has to be selected, which could

be computed through RGA analysis. For the current study, the quantification of these

interactions was found to be [1.000 -5.33e-6; -5.33e-6 1.000]. The performance of the

designed controller is evaluated through several simulation studies with the two differ-

ent tuning strategies. These simulation results and subsequent tuning strategies were

discussed in this section.

The tuning parameters were estimated by solving the optimization problem (Eq.

6.18) prior to benchmarking the controller. According to the behavior of the system

response, the coefficient of the tuning parameters is varied until the desired output re-

sponses are obtained. The present study considers a linearized model for the tuning
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purpose.

The initial step while designing a multivariable PI controller is determining the CB

matrix. The constant inputs were chosen and given by,

u1 = [1 0],u2 = [0 1] (6.19)

However, the obtained matrix is achieved by providing step inputs for the system with

the help of Equations 6.15 and 6.16.

CB =

 0.0036 3.399e−06

−0.0017 −0.2990

 (6.20)

that results in,

Po = (CB)−1 =

 278.3979 0.0032

−1.5699 −3.3450

 (6.21)

The P0 and (in Equation 6.15) and T (in Equation 6.16) are the precursor matrix for

the proportional and integral part of the PI controller. They can be computed based on

the input-output measurements using Equation 6.15 and 6.16 as calculated above. α1

and α2 are the tuning parameter for the proportional gain and integral gain part of the

controller. These fine-tuning parameters are determined by solving the optimization

problem stated in Equation 6.18. Accordingly, the controller matrix for the proposed

method resulted from optimal values α1 = 0.0013 and α2 = 5.9568 are given in Table

6.1. The table listed centralized PI controller settings obtained from the optimal fine-

tuning parameter from the present method and literature (Shen et al., 2014) method. The

study adopted MATLAB numerical optimization solver fminsearch to solve the above

problem. Here, the problem description is transformed into a mathematical form by

defining the variables, objectives, and constraints. This will be followed by solving the

optimization problem with variables that produce optimal values for objective functions

within the stipulated constraints. The MATLAB numerical optimization method holds

good for solving complex real-world problems for which no closed-form solution is

available. The design optimization task, parameter estimation, component selection,

and parameter tuning are a few tasks that can be performed in MATLAB. This approach

will decrease the time consumed for trial and error manual tuning, especially when the

process interactions are strong.

123



Table 6.1 Parameters for PI controllers

Method Kc Ki

M1 (Proposed method)

 0.3487 3.9659

−0.0012 −0.0042

  3.3167 3.7720

−0.0187 −0.0398



M2 (Shen et al. (2014))

 0.1188 −0.0005

1.3517 −0.0011

  1.4765 −0.0079

1.6792 −0.0168



Figure 6.2 Closed loop response (y1) and Manipulated signal (u1) behavior to sequential
set point (yr1) changes and disturbance rejection

In the context of process automation engineering, Figure 6.2 depicts a comprehen-

sive analysis of two tuning methods applied for controlling the dissolved oxygen con-

centration (y1) in response to changes in the set point (yr1). To understand the system
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responses, various step disturbances were introduced at regular intervals using the wave-

form generator block in Simulink. The proposed method (M1) demonstrated a notably

faster response compared to the method reported by (Shen et al., 2014) (M2). However,

a slight overshoot was observed in the proposed method during set point changes, al-

though it exhibited quicker recovery as compared to the approach presented by (Shen

et al., 2014). Additionally, Figure 6.2 displays the closed-loop response of the control

signals (u1) for the dissolved oxygen concentration output when step changes are in-

troduced in yr1. The plot showcases the controller action over time for disturbances

applied at specific intervals (3.25 hrs, 6.35 hrs, 9.54 hrs, and 12.6 hrs for y1, and 3.23

hrs, 6.28 hrs, 9.51 hrs, and 12.6 hrs for y2) for both methods (M1 and M2).

Figure 6.3 Closed loop response (y2) and Manipulated signal (u2) behavior to sequential
set point (yr1) changes and disturbance rejection

Similarly, Figure 6.3 depicts the closed loop response of two tuning methods on
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substrate concentration, namely M1 and M2, respectively. It is clearly noticeable how

the system reacts to the set point changes and disturbances along the WWTP operation.

The classic advantage of adopting a PI controller is its ability to reduce the rise and

settling times. Even though the response signal has slight undershoot and overshoot, a

faster settling time behavior with less oscillation is observed from the proposed method.

The closed loop response of y1 (dissolved oxygen concentration) for a step change

in yr2 is presented in Figure 6.4. On this occasion also, the proposed method (M1)

could achieve a quicker response time with less overshoot than the compared reported

method (M2) (Shen et al., 2014). Figure 6.4 represents the closed-loop response from

control signals (u1) for the output concentration of dissolved oxygen when step change

is introduced in yr2.

Figure 6.4 Closed loop response (y1) and Manipulated signal (u1) behavior to sequential
set point (yr2) changes and disturbance rejection
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Table 6.2 Comparison of performances indices for the centralized control scheme

Step Method IAE ITAE
change in y1 y2 Sum y1 y2 Sum
yr1 M1 1.3665 1.503 2.8708 17.435 18.292 36.364

M2 2.9159 1.8829 4.7988 37.73 23.28 61.01
yr2 M1 3.1987 3.3385 6.5373 40.52 41.896 82.416

M2 6.7102 4.0572 10.767 86.171 50.13 136.3

Figure 6.5 represents the closed-loop response from y2 and control signal u2 for

the output (substrate concentration) when step change is introduced in yr2. These plots

clearly express the behavior of the output parameter and manipulated variable as time

progress in the system. A faster response time towards the imparted disturbances is

observed from the proposed method (M1) than the reported method (M2).

Figure 6.5 Closed loop response (y2) and Manipulated signal (u2) behavior to sequential
set point (yr2) changes and disturbance rejection
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The comparison of performance indices for M1 and M2 methods are presented in

Table 6.2. An acceptable level of control performance was achieved by the proposed

method when compared with the method proposed by (Shen et al., 2014). For the step

change in yr1, the proposed method secured 53.14% and 53.80% lowered IAE and ITAE

error for output y1 when compared with M2. Identically for y2, the IAE and ITAE errors

decreased to 20.17% and 18.69%, respectively, for the proposed method. Correspond-

ingly, M1 secured 52.33% and 52.97% lowered IAE and ITAE error when compared

with M2 for a step change in yr2 with y1 as an output. Following it, the output y2 of

M1 produced 17.71% and 16.42% decreased IAE and ITAE errors, respectively, when

compared with M2.
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Figure 6.6 Complementary sensitive function with ± 10% uncertainty in time constant
(top) and time delay (bottom)

The sensitivity analysis was performed to examine the robustness of the designed

controller, and the outcome is presented in Figure 6.6. Since the curve from both the
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methods (M1 and M2) fall beneath the uncertainty curve, it satisfies the stability con-

dition. Thus, the proposed method proves to be simple and effective and offers satis-

factory control performances for a highly non-linear system like the activated sludge

process. The proposed method could achieve superior responses for the closed-loop

system compared to the reported (Shen et al., 2014) method.

6.4 Conclusion

Observing the need to treat the used water by incorporating a sophisticated control sys-

tem in WWTP, this study could encourage many sectors to adopt it, especially in small-

scale units. This could be a significant step towards the sustainable utilization of water

resources. The study put forward a design of a multivariable centralized PI controller to

govern the DO and substrate concentration by manipulating the aeration rate and recycle

sludge flow rate. A data-driven approach that does not need the plant model becomes

functional for the study. The proposed method for tuning the controller by optimiza-

tion technique provided better responses than the method reported by shen et. al, 2014

(Shen et al., 2014). The responses obtained from the controllers were relatively simple,

with less overshoot and undershooting with faster and better response time compared to

the reported method. The performance indices (IAE and ITAE) clearly demonstrate the

superior response through numerical statistics. Precisely, the error indices for y1 and

y2 responses lowered substantially between 52-53% and 16-21% respectively than the

compared method. This conclusion holds good with the robustness uncertainty analysis

too. Finally, the substantial simulation work on the nonlinear model proves that the pro-

posed technique is less time-consuming and achieves better system performance than

the compared method. A dynamic optimization tool and Reinforcement learning-based

Machine Learning approach to design a controller for the wastewater treatment plant

can be taken up for future study.
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Chapter 7

Summary and Conclusions

7.1 ASP Model identification

• Two effective and prominent techniques were utilized for identifying the ASP

model.

• Even without in-depth knowledge of the physical system, we were able to identify

the model that provided the best fit using the system identification technique. This

approach significantly reduced the engineering effort required.

• The Process Reaction Curve method demonstrated itself as a classical, straightfor-

ward, and simple technique for model identification. It allowed for the estimation

of the most basic form of process parameters (FOPTD).

• Both model identification methods offered a simple and optimal approach for

designing a controller for the activated sludge process.

7.2 Decentralized controller design for an ASP

• A decentralized controller and decoupler was designed for the wastewater treat-

ment plant by utilizing the relative gain array concept, which is obtained by in-

versing the process transfer function matrix.

• The closed-loop control system was further improved by adopting a Normalized

Gain Array with an equivalent transfer function for each element of the process

transfer function matrix.

• Simulation studies of the closed-loop system in the wastewater treatment plant

revealed that the controller designed based on the IAE minimization criterion
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exhibited improved performance compared to the ISE and ITAE minimization

criterion methods.

• These observations were corroborated by the error indices, where the IAE method

yielded the lowest error, followed by the ITAE and ISE methods, respectively.

• The simulation studies demonstrated that even after being subjected to a 30%

perturbation in process parameters, the closed-loop system maintained its robust

nature.

7.3 Centralized controller design for an ASP

• Based on the transfer function matrix of a single tank ASP system, a centralized

PI controller was designed using RNGA and dRGA methods.

• A Maclaurin series expansion is used to determine the multivariable PI controller.

• The overall outcomes from several simulation studies suggested that the dRGA

method provides high stability and less settling time requirement when compared

to the RNGA method. Practically, even though the RNGA method is easy to

estimate using step response, it might lead to invalid results since it does not

consider the system dynamics.

• The performances of the designed PI controller are tested over operations in terms

of IAE, ITAE, ISE, and TV.

• The cumulative error indices for the dRGA responses exhibited a substantial de-

crease of 79.36%, 79.84%, and 95.21% in IAE, ITAE, and ISE values, respec-

tively, when compared to the RNGA method. Additionally, the TV index value

of the dRGA method was found to be satisfactory in comparison to the RNGA

method.

• These findings are further supported by a robustness analysis, which confirms

that the dRGA method is more robust and stable when compared to the RNGA

method.
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7.4 Data driven approach Centralized controller design for an ASP
system

• A multivariable centralized PI controller was designed to control the DO and

substrate concentration by manipulating the aeration rate and recycle sludge flow

rate.

• Adopts a data-driven approach where it does not need the plant model to become

functional for the study.

• The conventional tuning methods given by Davison (1976) and Penttinen (1980)

relied on Ziegler-Nichols or manual tuning. These methods were highly labori-

ous, as the tuning values had to be manually adjusted until a stable response with

minimal performance indices was achieved.

• Consequently, an optimization problem was formulated in order to tune the con-

trol parameters using the ISE (Integral of Squared Error) technique as the objec-

tive function. This article presents a novel approach for obtaining the optimal

tuning parameters.

• The proposed method for controller tuning using optimization techniques yielded

superior results compared to the method described by Shen (2014).

• It offers relative simplicity and exhibits good transient response. The performance

indices (IAE and ITAE) clearly demonstrate their superior performance through

numerical statistics.

• This conclusion is further supported by robustness uncertainty analysis.

To summarize, two approaches were used to identify the ASP model, reducing the

engineering effort required and providing a simple approach for designing a controller

for the activated sludge process. A decentralized controller and decoupler were de-

signed for a wastewater treatment plant using the relative gain array concept, resulting

in improved performance compared to other minimization criterion methods. Simu-

lation studies showed that the closed-loop system maintained robustness even after a

30% perturbation in process parameters. For a centralized controller design in an ASP

system, the dRGA method exhibited high stability, less settling time requirement, and
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better performance compared to the RNGA method. A data-driven approach was used

for centralized controller design, achieving optimal tuning parameters and superior re-

sults compared to other methods, along with good transient response and robustness.

7.5 Future Work

• The implementation of the designed real-time controller on a pilot-scaled WWTP

can be conducted to evaluate its performance in an operational setting. This will

provide valuable insights into the practicality and effectiveness of the controller

in a real-world scenario.

• An optimization study may be undertaken to develop economical operation strate-

gies for WWTPs. By considering factors such as energy consumption, resource

utilization, and cost-effectiveness, optimal operational guidelines can be estab-

lished, leading to more efficient and sustainable wastewater treatment processes.

• Further research should focus on the design and comparison of modern con-

trol strategies with the proposed controller. By exploring innovative control ap-

proaches and assessing their performances, advancements in the field can be

made. This comparative analysis will help identify the strengths and limitations

of different control strategies, leading to the development of more effective and

efficient controllers for wastewater treatment plants.
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