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ABSTRACT 

Proteins are central to all biological processes, and their interaction with themselves or 

other small molecules modulate their function in metabolic, cellular signalling, and 

immune reactions. Due to their crucial role in biological processes, protein interactions 

regulate the mechanism of the disease state of organisms and are often targeted by 

therapeutic agents. However, the major bottleneck in the process of therapeutic design 

is the lack of structural knowledge regarding the targeted receptors and their dynamic 

behavior at atomic resolution. The recent advancement in computer technologies and 

their amalgamation with the chemical and biological processes made a remarkable 

impact in reducing the cost and complexity of drug discovery processes. The reduction 

of complexity in computer models helps to understand the underlying interaction and 

stabilizing forces of drug-receptor complexes. Additionally, the in-silico mutagenesis 

approach allows for testing the efficacy of therapeutic candidates against drug-resistant 

mutations. The present research illustrates how ligand-based and Molecular dynamics 

(MD) assisted structure-based techniques can be combined to design potent 

therapeutics in three different protein targets, such as a bacterial Dihydropteroate 

Synthase, spike protein of SARS-Cov2, and abnormal peptide aggregation. It is evident 

from the results that the stability of small organic molecules or peptide epitopes depends 

on the number of polar functional groups or amino acids involved in the interaction 

interface. In both cases, the electrostatic energy contribution is comparatively higher 

than the Van der Waals energy contribution. In the case of peptide aggregation, such 

interactions can be replaced by small organic molecules to increase the thermodynamic 

barriers for inhibiting amyloidosis. The insights obtained from the present research 

work provide a comprehensive strategy to accelerate the highly challenging drug 

discovery process.  

Keywords: Proteins; Therapeutic Target; Computer simulations; MD Simulation; 

Dihydropteroate Synthase; SARS-Cov2 spike protein; prion amyloidosis 
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CHAPTER 1 

INTRODUCTION 

Abstract: In this chapter, a concise introduction to protein-ligand, protein-protein 

interaction, and its functional role in controlling various disease pathways and 

biological processes have been discussed. Additionally, a concise literature review, 

biomolecular system of interest, scope, and objectives of the present research work 

have been explained. 

 

1.1 IMPORTANCE OF PROTEIN-LIGAND AND PROTEIN-PROTEIN 

INTERACTION IN BIOLOGICAL PROCESSES 

The knowledge of protein-ligand interactions (PLIs) and protein-protein interactions 

(PPIs) is believed to be the core of molecular recognition and essential to all life 

processes. It is central in various biological processes such as enzyme catalysis, enzyme 

inhibition, metabolite synthesis, signal transduction, transcriptional regulation, immune 

reactions (antigen-antibody), etc. The successive evolution of protein function is 

partially dependent on the highly specific binding site, which tunes the ligand affinities 

(small molecule or protein subunits) as per the requirement of cells. To regulate the 

competing biological functions, the cooperativity in ligand binding is critically 

essential. The cooperative binding often leads to the conformational transition of 

receptors to high-affinity or low-affinity states, thus regulating the cellular processes. 

Therefore, understanding the thermodynamic interplays of protein-ligand or protein-

protein interaction is necessary to facilitate the discovery and development of the newer 

generation of drugs or vaccines to combat life-threatening diseases. Moreover, the 

interaction of ligands can be used to switch protein functions under various 

physiological conditions(Dunn 2010).  

 In general, there are three currently existing models for protein-ligand or 

protein-protein interaction such as “lock-and-key,” “induced fit,” and “conformational 

selection”(Csermely et al. 2010; Ma et al. 1999; Tobi and Bahar 2005; Tsai et al. 1999). 

In the first model, both the protein and ligand are considered as rigid, and binding 

occurs if and only if there is a perfect match between their binding interface, i.e., the 
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ligand surface and the binding pocket. Thus, a perfectly sized ligand (key) can be 

inserted into the catalytic cavity (key-hole) of the protein (lock) to accomplish a 

biologically important reaction or enzyme inhibition. Unlikely, the induced fit model 

assumes that the protein's binding pocket is flexible and subjected to conformational 

change during the ligand binding. The above-mentioned model treats protein as a 

single, stable conformation that changes or undergoes a minor conformational change 

after ligand binding. However, proteins are dynamic in nature, and a vast collection or 

ensemble of conformational states/subsets coexist in equilibrium conditions with 

different populations. The conformational selection model states that ligands 

selectively bind the appropriate conformational states of the protein and eventually shift 

the dynamic equilibrium towards that state. This model also introduces the energy 

landscape theory of protein dynamics on conformational phase space (Henzler-

Wildman and Kern 2007). 

The protein-protein or protein-ligand complexes in an aqueous solution are 

believed to be a thermodynamic system that consists of solutes such as protein, small 

drug molecules, and solvents (water, ion, or various cosolvents). The binding kinetics 

of ligands with receptor depends on the rate of their association and can be defined as  

𝑃 + 𝐿
𝑘𝑜𝑛/𝑘𝑜𝑓𝑓
↔      𝑃𝐿                              (1.1) 

Where PL indicates, the protein-ligand complex and kon and koff are the rate constant of 

forward and backward reactions.  In such a process, the driving forces for the 

association and dissociation between protein-ligand are generally derived from the 

complex interaction and the heat exchanges between all the components of the systems, 

especially between protein-ligand. The such protein-ligand association is spontaneous 

when the system reaches equilibrium in constant temperature, and pressure and change 

of Gibbs free energy (ΔG) of the entire system is negative. The standard free energy (1 

atm. pressure and 298K temperature) of protein-ligand binding or ΔG0 can be defined 

as  

∆𝐺° = −𝑅𝑇𝑙𝑛𝐾𝑜𝑛                               (1.2) 

R is the universal gas constant (1.987 cal. K-1. mol-1). The free energy can be 

expressed in the entropic and enthalpic contribution with the following equation: 
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∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                   (1.3) 

The ΔH and ΔS are the change in entropy and enthalpy of the system for the ligand 

binding.  

 The interactions of proteins with small organic molecules (ligand), other 

proteins, and nucleic acids are mostly governed by non-covalent interactions such as 

hydrogen bonding, π-π stacking interaction, π-cation interaction, and salt bridge 

interaction. The stability of interactions depends on the combined effect of specific 

forces acting at the binding site and non-specific forces outside the binding pocket of 

the protein. This combined force stabilizes interactions in biomolecular collisions in 

solutions and adhesion between cells.  

1.2 ROLE OF COMPUTER SIMULATIONS IN MODELLING THE 

BIOMOLECULAR INTERACTIONS 

It is evident from the previous section that the non-bonded interaction pattern is the key 

to the stabilization of biomolecular complexes and execution of life processes. This 

stability further depends on the flexibility of the protein binding pocket and resulting 

structural rearrangements upon the binding of the moiety (small organic molecules, 

other proteins, nucleic acids) that occurs in pico-second to microsecond time scale. 

Therefore, knowledge regarding such molecular events and intricate details of 

interactions is necessary to understand the disease pathways and design of novel 

therapeutic strategy against various disease states. There are various experimental 

techniques are available, starting from X-ray crystallography (XRD), NMR 

spectroscopy to electron microscopy can be employed to determine structural 

information of Receptor-Ligand complexes. Additionally, some of the fluorescence 

microscopic methods can determine the dynamic nature of the biomacromolecules. 

However, such experimental techniques are time consuming to study the interaction of 

large ligands libraries (small molecules, peptides etc.) for identifying potent 

therapeutics.  

In this regard computational techniques can accelerate the process of identifying 

crucial interactions to design effective drug candidates against various bacterial, viral 

and neurogenerative diseases. The implementation of computers algorithms and 
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architectures in drug design was first established in 1980 by Merck. Since then, various 

Insilco methods have been developed to visualize the biomolecular interactions in 

computer screen and calculate different properties such as free energy, kinetic measures 

or other macromolecular quantities that can be directly related to experimentally 

determined observables. The first step towards computer aided molecular modelling is 

the optimization of protein i.e., the receptor structure to ensure the atomic detailing and 

the correct protonation of amino acids at binding site. Therefore, the crystallographic 

structures obtained from XRD or MNR are refined by adding missing amino acid side 

chain and minimization to remove steric clash. In, the absence of the proper crystal 

structure of the receptor, homology modelling can be used to design 3D-strructure of 

the protein from other structural homologous of the protein. Further, to optimize the 

ligand structure, semi-empirical or DFT based quantum techniques are used to ensure 

correct bond length, angle, torsions, and assignment of the correct partial charges to 

each atom of the ligand. Various In-silico techniques have been developed such as 

quantitative structure activity relationship (QSAR), pharmacophore modelling to 

identify the functional group substitution or spatial arrangement of structural features 

that ultimately enhance the activity of the drug candidates. Moreover, the quantitative 

structure property relationship (QSPR) or ADME toxicity algorithms helps to screen 

hit molecules that are harmful to human body. However, the major bottleneck of the 

above-mentioned ligand-based techniques is the prediction of non-bonded interaction 

that governs the stability of ligands at the catalytic pocket of the receptor protein. In 

this regard, molecular docking-based techniques have been developed which can 

predict the conformational states for thousands of ligands and their binding affinity for 

multiple target proteins.  Induced feat or ensemble docking algorithms have been 

developed which can identify the partial conformational drift of enzyme catalytic 

pocket. Nonetheless, docking algorithms are limited in sampling major conformational 

interchanges that take place at the receptor binding site during ligand binding and 

ensuring their dynamic stability. Molecular dynamics simulations are plausible 

approach to encounter structural flexibility of both ligand and receptor at their bound 

and unbound states. In recent years the advancement and innovation in computer 

hardware infrastructure, development of Graphical Processing unit (GPU) and advent 

of modern MD software allow to generate long trajectories to depict the kinetic profile 
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or the energy landscape correspond to molecular recognition. Additionally, the MD 

based enhanced sampling techniques can explain the slow biological processes or rare 

events such as ligand unbinding kinetics and estimate thermodynamic barriers 

efficiently.  Overall, computer simulations can help to limit expensive chemical 

synthesis or biological testing and thereby decrease the need for traditional resources 

in fast-paced process of therapeutic design. The contribution of different areas of 

science to model biological process is presented in Figure 1.1. 

 

Figure 1.1. Multidisciplinary approach to model biological interactions.  

 

1.3 LITERATURE SURVEY AND THE SCOPE OF THE PRESENT WORK 

In the present section, a brief review of the literature has been discussed which focuses 

on the implication of advanced computational methods toward identifying lead 

compounds and vaccine candidates against target receptors. The advancement in 

computer architecture, better algorithms, and the availability of efficient software allow 

the computation of structural and dynamic properties of several biomolecular 

assemblies which minimize the huge experimental expense and risk of rejection of 

therapeutic candidates. 
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The following literatures are focusing on the implementation of ligand-based strategies 

to identify crucial atomic arrangement and structural counterparts responsible for 

biological activity.  

• Leonard et al developed a QSAR model that can predict the important 

functional group substitution for three different scaffolds for HIV 

inhibitory activity. It is found from their results that k-means clustering 

algorithm on the factor scores of the small molecule descriptor is reliable 

method for dividing the dataset in to training and prediction set(Leonard 

and Roy 2006b).  

• Cheng et al. studied the efficiency of virtual screening of hit compounds 

based on Pharmacophore model and molecular docking to target eight 

structurally diverse proteins such as D-alanyl-D-alanine 

carboxypeptidase, dihydrofolate reductase, thymidine kinase, estrogen 

receptors, androgen receptors, acetylcholinesterase, HIV-1 protease etc. 

The results obtained from their study indicate that pharmacophore-based 

screening method outperform docking based methods to screen potent 

hit compounds. This case study suggests to pay more attention on the 

ligand-based techniques in virtual screening in drug discovery 

process(Chen et al. 2009).  

• Lu et al. successfully designed pharmacophore and docking guided 3D-

QSAR model for formamides derivatives as an antimicrobial agent to 

block bacterial Enoyl acyl carrier protein reductase. The important 

functional group substitution at 3D-descriptor space was ensured by 

comparative molecular field analysis (CoMFA) and comparative 

molecular indices analysis (CoMSIA). The statistical robustness of the 

model was validated from the correlation coefficient obtained for 

training set compounds. It is evident from their results that site-specific 

incorporation of bulky hydrophobic moiety increases the activity of the 

ligands(Lu et al. 2012).  

• Martin et al. worked on the development of methods for dividing 

training set and test set data for building predictive QSAR model.  To 
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validate a QSAR model in absence of true external test set, statistical 

external validation is generally used. In such circumstances ration 

division methods like k-nearest neighbour method (kNN), random forest 

and hierarchical clustering are better in generating statistically sound 

QSAR models(Martin et al. 2012a). 

• Vuorinen et al. developed ligand-based pharmacophore model to screen 

compounds that can inhibit 17β-Hydroxysteroid dehydrogenase 2 (17β-

HSD2). This pharmacophore model was employed to screen a database 

containing 1381 hit compounds and 29 compounds were selected for 

further in-vitro evaluation. The pharmacophore based virtual screening 

yields seven compounds that exhibit good biological activity against 

17β-HSD2. Furthermore, two scaffolds, sulfonate and 

phenylbenzenesulfonamides were obtained which can be used for drug 

repositioning to inhibit this enzyme. 

• Martinez et al. constructed 2D-and 3D QSAR models by using a series 

of experimentally tested inhibitors correspond to dihydrofolate 

reductase. In both the QSAR model it is found that the biological activity 

of the inhibitors is mainly influenced by the electronegativity and the 

size of the functional group substituents(Garro Martinez et al. 2017).  

• Almeida et al. proposed promising inhibitors of MARK3 protein kinase 

that expressed in head and neck cancer based on ligand-based screening 

approaches such as physicochemical properties, overlapping molecular 

interaction fields and toxicity predictions (Almeida et al. 2014).  

• Peng et al. aimed to build a large scale, comprehensive and statistically 

robust 3D-QSAR model that can predict the activity of structurally 

diverse scaffold targeted for inhibiting Sigma 1 receptor (S1R). Further, 

the model underwent external test set validation followed by database 

screening of natural drug compounds. The virtual screening yields two 

FDA approved drugs (phenyltoloxamine and diphenhydramine) that 

exhibit low inhibitory constant for S1R receptors (160 nM, 58 nM 

respectively). This strategy can be used to design potent therapeutic for 

neuropathic pain(Peng et al. 2019a). 
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• Alam et al. developed a field point-based 3D-QSAR mode to screen 

80000 flavonoid compounds and 1480 compounds with activity less the 

5 μM have been screened. Further docking and ADMD toxicity analysis 

were conducted to select top 25 compounds as a potential inhibitors for 

tankyrase (Alam and Khan 2019).   

• Pushyaraga et al. studied the binding of β-alanine derivatives to the 

transmembrane allosteric site of the G-protein coupled glucagon 

receptor (GCGR). Combination of 3D-QSAR, molecular docking, 

molecular dynamics calculations yield potent compounds that have 

higher affinity towards GCGR. This study can be a viable initiation point 

to start drug discovery campaign against type -II diabetes(Venugopal et 

al. 2020).  

The subsequent literatures are focusing on structure-based drug discovery approaches 

where the non-bonded interactions of ligands or peptides with the receptor binding 

pocket are the main concern. Further, literature review regarding the application of 

enhanced sampling approaches on predicting ligand unbinding pathways were also 

depicted. 

• Osguthrope et al. used energy minimization technique to study the 

binding of trimethoprim at the binding pocket of dihydrofolate 

reductase. Both all atom force field and united-atom force field were 

used in this study. Finally, the role of specific residues in ligand binding, 

interaction energy and entropy loss of ligand were examined. Water 

molecules, those are not in direct contact with the ligand, were found to 

have significant interaction energies with the ligand. Thus, the inclusion 

of at least one shell of waters is be vital for accurate simulations of 

enzyme complexes(Dauber-Osguthorpe et al. 1988). 

• Swegat et al. studied protein-ligand binding and unbinding process 

through MD simulation studies. Phenolic compounds were generally 

used as bacteriostatic preservatives in pharmaceutical. This article 

showed how such phenol compounds can be used as a stabilizer for 

synthetic insulin. It is evident from their study that phenol compounds 
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mostly interact with His 45, Cys 66, Ser69, Ile610, cys611 and their 

interaction is local rather than being cooperative (Swegat et al. 2003).  

• Jiao et al. investigated the binding of charged ligands benzamidine and 

diazamidine to trypsin employing a polarizable potential energy 

function and explicit-water molecular dynamics simulations. The 

binding free energies were computed from the difference between the 

free energies of decoupling the ligand from water and protein 

environments. Both the absolute and the relative free energies from the 

perturbation simulations agree with experimental measurements within 

0.5 kcal.mol-1. Comparison of free-energy components sampled from 

different thermodynamic paths indicates that electrostatics is the main 

driving force behind benzamidine recognition of trypsin. Overall, their 

results suggest that the use of a polarizable force field, along with 

adequate sampling, is necessary for achieving chemical accuracy in 

molecular simulations of protein–ligand recognition (Jiao et al. 2008). 

• Shivakumar et al. calculated the solvation free energy of a set of 239 

molecules, spanning diverse chemical functional groups commonly 

found in drugs and drug-like molecules. In this study three different 

force fields, general AMBER force field (GAFF) with AM1-BCC 

charges, CHARMm-MSI with CHelpG charges and OPLS_2005 were 

compared to evaluate their efficiency in calculating the solvation free 

energy. It was found that OPLS_2005 exhibited high correlation with 

experimental studies (Shivakumar et al. 2009). 

• Iribarne et al. studied the repurposing or reposition of phenothiazine 

derivatives as glutathione reductase (GR) to design antiparasitic lead 

compounds. Due to the emergence of drug resistance in Trypanothione 

reductase, the structural homologue GR can be targeted. Molecular 

docking followed by molecular dynamics were employed to assess the 

key features of the analogues to inhibit GR. It is evident from their 

studies that positively charged phenothiazine derivatives have higher 

affinity towards the catalytic pocket (Iribarne et al. 2009).  
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• Jiang et al. aimed to improve the accuracy in free energy computation 

by applying free energy perturbation with replica exchange molecular 

dynamics (FEP/REMD). In this study, FEP/REMD method was 

extended and combined with an accelerated MD simulations method 

based on Hamiltonian replica-exchange MD (H-REMD). In this 

strategy, each system with a given thermodynamic coupling factor λ in 

the extended ensemble is further coupled with a set of replicas evolving 

on a biased energy surface. Boosting potentials used to accelerate the 

interconversion among different rotamer states of the side chains in the 

neighbourhood of the binding site. These combinations overcome the 

additional problems arising from the existence of kinetically trapped 

conformations within the protein receptor. Exchanges are allowed to 

occur alternatively along the axes corresponding to the thermodynamic 

coupling parameter λ and the boosting potential. As an case study, the 

absolute binding free energy of p-xylene to the nonpolar cavity of the 

L99A mutant of the T4 lysozyme was calculated. The tests indicate that 

the hybrid REMD scheme greatly accelerates the configurational 

sampling of the amino acid side chains at the binding pocket, thereby 

improving the convergence of the FEP computations (Jiang and Roux 

2010). 

• Sakkiah et al. studied the interaction of small molecule inhibitors against 

Sirtuin 2 (SIR2) receptor which plays crucial role in the deacetylation of 

Lysin residues on histones or different type of proteins. Five different 

inhibitors such as sirtinol, suramin, mol_6, nf725 and 67 underwent 

molecular docking followed by molecular dynamics and MM/PBSA 

calculation. The overall summary of the study indicates that van-der 

walls components of the binding energy mainly govern the stability of 

the inhibitors at the binding pocket(Sakkiah et al. 2013).  

• Patel et al. studied the unbinding of inhibitor from the catalytic pocket 

of CDK5 by steered molecular dynamics simulation. The unbinding free 

energy of the inhibitor compounds are found to by good agreement with 
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experimental IC50 values. This study serves as a plausible paradigm 

towards employing SMD as structure-based drug discovery approach. 

• Zhou et al. studied the binding, unbinding kinetics of ligand from three 

types of G-quadruplexes (basket, propeller, and hybrid) by umbrella 

sampling simulation studies. It is evident from their study that 

coulombic interaction is the driving force toward the stability of G- 

quadruplexes during the unbinding process. The dissociation free energy 

is found to be good agreement with experimental results(Zhou et al. 

2015a).  

• Balajee et al. identified inhibitors that have higher affinity towards 

NS2B and NS3 by virtual screening to designing antiviral therapeutics. 

Molecular docking and MD simulation studies suggested that inhibitors 

are mainly stabilized by His51, Ser135, Asp75, Gly133 of the catalytic 

triad by forming NH—O, OH—N and OH—O hydrogen bonding. The 

binding affinity of highly potent compound is found to be -74 kcal/mol 

which is good agreement with experimental IC50 value(Balajee et al. 

2016).  

• Cholko et al. studied the inhibition of cyclin dependent kinase-Cycline 

C enzyme system (CDK8-CylC) by small organic molecules to design 

anticancer therapeutics. Both Type-I and Type -II inhibitors were used 

to study the inhibition mechanism and the results obtained from 

unbiased MD simulation study indicates that Van der Waals energy 

component is the main contributor for both the types of 

inhibitors(Cholko et al. 2018).  

• Recently, in silico methods have been widely used in designing effective 

drug molecules as well as repurposing the existing drugs against SARS 

CoV-2 proteins (Aktaş et al. 2021; Brendler et al. 2021; Cusinato et al. 

2021; Jang et al. 2021; Muratov et al. 2021; Yousefi et al. 2021). 

Understanding the molecular level mechanism could propose novel 

insights/hypotheses which serve as a critical step for translational 

medicine research. 
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The following literature are based on the computational studies of epitope 

identification and design of therapeutic enzyme or vaccine candidates. 

• Kumar et al. identified the epitopes of E5 protein that express in the 

early phase of human papilloma virus (HPV) infection in cervical 

cancer. Immunoinformatics approach was adopted to predict the peptide 

fragments which show affinity towards MHC-II receptors. This study 

yields a peptide sequence, IPLFLIHTHARFLIT which have highest 

affinity towards MHC-II correspond to HLA-DRB1*14:01 

allele(Kumar et al. 2015).  

• Shi et al. employed Immunoinformatics assisted screening of B-cell and 

T-cell epitopes to design vaccine specific to MERS-CoV infection. It is 

evident from their studies that nucleoprotein of MERS-CoV can be 

better candidate as an immunogen compared to spike protein in terms of 

conservancy and eliciting immune response in host body.  Total fifteen 

linear B-cell, ten conformational epitope and ten helper, cytotoxic T-cell 

epitopes were identified which can be used to design vaccine candidate 

against MERS-CoV pandemic.(Shi et al. 2015a) 

• Dar et al. predicted the T-cell epitopes present on the polyprotein of 

Zika virus to design potential vaccine candidates by bioinformatics 

tools. The peptide correspond to MHC-I is found to located on NS5 

(non-structural protein) and envelop protein whereas MHC-II peptides 

are mostly located to NS1 and NS2. Further the obtained peptides 

underwent affinity, promiscuity and antigenicity test for the formulation 

of vaccine candidates against zika virus infection(Dar et al. 2016). 

• Hundal et al. developed an open-source algorithm namely pVAC-seq 

that can identify neoantigens by processing the DNA or RNA 

sequencing data from the tumour specific mutational repository. The 

identified epitopes can be used as reference to design anticancer peptide 

candidates that can have higher affinity towards MHC-I receptors and 

elicit proliferation of tumour specific CD8+ T-cells by destroying the 

somatic tumour cells (Hundal et al. 2016).  
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• He et al. aimed to predict antigenic B-cell and T-cell epitopes located 

on the lectin protein that causes severe allergic reaction in human body. 

Both the linear B-cell and T-cell epitopes were subjected to molecular 

docking calculation to screen the epitopes based on their affinity towards 

respective immune receptors. Finally, four B-cell epitope and two T-cell 

epitopes were identified and underwent in vitro studies to design 

effective antibody for lectin toxicity(He et al. 2018).  

• Jain et al used bioinformatic algorithms and molecular docking studies 

to screen peptides that contain multiple immunogenic epitopes in Ebola 

virus glycoprotein. Care was taken to select the epitopes that bind wide 

variety of HLA alleles. Four different peptides such as P1, P2, P5 and 

P6 was identified which showed remarkable population convergence to 

be presented at MHC receptor(Jain and Baranwal 2019). 

• Baral et al. identified immunogenic epitopes located on the glycoprotein 

of Lassa virus that causes severe haemorrhagic fever in human. The 

consensus screening of the predicted epitopes yields thirty new B-cell 

epitopes which lacks experimental evaluation. Molecular Docking and 

MD simulation studies were employed to assess the stability of epitope-

receptor complex. The results obtained from this study indicates that 

epitopes related to MHC-I allele are mostly stable by higher number of 

hydrogen bonds. Among the MHC-I epitopes 233-FSRPSPIGY-241 

shows higher affinity towards peptide binding groove of MHC 

molecule(Baral et al. 2020). 

• Nelapati et al. designed Uricase mutein by replacing the antigenic 

hotspots located at the wild type bacterial Uricase. The mutation found 

to increase the affinity of uric acid towards Uricase catalytic pocket. 

Further, molecular dynamics simulation was employed to ensure the 

structural stability of muteins after mutation. 

The subsequent bibliography aims towards studying the aggregation mechanism of 

intrinsically disordered peptide and possible therapeutic strategies. 

• Katyal et al. employed explicit-solvent-all-atom molecular dynamics 

simulation to study the effect of trehalose molecules in prion peptide 
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(GNNQQNY) aggregation. The trehalose molecules found to increase 

the kinetic barrier by trapping small size oligomers (dimer to tetramer) 

to restrict the evolution of large size oligomer with higher β-sheet 

content. The faster expulsion of hydration water by trehalose molecule 

compared to peptides decrease the intra-peptide side-chain and main 

chain interaction to dissemble toxic oligomers(Katyal and Deep 2017) 

• Zhou et al studied the effect of Lanosterol on breaking the steric zipper 

fibril of amyloid β peptide. It is found from their simulation studies that 

Lanosterol molecules are mainly stabilize by hydrophobic interaction 

with Phe20 and Phe19. This compound found to have higher activity in 

supressing the amyloid toxicity compared to cholesterol due to enhanced 

hydrophobicity. Further, the inhibitory effect of the same molecule was 

validated by AFM imaging and ThT fluorescence assay(Zhou et al. 

2019a). 

• Pal et al studied the oligomerization of αβ16-22 peptides in aqueous 

solvent in the presence or absence of ATP molecules with three variants 

of AMBER force-field. The presence of ATPs found to replace the inter 

peptide π-stacking interaction by itself to inhibit the formation of 

antiparallel β-sheet during aggregation process(Pal and Paul 2020).  

• Nie et al. aimed to identify the mechanism of polyphenol such as gallic 

acid to stop the interconversion of nontoxic helical state to toxic beta-

sheet state. The polar interaction of gallic acid found to be responsible 

for arresting the interconversion in aqueous medium(Nie et al. 2020). 

• Roy et al studied the effect of three different compounds such as 

norepinephrine, benzimidazole and aspirin molecules on the aggregation 

of human islet amyloid peptide that causes Type II Diabetes in human 

body. Among those small molecules norepinephrine is found to reduce 

the β-sheet percentage between the reside starches Leu12- His18 and 

Leu27-Gly33.  In the same line they also study the effect of amyloid 

core derived peptides. It is evident from their result that peptide 

containing D-amino acids have greater efficiency in disrupting the fibril 
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formation in full length human islet amyloid peptides compared to L-

amino acid containing peptide(Roy and Paul 2020, 2021).  

• Kalipillai et al. studied the charge effect essential for inhibiting the β-

hairpin conversion of amyloid β peptide in gold nanoparticle. The results 

obtained from MD simulation suggest that negatively charged nano-

particles or slabs are better choice compared to positively charged one 

for shifting the dynamic equilibrium of β peptide from β-sheet to coil or 

helical state. This study demonstrates excellent therapeutic strategy to 

cure amyloidosis by nanomaterials(Kalipillai and Mani 2021). 

• Sorout et al. carried out multiscale molecular dynamics simulation to 

study the effect of boron nitride nano tubes and sheets with different 

surface curvature on the conformational transition of amyloid peptide 

αβ1-42. The formation of β-sheet conformation is believed to be the 

indication of toxicity in aqueous solution. The highest curvature nano 

tube found to shift the conformational equilibrium to α-helical state 

where as the intermediates found to stabilize the peptide in random coil 

state. This study indicates the role of nanoparticles in decreasing the 

toxicity of intrinsically disordered peptides by various pathways(Sorout 

and Chandra 2021). 

• King et al. applied molecular dynamics simulation to study the effect of 

five flavonoid compounds such as Morin, Myricetin, Epicatechin, 

Quercetin and Dihydroquercetin on the aggregation of Islet amyloid 

polypeptide. It is evident from their study that oligomer formation and 

emergence of is essentially driven by inter peptide Phe23 interaction. 

The flavonoid compounds mainly disrupt the π-stacking interaction to 

arrest the evolution of toxic oligomers. 

The above literature survey provides a plausible paradigm towards the usage of state of 

the art In-silco techniques in different areas of translational pharmaceutical research 

such as enzyme inhibition or vaccine development. From this viewpoint, three different 

biomolecular system have been considered based on their role in controlling bacterial, 

viral, and neurodegenerative diseases. In the subsequent sections a brief discussion on 

the systems of interest and their scope in therapeutic development have been conferred. 
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1.3.1 Dihydropteroate Synthase (DHPS) 

Dihydropteroate synthase (DHPS) is known to be a validated drug target to 

block folate production in bacterial cells (Domagk 1935). This particular enzyme 

catalyses the condensation between 7,8-dihydropterine pyrophosphate (DHPP) and P-

aminobenzoic acid (pABA) to produce 7,8-dihydropteroate, a precursor of 

tetrahydrofolate (Bermingham Alun and Derrick Jeremy P. 2002; Griffin and Brown 

1964).  Folate analogs like tetrahydrofolate reported to be a crucial co-factor for 

synthesizing essential amino acids, nitrogen bases and play an important role in reaction 

associated with one carbon transfer (Bourne 2014; Rossi et al. 2011). Higher eukaryotic 

cells consume folate from dietary sources due to the presence of membrane-associated 

folate transport protein (Matherly and Goldman 2003; Whetstine et al. 2002). On 

contrary, all bacterial cells and some lower pathogenic eukaryotes lack the folate 

transport protein hence compelled to synthesize folate de novo (Levin et al. 2004). 

Therefore, the growth of bacterial cells can be prohibited by blocking folate 

biosynthetic pathway. Few enzymes in the de novo pathway, particularly DHPS are not 

human homologs, therefore makes them a promising target and topic of intense research 

for developing antimicrobial agents to reduce the mortality of HIV/AIDS and COVID-

19 patients (Arooj et al. 2013; Shaw et al. 2014; Suthar et al. 2015; Tari 2012; Zhang 

et al. 2021). 

   DHPS is reported to be encoded by folP gene(Sánchez-Osuna et al. 2019) and 

the entire polypeptide chain is folded into the most commonly found TIM barrel-like 

structure (β/α)8 in which eight α-helices bundles around the inner cylinder made of eight 

parallel β-strands(Babaoglu et al. 2004; Baca et al. 2000; Morgan et al. 2011; Yogavel 

et al. 2018).  The N-terminal pole of the α/β barrel is interconnected by rigid loops while 

the opposite pole consists of extended and flexible loops(Achari et al. 1997a), crucial 

for ligand recognition and binding (Figure 1.2). The active site of DHPS monomer is 

located at the C-terminal end of the β-barrel which comprises of three conserved sub-

sites: the pterin binding site, the pABA binding site, and the anion binding site. The 

pterin binding pocket is situated in a deep cleft of the C-terminal end of β-barrel, 

whereas the pABA binding pocket is located at the surface and comprises of two 

flexible loops (loop1 and loop2)(Achari et al. 1997b; Hampele et al. 1997). Initially, 
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DHPP binds with DHPS active site and it catalyses the slow release of pyrophosphate 

moiety from DHPP. The released pyrophosphate moiety plays an important role in 

stabilizing the conformation of flexible pABA binding loops (Yun et al. 2012a). After 

pABA binding, the condensation of DHP+ and pABA occurs through SN1 reaction to 

form dihydropteroate. The bi-substrate pocket of DHPS is therefore the target of the 

substrate or product antagonists to block the folate pathway by producing dead-end 

conjugates. 

 

Figure 1.2. Crystal structure of dihydropteroate synthase (PDB ID: 1AJ0, resolution: 

2.0Å) at their Substrate and Product bound state.  

1.3.2 Spike Protein of SARS-Cov2 

The specific interaction of antigens such as viral proteins with the receptors of humoral 

and cell mediated defence mechanism are crucial to design multimeric vaccines for 

building adaptive immunity against life-threatening viral diseases.  The genome of 

SARS-CoV-2 is a single stranded positive sense RNA and reported to be largest viral 

genome till date(Cui et al. 2019; Fehr and Perlman 2015). This RNA genome encodes 

four poly proteins of SARS-Cov2, like membrane protein (M), nucleocapsid protein 

(N) and envelop protein (E). The genome entry in the host cell is guided by crown-

shaped glycosylated spike protein (S-protein) located at the envelop surface (Figure 

1.3). The S-protein is a trimeric class I fusion protein which exists in a metastable 
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prefusion conformation and undergoes a dramatic structural rearrangement to fuse into 

the host cell membrane(Bosch et al. 2003; Li 2016; Wrapp et al. 2020). The ectodomain 

of S protein includes the receptor binding S1-sub unit and the trimeric membrane fusion 

S2 or stalk domain(Shang et al. 2020; Walls et al. 2020; Yan et al. 2020). The S1 subunit 

receptor-binding domain (RBD) specifically interacts with the host receptor known as 

Angiotensin-converting enzyme 2 or ACE 2(Yuan et al. 2020). At the moment of 

binding of S1 domain to a host-cell receptor, the prefusion trimer is destabilized, which 

results in shedding of the S1 subunit, and transition of the S2 subunit to a stable post 

fusion conformation (Gui et al. 2017; Walls et al. 2020; Wrapp et al. 2020). The study 

of crucial activity of the S-protein can therefore provide a breakthrough in vaccine 

design and development compared to other structural proteins of SARS-CoV-2 for 

inducing specific immune response against this virus.   

 

Figure 1.3. The three-dimensional structure of SARS-CoV2 spike protein. The three 

chains of the spike protein are coloured in red, blue, green respectively. (source) 

1.3.3 Prion Protein and Aggregation Prion Domain 

Prion is a cell surface protein (Figure 1.4) and is dominantly expressed in the peripheral 

and central nervous systems(Bendheim et al. 1992). The primary functions of this 

protein include cell adhesion, synapse formation(Santuccione et al. 2005), regulation 

of circadian rhythm(Tobler et al. 1996), neuroprotection(Guillot-Sestier et al. 2009; 



19 
 

Roucou et al. 2004), controlling ion homeostasis, cell signalling,(Lewis and Hooper 

2011), etc. It is known that the transformation of the normal cellular prion isoform 

(PrpC) to protease-resistant scrapie isoform (PrpSc) is the initial point of prion disease. 

Following the misfolding, an exponential increase in the infected prion protein (PrPSc) 

population occurs in an autocatalytic manner and eventually organized mature fibril 

forms. On the other hand, a large subset of the latest evidence shows that the 

aggregation of peptides derived from normal prion protein can be another causative 

agent of prion disease.  

 

Figure 1.4. (A) The secondary structural arrangement of cellular prion protein and the 

location of the shortest amyloidogenic motif (shown in blue). The alpha helices and 

beta-sheets are indicated as H and S respectively. (B)The amino acid sequence and 3D 

structure of the peptide (127-GYMLGS-132). 

Thus, the pre-fibrillar counterparts of such proteinaceous agents are the primary toxic 

species(Laganowsky et al. 2012; Larson and Lesné 2012) which consist of lower-order 

oligomers of abnormally folded proteins(Chamachi and Chakrabarty 2016) or assembly 

of small peptides derived from misfolded proteins(Apostol et al. 2013; Balbirnie et al. 

2001; Gallagher-Jones et al. 2018; Nelson et al. 2005a; Nelson and Eisenberg 2006). 

Recent reports suggest that the appearance of the β-sheet or the zipper-like structures 
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of pre-fibrillar aggregates are the indication of cytotoxicity(Chatani et al. 2014; Larson 

and Lesné 2012; Lesné et al. 2006; Walsh et al. 2002) and are considered as the main 

culprits for nerve cell disruption(Jang et al. 2013). Modelling the aggregation of such 

lower-order soluble oligomers, their structural and energetic profile remains unclear in 

the context of prion toxicity. This small size pre-fibrillar aggregates can be targeted by 

small organic compounds to disintegrate them at the pre-fibrillar stage. 

 1.4 OBJECTIVES OF THE PROPOSED WORK 

Based on the detailed literature review and above-mentioned scopes, the 

following objective  

• Identification of factor affecting the potency of sulfonamide derivatives on 

antagonist-mediated inhibition of Dihydropteroate synthase and the prediction 

of possible sulfa-resistant mutations at the active site. 

• Determining the resilience of 8-Marcaptoguanine compounds in product 

antagonism and circumventing the drug resistant mutations at DHPS catalytic 

pocket. 

• Identification of highly potent and conserved antigenic epitopes in the spike 

protein of SARS-CoV2 and their interaction with immune receptors to design 

effective vaccine for hard immunity. 

• Identification of the metastable lag-phases and thermodynamic barriers of pre-

fibrillar prion peptide aggregation and the effect of naphthoquinone dopamine 

on the aggregation barriers. 
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CHAPTER 2 

COMPUTATIONAL METHODOLOGY AND ANALYSIS TO ASSESS 

BIOMOLECULAR INTERACTION AND DYNAMICS 

Abstract: This chapter includes a detailed outline of the different in-silico approaches 

to study the dynamics related to biomolecular associations at atomic resolution. In the 

case of protein-ligand complexes, cheminformatics-based and structure-based 

strategies have been implemented to identify crucial interactions for the stability of 

such associations. Structure-based and free-energy techniques were applied to assess 

the affinity of the immunogenic protein segments with the immune receptors of the 

human body. Immunoinformatics approaches were employed to screen the potential 

epitopes of viral proteins. Further, the mathematical expressions of various analytical 

techniques were discussed in detail to study the stability of the therapeutically 

important protein-protein and protein-ligand association. 

 

2.1. CHEMOINFORMATICS METHODS FOR LIGAND-BASED DRUG-

DISCOVERY  

2.1.1 Pharmacophore Mapping    

The prediction of small-molecule binding to a targeted receptor is believed to be a very 

crucial part of drug discovery. In the absence of structural knowledge regarding the 

active site of targeted enzymes, information related to the spatial arrangement of atom 

groups or functional groups is essential to screen small molecule databases with 

desirable geometries. This mutual arrangement of atomic features, also known as 

pharmacophore, is essential for recognizing small molecule hits by enzymes. In general, 

a pharmacophore is a group of atomic features that are common to a series of 

biologically active compounds.  In order to generate pharmacophoric patterns 

corresponding to a particular catalytic cavity, a wide range of theoretical and 

experimental data is routinely used. There are three known aspects in pharmacophore 

mapping, such as (i) determining the features essential for the biological activity, (ii) 

molecular conformation identification, and (iii) alignment or superposition of small 

molecule hits and scoring the pharmacophore models according to their match with  
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active compounds. The most common pharmacophoric features are (i) hydrogen bond 

acceptor (A), (ii) hydrogen bond donor (D), (iii) hydrophobic group (H), (iv) negatively 

ionizable (N), (v) positively ionizable (N) and (vi) aromatic ring (R).  The common 

pharmacophoric features can be identified using a tree-based partitioning strategy to 

group similar spatial arrangements. The scoring function or the survival score of the 

pharmacophore hypothesis can be defined as 

𝑆 = 𝑊𝑠𝑖𝑡𝑒𝑆𝑠𝑖𝑡𝑒 + 𝑊𝑣𝑒𝑐𝑆𝑣𝑒𝑐 + 𝑊𝑣𝑜𝑙𝑆𝑣𝑜𝑙 + 𝑊𝑠𝑒𝑙𝑆𝑠𝑒𝑙 + 𝑊𝑚𝑟𝑒𝑤                   (2.1) 

Where, S and W are the scores and weights respectively correspond to vector, volume, 

and selectivity. The Wmrew is the reward weight for the m number of active compounds 

that feats well with the pharmacophoric model. After the generation of the highly scored 

pharmacophoric model, a database of small organic hits can be screened to obtain 

highly active molecules for enzyme inhibition.  

2.1.2 Quantitative structure-activity relationship (QSAR) 

Quantitative structure-activity relationship (QSAR) is a statistical method that 

correlates the binding affinity with the functional group substitution without the 

knowledge of structural information of the binding pocket. The compounds used for 

QSAR model generation are generally from similar congeneric series or share a 

common scaffold, and their biological activity must be estimated by the same enzymatic 

assay procedure.  In this method, electronic, steric, and molecular properties such as 

lipophilicity and polarizability of a series of molecules are fed to a QSAR model to 

train it for predicting the binding affinity of untested compounds with similar geometry. 

Therefore, selecting descriptors that describe the physicochemical and structural 

properties of the hits is believed to be integral to QSAR modelling. The predictability 

of the QSAR model depends on the quality of biological activity data, the statistical 

model, and the chosen descriptors.  

In the process of QSAR method development, two theories such as (i) the 

Wilson method and (ii) Hansch analysis, are considered as the basis of current QSAR 

models. In both methods, the biological activity is predicted by adding the contributions 

from different structural features of a ligand. Further, the predicted activity can be 

correlated with the logarithm of equilibrium constants obtained from enzyme-drug 
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reactions. In the Wilson method, the presence or the absence of certain structural 

features is denoted by 1 or 0, and the resulting feature matrix is correlated with the 

biological activity. The biological activity can be computed as 

                    𝑙𝑜𝑔 (1/𝐶)  =  ∑ 𝑎𝑖𝑖 +  𝜇                                          (2.2) 

Where C is the concentration of the compound that causes 50% reduction in the enzyme 

activity. The ai indicates the contribution of activity from the ith functional group, and 

μ stands for the biological activity of the common scaffold.  Similarly, according to the 

Hansch model, biological activity can be expressed in terms of the nonlinear equation 

and defined as  

𝑙𝑜𝑔 (1/𝐶) =  𝑎 (𝑙𝑜𝑔 𝑃)2 + 𝑏 𝑙𝑜𝑔 𝑃 +  𝑐𝜎 + …+  𝑘                           (2.3) 

Where P is the n-octanol/water partition coefficient, σ is the Hammett parameter, a, b, 

c is the regression coefficient, and k is the constant term. It is reported that Hansch 

analysis is superior compared to Free Wilson analysis due to the less requirement of 

properties to correlate the experimental activity of the hits. However, the outcome of 

different QSAR models of the same dataset causes dilemma in employing Hansch 

analysis. To overcome the limitation and broaden the applicability of both Free Wilson 

and Hansch analysis, the combination of both theories, known as the mixed method, 

can be used to correlate biological activity. This can be defined as  

𝑙𝑜𝑔 (1/𝐶) =  𝑎 (𝑙𝑜𝑔 𝑃)2 + 𝑏 𝑙𝑜𝑔 𝑃 +  𝑐𝜎 + ∑ 𝑎𝑖𝑖 +⋯+  𝑘              (2.4) 

It can be noted here that the above two methods cannot describe the three-dimensional 

(3D) properties of ligands essential to derive the atom-based descriptors.  In order to 

correlate the actual conformation of the ligand with the biological activity of the 

ligands, grid-based or field-based 3D-QSAR models have been developed. The oldest 

model or the prototype of current 3D-QSAR models is known as DYLOMMS (dynamic 

lattice-oriented molecular modelling system), which employs principal component 

analysis (PCA) to retrieve vectors from molecular interaction. This is further modified 

by advanced statistical methods such as partial least square (PLS) and molecular shape-

based descriptors to predict the biological activity. The most important criteria to 

generate statistically sound 3D-QSAR model is the selection of training set and test set 
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compounds from the biological dataset. Care needs to be taken to include structurally 

diverse compounds in training set to cover most of the descriptor space of the overall 

biological dataset. Therefore, the 75% of the compounds in dataset is generally included 

in training set to build the 3D-QSAR model. The rest 25% are for testing the efficiency 

of the QSAR in predicting the biological activity of the compounds from model dataset. 

Notably, each point in training set needs to be closer to any one point in the training set 

at descriptor space.  There are various algorithms available for dividing the dataset in 

to training set and test set such as K-means clustering, D-optimal design, Kennard-

Stone algorithm, sphere exclusion algorithm etc. After 3D-QSAR model generation the 

plausible prediction of the model need to be further ensured by external test set 

compounds that are not been used in model generation.  

2.1.3 Density Functional Theory (DFT)  

Density functional theory calculations are known to be useful for optimizing the 3-

dimensional structure of hit compounds, such as bond length, bond angles, and 

electronic properties like Mullikan charges, HOMO-LUMO energies, energy gap, 

vibrational frequency, and dipole moment. The electronic properties of the molecules 

are believed to play an important role in their pharmacological effects. As an example, 

the energy of HOMO is directly related to the ionization potential, and the energy of 

LUMO is related to the electron affinity. The locations correspond to HOMO, and 

LUMO indicates the possible sites for the electrophilic and nucleophilic attack, 

respectively, in the molecule. Moreover, the energy gap represents the chemical 

reactivity of the compounds. The lesser energy gap favours the rapid electron transfer 

or exchange and thereby makes the molecule highly reactive. Additionally, DFT 

calculation helps to envision the charge distribution or the potential energy surface of a 

molecule. 

In DFT calculation, the central goal is to calculate the electron density ρ, which 

is related to ground state energy or other molecular properties, and map a wave function 

to a value. The density functional can be represented as  

𝐸0[𝜌] = 𝑇[𝜌] + V[ρ]+ EXC[ρ]                                  (2.5) 
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The square brackets in equation (2.6) indicate the functional while T[ρ], V[ρ] 

correspond to the kinetic and potential energy of the system. The potential energy 

consists of electron-electron and electron nuclei interaction energy. The third term 

attributes to exchange-correlation energy and the only unknown.  The implication of 

the Schrödinger equation to replace the complex many-body wave function of a system 

with electron density simplifies the calculation of the electronic structure of bigger 

molecules. In this regard, the Hohenberg-Kohn theorem and Kohn-Sham equations are 

well known. According to Hohenberg-Kohn theorem  

Theorem 1: The external potential Vext(r) is, to within a constant, a unique functional 

of the electronic density n(r). Since in turn Vext(r) fixes Ĥ, it is seen that the full many-

particle ground state is a unique functional of n(r). 

Theorem 2: For a trial ñ (r) that satisfies the boundary conditions ñ (r) ≥ 0 and ∫ ñ (r) 

d 3 r = N and is associated with a Ṽ ext, the energy it gives is an upper bound to the true 

energy E0. 

Therefore, the total energy or the Hamiltonian and the properties of an atomic 

system can be computed by the electron density. The lowest electron density or ground 

state density appears at the lowest energy, and other densities correspond to higher 

energy. In a system of non-interacting particles, the Kohn-Sham equation can be 

defined as a local effective potential under which the particles move 

(
− ħ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝑟))∅𝑖(𝑟) =  𝜀𝑖∅𝑖(𝑟)                    (2.6) 

Here, ɛi indicates the energy corresponds to the Kohn-Sham orbital ( ∅𝑖). Further, the 

density of the N particle system can be defined as  

ρ(r) = ∑ |𝑁𝑖 ∅𝑖(𝑟)|
2                                                                       (2.7) 

The energy of the system in terms of density can be given as 

𝐸(𝑟) =  𝑇𝑠(𝜌) + ∫ 𝑑𝑟 𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻(𝜌) + 𝐸𝑥𝑐(𝜌)            (2.8) 
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This equation can be compared with eqn (2.6), except the external potential term. The 

kinetic energy in terms of orbital and Kohn-Sham potential energy term can be 

expressed as  

𝑇𝑠(𝜌) =  ∑ ∫𝑑𝑟 ∅𝑖
∗(𝑟) (

− ħ2

2𝑚
∇2) ∅𝑖 (𝑟)

𝑁
𝑖=1                                       (2.9) 

             𝑣𝑒𝑓𝑓(𝑟) =  𝑣𝑒𝑥𝑡(𝑟) + 𝑒
2 ∫

𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′ + 

𝛿𝐸𝑥𝑐(𝜌)

𝛿𝜌(𝑟)
                             (2.10) 

As the exchange-correlation term is unknown, thus the accuracy of the DFT technique 

depends on the usage of different approximations such as local density approximation 

(LDA), generalized gradient approximation (GGA) or hybrid functional for exchange 

correlation functional.  In recent days B3LYP hybrid functional which consists of 

Becke’s 3-exchange functional and Lee’s four correlational functional is believed to 

highly efficient in computing the exchange correlation term.  

2.2 STRUCTURE-BASED DRUG-DISCOVERY TECHNIQUES 

2.2.1 Molecular Docking 

Molecular recognition plays a key role in promoting fundamental biomolecular events 

such as enzyme substrate, drug-protein, and antigen-immune receptor interactions. 

Detailed understanding of the general principles that govern the nature of the 

interactions (van der Waals, hydrogen bonding, electrostatic) between the ligands and 

their protein or nucleic acid targets may provide a framework for designing the desired 

potency and specificity of potential drug leads for a given therapeutic target. Molecular 

docking is a method which helps to identify the preferred orientation of one molecule 

(ligand) to a second (receptor) when bound to each other to form a stable complex. The 

main objective of docking is to optimize the alignment of ligand (small organic 

molecules or protein subunit) with respect to target receptor and estimate the binding 

affinity using scoring function. Therefore, the development of docking algorithm and 

the empirical scoring function is crucial to improve the accuracy of computer aided 

drug design or in-silico vaccine design. 

The overall binding energy of the system is given by 
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∆𝐺 = (𝑉𝑏𝑜𝑢𝑛𝑑
𝐿−𝐿 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝐿−𝐿 ) + (𝑉𝑏𝑜𝑢𝑛𝑑
𝑃−𝑃 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑃−𝑃 ) + (𝑉𝑏𝑜𝑢𝑛𝑑
𝑃−𝐿 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑃−𝐿 + ∆𝑆𝑐𝑜𝑛𝑓)  

                      (2.11) 

where L refers to ligand, P refers to protein (target) and P-L refers to the complex. 

Further, the ΔSconf indicates the configurational entropy. 

Each pair-wise calculation (V) can be given by 

𝑉 =  𝑊𝑣𝑑𝑤 ∑ (
𝐴𝑖,𝑗

𝑟𝑖,𝑗
12 −

𝐵𝑖,𝑗

𝑟𝑖,𝑗
6 ) + 𝑊ℎ𝑏𝑜𝑛𝑑 ∑𝐸(𝑡) (

𝐶𝑖,𝑗

𝑟𝑖,𝑗
12 − 

𝐷𝑖,𝑗

𝑟𝑖,𝑗
10) +𝑖,𝑗 𝐸𝑒𝑙𝑒 ∑

𝑞𝑖𝑞𝑗

𝑒(𝑟𝑖,𝑗)𝑟𝑖,𝑗
+

               𝑊𝑠𝑜𝑙 ∑ (𝑆𝑖𝑉𝑗 + 𝑆𝑗𝑉𝑖) 𝑒
−𝑟𝑖.𝑗
2

2𝜎2𝑖,𝑗                          (2.12) 

The optimized weighing constant, W, is to calibrate the empirical free energy based on 

a set of experimentally determined binding constants. The first term is a typical 6/12 

potential for dispersion/repulsion interactions. The second term is for a directional 

hydrogen bond depending on 10/12 potential. The third term is Coulomb potential for 

electrostatics and the final term is desolvation potential. 

2.2.1.1 Classification of Molecular Docking and Docking approaches 

In terms of flexibility of ligand and receptor, docking can be classified in to following 

forms 

➢ Rigid Docking: In this method both the ligand and receptor are considered as 

rigid conformation and mainly follows the Emil Fischer “lock and key” model. 

In this method the search of preferred ligand orientation is limited and only 

consider the translational, rotational degrees of freedom. In this method the 

ligand flexibility is accounted using a set of ligand conformers. 

➢ Flexible Docking:  In the case of induced fit model, it is crucial to consider the 

flexibilities of both receptor and ligand due to the conformational change for 

minimum energy complex. However, due to high computational cost the ligand 

conformation is usually treated as flexible instead of the receptor. In this 

method the bond angel or dihedrals are considered as rotatable to achieve good 

fit at the binding pocket of the receptor. 
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The schematic diagram of different mode of docking is given in Figure 2.1. 

Figure 2.1 Schematic view of different docking methods. 

Based on the algorithms regarding the minimum energy state of ligand at receptor 

binding pocket, docking approaches can be categorized as follows 

➢ Monte Carlo Method: This method involves in making random conformation, 

rotation, and transition of ligand at the catalytic pocket and the scoring of the 

ligand conformation using Metropolis criteria. Further, the ligand conformation 

undergoes a probability function test to validate the ligand orientation. 

➢ Matching or Ligand Fit Approach: The ligands are precisely placed at the active 

site based on space complimentary approach. 

➢ Fragment Based Approach: In this method ligand fragments are divided into 

connected fragments that fits well with the binding pocket. 

➢ Distance Geometry: This approach connects the pharmacophore sites for space 

complementarity. 
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2.2.1.2 Docking requirements 

In order to obtain experimentally relevant Receptor-ligand complex, care need to be 

taken for ensuring the geometrical integrity of both the receptor or ligand prior docking. 

In case of receptor the atomistic detailing of binding pocket and the experimental 

protonation state of the amino acids are necessary to envision the non-bonded 

interaction between ligand and receptor after docking calculations. The ligand 

geometry such as bond distance, angle, dihedrals need to be optimized and the 

protonation state of polar atom need to be assigned correctly. Further, the scoring 

method need to be implemented to predict the binding affinity.  

2.2.2 Molecular Dynamics Simulation (MD)  

MD is an extremely powerful in-silico technique that involves in solving the classical 

equation of motion to study the microscopic behavior of atoms or molecules for a 

certain time period. Therefore, MD simulation techniques are often lauded as “virtual 

microscopes” and are known to have widespread implications in different areas of 

science especially in Life-science and material science. The method allows the 

prediction of the dynamic properties of substances directly from the underlying 

interactions between the molecules. The fundamental principle of MD simulation lies 

on the Newton’s second law of motion.  From knowledge of the force on each atom, it 

is possible to determine the acceleration of each atom in the system. Integration of the 

equations of motion then yields a trajectory that describes the positions, velocities, and 

accelerations of the particles as they vary with time. The flowchart of the different MD 

steps is given in Figure 2.2. Molecular dynamics simulations for large biomolecules 

can be time consuming and computationally expensive due it’s complex potential 

energy surface. From the trajectory, the average values of thermodynamic properties 

can be determined by integrating the particular property and corresponding probability 

at each microstate.  The average value of any property A can be given by  

⟨𝐴⟩ = 𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3+ . . . . . . . + 𝑞𝑛𝐴𝑛              (2.13) 

For large number of microstates, the average property can be given as  

⟨𝐴⟩ =  ∫ 𝐴(𝑞)𝜌(𝑞) 𝑑𝑞                                   (2.14) 
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Here, ρ is the probability of the property at each microstate which can be defined in 

terms of Boltzmann distribution.  

𝜌(𝑞) =
𝑒−𝑉(𝑞)/𝑘𝑇

∫𝑒−𝑉(𝑞)/𝑘𝑇𝑑𝑞
                                      (2.15) 

In the above equation the denominator is known as partition function and V(q) is the 

potential energy correspond to a microstate.  

 

Figure2.2 Flow chart for running MD simulation. 

For a system composed of N atoms, the force acting on atom I can be given as 

𝐹𝑖 = 𝑚𝑖𝑎𝑖 = 𝑚𝑖
𝑑𝑣𝑖

𝑑𝑡
= 

𝑑𝑝𝑖

𝑑𝑡
                                                            (2.16) 
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Here, pi is the linear momentum of the atom i. For a conservative system 

𝐹 = −𝛻𝑖𝑉 =  −
𝑑𝑉

𝑑𝑟𝑖
                                                                        (2.17) 

Combining equation (2.17) and (2.18) we obtain  

−
𝑑𝑉

𝑑𝑟𝑖
 = 
𝑑𝑝𝑖

𝑑𝑡
                                                                                    (2.18) 

The classical kinetic energy of atom i can be given as 

𝑇𝑖 =
1

2
𝑚𝑖𝑣𝑖 =

1

2

𝑚𝑖
2

𝑚𝑖
𝑣2 =

𝑝𝑖
2

2𝑚𝑖
                                                     (2.20) 

Differentiating the kinetic energy with respect to linear momentum we obtain 

𝑑𝑇𝑖

𝑑𝑞𝑖
=

2𝑝𝑖

2𝑚𝑖
=

𝑝𝑖

𝑚𝑖
=
𝑚𝑖.𝑣𝑖

𝑚𝑖
= 𝑣𝑖 =

𝑑𝑞𝑖

𝑑𝑡
                                               (2.19) 

The equations (2.19) and (2.21) are known as Hamiltonian equation of motion and    

need to be solved numerically to visualize the movement of atoms.   

2.2.2.1 Integrator Algorithms: 

➢ Leap-Frog Algorithm: This algorithm uses positions (r) at the time (t) and 

velocities (v) at time t-
1

2
𝜕t and updates the positions and velocity by following 

equations. 

𝑣 (𝑡 +
1

2
𝜕𝑡) = 𝑣 (𝑡 −

1

2
𝜕𝑡) +

𝜕𝑡

𝑚
𝐹(𝑡)       (2.20) 

𝑟(𝑡 + 𝜕𝑡) = 𝑟(𝑡) + 𝜕𝑡𝑣 (𝑡 +
1

2
𝜕𝑡)     (2.21) 

➢ Verlet Algorithm: It uses positions (r) and accelerations (a) of the particle at 

time t rather than the velocity. The new positions t+
1

2
𝜕t are calculated from the 

positions at t-
1

2
𝜕t. The algorithm is given by 

𝑟(𝑡 + 𝜕𝑡) = 𝑟(𝑡) + 𝑣(𝑡)𝜕𝑡 +
1

2
𝑎(𝑡)𝜕𝑡2   (2.22) 

𝑟(𝑡 − 𝜕𝑡) = 𝑟(𝑡) − 𝑣(𝑡)𝜕𝑡 +
1

2
𝑎(𝑡)𝜕𝑡2   (2.23) 

 Summing (2.7) and (2.8), 

𝑟(𝑡 + 𝜕𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − 𝜕𝑡) + 𝑎(𝑡)𝜕𝑡2   (2.24) 
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➢ Velocity-Verlet Algorithm: It uses positions (r) and velocities (v) at time t to 

integrate the equations of motions. This algorithm gives position, velocity and 

acceleration at the same time. 

𝑟(𝑡 + 𝜕𝑡) = 𝑟(𝑡) + 𝜕𝑡𝑣(𝑡) +
1

2
𝜕𝑡2𝑎(𝑡)   (2.25) 

𝑣(𝑡 + 𝜕𝑡) = 𝑣(𝑡) +
1

2
𝜕𝑡[𝑎(𝑡) + 𝑎(𝑡 + 𝜕𝑡)]    (2.26) 

2.2.2.2 Potential energy and Force Field         

The calculation of the potential energy of the system is crucial to estimate the force 

acting on each atom of the system and helpful in solving the equations of motions.  The 

potential energy of the system can be related by a simple equation of internal 

coordinates known as force field. In order to simulate the dynamics of biomolecular 

system various force fields are available such as AMBER (Weiner et al. 1984), 

CHARMM (Brooks et al. 1983),  OPLS (Jorgensen and Tirado-Rives 1988) and 

GROMOS (van Gunsteren and Berendsen 1987). The potential energy of the system 

can be defined as  

𝑉 = ∑ 𝑘𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠 + ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠 + ∑
1

2
𝑉𝑛[1 + cos(𝑛∅ −𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

𝛿)] + ∑ 𝑘𝜔(𝜔 − 𝜔0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠 + ∑ 4𝜀𝑖𝑗[(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)12 𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 − (

𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)6 +

∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑                                                                              (2.27) 

The first four term of the equation is known as the bonded terms and consists of energy 

related to bond stretching, angle bending and tortional energies. The k is the force 

constant in the bonded energy term in the potential energy equation. The last two term 

of equation is related to the non-bonded energy terms (electrostatic and Lennard-Jones 

energy terms) between two atoms that are separated by more the three consecutive 

bonds. In case of Lennard-Jones (LJ) energy terms the rij corresponds to the inter-atomic 

distance, ɛij is the well depth. The radius of the atoms can be determined by the 

parameter σ or the distance where the LJ potential is zero. In electrostatic energy term 

ɛ0 indicates the vacuum permittivity.  
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2.2.2.3 Periodic Boundary Condition 

Periodic boundary conditions are crucial to approximate behavior of a macromolecular 

system by using the small part known as unit cell and minimize the edge effect in MD 

simulations. In this method the unit cell is replicated in 3 dimensions with the periodic 

images to impose no boundary which ensures the connection with the surrounding 

environment. After imposing the periodic condition, the long range electrostatic 

interactions are often calculated by Ewald Summation (Wells and Chaffee 2015) and 

requires charge neutrality of the system. However, to improve the speed and accuracy 

to compute electrostatic interaction in large-scale MD simulations Particle Mesh Ewald 

(PME) method have been developed(Essmann et al. 1995a). In most of the MD engines 

triclinic unit cell is mostly considered which satisfy the following conditions 

𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧                                             (2.28) 

𝑎𝑥 >  0, 𝑏𝑦 >  0, 𝑐𝑧 > 0                             (2.29) 

𝑎𝑥 ≤ 
1

2
𝑏𝑦, 𝑏𝑦 ≤ 

1

2
𝑐𝑧 , 𝑐𝑧 ≤ 

1

2
𝑎𝑥                  (2.30) 

2.2.2.4 Temperature and Pressure Control in MD Simulation 

The temperature and pressure equilibrium are important criterion in MD simulation to 

maintain the appropriate phase space density for the system of interest. To capture the 

statistical characteristics of different microscopic environments different ensembles are 

available such as microcanonical ensemble (NVE), canonical ensemble (NVT) and 

isobaric-isothermal ensemble (NPT). In last two ensembles are highly used in 

biomolecular simulations, and the temperature of the system need to be constant 

throughout the simulation process. The thermal equilibrium can be achieved by 

employing various thermostat algorithms, as example: Velocity Rescaling, Berendsen, 

Nose-Hoover etc. In every case the velocity of the particles can be obtained from 

Boltzmann distribution which can be given as 

𝑝(𝑟) ∝  𝑒𝑥𝑝 (
−𝑈(𝑟)

𝑘𝐵𝑇
⁄ )                                 (2.31) 

Further, controlling pressure in the MD simulation is crucial as most of the biological 

process happens at constant pressure. The pressure of a system containing N particles 
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can be calculated by Clausius virial theorem given as  

𝑃 =
2

3𝑉
(𝐸𝑘𝑖𝑛 − 𝛯)                                                       (2.32) 

In equation, V is the velocity of the system and Ekin correspond to the kinetic energy of 

the system. The parameter Ξ can be defined as  

𝛯 =  
1

2
∑ 𝑟𝑖𝑗. 𝑓(𝑟𝑖𝑗)𝑖<𝑗                                                   (2.33) 

Here, f(rij) is the force acting between two particles j and i at distance rij.  

1.2.5 Free Energy Calculations  

All the molecular processes such as protein folding, protein-protein/ligand association, 

are known to be driven by free energy. Therefore, accurate determination of binding 

free energy of the inhibitors is believed to be crucial in the drug discovery 

process(Christ et al. 2010; Kumari et al. 2014a; Srinivasan et al. 1998a). A range of 

computational approaches can be used to estimate binding free energies. These includes 

thermodynamic integration (TI), free energy perturbation (FEP), linear interaction 

energy (LIE), molecular mechanics Poission-Boltzmann surface area (MM-PBSA), 

molecular mechanics Generalized Born surface area (MM-GBSA) etc. (Foloppe and 

Hubbard 2006; Gohlke et al. 2003; Kollman et al. 2000; Kollman 1993; Meirovitch 

2007; Parenti and Rastelli 2012; Ytreberg et al. 2006). Of these FEP and TI are the most 

rigorous but also the most computationally expensive. As a consequence, these two 

methods are mostly applicable to small perturbations or structural transitions 

(Meirovitch 2007). FEP and TI methods are also difficult to employ in cases where 

large numbers of structurally diverse ligands are being considered as it is necessary to 

generate a dual/hybrid topology for each protein-ligand pair (Kollman 1993). Endpoint 

free energy methods estimate the free energy using an ensemble of structures at the 

initial and final states making these approaches computationally highly 

efficient(Foloppe and Hubbard 2006; Gohlke et al. 2003; Kollman et al. 2000). 

Generally, the binding free energy of the protein with ligand in solvent can be 

expressed as(Gilson and Honig 1988b; Kollman et al. 2000; Srinivasan et al. 1998b) 

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝐺𝑙𝑖𝑔𝑎𝑛𝑑)                      (2.34) 
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where, 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is the total free energy of the protein−ligand complex and Gprotein and 

Gligand are total free energies of the isolated protein and ligand in solvent, respectively. 

Furthermore, the free energy for each individual entity can be defined as(Gohlke et al. 

2003; Kollman et al. 2000; Kuhn and Kollman 2000; Lee et al. 2000; Wang and 

Kollman 2000) 

𝐺𝑥 =< 𝐸𝑀𝑀 > −𝑇𝑆+< 𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 >                                    (2.35) 

where x is the protein or ligand or protein−ligand complex. ⟨EMM⟩ is the average 

molecular mechanics potential energy in a vacuum. TS refers to the entropic 

contribution to the free energy in a vacuum where T and S denote the temperature and 

entropy, respectively. The last term ⟨Gsolvation⟩ is the free energy of solvation.  

1.2.5.1 Molecular Mechanics Potential Energy 

The vacuum potential energy EMM, includes the energy of both bonded as well as 

nonbonded interactions, and it is calculated based on the molecular mechanics (MM) 

force-field parameters(Hornak et al. 2006a; Lindorff-Larsen et al. 2010a; Wang et al. 

2004). 

𝐸𝑀𝑀 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + (𝐸𝑣𝑑𝑊 + 𝐸𝑒𝑙𝑒𝑐)                    (2.36) 

where Ebonded is bonded interactions consisting of bond, angle, dihedral and improper 

interactions. The nonbonded interactions (Enonbonded) include both electrostatic (Eelec) 

and van der Waals (EvdW) interactions and are modelled using a Coulomb and Lennard-

Jones (LJ) potential function, respectively.  

1.2.5.2 Free Energy of Solvation  

The free energy of solvation is the energy required to transfer a solute from vacuum 

into the solvent. In the MM-PBSA approach, it is calculated using an implicit solvent 

model. The solvation free energy is expressed as the following two terms(Gilson and 

Honig 1988b; Honig and Nicholls 1995; Still et al. 1990) 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑝𝑜𝑙𝑎𝑟 + 𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟                                     (2.37) 

Where, Gpolar and Gnonpolar are the electrostatic and Van der Waals contributions to the 

solvation free energy, respectively. 
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1.2.5.3 Polar Solvation Energy 

The electrostatic term, Gpolar, is estimated by solving the Poisson−Boltzmann (PB) 

equation,(Ganoth et al. 2006; Honig and Nicholls 1995; Srinivasan et al. 1998b) which 

is given by 

∇. [𝜀(𝑟). 𝜑(𝑟)] − 𝜀(𝑟)𝑘(𝑟)2 sin[𝜑(𝑟)] + 
4𝜋𝜌𝑓(𝑟)

𝑘𝑇
= 0                                  (2.38) 

where ϕ(r) is electrostatic potential, ε(r) is the dielectric constant, and ρf(r) is the fixed 

charge density. The term k2 is related to the reciprocal of Debye length which is 

dependent on the ionic strength of the solution.  

1.2.5.4 Nonpolar Solvation Energy  

The non-electrostatic term of solvation free energy (nonpolar) includes repulsive and 

attractive forces between solute and solvent that are generated by cavity formation and 

van der Waals interactions, respectively(Levy et al. 2008; Tan et al. 2007; Wagoner 

and Baker 2006). It can be expressed as 

   𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 𝐺𝑐𝑎𝑣𝑖𝑡𝑦 + 𝐺𝑣𝑑𝑊                                                                              (2.39) 

Where, Gcavity is work done by the solute to create a cavity in the solvent and depends 

on the shape and geometry of the solute. GvdW is the attractive van der Waals energy 

between solvent and solute. These terms can be estimated using a variety of models. 

1.2.5.5 SASA-Only Nonpolar Model 

The solvent accessible surface area (SASA) model is based on the assumption that the 

SASA is linearly dependent on the Gnonpolar term and can thus be calculated as 

follows(Gohlke et al. 2003; Kuhn and Kollman 2000; Lee et al. 2000; Srinivasan et al. 

1998b; Still et al. 1990): 

𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 =  𝛾𝐴 + 𝑏                                                                                              (2.40) 

where γ is a coefficient related to surface tension of the solvent, A is SASA, and b is 

fitting parameter.  

1.2.5.9 Binding Energy Decomposition 

Initially the energy components EMM, Gpolar, and Gnonpolar of individual atoms are 

calculated in the bound as well as the unbound form, and subsequently their 

contribution to the binding energy ΔRxBE of residue x is calculated as follows: 
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 ∆𝑅𝑥
𝐵𝐸 = ∑ (𝐴𝑖

𝑏𝑜𝑢𝑛𝑑 − 𝐴𝑖
𝑓𝑟𝑒𝑒

)𝑛
𝑖=0                                                                           (2.41) 

Where, Ai
complex and Ai

free are the energy of ith atom from x residue in bound and 

unbound forms, respectively and n is the total number of atoms in the residue. We note 

that energy contribution summed over all residues is equal to the binding energy, i.e. 

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∑ ∆𝑅𝑥
𝐵𝐸𝑚

𝑥=0   where, m is total number of residues in either protein−protein 

or protein−ligand complexes. 

2.2.4 Umbrella Sampling simulations 

Umbrella Sampling (US) simulations have long been used to explore the mechanism of 

ligand-protein unbinding and the determination of binding free energy(Huang et al. 

2017b; Miao et al. 2018; Sun et al. 2015; Zhou et al. 2015b). However, the unbinding 

pathway modelled by such enhanced sampling methods must mimic the natural 

molecular movement to generate unbiased Potential of mean force (PMF). To steer the 

unbinding of ligands from the catalytic pocket of protein, a harmonic potential can be 

added to the system’s real or unbiased potential (Vu). The bias potential can be 

expressed as 

𝑉𝑏 = 𝑉𝑢 +  𝑈(𝜉)                                          (2.42) 

ξ is the reaction coordinate (RC) that changes with respect to time during the pulling 

simulations. The harmonic potential can be defined as follows 

𝑈𝑖(𝜉) =
1

2
𝐾𝑖(𝜉𝑖 − 𝜉𝑖0)

2                                (2.43) 

Where ξi0 is the target value of the RC at the window i around which the sampling is 

essentially confined, and Ki is the spring constant. It is believed that the sampling 

distribution largely depends on the value of the Ki. Therefore, choosing the value of Ki 

significantly reduces the number of umbrella sampling windows for generating 

unbiased, free energy change for a rare event. The force component generated by the 

bias potential on coordinate xj can be calculated as 

                                   
𝜕𝑈𝑖

𝜕𝑥𝑗
= 𝐹𝑖 = −𝐾𝑖(𝜉𝑖 − 𝜉𝑖0)

𝜕𝜉𝑖

𝜕𝑥𝑗
                (2.44) 
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The unbiased, free energy change of the permeation process can be obtained by 

WHAM (weighted histogram analysis method) algorithm. The free energy can be 

defined as, 

𝐺𝑢(𝜉) = −𝑘𝐵𝑇𝑙𝑛𝑃
𝑢(𝜉) = 

1

𝛽
𝑙𝑛𝑃𝑢(𝜉)                       (2.45) 

PU(ξ) is the unbiased probability distribution along the reaction coordinate, and kB is 

the Boltzmann constant. This can be computed using the biased probability (Pb(ξ)) 

distribution from umbrella sampling expressed in terms of partition function as follows  

𝑃𝑏(𝜉) =
∫𝛿[𝜉(𝑞)−𝜉]𝑒−𝛽[𝑉𝑢(𝑞)+𝑈𝑖(𝜉(𝑞))]𝑑𝑞

∫𝑒−𝛽[𝑉𝑢(𝑞)+𝑈𝑖(𝜉(𝑞))𝑑𝑞
= 𝑒−𝛽𝑈𝑖(𝜉(𝑞))

∫𝛿[𝜉(𝑞)−𝜉]𝑒−𝛽[𝑉𝑢(𝑞)]𝑑𝑞

∫𝑒−𝛽[𝑉𝑢(𝑞)+𝑈𝑖(𝜉(𝑞))𝑑𝑞
           (2.46) 

Further, the unbiased probability distribution along the RC can be written as  

𝑃𝑢(𝜉) =  𝑃𝑏(𝜉) 𝑒𝛽𝑈𝑖(𝜉)⟨𝑒−𝛽𝑈𝑖(𝜉)⟩          (2.47) 

Where the ⟨…⟩ indicates the ensemble average of the exponential and the unbiased free 

energy at window i can be written as 

𝐺𝑖
𝑢(𝜉) =  −

1

𝛽
𝑙𝑛𝑃𝑖

𝑏(𝜉) − 𝑈𝑖(𝜉)  + 𝑋𝑖    (2.48) 

The calculation of   Xi = −
1

𝛽
𝑙𝑛⟨𝑒−𝛽𝑈𝑖(𝜉)⟩ depends on the value of the ensemble average 

of the exponential at each umbrella window. Further, the ensemble average can be 

defined as  

⟨𝑒−𝛽𝑈𝑖(𝜉)⟩ = 𝑒−𝛽𝑋𝑖 = ∫𝑃𝑢(𝜉)𝑒−𝛽𝑈(𝜉)𝑑𝜉           (2.49) 

The global unbiased probability distribution (PU) can be calculated as the weighted 

average of the unbiased probability distribution of each window. Thus, 

𝑃𝑢(𝜉) =  ∑ 𝑤𝑖(𝜉)𝑃𝑖
𝑢(𝜉)

𝑛𝑤
𝑖                    (2.50) 

The weights at each umbrella window can be calculated by minimizing the global 

probability distribution with two conditions such as 
𝜕(𝑃𝑢(𝜉))

𝜕𝑤𝑖
= 0 and ∑ 𝑤𝑖(𝜉) = 1

𝑛𝑤
𝑖 . 

At window i the weight depends on can be expressed as follows 
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𝑤𝑖(𝜉) =
𝛼𝑖(𝜉)

∑ 𝛼𝑗
𝑛𝑤
𝑗

                                   (2.51) 

𝛼𝑖(𝜉) = 𝑛𝑖𝑒
−𝛽𝑈𝑖(𝜉)+𝛽𝑋𝑖                     (2.52) 

Here, ni is the number of steps sampled at the window i. Notably, the computation of 

factor ΔXi at equation (7) depends on equations (9), (10), and (11), whereas the value 

of parameter αi again depends on Xi. Therefore, the potential of mean force calculation 

is essentially an iterative method and needs to be carried out until the free energy results 

converge.  

2.2.5 Free Energy Perturbation 

The above two free energy methods mentioned here fail to capture the free energy 

change due to the functional group or amino acid mutations. In such cases, overlap 

sampling and perturbation theory can be combined to compute free energy change from 

MD trajectories. The free energy perturbation theory   or FEP captures the free energy 

difference between two ligands at the catalytic pocket of protein when ligand A changes 

to ligand B due to functional group mutation. The equation (Kollman, 1993; Zwanzig, 

1954) for calculating relative free energy is given as 

ΔΔG =ΔGA –ΔGB= –kBT ln ⟨exp (- (UB - UA)/kBT)⟩A (2.53) 

Where, UA and UB correspond to the potential energy of A and B states, kB is the 

Boltzmann constant, G is the relative free energy difference when ligand A transforms 

to B and T is absolute temperature. The ⟨..⟩A indicates the ensemble average over a 

simulation trajectory of state A.  The thermodynamic cycle for determining relative free 

energy calculation is depicted in Figure 2.3. In this method, the change of free energy 

for the transformation of A state to B state is represented as a function of the coupling 

parameter namely λ. This parameter tunes the level of changes the system go through 

or the extent of perturbation of Hamiltonian during the transformation of state A to state 

B. Thus, it is important to plan the number of λ points to describe the change from the 

initial point (λ=0) to final point (λ=1).  Care needs to be taken to ensure adequate 

sampling in each phase space for maximum overlapping at each λi point during the 

transformation and the convergence in free energy. The force-field parameters (χi) were 

scaled from the linear equation of λi given as 
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𝜒𝑖 = 𝜒𝐴𝜆𝑖 + (1 − 𝜆𝑖)𝜒𝐵                                 (2.54) 

The χA and χB are the force field parameters corresponding to state A and B. 

 

Figure 2.3. The Thermodynamic cycle for calculating the relative free energy of 

binding between two states. ΔGA and ΔGB are the free energy difference for going 

unbound state to bound state. ΔG1 and ΔG2 are the free energy difference for 

transforming ligand A to the ligand B.  

 

2.3 ANALYSIS 

The following analysis was carried out to assess the interaction and dynamics of 

biomolecules and their corresponding therapeutic agents. 

2.3.1 Contour Plot analysis:  The contour plots for 3D-QSAR models at 6th PLS was 

constructed by the Phase tool of Schrodinger software. Further the HOMO, LUMO 

orbitals were generated by Cubegen utility  

2.3.2 Root Mean Square Deviation (RMSD): 

The convergence of a biomolecular motion in MD simulation is known to be an 

indication of equilibrium state and can be measured by the spatial difference between 

two frames of the trajectory. The RMSD can be defined as  
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𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (𝑟𝑖

𝑋 − 𝑟𝑖
𝑌)2𝑁

𝑖=1                          (2.55) 

In eqn (2.39) N is the number of atoms, I indicate the current atom and rX, rY are the 

starting and reference states respectively. The gmx rms utility of the Gromacs tool have 

been employed to calculate the RMSD profile correspond to molecule of interest and 

the target. The reference structures have been aligned before calculating the RMSD. 

2.3.3 Root Mean Square Fluctuation:  

The measurement of fluctuation is crucial to assess the dynamics of protein for a 

trajectory of T ns. The root means square fluctuation of residue i for T time period (ns) 

with respect to reference position (ri
ref) can be defined as  

𝑅𝑀𝑆𝐹𝑖 = √
1

𝑇
∑ (𝑟𝑖(𝑡𝑗) − 𝑟𝑖

𝑟𝑒𝑓
)2𝑇

𝑡𝑗=1
                      (2.56) 

The gmx rmsf utility of Gromacs was used to calculate RMSF of proteins residues.  

2.3.4 Radius of Gyration: 

The measurement of global shape or the compactness of protein is primary 

measurement for conformational transition during the simulation time scale. The radius 

of gyration can be defined as  

𝑅𝑔 = √
∑ (𝑟2)𝑚𝑖𝑖

∑ 𝑚𝑖𝑖
                                   (2.57) 

In eqn (2.57) mi is the mass of atom ri. 

2.3.5 Number of Intra-and Intermolecular Hydrogen Bond and it’s lifetime: 

The hydrogen bonds between the protein and small molecules are said to be formed if 

the distance between the donor atoms O, N and acceptor hydrogen H linked to O, N are 

separated by 0.35 nm, larger than 100º (Stickle et al. 1992). The gmx hbond utility of 

Gromacs was used to calculate the hydrogen bonds formed during the simulation time 

scale. The occupancy percentage of a specific donor-acceptor pair is crucial to assess 

their frequency during simulation. The hydrogen bond occupancy can be defined as the 

ratio between the number of frame where hydrogen bond formed and the total number 
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of frames in the simulation trajectory. The hydrogen bond can be defined as(Chandra 

2000) 

𝑆𝐻𝐵(𝑡) =
<ℎ(0).𝐻(𝑡)>

<ℎ(0)2>
                                (2.58) 

The hydrogen bond between donor and acceptor is said to be formed if their interatomic 

distance is < 0.25 nm. Here, <…> is indicating the average over all the pairs of given 

type. H(t) is indicating the population parameter which is 1 if a specific hydrogen bond 

exists from time t = 0→1 or zero otherwise. We calculated the hydrogen bond between 

protein polar hydrogens (attached to nitrogen and oxygen) and oxygen of water, protein 

oxygen, and hydrogen of water. We have considered interfacial water molecules up to 

a cut off value of 0.5 nm for the calculation of protein-water hydrogen bond lifetime. 

2.3.6 Secondary Structure Analysis 

The change in secondary structure such as alpha helix, extended β-sheet, turns and coils 

of the protein during simulation was analysed by DSSP programme. The gmx do_dssp 

utility was used to generate the matrix file and gmx xpm2ps utility was used to generate 

the time evolution of secondary structure. 

2.3.7 Principal component Analysis 

The reduction of high dimensional data obtained from MD trajectory is necessary to 

extract the major motion or the essential dynamics system that directly related to the 

function, allosteric regulation and folding of biological macromolecules or peptides. 

Principle component analysis (PCA) is such computational method to identify the 

collective motions. The principal component modes of biomolecular dynamics can be 

calculated by diagonalizing the covariance matrix defined as 

𝐶𝑖𝑗 = 
1

𝑁
∑ (𝑥𝑖

𝑘 − ⟨𝑥𝑖⟩)(𝑥𝑗
𝑘 − ⟨𝑥𝑗⟩)

𝑁
𝑘=1                                    (2.59) 

In eqn (2.59) xk
i and xk

j are the pair of elements correspond to vector xk which depict 

the configuration of the system at time step k. ⟨xi⟩ and ⟨xj⟩ are the time averaged value 

of the elements for the N structures sampled in the MD simulation. In general, x is the 

vector that contains all the coordinates of the cα atom of a protein. The eigen vector 

correspond to largest eigen value provides the low dimensional subspace that can 

describe the maximum behaviours of the biomolecules. 
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2.3.8 Radial Distribution Function (RDF) 

Radial distribution function defines the structure of a molecular system as a change in 

of particle number density with respect to distance from a reference point. This can be 

defined as 

𝑔𝛼𝛽 = 𝑙𝑖𝑚
𝑑𝑟→0

𝜌(𝑟,𝑑𝑟)

4𝜋 (
𝑁𝛼𝛽

𝑉
⁄ )𝑟2𝑑𝑟

                                                 (2.60) 

Here, r is the distance between the atom pairs of interest. Ρ (r, dr) is number of atom 

pairs present in the distance spanning from r to r+ dr. Nαβ is the number of pairs of two 

species considered to calculate the pair correlation function.  The deviation in the value 

of gαβ from the unity indicates the change in order or correlation in the system. 

2.3.8 Preferential Binding Coefficient (PBC) 

The preferential binding coefficient quantify the extent of interaction between two 

species in the aqueous solution and can be calculated by the Kirkwood-Buff (KB) 

theory of preferential interaction. The KB integral (Gαβ) can be defined as  

𝐺𝛼𝛽 =  4𝜋 ∫ [⟨𝑔𝛼𝛽(𝑟)⟩ − 1]𝑟
2𝑑𝑟

∞

0
                                        (2.61) 

Here, α and β are the two species considered for calculating the binding coefficient. 

Further, the preferential binding coefficient of species α with specie β can be written as  

   𝜈𝛼𝛽 =  𝜌 (𝐺𝛼𝛽 − 𝐺𝛼𝑊)                                                     (2.62) 

In eqn (2.46) GαW is the KB integral value between species α and water molecules. 

2.3.9 Free Energy Landscape: 

The free energy surface or landscape technique is widely used to detect the extent of 

sampling of proteins or peptides in the phases space and number of minima present in 

a particular biological reaction. The construction of such free energy contour is useful 

in explaining conformational transition, folding, or unfolding of proteins and the self-

assembly process of the peptides. Notably, the selection of reaction coordinate is crucial 

that can maximally explain the biological process. The free energy is mainly calculated 

based on the populations correspond to the reaction coordinates of collective variables. 

The free energy profile corresponds to λ1 and λ2 can be defined as  
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∆𝐺 (𝜆1, 𝜆2) =  −𝑘𝐵𝑇 [𝑙𝑛 𝑃 (𝜆1, 𝜆2)  − 𝑙𝑛𝑃𝑚𝑎𝑥]                          (2.63) 

Where, T and kB are the system temperature and Boltzmann constant respectively. The 

P indicates the probability density function retrieved from the histogram of the reaction 

coordinates and Pmax is the maximum probability density. This maximum probability 

density value needs to be subtracted to ensure the lowest free energy minima at ΔG=0.  

2.3.10 Mean Square Displacement 

The extent of deviation for a particle with respect to time is known to the measure of 

the mobility of the particle. It can be calculated as 

𝑀𝑆𝐷 =  ⟨|𝑟𝑖(𝑡0 + 𝑡) − 𝑟𝑖(𝑡0)|
2                                                           (2.64) 

Where ri(t0+t) and ri(t0) represents the position vectors of ith atom at time t and starting 

time t0. The diffusion co-efficient can be calculated from Einstein’s equation 

𝐷 = lim
𝑡→∞

𝑀𝑆𝐷
6𝑡⁄                                                                                    (2.65) 

2.3.11 ADME toxicity analysis: 

It is believed that only improving potency of a particular drug towards its target is not 

the primary objective in the drug development process, unless taking PK profile and 

toxicity in to consideration (Ekins et al. 2002). The in vivo behaviours of the hit 

compounds relate the structural properties to the chemical, physical or biological 

characteristics. Therefore, calculation of specific parameters and the information of 

their permissible range is crucial to predict the pharmacological performance and 

ensure the minimal side-effect in human body. The parameters chosen in the current 

study are listed in Table 2.1.  

Table 2.1 The ADME parameters and their permissible range 

Parameters Explanation Permissible Range 

MW Molecular weight of the organic compound 130.0 - 725.0 g 

logPo/w n-octanol water partition coefficient that 

serve as estimation of lipophilicity and 

hydrophilicity of the substrate. 

-2.0- 6.5 
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HBD Number of donar hydrogen bond present in 

the molecule 

0.0- 6.0 

HBA Number of acceptor hydrogen present in the 

molecule 

2.0- 20.0 

SASA Solvent accessible surface area of the hit 

compounds 

300.0- 1000.0 Å2 

PSA Estimates the surface corresponding to 

polar atoms especially oxygen and nitrogen. 

7.0- 200.0 Å2 

rotor Number of rotatable bonds in the molecule 0-15 

logS Estimates the water solubility of hit 

compound. 

-6.5- 0.5 mol dm-3 

dipole Estimates the electric polarity of the 

molecule  

1.0- 12.5 debye 

logKhsa Measures the extent of binding blood serum 

albumin 

-1.5- 1.5 

logBB Blood-brain barrier partition coefficient 

that measures the ability of the hit 

compound to cross blood brain barrier. 

-3.0- 1.2 

PCaco- 2 This parameter predicts the human 

intestinal permeability of a compound. 

< 25 poor,        

> 500 great. 

PMDCK Estimates the small molecule absorption on 

Madin-Darby Canine Kidney cell line 

< 25 poor,        

> 500 great. 

 Human oral absorption percentage > 80% high and < 

25% poor 

The combination of first four parameters is known as Lipinski’s rule of five and the 

combination of PCaco, logS and number of primary metabolites is known as Jorgensen 

rule of five. This thumb rules are the primary assessment of drug likeness.  
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2.3.12 In-silico Vaccine Design  

2.3.12.1 Multiple Sequence Alignment and domain analysis 

The evolutionary diversity of various classes of corona-virus S-protein was primarily 

determined by Multiple sequence analysis (MSA). We used MEGA7(Kumar et al. 

2001, 2016) software for MSA and the Phylogenic tree was constructed by ClustalW 

tool(Larkin et al. 2007), employing neighbour joining algorithm with default 

parameters and 1,000 bootstrap replicas. In this paper, S-protein amino acid sequences 

of all coronavirus species (α-coronavirus, γ-coronavirus, β-coronavirus such as SARS-

CoVid, MERS-CoVid and SARS-CoVid2, δ-coronavirus) were considered which 

cause severe lungs diseases in human or animal. Additionally, S-protein sequences of 

SARS-CoVid2 retrieved from most affected countries in the globe were included in 

MSA and Phylogenetic tree analysis. All the sequences that are included in this study 

were retrieved from NCBI database (https://www.ncbi.nlm.nih.gov/).   

 Further, the major domains of spike glycoprotein of SARS-CoVid-2 were 

identified by Pfam database (https://pfam.xfam.org/).  

2.3.12.2 B-cell epitope prediction 

In order to design anti-SARS-CoVid2-nutralizing antibodies, the antigenic sites of S-

protein were determined using IEDB (Immune-Epitope-Database and Analysis-

Resource) tool (http://tools.iedb.org/main/). The linear B-cell epitopes were predicted 

by set-of physicochemical parameters such as the exposed surface propensity by Emini 

et. al(Emini et al. 1985b), hydrophilicity by Parker et. al(Parker et al. 1986b), flexibility 

by Karplus et. al(Karplus and Schulz 1985b), antigenic propensity by Kolaskar et. 

al(Kolaskar and Tongaonkar 1990a) and β-turn propensity by Chou et. al(Chou and 

Fasman 1977) etc. In addition, the linear epitopes were also predicted by Bepipred 

Linear epitope prediction method(Larsen et al. 2006). The surface accessible 

probability (Sn) of an amino-acid located at the nth position of any amino acid sequence 

can be defined as  

𝑆𝑛 = [∏ 𝛿𝑛+4−𝑖
6
𝑖=1 ] ∗ (0.37)−6                      (2.66) 

Where δn stands for the fractional surface probability of an amino acid located at 

position n. The probability value greater than 1.0 indicates the tendency of a residue to 

https://www.ncbi.nlm.nih.gov/
https://pfam.xfam.org/
http://tools.iedb.org/main/
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be located at the surface of protein. The hydrophilicity profile of the amino-acid 

sequence SARS-CoVid2 s-protein was predicted by correlating the hydrophilicity 

HPLC (High-performance liquid chromatography) parameters of twenty synthetic 

peptides(Parker et al. 1986b). The antigenicity of a peptide is believed to be depending 

on the flexibility of the side chain of the amino-acid residues(Westhof et al. 1984). The 

B-factors (temperature factor) of the residues present in S-protein is known to be 

necessary for measuring the segmental flexibility. The normalized B-value of a Cα atom 

of residue was calculated by the following equation  

𝐵𝑛𝑜𝑟𝑚 = (𝐵 + 𝐷𝑃)/(< 𝐵 >𝑃+ 𝐷𝑃)                (2.67) 

Where, <BP> is the average B-value of all Cα atoms of protein P and DP is the tuning 

factor of the protein. The values of Bnorm more than 1.0 indicates the antigenic region 

of a protein.  Further, the antigenic propensity of the S-protein residues was calculated 

from the relation mentioned below 

𝐴𝑃 = 𝑓𝐴𝑔/𝑓𝑠                                                    (2.68) 

Where, fAg stands for the frequency of occurrence of each amino-acids at the known 

antigenic regions and fs indicates the frequency of occurrence of the residues at the 

surface of query protein(Kolaskar and Tongaonkar 1990a). Further, the continuous 

residue stretches with higher β-turn, β-sheet propensities were also determined to 

identify the most antigenic regions of S-protein. VaxiJen 2.0(Doytchinova and Flower 

2007) was employed to evaluate the antigenicity of the predicted epitopes. The 

antigenic score of the predicted epitopes with an antigenicity score of 0.4 believed to 

initiate adequate defensive immune reaction. B-cell discontinuous or conformational 

epitope that are scattered along the protein sequence were identified by 

DiscoTope2.0(Larsen et al. 2006) with a discotope score threshold of -3.7was used to 

predict discontinuous epitopes. The Pymol was used to examine the positions of 

selected linear and discontinuous epitopes on the 3D structure of SARS-CoV-2 spike-

protein.  

2.3.12.3 T-cell epitope prediction 

The development of memory B-cell in human body depends on the recognition of 

cytotoxic T-lymphocyte (CTL) epitopes presented at the surface of T-cell receptors. 

The memory B-cell is believed to fight against the re-infection (secondary immune 
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response) to mitigate the effects of disease-causing pathogen(Akkaya et al. 2020). 

IEDB tool was employed to predict the peptides that are presented by the major types 

of T-cell receptors (TCRs) such as Major Histocompatibility complex Class I (MHC 

Class I) and Class II. The prediction of both HLA (human leukocyte antigen) class-I 

and class-II T-cell epitopes are mainly based on artificial neural network (ANN) 

implemented in NetMHCpan tool(Andreatta and Nielsen 2016; Nielsen and Andreatta 

2016).  In the present case we considered A*02:01, A*24:01, B*40:01, B*58:01 alleles 

for MHC-I based and DRB1*04:01, DRB1*07:01 for MHC-II based epitopes due to 

their importance in case of SARS-CoVid2(Grifoni et al. 2020). In order to filter the T-

cell epitope peptides with lower affinity, the Percentile rank threshold was set to 1% 

for MHC-I and 10% for MHC-II. Further, the antigenicity of each T-cell epitopes was 

calculated by VaxiJen (Doytchinova and Flower 2007) (v2.0).  

2.3.12.4 Multi-epitope Vaccine design  

The continuous B-cell epitopes from S-protein predicted by different physicochemical 

methods mentioned above were linked together by GPGPG linkers in sequential 

manner. In order to induce regulatory immune response, the Cholera Toxin B (CTB) 

adjuvant was fused by EAAAK linker at the N-terminal end of the vaccine construct. 

The similar procedure was followed for MHC-I and MHC-II based linear T-cell 

epitopes. The tertiary structure of the two linear vaccine construct was generated by 

trRosetta(Yang et al. 2020) web server (https://yanglab.nankai.edu.cn/trRosetta/). 

Furthermore, the 3D-models of the vaccine was validated by ProSA-webserver 

(Wiederstein and Sippl 2007) (https://prosa.services.came.sbg.ac.at/prosa.php) and 

Ramachandran plot implemented in Schrodinger tool. 

2.3.12.5 In-silico Cloning of Vaccine Construct 

The reverse translation along with the codon optimization of the vaccine constructs 

were carried out with Codon Adaptation tool(Grote et al. 2005) (http://www.jcat.de/) 

in order to generate the cDNA sequence of the vaccines. The K-12 strain of E.coli was 

used to express the vaccines. The expression level of the vaccines was evaluated by 

codon adaptation index (CAI) and overall GC content. Finally, the cDNA sequence of 

https://yanglab.nankai.edu.cn/trRosetta/
https://prosa.services.came.sbg.ac.at/prosa.php
http://www.jcat.de/
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the vaccines was inserted into pUC19 (2686 bp) employing SnapGene tool 

(http://www.snapgene.com).  

 The size of the vaccine construct consists of b-cell linear epitope (Vac-COVID-

B) is found to be 399 base pair long whereas; the vaccine construct made of T-cell linear 

peptide epitopes (Vac-COVID-T) is 333 base pair (bp). The CAL value > 0.8 and GC 

composition between 30-70% of a cDNA segment is believed to be the benchmark for 

good expression of the gene in the host system(Sharp and Li 1987). The CAI value of 

both vaccines are found to be 1.0 and the GC content values for Vac-COVID-B, Vac-

COVID-T are 60.65%, 56.75% respectively. This indicates the efficient expression of 

the adapted codons in E.coli K12 strain. Finally, we inserted the cDNA sequences of 

the vaccines computationally at the multiple cloning site of pUC19 vector. The size of 

the recombinant plasmid is 3401 bp and can be named as pUC-COVID. This study 

implies an efficient cloning strategy for the chimeric vaccines.  
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CHAPTER 3 

COMPUTATIONAL INSIGHTS INTO FACTOR AFFECTING THE POTENCY 

OF DIARYL-SULFONE ANALOGS AS ESCHERICHIA COLI 

DIHYDROPTEROATE SYNTHASE INHIBITORS 

 

Abstract: Dihydropteroate synthase (DHPS) is an alluring target for designing novel 

drug candidates to prevent infections caused by pathogenic Escherichia coli strains. 

Diaryl Sulfone (SO) compounds are found to inhibit DHPS competitively with respect 

to the substrate pABA (p-aminobenzoate). The extra aromatic ring of diaryl sulfone 

compounds found to stabilize them in highly flexible pABA binding loops. In this present 

study, a statistically significant 3D-QSAR model was developed using a data set of 

diaryl sulfone compounds. The favourable and unfavourable contributions of 

substitutions in sulfone compounds were illustrated by contour plot obtained from the 

developed 3D-QSAR model. Molecular docking calculations were performed to 

investigate the putative binding mode of diaryl sulfone compounds at the catalytic 

pocket. DFT calculations were carried out using SCF approach, B3LYP-6-31G (d) 

basis set to compute the HOMO, LUMO energies and their respective location at pABA 

binding pocket. Further, the developed model was validated by FEP (Free Energy 

Perturbation) calculations. The calculated relative free energy of binding between the 

highly potent and less potent sulfone compound was found to be -3.78 kcal/ mol which 

is comparable to the experimental value of -5.85kcal/mol. A 10 ns molecular dynamics 

simulation of inhibitor and DHPS confirmed its stability at pABA catalytic site. 

Outcomes of the present work provide deeper insight in designing novel drug 

candidates for pathogenic Escherichia coli strains. 

 

Keywords: Dihydropteroate Synthase; 3D-QSAR; Molecular Docking; Density 

Functional Theory; Free Energy Perturbation; Molecular Dynamics Simulation; 

Diaryl Sulfone. 
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3.1 BACKGROUND 

Targeting DHPS (Qi et al. 2011; Zhao et al. 2016a) and its mutational studies (Yun et 

al. 2012a) have become an interesting topic for the development of antibacterial drugs 

candidates to prevent antibiotic-resistant pathogenic bacterial infections. Therefore, a 

deeper insight regarding diaryl sulfone binding between two flexible loops of EcDHPS 

will be helpful for synthesizing novel type of sulfa drugs with improved affinity to 

EcDHPS catalytic pocket. Computer simulation of biomolecules proved to be an 

important tool for better understanding of protein-ligand interactions and their 

stabilization patterns (Srivastava and Tiwari 2017) at the molecular level. Recently, 

DFT studies of protein-ligand complexes are reported to be effective for understanding 

them at their electronic level (Tao et al. 2009). The HOMO, LUMO orbital energies 

and their location at the protein-ligand complex are found to be important for predicting 

the type of non-bonded interactions which are crucial to achieve favourable recognition 

of ligands by protein molecules ultimately resulting to their stability in catalytic pocket 

(Correa-Basurto et al. 2012). DFT calculations also facilitate the mechanistic 

investigation of product formation in the catalytic pocket of enzymes (Malkhasian and 

Howlin 2016). Another important technique to measure the stability of the protein 

ligand complex is FEP (Free energy perturbation). The FEP/REST(Free energy 

perturbation/ replica exchange with solute tempering) are reported (Lenselink et al. 

2016; Wang et al. 2015) to provide a rigorous algorithm to compute the difference in 

binding affinity due to presence or absence of specific functional groups in inhibitors. 

Several FEP studies were carried out to explain the effect of in-silico mutagenesis and 

SAR (structure-activity relationship) of different antagonist bound to enzymes(Chen et 

al. 2013; Goldfeld et al. 2015; Keränen et al. 2014). FEP calculations are also reported 

to be efficient in reducing the computational cost compared to absolute free energy 

calculations (Bash et al. 1987; Jorgensen and Ravimohan 1998). Therefore, the utility 

of these tools is found to be crucial to determine the factors affecting the stabilization 

of diaryl sulfone derivatives at DHPS catalytic pocket. The relative stability of the 

protein-ligand complex calculated by FEP can be compared with the experimental data. 

In this present chapter, we selected a dataset of sulfone compounds to develop 

a model which clearly describes the effect of substitutions, affecting the potency of 
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sulfone compounds. Initially, 3D-QSAR model was developed to understand the 

structure-activity relationship (SAR) of diaryl sulfone molecules. The effect of the 

spatial arrangement of structural features on DHPS inhibition was explained by the 

contour plot obtained from 3D-QSAR model. Next molecular docking of all the sulfone 

molecules was carried out at the binding pocket of pABA. The result of molecular 

docking was correlated with the experimental activity value (pEII50). Molecular 

docking helped in predicting the probable binding pose of sulfone molecule with 

respect to pABA. Further, we employ DFT (Density Functional Theorem) calculations 

to clarify the ligand-protein stability and interactions at electronic level. FEP/REST 

calculations were performed to compute the change in binding free energy due to 

functional group mutation. Lastly, 10 ns molecular dynamics was performed to confirm 

the stability of one of the top scoring compounds. The developed model provides 

insightful information regarding the mode of binding and important substitution 

required to stabilize diaryl sulfone compounds at EcDHPS catalytic pocket. This study 

will help in developing a better generation of Sulfa drugs or pterin-sulfa compounds 

with improved affinity and therapeutic activity to prevent the infection caused by 

pathogenic E.coli. 

3.2 COMPUTATIONAL DETAILS 

3. 2. 1 Ligand Preparation 

A biological data set consisting of fifty diaryl sulfone(SO) derivatives(Table 3.1) was 

chosen from literature(De Benedetti et al. 1987, 1989; Hevener et al. 2010a; Lopez de 

Compadre et al. 1987) were used in the present study. The selected molecules from the 

biological dataset shared the same assay procedure (Richey and Brown 1969) with 

variation in substitution and potency profiles. The biological activity of the dataset was 

represented by the EII50 (Enzyme Inhibition Index50) values and reported to have 

inhibitory activity spanned from 67.3µM to 0.21µM. In spite of having higher potency, 

compound 1 was not considered for 3D-QSAR calculations due to the absence of 

molecules having potency in the same activity range (Golbraikh et al. 2003). EII50 

values were imported in Maestro (Schrödinger Release 2017-2: Maestro, Schrödinger, 

LLC, New York, NY, 2017) project table panel and converted to pEII50. The 3D 

structures of the ligand were constructed using the builder panel in Maestro. The 
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geometry of the ligands was optimized after generating the structure using the Ligprep 

module (v4.9, schrodinger2017-2). Partial atomic charges were assigned and the 

possible ionization states were generated at pH of 8.2±0.1. The OPLS_2005 (Kaminski 

et al. 2001) force field was used for energy minimization of each ligand until it reached 

a root mean square deviation (RMSD) cut off of 0.01Å. Then the resulting structures 

were used for the modelling studies.  

Table 3.1. structural detail, experimental activities, predicted activity of sulfone 

compounds (1-50). 

 

Compounds   R1 R2 R3 Exp 

Activity 

(pEII50/EXP

) 

Pred 

Activity 

(pEII50/PRED) 

**RA 

1 ONa ONa H 8.302 - - 

2 CH3 O- H 6.63 6.55 -0.08 

3 CH3 O- CH3 6.68 6.60 0.08 

4 Cl OH H 6.58 6.59 0.01 

5t Cl O- H 6.58 6.57 -0.01 

6 CH3 OH H 6.46 6.46 0.00 

7 CH3 CH3 O- 6.3 6.02 -0.28 

8t ONa NH2 H 6.29 6.31 0.02 

9t CH3 OH CH3 6.29 6.29 0.00 

10 OH OH H 6.14 6.17 0.03 

11 ONa OH OH 5.83 5.80 -0.03 

12t OH O- OH 5.83 5.60 -0.23 

13 H ONa H 5.82 5.83 0.01 
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14t NH2 NH2 H 5.79 5.82 0.03 

15t CH3 CH3 CH3 5.77 5.85 0.08 

16 CH3 OCH3 H 5.75 5.77 0.02 

17t CH3 CH3 OH 5.75 5.72 -0.03 

18t CH3 OCH3 CH3 5.75 6.03 0.28 

19 CH3 CH3 H 5.72 5.68 -0.04 

20 OH OH OH 5.71 5.76 0.05 

21t Cl Cl H 5.65 5.86 0.21 

22 NH2 H H 5.64 5.62 -0.02 

23 H OH H 5.61 5.64 -0.03 

24 H NH2 H 5.57 5.57 0.00 

25 H N(C2H5)2 H 5.57 5.53 -0.04 

26 CH3 CH3 OCH3 5.52 5.53 0.01 

27 OCH3 OCH3 H 5.49 5.58 0.09 

28 Cl Cl Cl 5.48 5.81 0.33 

29 H N(CH3)2 H 5.44 5.37 -0.07 

30t H NHOH H 5.34 5.44 -0.10 

31 H NHC2H5 H 5.34 5.33 -0.01 

32 H COOH H 5.29 5.29 0.00 

33 H COONa H 5.29 5.34 0.05 

34t NH2 NHCHO H 5.23 4.91 -0.32 

35 H NHCOCH3 H 5.23 5.26 0.03 

36* m-NH2 5.22 5.24 0.02 

37 H CH3 H 5.21 5..18 -0.03 

38 H OCH3 H 5.18 5.12 -0.06 

39t H H H 5.02 5.19 0.17 

40 H Br H 4.96 4.97 0.01 

41 OCH3 OCH3 OCH3 4.89 4.87 -0.02 

42 H F H 4.74 4.73 -0.01 

43t H Cl H 4.68 4.76 0.08 

44 H CONH2 H 4.64 4.73 0.09 
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45 H COOCH3 H 4.46 4.40 -0.06 

46 NO2 NO2 H 4.44 4.46 0.02 

47t H COCH3 H 4.36 4.37 0.18 

48 H NO2 H 4.34 4.35 0.01 

49 H CON(C2H5)2 H 4.30 4.46 0.16 

50 H CN H 4.17 4.07 -0.1 

 

       1) tDefines that the compound is in the test-set list for 3D-QSAR analysis. 

       2) *Defines the functional group is in the meta position of the R9 pharmacophoric 

ring only 

       3) **Residual activity (RA) defines the difference between phase predicted 

activity and experimental activity    of diaryl sulfone compounds. 

3.2.2 3D-QSAR modelling 

Phase (v 4.9) (Dixon et al. 2006) was used to generate 3D-QSAR models for the 

diaryl sulfone-based inhibitors of DHPS. The prepared structures of SO derivatives 

were selected in workspace navigator panel in Maestro (Schrödinger Release 

2017-2: Maestro, Schrödinger, LLC, New York, NY, 2017) interface and imported 

to the atom-based 3D-QSAR model development panel with their respective 

biological activity value (pIIE50). Before building the 3D-QSAR model, all prepared 

ligands were aligned using common scaffold based alignment, a type of flexible 

ligand alignment tool in Phase and Largest Common Bemis-Murcao scaffold(Bemis 

and Murcko 1996) was selected as a parameter. The atom-based 3D-QSAR model 

considers all the atoms into account; whereas pharmacophore based QSAR model 

does not consider the ligand feature beyond pharmacophore model. Consequently, 

atom based 3D-QSAR proved to be more useful for predicting the true structure-

activity relationship (Shah et al. 2010; Verma et al. 2010) of diaryl sulfone 

compound at the pABA binding pocket. The dataset was randomly divided, 75% 

structures (to maintain the standard 3:1 ratio) were kept as training set and rest 

molecules were automatically considered as test-set by using “Automated Random 
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Selection” option present in the Phase module. Care was taken in order to include 

the most active and inactive molecules in training set (Dixon et al. 2006; Golbraikh 

et al. 2003). The maximum number of Partial Least Square (PLS) factor was N/5 

(Where N in the number of training set molecules). Use of higher PLS factor could 

cause over fitting of data, hence optimal six PLS factor was used (Polański et al. 

2002). The 3D-QSAR model was generated by keeping a grid spacing of 1Å. The 

equation for calculating the predicted activity can be given as  

𝑃𝐸𝐼𝐼50/𝑃𝑅𝐸𝐷 =  𝑦 + 𝑎1𝐻𝐵𝐷1+. . . + 𝑎𝑛𝐻𝐵𝐷𝑛 + 𝑏1𝐴1+. . . +𝑏𝑛𝐴𝑛 +

𝑐1𝑆1+. . . +𝑐𝑛𝑆𝑛+. . . +𝑑1𝐸𝑊1+. . . +𝑑𝑛𝐸𝑊𝑛          (3.1) 

Where, HDB, A, S and EW stand for the descriptors related to hydrogen bond donor, 

anionic, Steric or hydrophobic group and the electron withdrawing group. Further, a1..n, 

b1..n, c1..n and d1..n are the empirical constants derived from PLS method. Further, 

contour plot analysis was performed to interpret and recognize the important 

pharmacophoric requirements at spatial sites of the structures by the cubic 3D grid. The 

biological activity of the training set molecules was evaluated by the generated 3D-

QSAR model in order to estimate the quality of the 3D-QSAR model. Lastly the 

stability and predictivity of the developed 3D-QSAR model was examined with an 

external test set of ten diaryl sulfone compounds(Lopez de Compadre et al. 1987). 

3.2.3 Molecular Docking 

The co-crystal structure of DHPS with sulfonamide (PDB ID: 1AJ0, resolution 2.0Å) 

was obtained from Protein Data Bank (Achari et al. 1997b) and the docking of the fifty 

drug molecules were carried out using an automated docking program namely 

Autodock (v4.2.6) which considers the protein to be rigid during docking. Prior to 

docking, DHPS structure was prepared (Sastry et al. 2013) using Autodock graphical 

user interface (Morris et al. 2009). The co-crystallized ligand, water molecules were 

removed and Gasteiger charges (Gasteiger and Marsili 1980), polar hydrogen were 

added to the protein structure. The energy minimization of protein was performed till 

RMSD of 0.30 Å conjugate gradient steps using OPLS-2005 force-field (Sastry et al. 

2013). The minimized ligands were taken and the bond associated with the sulphone 

groups were set as rotatable bonds (Lopez de Compadre et al. 1987). A 3D grid was 

created at the binding site of the protein having a size of 30Å × 24Å ×22Å with a default 



58 
 

spacing of 0.375Å, using an Auto-Grid algorithm to quantify the binding affinity of 

ligand at the catalytic site of DHPS. The grid includes all eight active site residues 

namely Thr62, Arg63, Phe190, Ser219, Arg220, Lys221, His257 and SO4 284 (Achari 

et al. 1997b). The molecular docking simulations were performed using Lamarckian 

Genetic Algorithm (MORRIS et al. n.d.). The initial population and the number of 

energy evaluations were fixed to 150 and 2.5 × 106 respectively for all molecular 

docking simulations. The co-crystallized sulphanilamide was removed and re-docked 

into the same position and RMSD between them was calculated to assess the reliability 

of docking results (Tripuraneni and Azam 2016). Several clusters were obtained for the 

docking orientation within RMS (Root Mean Square) deviation of 0.5Å and the lowest 

energy cluster obtained for each sulfone compounds were used for further analysis. 

3.2.4 DFT Calculation Setup 

Molecular orbital calculations were performed to explore the binding site of DHPS (i.e., 

the pABA binding pocket) to analyse the protein-ligand interaction at electronic level. 

It was evident from the frontier molecular orbital theory that HOMO of the ligands 

interacts with LUMO positioned in the binding pocket of the protein (Correa-Basurto 

et al. 2012). In order to determine the location of HOMO, LUMO orbitals in ligands 

single point energy calculations were performed by Gaussian09 software package 

(“Gaussian 09 Citation | Gaussian.com” n.d.), using SCF(Self Consistent Field) 

approach(Tomasi et al. 2005). B3LYP(Lee et al. 1988a) functional and 6-31G(d) 

(Otsuka Takao et al. 2015) basis set was used to compute single point energy of sulfone 

compounds. The recognition ability of the protein was explained by evaluating the 

HOMO and LUMO energies of the ligands (Correa-Basurto et al. 2012). The HOMO, 

LUMO calculations of the binding site residues was also performed to explain the 

ligand-binding mechanism at the catalytic pocket of DHPS. Since the calculation of the 

whole protein molecule with ligand is computationally expensive so we took only the 

interacting amino acids and ligands for this study. The generated polypeptide cluster 

was capped with N-actyl group at the N-terminal end and N-methyl amide group at C-

terminal end (Duan et al. 2007). The interacting amino acid residues at pABA binding 

pocket (Achari et al. 1997b)were considered for single point energy calculation at 

B3LYP/6-31G(d) level. The resulting amino acid cluster was found to have 176 atoms. 
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The cubegen utility in Gaussian09 software package was used to generate the HOMO, 

LUMO orbitals. The docked poses of highly potent and less potent compounds along 

with the interacting amino acids were chosen for calculating HOMO, LUMO energies 

using abovementioned basis set and functional. The location of HOMO, LUMO orbitals 

on the ligand-protein complex was visualized by Gabedit interface (v2.4.7). 

3.2.5 Relative binding free energy calculation 

FEP/REST (Free Energy Perturbation/ Replica exchange with solute tempering) 

calculations were performed to compute the binding free energy difference between the 

less potent and highly potent sulfone compounds (these compounds share the same 

congeneric scaffold) using Desmond MD (v4.8) (Bowers et al. 2006) suite distributed 

by Schrödinger. The incorporation of REST method in FEP calculations enhances 

sampling in phase space with an efficient  hopping protocol. The efficient sampling 

of relevant conformations of ligands helps to measure relative binding affinity 

accurately within an easily accessible simulation time period(Wang et al. 2012). In 

FEP/REST calculation a small region of interest especially the localized region 

surrounding the binding pocket including the ligand is heated up by keeping rest of the 

system cold(Liu et al. 2005). FEP/REST captures the free energy difference of two 

similar systems through an alchemical transformation pathway. This pathway involves 

an array of discrete steps starting from initial lambda window (λ =0) to final lambda 

window (λ=1) (Wang et al. 2011). The free energy difference was calculated applying 

Bennett Acceptance ratio (BAR) method (Bennett 1976) and the error for each free 

energy calculation was estimated by bootstrapping (Paliwal and Shirts 2011; Pohorille 

et al. 2010). Desmond (v 4.8) programmes are reported to provide a good single node, 

parallel performance compare to other MD packages (Bowers et al. 2006). The OPLS-

2005 force field was employed to generate the essential force field parameters required 

for performing the FEP simulations due to its accuracy in predicting the free energy of 

solvation of drug-like molecules (Shivakumar et al. 2010). The pose view file of 

minimized 1AJ0 and sulfone compounds was imported in the FEP panel of Desmond 

(v4.8), the core RMSD difference between two compounds was 0.004 Å. The 

complexes of protein and ligand molecules were solvated in SPC(Simple point-charge) 

water model (Ferguson David M. 1995) in an orthorhombic box with 5Å buffer size 
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and minimized with the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) 

method(“Practical Methods of Optimization, 2nd Edition,” n.d.). Initially a 100 ps MD 

simulation was carried out under NVT ensemble applying a force constant of 50 

kcal/mol/Å2 for minimizing the protein and ligand heavy atom. 1 fs time step was 

maintained for aforementioned 100 ps simulation. The solute heavy atoms were 

restrained to their initial position and 10 K temperature was maintained during the 

simulation. Next, two MD simulations of 12 ps, 36 ps were run under NVT and NPT 

ensemble respectively maintaining the same force constant to equilibrate the system 

with 1 fs time step. The system was relaxed with 240 ps MD simulation under NPT 

ensemble without applying any restrains on heavy atoms keeping time step as 1 fs. 

Ultimately, 5 ns production simulations were continued under NPT ensemble for both 

solvent and protein complex using Nose- Hoover thermostats(Martyna et al. 1992), 

Martyana-Tobias-Klein barostat(Martyna et al. 1994) at effective temperature of 300K 

temperature and 1 atm pressure. For production run 1fs time step was maintained 

throughout the simulation time. FEP/REST simulations were carried out with 12 

lambda windows and 1.2 ps interval was kept to exchange replicas between two 

neighbouring lambda windows (Fukunishi et al. 2002). The acceptance ratio of replica 

exchange was maintained at 0.3. The convergence analysis of free energy during the 

course of simulation was also performed to check whether the simulation time was 

sufficient for free energy calculation. The relative binding energy at various 

thermodynamic states was calculated from the trajectories using the 

fepmapper_sid2pdf.py python script for further analysis (Bowers et al. 2006). 

3.2.6 ADME/Toxicity Prediction Procedure 

The drug-like nature of diaryl sulfone compounds were predicted by evaluating their 

pharmacokinetic (PK) profiles. The ADME/Tox properties of the top ten dock scored 

SO compounds were calculated using QikProp (v5.7)(Jorgensen and Duffy 2000) 

(Schrodinger-2018/3). The structures were already prepared with Ligprep module and 

imported to QikProp panel for ADME calculation. The molecular weight (MW), 

octanol/water partition co-efficient (logPo/w), dipole moment, H-bond donor and H-

bond acceptor etc. properties were calculated for top  scored diaryl sulfone compounds 
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and evaluated in accordance with “Lipinski’s rule of 5” (Lipinski et al. 1997) to access 

their drug-likeness.  

3.2.7 System Setup for Molecular Dynamics Study 

The dynamic behaviour of diaryl sulfone bound EcDHPS (PDB ID: 1AJ0, 2.00 Å) was 

observed through all atom molecular dynamics simulation study. The docking predicted 

binding mode of highly active sulfone compounds were evaluated by observing their 

dynamic nature in EcDHPS active site.  Desmond (v5.4) software package(Bowers et 

al. 2006; Shivakumar et al. 2010) was employed to perform the molecular dynamics of 

1AJ0 and compound 4 in its bound state. OPLS_2005 all atom force field (Kaminski et 

al. 2001; Shivakumar et al. 2009, 2010; William L. Jorgensen et al. 1996) was applied 

to generate the necessary topology and parameter files required for molecular dynamics 

simulation. The entire system was inserted in the centre of an orthorhombic periodic 

box with 10Å buffer region from the protein surface to fill with water. The periodic box 

volume of 1AJ0/compound 4 complex was 313617 Å3. The whole system was solvated 

with SPC (simple point-charge) water molecules (Mark and Nilsson 2001a) and 

neutralized by adding thirteen Cl- ions.  The solvated protein structure in the periodic 

box contained 29076 atoms including 4381 atoms of 1AJ0 and compound 4. Next, the 

system was minimized applying steepest descent algorithm and gradient threshold was 

kept at 25 kcal/ mol/ Å. The maximum number of iterations during minimization was 

kept 2000 steps until a convergence threshold of 1.0 kcal/mol/Å was attained. 

Subsequently, NVT (constant number of atoms N, volume V and temperature T) 

equilibration was performed at 310K for 5 ns using Nose-Hoover thermostat (Martyna 

et al. 1992)(thermostat relaxation time = 200 ps)with a time step of 2 fs. Next to NVT, 

NPT (constant number of atoms N, pressure P and temperature T) equilibration was 

performed using Nose-Hoover thermostat and Martyna-Tobias-Klein barostat (Martyna 

et al. 1994)(P=1 atm, barostat relaxation time= 200 ps and thermostat relaxation time= 

200 ps) at 310K with a time step of 2 fs  for 5 ns.  The solute (protein and ligand) heavy 

atoms were restrained during the equilibrations, applying force constant of 100 

Kcal/mol/Å2. Lastly, the equilibrated system was taken for production run. The 

restrains on solute heavy atoms were removed and 10 ns production MD was carried 

out in NPT ensemble using Nose-Hoover thermostat and Martyna-Tobias-Klein 
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barostat with a time step of 2 fs. multiple time step RESPA integration algorithm was 

implemented for all simulation steps with a time step of 2fs for bonded, 2fs for ‘near’ 

non-bonded and 6fs for ‘far’ non-bonded interactions. Simulation data were retrieved 

at each 10 ps and the visual inspection of three-dimensional structures, trajectories were 

done using Maestro graphical interface.   

3.3.  RESULTS AND DISCUSSION 

3.3.1 3D-QSAR model construction and Visualization of contour maps 

The atom-based 3D-QSAR analysis generated a statistically significant model along 

with good predicted activities of test set compounds when PLS factor was 6. The 

Biological activity predicted by the generated 3D-QSAR model is documented in Table 

3.1. The PLS regression summary for generated 3D-QSAR is represented in Table 3.2. 

The low value of standard deviation (SD) (0.1171) and root-mean-square deviation 

obtained from the present study define the significance and reliability of the model. 

Moreover, high regression coefficient (0.9737) for training set, in addition with the 

stability ranges from 0.862 to 0.58 on maximum scale of 1, F value (Variance ratio) of 

166.5 with smaller P value (<0.005) and Pearson-r of 0.9183 reflected the relevance 

and confidence of the model respectively (Table 3.2).  The stability for predicting 

unknown compounds in the test set for the generated 3D-QSAR model was indicated 

by the low value of RMSE (Root Mean Square Error), P (Significance level of variance 

ratio) and SD (Table 3.2). The 3D-QSAR was validated by its closeness in predicting 

the activity of test set ligands (Table 3.1). Figure 3.1 illustrates the scatter plots which 

describe that the experimental and predicted activity of sulfone derivatives showed 

moderate difference and good linear correlation between experimental and Phase 

predicted biological activity values.  

The developed 3D-QSAR model was further validated by predicting the 

experimental activity of compounds not included in model development (external test 

set). The predicted pEII50 values of the compounds in external test set are documented 

in Table 3.3.  A scatter plot of experimental vs. predicted pEII50 values of external test 

set is illustrated in Figure 3.1-C. The plot of predicted activity vs. the residual activity 

is also shown in Figure 3.1-D, which was used to identify the outlier of the developed 

3D-QSAR model.  
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Table 3.2. Regression summary of generated 3D-QSAR model  

PLS SD R2 F P Stability RMSE Q2 Pearson-

r 

 

1. 0.3744 0.6811 68.3 1.92e-09 0.862 0.39 0.6446 0.8572 

2. 0.2992 0.8027 67.1 1.19e-11 0.828 0.36 0.6936 0.8709 

3. 0.2160 0.9005 90.5 3.94e-15 0.702 0.31 0.7720 0.8925 

4. 0.1719 0.9391 111.8 3.48e-17 0.647 0.34 0.7312 0.8713 

5. 0.1418 0.9600 134.2 1.16e-18 0.632 0.29 0.8067 0.9092 

6. 0.1171 0.9737 166.5 5.02e-20 0.58 0.30 0.7948 0.9183 

It was found that, the QSAR model was able to predict the experimental activity with a 

correlation coefficient (R2) of 0.74 and cross-validation coefficient (Q2) of 0.61. The 

R2 value and Q2 above 0.5 indicate the generated 3D-QSAR model to be good and able 

to endorse the experimental inhibitory activity(pEII50) of compounds included in 

external test set (Golbraikh and Tropsha 2000a). Moreover, Figure 3.1-D illustrates no 

outlier in this study. Hence, the model can be considered as stable. In order to interpret 

the effect of the spatial arrangement of structural features on biological activity, contour 

plot analysis was performed. The structural features were the presence of H-bond donor 

group, hydrophobic group, electron withdrawing group and an anionic group. 

contribution was shown by red cubes. Comparisons of most significant favourable and 

unfavourable interactions are represented in Figure 3.2. Their individual positive 

contribution was represented by blue cubes and negative Since the substitutions were 

mainly situated at R9 ring, the contour plot appeared at 2’, 4’ and 6’ position of this 

region. The list of functional groups presents at 2’, 4’, 6’ site of the R9 ring of all 50 

compounds is given in Table 3.1 to correlate the contour plot with the substitution. The 

generated 3D-QSAR model was implemented on compound 39 (pEII50= 5.02) for better 

visual inspection of the model. The effects of different substituents are discussed as 

follows.  
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Figure 3.1. Fitness graph between observed activity versus phase-predicted activity for 

(A) training set (B) test set compounds with the best fit line [y = 0.88x + 0.71 (R2 = 

0.81)]. (C) Plot of actual value vs. predicted value of external test set 

y=0.93x+0.16(R2=0.74). (D) Plot of residual activity vs. predicted value of external test 

set.  

3.3.1.1 Presence of Anionic Group 

It can be identified from Table 3.1 that highly active compound 2(pEII50= 6.63), 

compound 3(pEII50= 6.68), compound 4 (pEII50=6.58) and moderately active 

compound 11 (pEII50=5.83) have phenoxide group in 2’, 4’ and 6’ position of R9 

pharmacophoric ring, which is anionic or electron donating in nature. The blue cube 

region at 2’, 4’ and 6’ position (Figure 3.2-A) is representing the favourable and 

unfavourable contribution of anionic groups which completely agrees with the 
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aforementioned compounds. Although compound 1(pEII50= 8.302) was not considered 

in the 3D-QSAR calculation, it is having phenoxide ions at 2’ and 4’ position.  

Table 3.3. Calculated pEII50 for compounds in external test set Cpd-01-to Cpd-10 

 

compounds Structures Experimental 

activity 

Predicted 

Activity 

RA 

Cpd-01 

 

6.320 5.928 0.392 

Cpd-02 

 

6.140 5.837 0.303 

Cpd-03 

 

5.990 5.661 0.329 

Cpd-04 

 

5.870 5.446 0.424 

Cpd-05 

 

5.610 5.145 0.465 

Cpd-06 

 

5.730 5.570 0.223 
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Cpd-07 

 

5.650 5.834 -0.193 

Cpd-08 

 

4.930 4.526 -0.404 

Cpd-09 

 

5.490 5.530 -0.040 

Cpd-10 

 

5.650 5.310 -0.340 

Presence of electron donating groups at R9 ring increases the electron density in R9 

ring and SO2 unit of SO compounds hence increase the potency of ligands (Lopez de 

Compadre et al., 1987). A remarkable decrease in biological activity was found for 

compound 50 (pEII50= 4.17), compound 46 (pEII50= 4.44), compound 44 (pEII50= 4.64) 

due to lack of anionic or electron donating group in the blue cube region (Figure 3.2-

A) of R9 ring. However, a too bulky group at 6’ position of the R9 ring may give some 

unfavourable anionic contribution in ligands. 

3.3.1.2 Presence of Hydrogen Bond Donor Group 

For hydrogen bond donor aspect, the blue cubes at 2’ and 4’ indicate the preference of 

hydrogen bond donor (Figure 3.2-B) groups at those positions. Small groups like –

NH2, -OH at 2’ and 4’ position of R9 ring generally contributes to favourable hydrogen 

bonding interactions. It is found from Table 3.1 that most of the highly active 

compounds like compound 4, compound 6 (pEII50= 6.46), compound 8 (pEII50= 6.29), 

compound 9 (pEII50= 6.29) and compound 10(pEII50= 6.14) have –OH group in 2’ 

position and 4’ position, hence increment in activity was found for those compounds. 
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Whereas the presence of bulky substituents like -CONH2 groups and absence of 

hydrogen bond donor groups in those positions result in a decrease in biological activity 

of compound 44 (pEII50=4.64).  

 

Figure 3.2. Visualization of 3D -QSAR contour plot on compound 39(pEII50= 5.02) 

Effect of A) presence of the anionic group, B) hydrogen bond donor group, C) 

hydrophobic group D) electron withdrawing group predicted by generated 3D-QSAR 

model.  

3.3.1.3 Presence of Hydrophobic group 

The other important component that impacts on biological activity is a hydrophobic 

character, as displayed in Figure 3.2-C which represents the presence of blue cubes at 

2’, 4’, 6’ positions of the R9 pharmacophoric site due to the presence of small 

hydrophobic groups for favourable hydrophobic interaction with 1AJ0 catalytic pocket. 

This assumption is supported by highly active compound 3, compound 7(pEII50= 6.30), 

compound 9 and moderately active compound 15 (pEII50=5.77), compound 17(pEII50= 

5.75) and compound 19(pEII50=5.72) because –CH3 is substituted at 2’ and 4’ positions 
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(Table 3.1) in aforementioned ligands. The presence of hydrophobic groups can induce 

stiffness in the covalent bond which is attached with sulphonyl group, hence decreases 

the entropy of ligands, and increase the activity (Lopez de Compadre et al., 1987). 

Compound 50, compound 48 (pEII50=4.34), compound 44 lack hydrophobic groups in 

2’ and 4’ which is responsible for the low 1AJ0 inhibitory activity. 

3.3.1.4 Presence of Electron-Withdrawing Group 

The existence of red cubes at 2’ and 4’ position of the R9 pharmacophoric feature 

indicates the unfavourable position of electron withdrawing group (Figure 3.2-D). The 

presence of electron withdrawing group in R9 pharmacophoric ring reduces the electron 

density in this ring and sulphonyl unit, hence decreases the inhibitory activity of sulfone 

compounds. Compound 50 (pEII50=4.17), compound 46 (pEII50=4.44), compound 48 

(pEII50=4.34), compound 47 (pEII50=4.36) and compound 49(pEII50=4.3) have electron 

withdrawing group at 4’ and 2’ position resulting decrease in biological activity (Table 

1). 

3.3.2 Molecular docking 

Molecular docking suggested that the interactions were mainly influenced by hydrogen 

bonding and π-π stacking interactions due to the presence of two aromatic rings in 

sulfone compounds. The critical distances for donor-acceptor and donor-donor were set 

to 0.35 nm and 0.245 nm respectively to identify the hydrogen bond between ligand 

and protein complexes from molecular docking studies. Further, the cutoff for <DDA 

was set to 30º. Further, the π-π stacking interaction between the aromatic rings of ligand 

and the aromatic amino acid sidechains at the catalytic pocket of protein is said to be 

formed if the inter-centroid distance is less than 0.8 nm and the angle between the 

normal of one or both rings and the centroid-centroid vector must be between 0º to 60º 

or 120º to 180º. In case of T-shaped π-π stacking interaction, the above-mentioned angle 

must be ~90º. Additionally, at least one atom of each ring needs to be within 0.45 nm 

to form π-π stacking. In case of π-cation interaction, the distance and angle between the 

π-system and the cation centre must be 0.6 nm and 60º≤θ≤90º respectively. It is found 

from Appendix I and Table 3.4 that as we move from compounds substituted with 

electron donating groups to electron withdrawing groups, the inhibitory potency of 
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sulfone drug molecules decreases. The substitution at ortho-position is attributed to the 

stability of complex as it helped the molecule to fit into the binding site more rigidly 

(Lopez de Compadre et al., 1987). The interactions were mainly resided in the region 

of Thr62 to His 257 due to the presence of catalytic site in this portion. It was found 

that Thr 62, Arg220 and Ser222 involved in hydrogen bonding network with most of 

the sulfone (SO) derivatives (Compound 1-50) and Phe190, His257 exhibited π-π 

stacking interaction with the R8, R9 aromatic rings present in the SO molecules.  

Table 3.4. The docking score of the compounds 1-50. 

Compound No Docking Score (kcal/mol) Compound No. Docking Score 

(kcal/mol) 

1 -6.09 26 -5.22 

2 -5.68 27 -5.15 

3 -5.88 28 -5.39 

4 -5.7 29 -4.83 

5 -5.66 30 -5.16 

6 -5.86 31 -4.77 

7 -5.01 32 -4.81 

8 -4.97 33 -5.31 

9 -5.89 34 -5.47 

10 -5.22 35 -4.63 

11 -5.42 36 -5.05 

12 -4.74 37 -4.97 

13 -5.14 38 -5.28 

14 -4.43 39 -4.88 

15 -5.67 40 -5.01 

16 -5.89 41 -4.91 

17 -5.06 42 -4.71 

18 -5.76 43 -4.76 

19 -5.50 44 -5.41 

20 -4.74 45 -4.62 

21 -5.66 46 -4.06 

22 -5.13 47 -4.05 

23 -5.09 48 -5.72 

24 -4.49 49 -4.22 

25 -4.80 50 -4.03 

 

The binding energies of sulfone derivatives were found to span from -6.09 Kcal/mol to 

-4.03 Kcal/mole at the pABA binding site of DHPS and showed good correlation with 

experimental activity value (Table 4.3). The ligand interaction diagram of docked 

compounds was illustrated in Figure 3.3. The inhibitory activity of highest potent drug 

molecule (Compound 1) can be attributed due to the presence of two electron donating 
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groups -ONa (which easily dissociates as O- and Na+) at ortho and para position in the 

ring R9 which enhance the electron density in common moiety (4-NH2-C6H4SO2) (ring 

R8) (De Benedetti et al., 1989) supporting for stronger π- electron interactions. The 

anionic functional group of the ligand was found to form salt bridges with Arg63 and 

His257 residues, resulting in extra stabilization of compound 1 at the pABA binding 

pocket (Figure 3.3-A). Similar observations were also implied by the generated 3D-

QSAR model that the presence of negative ionic groups at R1, R2, and R3 are desirable 

for biological activity. The protein-ligand complex of compound 1 was found to be 

stabilized by three hydrogen bonding interaction, π-π interaction, π-cation interaction, 

and salt bridge formation (Figure 3.3-A). The carbonyl groups of Thr62 and Pro145 

residues were contributing hydrogen bonding interactions with amine hydrogen of 

compound 1 at a distance of 1.98Å (Thr62-C=O --- H-N) and 1.92Å (Pro145- C=O --- 

H-N) respectively. Sulphonyl oxygen of compound 1 showed hydrogen bonding with 

the amide hydrogen of Ser222 residue (S=O ---H-N- Ser222). Phe190 and Lys221 

exhibited π- π stacking and π- cation interactions respectively with the ring R8 of the 

most potent drug. In addition to these interactions, extra stabilization was found 

between the phenoxide ions in ligand and the amino acid residues Arg63 and His257 

due to salt bridge formation. The binding energy of highly potent compound 3 and 

compound 4 also showed good agreement in accordance with the 3D-QSAR results. 

The methyl groups present at 2’, 6’ position in the R9 ring of compound 3 was found 

to involve in hydrophobic interactions with Pro232, Arg220 and Lys221 residues 

respectively and presented in Appendix II. Both the compounds 3 and 4 exhibited one 

hydrogen bonding interaction in the complex (O- --- H-N- Arg220 and H-O --- H-N- 

Arg220 respectively) and also showed π- π stacking interaction with His257 (Figure 

3.3-B & C). Arg63 and Lys221 were found to form π-cation interaction with the ring 

R9 and the ring R8 respectively. The lowest potent drug molecule (compound 50) 

showed hydrogen bonding interactions with the amino acid residues Thr62 (Thr62C=O-

--HN), Ser222 (Ser222NH---O=S) and π-cation interaction with Lys221. The formation 

of the salt bridge was absent in the compound 50 due to the absence of anionic group 

(Figure 3.3 D). In addition, compound 50 was found to make steric clashes with the 

side chain of Lys 221 (Appendix III-D). Fewer non-bonded interactions along with 
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unfavourable steric clashes destabilize the compound 50 in flexible pABA binding site 

and cause lower potency of this compound. 

The reliability of docking results was assessed by re-docking the co-crystallized 

ligand (pABA) of protein DHPS (PDB ID: 1AJ0) into the binding site of the protein 

and calculating RMSD values between re-docked pose and the X-ray crystal structure. 

It is considered that RMSD values up to 2Å are reliable (Kramer et al., 1999). The 

docking pose and the interactions obtained after re-docking matches with the known 

crystal structure conformation with RMSD value of 1.21Å (Appendix IV). 
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Figure 3.3. 2D-ligand interaction diagram of A) compound 1, B) compound 3, C) 

compound 4 and D) compound 50 in the catalytic pocket of 1AJ0.  

3.3.3 Frontier molecular orbital analysis 

The HOMO, LUMO energies of highly active compound 1, compound 4, moderately 

active compound 15 and less active compound 21, compound 50 were calculated and 

documented Table 3.5. The abovementioned compounds were chosen to observe how 
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functional group substitutions in R9 ring of diaryl sulfone compounds contribute for 

better stability of these derivatives in pABA binding pocket of EcDHPS. Compound 1 

was chosen to observe the effect of two phenoxide groups (O-) (anionic in nature) 

present at 2’ and 4’ position of R9 ring. Compound 4 was chosen to see the effect of –

OH group (hydrogen bond donor group) located at 4’ position of R9 ring. Moderately 

active compound 15 was found to be important to investigate the effect of –CH3 

substitution at 2’, 4’ and 6’ position of the same ring. We also studied the effect of 

electron withdrawing group in compound 21, compound 50 having chloro (-Cl) group 

at 2’, 4’ position and cyano group (-CN) at 4’ position of R9 ring respectively. The 

variation in conformational energy due to substitutions in R9 was assessed from the 

differences of HOMO, LUMO orbital energies of chosen sulfone compounds and listed 

in Table 3.5. 

Table 3. 5. HOMO- LUMO Energy details of Ligands at their bound state and unbound 

state 

HOMO- LUMO Energy Gap Details 

Sl. 

No 

Compound Complex 

Ecompound 

(eV) 

*EHOM

O (eV) 

*ELUMO 

(eV) 

*Egap 

(eV) 

Ecomplex  

(eV) 

*EHOMO 

(eV) 

*ELUM

O (eV) 

*Egap 

(eV) 

1 -33133.41 -5.977 -1.240 4.737 -146150.07 -0.774 -0.456 0.318 

4 -43591.84 -5.877 -1.388 4.489 -135677.67 -0.508 -0.167 0.341 

15 -32248.50 -5.856 -1.318 4.538 -90284.429 -0.444 -0.095 0.349 

21 -54051.36 -6.095 -1.892 4.203 -126509.33 -0.212 0.083 0.295 

50 -31550.25 -6.236 -2.220 4.016 -86158.636 -1.499 -1.142 0.357 

 *EHOMO and ELUMO defines the energy of HOMO, LUMO orbitals and Egap = ELUMO- 

EHOMO. 

From Table 3.5 it is evident that HOMO, LUMO energy differences, Egap (eV) of 

highly potent and less potent compounds are in same range. This shows that substitution 

of various functional groups at R9 ring does not play much role in improving 
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conformational stability and recognition ability. However, the location of HOMO, 

LUMO orbitals and the total energy will be different when these ligands are bound to 

the protein. Therefore, it will be interesting to study the position of HOMO, LUMO and 

their energies in interacting amino acids and ligand complex. We have presented the 

HOMO, LUMO energy details of the complexes in Table 3.5 which will be discussed 

later. The distribution of HOMO orbitals on the sulfone molecules are illustrated in 

Figure 3.5. Red and blue colours represent the positive and negative lobes of HOMO 

orbitals located at the sulfone compounds. It is clear from Figure 3.4-A, B that HOMO 

orbitals cover the entire R8 and R9 position for highly potent compound 1 and 

compound 4. Moderately active compound 15 found to have some portion of HOMO 

orbitals distributed over R9 ring (Figure 3.4 C).  

 

Figure 3.4. The distribution of HOMO orbitals on selected sulfone drug molecules. (A) 

Compound 1, (B) compound 4, (C) compound 15, (D) compound 21 and (E) compound 

50 respectively.  

The accumulation of HOMO orbitals on R9 ring indicates the influence of electron 

donating group in increasing the electron density over this aromatic ring. In comparison 
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to highly active and moderately active compounds, HOMO orbitals were absent in R9 

position for less active compound 21, compound 50 (Figure 3.4 D and 3.5 E). HOMO 

orbitals were mainly located at R8 and NH2 portion of compound 21 and 50. This is 

due to the presence of electron withdrawing group at R9 ring which decreases the 

electron density over this ring. Figure 3.5 illustrates the distribution of LUMO orbitals 

over the interacting amino acid residues located at pABA binding pocket of EcDHPS. 

The pink and green colours represent the positive and negative lobes of LUMO orbitals.  

 

Figure 3.5. The location of LUMO orbitals at the pABA binding site without diaryl 

sulfone compounds. PH2559 and SO4284 represent the Pterin and Sulphate ion 

respectively. The location of LUMO orbital at the carbocation of PH2559 indicates the 

site prone to nucleophilic attack.  

According to the frontier molecular orbital theory, we know that HOMO of the ligands 

interacts with LUMO located at the catalytic pocket of protein. Therefore, it would be 

interesting to see the position of the LUMO orbitals present in the catalytic pocket. We 

have shown the orientation of the interacting amino acids over the sulfone compounds 

in Appendix III. Figure 3.5 shows that LUMO orbitals are mainly located on the 

carbocation of pterin moiety, Arg220, Lys 221 and His257. The presence of LUMO 
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orbitals at the carbocation of pterin moiety (Figure 3.5) and HOMO at NH2 portion of 

SO (Figure 3.5) compounds indicates the formation of a pterin-sulfa complex by the 

nucleophilic attack. The HOMO positions at the R9 ring and the LUMO located at 

Arg220 and His257 indicates that the substitutions at R9 ring interacts with those amino 

acid residues and stabilizes the ligands at the pABA pocket. The closer proximity of 

HOMO of the ligand and the LUMO of the interacting amino acid in compound 1, 

compound 4 and compound 10 strongly suggests the reason of higher binding affinity 

of the protein-ligand complex due to the presence of electron donating, anionic groups 

in R9 ring. Absence of HOMO orbitals at the R9 ring of less active compound 21 and 

compound 50 gives less stability to these ligands at the pABA binding pocket. This can 

be correlated with our docking studies. Since, it is computationally expensive to do the 

DFT calculation for the whole protein molecule, so we chose the interacting amino 

acids and the ligand to see the HOMO, LUMO orbitals. We calculated the total energy 

of each atom clusters consist of each aforementioned sulfone compounds and 

interacting amino acid residues obtained in docking studies using self-consistent field 

approach. The HOMO, LUMO energy values are listed in Table 3.5 and the HOMO, 

LUMO energy gap are also calculated. The lower energy gap for each atom cluster 

indicates the easy movement of electrons between HOMO, LUMO orbitals. Figure 3.7 

shows the distribution of HOMO, LUMO orbitals at each complex. The total energy of 

the cluster containing the atoms of interacting amino acid residues with highly potent 

compound and the least potent compound was found to be -33133.41 and -31550.25 eV 

respectively which indicates the greater stability of compound 1 than compound 50 at 

pABA binding pocket. Figure 3.6 A illustrates the location of HOMO orbitals in 

compound 1 and the LUMO region on pABA binding site. The presence of LUMO 

orbitals at Arg63, Lys221 and His257 indicated their interaction with the HOMO 

orbitals located at R9 ring and phenoxide groups of compound 1. These interactions 

found to stabilize the compound 1 between the two flexible loops of pABA binding 

pocket. Particularly, the presence of LUMO orbitals on Arg63 indicated its role in 

stabilizing sulfone compound after its binding at the catalytic pocket because LUMO 

orbitals did not appear in the amino acid cluster of the catalytic pocket of the protein 

alone (Figure 3.6). Figure 3.6 B also shows that location of HOMO orbitals on R8 and 

R9 ring of compound 4. The location of LUMO orbitals in this complex was found to 
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be similar as that of the amino acid complex containing compound 1. HOMO located 

on both R8 and R9 ring indicates the π-interactions of compound 4 with LUMO located 

at Lys221, His 257 and Arg 63 of pABA pocket. Figure 3.6 C illustrates the position 

of HOMO, LUMO orbitals on the complex consist of compound 15 and interacting 

amino acid residues. The location of LUMO orbitals over Arg63 and Lys 221 indicates 

π-interaction of these amino acids with the HOMO positioned in R8 and R9 ring of 

compound 15. This interaction stabilizes compound 15 at pABA binding pocket and 

play an important role in improving the potency of this compound. 

The positions of HOMO, LUMO orbitals on the complex containing compound 

21 and compound 50 with interacting amino acid are depicted in figure 3.6 D and 3.6 

E respectively. In both the complexes the HOMO orbitals were absent at R9 ring in 

comparison to highly active and moderately active compounds. In these cases, HOMO 

orbitals are located in R8 and NH2 position sulfone compounds which interact with 

LUMO lies on Lys221 and Phe190. The absence of HOMO orbitals at R9 ring can be 

a strong reason for destabilizing the compounds between two flexible loops of pABA 

binding pocket. 
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Figure 3.6. The distribution of HOMO, LUMO orbitals on the atom cluster containing 

(A) compound 1, (B) compound 4, (C) compound 15, (D) compound 21 and (E) 

compound 50 and their respective interacting amino acid residues.  

3.3.4 FEP calculations 

The relative binding free energy between the lowest potent (Compound 50, pEII50= 

4.17, compound 41, pEII50= 4.89) and highly potent compounds in the data list 

(compound 1, pEII50= 8.302 and compound 4, pEII50= 6.59) were calculated using the 

FEP/REST method (Wang et al., 2015, 2012). The experimental relative binding free 

energy of Ligand A and B was calculated using the following equation (Uciechowska 

et al., 2012) 

ΔGA  = -RT ln(ICA 50) (3.2) 

ΔGB  = -RT ln(ICB 50) (3.3) 

ΔΔGexp  = ΔGA- ΔGB (3.4) 

Where IC50
A and IC50

B are the biological activities (Inhibitory Concentration fifty) of 

ligand A and B respectively. We took compound 50 as our ligand A and compound 1 

as ligand B. Compound 50 found to be involved in steric clashes with Ile20 and His257 

(First ligand, Figure 3.7A-i), but when the cyano group was mutated into phenoxide (-

O-) group at 2’ and 4’ position of R9 ring, gain in favourable interaction was achieved 

(Second-ligand, Figure 3.7A-ii) by forming salt bridges with Arg 63 and His 257 
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residues at the pABA binding site of DHPS. The relative free energy gain was 

calculated based on equation (2).  

 

Figure 3.7. Representative figures of different types of interactions captured by FEP. 

(A I & ii) Shows gain in favourable salt-bridge interaction due to the presence of 

phenoxide group (mutating compound 50 to compound 1). (B i&ii) Shows gain in 

favourable salt-bridge interaction due to the presence of hydroxyl group (mutating 
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compound 50 to compound 4). (C i&ii) Shows gain in favourable salt-bridge and 

hydrogen bonding interaction due to the presence of phenoxide ion (mutating 

compound 41 to compound 1). The hydrogen bond, Salt-bridge, π-cation, π-stacking 

and unfavourable interaction was illustrated by yellow, pink, green, sky and brown 

dotted line respectively. 

Mutating the cyano group (-C≡N) to phenoxide (-O-) group, the experimental binding 

free energy (ΔΔGEXP) was found to be increased by -5.85 Kcal/mol due to gain in 

favourable salt bridge interactions. From FEP simulation, the computed relative free 

energy (ΔΔGCAL) difference between compound 50 and compound 1 was found to be -

3.78 kcal/ mol.   Similarly, the increase in experimental binding free energy (ΔΔGEXP) 

of -3.42 Kcal/mol was observed when cyano group (Compound 50, Figure 3.7B-i) at 

4’ position of R9 ring, was mutated into a hydroxyl group (Compound 4, Figure 3.7 B-

ii) at the same position of sulfone compounds. The cyano group found to be involved 

in steric clashes with Ile20 and His257. When the cyano group was mutated to hydroxyl 

(-OH) group, the resulted free energy gains due to the formation of a hydrogen bond 

with Arg220 was found to be -2.58 kcal/ mol. To see the unfavourable steric effect, we 

calculated the relative free energy difference when compound 41 is mutated to 

compound 1, illustrated in Figure 3.7 C-i&ii. The methoxy group at 4’ and 6’ position 

of compound 41 was found to involve steric clashes with the side chain of Arg63, 

Arg220, and His257. When the methoxy groups at 2’ and 4’ position is mutated into 

phenoxide ion (-O-) in compound 1, the gain in favourable hydrogen bonding and salt 

bridge interaction with Arg63 and arg220 results in an increase in experimental binding 

free energy by -4.83 kcal/mol. This effect is captured by our FEP calculation by 

computing binding free energy difference (ΔΔGCAL) between these two compounds of 

-1.94 kcal/ mol. 

The timeline representation of free energy difference was found to reach a 

plateau within the simulation time (Appendix V) which indicates the convergence of 

free energy calculations. The relative free energy profile during the simulation is shown 

in Appendix V and the exchange density of FEP replicas over window is presented in 

Appendix VI. 
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3.3.5 ADME/Toxicity prediction of top scoring compounds 

It is believed that only improving potency of a particular drug towards its target is not 

the primary objective in the drug development process, unless taking PK profile and 

toxicity in to consideration (Ekins et al. 2002).  The various important pharmacokinetic 

properties of compound 1 to compound 10 and the permissible range are documented 

in Table 3.6.  

Table 3.6 Ligand based ADME and pharmacokinetic properties of top scoring sulfone 

compounds, substrate (pABA) and  

Compound No. Molecular 

Weight 

Donor 

HB 

Acceptor 

HB 

QPlog 

Po/w 

Dipole QPlogS 

1 265.283 2.5 5.500 0.754 8.606 -2.407 

2 277.337 2.5 5.750 1.099 8.766 -2.718 

3 263.311 2.5 5.750 0.938 8.150 -2.709 

4 283.729 2.5 5.750 0.966 8.380 -2.713 

5 283.729 2.5 5.750 0.938 8.380 -2.709 

6 263.311 2.5 5.750 1.843 8.150 -3.131 

7 277.337 1.5 4.750 0.754 9.078 -2.407 

8 265.283 2.5 5.500 1.099 8.606 -2.718 

9 277.337 2.5 5.750 0.754 8.776 -2.407 

10 265.283 2.5 5.500 0.523 8.606 -2.157 

pABA 137.138 3.5 5.500 -0.492 5.204 -1.056 

Sulfanilamide 172.201 2.5 3.000 0.793 8.034 -0.961 

Mafinide 186.228 4.0 5.500 -1.120 7.473 -0.024 

Sulfadiazine 250.275 2.5 7.500 0.036 8.325 -2.858 

Sulfacitamide 214.239 2.5 6.000 -0.153 9.417 -1.857 

Sulfisoxazole 267.302 2.5 7.000 1.004 13.034 -2.923 

Dapson 248.299 3.0 6.000 0.968 10.335 -2.754 

Sulfamethoxazole 253.275 2.5 7.000 0.468 12.761 -2.413 

Sulfadoxine 310.327 2.5 8.500 0.894 10.539 -2.891 

Compound No. rotor PSA QPlogKhasa QPlogBB Present 

Human Oral 

Absorption 

1 5 102.06 -0.454 -1.562 66.72 

2 4 77.015 -0.308 -1.111 76.306 

3 4 81.911 -0.384 -1.193 73.291 

4 4 82.410 -0.414 -1.114 73.421 

5 4 82.410 -0.414 -1.114 73.421 

6 4 81.911 -0.384 -1.193 73.291 

7 4 76.651 -0.111 -0.984 84.069 

8 5 102.06 -0.454 -1.562 66.729 

9 4 77.015 -0.308 -1.881 76.306 

10 5 102.06 -0.454 -1.881 66.729 
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pABA 2 75.811 -0.832 -0.844 62.363 

Sulfanilamide 3 91.720 -0.779 -1.219 59.595 

Mafinide 4 92.565 -0.764 -0.937 46.890 

Sulfadiazine 4 101.088 -0.687 -1.282 68.728 

Sulfacetamide 3 106.307 -0.634 -1.323 63.791 

Sulfisoxazole 4 102.237 -0.506 -1.362 73.921 

Dapson 4 88.261 -0.491 -1.378 71.165 

Sulfamethoxazole 4 103.363 -0.605 -1.383 70.057 

Sulfadoxine 6 109.567 -0.568 -1.301 77.540 

The top scored compounds were thoroughly evaluated with the basic parameters of 

“Lipinski’s rule of 5” and other pharmacokinetic parameters. Generally, violation of 

Lipinski’s rule more the two is considered to be forbidden for orally active compounds. 

All the pharmacokinetic properties of the top scored compounds documented in Table 

3.6 were found to be under permissible limit.  

 The values of polar surface area and rotatable bond count of top scored 

compounds known to have great impact on their oral bioavailability. The number of 

rotatable bonds and the polar surface area in top ranked sulfone compounds are found 

to be in the range of 4-5 and 77-102 Å2 respectively. These values found to be under 

recommended ranges thus expected to have good bioavailability. It can be observed 

from Table 3.6 that the molecular weight of the top scored ligands are in the range of  

263.31 to 283.72  which is acceptable for drug-like compounds(Lipinski et al. 1997).  

Moreover, the number of hydrogen bond donor groups and acceptor group found to be 

below the threshold limit (H-bond-donor should be less than or equal to 5, similarly the 

threshold value for number of H-bond acceptor is 10). This indicates good adsorption 

of diaryl sulfone in system circulation. Additionally, the present human oral absorption 

value found to be within 66.72-84.062%, indicating moderate to high adsorption of the 

top scoring compound. It is believed that a chemical compound will be drug like if their 

water/octanol partition co-efficient is less than 5. It is obvious from table 4 that the 

water/octanol partition co-efficient much below the threshold level. The values of 

solvent accessible surface area (SASA) and polar solvent area of all top scoring sulfone 

derivatives are in found to be in accepted range (Duffy and Jorgensen 2000). It is found 

from Table 3.6 that all the top scored inhibitors did not violet the “Lipinski’s  rule of 

5” (Lipinski et al. 1997) and “Jorgensen’s rule of 3”. Further, the human serum albumin 

binding affinity values and blood brain barrier coefficient values are found to be under 
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permissible range. The predicted ADME properties of ten highly active drug 

compounds indicate acceptable pharmacokinetic and less toxicity profiles for Phase 1 

clinical trials. Further, the ADME toxicity of properties the sulfone compounds are 

compared with the established drugs against DHPS available in market. It is evident 

from Table 3.6 that the top scored sulfone compounds have similar toxicity profile with 

the available drugs in the market. Notably, the highly active sulfone compounds have 

higher solubility and percent oral absorption compared to Mafinide, sulfadiazine, and 

sulfacetamide. 

3.3.6 MD Simulation 

The dynamic behaviour of ligand at the binding pocket of enzyme is important to 

evaluate the stability of that particular ligand inside the active site. A 10 ns molecular 

dynamics simulation of 1AJ0/compound 4 provides further insights into molecular 

interaction of compound 4 in motion. The Root Mean Square Deviation (RMSD) of the 

enzyme backbone with respect to its initial position increased up to 1.64 Å for first 4 

nanoseconds and stabilized around 1.5 Å for rest of the trajectory. Moreover, the ligand 

movement cope well with the RMSD of binding site (Figure 3.8A). The average RMSD 

of enzyme (Figure 3.8A) backbone and heavy atoms are found to be 1.44 Å and 1.86 

Å respectively. This reflects minute structural change of 1AJ0 during simulation from 

the crystal structure of its own. The residue wise Root Mean Square Fluctuation 

(RMSF) of 1AJ0 was illustrated in figure 3.8 B. The detailed inspection of RMSF 

helped in characterizing the regional changes in the protein chain throughout the course 

of simulation. The maximum value of Cα, backbone, heavy atom (3.01, 3.07 and 3.33Å 

respectively) RMSF was found for residue Glu277 which resides in a flexible region of 

Ser274-Glu 282(C-terminal end). Additionally, Gly31 found to have high Cα RMSF of 

2.50 Å at the N-terminal flexible region from Val23 to Ser36. Both highly fluctuating 

loops are found to reside away from binding pocket. Interestingly, the RMSF value of 

protein backbone residue at the catalytic site was found to be in the range of 0.51 Å-

1.17 Å indicating the stability of catalytic region under motion. 
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Figure 3. 8. (A)The RMSD (Å) of the simulated positions of 1AJ0 backbone atoms 

from their initial coordinate in 10 ns MD trajectory. (B) The residue wise RMSF profile 

B 

A 
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of 1AJ0 illustrates the regional changes along the protein chain throughout the 

trajectories.  

The protein-ligand contacts during simulation are illustrated in Figure 3.9 and 

Appendix VII. Compound 4 was found to exhibit ionic interaction in the stable region 

(Figure 3.9) of Thr62-Pro64 and Arg255-His257.  Hydrogen bonding found to be 

formed majorly with Pro145, Ser222 and hydrophobic interaction was dominated by 

Phe190 throughout the simulation time. The region between Met223-Arg235 found to 

exhibit water mediated hydrogen bond with compound 4. The region from Gly65-

Gly143 and Gly191-Ser219 no interaction was found due to higher fluctuation (Figure 

3.8 B and Appendix VII).  

 

Figure 3.9. Histogram represents interaction of compound 4 with different amino acids 

of 1AJ0 during 10 ns MD trajectory. The pink colour represents the ionic interaction, 

green colour represents hydrogen bond, violet colour represents hydrophobic 

interaction and blue colour stands for water mediated hydrogen bonding.  

During the course of simulation interaction observed with Arg63, Pro145, Phe190, 

Ser222, Met223, Arg255 and His 257 located to the active site are expected to be 

responsible for the inhibitory activity of compound 4. A low mean RMSD of 0.375 Å 

of compound 4 indicates less conformational modification during simulation. The low 
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solvent accessible surface area (SASA) (7.04-73.90 Å2), high polar solvent area (PSA) 

(184-187 Å2) and molecular surface area (MolSA) (233-238 Å2) of compound 4 further 

supports its stabilization during 10 ns molecular dynamics simulation (Appendix 

VIII). 

3.4 CONCLUSION 

In this present chapter, 3D-QSAR modelling, molecular docking, DFT calculations, 

FEP calculations and MD simulation were performed to explore the effect of different 

substitution on sulfone derivatives to stabilize them in pABA binding loop of EcDHPS 

catalytic pocket. A highly predictive 3D-QSAR model was developed which helped in 

understanding how the structure of sulfone compounds affects the biological activity. 

Contour plot mapping was performed to observe the spatial arrangement of favourable 

and unfavourable functional groups and their contribution to inhibit the EcDHPS 

enzyme. Presence of electron donating group and hydrogen bond donor at 2’ and 4’ 

position of the R9 ring were found to increase the potency of sulfone compounds. 

Molecular docking was done to find the possible binding pose of sulfone compounds 

at the pABA binding pocket. The docking study suggested that Thr62, Arg63, Pro145, 

Phe190. Lys 221, Ser222 and His257 amino acids are the key binding residues in the 

active site of EcDHPS. The highest potent compound 1 contains two dissociated 

phenoxide ion which forms the salt bridge with Arg63 and His257. Possibly the 

mutation in Arg63, the His257 region can disrupt the sulfone (SO) binding at DHPS 

catalytic pocket due to their active role in stabilizing the R9 ring. DFT studies showed 

the stabilization pattern and reaction mechanism of sulfone compound at electronic 

level. The HOMO, LUMO interaction pattern between sulfone compounds and pABA 

binding site are also supported by docking studies. The presence of electron 

withdrawing group at 4’ position directly affects the electron density over the R9 ring 

and an SO2 moiety of the ligand which resulted compound 50 to be least potent. 

Presence of hydrophobic groups found to have both favourable and unfavourable 

contribution depending on the size of the group and site of substitution. Further, our 

conclusion was validated by FEP calculations by capturing relative binding free 

energies between less potent and highly potent compounds. The predicted ADME of 

top scored drug candidates are found to be in acceptable ranges.  Lastly a 10 ns MD 
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simulation of highly active compound 4 indicates the fixation of this inhibitor in pABA 

catalytic pocket. This combinatorial computational study contributes a set of useful 

structural guidelines focusing on pABA binding pocket, which will greatly help in 

designing sulfone-based and novel pterin-sulfa compounds for the EcDHPS-selective 

inhibitors to prevent infection caused by pathogenic and antibiotic-resistant E. coli 

strains. 
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CHAPTER 4 

DECIPHERING THE COMPETITIVE INHIBITION OF DIHYDROPTEROATE 

SYNTHASE BY 8-MARCAPTOGUANINE ANALOGS: ENHANCED POTENCY 

IN PHENYLSULFONYL FRAGMENTS 

 

Abstract: The emergence of sulfa-drug resistance and reduced efficacy of pterin-based 

analogs towards Dihydropteroate synthase (DHPS) inhibition dictate a pressing need 

of developing novel antimicrobial agents for immune-compromised patients. Recently, 

a series of 8-Marcaptoguanin (8-MG) derivatives synthesized for 6-Hydroxymethyl-

7,8-dihydropterin pyrophosphokinase (experimental KD~100-.0.36) showed 

remarkable homology with the pteroic-acid and serve as a template for product 

antagonism in DHPS. The present work integrates ligand-based drug discovery 

techniques with structure-based docking, enhanced MD simulation, and MM/PBSA 

techniques to demonstrate the essential features of 8-MG analogs which make it a 

potent inhibitor for DHPS. The delicate balance in hydrophilic, hydrophobic 

substitutions on the 8-MG core is the crucial signature for DHPS inhibition. It is found 

that the dynamic interactions of active compounds are mainly dominated by consistent 

hydrogen bonding network with Asp 96, Asn 115, Asp 185, Ser 222, Arg 255 and π-π 

stacking, π-cation interactions with Phe 190, Lys 221. Further, two new 8-MG 

compounds containing N-phenylacetamide (compound S1, ∆Gbind-eff=-62.03 kJ/mol) 

and phenylsulfonyl (compound S3, ∆Gbind-eff= -71.29 kJ/mol) fragments were found to 

be the most potent inhibitor of DHPS, which stabilize the flexible pABA binding loop, 

thereby increasing their binding affinity. MM/PBSA calculation shows electrostatic 

energy contribution to be the principal component in stabilizing the inhibitors in the 

binding pocket. This fact is further confirmed by the higher energy barrier obtained in 

umbrella sampling for this class of inhibitors.    

 

Keywords: Dihydropteroate synthase; 8-marcaptoguanine; Phenylsulfonyl fragment; 

Molecular dynamics simulation; Umbrella Sampling  
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4.1   BACKGROUND 

The point mutations at the flexible pABA binding loops of DHPS (Yun et al. 2012b) in 

various pathogenic microorganisms, hiders the utilization of sulfonamide mediated 

antimicrobial therapy(Griffith et al. 2018; Ho and Juurlink 2011; Sköld 2000).  

Additionally, the use of sulfa-drugs against bacterial infections have been limited due 

to rigorous immunological reactions (i.e. sulfa allergy) and toxicity that may cause 

breathing problem, loss of appetite, vomiting, nausea, fever, etc (Mondal et al. 2015).  

As a consequence, the attention shifted towards targeting the structurally rigid pterin 

binding pocket to bypass sulfa drug resistance and its side effects. Although, there are 

many reports regarding the synthesis, structural and computational studies of pterin 

analogues on successful inhibition of  DHPS(Azzam et al. 2020; Babaoglu et al. 2004; 

Hevener et al. 2010b), the major bottleneck of the these inhibitors are lower solubility 

and higher selectivity towards the pterin binding pocket(Zhao et al. 2012). 

 Therefore, a big thrust of the drug-discovery community has been 

redesigning DHPS inhibitors, which are capable of circumventing sulfa-drug resistance 

as well as have higher solubility.  Accordingly, structure-based drug-discovery 

schemes(Dennis et al. 2014, 2016; Hammoudeh et al. 2013; Zhao et al. 2016b) have 

been applied in designing DHPS inhibitors, which not only bind the structurally rigid 

pterin binding pocket but also occupy the triosephosphate and flexible pABA binding 

pocket.  Recent in silico efforts by Chakraborty and co-workers(Das et al. 2019) have 

also presented a free energy basis of FDA-approved sulfa drugs followed by the 

interpretation of crucial mutations towards sulfa drug resistance. The results obtained 

from this study also provided the idea to use product antagonists for retaining the 

inhibitory activity in face of some adverse point mutations at flexible loop regions.  

Additionally, a series of 8-Marcaptoguanine derivatives against 6-Hydroxymethyl-7,8-

dihydropterin pyrophosphokinase (HPPK), reported by Dennis and Co-workers offer 

lower-order KD (~100-0.36 µM)value towards the enzymes of folate biosynthetic 

pathway(Dennis et al. 2016, 2018) and shown excellent homology with the natural 

product of DHPS. However, the key interaction of the compounds with the catalytic 

pocket and associated conformational dynamics of the receptor remains elusive and 

poses a fundamental challenge in the development of DHPS inhibitors.  
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In this context, the present chapter addresses a pertinent query about the key 

factors that stabilize the 8-MG analogs at the simultaneous Pterin, pyrophosphate, 

pABA binding pockets of DHPS and increases the binding affinity. Here, we applied a 

robust in-silico approach to discover the potential hits for DHPS inhibition which have 

the ability to circumvent the sulfa drug resistance (Figure 4.1) as well as show higher 

affinity towards DHPS catalytic pocket. Specifically, we combined ligand-based drug 

discovery techniques such as Pharmacophore based virtual screening (Pal et al. 2019; 

Venugopal and Chakraborty 2021), 3D-QSAR(Ajmani et al. 2006; Peng et al. 2019b), 

Density functional theory (DFT)(Andrade-Ochoa et al. 2018) to determine crucial 

functional-group substitution responsible for the potency of 8-MG compounds as well 

as screen large drug library. Next,  structure-based molecular docking(Shahzad et al. 

2020), all-atom MD simulation(Das and Chakraborty 2020; Koneru et al. 2019), 

MM/PBSA(Genheden and Ryde 2015; Kumari et al. 2014a) studies were applied on 

top screened lead compounds to understand the conformational dynamics and free 

energetics of potent 8-MG analogs at the DHPS catalytic pocket. Furthermore, the 

enhanced sampling-based free energy simulation technique, namely umbrella sampling 

simulations(Kästner 2011a; Sun et al. 2015; Zhou et al. 2015b) were employed to cross-

validate the affinity or resilience of DHPS inhibitors against sulfa-resistant mutations 

and dissociation from the catalytic cavity. Results obtained from this study reveal 

insights into the potency and future development of 8-MG derivatives as an 

antibacterial agent.        

4.2 COMPUTATIONAL DETAILS 

4.2.1 Data-set Preparation 

In order to develop a common pharmacophore and 3D-QSAR model, the primary step 

was ligand preparation. A set of sixty-two 8-mercaptoguanine compounds (Table 4.1) 

having an inhibitory effect against dihydropteroate synthase (DHPS) were retrieved 

from literature(Dennis et al. 2018)and used in the present study. All compounds used 

for the modeling study were reported to share the same assay procedure(Seabrook and 

Newman 2013). The biological activity data (KD) of those compounds were found to 

span over four orders of magnitude and ranges from 420 to 0.39 μM. The biological 

activities of all the compounds were converted into pKD values (pKD=6-log10 (KD)) for 
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ease in modeling studies. The three-dimensional structures of the compounds were 

constructed in Maestro (Schrödinger Release 2017-2: Maestro, Schrödinger, LLC, New 

York, NY, 2017) builder panel.  

 

Figure 4.1.  The schematic diagram of the methods implemented in the current study.  

Next, all the 3D structures of the inhibitors were imported to the Ligprep module 

(Schrödinger Release 2017-2: LigPrep, Schrödinger, LLC, New York, NY, 2017) 

in order to optimize the geometry and generate possible ionization state present at the 

pH of 6.9. OPLS_2005 force filed(Kaminski et al. 2001; William L. Jorgensen et al. 

1996) was employed to minimize the energy of each compound using a root mean 

square deviation (RMSD) cut-off of 0.01 Å. The resulting structures were used for 

further modelling studies.  
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4.2.2 Pharmacophore Mapping 

Pharmacophore is a part of molecular structure that is necessary for recognizing the 

ligand by a biological macromolecule. Phase(Dixon et al. 2006) was employed to find 

out the common pharmacophoric features of all chosen inhibitors of DHPS. Phase 

provides a set of five pharmacophoric features, hydrogen bond donor (D), hydrogen 

bond acceptor (A), hydrophobic group (H), negatively ionizable (N), positively 

ionizable (P), and an aromatic ring (R). Inhibitors having KD value greater than 5.3 was 

considered as active and the threshold of KD for inactive molecule was 4.2.   

Table 4.1. Structural details, experimental activity, and predicted activity of 8-

Marcapto-guanine compounds (1-62). The superscript “t” indicates the test set 

compounds in 3D-QSAR modelling. 

 

Compound X Y pKD(exp)  (pKD(pred)) RA (pKD(res)) 

1 SH Ethyl 3.377 3.376 -0.001 

2 SH Benzyl 3.456 3.303 -0.152 

3 SCH3 H 3.481  3.616 0.135 

4t OH H 3.690 4.039 0.349 

5 N-

morpholino 

 

H 

 

3.796 

3.870 0.074 

6 SH CH2Benzyl 3.796 3.790 -0.006 

7 OH Methyl 3.996 4.049 0.053 

8t SH H 4.118 3.798 -0.32 

9 Methyl H 4.149 4.119  -0.03 

10 SH Methyl 4.155 4.140 -0.014 

11 H Methyl 4.237 4.282 0.046 

12 Br H 4.377 4.228 -0.149 
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Compound R  (pKD(exp))  (pKD(pred)) RA (pKD(res)) 

13 2-nitro 4.481 4.492 0.011 

14 2-fluoro, 

3-methyl 

4.509 4.624 0.116 

15t 3,5-

dimethyl 

4.854 4.526 -0.328 

16 2-bromo 4.854 4.855 0.001 

17t 2,3-

dimethyl 

4.854 4.745 -0.108 

18t 2,2-

difluoro 

4.854 4.988 0.134 

19 2-methyl, 

4-fluoro 

4.880 5.035 0.155 

20 2-cyano 4.896 4.863 -0.032 

21 2,4-

difluoro 

4.921 4.985 0.064 

22 2,5-

dimethyl 

4.939 5.016 0.077 

23 3,4-

difluoro 

4.959 5.008 0.049 

24 3-cyano 4.959 4.99 0.036 

25 4-fluoro 4.959 4.995 0.036 

26t 3-methyl 4.959  4.750 -0.208 

27 2-methyl 5.022 4.936 -0.085 

28 2-fluoro 5.071 4.935 -0.135 

29 3-methyl, 

4-fluoro 

5.086 5.109  0.023 

30 3-methoxy 5.125 5.166 0.041 

31t 2-chloro 5.155 4.897 -0.257 

 

 

Compound R  (pKD(exp))  (pKD(pred)) RA(pKD(res)) 

32 

 

4.796 4.795 -0.001 

33 

 

4.820 4.663 -0.161 
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34t 

 

4.824 4.938 0.114 

35 

 

5.009 5.021 -0.003 

 

Compound R  (pKD(exp))  (pKD(pred)) RA(pKD(res)) 

36 

 

4.658 4.784 0.128 

37t 

 
4.699 4.511  -0.147 

38. 

 

4.740 4.395 -0.344 

39. 

 

4.917 4.867 -0.050 

40. 

 

5.004 5.023 0.018 

41. 

 

5.018 4.935 -0.082 

42. 

 

5.086 5.109  0.023 

43 

 

5.102 5.136 0.033 

44t 
 

5.108 4.855 -0.252 

45. 

 

5.125 5.169 0.044 

46. 

 

5.149 5.176 0.027 

47. 

 

5.161 5.169 0.008 

48t 

 

5.220 5.110 -0.11 

49t 

 

5.310 5.169 -0.140 

50. 

 

5.319 5.386 0.068 



96 
 

51. 

 

5.337 5.231 -0.105 

52. 

 

5.344 5.274 -0.06 

53t 

 

5.347 5.442 0.095 

54t 

 

5.409 5.252 -0.15 

55. 

 

5.538 5.536 0.002 

56t 

 

5.688 5.909 0.22 

57. 

 

5.690 5.638 -0.05 

58. 

 

6.08  6.16 0.08 

 

 

Compoun

d 

R Experimental 

Activity(pKD(exp)

) 

Predicted 

Activity(pKD(pred)

) 

Residual 

Activity(pKD(res)

) 

59 

 

4.523 4.546 0.023 

60. 

 

4.721 4.934 0.213 

61. 

 

6.377 6.339 -0.037 

62. 

 

6.409 6.479 0.07 

The rest of the compounds were considered moderately active. This yields ten active 

molecules and ten inactive molecules which were used in pharmacophore model 

generation and corresponding scoring of that hypothesis. During hypothesis settings 

“number of pharmacophoric features” was kept at five and a maximum of thirty 
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hypotheses was generated.  All the hypotheses were scored under the Phase Hypo 

Scoring method using default parameters for vector, site, volume, and energy terms. 

The best-scored hypothesis was chosen to understand the molecular fragment 

responsible for crucial non-bonding interactions.  

 To assess the predictive power of the model the best-scored hypothesis was 

tested against a set of decoy compounds(Kirchmair et al. 2008). Decoys are organic 

molecules that are assumed to be inactive against a pharmacological target. Due to the 

unavailability of decoys for DHPS, Decoy Finder (Cereto-Massagué et al. 2012) was 

employed to generate target-specific decoy compounds for assessing the performance 

of generated hypothesis. The inputs for Decoy Finder include a set of active compounds 

for a biological macromolecule, known as “queries” and a set of molecules from which 

the decoys will be selected. Next, the highly scored hypothesis was tested against 252 

decoy compounds obtained from Decoy-Finder. A database containing 81,549 druglike 

molecules was generated by Phase-Database builder utility based on the hits collected 

from ZINC, PubChem and Schrodinger database. Finally, the validated hypothesis was 

subjected to database screening in order to screen new 8MG-compound with varied 

substitution.  

4.2.3 Atom-based 3D-QSAR Modelling  

The quantitative structure-activity relationship (QSAR) methods have been applied 

widely in computer-aided drug-design approaches(Hoekman 1996; Puzyn et al. 2010). 

It is believed that the classification of the training set and test set is the key to build a 

predictive 3D-QSAR model (Andrada et al. 2017; Leonard and Roy 2006a). Many 

classification techniques, such as :(1) Random selection, (2) Selection based on 

biological activity, (3) Kennard-stone algorithm, and (4) k-means clustering is reported 

in the literature. However, the first two methods are reported to fail in building QSAR 

models with optimal predictability. To the best of our knowledge, the non-hierarchical 

k-means clustering with partial least square (PLS) technique is highly reliable to build 

a statistically significant 3D-QSAR model(Andrada et al. 2017; Martinez et al. 2016). 

The k-means clustering technique was implemented on the factor scores of the original 

variable matrix corresponds to each 8MG-compound considered in this study. The 

variable matrix consists of response variables (pKi), predictor variable (molar 
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refractivity (MR), ADME properties, reactivity descriptors), and topological descriptor 

variables predicted by PaDEL software (Yap 2011). The details of the descriptors used 

in this study are given in Supplementary Section. Factor analysis on this variable matrix 

indicates that three factors can explain the maximum variance of the dataset. Therefore, 

k-means clustering on the three-factor scores of all sixty-two 8-MG derivatives was 

carried out to group molecules with maximum similarities. The ratio between the entire 

training set and test set compounds was 3:1 which is known to be standard for 3D-

QSAR modeling (Golbraikh and Tropsha 2000b; Umamatheswari et al. 2010).  Atom-

based ligand alignment tool of phase was employed to align all selected inhibitors prior 

to 3D-QSAR calculation(Bemis and Murcko 1996).  The highest number of PLS in the 

3D-QSAR model is generally kept at N/5 which is 6 in the present case (N is the number 

of molecules in the training set). It is known that a higher number of PLS may cause 

statistical overfitting of the data (Polański et al. 2002; Tropsha et al. 2011). Therefore, 

we use six PLS factors as an incremental increase in the statistical significance to 

improve the predictability. The contour map obtained from the generated 3D-QSAR 

model was analyzed to interpret the effect of three-dimensional arrangements of 

structural features on DHPS inhibition. The quality of the 3D-QSAR model was 

evaluated by predicting the activity of external test set compounds which were not 

considered during model development (Andrada et al. 2017; Martin et al. 2012b). 

4.2.4 Molecular Docking 

4.2.4.1 Protein Preparation 

The co-crystal structure of DHPS with 8-MG analog (PDB ID: 5U10) was retrieved 

from Protein Data Bank (http://www.rcsb.org)and further processed with protein 

preparation wizard(Sastry et al. 2013) of Schrödinger software. The polar hydrogens 

were added to the protein structure at the pH of 6.9 to mimic the experimental ionization 

state. The hydrogen bond orientations were subsequently optimized and minimized. 

The conserved water molecule in the catalytic pocket was preserved. Lastly, the protein 

heavy-atoms were minimized by the AMBER99SB force field with an RMSD cut-off 

value of 0.30 Å by Gromacs-2016.5. In the course of minimization, the protein-heavy 

atoms were constrained, and hydrogen torsion parameters were turned off, to permit 

free rotation of hydrogen atoms. The receptor was minimized in vacuum.  
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4.2.4.2 Receptor Grid Generation    

The minimized 3D structure of 5U10 was imported to the Maestro GUI to prepare grid 

box for docking studies using Glide/ receptor-grid generation tool (Friesner et al. 2004; 

Halgren et al. 2004). The crystal structure of the ligand was selected to identify the 

centroid of the active site of 5U10. A 3D-grid box was defined within a 20 Å radius 

around the co-crystal ligand structure keeping van der walls scaling factor 1.0 Å and 

partial charge cut-off of 0.25. Prior to dock all the 8-MG derivatives, the co-crystal 

ligand structure of 5U10 was removed and re-docked to assess the accuracy of the 

docking calculation.  

4.2.4.3 XP Docking 

After achieving proper RMSD value between the co-crystal and re-docked ligand the 

grid box was selected for docking all sixty-two 8-MG derivatives at the catalytic pocket 

of 5U10. The van-der-walls scaling factor was kept at 0.80 during docking calculation 

with a partial charge cut-off value of 0.15. During the docking calculations, the receptor 

atoms were kept rigid while the rotatable bonds of the inhibitors were allowed to move 

flexibly inside the binding pocket of 5U10. The docking of all the inhibitors was 

performed in extra precision mode(Friesner et al. 2006). After docking of each 

inhibitor, the strength of protein-ligand interactions was determined using the empirical 

scoring function implemented in Glide.  

4.2.5 DFT calculation setup 

The electronic properties of drug candidates are known to play a crucial role in eliciting 

pharmacological responses in the human body(Matysiak 2007). The most active, least 

active and top three screened compounds (collected from database screening) identified 

by molecular docking were subjected to DFT calculation to study the quantum chemical 

properties of the molecules such as MO, density, molecular electrostatic potential 

(MEP), and dipole moments, etc. Primarily the geometry of chosen ligands was 

optimized in Gaussian09(“Gaussian 09 Citation | Gaussian.com” n.d.)  program using 

the combination of gradient correction of the exchange functional by Becke (B3LYP) 

(Becke 1993) and the correlation function of Lee, Yang, and Parr (Lee et al. 1988b) 

with both 6-31G**(d,p), 6-311G**(d,p) basis sets. All the quantum chemical 
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calculations were carried out in the aqueous phase by employing the polarizable 

conductor-continuum model (CPCM) (Takano and Houk 2005) and in vacuum. In order 

to explain the chemical reactivity of ligand, the frontier orbitals such as highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 

were calculated. The location of HOMO indicates the electron-donating portion of the 

ligand, whereas LUMO conveys the tendency to accept the electron from the interacting 

amino acids of the protein. The electronic excitation energy was computed from the 

band-gap energy (HOMO-LUMO energy gap) to assess the reactivity, stability of the 

drug candidates (Zhan et al. 2003; Zheng et al. 2013). Lastly, the location of HOMO-

LUMO over the catalytic pocket residues was identified to explain the binding 

mechanism at the electronic level. The Cubegen utility of Gaussion09 was employed to 

generate the cube files for visualizing the HOMO-LUMO orbitals. The MOs were 

visualized in Gauss-View (v-6.0) GUI for further analysis. 

4.2.6 ADME/Tox Properties Calculation 

In the drug discovery process, the ADME properties of the hit compounds are believed 

to play a crucial role to ensure safe drug administration. The QikProp (Jorgensen et al. 

2006) module of Schrödinger is employed to compute drug-likeness of highly active 8-

MG derivatives for competitive inhibition of DHPS. The octanol-water partition 

coefficient (logPo/w), H-bond donor, H-bond acceptor, molecular weight (MW), dipole 

moment, blood-brain barrier and membrane permeability, etc properties of the hit 

compounds are calculated to evaluate their drug-like properties.   

4.2.7 The MD Simulation Protocol  

All the MD simulations were performed in GROMACS-2016.5 (Abraham et al. 2015a) 

using AMBER99SB force field (Hornak et al. 2006b; Nguyen et al. 2014). The details 

of the atomistic-MD simulations of protein-ligand systems are given in Table 4.2. The 

topology of the selected inhibitors was prepared using ACPYPE (Sousa da Silva and 

Vranken 2012a) software package. All the four protein-ligand systems were solvated 

separately in cubic boxes with TIP3P water molecules(Mark and Nilsson 2001b). A 1 

nm buffer space was maintained between the surface of the protein and the edge of 

boxes for sufficient solvation. The approximate volume of each box was set to be 
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421.875 nm3. The overall charge of the system was neutralized by adding six Na+ ions 

and 0.15 M NaCl concentration was maintained. In order to remove bad contacts during 

solvation, energy minimization was performed using the steepest descent algorithm 

using 50,000 steps until a gradient threshold of 10 kJ/mol was reached. The bonds 

connected to hydrogen atoms in the protein are constrained by LINCS(Hess et al. 

1997a) algorithm, and SETTLE algorithm (Miyamoto and Kollman 1992a) was used 

to constrain the geometry of the water molecules. We have used leap-frog integrator 

algorithm to integrate the equation of motion with a time step of 2fs. All the systems 

were initially heated up to 300K for 1ns and further equilibrated for 4 ns. The 

temperature of the systems was maintained by V-rescale (Bussi et al. 2007a) coupling 

algorithm (τt=0.1 ps).  

Table 4.2. Summary of performed MD Simulations. MD simulation calculations are 

run thrice to assess the reproducibility. 

Protein Ligand Number 

of Water 

molecule 

Protein+ 

Ligand 

Atoms 

Box 

Length 

(nm) 

Simulation 

time (ns) and 

sampling 

interval (ps, 

subscript) 

 

 

Dihydropteroate 

Synthase 

(5U10) 

Compound 62 14564 4086 7.86 10010 

Compound 61 14584 4075 7.86 10010 

Compound 51 14573 4087 7.86 10010 

Compound 

S1 

14581 4089 7.86 10010 

Compound 

S3 

14568 4109 7.86 10010 

Compound 6 14574 4065 7.86 10010 

Pteroic Acid 14563 4089 7.86 10010 

Apo 14594 4054 7.86 10010 

Mutated 

Dihydropteroate 

Synthase 

Compound 51 14567 4079 7.86 10010 

Compound 

S3 

14543 4096 7.86 10010 

After temperature equilibration, the system condition is changed into an isothermal-

isobaric ensemble from the canonical ensemble for 1ns and further equilibrated up to 9 

ns. During NPT equilibration the box volume was allowed to fluctuate isotropically to 

attain a steady-state and the system pressure was maintained by Parrinello-Rahman 

(Parrinello and Rahman 1981a) coupling algorithm (τp= 2 ps). After attaining 

appropriate density of the system, we removed the restrains to allow the free or unbiased 
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movement of protein-ligand complex for 100 ns. The cut-off radius for calculating short 

range electrostatic and van der Waals interaction was set to 1.2 nm. The long-range 

electrostatic interactions were calculated by the Particle Mesh Ewald method (Darden 

et al. 1993; Essmann et al. 1995b). Further, the trajectories were saved at every 10 ps 

for our analysis. The mutation in the DHPS catalytic pocket was introduced employing 

Pymol software and the simulation protocol was same with the wild type protein-ligand 

simulations. To check the reproducibility, we further repeated the MD simulation of 

each system twice.  

4.2.8 Definition of Non-bonded Interaction 

The ligand molecules are said to be hydrogen bonded if the donor (D)-acceptor (A), D-

D distance and the <DDA angle satisfy some specific criteria. The critical distances for 

donor-acceptor and donor-donor were set to 0.35 nm and 0.245 nm respectively to 

identify the hydrogen bond between ligand and protein complexes from molecular 

docking studies. Further, the cutoff for <DDA was set to 30º (Chandra 2000). 

 The π-π stacking interaction between the aromatic rings of ligand and the 

aromatic amino acid sidechains at the catalytic pocket of protein is said to be formed if 

the inter-centroid distance is less than 0.8 nm and the angle between the normal of one 

or both rings and the centroid-centroid vector must be between 0º to 60º or 120º to 180º. 

In case of T-shaped π-π stacking interaction, the above-mentioned angle must be ~90º. 

Additionally, at least one atom of each ring needs to be within 0.45 nm to form π-π 

stacking (P. Dimitrijević et al. 2012). 

 The geometric criteria for π-cation interaction are defined in terms of the 

distances and the angle between the π-system and the cation centre. The distance must 

be lesser than 0.6 nm and the angle (θ) must be 60º≤θ≤90º (Liang and Li 2018). 

4.2.9 Free Energy Calculation 

The endpoint free energy method MM/PBSA(Kumari et al. 2014a) was employed to 

compute the binding affinity of the compounds selected for MD simulation. It is evident 

from the literature that the thermodynamic condition for enzyme inhibition is 

isothermal -isobaric i.e. NPT. Hence, the last 40 ns production MD trajectory of protein-
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ligand complexes were considered for MM/PBSA calculation. In general, the binding 

free energy of the ligand (L) at the catalytic pocket of receptor molecule (R) to form a 

complex (RL) can be defined as  

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐺𝑅𝐿 − (∆𝐺𝐿 + ∆𝐺𝑃)                              (4.1) 

Further, the eqn. 4.1 can be decomposed as 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆 ≈  ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆        (3.2) 

∆𝐸𝑀𝑀 = ∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤                               (3.3) 

∆𝐺𝑠𝑜𝑙 = ∆𝐺𝐺𝐵/𝑃𝐵 + ∆𝐺𝑛𝑝                                            (3.4) 

∆𝐺𝑛𝑝 =  𝛾. 𝑆𝐴𝑆𝐴 + 𝑏                                                 (3.5) 

Where, ∆EMM is the changes in gas phase molecular mechanics energy, which includes 

internal energies (∆Eint) arising from the bond, atom, dihedral terms, electrostatic 

interaction (∆Eele), and van der Waals (∆Evdw) interaction terms. The solvation free 

energy term (∆Gsol) consists of polar and nonpolar solvation energies between the solute 

and continuum solvent. The polar solvation energy term is generally computed by the 

Poisson-Boltzmann equation for obtaining electrostatic potential of solute in the 

solution while the nonpolar solvation is obtained from the linear equation of the solvent-

accessible surface area of the solute(Gilson and Honig 1988a; Wang et al. 2019). The 

change in conformational entropy i.e -T∆S can be calculated by normal mode analysis 

(Srinivasan et al. 1998a; Wright et al. 2014). However, due to the high computational 

cost, the change in conformational entropy of similar ligands is often neglected.  

4.2.10 Umbrella Sampling 

Umbrella Sampling (US) simulations have long been used to explore the mechanism of 

ligand-protein unbinding and the determination of binding free energy(Huang et al. 

2017b; Miao et al. 2018; Sun et al. 2015; Zhou et al. 2015b). However, the unbinding 

pathway modelled by such enhanced sampling methods must mimic the natural 

molecular movement to generate unbiased Potential of mean force (PMF). Therefore, 

identification of correct pulling direction is important to generate initial conformations 

for the US(You et al. 2019). In the present case, we employed steered molecular 
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dynamics, an enhanced sampling method to pull the highly active 8MG derivative, and 

compared the unbinding free energetics with one inactive compound. In order to define 

RC, we selected the vector connecting the Cβ of Leu 215 and the central Sulphur atom 

of 8-MG compounds. The reason behind selecting Leu 215 as a reference point of 

dissociation is due to it’s smallest root mean square fluctuation (RMSF) value. The rate 

of ligand movement was set to 10 nm/ns and the ligand was pulled up to 4 nm from the 

reference point. The elastic constant ki was set to 1000 kJ/mol.nm2. The starting 

conformation for steered MD (SMD) simulation is taken from the last frame of our 100 

ns conventional MD simulation performed above. The SMD simulations were carried 

out at 300K, 1 bar using Nose-Hoover temperature and Parrinello-Rahaman pressure 

coupling algorithm(Lemkul and Bevan 2010a). Further, conformations are taken at 

every 0.2 nm distance as a starting conformation for the US, and 10 ns US was 

performed at each window. The unbiased PMF was constructed from each US window 

by WHAM(Kumar et al. 1992a) and MBAR protocol(Shirts and Chodera 2008).    
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4.3. RESULTS AND DISCUSSION 

4.3.1 Ligand Based identification of structural determinants for DHPS inhibition 

We have used pharmacophore modelling and 3D-QSAR studies to primarily identify 

the crucial structural counterparts of 8-MG based molecules required for DHPS 

inhibition. A Total of thirty pharmacophore hypotheses are found to be predicted by 

PHASE and documented in Appendix IX. The DDHRR_1 (Figure 4.2-A) is chosen as 

the best pharmacophore hypothesis due to its highest Phase Hypo score of 1.34 and 

survival score of 5.81 which indicate good reliability and predictability of the model.  

 

Figure 4.2. (A) The special distribution of pharmacophoric features of best score 

hypothesis DDHRR_1. Pharmacophore mapping of the most (B) active and (C) inactive 

inhibitors. (D) The distance between the central sulphur atom and the hydrophobic 

groups in active 8-MG compounds.  

 

This pharmacophore hypothesis consists of five pharmacophoric features such as two 

hydrogen bond donors (D), one hydrophobic centre (H), and two aromatic ring (R) that 

are found to be present in all the active compounds. The inactive compounds are found 

to lack the hydrophobic features that are important for the  
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Figure 4.3. Scatter plot between the experimental and predicted activity of the (A) 

training set, (B) test set, and (C) external test-set compounds considered in 3D-QSAR 

studies. (D) Scatter plot between the Residual activity (Predicted Activity-Experimental 

activity) and predicted activity. The 3D-QSAR contour map fitted on compound 62 

(pKD= 6.409) in the context of (E) hydrogen bond donor, (F) Hydrophobic group, and 

(G) electron-withdrawing group.  
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competitive inhibition of DHPS. The distance and angle between the pharmacophoric 

sights are believed to be a crucial attribute in competitive inhibitions (Table-4.3). The 

active and inactive molecules are aligned on the pharmacophore hypothesis and shown 

in Figure 4.2 B, C. It is evident from Figure 4.2-B, C that the reason behind the 

difference in the active and inactive compounds is the intrinsic distances and angles of 

pharmacophoric sites.  Further to assess the ability of the DDHRR_1 model to 

discriminate the bioactive compounds for DHPS inhibition, we tested the model against 

252 decoy dataset compounds obtained from the decoy finder server.  

Table 4.3. The distance and angle between the pharmacophore sites of DDHRR_1 

hypothesis. 

Site 1 Site 2 Distance 

(Å) 

Site 1 Site 2 Site 3 Angle (°) 

D5 D7 3.48 D7 D5 H11 55.25 

D7 H11 7.08 D5 D7  H11 94.49 

D5 H11 8.13 D7 H11 D5 25.26 

D5 R13 3.45 D7 R13 D5 71.32 

D7 R13 2.30 R13 D7 D5 69.73 

D5 R12 5.15 D7 D5 R13 69.91 

D7 R12 4.23 R13 D5 R12 16.1 

R13 R12 2.07 R13 R12 D5 27.54 

R12 H11 3.07 D5 R13 R12 136.35 

R13 H11 5.11 D5 R12 H11 162.45 

   R12 D5 H11 6.53 

   R12 H11 D5 11.01 

   R13 R12 H11 167.37 

   R12 H11 R13 5.08 

   R12 R13 H11 7.54 

   D7 R13 H11 142.80 

   R13 D7 H11 25.86 

   R13 H11 D7 11.32 

   D5 R13 H11 142.79 

   R13 D5 H11 22.38 

   R13 H11 D5 14.86 

The pharmacophoric model is found to retrieve 100% hit compounds from the decoy 

dataset.  The contribution of the active molecule in enrichment, the robust initial 

enhancement (RIE) value was calculated for all the pharmacophore models. The RIE 

for the DDHRR_1 model is found to be 18.14 indicating the superiority of the model 

ranking over the random distribution. Lastly, taking the DDHRR_1 model as a 3D-
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structural query, we performed screening to retrieve bioactive compounds as DHPS 

inhibitors from the database (containing 81,549 hits) made by Phase. Database 

screening yields 4128 hits that can act as DHPS product analogues.  

 Next, the 3D-QSAR model is analyzed to unveil the effect of functional group 

substitution on the biological activity of 8-MG derivatives for DHPS inhibition. It is 

believed that atom-based 3D-QSAR modelling is more efficient in predicting structure-

activity relationships compared to pharmacophore-based 3D-QSAR models. To reduce 

the number of descriptors, the original variables correspond to sixty-two 8MG 

compounds are converted to latent variables or factor scores. A non-hierarchical 

method such as k-means clustering (Everitt n.d.) was employed on the factor scores of 

all the compounds and five clusters are formed. The deviation of the compounds to their 

corresponding cluster is depicted in Appendix X. The test set compounds are selected 

based on proximity to the centroids in each cluster and the remaining compounds are 

considered as the training set. The biological activity of the 8-MG compounds predicted 

by our model is shown in Table 4.1. In addition, the scatter plot of both training set and 

test set compound illustrated in Figure 4.3-D, E indicates an excellent linear correlation 

and moderate difference for the biological activity of 8-MG compounds predicted by 

our 3D-QSAR model. The PLS regression summary is depicted in Table 4.4.   

Table 4.4. PLS statistical parameters of the generated 3D-QSAR model  

Factors SD R2 Stability F P RMSE Q2 Pearson-

R 

1 0.4337 0.5441 0.958 51.3 7.45e-09 0.25 0.7531 0.8890 

2 0.3749 0.6727 0.859 43.2 6.51e-11 0.25 0.7369 0.8658 

3 0.3125 0.7780 0.624 47.9 1.84e-13 0.24 0.7626 0.8817 

4 0.2410 0.8712 0.272 67.7 2.89e-17 0.23 0.7801 0.8870 

5 0.1806 0.9295 0.127 102.8 2.23e-21 0.21 0.8016 0.9081 

6 0.1349 0.9617 0.0637 158.9 2.38e-25 0.21 0.8185 0.9083 

SD: Standard deviation of the regression, R2: Correlation Coefficient, F: Variance ratio, 

P: significance level of variance ratio, RMSE: Root mean square error, Q2: cross-

validation coefficient, Pearson-R: Value for the correlation between the predicted and 

observed activity for the test set.  
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The lower values of RMSE (0.21) and standard deviation (0.1349) at the sixth PLS 

imply that the data used for the model is reliable for 3D-QSAR analysis. The predictive 

power of our 3D-QSAR model is assessed by the cross-validation coefficient (Q2) 

which is found to be 0.8185, indicating excellent predictive power of the model. In 

addition, the relevance of the model is reflected by the regression coefficient of 0.9617 

for the training set compounds. The large value of F (158) and the range of stability 

from 0.958 to 0.063 on the maximum scale of 1 supports the statistical significance of 

this regression model.  Furthermore, the degree of confidence of the 3D-QSAR model 

is supported by the lower value of P (2.38e-25) (Bhole et al. 2021). The predictive power 

of the 3D-QSAR model is further validated by the external test set(Dennis et al. 2014)  

(Table 4.5). The scatter plot of experimental activity vs. predicted activity and 

predicted activity vs. residual activity are depicted in Figure 4.3-C. The regression 

coefficient (R2) of 0.79 indicates the good predictability of the activity of the 

compounds that are not considered in model development. It is believed that a 3D-

QSAR model with an R2 value above 0.5 is a good model to predict the activity of 

unknown compounds(Golbraikh et al. 2003; Golbraikh and Tropsha 2000c). It is 

evident from Figure 4.3-D that there are no outlier compounds predicted by our 3D-

QSAR model which further indicates the stability of the model.  

 Furthermore, contour plot analysis is performed for 8MG derivatives to inspect 

the relevance of spatial arrangement of structural determinants to explain their activity. 

In Figure 4.3 the favorable zone (blue cubes) and the unfavorable zone (red cubes) for 

the biological activity of the compounds considered here are shown by applying the 

3D-QSAR model at 6th PLS on most active compound 62 in the training set. The blue 

cubes located at the –CONH group and –COOH group linked to the H11 

pharmacophoric site of compound 62 (pKD = 6.409) and compound 61 (pKD = 6. 377) 

respectively indicate the preference of hydrogen bond donor group in this place (Figure 

4.3-E). This is further supported by the presence of –CONH group in blue cube region 

for highly active such as compound 50 (pKD = 5.319), compound 53 (pKD = 5.347), 

compound 55 (pKD = 5.538) and compound 56 (pKD = 5.688). Moreover, the absence 

of such hydrogen bond donor in compound 59 (pKD = 4.523), 60 (pKD = 4.721) and 

32-34 (pKD values 4.795-4.824) decrease their activity group. The red cubes located 

near the R12 pharmacophoric region indicate the unfavorable region for the hydrogen 
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bond donating group. The fact is supported by the lesser activity of compound 55 (pKD 

= 4.721) and compound 56 (pKD = 4.721) compare to the highest active compound 61. 

For hydrophobic interaction attributes, the blue cubes located at the benzene ring of 

compound 62 and compound 57 (pKD = 5.690) indicate a favorable region for 

hydrophobic interaction with DHPS (Figure 4.3-F). This is further supported by the 

highly active compound 53 (pKD = 5.347) and 54 (pKD = 5.409). The location of the 

hydrophobic group attached with the H11 pharmacophoric site is found to be important 

in enhancing the activity of the compound. The placement of hydrophobic moieties 

greater than 4.7 Å from the Sulphur atom is found to increase the activity of 8-MG 

compounds (Figure 4.3-D). The red cubes located within the 4.7 Å of the Sulphur atom 

indicate the unfavorable region of hydrophobic groups. The activity of compound 5 

(pKD = 3.796) and compound 9 (pKD = 4.149) is decreased due to the presence of 

hydrophobic groups at this position. Furthermore, the red cubes located near R12 

pharmacophoric site indicate the presence of bulky hydrophobic group which decreases 

the activity of 8-MG based compounds. This assumption is supported by the low 

activity of compound 1 (pKD = 3.337), compound 2 (pKD =3.456) and compound 6 

(pKD = 3.796). Further, we analyzed the effect of the spatial arrangement of electron-

withdrawing groups on the activity of 8-MG compounds (Figure 4.3-G). The blue 

cubes located at the benzene ring indicate the preference of electron-withdrawing 

groups in this region. The presence of Cl at 3rd position, Br in 4th position and -SO2- 

group in 4th position of benzene ring for compound 40 (pKD = 5.004), compound 51 

(pKD = 5.337), compound 57 (pKD = 5.609) respectively increases the activity. The red 

cubes located near the H11 pharmacophoric site indicate the unfavorable region for the 

electron-withdrawing group. It is evident from the 3D-QSAR contour map that the 

presence of –CONH groups or ketone groups as a linker between the benzene ring and 

H11 pharmacophoric site enhances the activity of 8MG-based compounds. In addition, 

the presence of the electron-withdrawing group increases the activity of the compounds 

for DHPS inhibition.  
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Table 4.5. External test set compounds for validating the developed 3D-QSAR model. 

 

Compound 

No. 

Structure Experimental  

Activity(pKD-EXP) 

Predicted 

Activity 

(pKD-PRED) 

Residual 

Activity 

 

1 

 

5.408 5.163 -0.245 

2 

 

5.086 5.014 -0.072 

3 

 

5.795 5.586 -0.209 

4 

 

5.075 5.236 0.161 

5 

 

4.847 5.1 0.235 

6 

 

4.357 4.735 0.378 

7 

 

5.011 4.92 -0.091 

8 

 

4.910 5.15 0.24 

4.3.2 Binding Mode of 8MG-compounds to the DHPS catalytic pocket 

Molecular docking studies of the 8MG-compounds retrieved from both literature and 

database screening were carried out at the DHPS catalytic pocket for visual inspection 

of crucial amino acid interactions of the inhibitors responsible for DHPS inhibition. We 

validated our docking results by measuring the RMSD between the crystal and 

redocked structure of the ligand (PDB ID: 5U10, 2.04 Å) which is found to be 0.04 nm 

(Appendix XI). RMSD value lesser than 0.2 nm is considered to be best for predicting 

the accurate binding pose of unknown inhibitors(Kramer et al. 1999). The docking 

scores  



112 
 

and Glide predicted binding free energy (Glide Emodel) of all the compounds are 

depicted in Appendix XII. The best binding conformations of highly active and 

inactive 8MG derivatives are shown in Figure 4.3. It is evident from our docking results 

that hydrogen bonding, π-cation, and π-stacking interactions are key interactions that 

anchor the ligand inside the catalytic pocket. All the interactions are found to be located 

between the amino acid stretch of Pro64 to Met139 and Asp185 to Arg 225 indicating 

the pronouncing binding pocket of DHPS. The highly active compounds found to be 

involved in hydrogen bond interaction with Asn96, Asn115, Gly189, Asn115, Asp185, 

Lyn 221 that reside inside the catalytic pocket of DHPS. The R12 and R13 

pharmacophoric features of 8-MG rings are found to form π-π stacking interaction with 

Thr62 and Arg225 residues which play an important role in stabilizing the inhibitors in 

DHPS active site (Appendix XIII). We also generated the map of hydrophobic and 

hydrophilic fields for highly active inhibitors and depicted in Appendix XIV. It is 

evident from Appendix XIV that the DHPS pocket mostly consists of hydrophilic 

amino acids. However, small hydrophobic portions are also present in the active site.  

The benzene rings of highly active inhibitors are found to reside near the hydrophobic 

part of the surface which is found to be correlated with the 3D-QSAR contour plot of 

the hydrophobic feature. The guanine ring of the 8MG derivatives is found to be buried 

inside the hydrophilic part located at the pterin binding site of the pocket. The docked 

pose of highly active compounds inside the DHPS pocket is shown in Figure 4.4A-F. 

The imidazole ring of compound 62 is found to be involved with π-π stacking 

interaction with Phe 190. There is also an equal probability of forming π-cation 

interaction with the guanidinium of Arg255(Gallivan and Dougherty 1999). Moreover, 

the nitrogen atoms substituted in the 8MG ring are found to accepted hydrogen bonds 

from Asn115 (8MG-N----H-NH-Asn115, 2.51 Å) and donate hydrogen bond to 

Asn115(Asn115-C=O----H-8MG, 1.68Å), Asp185(C-O-1---H-8MG, 1.79 Å), 

Lyn221(8MG-NHCO----HN-Lyn221, 2.48 Å). One water-mediated hydrogen bond is 

found to anchor the C=O of 8-MG ring to Gly217, Gly187, and Asp185. Another highly 

active compound 51 is found to be involved in hydrogen bonding interaction with 

Ser222 (NH-----O=S-8MG, 2.63Å), Gly189(C=O-----HN-8MG, 2.00Å).  
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Figure 4.4. The docking pose of highly active (A) Compound 62, (B) Compound 61, 

(C) Compound 51, (D) Compound 55, (E) Compound S1, (F) Compound S3 and 

inactive (G) Compound 2, (H) Compound 11. The hydrogen bonding, π-π stacking, and 
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π-cation interactions are shown in yellow, sky, and green lines respectively. The 

interacting amino acids are coloured in pink.  

The imidazole ring of compound 51 is found to involved hydrogen bond interaction 

with Asp96 (C=O-----HN-IME-8MG, 2.78Å) (Figure 4.4-C). We also perform XP 

docking of 4128 compounds (obtained from database screening) with respect to 

DDHRR_1 hypothesis and found five active compounds which can inhibit DHPS. The 

structures of the compounds are provided in Appendix XV. Compound S1 (2-((2-

amino-6-oxo-6,9-dihydro-1H-purin-8-yl) thio)-N-(2,3-dimethylphenyl) acetamide) and 

compound S3 (2-((2-amino-6-oxo-6,9-dihydro-1H-purin-8-yl) thio)-N-(4-((2-

methylpiperidin-1-yl) sulfonyl) phenyl) acetamide) is found to obtain highest docking 

score (Appendix XVI). The 8-MG rings of these compounds are found to have similar 

interactions as found in the case of highly docked compounds discussed above (Figure 

4.4-E, F). In contrast, the inactive compound 2 and 11 are found to bind at the surface 

of the DHPS catalytic pocket and their guanine ring is found to interact with Gly 189 

and Lys 221 (Figure 4.4-G, H). Such non-specific interactions decrease the inhibitory 

effect of the inactive compounds and destabilize them inside the DHPS catalytic pocket. 

Therefore, it is evident from docking studies that the marcaptoguanine ring of the 

inhibitors is primarily stabilizing the base of the ligand, situated deep inside the pterin-

binding pocket and the conjugation from the Sulphur atom restricts the sallow region 

of pyrophosphate and pABA binding pocket. Such binding pose of the inhibitors is 

found to cover all the binding pockets of the DHPS catalytic cavity and circumvent the 

sulfa-resistance mutations often located at the pABA binding pocket.  

4.3.3 DFT Calculation 

In order to rationalize and interpret the chemical reactivity, kinetic stability of 8MG 

compounds DFT study has been employed. The energy corresponds to HOMO, LUMO 

of highly active (compound 62, 61, 51, 56, 58, S1, S3), inactive (compound 6, 2, 11) 

inhibitors, and product are given in Appendix XVII.  The HOMO, LUMO energy is 

found to be varied significantly in vacuum and aqueous environment which are 

calculated in two different basis-set such as 6-31G**(d, p), 6-311G**(d, p).  It is 

observed from Appendix XVII that HOMO, LUMO energies of 8MG compounds are 
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lowest in the aqueous solution of 6-311G**(d, p), thus considered for further analysis. 

The   HOMO energy ranges from -5.971 eV to -6.672 whereas the LUMO energy ranges 

from -0.903 eV to -3.125.  It can be seen that there is not much difference in the HOMO 

energy but LUMO energy differs for each molecule. Hence, LUMO energy can be 

considered as the principal significator for the biological activity of the 8-MG 

inhibitors. Further, the band gap (energy difference between HOMO and LUMO) is 

calculated to assess the kinetic stability of the inhibitors(Bharathi et al. 2016). It is clear 

from Appendix XVII that inactive compounds have lower kinetic stability compare to 

active compounds due to a higher band-gap (Eg > 5).  Among the highly active 

inhibitors, compound 51 is found to have the lowest band-gap indicating the highest 

stability among the inhibitors. It can be further noted that the band-gap for pteroic acid 

is much lower compared to all the active inhibitors. Thus, 8-MG derivatives are 

chemically more inert compare to the product (pteroic acid) at the DHPS catalytic 

pocket which is helpful for better competitive inhibition of DHPS.   The HOMO and 

LUMO regions are known to be directly proportional to the electron-rich and deficient 

regions of the molecule. Therefore, these regions indicate the reactive regions of 

inhibitor molecules for stable interaction with catalytic pocket residues. The occupancy 

of the HOMO, LUMO orbitals on the 8MG derivatives are depicted in Appendix 

XVIII- XX. It can be found that the location of LUMO significantly differs in the case 

of active compounds. The electron reaches HOMO located at the guanine ring (R12 

and R13 pharmacophoric site), which can provide strong hydrogen bonding and cation-

π interaction. While the LUMO electron density majorly delocalized at the substitutions 

associated with the central Sulphur atom (Appendix XVIII). The non-overlapping 

position of HOMO-LUMO in 8-MG derivatives may provide better stability and 

interaction with the DHPS catalytic pocket. Similar observation is obtained from 

compound S1 and S3(Appendix XIX). Unlike the active compounds, the location of 

HOMO-LUMO is found to be completely opposite in the case of pteroic acid 

(Appendix XX). This can be the reason behind the higher chemical reactivity of this 

compound compare to 8MG analogs which help in maintaining kinetic equilibrium 

between substrate and product at DHPS active site. Furthermore, the HOMO- LUMO 

location is found to be placed in the guanine ring of compound 2, 6 and 11 which may 
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hinder the stability and nonbonded interaction at the protein’s active site, thereby 

decreasing the activity of these compounds (Figure A9).  

The global reactivity descriptors such as dipole moment, chemical potential (µ), 

electronegativity (ꭓ), hardness (ղ), softness (s) and electrophilicity index (ω) were 

calculated to explain the stabilization and interaction of 8-MG derivatives at DHPS 

catalytic pocket. It can be seen from Appendix XXI that compound 51, S3 is found to 

have a higher dipole moment due to higher number of polar atoms, thereby increasing 

their activity. Among highly active inhibitors, the chemical hardness of compound 51 

is much lower, indicating higher biological activity of the compound(Venugopal et al. 

n.d.). The hardness of pteroic acid is the lowest compare to all the inhibitors considered 

for DFT studies which further validates that the chemical reactivity of the inhibitors is 

comparatively lesser than the actual product of DHPS. It can be noted from Appendix 

XXI that the electronegativity and electrophilicity index of the active inhibitor are 

higher compare to inactive inhibitors. Therefore, the active inhibitors have well-defined 

electron-rich and deficient regions in their molecular geometry to stabilized itself at the 

active site of DHPS.  

4.3.4 ADME/Tox profiling 

In order to avoid poor pharmacokinetics, oral bioavailability, and side effects, the 

determination of ADME/Tox properties of the drug candidates is believed to be crucial 

in the drug discovery process (Llorach-Pares et al. 2018; Nolte et al. 1998). The highly 

active 8MG compounds (pKD > 5.0) with high docking scores are considered to be 

evaluated by Lipinski’s rule of five, the percentage of human oral absorption. The 

ADME/Tox data of the 8-MG compounds are shown in Appendix XXII. The 

molecular weights of all the 8MG derivatives are found to be ranging from 250–350 Da 

and other factors of Lipinski’s rule (logP, MW, HBA, HBD) are also found to be in the 

permissible range. Moreover, the percent oral absorption values of the compounds are 

above 25%. This signifies good oral absorption of the hits in the human body. Further, 

reduced values of QPlogS of the 8-MG compound validate the higher solubility and 

drug-likeness of the compounds. It can be observed that some of the active drug 

candidates have the probability to block HGRT K+ channel and poor Caco-cell line 

permeability. However, the most active compounds (Compound 51, Compound 62, 
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Compound 61 and Compound S1, Compound S3) have considerable values for the 

above two pharmacokinetic factors. Further, the blood-brain barrier permeability values 

of most of the active compounds exhibited positive results which signifies that 8-MG 

compounds have the least possibility to affect the central nervous system. The 

QPlogKhsa values of active compounds indicate that the drug candidates have lesser 

interaction with human serum albumin. Lastly, the polar surface area (PSA) values of 

the active compounds indicate good permeability across the cell monolayer.  

4.3.5 MD Simulation 

4.3.5.1 Dynamic stability of protein-ligand complex 

In order to obtain further insights into the dynamic stability and conformational change 

of the protein-inhibitor complex, 100 ns long MD simulation of the highly active, 

inactive inhibitor bound DHPS and apo-DHPS was performed. We also carried out MD 

simulation of DHPS-pterolic acid (product) complex for the same time scale to compare 

it’s dynamic behavior with inhibitors bound state. The docked conformations of the 

compounds are taken as the initial state for MD simulations. The root-mean-square 

deviation (RMSD) of the protein backbone and inhibitor compounds are shown in 

Figure 4.5 to determine the systematic deviation of protein-inhibitor complexes.  The 

upper range of backbone RMSD for DHPS in all simulations is found to be < 0.3 nm 

which indicates structural stability of the protein during motion(Carugo and Pongor 

2001). The RMSD of highly active compound 62 is stabilized at an average value of 

0.13 nm throughout the course of simulation (Figure 4.5-A) while compound 61 

maintained the average RMSD value of 0.1 nm up to ~74 ns and then converged at a 

higher value of 0.17 nm (Figure 4.5-B) for the rest of the simulation. The RMSD of 

compound 51 is found to have fluctuated till ~55 ns for exploring stable conformation 

and then reached steady-state with a lower RMSD value of 0.08 nm (Figure 4.5-C). 

Highly active compounds obtained from our pharmacophore-based virtual screening 

are found to reach a maximum RMSD value of ~ 0.2 nm then stabilized at the end of 

the simulation (Figure 4.5-D & E). It can be seen from Figure 4.5 that compound 62 

and 61 have the most stable conformation compares to other active compounds. In 

contrast, the RMSD of the highly inactive compound 6 showed several fluctuations 

throughout the simulation which indicates conformational instability of the inhibitor at 
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the catalytic pocket of DHPS (Figure 4.5-F). Next, we calculated the RMSD of the 

pteroic acid-DHPS complex to compare it’s stability with highly active inhibitors. The 

RMSD of pteroic acid is found to be stabilized at 0.1 nm which indicates that the 

conformational dynamics of the product is similar to the active 8-MG derivatives. It 

can be noted from Figure 4.5-H that the backbone RMSD profile of the apo-DHPS is 

higher compare to inhibitor bound or product bound state. This indicates higher 

conformational stability of DHPS in their ligand-bound state. To assess the 

convergence in MD simulation, we calculated RMS average correlation(Galindo-

Murillo et al. 2015) and given in Appendix XXIII. It is evident from Appendix XXIII 

that the correlation profile for compound 51, compound 61, and compound S3 bound 

DHPS backbone approach quickly to the final structure compared to other inhibitor 

bound states. This further indicates the convergence of the RMS deviation for the 

above-mentioned 8-MG bound DHPS backbone. Further, the RMSF profiles of DHPS 

backbone residues in both ligand-bound and apo-state are displayed in Figure 4.6(A-

B) to depict the highly mobile or flexible segments of the protein molecule. 

The average RMSF profile of the DHPS backbone is found to be almost similar 

in all highly active inhibitor-bound states. However, the residue stretches from 62 to 77 

is found to have a comparatively higher RMSF value (0.4 nm) with respect to the rest 

of the DHPS backbone, indicating the higher flexibility of this region during motion 

(Figure 4.6-A). Apart from this most of the backbone regions of the DHPS showed an 

RMSF value less than 0.1 nm due to the compact tertiary structural arrangement. The 

degree of fluctuation at the catalytic pocket residues (Asp 96 - Met 139 & Asp 185 – 

His257) is found to be < 0.2 which helps the formation of the stable protein-inhibitor 

complex. In the case of inactive compounds, the residue starch 62-77 of DHPS is found 

to fluctuate more (~0.58nm) compare to the active bound state (below 0.42 nm). 

Therefore, the flexibility of regions 62-77 is essentially restricted by active inhibitor 

binding for a stable protein-ligand complex. Further, it can be noted that the RMSF 

value of the residue stretches 222-239 is also stabilized by the active 8MG compounds. 

The C-terminal end of DHPS is found to fluctuate significantly in both active-bound 

and inactive bound states due to the solvent-exposed unstructured loops.  
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Figure 4.5. The time evolution of RMSD profile for DHPS bound with (A) Compound 

62, (B) Compound 61, (C) Compound 51, (D) Compound S1, (E) Compound S3, (F) 

Compound 6, (G) Pteroic acid and (H) Apo-DHPS. The black color represents the 

backbone RMSD and red color represents the ligand RMSD. (Batch 1). 

The compactness of ligand-bound and apo-state of DHPS-8MG complex was evaluated 

by calculating the gyration radius (rGyr) throughout the simulation time (Figure 4.6-

C). The rGyr value of the DHPS backbone in all the simulations ranges from 1.72nm 

to 1.79 nm with an average rGyr value of 1.75 nm. This confirms the fact that inhibitor 

binding does not cause the unfolding of the DHPS enzyme over the simulation period. 
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The dynamic stability of the protein-ligand complexes corresponds to simulation_batch 

2 and simulation_batch 3 are given in Appendix XXIII and Appendix XXIV. The 

trend of the results is found to be almost similar compare to simulation batch 1.  

 

Figure 4.6. Plot showing the RMSF profile of (A) DHPS backbone in the presence of 

active inhibitors, (B) inactive, Product bound, and apo-DHPS. (C) The time evolution 

of gyration radius of DHPS backbone bound with active, inactive inhibitors, pteroic 

acid, and apo-DHPS. (D) The number of average hydrogen bonds between the ligand 

and DHPS catalytic pocket.  

4.3.5.2 non-bonded interactions 

The stability of the docking predicted interaction profile of the inhibitors is assessed by 

MD simulation studies. The average number of hydrogen-bonding interactions 

involved in stabilizing the inhibitors inside the DHPS catalytic pocket was determined 

and depicted in Figure 4.6-D. We also determined the percentage of hydrogen bond 

occupancy (HBO) for the donor and acceptor pairs (Table 4.6). It is found that 

compound 51 formed the highest hydrogen bonds with DHPS catalytic pocket compare 

to other 8-MG derivatives indicating the substitution of sulphonamide group enhances 
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the electrostatic interaction to stabilize the outer part of the compound at the flexible 

loop of DHPS catalytic pocket. Similarly, compound S3 is found to form higher 

hydrogen bond compare to the S1 which further indicates the importance of the 

sulphonamide group. Compound 61 is found to have less hydrogen bond interaction 

compare to other active compounds. The residues such as Asn 115, Asp 185, Lys 221, 

Ser 222, and Arg 255 are found to be common which contribute hydrogen bonds to 

stabilize the active compounds. Additionally, Leu 184 (HBO: 98.0%), Leu 215 (HBO: 

64.8%), Gly 215 (HBO: 47.8%) for compound 62, Asp 96 (HBO: 33.1%), Gly 189 

(HBO: 25.7%) for compound 51 and Thr 62 (HBO: 381 %) for compound S3 stabilizes 

them at the catalytic pocket of DHPS. Therefore, it is evident from our MD study that 

most of the docking predicted interactions were present throughout the trajectory. The 

water-mediated hydrogen bonds between the active site residues and ligand are also 

crucial for anchoring the ligand in the catalytic pocket. The visual inspection of our MD 

trajectory suggested that Glu 60, Asp 116, Asp 165, Asp 185, Lys 201, and Leu 215 are 

involved in water-mediated hydrogen bonds with the active inhibitor molecules. 

Apart from hydrogen bonding, the ligand or drug molecules are believed to be 

stabilized at the enzyme catalytic pocket by a delicate balance of week interactions such 

as π- π stacking (Chen et al. 2018; Thakuria et al. 2019) and cation- π (Ma and 

Dougherty 1997; Scrutton and Raine 1996) interaction. In the present scenario, the 

contribution of such non-covalent interactions to stabilize the highly active inhibitors 

are assessed from our MD trajectories. The distance criteria for π-π stacking interaction 

are reported to be 3-8 Å, while the angle between the normal vector of two aromatic 

rings should be 0º-120º(Thakuria et al. 2019).  The Phe 190 is found to be involved in 

π-stacking interaction with the guanine ring of the highly active inhibitors buried deep 

inside the DHPS catalytic pocket. This is assessed by the time evolution of the distance 

and the angle between the aromatic ring of Phe 190 and the marcaptoguanine ring of 

active inhibitors (Appendix XXVI and XXVII). In all the cases the average distance 

is found to be ranging from 0.58 nm-0.75 nm and the angle between the normal vectors 

is 90º-120º. In the case of compound 62, π stacking interaction is absent between the 

marcaptoguanine ring and Phe 190. However, Phe 188 is found to make such interaction 

with the substitute CONH-C6H6 ring and stabilizes the solvent-exposed part of the 
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ligand. Further, the marcaptoguanine ring of the active inhibitors is displayed cation- π 

interaction with Lys 221 and Arg 255(Kumar et al. 2018). The time evolution of the 

distance between the marcaptoguanine ring and the positively charged atom of both the 

residues is found to be below 0.7 nm (Appendix XXVIII, XXIX)indicating 

pronounced cation-π interaction to add stability for protein-inhibitor complex (Xiu et 

al. 2009). 

Table 4.6. Hydrogen bond occupancy between ligand and active site residues of 

DHPS. UNK indicates the inhibitor and PT1 indicates Pteroic acid. 

Compound 62 

Pair ID Donor- acceptor Atom Number Occupancy 

(%) 

1 UNK283 (H1) Leu184 (O) 4073-2529 98.0 

2 Arg255 (H11) UNK283 (O2) 3604-4064 71.3 

3 Gly217 (H) UNK283 (O1) 3038-4061 47.8 

4 Leu215 (H) UNK283 (N5) 3003-4059 64.8 

Compound 61 

1 UNK283 (H7) Asp56 (OD1) 4072-689 21.3 

2 Lys221 (HZ1) UNK283 (O1) 3113-4059 46.7 

3 Asn115 (D21) UNK283 (N2) 1591-4052 98.8 

Compound51 

1 UNK283 

(H11) 

Gly189 (O) 4085-2589 25.7 

2 UNK283 

(N11) 

Asp96 (OD2) 4087-1297 15.6 

3 UNK283 

(N11) 

Asp96 (OD1) 4087-1296 17.5 

4 UNK283 (H1) Asp185(OD2) 4075-2539 17.9 

5 UNK283 (H1) Asp185 (OD1) 4075-2538 36.1 

6 UNK283 (H1) Asn115 (OD1) 4075-1589 35.8 

7 UNK283 (H) Asp185 (OD2) 4074-2539 36.0 
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8 UNK283 (H) Asp185 (OD1) 4074-2538 60.7 

9 Arg255 (H11) UNK283 (N8) 3604-4057 14.0 

10 Ser222 (H) UNK283 (N22) 3126-4071 25.8 

11 Ser222 (H) UNK283 (O24) 3119-4073 33.0 

12 Ser222 (H) UNK283 (O23) 3119-4072 35.9 

13 Lys221 (HZ1) UNK283 (O7) 3113-4056 68.0 

14 Asn115 (D21) UNK283 (N1) 1591-4050 91.4 

Compound 6 

1 Ser239 (HG) UNK283 (O1) 3373-4053 31.3 

2 Arg220 (H21) UNK283 (N3) 3092-4055 20.0 

3 Arg220 (HE) UNK283 (N3) 3086-4055 43.8 

4 Arg220 (H) UNK283 (O1) 3073-4053 42.5 

Compound S1 

1 UNK283 (H1) Asp185 (OD2) 4074-2539 98.3 

2 UNK283 (H1) Asn115 (OD1) 4074-1589 24.3 

3 UNK283 

(H15) 

Asp185 (OD2) 4088-2539 72.6 

4 UNK283 

(H15) 

Asp185 (OD1) 4088-2538 29.0 

5 Arg255 (H11) UNK283 (N2) 3604-4053 39.1 

6 Lys221 (HZ1) UNK283 (O2) 3113-4065 22.6 

7 Lys221 (HZ1) UNK283 (O1) 3113-4059 16.9 

8 Lys221 (HZ1) UNK283 (N3) 3113-4054 67.0 

9 Asn115 (D21) UNK283 (N2) 1591-4053 38.6 

Compound-S3 

1 UNK283 (H6) Thr62 (OG1) 4087-759 38.1 

2 UNK283 (H2) Asp185 (OD2) 4083-2539 98.1 

3 UNK283 (H2) Asn115 (OD1) 4083-1589 96.3 
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4 UNK283 

(H23) 

Asp185 (OD2) 4184-2539 90.7 

5 Lys221 (HZ1) UNK283 (N1) 3113-4052 88.3 

6 Asn115 (D21) UNK283 (N5) 1591-4061 16.1 

7 Asn115 (D21) UNK283 (N3) 1591-4055 70.1 

Pteroic acid 

1 PT1 283 

(HO1) 

Asp185 (OD2) 4247-2709 74.8 

2 PT1 283 

(HO1) 

Asp185 (OD1) 4247-2708 23.2 

3 PT1 283 (H1) Asn115 (OD1) 4243-1629 91.8 

4 Ser222 (H) PT1 283 (O23) 3289-4242 20.1 

5 Lys221 (HZ1)  PT1 283 (O1) 3283-4231 13.8 

6 Lys221 (HZ1) PT1 283 (N6) 3283-4223 84.6 

7 Asn115 (D21) PT1 283 (N9) 1631-4225 92.4 

 

4.3.5.3 Principal Component Analysis (PCA) 

In the present scenario, the last 40 ns of the trajectories were used for analyzing the 

principal motions of the protein in an inhibitor-bound state. The eigenvectors are 

calculated and given in Figure 4.7 to comprehensively analyze the effect of inhibitor 

binding on protein motion. It is found that the total motion of inhibitor bound and apo 

DHPS monomer structure are dispersed over 789 eigenvectors.  
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Figure 4.7 Plot represents the eigenvalues vs first 30 eigenvector indexes derived from 

PCA over last 40 ns of MD trajectory for ligand-bound and apo-DHPS structure.  

The rapid decrease of the eigenvectors towards the Eigen index indicates that the initial 

5 eigenvectors are mostly contributing to the collective motions of DHPS-8MG 

complexes during MD. It is found that first eigenvector corresponds to 42.65%, 

43.79%, 45.78%, 61.05%, 64.94%, 49.2%, 44.51% and 48.3% motions for DHPS 

bound with compound 62, 61, 51, S1, S3, 6, Pteroic acid and Apo-DHPS respectively 

(Figure 4.7). Thus, it can be inferred that the inhibitor-bound DHPS systems are stable 

compare to the DHPS bound with highly active compounds obtained from database 

screening. Additionally, the lower collective motions of the Apo-DHPS backbone 

indicate that the amalgamation of product analogs increases the principal motion crucial 

for minute conformational transition.  The first principal movement (PC1) of the ligand-

bound and apo-DHPS are shown in Figure 4.8-C, D, E, F, G, H, I, J. The length of the 

cone represents motion magnitude and the direction is shown by the pointing of the 

arrow. It is found that essential motions of apo and product-bound DHPS are only 

associated with flexible loop regions (Figure 4.8-B) that are crucial for ligand 

recognition. 
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Figure 4.8.  (A) The secondary structure of the DHPS. Porcupine plots of the first 

eigenvector for MD simulations of DHPS bound with (B) Compound 62, (C) 

Compound 61, (D) Compound 51, (E) Compound S1, (F) Compound S3, (G) 

Compound 6, (H) Pteroic acid and (I) apo-DHPS.  

However, the entire DHPS structure is stable in both cases. In contrast, the flexible 

loops of inhibitor bound DHPS (except compound 62) showed closing motion which 

induces enhanced movements in the rigid domains of the protein backbone. Especially, 

the amplitude of the motions in the rigid domain is significant when the DHPS is bound 

with compound S1 and S3. This observation suggested that the binding of highly active 
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8MG compounds induces the shrinking of catalytic pockets to restrict natural substrate 

binding and product release.  The essential space of the overall dynamics of inhibitor 

bound DHPS and apo-DHPS can be visualized by the 2D-projection of the first two 

principal components such as PC1 and PC2. It is evident from the projection plot that 

the extent of sampling is remarkably different in each case (Appendix XXX). DHPS 

bound with compound S1 and S3 is found to span larger conformational space compare 

to other inhibitor bound states, indicating highly systematic movement of flexible loops 

located at the surface of the DHPS catalytic pocket. This can be related to the porcupine 

plot shown in Figure 4.8-F, G. In contrast, DHPS bound with highly active Compound 

62 and 61 have confined conformational space which implies that intrinsic flexibility 

of DHPS reduces due to the presence of such compounds. A similar conformational 

landscape is found for the product-bound state of DHPS. Further, the larger essential 

space of apo-DHPS provides a hint regarding the recovery of the flexibility of protein 

backbone, gained due to the removal of the ligand from the catalytic pocket. Similar 

phenomena were found for the inactive ligand-bound state of DHPS as a result of non-

specific inhibitor binding. Lastly, the cosine content of PC1 is measured to confirm the 

absolute convergence of our MD trajectory (Papaleo et al. 2009). The cosine content 

corresponds to PC1 from all MD trajectories is determined to be under 0.5 indicating 

adequate sampling of MD trajectories.     

4.3.6 MM/PBSA binding free energy 

The binding energies of highly active 8MG derivatives such as Compound 62, 61, 51, 

and top-scored compounds S1 & S3 obtained from pharmacophore-based virtual 

screening are computed by MM/PBSA(Kumari et al. 2014a) algorithm and the results 

are given in Table 4.7. It is found that compound 51 has comparatively lower binding 

energy (-67.26 kJ/mol) among the highly active 8MG analogs. The free energy 

decomposition shown in Table 4.7, indicates that the electrostatic energy (-154.25 

kJ/mol) is the principal contributor to the better stabilization of compound 51 at the 

DHPS catalytic pocket. The compound 62 is found to have a stronger van der Waals 

component (-179.56 kJ/mol) due to the presence of hydrophobic benzene ring. It can 

be observed that the Compound-S3 obtained from database screening has the lowest 

binding energy of -71.29 kJ/mol due to the most stable electrostatic contribution of -
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260.65 kJ/mol. Further, the weak binding affinity of inactive Compound 6 is reflected 

by it’s comparatively higher binding energy of -28.19 kJ/mol.  However, the binding 

affinity of the product i.e., 7,8-dihydropteroic acid is lower compare to the 8MG 

compounds which indicates better competitive inhibition of DHPS by such product 

analogues.  Notably, in all the cases the polar solvation term is found to be unfavourable 

in the context of stabilizing the protein-inhibitor complex. The binding free energies of 

the compounds correspond to  

Table 4.7. Binding Free energy (kJ/mol) of the 8MG and pteroic acid at the DHPS 

binding pocket by MM/PBSA method (Simulation batch _1)  

Compounds ∆Gbind-eff  

(kJ/mol) 

∆Gvdw  

(kJ/mol) 

∆Gele  

(kJ/mol) 

∆Gsol-pol  

(kJ/mol) 

∆GSASA  

(kJ/mol) 

Compound 62 -50.94 -179.56 -130.57 275.83 -16.64 

Compound 61 -60.19 -149.86 -146.22 250.65 -14.33 

Compound 51 -67.26 -139.05 -154.25 243.10 -17.06 

Compound 6 -28.19 -134.68 -136.83 257.65 -14.33 

Compound_S1 -62.03 -134.03 -186.48 273.21 -14.73 

Compound_S3 -71.29 -154.54 -260.65 362.75 -18.85 

Product -43.09 -181.88 -134.56 288.30 -14.95 

∆Gbind-eff: The enthalpic contribution of binding free energy (without entropic term), 

∆Gvdw : The van der walls energy component of binding free energy, ∆Gele : The 

electrostatic energy component of binding free energy, ∆Gsol-pol : Polar Solvation 

Energy, ∆GSASA : The free energy corresponding to the solvent-accessible surface area.  

simulation_batch 2 and simulation_batch 3 are given in Appendix XXXI, Appendix 

XXXII respectively. The trend is found to be like simulation_batch 1. Furthermore, the 

total binding energies in each protein-ligand complex are decomposed into the 

contribution made by each DHPS residue and shown in Figure 4.9. This enables a 

comparison between the relative contribution of the interacting residues towards the 

overall binding affinity.   
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Figure 4.9. The per-residue decomposition of MM/PBSA free energy for (A) 

Compound 62, (B) Compound 61, (C) Compound 51, (D) Compound S1, (E) 

Compound S3, (F) Compound 6, (G) Pteroic acid. 
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The residue-inhibitor interaction spectrum is found to be almost similar for the 

compounds which showed lower binding energy towards DHPS. It is found that 

interaction of Glu 105, Asn 115, Phe 188, Phe 190, Lys 221 and Arg 255 is common to 

the highly active 8-MG derivatives considered for free energy calculation. The amino 

acid region Thr53-Thr62 also stabilizes Compound 61, 51, and S3 at the catalytic 

pocket of DHPS. In the case of compound 6, the non-specific residues such as Leu 201, 

Gly 217, Arg 220, and Ser 239 have contributed towards the binding free energy. It can 

be observed that amino acid residues with hydrophilic side chains have more 

contribution to stabilizing the inhibitors. However, compound 62 is mainly stabilized 

by hydrophobic residues.   

4.3.7 Effect of Mutation 

In order to verify the mutation-resistant activity of the 8-MG derivatives, single point 

mutations were introduced at residue number 64 (Pro64Ser) and 221 (Lys221Gln) of 

the DHPS backbone. These two mutations are reported to destabilize both the pterin, 

sulfa-based inhibitors against DHPS, and the strongest drug-resistant mutation ever 

found for DHPS (Yun et al., 2012). The effect of the mutation was tested on highly 

active Compound 51 and S3 and compared with the wild-type Protein-ligand complex. 

The RMSD of compound 51 bound DHPS backbone is found to be stabilized with an 

average value of 0.25 nm while the RMSD of compound 51 is stabilized with an 

average value of 0.15 (Figure 4.10 A). It can be seen that the single point mutation did 

not cause a significant change in ligand conformation. There are five hydrogen bonds 

are found between mutated DHPS and compound 51 throughout the simulation. 

Similarly, in the case of compound S3, the backbone RMSD is found to be stabilized 

at 0.3 nm for the last 30 ns of the simulation. The compound S3 is found to be stabilized 

with a higher RMSD value of 0.23 nm for the last 10 ns of the simulation (Figure 4.10 

B). The total number of hydrogen bonds between compound S3 and mutated DHPS is 

found to be 4. Further, the RMSF values for the amino acid residues are slightly 

increased in the case of mutated DHPS. However, the change in RMSF is not much 

significant to destabilize the highly active 8-MG compounds from DHPS active site 

(Figure 4.10 C & 4.10 D).  
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Figure 4.10. The RMSD profile for DHPS bound with (A) compound 51, (B) 

Compound S3. The RMSF profile for DHPS backbone bound with (C) Compound 51, 

(D) compound S3. The gyration radius profile for DHPS backbone bound with (E) 

Compound 51 and (F) Compound S3.  

It is evident from the gyration radius profile that the point mutations are not responsible 

for changing the overall shape of DHPS (Figure 4.10 E & 4.10 F). Lastly, we calculated 

MM/PBSA calculation to assess the binding affinity of the compounds at the mutated 

catalytic cavity of DHPS. The binding energy of compound 51 and S3 is found to be -

52. 38 kJ/mol and -69.49 kJ/mol (Table 4.8) which indicates that 8-MG compounds 

have a promising ability to circumvent DHPS resistant mutations. 
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Table 4.8. Binding Free energy (kJ/mol) of the Compound 51 and S3 at the mutated 

DHPS binding pocket by MM/PBSA method (Sim-III) 

Compounds ∆Gbind-eff  

(kJ/mol) 

∆Gvdw  

(kJ/mol) 

∆Gele  

(kJ/mol) 

∆Gsol-pol  

(kJ/mol) 

∆GSASA  

(kJ/mol) 

Compound 51 -52.38 -133.26 -140.84 238.19 -16.472 

Compound_S3 -69.49 -165.88 -235.65 352.754 -20.71 

4.3.8 Drug unbinding by Umbrella Sampling 

In order to study the dissociation pathway of the 8MG-derivatives from the DHPS 

catalytic pocket and to determine their free energy of inhibitor dissociation, umbrella 

simulation studies have been employed. Due to the high computational cost, we have 

selected highly active compound 51, compound S1, and inactive compound 6 to study 

the dissociation process. The reaction coordinate is extended from 0 to ~ 5 nm to ensure 

complete dissociation of the ligand from the binding pocket. It can be observed from 

that substrate entry and product release can occur through narrow, solvent-exposed, and 

metastable unstructured loops which acts as the gateway to enter a comparatively stable 

pterin binding pocket of DHPS. Consequently, there is a major dissociation energy 

barrier to be crossed by product-analogs to escape from narrow catalytic pocket.  

Therefore, an external biasing potential has been applied to steer the ligand towards the 

bulk solvent. The structure of the DHPS binding pocket is restrained by applying 

harmonic potential on the Cα atoms of binding pocket residues. Application of pulling 

force allows the perturbation of dynamic equilibrium of the system, thus hindering the 

calculation of thermodynamic quantities directly from the steered molecular dynamics 

(SMD) trajectories with minimum errors. In such a scenario, the weighted histogram 

analysis method (WHAM) is commonly used to compute equilibrium data from 

nonequilibrium SMD trajectories.  

 The force acts on the ligand are found to be increasing sharply due to constant 

velocity pulling until a breaking point is reached (Appendix XXXIII). At this point, 

the critical interactions are disrupted which allows the inhibitors to dissociate from the 

catalytic pocket of DHPS.  
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Figure 4.11. The Potential of Mean Force (PMF) profile of inhibitor unbinding from 

the catalytic pocket of DHPS.  

The events leading up to the uncoupling of each ligand considered here are found to be 

differed significantly, although the direction of pulling is the same in each case. 

Therefore, the force vs time curves, computed from COM pulling is not essentially 

comparable due to the path dependency of the dissociation process. In the case of 

compound 51, the hydrogen bonds with Asp 96, Asn 115, Asp 185, and water-mediated 

hydrogen bonds with Cys 137, Phe 188, Gln 226 are found to be broken at the point of 

maximum force. Similarly, the hydrogen bond between Asn 115, Asp 185, and 

compound S1 are disrupted at the breaking point. It is evident from the above discussion 

that Asp 115 and Asp 185 are critical to the stability of the inhibitors inside the DHPS 

catalytic pocket. However, compound 6 is found to be formed only water-mediated 

hydrogen bonds with non-specific Arg 233 and Arg 235 during the dissociation process. 

Further, the free energy profile along the reaction coordinate (RC) is analyzed and the 

PMF profile for each studied system considered for umbrella sampling is shown in 

Figure 4.11.  It can be seen from the graph that the PMF profile for the inhibitor 

dissociation follows a similar trend. The PMFs are found to drop to a minimum value 

and then increase to a stable state when RC reaches to ~3 nm- 4 nm. The flat region of 
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the PMF indicates that the inhibitor is in isotropic bulk or the interaction between the 

protein and ligand is completely disrupted. Free energy of dissociation is determined 

from the difference between the highest and smallest values of the PMF curve. It is 

evident from Figure 4.11 that compound S3 has the lowest binding energy of -93.29 

kJ/mol indicating the highest energy barrier to dissociate from the DHPS catalytic 

pocket. Further, compound 51 is found to show lower binding energy of -73.42 kJ/mol, 

while compound S1 has a comparatively lesser binding affinity of -49.36 kJ/mol. This 

result indicates that the stabilization of 8-MG compounds containing sulfonamide or 

sulfonyl fragments, at the flexible pABA binding pocket enhances the barrier for 

inhibitor dissociation from DHPS catalytic pocket. In the case of compound 6, the 

dissociation energy barrier is found to be less due to the highest binding energy of -

31.79 kJ/mol. It can be noted here that the binding free energy (i.e dissociation energy) 

computed by umbrella sampling is significantly smaller compare to binding energy 

estimated by MM/PBSA or MM/GBSA method(Sun et al. 2015). This is due to the 

ignorance of conformational entropies and dependencies of polar solvation equation 

schemes (Genheden and Ryde 2015) in binding free energy calculation. However, the 

trend of the binding free energy of the 8MG derivatives is found to be correlated in both 

US and MM/PBSA methods.         

4.4 CONCLUSION 

It is extensively recognized that drug discovery with respect to DHPS, in general, is a 

time taking, expensive, and highly complex process.  In-silico studies have become an 

indispensable tool for probing unknown chemical space to identify novel bioactive 

molecules with improve effectivity. In this article, in-silico techniques such as 

pharmacophore mapping, atom-based 3D-QSAR modeling, high throughput virtual 

screening, molecular docking, MD simulation with a pair of free energy techniques, 

namely MM/PBSA & umbrella sampling were employed to identify crucial 

counterparts of DHPS competitive inhibition with 8-MG derivatives. The contributions 

of various atomic features, like hydrogen bond donor, hydrophobic interaction, and 

electron-withdrawing groups on the 8MG analogs, towards DHPS inhibition were 

highlighted. 8 MG- compounds containing phenylacetamide (Compound S1) and 

phenyl sulfonyl (Compound S3) were identified as the highest-ranked hits among the 
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organic molecules obtained from database screening. Docking study revealed that 

hydrogen bonding, π-π stacking, and π-cation interactions of product analogs with 

active site residues provide the stability of the inhibitors. It is found that most of the 

non-bonded interactions are present between the guanine ring of the inhibitors and the 

active site residues located deep inside the active site. The active site residues such as 

Asp 96, Asn 115, Asp 185, Phe 188, and Ser 222 are mainly involved in hydrogen 

bonding while Phe 190, Lys 221, and Arg 255 are associated with π-π stacking and π-

cation interactions.  Further, the DFT study reveals that the overlapping of HOMO-

LUMO orbitals on common guanine ring decreases the activity of 8MG analogs. 

Moreover, the highly active 8-MG compounds were found to have higher water 

solubility as predicted by ADMET calculations. The dynamic stability of the inhibitors 

at the DHPS catalytic pocket was confirmed by atomistic MD simulation studies. The 

active compounds are found to be most stable compared to the inactive one due to their 

highly specific binding in DHPS catalytic pocket similar to pteroic acid. The binding 

of highly active compounds such as Compound 51, 62, and S3 was found to reduce the 

flexibility of residues 62-77 which is crucial for ligand stability. The non-bonded 

interaction predicted by docking calculations was found to have similarities with the 

MD simulation studies. PCA studies indicate that binding of the top-scored compounds 

induces closing motion in the flexible loops thereby causes prolonged inhibitions of 

DHPS. Further, MM/PBSA free energy studies indicate that electrostatic energy is the 

principal contributor to the stability of the inhibitors. Lastly, the free energy of 

dissociation of the product analogs reveals that water-mediated hydrogen bonding is 

also important for the stability of the inhibitors. The overall study summarizes that the 

substitution of the sulphonamide class of fragments at the central Sulphur atom of 8-

MG compounds is crucial to enhance the activity and stabilize them at the flexible 

pABA binding loops. The information obtained from this study offers a basis for 

understanding the conformational dynamics of DHPS with highly active 8-MG analogs 

and inspire medicinal chemist to synthesize newer generation of antimicrobials.  

 

 

 



136 
 

  



137 
 

CHAPTER 5 

 

EPITOPE-BASED POTENTIAL VACCINE CANDIDATE FOR HUMORAL AND 

CELL MEDIATED IMMUNITY TO COMBAT SEVERE ACUTE RESPIRATORY 

SYNDROME CORONAVIRUS 2 PANDEMIC 

Abstract: The emergence of severe acute respiratory syndrome from Sever Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has put an immense pressure 

worldwide where vaccination is believed to be an efficient way for developing hard 

immunity. Herein, we employ immunoinformatic tools to identify B-cell, T-cell epitopes 

associated with Spike protein of SARS-CoV-2 which is important for genome release. 

The results showed that the highly immunogenic epitopes located at stalk part are 

mostly conserved compared to the receptor binding domain (RDB). Further, two 

vaccine candidates were computationally modelled from the linear B-cell, T-cell 

epitopes. Molecular Docking reveals the crucial interactions of the vaccines with 

immune-receptors and their stability is assessed by MD simulation studies. The 

chimeric vaccines showed remarkable binding affinity towards the immune cell 

receptors computed by MM/PBSA method. Van der Waals and electrostatic 

interactions are found to be the dominant factors for the stability of the complexes. The 

molecular-level interaction obtained from this study may provide deeper insight in the 

process of vaccine development against the pandemic of COVID-19.  

 

Keywords: Severe-acute-respiratory-syndrome; β-corona virus; immunoinformatic; 

epitope-vaccine; MD simulation; MM/PBSA 
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5.1 BACKGROUND 

The sudden outbreak of febrile respiratory syndrome caused by a novel β-coronavirus 

(2019-nCoV) has created a global catastrophe where death rate is increasing every 

day(Lam et al. 2020 p. 201; Sanche et al. 2020; Zheng 2020). The rapid propagation of 

novel-coronavirus or SARS-CoV-2 outcompetes the past epidemics caused by  Sever 

Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory 

Syndrome Coronavirus (MERS-CoV)(de Wit et al. 2016) and therefore is declared as a 

global pandemic by WHO .As of now, more than 29 million confirmed cases and 924 

thousand deaths are caused by SARS-CoV-2.  

Many efforts have been made for the discovery of antiviral drugs against SARS-

CoV-2 (Ghosh et al. 2020a; b; Gutierrez-Villagomez et al. 2020; Mishra et al. 2020), 

but no such licensed therapeutic are available in the market till date. Therefore, the 

development of an effective treatment strategy for the pandemic is a research priority. 

Moreover, the design of a novel vaccine against viruses using kits and related antibodies 

is time-consuming and expensive(Chen et al. 2020; Tahir ul Qamar et al. 2018). 

Previously, numerous approaches including the whole virus, viral-DNA, subunit, and 

virus-like particles have been employed in developing epitope based vaccines against 

SARS and MERS virus(Liu et al. 2017; Prompetchara et al. 2020; Schindewolf and 

Menachery 2019; Shi et al. 2015b; Song et al. 2019; Yong et al. 2019). These epitopes 

can be prepared by chemical synthesis techniques and are easier in quality 

control(Alderete and Neace 2013; Geysen et al. 1984). There are evidences which 

supports that Insilco predictions are helpful in successful production of commercially 

important vaccines(Zawawi et al. 2020). However, the structural modifications, 

delivery systems, and adjuvants are the additional requirements in the formulation due 

to low immunogenicity caused by their structural complexity and low molecular 

weight(Azmi et al. 2014). Recently, a set of B and T cell epitopes from the highly 

conserved region in SARS-CoV-2 were identified which may help in developing 

vaccine candidates(Kar et al. 2020; Lin et al. 2020; Lizbeth et al. 2020). However, very 

little is known about the dynamic stability and affinity of the predicted epitope towards 

the interacting domain of Antibody and T-cell Receptors (TCRs) which is crucial for 

validating and improving the efficacy of predicted vaccines. In this respect, we apply a 
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combination of immuno-informatic(Nelapati et al. 2020; Walls et al. 2020) approach to 

identify potent epitopes to design the vaccine candidates followed by computational 

chemistry analysis to check their effectiveness. With the help of molecular docking, 

MD simulations and free energy calculations an analysis of all the important 

interactions necessary to give stability to the immuno-receptor complexes have been 

performed. 

T-cells are known to recognize and activate defence responses against viral 

infection; B-cells on the other hand can have antibody reactions which help in 

recovering extreme respiratory infection. Therefore, we have done detail analysis of the 

viral antigens to predict B-cell, T-cell linear epitopes located at the S-protein of SARS-

CoV-2, evaluated their immunogenicity, and designed chimeric vaccines. The 

conservation of all B- and T- cell epitopes were assessed across most of the isolates and 

coronavirus species from different parts of the globe. Furthermore, we carried out in-

silico cloning of the linear vaccine construct to design a recombinant plasmid that can 

help in expressing the vaccines in E.coli expression system.  

5.2 COMPUTATIONAL DETAILS 

5.1 Screening of Potential epitopes 

To primarily identify the linear B-cell epitopes from the amino acid sequence of SARS 

Cov2 spike protein, a collection of methods such as (i) Emini Surface analysis, (ii) 

Parker Hydrophilicity (iii) Karplus Schulz Flexibility, (iv) Kolaskar & Tongaonkar 

Antigenicity and (v) Chou Fasman Beta-Turn has been adopted which predict linear 

epitopes by correlating different antigenic parameters such as hydrophilicity,  surface 

exposure, flexibility and β-turn propensity etc with the location of continuous amino 

acid stretch. In general, all the methods compute antigenic score of a residue i within a 

window size of n (n= 5 to7) and i-(n-1)/2 residues at each side of residue i. The highest 

score residue along with the amino acid stretch then consider as potential linear antigen. 

Nevertheless, the above-mentioned methods are different based on the amino acid 

scales and the method implemented to predict antigen. The detailed description of each 

method is given below. 
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Emini Surface Accessibility: In this method the surface exposure of an amino acid 

sequence can be determined by using the formulae  𝑆𝑛 = [∏ 𝛿𝑛+4−𝑖
6
𝑖=1 ] ∗ (0.37)−6 

where ẟ is the fractional surface probability of one residue in a hexapeptide sequence 

(Emini et al. 1985a) 

Parker Hydrophilicity: This method determines the hydrophilic scale based on the 

retention time of the amino acid residue. Further, a window size of seven residues is 

considered and the fourth atom of the peptide window is scored by calculating the 

arithmetic mean of the hydrophilicity scale introduced to each seven residues (Parker 

et al. 1986a) 

Karplus Schulz Flexibility: In this method the flexibility scale of the amino acid 

residues is determined based on experimental B-factor of the alpha carbon. The 

calculation of antigenic scores is done by considering the first amino as the centre of 

six residue window length. Additionally, there are three flexibility scale instead of one 

(Karplus and Schulz 1985a). 

Kolaskar & Tongaonkar Antigenicity: This a semi empirical method which 

determine antigenicity of a polypeptide sequence based on the physicochemical 

properties of amino acids and their frequencies of occurrence in an experimentally 

known epitope segment (Kolaskar and Tongaonkar 1990b). 

Chou Fasman Beta-Turn: This method determines the possibility of a polypeptide 

sequence (turn scale) to adopt a β-turn based on Pellequer et al (Pellequer et al. 1993). 

In this method Chou-Fasman scale is used to predict the β-turn (Chou and Fasman 

1978). 

It is evident from the above-mentioned discussion that antigenic scores differ for each 

method due to the difference in amino acids scales correspond to each method and 

working equations. Notably, the antigenic scores are first normalized before making the 

amino acid scales in each method and later the scores of each residue are averaged 

within the given window length to predict the antigenicity of hotspot residues. 
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5.2 MD simulation Protocol 

All protein molecules are protonated at the biological pH of 7.0. Then the chimeric 

vaccine and peptide epitopes are docked at the antigen binding domain of respective 

immune-receptors by Hex software. We carried out atomistic MD simulations of all the 

systems using GROMACS-2016.5(Abraham et al. 2015a; Berendsen et al. 1995; Spoel 

et al. 2005). Amber 99-SB (Schmid et al. 2011a) force-field was employed due to its 

better balance in β-sheet and helicity. propensity compared to other force fields (Best 

et al. 2008a; Chamachi and Chakrabarty 2016; Man et al. 2019a). SPC/E(“Structure 

and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K - The Journal of 

Physical Chemistry A (ACS Publications)” n.d.) water molecules were used to solvate 

the receptor-peptide systems due to its compatibility with AMBER force field. All the 

systems underwent a 50000 step energy minimization by steepest-descent 

algorithm(Averill and Painter 1992; Meza 2010) to remove the steric clash. Leapfrog 

integrator algorithm was used to integrate the equation of motions with a time step of 2 

fs.  LINCS(Hess et al. 1997a) algorithm was applied to constrain all the bonds in the 

peptide molecule and SETTLE algorithm was employed to constrain the geometry of 

water molecules.  The systems were equilibrated in canonical ensemble (NVT) 

followed by isothermal-isobaric ensemble (NPT) for 5 and 10 ns respectively by 

restraining the solute heavy atoms. Next, the restrain were removed and the protein 

molecules were allowed to move freely during the production run for 100 ns. The 

temperature and pressure of the system was maintained employing Velocity rescale 

(Bussi et al. 2007a) (τt=0.1ps) and Parrinello-Rahman coupling algorithm(Parrinello 

and Rahman 1981a) (τp=0.2 ps). The cut-off for short range electrostatic and van der 

Waals interactions was assigned to 1.2 nm. Particle Mesh Ewald method(Darden et al. 

1993; Essmann et al. 1995b). 

5.3 RESULTS AND DISCUSSION 

5.3.1 Screening of Epitopes  

The amino-acid sequences of the spike-proteins for twenty-six different coronavirus 

species (SI-1) were considered for multiple sequence analysis (MSA) to figure out the 

conserved amino-acid region and the variable region which differentiate the SARS-

CoV-2 from other classes of coronavirus. Multiple sequence analysis (MSA) reveals 
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that the C-terminal end is highly conserved compared to the N-terminal end of the 

amino acid sequence of spike protein retrieved from different coronavirus species. This 

C-terminal perfusion or shaft domain (S2-domian) is thus common in all coronavirus 

spices for genome transfer while the receptor binding domain (RBD or S1-domain) is 

unique in SARS-CoVid2 (Figure 5.1-A). The Phylogenic tree constructed from MSA 

indicates that the spike protein is of β-coronavirus species (SARS CoVid, MERS-

CoVid) (Appendix XXXIV). The size of the predicted linear B-cell epitopes is found 

to be varied between 7mer- 15mer which is believed to be of optimum size. The hot-

spot residues which are considered as the key to the antigenicity of the epitopes, are 

found to be has maximum structural similarity with γ-coronavirus. The antibody 

mediated defence responses or Humoral immunity against viral infection is believed to 

be guided by B-cell epitopes(Charles A Janeway et al. 2001). The linear B-cell epitopes 

of S-glycoprotein sequence were predicted by a set-of physicochemical parameters 

such as the exposed surface propensity by Emini et. al(Emini et al. 1985b), 

hydrophilicity by Parker et. al(Parker et al. 1986b), flexibility by Karplus et. al(Karplus 

and Schulz 1985b), antigenic propensity by Kolaskar et. al(Kolaskar and Tongaonkar 

1990a) and β- 

Table 5.1. The highly immunogenic Liner B-cell and T-cell epitope from Spike 

glycoprotein of SARS-CoVid2 

Linear B-cell Epitope 

Methods Peptides Start_ 

Position 

End_ 

Position 

Hotspot 

Residues 

Score Length 

Emini Surface 

Accessibility 

DPSKPSKRS

F 

808 817 P, S 5.67 10 

Parker 

Hydrophilicity 

DSTECSN 745 751 E 6.34 7 

GTNTSNQ 601 607 T 6.09 7 

Karplus & 

Schulz 

Flexibility 

EGKQGNF 180 186 K, Q 1.1 7 

PGQTGKI 412 418 T 1.1 7 

BepiPred 

Linear Epitope 

ILPDPSKPS

KRS 

805 816 P, S, K, 

P, S 

1.67, 

2.06, 

2.29, 

2.16,  

12 

QTQTNSPRR

RARSV 

675 687 T, N, S 1.51, 

1.69, 

1.54 

13 

Kolaskar & 

Tongaonkar 

Antigenicity 

FLVLLPLVS

SQCVNL 

4 18 L, L, P, 

L, V 

1.243, 

1.239, 

1.22, 

1.261, 

1.227 

15 
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PHGVVFLH

VTYVPA 

1057 1070 F, L 1.21, 

1.21 

14 

Chou-Fasman 

Beta-Turn 

PGTNTSN 600 606 N 1.36 7 

KGCCSCG 1245 1251 C 1.3 7 

T-cell Epitopes 

MHC- 

Class 

HLA-type Peptide Start_ 

Position 

End_ 

Position 

Percentil

e 

Rank 

Length 

MHC-I A*02 :01 RDIADTTDA

V 

567 576 0.1 10 

A*24:02 TKRFDNPVL

PF 

76 86 0.1 11 

B*40:01 VRFPNITNL 327 335 0.1 8 

B*58:01 VFAQVKQIY 781 789 0.1 9 

MHC-II DRB1*04:01 NTLVKQLSS

NFGA 

960 972 0.47 13 

DRB1*07:01 SLLIVNNAT

NVVIK 

116 129 0.02 14 

 

turn propensity by Chou et. al(Chou and Fasman 1977) etc. implemented in immune 

epitope database and analysis resource (IEDB) tool(Peters et al. 2005). The predicted 

B-cell and T-cell epitopes with high antigenicity scores are shown in Table 5.1 and 

Appendix XXXV.  mostly polar in nature which may contribute in stable hydrogen 

bonds to the residues present in the antigen binding region of the antibodies. In Figure 

5.1 B we showed the location of linear B-cell epitopes on the single chain of SARS-

CoV-2 spike protein. It is evident from Figure 5.1 B that most of the epitopes are 

located at the RDB domain and the shaft region of the S-protein. The peptide 

808DPSKPSKRSF817 and 600PGTNTSNQ607 are found to be common in Emini-surface 

accessibility, Bepipred linear epitope and Chou-Fasman methods indicating their 

greater importance as linear B-cell epitopes.  The 3-D structure of the spike protein was 

generated by homology modelling implemented in Swiss Model(Waterhouse et al. 

2018) using PDB ID : 6VIB and 6VXX as template. The conformational epitopes of 

the spike protein of SARS-CoV-2 in their closed and open state were determined by 

Disctope(Haste Andersen et al. 2006; Kringelum et al. 2012) (V-1.1) server. It can be 

seen that the conformational B-cell epitopes of spike protein are located in almost in 

the same position (RDB region) in their both closed and open state (Appendix 

XXXVI). The locations of the conformational epitopes on the tertiary structure of S-

protein are mainly found at 405-427 and 439-505 residue stretches and in shown in 

Figure 5.1 C, D.  Based on the location of the epitopes, the domains are marked as R1,  
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Figure 5.1. (A)The structure of spike glycoprotein in trimeric form. (B) The location 

of the linear B-cell epitope on the chain B of spike glycoprotein. The yellow, red, pink-

, green-, orange- and firebrick-colored regions are predicted by Emini surface 

accessibility, Parker Hydrophilicity, Karplus & Schulz flexibility, Kolaskar & 

Tongaonkar Antigenicity and Chou Fasman method respectively. (C) The location of 

the conformational B-cell epitopes on the chain B of spike glycoprotein in their open 

state and closed state. The residues of conformational B-cell epitope are indicating in 
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yellow color.  (D) The R1, R2 and R3 are indicating the three different conformational 

epitope regions in the single chain of spike protein. The location of T-cell peptide 

epitopes corresponds to (E) MHC-I and (F) MHC-II.   The brown, pink, olive, green, 

red and orange color corresponds to the peptide associated with A*02 :01, A*24:02, 

B*40:01, B*58:01, DRB1*04:01 and DRB1*07:01 respectively.  

R2 and R3. It can be noted that in both closed and open state, all antibody binding 

regions (R1, R2 and R3) have extended anti-parallel β-sheet or β-barrel structure which 

is an important factor for antigenicity (Figure 5.1 D). The identification of CD8+ and 

CD4+ T-cell epitopes are known to be important for eliciting cell-mediated immunity 

or generation of memory B-cell against viral infections(Punt et al. 2019). Such peptide 

epitopes are generally presented by the Major Histocompatibility complex (MHC) -

class I & MHC-class II molecules expressed on the surface of helper T-cell 

(TH)(Agudelo and Patarroyo 2010; Punt et al. 2019).  We employed IEDB server to 

identify and validate the T-cell peptide epitopes of the S-protein of SARS-CoV-2 which 

can bind with MHC-I and MHC-II receptors. All MHC-I and MHC-II based epitope-

peptides obtained from IEDB T-cell epitope prediction tools. 

The T-cell epitope peptides with highest antigenicity and high affinity are listed 

in Table 5.1 and their location at the S-protein of SARS-CoV-2 is depicted in Figure 

5.1-E, F. The size of the peptides for MHC binding are found to vary from 8mer to 15 

mer. It is evident form Figure 5.1 that peptide epitope 781VFAQVKQIY789 

corresponding to MHC-I and 960NTLVKQLSSNFGA972 associated with MHC-II are 

located at the stem part of the S-protein. Unlikely, the epitope 567RDIADTTDAV576, 

76TKRFDNPVLPF86, 747VRFPNITNL754, (related to MHC-I) and 

116SLLIVNNATNVVIK129 (related to MHC-II) are found to be located at the surface 

i.e the receptor binding domain (RBD) of S-protein. The location of this peptides shares 

the binding domain of Angiotensin-converting enzyme 2 (ACE2) receptor which make 

them more interesting. These selected peptides are used to design multiepitope vaccine 

for cell mediated immunity.   
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5.3.2 Design of Multimeric Vaccine candidate 

The knowledge regarding the linear-epitope-conservation in necessary to design 

vaccines capable of inducing adaptive immune response for all coronavirus species.  To 

determine the conservation of selected epitopes multiple sequence alignment have been 

carried out and shown in Figure 5.2. It is found that all the epitopes considered here 

contain at least two conserved residues. Epitopes with three or more identical or similar 

residues are considered to be highly conserved. The conservation percentage was 

calculated by the following formulae 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑟 𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝐸𝑝𝑖𝑡𝑜𝑝𝑒
      (5.1) 

Among all the selected B-cell epitope in Table 5.1, 412PGQTGKI418(42%), 

745DSTECSN751 (42%),  805ILPDPSKPSKRS816 (41%),  808 DPSKPSKRSF 817 (30%), 

1057PHGVVFLHVTYVPA1070 (71%),  1245KGCCSCG1251(42%) are found to be highly 

conserved. In case of T-cell epitope, 116SLLIVNNATNVVIK129 (28%) 

781VFAQVKQIY785(44%), and 960NTLVKQLSSNFGA972 (76%) are highly conserved. 

It is evident from Figure 5.1-B and Figure 5.2 that most of the highly conserved B-cell 

epitopes are located at the stalk or shaft region of the S-protein except 412PGQTGKI418 

and 1057PHGVVFLHVTYVPA107. 
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Figure 5.2 Multiple Sequence alignment of the S-protein of different corona virus 

species. The highly conserved residues are marked in black and moderately conserved 

residues are shown in grey colour. The yellow and red highlights are showing the linear 

B-cell and T-cell epitopes.  

 

Similarly, in case of T-cell epitopes, highly conserved 116SLLIVNNATNVVIK129, 

781VFAQVKQIY785 epitopes are located at the shaft of S-protein. The rest of the 

epitopes are less conserved and mostly located at the RBD region of S-protein. This 

indicates that amino-acid composition of RDB of SARS-CoV-2 S-protein is different 

from other coronavirus species.  

Further, two separate vaccines have been designed from the epitopes predicted 

in Table 5.1, Vac-COVID-B and Vac-COVID-T from B-cell and T-cell respectively, 

which can be used as a combination for both humoral and cell-mediated immunity. The 

linear B-cell epitopes and T-cell epitopes are linked by GPGPG linker to avoid the 

formation of junctional epitope(Kar et al. 2020) and Cholera Toxin B (CTB) adjuvant 

linked by EAAAK linker for immune regulation. The total number of amino-acids of 

the vaccines are 133 and 111 amino acid (aa) long with molecular weight of 13.11 kDa 

and 11.4 kDa respectively. The 3D-models of the chimeric vaccine shown in Figure 

5.3 are predicted to be non-allergen by AllerTOP server(Dimitrov et al. 2014).  
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Figure 5.3. The tertiary structure of chimeric vaccines made of (A) B-cell linear 

epitopes (B) T-cell linear epitopes. The amino acid sequence of the corresponding 

vaccines is shown below. The Adjuvant is shown in red; the adjuvant linker is shown 

in green and the epitope linkers are indicated in blue.  

 

The structural quality of the vaccines is assessed by Z-score and Ramachandran plot 

(Appendix XXXVII). The Z-score of the vaccines made of B-cell and T-cell epitopes 

are -3.43 and -4.85 respectively which confirm the reliability of our model. 

Additionally, 95.42 % and 92.7% amino acid residues are found to be in the favored 

region in the Ramachandran plot. Further, the antigenicity of the linear B-cell and T-

cell epitopes and the multimeric vaccines have been assessed by VaxiJen (Gordon et 

al. 2020) webserver to confirm their ability to elicit protective immune response. The 

antigenicity scores of the liner epitopes obtained from VaxiJen webserver is 

documented in Table 5.2.  

Table 5.2 The antigenicity score of selected linear B-cell and T-cell peptides epitopes.  

B-cell Epitopes 

Method Start end Peptide Antigenicity 

score 

Emini Surface 

Acssibility 

808 817 DPSKPSKRSF 0.814 
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Parker 

Hydrophilicity 

601 607 GTNTSNQ 0.940 

745 751 DSTECSN 0.698 
Karplus & 

Schulz 

Flexibility 

    

B-epipred 180 186 EGKQGNF 1.933 

412 418 PGQTGKI 1.547 

675 687 QTQTNSPRRRARSV 0.530 

805 816 ILPDPSKPSKRS 0.532 
Kolaskar & 

Tongaonkar 

Antigenicity 

4 18 FLVLLPLVSSQCVNL 0.830 

1057 1070 PHGVVFLHVTYVPA 0.884 
Chou & 

Fasman 

Antigenicity 

600 606 PGTNTSN 0.917 

1245 1251 KGCCSCG 0.97 

T-cell Epitopes 

HLA-allele Start End Peptide  Antigenicity 

Score 

A*02:01 567 576 RDIADTTDAV  1.75 

A*24:02 76 86 TKRFDNPVLPF  1.305 

B*40:01 327 335 VRFPNITNL  1.114 

B*58:01 781 789 VFAQVKQIY 1.43 

DRB1*04:01 960 972 NTLVKQLSSNFGA 1.15 

DRB1*07:01 116 129 SLLIVNNATNVVIK 1.47 

 

It is evident from Table 5.2 that the antigenicity scores of all the linear epitopes are 

greater than the threshold value of 0.5 which indicates their antigenic nature and their 

ability to potentiate the immune memory against SARS-CoV2.  Additionally, the 

antigenicity of the two vaccines candidates is found to be 0.73 and 0.58 (score > 0.5 is 

considered to be antigenic). In order to validate the antigenicity of vaccine candidates, 

the combinations of the linear epitopes have been altered. It is found that the alteration 

of linear epitope combination changes the antigenic score by 0-1-0.4 which is 

insignificant in the context of antigenicity. This is because the antigenic prediction by 
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Vaxigen is trained on the known antigen types. The antigenic score only changes 

significantly when the amino acid sequence of the linear epitope changes. 

 It is evident from current literatures that vaccine size of 20-200 nm is most 

effective in terms of antigen processing and presentation by antigen presenting cells. 

These larger antigens are mostly carried by dendritic cells (DCs) to the lymphatic 

system and takes 24 hrs for the immune response (Manolova et al. 2008) . However, 

there are reports which suggest that vaccine size less than ~5 nm is efficient in terms of 

direct transportation through specialized small antigen conduits to the lymph node for 

quick (1 hr) immune response (Carrasco and Batista 2007; Singh 2021). Thus, the size 

of the subunit and chimeric vaccines designed in the current chapter may elicit immune 

response more efficiently by diffusing through tight lymphatic capillaries to lymphoid 

organs. 

 

5.3.2 Molecular Docking 

It will be interesting to study the interaction of the multi-epitope vaccines designed with 

the immune-cell receptor for eliciting stable immune response. We considered the 

structure of the humanized antibody (7BZ5) as immune receptor for B-cell epitope, 

where the antigen binding region of 7BZ5 is formed by a variable region of light chain 

(VL) and heavy chain (VH) (Appendix XXXVIII-A). The antigen binding pocket of 

the MHC-I molecule (2GTZ, 5WWJ, 6IEX, 5IM7) are formed by the interaction of α1 

and α2 domain of α-chain (Appendix XXXVIII-B) whereas; the antigen presenting 

domain of MHC-II (2SEB, 6BIY) molecules are formed by the association of α1 and 

β1 domains (Appendix XXXVIII-C). However, the peptide presenting platform is 

similar for both the MHC class-I and class-II molecules.  

The detailed interaction of the chimeric vaccine with the variable region of 

7BZ5 is depicted in Figure 5.4-A by molecular docking. The linear vaccine from B-

cell epitope exhibited twelve hydrogen bond interactions with the variable region of the 

antibody. The residues Gly38, Gly50, Glu 41, Gly76, Gly54, Thr56, Tyr32, Ser31 of 

Vac-COVID-B exhibited hydrogen bond with Ser56, Tyr58, Tyr52, Ser53, Tyr33, 

Tyr94 of VH and Tyr97, Ala99, Ile59 and Lys58 of VL respectively. The interaction of 

conformational epitopes with the 7BZ5 at the molecular level is depicted in Figure 5.4-
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B, C, D. The conformational epitope R1 (Arg 102, Ser98, Phe140 and Leu242) was 

found to make hydrogen bond with Tyr100, Tyr32, Tyr 33 and Tyr94 of the antibody 

molecule (Figure 5.4-B).  

 

 

Figure 5.4 The non-bonded interaction of the vaccines and conformational epitopes 

with the immune receptor. (A) The residues of the linear vaccine involved in the 

formation of hydrogen bond with 7BZ5. The vaccine is shown in blue colour. The 

interaction of (B) R1 (red), (C) R2 (green) and (D) R3 (brown)with the variable region 

of 7BZ5.  

Similarly, Gly28, Tyr32, Asn92, Tyr58, Tyr52, Tyr33 of 7BZ5 formed hydrogen bond 

with Tyr449, Ser494, Tyr453, Arg403, Asp405 and Lys417 of R2 (Figure 5.4-C). In 

addition, Tyr 94 of the antibody and Tyr 505 of R2 showed π-π interaction which is  
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Figure 5.5. The T-cell epitope peptide presented at the peptide presenting groove of 

(E) HLA-A*02:01, (F) HLA-A*24:01, (G) HLA-B*40:01, (H) HLA-B*58:01, (I) 
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DRB1*04:01, (J) DRB1*07:01. The interacting residues of the receptor is shown in 

violate color whereas the residues of vaccine or discontinuous epitope are marked in 

pink color.  

crucial for the antibody-epitope stabilization. In case of R3, no non-bonded interaction 

was found (Figure 5.4-D) except one π-π stacking interaction between Tyr 32 and 

Phe562. The T-cell peptide epitopes were also found to stabilized by the hydrogen bond 

formed with the peptide presenting groove of the MHC-receptors. The TCRs are known 

to recognize the antigens in pieces that are presented by MHC molecules(Punt et al. 

2019). Therefore, the interaction of full-length Vac-COVID-T with MHC molecules is 

scientifically not required.  The epitope 567RDIADTTDAV576 formed hydrogen bond 

with Thr80, Lys146, Trp147, Tyr116, Thr73, Arg97, Tyr7 and Glu63 of HLA-A*02:01 

(Figure 5.5-A).  76TKRFDNPVLPF86 is found to form hydrogen bond with Arg83, 

Asn77, Thr73, Ala69, Thr163, Lys146 and Trp147 of the HLA-A*24:02 peptide 

presenting pocket (Figure 5.5-B) and in case of HLA*40:01, Ala150, Tyr116, Asn114, 

Arg62, Glu58 and Trp167 were involved in hydrogen bond formation with the 

327VRFPNITNL335 peptide (Figure 5.5-C).  

The epitope 781VFAQVKQIY789 exhibited hydrogen bond with Ala139, Thr 143, 

Trp147, Tyr74, Tyr159 of HLA-B*58:01 (Figure 5.5-D). Further, the MHC-II based 

T-cell epitope 960NTLVKQLSSNFGA972, 116SLLIVNNATNVVIK129 were found to be 

involved in hydrogen bond with Phe48, His81, Gln70, Trp62 of DRB1*-04:01 (Figure 

5.5-E) and Arg71, Ser53 of DRB1*07:01 respectively (Figure 5.5-F).    

5.3.3 MD Simulation Study 

The docking predicted interaction of the vaccine-receptor complex in motion were 

assessed by all atom MD-simulation studies(Elcock et al. 2001; Lemkul and Bevan 

2010b; Nazar et al. 2020). In order to check the reproducibility of our MD results we 

carried out another set of simulation and provided in Supplementary 2 (Figure S20, 

S21) and 3 (Table S21). The time evolution of the RMSD, RMSF, Rg of B-cell linear 

vaccine and epitopes located at R1 R2, R3 region are illustrated in Figure 5.6.  The 

RMSD of the linear vaccine (Vac-COVID-B) was found to increased approximately 

0.7 nm up to initial 8 ns and remain stabilize till 40 ns. The RMSD fluctuation and rGyr 
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profile of Vac-COVID-B near 60-90 ns fluctuation indicate minor secondary structure 

modification of Vac-COVID-B during the course of simulation (Figure 5.6-A & B).  

 

Figure 5.6 (A) The RMSD profile of the chimeric vaccine (Vac-COVID-B) (B) The 

gyration radius (rGyr) profile of Vac-COVID-B throughout the simulation.  (C) The 

time evolution of RMSD of epitopes located at R1, R2 and R3. (D) The gyration radius 

of the conformational epitope located at R1, R2, R3. (E) The average number of 

hydrogen bond between the antibody and vaccine molecules.  
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The RMSF profile of the designed vaccine is shown in Appendix XXXIX. The residue 

stretches 39-48, 57-73 were found to highly fluctuate during the course of simulation 

due to the interaction with the antibody molecule. The RMSF value of the residues 

located at antigen binding domain of 7BZ5 are found to be less than 0.3 which helped 

the chimeric vaccine to get stabilized at the immune complex (Appendix XXXX). The 

average number of hydrogen bonds between the antibody and the vaccine is calculated 

to be 9 and remain intact throughout the simulation trajectory (Figure 5.6-E, Appendix 

XXXXI-A). The docking predicted residue pairs Gly54-Tyr97, Gly54-Tyr52, Thr56-

Tyr33 have hydrogen bond occupancy of 59.4 %, 13.7%, 11.3%. The highest hydrogen 

bond occupancy of 69.7%, is found between Tyr58 of the linear vaccine and Pro51 of 

7BZ5 which newly evolved during the course of simulation (Appendix XXXXII-A). 

The structural stability of the conformational epitopes located at R1, R2, R3 is assessed 

in Figure 5.6 C & D.  The RMSD and radius (rGyr) profile of the conformational 

epitope located at R1 and R3 is found to be stable; whereas that of R2 is highly unstable 

which indicates the conformational change of the epitope during the course of the 

simulation.  The C-terminal and the N-terminal end of all the epitopes have greater 

fluctuation due to solvent exposure (Appendix XXXIX-B, C, D). The average number 

of hydrogen bond between the epitope located at R1, R2, R3 are 2, 7 and 6 respectively. 

The docking predicted residues pairs were not found to make hydrogen bond during the 

course of simulation rather, the new hydrogen bonds evolved during the course of 

simulation with lesser hydrogen bond occupancy percentage for R1 (Appendix 

XXXXII-B). In case of R2, the docking predicted residue pair Asn92-Tyr453 showed 

highest hydrogen bond occupancy of 99.9% (Appendix XXXXII-C). The epitope 

located at R3, was found to make stable hydrogen bond with Asn32 and Asn92 with H-

bond occupancy of 55.9%, 51.6% respectively (Appendix XXXXII-D). The hydrogen 

profile of R1 is fluctuating compared to other conformational epitopes whereas the 

number of hydrogen bond is found to be increasing between the antibody and R3 with 

respect to simulation time to stabilize the immune complex (Appendix XXXXI -B, C, 

D). The conformational free energy landscape of the antibody and antigen binding is 

depicted in Appendix XXXXIII to confirm the adequate sampling of the immune 

complexes. The Solvent accessible surface and RMSD of the chimeric vaccine, B-cell 

conformational epitopes are considered as reaction coordinate. It is evident from FEL 
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graphs that, R1 is trapped in a deep minimum which indicates the single binding 

conformation throughout the simulation. In case of other antigens, two prominent 

binding conformations along with others are present which evolved during the course 

of simulation. 

 Further, the MD simulation of individual peptide epitopes with their 

corresponding HLA compounds have been carried out. The dynamic nature of the T-

cell epitopes with their respective HLA-complex are assessed in the Figure 5.7. The 

RMSD of the peptides correspond to MHC-I increased up ~ 20 ns and stabilized with 

an average value of 0.45 nm for the rest of the simulation (Figure 5.7-A). The peptide 

associated with MHC-II is found to stable for the last 30 ns of simulation (Figure 5.7-

B). Further, we calculated the time evolution of the distance between the peptide and 

the surface of the binding pocket of MHC molecules and showed in Appendix 

XXXXIV. The distance between the surface of the peptide epitope and the platform of 

antigen presenting domain was found to be stable throughout the simulation indicating 

that the peptides didn’t diffuse from the peptide presenting grooves. The solvent 

assessable surface area of the peptide epitopes is found to be stabilized with their initial 

value which confirms the constant solvent exposure at the peptide presenting groove 

(Appendix XXXXV). The peptide associated with HLA-B*40:01 and DRB1*04:01 is 

found to have less fluctuation in MHC-I and MHC-II based epitopes respectively. 

MHC-I based peptides mostly fluctuate at their N-terminal end whereas; MHC-II based 

peptides have higher fluctuation at the C-terminal end (Figure 5.7 C &D). The RMSF 

profile of the binding domain of MHC-I and MHC-II molecules are below 0.3 which 

helps to stabilize the peptide epitopes inside the peptide presenting pocket (Appendix 

XXXXVI).  The average number of hydrogen bond formed between MHC-I based 

TCRs T-cell epitopes are found to form 4, 8, 6, 7 respectively for the four alleles during 

100 ns simulation (Figure 3.7E).  It is evident from Appendix XXXXVII that number 

of hydrogen bonds were almost constant throughout the simulation time. Hydrogen 

bond occupancy of 41.2% is found between Ala5 and Thr73 of HLA-A*02:01- 

RDIADTTDAV complex (Appendix XXXXVIII -A). 
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Figure 5.7 The RMSD profile of the T-cell epitope peptides corresponding to (A) A*-

02:01, A*-24:02, B*-40:01 and B*-58:01. (B) DRB1*04:01, DRB1*07:01. The RMSF 

profile of (C) MHC-I and (D) MHC-II based peptide epitopes. (E) The average number 

of hydrogen bond formed between the peptide epitope and MHC molecules during the 

simulation.  

The residue pair Leu10-Trp147, Phe12-Tyr84 of HLA-A*24:02- TKRFDNPVLPF 

complex and Pro5-Tyr159, Arg3-Glu63 of HLA-B*40:01- VRFPNITNL have high 

hydrogen bond occupancy which stabilizes the peptide-ligand at the peptide presenting 

domain (Appendix XXXXVIII B, C).  The higher hydrogen bond occupancy of Gln8-
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Asn77 (87.8%), Tyr10-Tyr80 (89.9%) Tyr10-Thr143 (83.0%) residue pair stabilized 

the peptide VFAQVKQIY at the binding domain of HLA-B*58:01 (Appendix 

XXXXVIII -D). MHC-II based peptides epitope were found to have higher number of 

hydrogen bond due to their higher size (Figure 3.7-E). The residue pair Lys6-Asn82, 

Asn2-Ala52 showed hydrogen bond occupancy of 95.0%, 87.7% for the peptide 

associated with DRB1*04:01 whereas; Leu4-Asn82, Ser2-His81, Leu3-Ser53 of 

DRB1*07:01-peptide complex showed high hydrogen bond occupancy (Appendix 

XXXXVIII -E, F). This above-mentioned hydrogen bond between the T-cell epitope 

peptide and HLA-molecules stabilized the complex to transduce stable immune 

response against SRAS-CoV-2.  The free energy landscape of peptide epitope binding 

at the peptide presenting pocket of MHC molecules are shown in Appendix XXXXIX. 

It is evident that all the peptides crossed a higher free energy barrier and stabilized at 

deep minima at the higher RMSD values.  

Lastly, the dynamic stability of the designed chimeric vaccines at aqueous 

solvent were assessed by MD simulation studies (Appendix XXXXX). The time 

evolution of RMSD, radius of gyration and number of native hydrogen bonds were 

calculated to check their conformation in motion. The RMSD of both the vaccines were 

found to be converged with an average value of 0.6 nm. It is evident from the gyration 

radius profile (rGyr) of Vac-COVID-B that compactness of the protein is decreased and 

stabilized with an average value of 1.5 nm. The compactness of Vac-COVID-T is found 

to be constant throughout the simulation. It is evident from current literatures that 

vaccine size of 20-200 nm is most effective in terms of antigen processing and 

presentation by antigen presenting cells(Bachmann and Jennings 2010). These larger 

antigens are mostly carried by dendritic cells (DCs) to the lymphatic system and takes 

24 hrs for the immune response (Manolova et al. 2008) . However, there are reports 

which suggest that vaccine size less than ~5 nm is efficient in terms of direct 

transportation through specialized small antigen conduits to the lymph node for quick 

(1 hr) immune response (Carrasco and Batista 2007; Singh 2021). Thus, the size of the 

subunit and chimeric vaccines designed in the current chapter may elicit immune 

response more efficiently by diffusing through tight lymphatic capillaries to lymphoid 

organs. Further, the number of native hydrogen bond is found to be constant throughout 
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the simulation trajectory which indicates the conformation stability of the vaccines in 

polar solvent.  

5.3.4 Free energy calculation by MM/PBSA approach 

The free energy of binding (ΔGbind) is believed to be an important thermodynamic 

quantity to assess the favourable protein-protein interaction as well as their affinity for 

accurate modelling of biological systems.  In this regard, we calculated the binding free 

energy of the epitopes at the binding domain of immune cell receptors in implicit 

solvent model by end-point free energy method such as MM/PBSA(Kumari et al. 

2014b) and summarized in Table 5.3.  The designed linear vaccine showed remarkable 

high binding affinity of -453.59 kJ/mol with the variable region of 7BZ5 which 

confirms thermodynamically stability of the complex. The ΔGelec term (-469.00 kJ/mol) 

between the residues of vaccine and humanized antibody found to have important 

contribution towards the stability of the complex (Table 5.3). The affinity of the epitope 

located at R1, is lowest compared to other discontinuous epitopes due to favourable 

van-der-Waals energy (-198.54 kJ/mol).  The lower affinity of R2 and R3 is due to 

higher ΔGsol penalty and positive electrostatic interactions respectively. It is found that 

both the MHC-II based peptides 960NTLVKQLSSNFGA972 and 

116SLLIVNNATNVVIK129 exhibit lowest binding energy of -493.66 kJ/mol and -

538.71 kJ/mol respectively. Among the MHC-I peptide epitopes, 76TKRFDNPVLPF86 

associated with HLA-A*24:02 have lowest binding energy of -430.3 kJ/mol. All the 

peptide epitopes related to MHC-molecules have considerably low Gibbs free energy 

indicating stable epitope-TCR complex. It is evident that the electrostatic and van-der-

Waals free energy terms of T-cell peptide epitopes are crucial for their stability. The 

hydrogen bond observed during our MD study is mainly responsible for favourable 

electrostatic energy contribution which is dominating the positive solvation free energy 

term for the stable interaction of the epitopes at the immune cell receptors.  

Further, we calculated the free energy contribution of residues located at the 

antigen binding domain of immune cell receptors (Appendix XXXXXI and Appendix 

XXXXXII). The docking predicted residues and residues with higher hydrogen bond 

occupancy percentage was found to contribute lower energies which stabilize the 

immune complexes. In case of chimeric vaccine (Vac-COVID-B), Ile 51 of VH and Pro 
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51 of VL has maximum free energy contribution. The amino acid residues with benzene 

ring (Phe 27, Tyr 32, Tyr 33, Tyr 58, Tyr 94, Tyr 100) have higher energy contribution 

due to stacking interactions (Appendix XXXXXI). In case of T-cell epitopes, the 

hydrophilic or polar amino acids located at peptide presenting groove have higher 

contribution to stabilize the peptide epitopes (Appendix XXXXXII). 

Table 5.3. Binding affinities (kJ/mol) of the vaccines towards the immune cell 

receptors by MM/PBSA method. The ΔGelec, ΔGvdw, ΔGsol, and ΔGSASA are indicating 

the electrostatic, van der Waals, polar solvation, solvent accessible surface energies 

respectively 

Immune 

Receptor 

Complexes ΔGvdw ΔGelec ΔGsol ΔGSASA ΔGbind 

Antibody Ab-VAC-COVID B -145.07 -469.00 345.5 -158.02 -

453.59 

Ab- R1 -198.54 -80.89 73.3 -12.27 -218.4 

Ab-R2 -111.79 -41.15 103.12 -28.95 -78.77 

Ab-R3 -75.258 27.69 37.84 -8.76 -18.52 

TCR 

(MHC-I) 

HLA-A*-02:01-

RDIADTTDAV 

-199.89 -365.33 367.24 -27.98 -

225.95 

HLA-A*-24:02-

TKRFDNPVLPF 

-340.64 -826.49 779.80 -43.00 -430.3 

HLA-B*-40:01- 

VRFPNITNL 

-328.14 -528.54 602.63 -40.70 -

294.76 

HLA-B*-58:01-

VFAQVKQIY 

-176.52 -384.67 368.43 -20.62 -213. 

39 

TCR-

(MHC-II) 

HLA-DRB1*04:01- 

NTLVKQLSSNFGA 

-272.99 -652.81 463.34 -31.19 -

493.66 

HLA-DRB1*07:01- 

SLLIVNNATNVVIK 

-339.73 -608.54 450.9 -41.33 -

538.71 

5.3.5 In-silico Design of Recombinant Plasmid 

In order to design a recombinant .plasmid, we back translated the protein sequences of 

the vaccines and optimized the codons(Grote et al. 2005) (Figure S) in E.Coli system 

for successful expression of linear B-cell (Vac-COVID-B) and T-cell (Vac-COVID-T) 
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vaccines proposed in our immunoinformatic study.  The size of c-DNA sequences of 

the vaccines made from linear B-cell, T-cell epitopes are 399 base pair (bp) and 333 bp 

long respectively. The codon adaptation index (CAI) value for both the vaccines were 

computed to be 1.0 and the percentage of GC content for Vac-COVID-B, Vac-COVID-

T are 60.65%, 56.75% respectively which are in the permissible range(Sharp and Li 

1987) and hence confirmed their proficient expression in E-coli K-12 strain. Finally, 

the c-DNA sequences of the vaccines were inserted computationally at the multiple 

cloning site (MCS) of pUC-19 plasmid vector.  The restriction map of the recombinant 

vector is shown in Figure 5.8. 

 

Figure 5.8 Restriction cloning of pUC19 vector. The red and blue coloured portion 

indicates the codons for the B-cell, T-cell linear vaccine respectively, inserted in pUC19 

vector. The rest of the vector part is represented in black colour.   

5.4 CONCLUSION 

To conclude, in the present chapter we tried to design vaccine based on B-cell and T-

cell epitopes present in spike glycoprotein of highly infective SARS-CoV-2. With the 

help of immunoinformatic studies, we identified the most promising epitopes which are 
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found to be scattered on the RBD and shaft region of the spike protein. The epitopes 

located in the shaft region are highly conserved. The hotspot residues that are 

considered as key to the antigenicity are mostly found to be polar in nature which 

contribute to stable electrostatic interaction with respective immune receptors. Docking 

calculations showed the major interaction between the immune-receptor complexes 

were hydrogen bond and π-π stacking interactions which were found to contribute 

maximum in the stability, as evident from free energy decomposition studies. The 

hydrogen bond evolved during MD simulation studies between the antigen and 

receptors was found to be main contributor of the electrostatic energy. Vaccine 

designed from linear B-cell epitopes were found to exhibit higher number of hydrogen 

bonds at the binding domain of antibody compared to the conformational epitopes. All 

peptide epitopes corresponding to MHC-I & MHC-II showed remarkable stability due 

to the van der Waals and the electrostatic energy terms. The present article therefore 

provides deeper biophysical insights towards the stabilization of predicted vaccine 

candidates with immune cell receptors which will be helpful in further experimental 

design of potential vaccine against SARS-CoV-2. 
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CHAPTER 6 

EXPLORING THE BARRIERS IN THE AGGREGATION OF 

HEXADECAMERIC HUMAN PRION PEPTIDE THROUGH MARKOV STATE 

MODEL  

Abstract: The pre-fibrillar aggregation kinetics of the prion peptides are still an 

enigma. In this perspective, we employ atomistic MD simulations of the shortest human 

prion peptide (HPP) (127 GYMLGS 132) at various temperatures and peptide 

concentrations and apply the Markov state model to find out the various intermediates 

and lag phases. Our results reveal that the natural mechanism of prion-peptide self-

assembly in the aqueous phase is impeded by two significant kinetic barriers with the 

oligomer size of 6-9 and 12-13 peptides, respectively. The first one is the aggregation 

of unstructured lower-order oligomers, and the second is fibril nucleation that impedes 

the further growth of prion aggregates. Among these two activation barriers, the second 

one is found to be dominant irrespective of increment in temperature and peptide 

concentration. These lag phases are captured in all three different force field 

parameters namely GROMOS-54a7, AMBER-99SB-ILDN, and CHARMMS 36m at 

different concentrations. GROMOS-54a7 and AMBER99SB-ILDN force fields showed 

a comparatively higher percentage of β-sheet formation in the metastable aggregate 

that evolved during the aggregation process. In contrast, the CHARMM-36m forcefield 

showed mostly coil or turn conformation. The addition of a novel catecholamine 

derivative (NQDA) arrests the aggregation process between the lag phases by 

increasing the activation barrier for the Lag1 and Lag2 phases in all the force fields 

which further validates the existence of these lag phases. The preferential binding of 

NQDA with the peptides increases the hydration of peptides and eventually disrupts the 

organized morphology of pre-fibrillar aggregates. It reduces the dimer dissociation 

energy by -24.34 kJ/mol. 

 

Keywords.  Prion-peptide aggregation; kinetic barriers; critical nucleus; rate-limiting 

stage; naphthoquinone dopamine   
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6.1. BACKGROUNG 

Prion diseases or transmissible spongiform encephalopathies (TSE) are the most recent 

classes of fatal neurodegenerative disorders associated with the deposition of fibrillar, 

infectious protein plaques in the mammalian brain (Carrell and Lomas 1997; Collinge 

2001; Horiuchi and Caughey 1999; Jucker and Walker 2013; Prusiner 1998). The 

precipitation of such misfolded protein or peptide aggregates gives rise to astrocytosis, 

synaptic loss, gliosis, progressive dementia, and consequently death within one year of 

the disease onset(Clinton et al. 1993; Fraser 1993; Gajdusek et al. 1966; Jeffrey et al. 

1994).  Two significant mechanisms are proposed for prion diseases: genetic (familial) 

or spontaneous (sporadic). Moreover, infectious prion particles are also reported to 

transmit from one mammalian body to another. Thus, investigating the molecular 

mechanisms and effective cure strategy for such severe diseases is an ongoing area of 

research. Despite significant progress in elucidating the structure and dynamic 

properties of mature fibrillar aggregates, little is understood about the origin of 

pathogenicity corresponding to prion disease.   

In general, misfolded proteins or peptides are known to be aggregated by two 

models: (A) “template assembly” or “isodesmic” polymerization and (B) “nucleation 

polymerization.” In the template model, the misfolded protein or a peptide aggregate 

acts as a template for the aggregation process and converts normal cellular protein to 

misfolded form (Bemporad and Chiti 2012; Griffith 1967; Oosawa and Kasai 1962). 

Such nucleation is also called secondary nucleation (Michaels et al. 2018). Here the 

free energy for the nucleation is decreased by the use of template or the seeds. In the 

“nucleation polymerization” or the primary nucleation process,  aggregation accelerates 

after the formation of a stable intermediate, known as the “critical nucleus”(Bishop and 

Ferrone 1984; Chakraborty and Patey 2013; Ferrone 1999; Jarrett and Lansbury 1993; 

Yamamoto et al. 2018).  The critical nucleus's formation is therefore considered the 

primary stable energy state(Ferrone 1999). A new model has also been proposed where 

converting an amorphous nucleus to its ordered form is said to be the rate-determining 

step that accelerates further growth (Lomakin et al. 1996; Serio et al. 2000). Various 

experimental and computational studies show that the addition of a critical nucleus in a 

peptide polymerization reaction significantly reduces the nucleation lag phase of 
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peptide aggregation (Arosio et al. 2015; Dear et al. 2020; Luiken and Bolhuis 2015; 

Smit et al. 2017; Törnquist et al. 2018). Hence, the thermodynamics and energetics of 

the critical nuclei or fibril nucleation at the early aggregation stage are important to 

formulate strategies to decelerate the initial assembly. It is reported earlier that the 

formation of mature or organized aggregates is the principal cause of 

neurotoxicity(Hardy and Allsop 1991; Pike et al. 1991). However, recent evidence 

supports the fact that peptide conglomerates at the early aggregation stage are the main 

causative agents which damage the membrane fluidity of the neuronal cells. Therefore, 

studying the molecular events during the formation of a critical nucleus is of great 

interest and would eventually pave the path to designing drugs that can inhibit the 

aggregation process in the nucleation phase.  

Experimental characterization of the factors affecting the structural and 

energetic requirements for the critical nucleus formation is not available till date due to 

the peptide’s random polymeric distribution in solution(Burra et al. 2021). Hence, 

atomistic MD simulations can bridge the gap by overcoming the practical difficulties 

of the experimental setup and are used as an important tool to understand the transient 

nucleation phase in atomic resolution(Carballo-Pacheco and Strodel 2016). The main 

challenges in simulating the aggregation process of peptides in atomic resolution are 

associated with computationally expensive simulation time scale and its complexity. 

Despite the considerable progress in characterizing the pre-fibrillar aggregates for other 

neurodegenerative diseases, (Carballo-Pacheco and Strodel 2016) such as Alzheimer’s, 

and Huntington’s disease, the nucleation process for the prion peptide remains an 

unsolved topic. Recently, the crystal structure of human-prion protein revealed an 

important motif (127-GYMLGS-132)  which has a high propensity to form a two-stranded 

anti-parallel β-sheet and is believed to be the initiation point of prion disease(Yu et al. 

2015a). Although the aggregation of steric zipper-forming small peptides was 

previously reported, the pre-fibrillar events related to human prion peptides are far from 

reaching consensus. A recent study showed the formation of five different types of 

intermediates during the formation of the steric zipper conformation of this motif. 

Therefore, studying the aggregation process of this motif can serve as a good template 

for understanding the lag phases and the energetics of the prion aggregation (van der 

Wel et al. 2007).  
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In the present chapter, sub-microsecond all-atom MD simulation techniques 

have been employed to probe the formation of the critical nucleus or the rate-

determining nucleation steps that lead to the formation of the pre-fibrillar aggregates of 

human prion peptide (127-GYMLGS-132) by varying the temperature, concentration of 

the peptides, and addition of NQDA. Changing conditions such as temperature and 

concentrations helped to accelerate the aggregation process while the use of small 

molecule inhibitor helped to retard the aggregation process. Different structural and 

dynamic properties of peptides were analysed to reveal the underlying mechanism of 

peptide aggregation in pure water in the presence of inhibitor molecules. The 

aggregation process has been studied for three different force field parameters, namely 

GROMOS-54a7, AMBER-99SB-ILDN, and CHARMM-36m to understand how the 

peptide-peptide and peptide-water interaction forces can modify the aggregation 

process. We also employed simulation studies with a potential inhibitor, 

naphthoquinone dopamine (NQDA) to confirm the lag phases and the kinetics. NQDA 

showed success in disintegrating the toxic aggregates of IDPs. Since amyloid disease 

and prion diseases are cross-related, NQDA can be a potential drug for disassembling 

the lower-order oligomers of prion peptides. Moreover, targeting the metastable 

oligomers formed during the aggregation Lag phases can be an alternative way to stop 

abnormal prion aggregation.  

6.2. COMPUTATIONAL DETAILS 

6.2.1 Procedure for System Setup: 

The 3D crystal structure of the human prion peptide segment 127GYLMGS132 (PDB ID: 

4WBU, 1.15 Å) was obtained from the x-ray diffraction model provided by Yu et al. 

(Yu et al. 2015b). The monomeric structure of the peptide was made by deleting the 

extra peptide chain and the crystal water molecules. The aggregation propensity is 

known to be dependent on the monomer conformation. Therefore, the conformation of 

the peptide was initially assessed by simulating the monomeric state. The peptide 

monomers were sampled in the aqueous solution within a cubic box having a buffer 

space of 1.5 nm from the edge of the peptide. Further, two different simulation systems 

were prepared. The first setup was done to observe the effect of temperature and peptide 
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concentration on the oligomer formation during the aggregation of the hexadecameric 

peptide system. The peptide conformations obtained from the of monomer simulations. 

were randomly inserted in the simulation box with different initial velocities the by 

PACKMOL(Martínez et al. 2009) utility. To minimize the biasness of the peptides to 

aggregate, the inter-peptide distance of 2 nm was maintained in the starting coordinates 

of all the simulations. The peptide concentrations were maintained by varying the box 

length and water molecules while the number of peptides remained constant in all the 

systems. The second setup was done to explore the effect of dopamine-based small 

molecules i.e., naphthoquinone dopamine (NQDA), on the hexadecameric nucleation 

of prion peptide. The simulation setup for peptide+ inhibitor systems was like the 

control one, except for the random addition of required NQDA molecules in the cubic 

box at 1:2 molar ratio. Furthermore, the fibril formation propensity of the peptides was 

assessed by the atomistic simulation of mini-fibrils. The initial structure for the mini-

fibril simulation was constructed by modelling sixteen peptides in a steric-zipper 

arrangement. Primarily, the monomers were translated at the x-direction by maintaining 

an inter-peptide distance of 0.48 nm to make a β-sheet layer which is mutually 

antiparallel.  the two layers of β-sheet are obtained by translating one layer to their 

parallel manner with an inter-layer distance of 1.012 nm. The step-by-step construction 

of the mini-fibril is illustrated in Figure S25. In total we carried out 29 different types 

of simulations to elucidate the dynamism in the early stages of prion peptide 

aggregation. The detail of the simulation system is shown in Table 6.1. 

6.2.2 MD protocol: 

The MD simulation of all the system mention in  Section 2.1 was carried out using the 

GROMACS-2018.4 package(Abraham et al. 2015b) with the combination of three 

force field such as GROMOS-54a7 force field (Man et al. 2019b; Schmid et al. 2011b), 

AMBER99SB-ILDN(Lindorff-Larsen et al. 2010b) and CHARMM-36m (Huang et al. 

2017a) which were known to reproduce the spatial and temporal resolution of 

aggregation prone peptides to assess their motions . It is reported in the literature that 

the group of GROMOS force-fields favours beta-sheet formation in a nano-second time 

scale which helps to study the pre-fibrillar aggregation of prion peptides(Best et al. 

2008b; Huang et al. 2011). Therefore, the usage of three different force-filed is essential 
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to assess the similarity or dissimilarity in the formation of the oligomers during 

aggregation process. The geometry of the small molecule inhibitor (NQDA) was 

optimized by Gaussian 09 software(Frisch et al. 2009) at B3LYP/6-31G (d, p) 

level(Sarkar et al. 2019), and the topology, force-field parameters of the inhibitor were 

generated using PRODRG 2.5 server(Schüttelkopf and van Aalten 2004), 

CGenFF(Vanommeslaeghe et al. 2010) and ACEPYPE(Sousa da Silva and Vranken 

2012b). The partial charges obtained from DFT calculation are replaced by the charges 

obtained from the abovementioned web-servers. 

Table 6.1 Summary of the Simulated Systems. The simulations done in GROMOS, 

AMBER, CHARMM are designated as G, A, C respectively. 

System 

No. 

Temperature(K) CPep 

(mM) 

NPep NInv NW Box 

Length 

(nm) 

Simulation 

time (ns) 

GM 300 - 1 - 3100 4.56 (200) *5 

AM 300 - 1 - 3093 4.56 (200) *5 

CM 300 - 1 - 3127 4.56 (200) *5 

G1 300 10 16 0 88203 13.95 (300) * 2 

G2 350 10 16 0 88203 13.95 (300) * 2 

G3 375 10 16 0 88203 13.95 (300) *2 

G4 300 20 16 0 42659 10.99 (300) * 2 

G5 300 50 16 0 16505 7.99 (300) * 2 

G6 300 10 16 33 

(1:2) 

NQDA 

87712 13.95 (300) *2 

G7 350 10 16 33(1:2) 

NQDA 

87712 13.95 (300) *2 

G8 300 20 16 32 

(1:2) 

NQDA 

42186 10.99 (300) *2 

G9 375 10 16 32 

(1:2) 

NQDA 

88203 13.95 (300) *2 

G10 300 19.21 20 0 56039 12.0 200 

G11 300 20 26 0 71094 13.0 200 

G12 300 22.72 30 0 70949 13.0 200 

G13 300 50 52 0 55171 12.0 (250) *2 



173 
 

G14 300 - 2 0 1319 3.5 (1000) *2 

G15 300 - 2 4 (1:2) 

NQDA 

1184 3.5 (1000) *2 

A1 300 25 16 0 28930 9.6 300 

A2 320 25 16 0 28930 9.6 300 

A3 330 25 16 0 28930 9.6 300 

A4 300 25 16 0 34226 10.15 300 

A5 300 40 16 0 21118 8.67 300 

A6 300 50 16 0 16444 7.99 300 

A7 300 30 16 32 

(1:2) 

NQDA 

28447 9.6 300 

C1 300 45 16 0 18606 8.26 300 

C2 320 45 16 0 18606 8.26 300 

C3 330 45 16 0 18606 8.26 300 

C4 300 30 16 0 28930 9.59 300 

C5 300 40 16 0 21117 8.63 300 

C6 300 50 16 0 16443 7.98 300 

C7 300 50 16 32 

(1:2) 

NQDA 

15977 7.97 300 

GF 300 95.04 16 0 8614 6.53 300 

AF 300 95.04 16 0 8570 6.53 300 

CF 300 95.04 16 0 8564 6.53 300 

The subscript M and F indicates monomer and fibril simulation respectively. 'Cpep, Npep, 

NInv, NW indicate the concentration of peptide and number of peptide monomers, 

inhibitor respectively. The number after * indicates the number of simulation replicas 

carried out for each system.  

SPC/E water molecules(Mark and Nilsson 2001c) were used to solvate the prion 

peptide systems due to their excellent compatibility with the GROMOS force 

field(Moučka et al. 2013). Recent reports support that the modelling of protein-drug, 

protein-protein, and protein-membrane interactions in the aqueous environment gives 

a better correlation with experimental conditions when the SPC/E water model is 
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chosen for the GROMOS force field(Lima et al. 2019; Moučka et al. 2013) . In case of 

AMBER-99SB-ILDN and CHARMM-36m TIP3P water model was used. To remove 

bad contacts between solute-solute and solute-solvent molecules, all the systems 

underwent a 10,000-step energy minimization using the steepest descent 

algorithm(Jaidhan et al. 2014). The Leapfrog algorithm(Van Gunsteren and Berendsen 

1988) was used to integrate the equation of motions with a time step of 2 fs.  LINCS 

algorithm(Hess et al. 1997b) was applied to constrain all the bonds in the peptide 

molecule, and SETTLE algorithm(Miyamoto and Kollman 1992b) was employed to 

constrain the geometry of water molecules. The system’s temperature was gradually 

heated from 0K to the required temperature limit for 500ps in canonical ensemble 

(NVT) and further equilibrated up to 5ns. Then the system condition was changed from 

constant volume to isothermal-isobaric ensemble at 1 atm pressure. In this condition, 

the cell volume is allowed to fluctuate isotropically to reach the appropriate density for 

10 ns. The thermodynamic equilibrium of the systems was ensured by calculating the 

temperature, density, and the potential energy of the systems during the 10 ns NPT 

ensemble and depicted in Appendix XXXXXIII. During equilibration simulations, the 

heavy atoms of the solutes were restrained by applying external force (force constant 

1000 kJ/mol/nm2). Next, the restraints were removed from solutes, and production 

simulations were carried out in an NPT ensemble for 300 ns. Short-range electrostatic 

and van der Waals interactions cut-off were set to 1.4 nm. The Particle Mesh Ewald 

method(Shamshirgar et al. 2017) was used to calculate the long-range electrostatic 

interactions. The temperature and pressure of the system were maintained by employing 

Velocity rescale (Bussi et al. 2007b)(τt=0.1ps) and Parrinello-Rahman coupling 

algorithm(Parrinello and Rahman 1981b) (τp=2 ps). The coordinates were saved at 

every 100 ps and were considered for analysis, and VMD was used for visualization 

purposes. Taken together, the current article provides the analysis of 9.6 μs trajectory 

data in the production simulation phase.  

6.2.3 Umbrella Sampling: 

Lastly, to assess the stability of the smallest aggregate, i.e., dimer in the presence or 

absence of NQDA, we employed the umbrella sampling method(Kästner 2011b) and 

calculated the potential of mean force (PMF) for dimer dissociation. The dimers formed 
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in the peptide aggregation simulations (with or without NQDA) were taken as the 

starting configuration for umbrella sampling simulations. The distance between the 

peptide's centre of mass (COM) was considered the reaction coordinate (RC) for 

plotting the PMF. The relative distance between the monomers is known to govern the 

aggregation and non-bonded interactions; thus, the RC mentioned above can be 

considered a suitable measure to determine the energy barrier for the dissociation 

process(Lemkul and Bevan 2010c). The rate of pulling or pulling velocity for the 

dissociating peptide was assigned to 0.007 nm/ns. The entire pulling simulation was 

divided into symmetric windows with a distance interval of 0.1 nm between the COM 

of the peptides.  A production simulation of 100 ns was carried out after 5 ns 

equilibration in each window. The unbiased PMFs were then reconstructed by 

Weighted Histogram Analysis Method (WHAM)(Kumar et al. 1992b; Meng and Roux 

2015). The histograms related to each umbrella window are presented in Appendix 

XXXXXIV to ensure the overlap between the adjacent windows. 

6.3. RESULTS AND DISCUSSION 

The present study focuses on the dynamics related to the pre-fibrillar aggregation and 

the aggregation lag phases of the shortest fibrillogenic human prion peptide. The Lag 

phases can be defined as the rate-determining steps or the slowest steps that are crucial 

for the aggregation process. This involves metastable aggregation stages that take a 

longer time to achieve some favourable conformations during the successive addition 

of monomers or lower-order peptide clusters (dimer to tetramer) in the self-assembly 

process. The influence of different system parameters such as (i) temperature, (ii) 

peptide concentration, and the effect of dopamine-based inhibitor molecule 

(NQDA)was studied. The addition of NQDA in the prion peptide aggregation process 

will help us to study the rate-determining steps or the major aggregation barrier that 

affects the aggregation process. Further, the influence of atomistic force fields on pre-

fibrillar amyloidosis pathways of prion peptides was carried out to check different 

oligomeric intermediates. In the subsequent sections, we first explored the 

conformations of the monomers to understand the propensity of the aggregation in each 

force field and further move forward to study the oligomerization of HPPs. 
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6.3.1 Conformational states of monomer and influence of force fields: 

The distribution of torsion angles (φ and ψ) corresponding to each residue were 

calculated and plotted into two-dimensional distribution graphs and presented in 

Appendix XXXXXV The distribution of these two conformational degrees of freedom 

(φ/ ψ) related to the terminal (Gly-127, Gly-131, and Ser-132) and middle residues 

(Tyr-128, Met-129, and Leu-130) were separately plotted for understanding the 

conformations of prion peptide monomers in three different force fields. It is believed 

that the φ/ ψ values between -180º, -100º /-0º, 45º related to alpha helix; the φ/ ψ values 

populated at -121º/+128 or -66º/137º correspond to beta-sheet and the torsion angles 

related to random coils -50º/-40º or -120º/130º (Hovmöller et al. 2002). Additionally, 

the distribution of φ/ ψ angle related to any residue parallel to the diagonal (ψ=-φ) is 

believed to be in the unstructured state. It is evident from Appendix XXXXXV that the 

terminal residue Ser and middle residues such as Tyr, Met, and Leu have less 

probability of forming alpha-helix in the GROMOS-54a7 force field compared to the 

other two force fields. In contrast, all the force fields showed adequate distribution of 

torsional angles corresponding to the beta-sheet region for middle residues and Ser. It 

can be noted here that the distribution of torsion angles of prion peptide residues is more 

parallel to the ψ=-φ line in the case of the CHARMM-36m force field (Appendix 

XXXXXV-B). Therefore, the CHARMM-36m force-field has more propensity to 

sample random coil or twisted structures of human prion peptide compared to the other 

two force-fields considered herein. Further to have more insights into the transition of 

monomeric conformations in three different force fields, we carried out Markov State 

modelling. First, the sample densities from five independent simulations (each of 200 

ns) have been plotted to describe the transition between discretized meta-stable states. 

It can be found that the number of basins in the case of GROMOS is less compared to 

the other two force-fields. However, in the case of AMBER force field, the basins are 

well separated in sample space. Further for constructing MSM, best-suited feature or 

variable was selected by calculating VAMP-2 scores (variational approaches towards 

Markov processes). It is evident from Appendix XXXXXVI that backbone torsion 

angles (φ/ ψ) have more advantage in preserving the kinetic variance. Further K-means 

clustering and implied time scale (ITs) plots were performed on the selected feature to 

build MSM with optimum lag time (τ). It can be found in Appendix XXXXXVII that 
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the lag time of 2.0 ns is efficient in building MSM with five microstates for GROMOS-

54a7, and six microstates for AMBER-99SB-ILDN and CHARMM-36m force field 

due to the convergence of ITs at this lag time. Apart from the convergence of ITs, the 

goodness of the model was validated by the CK (Chapman-Kolmogorov) test depicted 

in Appendix XXXXXVIII-XXXXXX.  

 

Figure 6.1. The free energy landscape of the prion peptide monomer based on the φ/ ψ 

angles in (A) GROMOS-54a7, (B) AMBER99SB-ILDN, and (C) CHARMM-36m 

force field. The population of different conformational states on the free energy 

landscapes of prion peptide correspond to (D, E, F) three different force-filed. The 

different colors have been used for the discretization of microstates. (G, H, I) The 

transition network (TN) of the prion monomer using φ/ ψ angles as descriptors.  
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The MSMs are represented as networks where nodes correspond to the population of 

discrete peptide conformers and edges represent the transitions respectively. It can be 

found from Figure 6.1-G that the State5 (74.88% population) in the GROMOS-54a7 

force field is attractive compared to other states due to the inflow of peptide 

conformations from states 1, 2, and 3. The representative structure of each microstate 

and corresponding contact maps are shown in Appendix XXXXXXI. The intra-peptide 

residues are said to be in contact if the distance between them falls below 0.45 nm. It 

can be found that inter residue contacts in state 5 are parallel to the diagonal which 

indicates the extended state of the peptide favourable for making β-sheet in the presence 

of other copies of the peptides. Unlikely, the other two force-fields found to sample 3 

to 4 different states with higher population of different peptide conformations. In the 

case of AMBER99SB-ILDN state 1, 5, 6, and 7 are found to be highly populated. In 

state 1 (population 32%) the peptide structure is found to adopt the hairpin type of 

structure with higher contact probability between Y128, M129 and G131 (Appendix 

XXXXXXII). Similarly in state 5, the higher contact between G127 and M129 is found 

which leads to turn peptide conformation. In states 6 and 7 the peptide is found to be in 

the extended state.  Therefore, the AMBER force-field has the propensity to sample 

both twisted and extended state of prion peptide. In case of CHARMM-36m forcefield 

Y128, L130, M129, S132 (state 5) contacts and G127, Y128, L129, G130 (state 6) 

contacts are higher which stabilizes the peptide in twisted conformation (Appendix 

XXXXXXIII). It can be found that the CHARMM-36m force field yields high intra-

peptide side chain interactions compared to the other two force-fields. Furthermore, the 

diffusion coefficient of the peptide monomers was calculated (Appendix 

XXXXXXIV) and the prion peptides are found to be highly diffusive in case of 

CHARMM force-field which may hinder the formation of higher oligomers during the 

self-assembly process.  

6.3.2 Aggregate Size Distribution and Effect of NQDA in three different force-

fields: 

To quantitively identify the intermediates of prion peptide aggregation, the time 

evolution of the largest aggregate size is monitored throughout the simulation time scale 

(Figure 6.2). A cluster or aggregate is said to be formed if the distance between the Cα 
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of two peptide copies is within 0.8 nm The graphs in Figure 6.2 illustrate the 

spontaneous formation of dimer or lower-order intermediates (dimer to tetramer) at the 

initial aggregation phase in all the three force-fields. It can be noted that such lower-

order aggregates are readily formed and do not depend much on the variation of 

temperature and peptide concentration.  Nevertheless, the peptide self-assembly 

process is found to be lagged in two long-lived oligomeric states in all the force-fields. 

Multiple associations and dissociation events between the peptides are found during 

each lag phase in all temperatures and peptide concentrations. This indicates the 

reordering of the largest oligomeric aggregate during the two lags to attain the stable 

stage before further nucleation. The addition of peptides to higher oligomers occurred 

initially by sidechain interaction and later they conformationally evolved by mainchain 

or backbone interaction. It can be seen in Appendix XXXXXXV that initially the side 

chain contacts increased and the gradually main chain contact happened. In the case of 

the GROMOS-54a7 force field, no dissociation events are found after reaching the final 

aggregation state (16 peptides in one cluster) except 375K (Figure 6.2-A, B). However, 

in case of AMBER-99SB (Figure 6.2-C, D) and CHARMM-36m (Figure 6.2-E, F) 

force-field the dissociation events are comparatively higher at higher oligomeric state 

in all temperatures as well as peptide concentration due to enhanced reordering of 

peptides within the cluster. It can be observed that the prion peptides are fully 

aggregated at lower concentration (20 mM at 300 K) for GROMOS-54a7 force field 

compared to the AMBER (30 mM, 300 K) which is again lower than CHARMM force 

field (50 mM, 300 K). This is due to the change in the intra-peptide and peptide-water 

interactions in different force-fields. In GROMOS, the peptide-peptide interactions are 

found to be more compared to the other two force fields (Samantray et al. 2020). This 

observation depicts that change in force-fields can elicit different pathways of peptide 

aggregation. 

Firstly, the aggregation process is found to undergo a short lag phase (Lag 1) 

with an aggregate of 7-9 peptides in the GROMOS-54a7 force-field (Figure 6.2-A, B). 

In AMBER-99SB-ILDN and CHARMM-36m forcefields the aggregates size 

corresponds to Lag1 is found to ocellate between 5-7 peptides and 6-8 peptides 

respectively. This state can be compared with the peptide-rich disordered phase that are 
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metastable intermediate which serves as a precursor for the nucleation process. A recent 

experimental report by Burra et al showed the formation of the critical nucleus occurs 

with a preferential population of aggregates containing ~7 members(Burra et al. 2021) 

for yeast prion peptide containing hydrophilic residues which have comparable length 

with the HPP. Therefore, the formation peptide aggregate size corresponding to Lag1  

 

Figure 6.2. The time evolution of maximum populated cluster size at different 

temperature, peptide concentrations for (A, B) GROMOS-54a7 force-field, (C, D) 

AMBER-99SB-ILDN force-field, (E, F) andCHARMM-36m force-field.  
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in all the force fields can be considered as an important step for the primary aggregation 

barrier in self-assembly process. In the GROMOS-54a7 force-field the existence of 

Lag1 is also noted at higher temperatures (such as 350K and 375K), but the time span 

is comparatively lesser, as seen at 300K (Figure 6.2-A). Similarly, at 20 mM peptide 

concentration (300K), the Lag1 phase is also found (Figure 6.2-B) with an aggregate 

size of eight peptides. However, at a very high peptide- concentration (50 mM), the 

Lag1 almost disappears. The disappearance of the Lag1 at high concentration is mainly 

due to the increased probability of the effective collision of the peptides which helped 

them to aggregate faster.  This shows the shifting of the two-step mechanism to one-

step mechanism. A similar scenario is envisioned in case of the AMBER and 

CHARMM force-fields. The time span of Lag1 is higher in AMBER and CHARMM 

force-field compared to the GROMOS force field.  

The second lag phase (Lag 2) is observed with a cluster size of 12-13 peptides 

for GROMOS-54a7 and 12-14 peptides for AMBER, CHARMM force-field 

respectively. The Lag2 is found to be successive to Lag1 due to the cooperative addition 

of smaller oligomers like trimers and tetramers to the nucleus of Lag1. It can be noticed 

here that the increment in temperature and peptide concentration causes the fusion of 

two critical nucleus oligomers to give rise to such peptide cluster in all the force-fields. 

The time scale for Lag2 is larger than Lag1 (irrespective of temperatures and monomer 

concentrations) due to greater reorganization events occurring before further 

nucleation. This reorganization event is more prominent in AMBER and CHARMM 

force-field at different temperatures and peptide concentrations. Such reorganizational 

event is also prominent in the post-nucleation stage (Tang and Han 2022a). Therefore, 

the Lag2 can be considered as the rate-determining stage for the present aggregation 

process. At 300K and 10 mM peptide concentration, the aggregation process is found 

to be trapped in the Lag2 phase in case of GROMOS-54a7 force-field (Figure 6.2-B). 

This is further validated by the time evolution of the cluster size at 310K, where the 

aggregation process is trapped at the higher aggregate size containing 12 peptides 

(Appendix XXXXXXVI). Similar observation is found in the case of AMBER and 

CHARMM force-field at 25, 40 mM peptide concentration (Figure 6.2-D, F) 

respectively. Therefore, the addition of a small size oligomer (dimer or trimer) to the 
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critical nucleus or the fusion of the rate-limiting higher-order oligomer remains the 

main bottleneck for the further growth of the aggregates. The existence of Lag phases 

with the aggregate size of a similar number of peptides in all the force-fields shows the 

statistical robustness of our findings (Figure 6.2). Further, to validate the existence of 

lag phases we calculated the time evolution of peptide clusters during the simulation 

time scale (Appendix XXXXXXVII). In can be seen that in AMBER and CHARMM 

force field the peptide aggregate associated and dissociated between peptide number 

12-14 and 13-15 respectively. The aggregate size in the second lag phase did not 

decrease lesser than 12 and 13 respectively. Therefore, the aggregate size for second 

lag phase can be taken as 12 -13 for all force fields.  The dissociation of peptides from 

the oligomers correspond to Lag2 is found in all the force field at higher temperature. 

It is found that AMBER and CHARMM force-field the dissociation of peptide is 

prominent in higher temperature compared to higher peptide concentration. It is 

observed that at moderately higher temperature, the peptide aggregated at lower 

concentration. For GROMOS, aggregation took place at 10mM, 350 K. For AMBER, 

the aggregation took place at 25mM at 330 K. For CHARMM force field, we found at 

45mM aggregation took place at 320 K. No aggregation was achieved at this 

concentration for 300 K (Figure 6.2-A, C, E). The minimum concentration that was 

found to aggregate at 300 K was found to be 20 mM, 30mM and 50mM for GROMOS, 

AMBER and CHARMM respectively (Figure 6.2-B, D, F). At higher temperature, the 

peptide dissociation rate was found to be more. Therefore, at higher temperature, even 

though the kinetic barrier is overcome by higher collision rate, full aggregation is 

hampered due to the dissociation tendency of the peptide. This can be further clarified 

from Figure 6.3.  

At moderate higher temperature such as 350 K for GROMOS, 330K for 

AMBER, and 320K for CHARMM, we found that the peptides aggregated at lower 

concentrations for all the three force fields. This can be explained by the increase in the 

rate of collision rate which increases the probability of aggregation. In Figure 6.3, the 

dependence of the interacting distance between two peptides with respect to 

temperature and peptide concentration for different force fields has been plotted.  
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Figure 6.3. The dependency of the mean free path of the prion peptides with the 

temperature and peptide concentration in the (A)GROMOS-54a7, (B) AMBER-99SB-

ILDN, (C) CHARMM-36m.  

We have considered the trajectory after initial 1 ns of the production simulation 

until the formation of the first dimer to calculate the mean free path of the prion 

peptides.  The peptide collision propensity is believed to be proportional to the rmax
2 or 

square of the mean free path defined as(Adebayo et al. 2010)  

𝑓 = 4𝜋𝜌𝑟𝑚𝑎𝑥
2 𝑔(𝑟𝑚𝑎𝑥)(

𝜋𝑘𝐵𝑇

𝑚
)1/2  …………. (6.1) 

Where ρ is the number density of peptides, g(rmax) is the value of pair correlation 

function at rmax, m is the total mass of the peptides, kB is the Boltzmann constant, and 

T is the absolute temperature.   

It is found in GROMOS-54a7 force-field that the interacting distance (rmax
2) 

between the monomers decreases with increase in temperature and peptide 

concentration. A similar trend is found for AMBER and CHARMM force-field.  
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Figure 6.4. The time evolution of maximum populated cluster size at the absence or 

presence of NQDA at 1:2 Peptide to NQDA molar ratio in (A) GROMOS-54a7, (B) 

AMBER-99SB-ILDN, (C) CHARMM-36m at 300K.  

In total, the whole observation suggests that the entire pre-fibrillar aggregation process 

corresponds to two major lag phases with relatively stable two oligomers. The 

activation barrier corresponding to Lag2 is higher than the formation of the critical 

nucleus. More importantly, mutual reorganization between the peptides at the Lag 2 

phases is an inevitable event to attain β-sheet conformation essential for initiating 

fibrillar growth.   

Our simulation study is mainly concentrated on the pre-nucleation stages. To check 

whether these lag phases still exist in the higher system size, we simulated additional 

simulations shown in Appendix XXXXXXVIII with more than 16 peptides (system 

G10, G11, G13, G14). The details of these simulations are given in Table 6.1. It is 

found that Lag1 and Lag2 still exist at this higher concentration. However, they are 

overcome easily in comparison to the lower concentration. Further, the growth of the 

aggregation took place by addition of the fibrillar oligomers (specifically 12-14 

peptides). We have checked this case with multiple simulations (Appendix 

XXXXXXVIII-B). This step can be referred to the Ostwald ripening phase where the 
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smaller aggregates join to form the bigger aggregate. A study of the post-nucleation 

stage of Amyloid-β (16-21) have been reported where it is found that at lower 

concentration of monomer, the rate of aggregation is concentration dependent but at 

higher concentration, the rate becomes dependent on the structural conversion to β-

sheet (Tang and Han 2022b). 

The addition of NQDA in the prion peptide self-assembly process will further help 

us to reconfirm the activation barriers and the critical factors affecting the aggregation 

process. It can be observed that there is a remarkable impact on the time scale of the 

aggregation lag phases and the structural ordering of the aggregates in the presence of 

NQDA. It can be seen from Figure 6.4-A that the aggregation process is hindered with 

a maximum populated cluster size of 8-10 peptides and remains in the same stage up to 

300ns.  In this condition, the maximum populated cluster size is found to be highly 

fluctuating and even reduced to the oligomer size of five peptide members during the 

course of the simulation. This phenomenon is observed for 20mM 300K for the 

GROMOS force field (Figure 6.4-A), 30 mM 300K for AMBER force field (Figure 

6.4-B) and 50 mM 300 K for CHARMM forcefield (Figure 6.4-C) in the presence of 

NQDA. Notably, the maximum populated cluster size is found to be similar in all the 

force-fields. Thus, the addition of NQDA increases the activation barrier for the 

formation of the critical nucleus or higher-order aggregates and eventually arrests the 

process of fibril nucleation. Therefore, it can be commented here that NQDA delayed 

the aggregation process between Lag1 and Lag2 despite increasing the system 

concentration.  The inhibition of peptide aggregation by NQDA can be comparable with 

the aggregation process found in lower temperature (260K for GROMOS 54a7) and 

lower peptide concentration (8 mM for GROMOS-54a7). In both cases, the aggregation 

process is significantly slower due to the increment in the activation barrier at first 

Lag1.   
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Figure 6.5. (A) MD snapshots of the prion peptide self-assembly at the prefibrillar stage 

in GROMOS54a7 force field [20 mM, 300K]. (B) The secondary structure arrangement 

of the metastable peptide aggregates. (B) The structure of aggregates in the presence of 

Inhibitor in three different force-fields. The secondary structures such as β-sheet, β-

bridge, and coil structures are colored in yellow, olive green, and green color 

respectively.  
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6.3.3 Secondary Structure Analysis:  

The appearance of β-sheet in the aggregation process is believed to be the hallmark of 

toxicity. In Figure 6.5-A and 6.5-B we have shown the simulation snapshots of the 

peptide aggregation process and different secondary structural arrangements at two Lag 

phases and the final aggregation state correspond to three force-fields. Further, we 

assessed the percentage of secondary structure in three different force fields and their 

behavior with the temperature and concentration have been assessed in this section and 

depicted in Figure 6.6 and Appendix XXXXXXIX. It is evident that the coil 

percentage or the percentage of residues involved in disordered state disordered are 

found to vary from 60-70% in all the force-field. However, there is a remarkable change 

in the β-sheet percentage for GROMOS, AMBER and CHARMM forcefields during 

the self-assembly of prion peptides. It is found that the propensity of β-sheet formation 

is more in the case of GROMOS force field in different temperature and peptide 

concentration. At 300K and 310K, the average percentage of β-sheet is 13.8% and 12% 

respectively in pure water. At higher temperature and peptide concentration, the β-sheet 

content is found to be gradually increased and reached to ~ 21% at higher temperature 

(375K) and peptide concentration (50 mM). In case of AMBER force-field the β-sheet 

content found to vary from 3-11% at different temperature. The increment of bend and 

turn content is found to be higher in AMBER force-field which can be the reason behind 

the lesser β-sheet content in peptide aggregates. Additionally, the appearance of α-helix 

is found at higher temperature in this force-field which causes a dip in the β-sheet 

content. The beta-sheet content was found to increase linearly with respect to peptide 

concentration. In CHARMM force-field the β-sheet content found to be increase to 14% 

at 330K and 18% at 50 mM in room temperature.  This observation indicates that 

temperature increment helps in re-ordering of the metastable aggregates for the 

appearance of β-sheet during the aggregation process. Furthermore, the formation of 

the extended  β-sheet and cross β-sheet (steric zipper) was found in 1 μs simulation of 

50 mM 300K for GROMOS force-field which confirms the fibrillar aggregation of 

these prion peptides and is further confirmed experimentally by Nelson et al (Nelson et 

al. 2005b) (Figure S15-A,B). 
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Figure 6.6. The secondary structure content of the peptide aggregates at different 

temperature and peptide concentration in (A, B) GROMOS-54a7, (C, D) AMBER-

99SB-ILDN, (E, F) CHARMM-36m force-field.  

It can be found from Appendix XXXXXXX A, B that the distance between the parallel 

sheets of steric zipper is 10.5 Å and the distance between two beta sheets is 4.67 Å 

(perpendicular to the fibril axis) which matches with the literature. During 1μs 

simulation the aggregate was found to be stable and did not dissociate into smaller 

aggregates as shown in Appendix XXXXXXX-D.  In Figure 6.5-B, the structure of 

the intermediate steps corresponding to Lag1, Lag2 and the final aggregate has been 

provided for all the three force-fields. It can be found that the peptide cluster 

corresponding to Lag1 is amorphous in nature and mostly contains bridge-β structure. 

In case of GROMOS and CHARMM force-field antiparallel β-sheet dimer is found in 

critical nucleus oligomer. Further, the appearance of ordered oligomers is found in Lag2 

phase for all the force-filed. This indicates that Lag2 correspond to fibril nucleation 

state where fibrillization starts. In case of AMBER force-field the β-sheet content is 
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comparatively lesser in Lag2 stage compared to other force-fields. It can be noted here 

that β-sheet content is comparatively similar in Lag2 and final aggregation state for all 

the force-field. 

 

Figure 6.7. The time evolution of secondary structure elements throughout the 

simulation time scale in absence or presence of NQDA and the final peptide aggregated 

structure for (A, B) GROMOS 54a7, (C, D) AMBER 99SB ILDN, (E, F) CHARMM 

36m force-field.  

Further, to corroborate the formation of fibril in the Lag2 phase or final aggregation 

state, stability of minifibrill is assessed and depicted in Appendix XXXXXXXI. The 

details of Minifibrill construction for initial MD coordinates is provided in the methods 

section.  It can be found that after 1 μs the minifibrill conformation highly deviated 

from it’s initial state in all three force-fields and some of the peptides are in unstructured 

state with reactive hydrogen atoms for further growth of the self-assembly process. 

However, the proto-fibrils are found to be stabilize more in GROMOS and AMBER 

force-field in barrel or zipper conformation compared to CHARRM due to higher 

interaction of inter peptide residues. This is evident from the time evolution of solvent 

accessible surface area and inter-peptide hydrogen bond shown in Appendix 

XXXXXXXII. The SASA profile of the minifibrill is found to be more fluctuating in 

case of CHARMM 36m force-field which indicates instability of the minifibrill 

compared to other two force-fields. Further, we calculated the occupancy of inter 
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peptide hydrogen bond and documented in Appendix XXXXXXXIII. It can be noted 

from Appendix XXXXXXXIII that mini-fibril is highly stabilized by more backbone 

hydrogen bond in AMBER 99SB ILDN force-field compared to other two force-fields 

and the middle residues such as Leu, Met and Tyr are mostly contributing hydrogen 

bond that governs β-sheet conformation in the self-assembled peptide aggregates. The 

2D contact matrix given in Appendix XXXXXXXI validates the role of middle 

residues to form stable fibrillar aggregates. These interactions are more prominent in 

case of AMBER 99SB ILDN and GROMOS 54a7 forcefield compared to CHARMM 

36m.  

The addition of NQDA found to decrease the β-sheet content in the peptide 

aggregates remarkably for all the three force-fields. The secondary structure evolution 

and structure of the aggregates in presence of NQDA for the three chosen force-field is 

shown in Figure 6.7. In case of GROMOS force field the beta-sheet content reduced 

from 19% to 3% in 20 mM peptide concentration at 300K. Similarly, the β-sheet and 

β-bridge content reduce to 1% and 3% during peptide self-assembly for AMBER 

forcefield. In CHARMM force-field the β-sheet content of peptide aggregates is 6% in 

presence of NQDA. This reduction of β-sheet is prominent compared to the aggregates 

formed in pure water for CHARMM force-field. These results indicate that the 

incorporation of NQDA shifts the dynamic equilibrium of aggregates from extended β-

sheet to random coil state essential for reducing the toxicity. 

6.3.4 Aggregation free energy landscape: 

To further visualize the effect of force-fields and inhibitor molecules on the lag phases 

and the energy barriers of the peptide aggregation process the free energy surface have 

been constructed. The number of inter-peptide hydrogen bonds and SASA are taken as 

the reaction coordinate (RC). In the present case, these two order parameters have been 

considered as RCs due to their suitability to explain the complete aggregation process. 

Boltzmann inversion of conformational distribution(Zhou et al. 2019b) was employed 

to compute the FES based on the following equation. 

∆𝐺𝑖 = −𝑘𝐵𝑇[𝑙𝑛𝑃𝑖 − 𝑙𝑛𝑃𝑚𝑎𝑥]                        (6.2) 
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In Figure 6.8, we compared the property-based aggregation free energy surface (FES) 

of prion peptides at 300K for different force fields such as GROMOS-54a7, AMBER-

99SB-ILDN and CHARMM-36m.  

 

Figure 6.8. Free energy surface involving the number of interchain hydrogen bonds 

versus solvent accessible surface area in (A) GROMOS-54a7 [20 mM] (B) AMBER-

99SB-ILDN [30 mM], (C) CHARMM-36m [50 mM] at 300K. The aggregation energy 

landscape in presence of NQDA for (D) GROMOS-54a7, (E) AMBER-99SB-ILDN 

and (F) CHARMM-36m force field.  

Four major basins have been found for all the force-fields. The locations of four basins 

are marked on the FES and are shown in Figure 6.8 to identify the metastable 
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intermediates between the two extremes (thoroughly segregated and fully bound) states 

of conformational space. In case of GROMOS-54a7 the four basins are found to be well 

separated with thermodynamic barrier. Basin I is mainly populated with lower-order 

intermediates like monomers or dimers, characterized by higher SASA value and a 

lower number of hydrogen bonds. A large population of peptide oligomers up to critical 

nucleus size is located at basin II. Further, Basin III is mainly populated with the 

oligomer size corresponding to the second lag phase where fibril nucleation occurs at 

300K. At this temperature, in GROMOS-54a7 force-field basin II and III are separated 

by a small energy barrier of 1.4kT, which further reduced at AMBER-99SB-ILDN and 

CHARMM-36m force-fields. However, the aggregation state corresponding to basin 

III at 300K is again trapped within a deep minimum in case of CHARMM (~ energy 

barrier of 2.8kT), which restricts the formation of the final aggregation state. The final 

aggregation state is found to be separated by barrier height of 3.84kT. Further, the 

presence of NQDA is found to have a prominent effect on the free energy surface of 

prion peptide aggregation. It can be seen from Figure 6.8-D, E, F that the FES shifted 

to a higher SASA value and lower number of inter-peptide hydrogen bonds in all the 

force-fields, which indicates the population of lower-order intermediates. Moreover, in 

presence of NQDA, the lower-order peptide aggregates are found to be stabilized at a 

deep minimum in basin II with a barrier height of ~4KT. Consequently, the aggregation 

process is restricted to reaching the free energy basin corresponding to Lag2 or the final 

aggregation state. Therefore, it can be inferred from the above results that a significant 

energy barrier exists at the Lag2 phase, which determines the peptide aggregation rate. 

Additionally, the presence of NQDA increases the activation barrier of prion-peptide 

aggregation and the concentration of lower-order oligomers, which ultimately inhibit 

the overall aggregation process between the two lag phases.  

6.3.5 Accessing aggregation kinetics by Markov State model:  

Further to assess the aggregation kinetics of prion peptide at three different force-fields, 

Markov state modelling has been applied.  This algorithm is efficient in identifying the 

metastable aggregates and the probable transition path from the initial state to final 

state. The collective variables extracted from the simulations of different peptide 
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concentrations at 300K were merged to ensure adequate population of different 

metastable peptide aggregates.  

 

Figure 6.9. The decomposition of metastable states and corresponding transition paths 

of prion peptide aggregation for (A, B) GROMOS-54a7, (C, D) AMBER-99SB-ILDN 

and (E, F) CHARMM-36m force-fields. The values written on the edges depict the 

transition rate between the microstates.  
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This strategy helps in identifying metastable aggregates that co-exist in dynamic 

equilibrium. The first step toward finding the microstates is the application of K-means 

clustering on the free energy landscape of aggregation process.  Further, the MSM 

based on the microstates is subjected to estimate the lag time for hidden Markov state 

model (HMM) depending on the convergence of implied time scales correspond to 

slowest process. It can be found from the Appendix XXXXXXXIV that the implied 

time scale (IPS) plots are converged at 50-time step for all the force-fields. The mean 

free passage time (MFPT) analysis also carried out validates the existence of the three 

states as observed in Figure 6.9.  The time step or lag time obtained from implied time 

scale is chosen to coarse-grain the MSM model to HMM. The transition matrix obtained 

from HMM is depicted as network diagram where the edges and their sizes are 

representing the population in each microstate. The thickness of the lines connecting 

the edges indicates the transition probability from one state to another. The 

Markovianity of the MSM was ensured with Chapman-Kolmogorov test (Appendix 

XXXXXXXV). In the present case three different metastable state have been observed 

from the MSM calculation taking SASA and inter-peptide hydrogen bond as collective 

variable. The [0] state correspond to the lower-order oligomer state, [1] correspond to 

the critical nucleus and fibril nucleation state and [2] correspond to final aggregation 

state (Figure 6.9). It is evident from the MSM model of peptide aggregation that the 

transition of smaller order oligomer to the critical nucleus is faster compared to the 

transition of fibril nucleation to final aggregation state. This further validates the 

formation of fibril nucleation is the slow or rate-determining step in peptide 

aggregation. Further, we have carried out Markov state model for prion peptide 

aggregation in the presence of NQDA. The validation for the MSM is given in 

Appendix XXXXXXXVI and Appendix XXXXXXXVII.  It can be seen from Figure 

6.10 that in the presence of NQDA the peptide aggregates have two states and the 

second state or the critical nucleus is mostly populated one. In case of AMBER99SB-

ILDN force-field, the population of state1 is comparatively lesser than two other force-

fields.  Notably, the inflow of conformation is mostly from state1 to state2. However, 

in case of CHARMM force-field the inflow of conformations is same from two states. 

This indicates the continuous transition of critical nucleus to monomeric sate or vice 

versa in presence of NQDA. 
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Figure 6.10. The decomposition of microstates regarding prion peptide aggregation in 

presence of NQDA and corresponding transition network obtained from Markov state 

modelling in case of (A) GROMOS-54a7, (B) AMBER99SB-ILDN and (C) 

CHARMM-36m force fields at 300K. The values written on the edges depict the 

transition rate between the microstates.  
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6.3.6 Mechanism of the peptide self-assembly inhibition by NQDA: 

In this section, the underline mechanism of NQDA towards the inhibition of prion 

peptide self-assembly have been explored. The first step towards assessing the effect of 

NQDA in the peptide aggregation process is calculating the peptide-peptide radial 

distribution function and corresponding peptide-peptide, peptide-water coordination 

number in presence and absence of NQDA. It is evident form Appendix 

XXXXXXXVIII that in the presence of NQDA, the position of the first and second 

peak of peptide-peptide RDF has not changed much, but there is a significant reduction 

in the peak height in all the force-fields. Moreover, there is a marked decrease in 

peptide-peptide coordination number in presence of NQDA (Appendix 

XXXXXXXIX) shows it’s inhibitory effect on prion peptide self-assembly. Further, to 

assesses the effect of NQDA on the energetics of peptide self-assembly, we calculate 

the short-range electrostatic and van der Waals interaction energy and provided in 

Appendix XXXXXXXX. It is evident from Appendix XXXXXXXX that coulomb or 

electrostatic interaction between peptide and water influences remarkably in controlling 

the aggregation and dissociation of peptides during the pre-fibrillar self-assembly. In 

previous sections, it has been noted that the GROMOS 54a7 force field shows a higher 

aggregation and β-sheet propensity followed by AMBER 99SB ILDN and CHARMM 

36m forcefield. This is due to lesser peptide-water electrostatic interaction energy in 

GROMOS 54a7 compared to the other two force fields. The marked decrease in 

peptide-peptide coulomb interaction energy and increase in peptide-water interaction 

energy in the presence of NQDA potentiates the inhibition of prion-peptide pre-fibrillar 

assembly at its early stage. This trend is found to be similar in all the three force fields 

which supports the inhibitory role of NQDA. Further, we calculated the residue wise 

interaction energy in the aggregation process. The decomposition of interaction energy 

with respect to the peptide residues is depicted in Figure 6.11.  It is evident from Figure 

6.11-A and Figure 6.11-C that Tyr, Met, and Leu residues (Index 2, 3 &4) have 

maximum contribution towards the aggregation process in case of GROMOS and 

CHARMM force-field. The higher energy contribution of the residues located at the 

middle portion of the peptides validates the higher percentage of β-sheet in above two 

force-fields. In case of AMBER force-field the energy contribution of terminal residue 

is more compared to the middle residue. The higher interaction energy contribution of 
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terminal residues can be the region behind the lower β-sheet content in AMBER force-

field. The presence of NQDA found to reduce these contributions in all the force-fields. 

Especially, the interactions of Tyr and Leu residues are highly affected by the inhibitor. 

In case of CHARMM force-field the reduction of residue wise energy contribution is 

comparatively lesser than other two force-fields considered in this study. This can be 

the reason behind the higher β-sheet content in presence of NQDA for CHARMM 

force-field.  

 

Figure 6.11. The residue-wise interaction energy at (A) GROMOS-54a7 [20 mM], (B) 

AMBER-99SB-ILDN [30 mM], and (C) CHARMM-36m [50 mM] in the absence 

(black) or presence (red) of NQDA at 300K.  

Further, to assess the direct interaction of NQDA, the peptide-peptide hydrogen 

bonding, and π-π stacking interactions have been calculated that are crucial for peptide 

self-assembly. Considering the number of inter-peptide hydrogen bonds, a notable 

decrease in the hydrogen bond number between the peptides at different force-fields as 

found in the presence of NQDA (Figure 6.12 A-C). In case of CHARMM force-field 

the change in intra-peptide hydrogen bond is comparatively lesser in presence of 
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NQDA. This is due to the lesser number of peptide-NQDA hydrogen bond compared 

to other force-fields (Figure 6.12-D).  

 

Figure 6.12. The time evolution of peptide-peptide hydrogen bond number in the 

presence or absence of NQDA  (A) GROMOMS-54a7 [20 mM], (B) AMBER-99SB-

ILDN [30 mM], (C) CHARMM-36m [50 mM] at 300K. The black curve is showing 

the number of intra-peptide hydrogen bonds in pure water, and the red curve is showing 

the number of intrapeptide hydrogen bonds in presence of NQDA. (D) The time 

evolution of peptide-NQDA hydrogen bonds at different force-field at 300K. The 1-
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dimensional free energy landscape along the intrapeptide hydrogen bond as reaction 

coordinate for (E) GROMOS-54a7, (F) AMBER 99SB ILDN and (G) CHARMM 36m 

force-field.  

Further we calculated the free energy profile along the inter peptide hydrogen bond as 

reaction coordinate using the normalized probability distribution of number of inter 

peptide hydrogen bond, 𝐺(𝐻𝐵)  =  −𝑘𝑇𝑙𝑛(𝑝(𝐻𝐵)). It can be noted from Figure 6.12 

(E-G) that the peptide cluster related to Lag 1 can easily shift to peptide cluster 

correspond to stable lag phase 2 with a small energy barrier of 0.32 kT-0.50 kT as seen 

in the case of AMBER and CHARMM. This shows the transient nature of the peptide 

cluster related to Lag1.  It is evident from Figure 6.12 E-G that NQDA increases the 

activation barrier towards the formation of higher number of intra-peptide hydrogen 

bond required for fibril nucleation. The barrier height is found to be increased to 

3.07kT, 2.89kT and 2.47kT for the three force-fields respectively. Additionally, the π-

π stacking interaction between the tyrosine residues that further stabilizes the prion-

peptide oligomers (Figure 6.13-A) is found to be replaced by the π-stacking interaction 

between naphthalene-1,4-dione or the pyrocatechol rings of NQDA compounds. In the 

present scenario, the face-to-face and edge-to-face π-stacking interaction (Figure 6.13-

B) is found. We calculated the angle between the phenol rings of the tyrosine residues 

to validate this interaction. The angle between the rings is highly populated at 95º, 

indicating majority of edge-to-face π-stacking conformation (Appendix 

XXXXXXXXI). Further, we calculated the pair correlation function between Tyr 

residues in the presence or absence of NQDA to assess the inhibition effect. The peak 

height in the RDF is found to be decreased in the presence of the inhibitor (Appendix 

XXXXXXXXII). 

Furthermore, the life-time of those hydrogen bonds was evaluated and depicted 

in Table 6.2 for more insights into the peptide aggregation process. The hydrogen bond 

can be defined as(Chandra 2000) 

𝑆𝐻𝐵(𝑡) =
<ℎ(0).𝐻(𝑡)>

<ℎ(0)2>
 .............. (6.3) 

The hydrogen bond between donor and acceptor is said to be formed if their interatomic 

distance is < 0.25 nm. Here, <…> indicates the average over all the pairs of given type. 
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H(t) is indicating the population parameter which is 1 if a specific hydrogen bond exists 

from time t = 0→1 or zero otherwise.  

 

Figure 6.13. (A) The intrapeptide Hydrogen bond and π-π stacking interaction between 

Tyrosine residues within the final oligomeric stage of prion peptides in pure aqueous 

solution (20 mM, 300K). (B) Replacement of hydrogen bond and Tyrosine-Tyrosine π-

stacking interaction by NQDA-molecules. The peptides are illustrated in cartoon 

format. The β-sheet, β-bridge, coil, and turns are represented in yellow, olive green, and 

green color respectively. The NQDA molecule is shown in green color.  

We calculated the hydrogen bond between protein polar hydrogen (attached to nitrogen 

and oxygen) and oxygen of water, protein oxygen, and hydrogen of water. We have 
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considered interfacial water molecules up to a cut off value of 0.5 nm for the calculation 

of protein-water hydrogen bond lifetime.  For the lifetime of the intra-peptide hydrogen 

bond the polar hydrogen and the oxygen and nitrogen atoms of the peptides are 

considered. In the case of peptide-NQDA hydrogen bond interaction, the polar 

hydrogen of NQDA and oxygen, and nitrogen of peptides are chosen. It can see from 

Table 6.2 that peptide-peptide hydrogen bond life time decreases at higher temperature 

and increases in higher peptide concentration. In case of GROMOS-54a7 force-field 

there is a remarkable decrease in the intra-peptide hydrogen bond life time in presence 

of NQDA.  Similar phenomena have been observed in case of AMBER-99SB-ILDN 

and CHARMM-36m force-field. The higher life-time of NQDA-peptide hydrogen bond 

compare to intra peptide hydrogen bond in all the force-field. (Table 6.2) suggest that 

NQDA has more propensity to make a hydrogen bond with peptides. This observation 

depicts that, in the presence of NQDA, peptides can only be able to self-aggregate into 

smaller aggregates (dimer or trimers) and fail to fuse into a critical nucleus size or pre-

fibrillar aggregates, thereby promoting a significant reduction in toxicity.  

Table 6.2. Average relaxation time or life time of continuous hydrogen bonds between 

peptide-peptide (⟨τc
PP ⟩), peptide-water (⟨τc

PW ⟩) and peptide-NQDA molecules. ⟨…⟩ 

indicates time averaging  

System ⟨τc
PW ⟩ (ps) ⟨τc

PP ⟩ (ps) 

 

⟨τc
P-NQDA ⟩ (ps) 

 

300K, 10 mM [G1] 4.04 17.62 - 

350K, 10 mM [G2] 1.52 9.50 - 

375K, 10 mM [G3] 1.18 6.30 - 

300K, 20 mM [G4] 4.15 29.24 - 

300K, 50 mM [G5] 4.72 30.12 - 

300K, 30 mM [A1] 11.80 26.39 - 

300K, 50mM [C1] 4.28 37.33 - 

300K, 10 mM [G6], (1:2) 3.39 7.60 15.96 

350K, 10 mM [G7], (1:2) 1.73 6.38 7.15 

300K, 20 mM [G8], (1:2) 3.11 11.78 19.61 

375K, 10 mM [G9], (1:2) 1.65 5.94 7.87 

300K, 30 mM [A8], (1:2) 15.46         10.67 14.92 

300K, 50 mM [C8], (1:2) 3.76 12.40 17.18 

6.3.7 Role of NQDA on the solvation of peptides 

Furthermore, we calculated the RDF of water molecules around the peptides during the 

aggregation process for GROMOS, CHARMM, AMBER force-fields and depicted in 
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Figure 6.14. Two well defined solvation shell is found around the peptide aggregates 

in the absence of NQDA.   

 

Figure 6.14. The pair correlation function of water molecules from the surface of the 

largest populated peptide cluster at (A) GROMOS-54a7 [20 mM], (B) AMBER99SB-

ILDN [30 mM], (C) CHARMM-36m [50 mM] force-fields at 300K. (D-F) The 

preferential interaction parameter of peptides in the presence or absence of NQDA for 

different (D) GROMOS, (E) AMBER and (F) CHARMM force-field. The black curve 
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is showing for pure aqueous solution and the red curve corresponds to the presence of 

NQDA.  

At 300K, the first peak of the peptide RDF is observed around ~0.15 nm whereas the 

second solvation shell located at ~0.5 nm in case of GROMOS force-field. Presence of 

NQDA shows significant perturbation in both the solvation shells of hydration water in 

GROMOS and AMBER force-fields (Figure 6.14-A, B). At 300K, in presence of 

NQDA, there is increment in peak height for both the solvation shells indicates the 

increase in water density in the hydration environment. In case of CHARMM force-

field the reduction in the second solvation shell is due to lesser number of water 

molecules present at the higher concentration of the peptide (50 mM) (Figure 6.14-C). 

Additionally, the lifetime of water-peptide hydrogen bond is increased in presence of 

inhibitor for GROMOS and AMBER force-field (Table 6.14). The peptide-water 

hydrogen bond lifetime is decreased less in case of CHARMM force-field due to 

insufficient availability of the water molecules. The concentration used for CHARMM 

is 50 mM which contains only 15977 water molecules compared to 28447 and 42186 

water molecules for AMBER and GROMOS respectively. Thus, it can be inferred that 

in presence of NQDA peptides are more hydrated which essentially destabilize the 

prion peptide aggregates by weakening the peptide-peptide non-bonded interactions.   

Since the amphiphilic prion-peptides show a high aggregation tendency in the 

aqueous medium, the peptide fragments prefer to interact with other copies of peptides 

rather than water. Hence, we calculated the preferential binding coefficient (PBC) 

between the peptides to further assess the extent of aggregation.  The PBC can be 

defined as(Ganguly et al. 2018; Singh and Chakraborty 2021),  

ν𝑃𝑃 = 𝜌𝑃(𝐺𝑃𝑃 − 𝐺𝑃𝑊)                  (6.4) 

𝐺𝑃𝑃 = 4𝜋 ∫ [𝑔𝑃𝑃(𝑟)
∞

0
− 1]𝑟2𝑑𝑟    (6.5) 

𝐺𝑃𝑤 = 4𝜋 ∫ [𝑔𝑃𝑃(𝑟)
∞

0
− 1]𝑟2𝑑𝑟     (6.6) 

Where, P, W, and ρP represent the peptide, water molecules, and number density of the 

peptide, respectively. Further, GPP and GPW are the KB (Kirkwood-Buff) integrals 

computed from the Peptide-peptide and peptide-water RDF. A positive value of ν for 

peptides indicates the favourable inter-peptide self-assembly.  In Figure 6.14 D-F we 
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have plotted preferential binding coefficient between the peptides at pure aqueous 

solution and in the presence of NQDA.  

It is evident from Figure 6.14-D-F that νPP has positive value for the pure aqueous 

solution of prion peptide in all the force-fields. However, incorporating NQDA leads 

to a significant reduction of νPP value even in the increment in temperature and peptide 

concentration in all the three force fields. This effect is prominent in GROMOS and 

AMBER force-fields. The lesser positive value of νPP in the presence of NQDA 

indicates the peptide association as lower-order oligomers. Therefore, it can be 

summarized that NQDA not only inhibits peptide aggregation by direct interaction with 

the peptide, but it also modulates the hydration structure by increasing peptide-water 

interaction, which causes a higher population of peptides with random coil 

conformation. 

6.3.8 Assessing dimer dissociation energy by umbrella sampling simulation  

It is evident from the cluster size evolution of prion-peptide aggregation that NQDA 

has a visible effect on the peptide oligomer size equal to or higher than the critical 

nuclear size. However, the impact of NQDA is unclear for lower-order aggregates such 

as dimers. To see the effect of NQDA on dimer formation, we calculated the potential 

of mean force (PMFs) of the association between two prion peptide fragments by 

umbrella sampling simulations(Das and Chakraborty 2021; Roy and Paul 2021) in 

GROMOS 54a7 force field (G14, G15 in Table 2). Notably, the propensity of β-sheet 

is formation is highest in GROMOS 54a7 force-field (Figure 6.7-A) compared to other 

two force-fields and therefore we selected this force-field to assess the effect of NQDA 

on dimerization and subsequent β-sheet formation. Since the calculation of PMF by 

Umbrella sampling method is computationally demanding process, therefore, we chose 

to perform Markov state model (MSM) (Appendix XXXXXXXXIII) to find out the 

most populated conformations in presence or absence of NQDA and computed the PMF 

for the corresponding conformation.  In absence of NQDA, we found one predominate 

conformation while in presence of NQDA, we found three major populations. The PMF 

is computed as the function of the distance between the COM of the peptide backbones 

and is presented in Figure 6.15. We have also plotted the force profile as a function of 

simulation time for the dissociation of monomer in the presence or absence of NQDA 
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and depicted in Appendix XXXXXXXXIV. The inhibitory effect of NQDA on the 

primary aggregation state, i.e., dimerization is visible from the figures given below. It 

can be seen from Appendix XXXXXXXXIV that the pull force for properly formed 

dimer increases up to 100 ps which indicates the breaking point for the crucial β-sheet 

hydrogen bond that stabilizes the dimer in pure aqueous solution. In contrast, the pull 

force is significantly less for monomer dissociation in the presence of NQDA. In the 

absence of NQDA, the energy minima for dimer formation are located at 0.29 nm, 

indicating their most stable interaction at this location. Notably, the location of the 

minimum increases to 0.40 nm in the presence of the NQDA compound. This suggests 

that the dimerization is fragile due to the interaction of NQDA. Further, we calculated 

the free energy of dissociation from the difference between the highest and lowest part 

of the PMF curve. 

 

Figure 6.15. The representative potential of mean force (PMF) graph for dimer 

dissociation in the (A) absence or (B)presence of NQDA. The dissociation free energy 

corresponds to bound, and unbound states are denoted as ΔGd and ΔG՛d respectively. 

The peptide is being pulled along the direction of the inter-peptide (dimer) hydrogen 

bond.  
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We found the PMF data is converged within 100 ns simulation at each umbrella 

window. In pure water, the dimer dissociation free energy is computed to be -40.08 

kJ/mol, while the dissociation free energy is reduced by -24.34 kJ/mol due to the 

addition of NQDA correspond to maximum populated conformation i.e Conformation 

1. We have carried out umbrella sampling of three different dimer conformations due 

to structural heterogeneity in presence of NQDA (Appendix XXXXXXXXV). The 

dissociation energy is found to be differ by ~2-3 kJ/mol which validates the dimer 

dissociation energy in presence of NQDA. These results can be attributed to the fact 

that NQDA not only impacts the higher-order oligomers, it also weakens the 

dimerization process. 

6.4 CONCLUSIONS 

Finally, to conclude, in this investigation the effect of temperature, peptide 

concentration, and the presence of inhibitor molecules on the oligomer nucleation and 

fibrillar association of hexadecameric shortest human prion peptide in three different 

force-fields have been summarised. Results obtained from simulations showed that the 

aggregation behavior is more favourable in case of GROMOS-54a7 force-field due to 

lesser diffusion of the monomers. The diffusion of monomers was found to be more in 

case of CHARMM 36m force-field which delays the aggregation process compared to 

other two force-fields and final aggregated state is found at 50 mM peptide 

concentration.  The aggregation process comes across two activation barriers with a 

preferential population of clusters containing 6-9 and 12-13 copies of peptides. The 

energy barrier for the second lag phase is higher compared to the first lag phase which 

traps the aggregation process. In contrast, the first lag phase is transient in nature. The 

existence of these lag phases is validated by using Markov state model and they were 

found to present in all the three force fields. The kinetic barrier corresponding to Lag1, 

Lag2 for HPP aggregation are found to be decreased at higher temperature and peptide 

concentration. At higher temperatures dissociation events are also noticed which is 

more prominent in the case of AMBER99SB-ILDN and CHARMM 36m force field. 

Further, the incorporation of inhibitors freezes the aggregation process efficiently 

between the two well-defined lags by increasing the sampling and stability of lower-

order peptide aggregates. In presence of NQDA, a marked decrease in toxic beta-sheet 
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confirmation is visible in the entire oligomerization process. The inhibitor affects the 

hydration environment by increasing the solvation of peptide molecules. Lastly, 

umbrella sampling simulation reveals that the dissociation energy for dimerization 

process weakens by -19.97 kJ/mol which indicates the inhibitory effect of NQDA on 

dimer formation. This study, therefore, provides insightful information on the 

mechanism of prion peptide aggregation, the rate-determining step, and the effect of 

small molecule inhibitors in the self-assembly process which might be useful for the 

rational design of newer generation anti-prion agents. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

Abstract: This chapter furnishes the brief summary of the entire research work and 

portrays a comparison between the various computational techniques employed for 

inspecting the crucial interactions of therapeutically relevant protein-ligand and 

protein-protein associations. Lastly, it also includes the major conclusions drawn from 

the present research work. 

7.1 SUMMARY 

 Pharmacophore and 3D-QSAR model have been adopted to identify the 

molecular counterpart essential for the competitive inhibition of the flexible 

loops of DHPS catalytic pocket. 

 Molecular Docking calculations are performed to assess the binding mode of 

sulfone compounds at the binding pocket of DHPS. 

 Density functional theory have been applied to visualize the location of HOMO-

LUMO orbitals at the ligand surface as well as the binding pocket of DHPS. 

 The relative binding free energy on functional group substitution in sulfone 

compounds have been calculated by free energy perturbation (FEP) approach. 

 The impact of sulfone compounds on human body have been assessed by 

ADME/toxicity and pharmacokinetics analysis. 

 Molecular dynamics simulation has been employed to confer the stability of 

sulfone compounds and identify the interacting amino acids that are crucial for 

sulfonamide resistance.  

 The interaction of 8-marcaptoguanine (8MG) compounds at the bi-substrate 

catalytic pocket of DHPS have been studied to assess their ability to circumvent 

the sulfonamide resistance. 

 Both ligands based (Pharmacophore and 3D-QSAR) and structure based 

(docking) approaches have been carried out to identify the amino acid 

interaction at DHPS catalytic pocket. 
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 Molecular dynamics simulation has been performed to assess the dynamic 

stability and calculate the occupancy of hydrogen bonds that formed during 

simulation.  

 Principle component analysis (PCA) have been employed to observe the motion 

of flexible loops of DHPS ligand binding pocket in the presence of different 8-

MG compounds. 

 End-point free energy calculation (MM/PBSA) and umbrella sampling 

simulations have been carried out to compute the free energy of binding or 

unbinding of the 8-MG compounds. 

 The immunogenic region (linear B-cell, conformational B-cell, T-cell epitopes) 

of SARS-CoV2 and corresponding the hotspot residues have been identified by 

immunoinformatic approaches. Further, multiple sequence analysis has been 

carried out to confirm the homology of the epitopes with other coronavirus 

species. 

 Multiepitope vaccines have been constructed by joining the linear epitopes. 

 The interaction of B-cell epitopes with human antibody and T-cell epitopes with 

corresponding MHC molecules have been studied by molecular docking 

technique. 

 The dynamic stability of the epitope-receptor complex has been assessed by 

molecular dynamics simulation and endpoint free energy techniques. 

 In-silico plasmid design have been carried out by back translating the protein 

sequence of the vaccine candidates. 

 Molecular dynamics simulation has been employed to identify the major kinetic 

barriers of the pre-fibrillar aggregation of human prion peptide (127-GYMLGS-

132) and their dependence on temperature, peptide concentration and force-

field. 

 Property based potential energy landscape have been constructed to 

quantitatively estimate the energy barriers during the aggregation process. 

 Markov State Modelling have been used to assess the aggregation kinetics.  

 NQDA compounds are added to target the aggregation lag phases and inhibit 

the formation of β-sheet. 
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 The life-time of interpeptide hydrogen bonds have been calculated in the 

presence or absence of NQDA to assess the inhibitory activity. Additionally, 

the structural change in hydration waters of the peptide aggregates have been 

investigated in the presence of NQDA.  

 The dimer dissociation energy of the prion peptides in presence or absence of 

NQDA have been assessed by umbrella sampling simulation. 

7.2 CONCLUSIONS 

The significant conclusions of the current research work are listed below 

 The ligand-based drug discovery techniques showed that the presence of 

hydrogen bond donor and electrostatic groups at the 2՛ and 4՛ position of R9 ring 

increase the potency of sulfone compounds for the competitive inhibition of 

DHPS. 

 The docking studies showed that sulfone compounds are stabilized by Thr62, 

Arg63, Pro145, Phe190, Lys221, Ser222 and His257. The salt-bridge 

interaction by Arg63 and His257 is the main contributor to stabilize the sulfone 

compounds at the flexible loop of DHPS and the mutation in the nearby residues 

the main source of drug resistance mutation. 

 The DFT studies showed that the presence of LUMO orbitals at interacting 

amino acid residues and the presence of HOMO orbitals in R8, R9 rings is 

crucial for substrate-based competition. 

 The FEP studies showed that the replacement of hydrophobic groups with the 

electron withdrawing groups (hydroxyl and phenoxide) favours the decrease in 

relative binding affinity that stabilize the compounds at the catalytic pocket of 

DHPS. 

 The lower RMSD value of sulfone compounds (0.15 nm) with respect to 

backbone RMSD (0.164 nm) of DHPS catalytic pocket and the lower degree of 

RMSF profile at interacting residues further indicates the dynamic stability of 

sulfone compounds at binding site.  
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 The pharmacophore analysis of 8-MG compounds showed that the change in 

pharmacophoric site affects the potency of the compounds for the competitive 

inhibition of DHPS. 

 3D-QSAR analysis indicates that presence of hydrogen bond donor group at 

H11 increases the activity of 8-MG compounds. Additionally, the presence of 

bulky hydrophobic groups at R12 site decreases the activity of 8MG based 

inhibitor.  

 Docking studies reveal that hydrogen bonding, π-π stacking and π-cation 

interactions by Asp96, Asn115, Asp185, Phe188, Phe190, Lys221, Arg255 

contribute towards the stability of 8MG compounds.  

 Frontier molecular orbital studies showed that the overlap of HOMO, LUMO 

orbitals decreases the activity of 8-MG compounds.  

 It is evident from MD simulation studies that highly active 8-MG compounds 

significantly reduces the fluctuation of flexible loops due to the higher hydrogen 

bond occupancy of between interacting hydrogen and inhibitor molecules.  

 The PCA analysis indicates the closing motion of the DHPS catalytic pocket 

which essentially restrict the substrate binding and product release. 

 End point free energy techniques also validates the role of electrostatic 

interaction in stabilizing the DHPS antagonists. Whereas the polar solvation 

terms disfavour the stability of receptor-ligand complexes. The free energy 

decomposition validates the favourable contribution of docking predicted 

residues.  

 In-silico mutagenesis studies reveal that affinity of 8MG compounds is not 

affected by drug resistant mutations like Pro64Ser and Lys221Gln which 

indicates the resilience of such inhibitors against sulfa-resistant mutations. 

 Umbrella sampling simulation indicates the hydrogen bonding interaction of 

Asp96, Asn115, Asp185 and water mediated hydrogen bonds with Cys137, 

Phe188, Gln226 serve as the breaking point during the unbinding process of 

8MG compounds from the DHPS catalytic pocket. 

 The solubility of sulfone compounds is lesser compare to 8 MG compounds due 

to higher number of polar atoms. 
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 In case of SARS-CoV2 spike protein the C-terminal region is highly conserved 

compared to the N-terminal receptor binding domain (RBD). This indicates that 

the perfusion region related to genome transfer is mostly common to all 

coronavirus species. 

 Immunoinformatics study reveals that the linear B-cell and T-cell epitopes are 

scatter throughout the RBD and shaft region. However, the epitopes located at 

shaft region is mostly conserved and inclusion of such regions in multiepitope 

vaccines may induce immunity against broad spectrum coronavirus species. 

 The hotspot residues are mainly polar in nature which contributes to favourable 

electrostatic interaction towards the corresponding immune receptors.  

 The linear B-cell epitopes 808DPSKPSKRSF817 and 600PGTNTSNQ607 are found 

to be common in all physiochemical parameters which indicates it’s importance 

to elicit humoral immunity.  

 The conformational B-cell epitopes are mainly located at the RBD and mostly 

have extended β-sheet or β-barrel conformations. 

 Docking study reveals that multimeric vaccines made up of linear B-cell 

epitopes are mainly stabilized by hydrogen bonding interactions. Additionally, 

the conformational epitopes are stabilized by hydrogen bonding and π-π 

stacking interaction. In case of T-cell epitopes, the peptides are mainly 

stabilized by hydrogen bond interaction inside the peptide presenting domain of 

MHC molecules. 

 MD simulation studies showed the dynamic stability of both the linear and 

conformational epitopes with immune receptors. 

 Endpoint free energy (MM/PBSA) calculation showed that multiepitope B-cell 

vaccine has higher affinity compared to the conformation B-cell epitopes 

towards the human antibody. 

 In case of T-cell epitope peptides, the peptides correspond to MHC-II showed 

higher affinity compared to the peptides related to MHC-I. 

 The MD simulation of prion peptide at aqueous solution showed two major lag-

phases or aggregation barriers with cluster size containing 6-9 and 12-14 

peptides for all the force-fields. The first barrier corresponds to the critical 

nucleus formation and the second barrier correspond to fibril nucleation. 



214 
 

 Markov state modelling indicates that there are three main metastable states 

during the aggregation process.  

 The incorporation of NQDA were found to arrest the aggregation process 

between two barriers at ambient temperature in all three force-fields as well as 

higher temperature and peptide concentration which indicates the efficacy of 

NQDA to prevent prion amyloidosis. Moreover, there is a marked decrease in 

β-sheet conformation in the presence of NQDA that indicates the decrease in 

cytotoxicity at pre-fibrillar stage. 

 The inhibition process is mainly governed by π-π stacking interaction between 

Tyr and the aromatic rings of NQDA, peptide-inhibitor hydrogen bond and the 

higher solvation of peptide oligomers. 

 Umbrella sampling simulation suggests that NQDA not only inhibit the higher 

order oligomer formation but also reduces the propensity to dimer formation. 

The incorporation of NQDA reduces the dimer dissociation energy by -19.97 

kJ/mol. 

The current research work illustrates how the in-silico techniques such as 

cheminformatics, bioinformatics, molecular docking, and multiscale molecular 

dynamics simulation techniques can be employed to study biomolecular recognition 

and associated rare events at temporal and special resolution. The ligand-based drug 

discovery techniques are found to be efficient in identifying crucial molecular 

fragments or functional group essential for targeted enzyme inhibition without the 

structural information of catalytic pocket. Moreover, the activity of the drug like 

small organic molecules can be predicted by the HOMO, LUMO energy data. To 

understand the stabilizing forces for ligand-receptor interaction, molecular docking 

is found to be computationally economical. Especially in vaccine design approaches 

molecular docking is the only way to screen potent peptide epitopes. However, to 

validate the docking predicted binding pose of biomolecular complexes, unbiased 

molecular dynamics simulation techniques and free energy techniques are essential.  
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APPENDIX 

Appendix I. List of functional group present at 2’, 4’, 6’ side of R9 ring. ✓ shows the presence 

of the group and × shows the absence of these groups 

No 

Anionic 
Hydrogen Bond 

Donor Group 
Hydrophobic Groups 

Electron-

Withdrawing 

Group 

2’ 4’ 6’ 2’ 4’ 6’ 2’ 4’ 6’ 2’ 4’ 6’ 

1 ✓ ✓ × × × × × × × × × × 

2 × ✓ × × × × ✓ × × × × × 

3 × ✓ × × × × ✓ × ✓ × × × 

4 × × × × ✓ × × × × ✓ × × 

5 × ✓ × × × × × × × ✓ × × 

6 × × × × ✓ × ✓ × × × × × 

7 × × ✓ × × × ✓ ✓ × × × × 

8 ✓ × × × ✓ × × × × × × × 

9 × × × × ✓ × ✓ × ✓ × × × 

10 × × × ✓ ✓ × × × × × × × 

11 ✓ × × × ✓ ✓ × × × × × × 

12 × ✓ × ✓ × ✓ × × × × × × 

13 × ✓ × × × × × × × × × × 

14 × × × ✓ ✓ × × × × × × × 

15 × × × × × × ✓ ✓ ✓ × × × 

16 × × × × × × ✓ ✓ × × × × 

17 × × × × × ✓ ✓ ✓ × × × × 

18 × × × × × × ✓ ✓ ✓ × × × 
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19 × × × × × × ✓ ✓ × × × × 

20 × × × ✓ ✓ ✓ × × × × × × 

21 × × × × × × × × × ✓ ✓ × 

22 × × × ✓ × × × × × × × × 

23 × × × × ✓ × × × × × × × 

24 × × × × ✓ × × × × × × × 

25 × × × × × × × ✓ × × × × 

26 × × × × × × ✓ ✓ ✓ × × × 

27 × × × × × × ✓ ✓ × × × × 

28 × × × × × × × × × ✓ ✓ ✓ 

29 × × × × × × × ✓ × × × × 

30 × × × × ✓ × × × × × × × 

31 × × × × × × × ✓ × × × × 

32 × × × × × × × × × × ✓ × 

33 × ✓ × × × × × × × × × × 

34 × × × × ✓ × × × × × × × 

35 × × × × ✓ × × × × × × × 

36 × × × × × × × × × × × × 

37 × × × × × × × ✓ × × × × 

38 × × × × × × × ✓ × × × × 

39 × × × × × × × × × × × × 

40 × × × × × × × × × × ✓ × 
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41 × × × × × × ✓ ✓ ✓ × × × 

42 × × × × × × × × × × ✓ × 

43 × × × × × × × × × × ✓ × 

44 × × × × ✓ × × × × × × × 

45 × × × × × × × × × × ✓ × 

46 × × × × × × × × × ✓ ✓ × 

47 × × × × × × × × × × ✓ × 

48 × × × × × × × × × × ✓ × 

49 × × × × × × × × × × ✓ × 

50 × × × × × × × × × × ✓ × 

 

Appendix II. Hydrophobic interaction of compound 3 with Lys 221, Arg220 and Pro 

232. 

 

 

 



218 
 

Appendix III. Binding pose and steric clashes between sulfone compounds and the 

neighboring amino acid residues in DHPS catalytic pocket (A)Compound 1, (B) Compound 3, 

(C) compound 4, (D) compound 50. The protonation  of  His257 presented in this picture is in 

Ne-H form. 

 

Appendix IV. Overlay of docking pose (pink) of sulphonamide with its crystal structure 

conformation (green) (RMSD= 1.21Å) 
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Appendix V. The relative free energy between two ligands in complex and solvent legs 

are plotted as a function of time. (A) Represents the convergence of calculated free 

energy difference when compound 50 is mutated to compound 1. (B) Represents when 

compound 50 mutated to compound 4 and (C) represents when compound 41 mutated 

to compound 1. The solvent leg and the complex leg describe the ligand atoms that are 

sampled more extensively in solvent (unbound) and complex (bound) respectively. 
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Appendix VI. The representation of the replica exchange windows of FEP simulations. 

Each replica is colour coded and plot shows how it occupy different λ window during 

the course of the simulation. (A) and (B)show the replica exchange windows of 

compound 50 to compound 1 mutation. (C) and (D) show the replica exchange 

windows of compound 50 to compound 4 mutation. (E) and (F) show the replica 

exchange windows of compound 41 to compound 4 mutation. 
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Appendix VII Timeline representation of protein ligand contact 

 

Appendix VIII RMSD: Root mean square deviation of a ligand with respect to the reference 

conformation; rGyr: the extendedness of a ligand is measured through radius of gyration; intra 

HB: Intramolecular Hydrogen Bonds; MolSA: Molecular Surface Area; PSA: Polar Solvent 

area; SASA: Solvent accessible surface area. 
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Appendix IX. Grouping the 8-MG compounds based on factor scores of descriptors by 

k-means clustering 

Cluster Compounds Number of 

compounds in 

cluster 

Number of 

compounds in 

test set 

Test Set 

Compounds 

1 6, 13, 14, 16, 17, 19, 

20, 22, 24, 26, 27, 29, 

30, 31, 55, 56, 59 

17 4 17, 26, 31, 

56 

2 1, 3, 37, 38, 43, 44, 

53, 58, 61 

9 2 37, 44, 53 

3 15, 32, 33, 36, 39, 40, 

51, 54, 57, 62 

10 2 15, 54 

4 2, 18, 21, 23, 25, 28, 

34, 35, 41, 42, 45, 46, 

47, 48, 49, 50, 52, 60 

18 5 2, 18, 34, 48, 

49 

5 3, 4, 7, 8, 9, 10, 11, 

12 

8 2 4, 8 

 

Appendix IX Statistical details of all pharmacophore hypothesis. 

Hypothesis Survival 

score 

Site 

Score 

Vector 

Score 

Volume 

Score 

BEDROC 

Score 

phaseHypo 

Score 

DDHRR.1 5.8125 0.999949 1.000 0.7988 1.000 1.3487 

DDHRR.2 5.8062 0.999956 1.000 0.7988 1.000 1.3483 

DDDHR.1 5.7900 0.999959 1.000 0.8052 1.000 1.3474 

DDHRR.5 5.7878 0.999960 1.000 0.7736 1.000 1.3472 

DDDHR.2 5.7866 0.999959 1.000 0.8052 1.000 1.3471 

DDHRR.6 5.7814 0.999950 1.000 0.7961 1.000 1.3468 

DDHRR.7 5.7809 0.999960 1.000 0.7736 1.000 1.3468 

DDHRR.8 5.7806 0.999946 1.000 0.7961 1.000 1.3468 

DDDHR.3 5.7789 0.999945 1.000 0.7961 1.000 1.3467 

DDHRR.9 5.7768 0.999954 1.000 0.8052 1.000 1.3466 

DDDHR.4 5.7750 0.999947 1.000 0.7961 1.000 1.3465 

DDHRR.10 5.7668 0.999945 1.000 0.7961 1.000 1.3460 

DDHRR.11 5.7590 0.999961 1.000 0.7736 1.000 1.3455 

DDDHR.5 5.7582 0.999952 1.000 0.8052 1.000 1.3454 

DDHRR.12 5.7581 0.999962 1.000 0.7736 1.000 1.3454 

DDDHR.6 5.7565 0.999956 1.000 0.7736 1.000 1.3453 

DDHRR.13 5.7555 0.999949 1.000 0.7849 1.000 1.3453 

DDDHR.7 5.7533 0.999951 1.000 0.7988 1.000 1.3452 

DDDHR.8 5.7525 0.999959 1.000 0.7736 1.000 1.3451 

DDDHR.9 5.7467 0.999945 1.000 0.7961 1.000 1.3448 

DDDHR.10 5.7355 0.999948 1.000 0.7849 1.000 1.3441 

DDHRR.3 5.7929 0.999956 1.000 0.8052 1.000 1.3440 

DDHRR.4 5.7914 0.999962 1.000 0.8052 1.000 1.3439 

DDDHR.11 5.7264 0.999958 1.000 0.7736 1.000 1.3435 

ADHRR.2 5.6284 0.999950 1.000 0.7961 1.000 1.3377 

ADHRR.3 5.6139 0.999952 1.000 0.7961 1.000 1.3368 
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ADHRR.5 5.5996 0.999947 1.000 0.7961 1.000 1.3359 

ADHRR.6 5.5938 0.999963 1.000 0.7616 1.000 1.3356 

ADHRR.4 5.6035 0.999958 1.000 0.8052 0.998 1.3344 

ADHRR.1 5.6314 0.999959 1.000 0.8052 0.994 1.3324 

 

Appendix X. Grouping the 8-MG compounds based on factor scores of descriptors by 

k-means clustering 

Cluster Compounds Number of 

compounds in 

cluster 

Number of 

compounds in 

test set 

Test Set 

Compounds 

1 6, 13, 14, 16, 17, 19, 

20, 22, 24, 26, 27, 29, 

30, 31, 55, 56, 59 

17 4 17, 26, 31, 

56 

2 1, 3, 37, 38, 43, 44, 

53, 58, 61 

9 2 37, 44, 53 

3 15, 32, 33, 36, 39, 40, 

51, 54, 57, 62 

10 2 15, 54 

4 2, 18, 21, 23, 25, 28, 

34, 35, 41, 42, 45, 46, 

47, 48, 49, 50, 52, 60 

18 5 2, 18, 34, 48, 

49 

5 3, 4, 7, 8, 9, 10, 11, 

12 

8 2 4, 8 

 

Appendix XI. The superposition of co-crystal (violet) and redocked (green) ligand (pteroic 

acid) at the catalytic pocket of DHPS. 
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Appendix XII . The docking scores and binding free energy (Glide Emodel) predicted by 

Glide for 8MG derivatives at the binding pocket of DHPS.  

Compound Docking Score(kJ/mol) Glide Emodel (kJ/mol) 

1 -19.2673 -192.351 

2 -12.7654 -195.878 

3 -26.9199 -247.747 

4 -37.0284 -357.795 

5 -17.9661 -235.785 

6 -14.5101 -187.749 

7 -25.5601 -232.367 

8 -34.7649 -234.099 

9 -26.9199 -247.747 

10 -18.192 -192.795 

11 -13.4976 -169.967 

12 -24.6563 -231.312 

13 -26.924 -306.482 

14 -26.6186 -282.21 

15 -36.6393 -283.797 

16 -26.7358 -265.429 

17 -27.673 -252.341 

18 -22.0622 -213.652 

19 -26.7107 -417.676 

20 -26.8571 -290.533 

21 -27.3968 -270.855 

22 -28.5767 -271.914 

23 -35.8276 -302.432 

24 -29.5307 -477.018 

25 -34.8276 -276.872 

26 -36.4761 -285.453 

27 -27.7357 -284.926 

28 -26.8362 -274.918 

29 -36.8066 -294.198 

30 -37.2627 -288.512 

31 -25.8027 -283.621 

32 -37.0451 -324.741 

33 -28.4679 -481.022 

34 -35.5724 -276.244 

35 -19.5686 -206.522 

36 -21.6396 -218.539 

37 -36.0284 -304.988 

38 -39.3965 -417.764 

39 -39.2041 -354.272 

40 -40.8777 -370.343 

41 -37.7397 -299.336 

42 -34.0536 -286.993 

43 -20.3928 -326.653 

44 -34.359 -275.186 

45 -37.2669 -304.558 

46 -34.4218 -291.834 

47 -37.5096 -304.595 

48 -37.0912 -326.452 
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49 -37.2794 -304.558 

50 -37.6142 -320.637 

51 -43.7102 -455.985 

52 -25.4052 -290.219 

53 -35.6435 -344.357 

54 -32.2169 -345.293 

55 -29.0955 -324.54 

56 -37.7522 -351.803 

57 -35.3422 -469.298 

58 -37.8401 -323.666 

59 -28.1332 -270.659 

60 -26.6019 -279.792 

61 -37.8526 -324.189 

62 -38.6476 -365.364 

 

 

Appendix XIII. The two-dimensional representation of docking pose of highly active (A) 

Compound 62, (B) Compound 61, (C) Compound 51, (D) Compound 55, (E) 

Compound S1, (F) Compound S3 and inactive (G) Compound 2, (H) Compound 11. 
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Appendix XIV The hydrophilic (blue and red colour) and hydrophobic fields (yellow colour) 

at the catalytic pocket of DHPS (5U10) in the presence of highly active compound 51.  
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Appendix XV. The geometry of the top docked compound (A) S1, (B) S2, (C) S3, (D) 

S4 and (E) S5, obtained from database screening.  
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Appendix XVI. Docking results of top five Compounds obtained from database 

screening with respect to DDHRR_1 pharmacophore model.  

Compound Name Docking Score Glide Emodel Predicted Activity 

S_324943 (S1) -32.0913 -331.62 5.87 

S_324945 (S2) -30.9198 -321.553 5.63 

S_325339 (S3) -30.1666 -374.481 5.92 

S_325321 (S4) -29.8738 -274.203 5.08 

S_196914 (S5) -22.4681 -256.278 4.75 

 

Table XVII-A.  DFT based HOMO, LUMO, energy gap of the active, inactive 8MG 

analogues and pteroic acid for 6-31G**(d,p) 

 

 

 

Compounds 

6-31G**(d,p) 

Vacuum CPCM-aqueous solvent 

EHOMO 

(eV) 

ELUMO 

(eV) 

Egap 

(eV) 

EHOMO (eV) ELUMO (eV) 

Compound 62 -5.45 -0.554 4.89 -5.447 -0.595 

Compound 61 -5.36 -0.270 5.09 -5.476 -0.262 

Compound 51 -5.57 -0.916 4.65 -5.472 -1.131 

Compound 56 -5.48 -0.646 4.83 -5.476 -0.596 

Compound 58 -5.43 -0.325 5.10 -5.505 -0.276 

Compound 6 -5.38 -0.31 5.07 -5.797 -0.564 

Compound 2 -5.58 -0.538 5.04 -5.678 -0.481 

Compound 11 -5.58 -0.10 5.48 -5.702 -0.245 

Compound S1 -5.48 -0.595 4.88 -5.566 -0.534 

Compound S3 -5.85 -0.975 4.89 -5.705 -1.261 

Pteroic Acid -5.83 -2.934 2.90 -5.94 -2.811 

 

Table XVII-B.  DFT based HOMO, LUMO, energy gap of the active, inactive 8MG 

analogues and pteroic acid for 6-311G**(d,p) basis set 

6-311G**(d,p) 

Vacuum CPCM-aqueous solvent 

Egap 

(eV) 

EHOMO (eV) ELUMO 

(eV) 

Egap 

(eV) 

EHOMO (eV) ELUMO 

(eV) 

Egap 

(eV) 

4.85 -5.916 -1.780 4.13 -6.119 -1.512 4.60 

5.20 -5.994 -1.794 4.2 -6.236 -2.001 4.23 

4.34 -6.133 -1.760 4.37 -6.001 -2.151 3.85 

4.87 -5.876 -1.397 4.47 -6.185 -1.544 4.64 

5.22 -6.176 -1.885 4.29 -6.345 -2.022 4.33 

5.23 -5.885 -0.825 5.06 -6.216 -0.903 5.31 

5.18 -6.122 -0.979 5.14 -6.312 -0.915 5.39 

5.45 -6.055 -0.879 5.17 -6.220 -1.070 5.15 
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5.03 -5.973 -1.788 4.18 -6.497 -2.245 4.25 

4.43 -6.18 -1.740 4.44 -6.672 -2.317 4.35 

3.12 -5.872 -2.965 2.90 -5.971 -3.125 2.84 

 

Appendix XVIII. The location of HOMO-LUMO on highly active (A) Compound 62, 

(B) Compound 61, (C) Compound 51, (D) Compound 58 and (E) Compound 56. 
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Appendix XIX. The location of HOMO-LUMO on highly active (A) Compound S1, 

(B) Compound S3 and (C) Pteroic acid. 
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Appendix XX. The location of HOMO-LUMO on inactive (A) Compound 2, (B) 

Compound 6 and (C) Pteroic acid. 
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Appendix XXI. Chemical reactivity descriptors of 8MG derivatives calculated 

correspond to B3LYP/6-311G*(d, p) basis set. 

Compound (ꭓ, eV)  (µ) (ղ, 

eV) 

(s, eV-1)  (ω, 

eV2) 

Dipole 

moment 

(Debye) 

62 3.815 -3.815 2.30 0.21 3.163 4.807 

 61 4.118 -4.118 2.11 023 4.018 6.498 

 51 4.076 -4.076 1.92 0.26 4.326 13.384 

56 3.864 -3.864 2.32 0.21 3.217 11.134 

58 4.178 -4.178 2.16 0.23 4.040 6.185 

S1 4.371 -4.371 2.12 0.23 4.506 11.777 

 S3 4.494 -4.494 2.17 0.23 4.650 15.520 

 6 3.559 -3.559 2.65 0.18 2.389 11.319 

2 3.613 -3.613 2.69 0.18 2.426 12.272 

11 3.645 -3.645 2.57 0.19 2.584 10.924 

Pteroic 

Acid 

4.548 -4.548 1.42 0.35 7.283 7.232 
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Appendix XXIII. The RMS average correlation for DHPS backbone bound with (A) 

Comp62, (B) Comp61, (C) Comp51, (D) CompS1, (E) CompS3 and (F) Comp 6.  

Appendix XXIV. The time evolution of RMSD profile for DHPS bound with (A) 

Compound 62, (B) Compound 61, (C) Compound 51, (D) Compound S1, (E) 

Compound S3, (F) Compound 6, (G) Pteroic acid and (H) Apo-DHPS. The black color 

represents the backbone RMSD and red color represents the ligand RMSD. 

(Simulation_batch 2) 

 



238 
 

Appendix XXV. The time evolution of RMSD profile for DHPS bound with (A) 

Compound 62, (B) Compound 61, (C) Compound 51, (D) Compound S1, (E) 

Compound S3, (F) Compound 6, (G) Pteroic acid and (H) Apo-DHPS. The black color 

represents the backbone RMSD and red color represents the ligand RMSD. 

(Simulation_batch 2) 

 

Appendix XXVI. The time evolution of distance between the surfaces of Phenylalanine 

and the aromatic rings of (A) compound 62, (B) Compound 61, (C) compound 51, (D) 

Compound S1, (E) Compound S3 and (F) Pteroic acid.  
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Appendix XXVII. The time evolution of angle between the surfaces of Phenylalanine 

190 and the aromatic rings of (A) compound 62, (B) Compound 61, (C) compound 51, 

(D) Compound S1, (E) Compound S3 and (F) Pteroic acid.  

 

Appendix XXVIII. The time evolution of distance between the guanidium of Lys 221 

and the aromatic guanine rings of (A) compound 62, (B) Compound 61, (C) compound 

51, (D) Compound S1, (E) Compound S3 and (F) Pteroic acid.  
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Appendix XXIX. The time evolution of distance between the guanidium of Arg 255 

and the aromatic guanine rings of (A) compound 62, (B) Compound 61, (C) compound 

51, (D) Compound S1, (E) Compound S3 and (F) Pteroic acid.  

 



241 
 

Appendix XXX. The two-dimensional projection of principal component 1 (PC1) and 

principal component 2 (PC2) of DHPS backbone, as the horizontal axis and vertical 

axis respectively for (A) Compound 62, (B) Compound 61, (C) Compound 51, (D) 

Compound S1, (E) Compound S3, (F) Compound 6, (G) Pteroic acid and (H) Apo-state. 

 

 
 

Appendix XXXI. Binding Free energy (kJ/mol) of the 8MG and pteroic acid at the 

DHPS binding pocket by MM/PBSA method (Sim-II) 

Compounds ∆Gbind-eff  

(kJ/mol) 

∆Gvdw  

(kJ/mol) 

∆Gele  

(kJ/mol) 

∆Gsol-pol  

(kJ/mol) 

∆GSASA  

(kJ/mol) 

Compound 62 -49.04 -152.56 -121.85 246.83 -17.64 

Compound 61 -58.56 -132.92 -139.91 228.60 -14.33 

Compound 51 -65.92 -131.66 -159.04 237.92 -17.06 

Compound 6 -25.23 -113.27 -77.83 176.78 -9.915 

Compound_S1 -61.76 -140.69 -180.11 273.21 -14.17 

Compound_S3 -76.65 -162.041 -226.65 332.754 -20.71 

Product -43.084 -114.48 -116.79 199.31 -13.02 
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Appendix XXXII. Binding Free energy (kJ/mol) of the 8MG and pteroic acid at the 

DHPS binding pocket by MM/PBSA method (Sim-III) 

Compounds ∆Gbind-eff  

(kJ/mol) 

∆Gvdw  

(kJ/mol) 

∆Gele  

(kJ/mol) 

∆Gsol-pol  

(kJ/mol) 

∆GSASA  

(kJ/mol) 

Compound 62 -51.21 -182.93 -131.22 276.65 -15.71 

Compound 61 -61.72 -145.54 -151.78 248.60 -13.00 

Compound 51 -68.31 -155.723 -169.04 274.92 -18.472 

Compound 6 -27.66 -125.99 -62.83 171.48 -10.329 

Compound_S1 -63.67 -162.69 -176.72 294.21 -18.47 

Compound_S3 -70.17 -218.94 -240.65 410.41 -20.99 

Product -46.82 -147.60 -144.22 259.81 -14.81 

 

Appendix XXXIII. The time evolution of pulling force and the distance between the 

selected vectors for initial definition of reaction coordinate. 
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Appendix XXXIV. Phytogenic tree based on the protein sequence of spike-

glycoprotein 
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Appendix XXXV. The residue wise antigenicity score predicted by (A) Emini surface 

accessibility (B) parker hydrophilicity (C) Karplus Flexibility (D) BepiPred Linear 

Epitope (E) Kolaskar & Tongaonkar Antigenicity (F) Chou-Fasman Beta-Turn of 

SARS-CoVid-2 spike protein.  
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Appendix XXXVI. The location of conformational B-cell epitopes (A) open state, (B) 

closed state. 

 

Appendix XXXVII. The Z score of (A) Vac-COVID-B, (B) Vac-COVID-T. The 

Ramachandran plot of (C) Vac-COVID-B, (D) Vac-COVID-T. 
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Appendix XXXVIII. The structural illustration of (A) antibody (PDB ID: 7B5) (B) 

MHC-I molecule (PDB ID: 2GTZ) (C) MHC-II molecule (PDB ID: 2SEB).   
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Appendix XXXIX. The RMSF profile of (A) Vac-COVID-B, (B) R1, (C) R2, (D) R3 

during MD simulation 
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Appendix XXXX. The RMSF profile of 7BZ5 associated with (A) Vac-COVID-B, (B) 

R1, (C) R2, (D) R3. In first column we showed RMSF profile of VH and in second 

column the RMSF profile of VL is depicted. 
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Appendix XXXXI. The time evolution of hydrogen bond between 7BZ5 and (A) 

Vac-COVID-B, (B) R1, (C) R2 (D) R3.  

 

 

Appendix XXXXII-A. The occupancy of the hydrogen bonds formed between the 

Vac-COVID-B and 7BZ5 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 92ASN(D21) 71GLN( O) 17.9 

2 92ASN(D21) 53PRO( O) 11.3 

3 52TYR(HH) 54GLY( O ) 13.1 

4 0ASP(H1) 76GLY( O ) 63.9 

5 58TYR(HH) 51PRO( O ) 69.7 

6 33TYR(HH) 56THR( O ) 11.3 

7 97TYR(HH 54GLY( O ) 59.4 

8 88ARG(H21) 0ASP(OD2) 65.1 

9 88ARG(H21) 0ASP(OD1) 25.3 

10 88ARG(H11) 0ASP(OD1) 63.9 

11 86ARG(H11) 0ASP(OD2) 16.1 

12 86ARG(H11) 0ASP(OD1) 10 

13 86ARG(H ) 0ASP(OD1) 12.1 



250 
 

14 80THR(HG1) 28GLY( O ) 10.5 

15 80THR(HG1) 27GLN(OE1) 24.2 

16 79GLN(E21) 30SER(OG ) 16 

17 79GLN(E21) 28GLY( O ) 13.1 

18 78THR(HG1) 27GLN(OE1) 10.7 

 

Appendix XXXXII-B. The occupancy of the hydrogen bonds formed between the 

R1and 7BZ5 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 53SER(HG) 81ASN(OD1) 12 

2 33TYR(HH) 138ASP(OD2) 10.3 

3 33TYR(HH) 81ASN(OD1) 11.8 

4 137ASN(D21) 33 TYR(OH) 32.6 

 

 

Appendix XXXXII -C. The occupancy of the hydrogen bonds formed between the 

R2and 7BZ5 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 Gly28 Tyr449 20.2 

2 Tyr32 Ser494 51.6 

3 Asn92 Tyr453 99.4 

4 Tyr58 Arg403 69.3 

5 Tyr52 Asp405 18.9 

6 Tyr33 Lys417 21.4 

 

Appendix XXXXII -D. The occupancy of the hydrogen bonds formed between the R3 

and 7BZ5 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 94TYR(HH 543PHE(O ) 14.2 

2 56SER(HG 564GLN(OE1) 55.9 

3 56SER(H) 571ASP(OD1) 14.7 

4 55GLY(H) 571ASP(OD1) 26.3 

5 54GLY(H) 571ASP(OD1) 11.7 

6 54GLY(H) 571ASP(OD2) 41.1 
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7 33TYR(HH 571ASP(OD1) 31.9 

8 567ARG(H21) 571ASP(OD2) 21.7 

9 567ARG(H21) 98GLU(OE2) 31 

10 567ARG(H11) 98GLU(OE1) 32.8 

11 567ARG(H11) 98GLU(OE2) 22.6 

12 564GLN(E21) 98GLU(OE1) 17.6 

13 547THR(HG1) 31SER( O) 38.3 

14 544ASN(H ) 94TYR(OH ) 18.7 

15 528LYS(H1) 92ASN( O ) 51.6 

16 528LYS(H1) 27GLN(OE1) 20.8 

17 528LYS(H1) 0ASP( O) 14.6 

18 56SER(HG) 0ASP(OD1) 11.7 

 

Appendix XXXXIII. The free energy landscape of (A) Vac-COVID-B, (B) R1, (C) 

R2, (D)R3 
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Appendix XXXXIV. The time evolution of the distance between the surface of the 

peptides and the platform formed by antiparallel β-sheet of peptide presenting groove 

of (A) HLA-A*02:01, (B) HLA-A*24:01, (C) HLA-B*40:01, (D) HLA-B*58:01 (E) 

DRB1*04:01, (F) DRB1*07:01 

 

Appendix XXXXV. The time evolution of solvent accessible surface area (SASA) of 

peptide epitopes associated with (A) HLA-A*02:01, (B) HLA-A*24:01, (C) HLA-

B*40:01, (D) HLA-B*58:01 (E) DRB1*04:01, (F) DRB1*07:01. 
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Appendix XXXXVI. The RMSF profile of the peptide presenting groove of (A) HLA-

A*02:01, (B) HLA-A*24:01, (C) HLA-B*40:01, (D) HLA-B*58:01 (E) DRB1*04:01, 

(F) DRB1*07:01. 
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Appendix XXXXVII. The time evolution of hydrogen bond between the peptide epitopes and 

(A) HLA-A*02:01, (B) HLA-A*24:01, (C) HLA-B*40:01, (D) HLA-B*58:01 (E) 

DRB1*04:01, (F) DRB1*07:01. 
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Appendix XXXXVIII-A. he occupancy of the hydrogen bonds formed between 

peptide epitope RDIADTTDAV and HLA*-02:01 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 163THR(HG1) 2 ARG(O ) 20.7 

2 147TRP(HE1) 9 ASP(OD2) 14.7 

3 147TRP(HE1) 9 ASP(OD1) 12.4 

4 146LYS(HZ1) 9 ASP(O ) 10.1 

5 146LYS(HZ1) 9 ASP(OD2) 15.3 

6 146LYS(HZ1) 9 ASP(OD1) 12.4 

7 143THR(HG1) 9 ASP(OD1) 10 

8 99TYR(HH) 3ASP( O ) 38 

9 73THR(HG1) 5 ALA(O ) 41.2 

10 66LYS(HZ1) 3 ASP(OD2) 19.1 

11 8THR(HG1) 77 ASP(OD1) 28.5 

12 2ARG(H21) 166GLU(OE2) 17.2 

13 2ARG(H21) 166GLU(OE1) 11.9 

14 2ARG(H11) 166GLU(OE1) 13 

 

Appendix XXXXVIII -B. he occupancy of the hydrogen bonds formed between 

peptide epitope TKRFDNPVLPF and HLA*-24:02 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 147TRP(HE1) 10LEU( O ) 91.6 

2 146LYS(HZ1) 11PRO( O ) 30.1 

3 146LYS(HZ1) 10LEU( O ) 28.1 

4 84TYR(HH) 12PHE(OC1) 91 

5 83ARG(H21) 12PHE(OC2) 46.1 

6 83ARG(H21) 12PHE(OC1) 78 

7 83ARG(H11) 12PHE(OC2) 58.8 

8 83ARG(H11) 12PHE(OC1) 44.1 

9 77ASN(D21) 9VAL( O ) 15.2 

10 12PHE(H ) 143THR(OG1) 87.6 

11 7ASN(D21) 69ALA( O ) 12.6 

12 3LYS(HZ1) 62GLU(OE2) 26.1 

13 3LYS(HZ1) 62GLU(OE1) 26 
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14 3LYS(H ) 62GLU(OE2) 11.8 

 

 

Appendix XXXXVIII -C. The occupancy of the hydrogen bonds formed between 

peptide epitope VRFPNITNL and HLA-B*40:01 during MD. 

 

Pair ID Donor Acceptor Occupancy 

(%) 

1 159TYR(HH) 5PRO(O) 80.8 

2 146LYS(HZ1) 10 LEU(OC2) 18.9 

3 146LYS(HZ1) 10 LEU(OC1) 32.2 

4 116TYR(HH) 9ASN(OD1) 18.8 

5 97ARG(H21) 7 ILE(O ) 28.3 

6 97ARG(H11) 7 ILE(O ) 51.7 

7 77SER(HG) 10LEU(OC2) 43.1 

8 77SER(HG) 10LEU(OC2) 29.6 

9 73THR(HG1) 9 ASN(OD1) 20.9 

10 59TYR(HH) 2VAL( O ) 25.6 

11 8THR(H ) 155GLN(OE1) 20.9 

12 3ARG(H21) 63 GLU(OE2) 40.1 

13 3ARG(H21) 63 GLU(OE1) 54.2 

14 3ARG(HE) 63 GLU(OE1) 56.3 

15 3ARG(HE) 63 GLU(OE1) 23.3 

 

 

Appendix XXXXVIII -D. The occupancy of the hydrogen bonds formed between 

peptide epitope VFAQVKQIY and HLA-B*58:01 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 147TRP(HE1) 9ILE(O) 84.8 

2 146LYS(HZ1) 10TYR(OC2) 59.9 

3 146LYS(HZ1) 10TYR(OC2) 56 

4 143THR(HG1) 10TYR(OC2) 83 

5 97ARG(H21) 5GLN(OE1) 13.7 

6 84TYR(HH) 10TYR(OC2) 89.9 

7 77ASN(D21) 8GLN(O) 87.8 

8 66ASN(D21) 5GLN(OE1) 11.6 
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9 10TYR( H ) 116SER(OG) 26 

10 8GLN(E21) 116SER(OG) 14.7 

11 8GLN(E21) 114ASP(OD2) 11 

12 8GLN(E21) 114ASP(OD1) 12 

13 8GLN(E21) 77ASN(OD1) 23.2 

14 5GLN(E21) 9TYR(OH) 11.8 

 

Appendix XXXXVIII -E. The occupancy of the hydrogen bonds formed between 

peptide epitope NTLVKQLSSNFGA and DRB1*04:01 during MD. 

 

Pair ID Donor Acceptor Occupanc

y (%) 

1 82ASN(D21) 6 LYS(O ) 95.8 

2 52ALA(H ) 2ASN(O ) 86.3 

3 51PHE(H ) 2ASN(O ) 32.8 

4 9GLN(E21) 7 GLN(OE1) 43.5 

5 7GLN(E21) 55 GLU(O ) 13.3 

6 7GLN(E21) 9 GLN(OE1) 52.3 

7 6LYS(HZ1) 77 THR(O ) 27.8 

8 6LYS(H ) 82ASN(OD1) 96 

9 3THR(HG1) 48 PHE(O ) 15 

10 2ASN(H1) 52ALA( O ) 87.7 

11 2ASN(H1) 49GLY( O ) 67.7 

 

 

Appendix XXXXVIII -F. The occupancy of the hydrogen bonds formed between 

peptide epitope SLLIVNNATNVVIK and DRB1*07:01 during MD. 

 

Pair ID Donor Acceptor Occupancy (%) 

1 82ASN(D21) 4 LEU(O ) 94.1 

2 81HIS(HE2) 2 SER(O ) 82.6 

3 71ARG(H21) 8 ASN(OD1) 19.6 

4 71ARG(H21) 7 ASN(O ) 57.4 

5 71ARG(HE) 7 ASN(O ) 10.1 

6 62ASN(D21) 8 ASN(O ) 19.9 

7 62ASN(D21) 7 ASN(OD1) 12.1 

8 62ASN(D21) 6 VAL(O ) 17.5 
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9 10THR(HG1) 70 GLN(OE1) 39.6 

10 10THR(H ) 70 GLN(OE1) 37.1 

11 8ASN(D21) 62ASN(O ) 30 

12 8ASN(H ) 62 ASN(OD1) 37 

13 7ASN(D21) 62 ASN(OD1) 14.1 

14 4LEU(H ) 82 ASN(OD1) 98.5 

15 3LEU(H ) 53SER( O ) 98 

16 2SER(HG) 55GLU(OE2) 36.3 

17 2SER(HG) 55GLU(OE1) 30.2 
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Appendix XXXXIX. The free energy landscape of the peptide epitopes associated with 

(A) HLA-A*02:01, (B) HLA-A*24:01, (C) HLA-B*40:01, (D) HLA-B*58:01 (E) 

DRB1*04:01, (F) DRB1*07:01 
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Appendix XXXXX. The RMSD profile of (A) Vac-COVID-B, (B) Vac-COVID-T. 

The radius of gyration profile of (C) Vac-COVID-B, (D) Vac-COVID-T. The time 

evolution of native hydrogen bond for (E) Vac-COVID-B, (F) Vac-COVID-T.  
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Appendix XXXXXI. The residue wise decomposition of free energy between 7BZ5 

and (A) Vac-COVID-B, (B) R1, (C) R2, (D) R3. 
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Appendix XXXXXII. The residue wise decomposition of free energy between the 

peptide epitope and (A) HLA-A*02:01, (B) HLA-A*24:01, (C) HLA-B*40:01, (D) 

HLA-B*58:01 (E) DRB1*04:01, (F) DRB1*07:01 

 

 

 



263 
 

Appendix XXXXXIII. The graph shows the thermodynamic equilibrium of the 

systems. The graphs in (A, B, C) show the time evolution of Temperature, (D,E,F) show 

the time evolution of density, (GHI) shows the  time evolution of the potential energy 

of the system. 
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Appendix XXXXXIV. The histograms of each umbrella sampling window to generate 

the PMF for dimer dissociation at the (A) absence and (B) presence of NQDA. 
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Appendix XXXXXV. The 2D distribution of torsional angles (φ/ ψ) for (A) terminal 

residues (Gly127 [black] and Gly 131 [maroon], Ser132 [orange]) and (B) the middle 

residues (Tyr128 [red], Leu129 [pink], Met130[blue]) of human prion peptide. The 

region for helix, sheet, and random coils are colored in red, green, and black 

respectively.  
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Appendix XXXXXVI. The VAMP-2 scores for three different molecular descriptors 

such as backbone torsion angles, atom position, and atom distances for human prion 

peptide at the different lag times (τ) for (A) GROMOS-54a7, (B) AMBER99SB-ILDN 

and (C) CHARMM-36m force-fields. The standard deviation is calculated to estimate 

the errors and is represented in a straight line.  
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Appendix XXXXXVII. The sample densities (left) of the cumulative trajectories of 1 

μs correspond to the first two TICA components of prion peptide and the implied time 

scale plots (right) for different MSMs at different lag times. The slow and faster 

dynamics in the ITs plot are distinguished by the black line. 
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Appendix XXXXXVIII. The Chapman-Kolmogov validation for MSM is built for the 

prion peptide monomer using the lag time of 2 ns and five microstates for the 

GROMOS-54a7 force field. 
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Appendix XXXXXIX. The Chapman-Kolmogov validation for MSM is built for the 

prion peptide monomer using the lag time of 2 ns and five microstates for the 

AMBER99SB-ILDN force field. 
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Appendix XXXXXX. The Chapman-Kolmogov validation for MSM is built for the 

prion peptide monomer using the lag time of 2 ns and five microstates for the 

CHARMM-36m force field. 
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Appendix XXXXXXI. The representative peptide structure corresponds to every five 

Markov states in the GROMOS-54a7 force field (top). The carbon, nitrogen, oxygen, 

sulfur, and hydrogen atoms are colored in cyan, blue, red, yellow, and white. The 2D 

map for intrapeptide contacts of human prion peptide corresponds to each Markov state 

(bottom). The extent of the contract or the contact probability between the residues is 

represented by color code. The diagonal line of the contact map has light color to 

represent self-contact.  
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Appendix XXXXXXII. The representative peptide structure corresponds to every five 

Markov states in the AMBER-99sb-ILDN force field (top). The carbon, nitrogen, 

oxygen, sulfur, and hydrogen atoms are colored in cyan, blue, red, yellow, and white. 

The 2D map for intrapeptide contacts of human prion peptide corresponds to each 

Markov state (bottom). The extent of the contract or the contact probability between 

the residues is represented by color code. The diagonal line of the contact map has light 

color to represent self-contact.  
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Appendix XXXXXXIII. The representative peptide structure corresponds to every five 

Markov states in the CHARMM-36m force field (top). The carbon, nitrogen, oxygen, 

sulfur, and hydrogen atoms are colored in cyan, blue, red, yellow, and white. The 2D 

map for intrapeptide contacts of human prion peptide corresponds to each Markov state 

(bottom). The extent of the contract or the contact probability between the residues is 

represented by color code. The diagonal line of the contact map has light color to 

represent self-contact.  
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Appendix XXXXXXIV. The average Diffusion Coefficient (D)of prion peptide 

monomers in three different force fields with corresponding errors from five 

independent replicas.   

Force-Field D (cm2/s) ×105 

GROMOS-54a7 0.1326±0.04 

AMBER99SB-ILDN 0.2695±0.09 

CHARMM-36m 0.4022±0.02 
 

Appendix XXXXXXV. Time evolution of inter-peptide side-chain and main-chain or 

backbone contact at 20 mM peptide concentration. 
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Appendix XXXXXXVI. Time evolution of maximum populated cluster at (A) 300K 

(black), (B) 310K (red) in GROMOS-54a7 force field. 

 

 

Appendix XXXXXXVII. The time evolution of peptide clusters in (A) GROMOS 

54a7 [20 mM, 300K], (B) AMBER 99SB ILDN [30 mM, 300K] and (C) CHARMM 

36m [50 mM, 300K]. 
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Appendix XXXXXXVIII. The cluster size distribution of peptide self-assembly 

simulation containing (A) more than 16 prion peptide monomers. (B) the second 

simulation replica for G13 system. 

 

 

Appendix XXXXXXIX. The coil percentage in three different force fields during 

self-assembly of prion peptide. 
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Appendix XXXXXXX. (A & B) The steric zipper (C) secondary structure profile of 

the prion peptide aggregate [50 mM, 300] after 1 μs simulation in GROMOS-54a7 

force-field. (D) The Cluster Size distribution of maximum populated cluster size at 50 

mM peptide concentration. 
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Appendix XXXXXXXI. The secondary structure of the prion peptide mini-fibril after 

1 μs simulation.  

 

 

Appendix XXXXXXXII.  The time evolution of (A) solvent accessible surface area 

and (B) inter peptide hydrogen bond of mini-fibril in three force-fields. 
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Appendix XXXXXXXIII. Inter-peptide Hydrogen bonds that have more than 70% 

Occupancy during the minifibrill simulations in three force fields. 

GROMOS 54a7 
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AMBER 99SB ILDN 

 
CHARMM 36m 
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Appendix XXXXXXXIV. The Implied time scale plot of MSM mode corresponds to 

oligomer simulation (A) GROMOS-54a7, (B) AMBER-99SB-ILDN, (C) CHARMM-

36m. 
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Appendix XXXXXXXV. Chapman-Kolmogorov validation for Markov State Model 

for three microstates in the absence of NQDA. 

 

Appendix XXXXXXXVI. The Implied time scale plot of MSM mode corresponds to 

oligomer simulation for (A) GROMOS-54a7, (B) AMBER-99SB-ILDN, (C) 

CHARMM-36m. 
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Appendix XXXXXXXVII. The Implied time scale plot of the MSM model 

corresponds to oligomer simulation for (A) GROMOS-54a7, (B) AMBER-99SB-

ILDN, (C) CHARMM-36m in the presence of NQDA. 
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Appendix XXXXXXXVIII. The RDF of peptide heavy-atoms in the presence or 

absence of NQDA for (A) GROMOS-54a7 [20 mM], (B) AMBER-99SB-ILDN [30 

mM], (C) CHARMM-36m [50 mM] at 300K. 
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Appendix XXXXXXXIX. The coordination number (CN) of peptides and NQDA 

around the COM of peptides. The notations P-P, (P-P) NQDA, (P-NQDA), P-W, (P-

W)NQDA represents the peptide-peptide and peptide water coordination number in the 

absence and presence of NQDA respectively. 

Force-field CNP-P CN(P-P)NQDA CN(P-NQDA) 

GROMOS 54a7 

[20 mM] 

4 1 5 

AMBER 99SB 

ILDN [30 mM] 

3 1 4 

CHARMM 36m 

[50 mM] 

2 1 4 

 

  

 

Appendix XXXXXXXX. The decomposition of peptide-peptide and peptide-sol 

interaction energy with standard error (kJ/mol) for different systems corresponds to the 

last 100 ns of each simulation. 

System Peptide-

peptide 

electrostatic 

Peptide-

peptide van 

der Waals 

Peptide-water 

electrostatic 

Peptide-water 

van der Waals 

GROMOS 54a7 

G1 [10 mM, 

300K] 

-26497.8±160 -1713.31±70 -10969.9±380 -519.84±58 

G2 [10 mM, 

350K] 

-26998.7±210 -1943.22±120 -9169.3±490 -263.38±100 

G3 [10 mM, 

375K] 

-26664.8±270 -1804.98±110 -9283.4±490 -356.95±82 

G4 [20 mM, 

300K] 

-26924.7±270 -1880.87±120 -10093.9±620 -398.24±86 

G5 [50 mM, 

300K] 

-27177.6±160 -1985.36±80 -9616.78±350 -305.12±70 

G6 [10 mM, 

300K] 

(1:2 NQDA) 

-25744.1±120 -1136.24±20 -10739.7±540 -481.66±57 

G7 [10 mM, 

350K] 

(1:2 NQDA) 

-25358.4±60 -920.62 ± 30 -10156.7±250 -167.62±37 

G8 [20 mM, 

300K] 

(1:2 NQDA) 

-25883.0±20 -1238.17±10 -10239.9±200 -218.61±46 

G9 [10 mM, 

375K] 

-25915.9±140 -1186.23±50 -10009.5±200 -342.53±41 
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AMBER 99SB ILDN 

A1[25 mM, 

300K] 

-

23783.37±210 

-1818.54±140 -12634.2±320 -964.03±56 

A2[25 mM, 

320K] 

-24014.84±67 -1854.48±48 -11795.8±350 -907.09±78 

A3[25 mM, 

330K] 

-24033.4±57 -1871.23±21 -11450.4±260 -861.28±63 

A4 [30 mM, 

300K] 

-23752.1±220 -1813.71±150 -12639±530 -953.072±52 

A5[40 mM, 

300K] 

-24213.9±310 -2080.89±75 -11662.2±340 -753.14±05 

A6 [50 mM, 

300K] 

-24974.72±10 -2197.6±67 -11021.45±05 -698.64±42 

A7 [30 mM, 

300K] 

(1:2 NQDA) 

-23678.78±30 -1587.41±08 -13789.89±200 -656.89± 

CHARMM 36m 

C1[45 mM, 

300K] 

-22643.6±180 -1296.59±82 -13655.6±530 -1218.18±80 

C2[45 mM, 

320K] 

-22735.2±300 -1465.89±89 -12190.4±580 -1216.07±82 

C3 [45 mM, 

330K] 

-22698.3±210 -1446.48±78 -12076.7±480 -1195.69±74 

C4 [30 mM, 

300K] 

-22340.3±190 -1415.86±47 -12808.3±390 -1237.95±45 

C5 [40 mM, 

300K] 

-22503.5±290 -1457.3±96 -13058.3±560 -1282.28±98 

C6 [50mM, 

300K] 

-22555.6±260 -1568.81±120 -13680.7±560 -706.199±210 

C7[50 mM, 

300K] 

(1:2 NQDA) 

-21524.9±250 -1296.59±82 -13655.6±530 -1463.93±80 
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Appendix XXXXXXXXI. The distribution of angles between the tyrosine rings during 

the aggregation process.  

 

Appendix XXXXXXXXII.  The radial distribution of phenol rings of Tyrosine 

residues at (A) 300K, (B) 350 K, and (C) 20 mM peptide concentration in the presence 

(red) and absence of NQDA (back) in GROMOS force-field. 
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Appendix XXXXXXXXIII. The transition path between metastable states of dimer 

simulation in (A) absence or (B) presence of NQDA. 

 

Appendix XXXXXXXXIV.  The average force profile with respect to the simulation 

time scale for monomer dissociation from peptide dimer in the presence or absence of 

NQDA. 
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Appendix XXXXXXXXV. The representative potential of mean force (PMF) graph 

for dimer dissociation in the presence of NQDA for the conformation1, conformation2, 

and conformation3.  
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