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Abstract—Latency is an essential factor for measuring 
effectiveness of realtime applications. An effective realtime 
system aims at guaranteeing a practical deadline for a task, 
rather than improving throughput of the system. A subset of 
these applications includes the ones, which deploy realtime 
operating systems (RTOS). Linux RTOS has varied 
applications, few of them being at business trading centre, 
submarines, missile launching systems, satellite navigation 
system, etc. Considering the criticality of these systems, its top 
most priority that these RTOS should be almost near to 
perfection as they form the core. Hence, these systems need to 
be tested thoroughly, before they are applied anywhere. 
SystemTap is one such scripting tool which extracts 
information from a running kernel, which is unlike the 
traditional method of using printks. We aim at testing the 
performance of given RTOS by writing SystemTap scripts for 
various scenarios(provided by RTOS development teams) that 
arose as a result of problems faced in the past. 
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I. INTRODUCTION 
Realtime operating systems are characterized by the 

property that they ensure a bounded latency for a process, 
not providing high throughput necessarily. They generally 
use specialized scheduling algorithms whose aim is to 
ensure quick response to a change in process’s priority 
rather than focusing on the amount of work the processes 
perform. One such example of the realtime operating system 
is the Linux realtime operating system which gains soft 
realtime characteristics after the CONFIG_PREEMPT_RT 
patch is applied to it. The philosophy of this patch is to 
minimize the amount of kernel code that is non-preemptible, 
while also minimizing the amount of code that must be 
changed in order to provide this additional preemptibility. In 
particular, critical sections, interrupt handlers, and interrupt-
disable code sequences are normally preemptible. The 
CONFIG_PREEMPT_RT patch leverages the SMP 
capabilities of the Linux kernel to add this extra 
preemptibility without requiring a complete kernel rewrite. 

The features which CONFIG_PREEMPT_RT patch provides 
are preemptible critical sections, preemptible interrupt 
handlers, preemptible "interrupt disable" code sequences, 
priority inheritance for in-kernel spinlocks and semaphores, 
deferred operations and latency-reduction measures. 

We brief about some of the important subsystems of the 
kernel for which we’ll be writing scripts. 

A. The O(1) Scheduler 
Prior to the 2.6.23 kernel [5], O(1) scheduler was 

implemented, which was O(1) in  time. 
1) How it works?? : Each CPU has its own runqueue, 

and it is a priority list, 140 priorities (100 real time tasks, 40 
user tasks). Each priority has a list, in which processes of the 
same priority gets added in FIFO manner. To find which job 
is to be scheduled next, CPU finds out “which bit is set 
next” in the priority array. Each CPU has two arrays, active 
and expired. The active array of lists has all processes that 
have been selected from swap space to run. When a running 
process exceeds its allotted time slice, it is pushed into 
expired runqueue, and, its priority and future time slice is 
recalculated. 

2) Other features:  Load-balancing and dynamic task 
prioritization, to prevent a task from hogging the CPU.  

B. The Completely Fair Scheduler (CFS) 
CFS uses time-ordered Red-Black trees for 

implementation [6]. As these trees are balanced, we get an 
O(logn) guaranteed time, which is impressive even in worst 
cases of implementation.  

Major features and policies: 
• Modular scheduler introduced the scheduling 

classes in the kernel 
• Identifying process with “gravest need” for CPU 
• Group scheduling, helps in imparting fairness to 

group of jobs, rather than jobs themselves. 
It uses an appeasement policy that guarantees fairness. 

Whenever a task enters a runqueue, its wait_runtime starts 
incrementing to count the payoff that needs to be done when 
it gets scheduled, depending upon the number of processes 
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in the runqueue as well as the priorities of the tasks. As soon 
as it is scheduled, its wait_runtime value starts decrementing 
till other process becomes its left-most child. At this time, 
it’s preempted. Thus, CFS tries to achieve the ideal situation 
by making wait_runtime to become zero. 

C. Static Probe Points 
  ftrace starts given command and according to tracing 

script given via command-line arguments; it traces its 
system calls, symbol entry points in general, and possibly 
other events as well. It uses the Frysk framework to 
implement tracing. With kernel markers, the placing of 
probe points is easy: 
        #include <linux/marker.h> 
        trace_mark(name, format_string, ...);   

The name is a unique identifier, which is used to access 
the probe.  

Code which wants to hook into a trace point must call: 
int marker_probe_register(const char *name, const 
char *format,  marker_probe_func *probe,  void 
*pdata); 

D. Futexex 
A futex (short for "fast userspace mutex") is a Linux 

construct that can be used to implement basic locking, or as 
a building block for higher-level locking abstractions such as 
semaphores and POSIX mutexes. 

Futex operations are carried out almost entirely in 
userspace; the kernel is only involved when a contended 
case requires arbitration. This allows locking primitives that 
use futexes to be very efficient: since most operations do not 
require arbitration between processes, most operations can 
be performed without needing to perform (relatively 
expensive) system calls.  
E. RTMutex 

RT-mutexes extend the semantics of simple mutexes by 
the priority inheritance protocol. A low priority owner of a 
rtmutex inherits the priority of a higher priority waiter until 
the rtmutex is released. If the temporarily boosted owner 
blocks on a rtmutex itself, it propagates the priority boosting 
to the owner of the other rtmutex it gets blocked on. The 
priority boosting is immediately removed once the rtmutex 
has been unlocked.  

This approach allows shortening the block of high-
priority tasks on mutexes which protects shared resources. 
RT-mutexes are optimized for fastpath operations and have 
no internal locking overhead when locking an uncontended 
mutex or unlocking a mutex without waiters.  

II. LITERATURE REVIEW 
   To find out whether problems involving any of the 

above subsystems have occurred, we need introspection of a 
running kernel. Thus, there is a need of a tool which should 
provide proper diagnostic information to the user/tester, so 
that finding the solution to a problem becomes easier.    
SystemTap is one such tool. It provides an infrastructure to 
gather a lot of diagnostic information about a running Linux 
system as explained in [2].  

Until SystemTap, in order to gather information from the 
running Linux system, there used to be a need for the 
developer to go through the tedious and disruptive 
instrument, recompile, install, and reboot sequence as 
described in [1]. The process is time consuming and requires 
in-depth knowledge of multiple subsystems. SystemTap uses 
dynamic instrumentation to make this same level of data 
available without the need to modify kernel source or 
rebuild it (except for the case where static probe points are 
used). It delivers this data via a powerful scripting facility 
which works in following stages: parsing script and 
reporting syntactical errors, elaborating output using 
standard tapset libraries, translation into a C file, 
compilation into a kernel module, loading generated module 
into running kernel and displaying output/error/skipped 
probes etc. Upon exit, the loaded module is removed from 
the running kernel. 

This flow asserts that script gets converted to a kernel 
module, and loaded into the kernel. Thus we need not reboot 
the system, also avoiding tracing the log files (unlike what 
[3] does using printk). 

Existing tools like iostat, vmstat, top and oprofile [1],[3] 
are valuable for understanding certain types of performance 
problems, but there are many kinds of problems, as 
discussed by [4], that they don’t readily expose, some of 
them being: 

1) Interactions between applications and operating 
system 

2) Interactions between processes 
3) Interactions between kernel subsystems 
4) Problems that are obscured by ordinary behavior 

and require examination of an activity trace 
Often these problems are difficult to reproduce in a test 

environment, making it desirable to have a tool that is 
sufficiently flexible, robust and efficient to be used in 
production environments. These scenarios further motivate 
our work on SystemTap. 

III. PROBLEM STATEMENT AND ITS SCOPE 
The work involves verifying that SystemTap functions 

properly on real-time kernel, fixing problems in SystemTap 
or kernel, if any, that prevents SystemTap from functioning, 
understanding the working of real-time kernel, 
understanding typical functionality, latency and performance 
problems faced on real-time kernel, designing tapsets for 
various such scenarios, testing the written patches to confirm 
the information collected is useful and finally publishing 
these tapsets for use by Linux community. 
We worked on following scenarios: 

1) Print details (arguments) of all the futex system 
calls a task makes. In case any of the futex syscalls 
returns an error, catch the error and print a warning 
message. 

2) Capture information on tasks being migrated from 
one CPU to another (with the task pid or comm 
being passed as parameter). Migration is one of the 
sources of latencies. 
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3) Gather information on all preemptions suffered by 
a particular task. 

4) Information on how much time a task spends 
waiting on the runqueue (in runnable state, waiting 
for CPU). 

5) Collect all relevant information on all the priority 
boosting and de-boosting that a particular task 
went through (due to PI mutexes).  

6) Locking statistics (time spent spinning, sleeping, 
etc). Since mutex code is in Systemtap blacklist, so 
a static trace-point based script. 

7) Capture information on signals that are missed by 
any task (missed wakeups, for example). There 
had been quite a few issues in the past which were 
due to tasks missing wakeups. 

8) rtTop command that gives information on the 
running RT tasks (cpu, preemptions, total latencies, 
etc.). 

9) Something like a latencyTop that gives 
information on the various latency sources. 

Importance of problems holds from the very fact that the 
problem scenarios have been an issue of concern for the 
realtime development team. Example, in case of capturing 
information for missed signals: missed signals are those 
which are missed by the recipient process, such as missed 
wake up call. So, if a high priority process is sleeping and is 
waiting on a signal, and if that signal is missed, then 
unwanted latency comes into frame as the process continues 
to sleep.  

So, with the help of our script, we shall help in tracing all 
these issues and aim to provide useful and relevant 
information to the user so that the area of concern is 
specified.  

IV. IMPLEMENTATION DETAILS 
The methodology used to solve the problem involved 

two steps: 
A) Setting up of the RT Kernel and SystemTap:  
  1) Installation of Real-time kernel: Versions:  

• linux-2.6.26.5 
• Real time patch patch-2.6.26.5-rt9 

  2)   Getting SystemTap to run:  
       i) Install SystemTap package 
       ii) Kernel Support: Install linux-image-debug-generic 
       iii) Also, create a symlink for vmlinux in /lib/modules 
#   sudo ln -s /boot/vmlinux-debug-$(uname -r)  
     lib/modules/$(uname- r)/vmlinux 
       iv) Devel environment: Kernel headers and gcc are 
needed for module compilation. libcap-dev is needed for 
SystemTap packages >=0.61 

3)   Compiling the kernel for static markers: enable the 
ACTIVATE_MARKERS option in the config file for the 
kernel. 

B) Scripting Work:  Work corresponds to problem 
scenarios described in chapter 3. 

1) Script 1: Probe point is syscalls.futex. We begin by 
initializing various futex operations into an array (e.g. 

operation =0 means FUTEX_WAIT, taken from futex.h in 
the kernel source). For each system call, a flag is indexed by 
the address of a futex. So, if the futex at a particular address 
has been grabbed, the flag shows a truth value, causing 
contention for others who want to grab the same futex lock. 
In return path, we check whether there’s an error in return 
path or not and print the error message along with the reason 
of error. 

2) Script 2: Probe point is the function “__migrate_task” 
in the sched.c file. This requirement is to print migration 
status. 4 different cases may happen, which are: 
    i) Target cpu may be offline, resulting in no migration. 
    ii) Process’s affinity of cpu doesn’t have flag set for 
target cpu. 
    iii) Task has already migrated due to pull_task called by 
the target cpu. 
    iv) Successful migration, as all of above didn’t happen.  

We use 4 different markers for these 4 conditions which, 
correspondingly, are: 

1) __migrate_task_cpu_offline 
2) __migrate_task_affinity_changed 
3) __migrate_task_already_moved 
4) migrate_task_done 

We also print the kernel backtrace as extra information. 
The script has been tested by manually migrating a task by 
changing its affinity using the taskset command. 

3) Script 3: Probe point is context_switch function, 
before the call to switch_to function. Whenever the 
context_switch function gets called, the control passes over 
the static marker placed within the function and the handler 
of our script gets executed. The script initializes various 
states of transition (TASK_RUNNING, 
TASK_INTERRUPTIBLE, etc) which has been taken from 
include/sched.h. Since context switches are very frequent, 
we display the statistics of context switch that occurred in 
the past 1 millisecond using a timer probe.  

4) Script 4:.There are 4 functions of interest for this 
script in the scheduler, which are:  

i) activate_task – Puts a task into the runqueue. 
ii) deactivate_task – Moves a task out of runqueue. 
iii) context_switch – Gives information on which pair 

of tasks are being scheduled in/out. 
iv) finish_task_switch – It performs cleanup functions 

after context switch. If a task is in runnable state, 
after being context switched, it places it in 
runqueue again. 

We probe above 4 functions and make use of 
gettimeofday_us() function to return entry and exit time of 
runqueue, using which we can find the difference, which is 
our required result. 

5) Script 5: Probe point is __rt_mutex_adjust_prio() 
which gets called while any adjustment to priority of a 
process is to be done. It calls rtmutex_getprio() function to 
get new priority of a task. This function alters the priority, 
hence, if the return value is greater than the previous normal 
priority of the task, then a boosting of the priority has taken 
place, else if it is lesser then deboosting. 
6) Script 6: We used 3 static markers here:  
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i) rtmutex_slowlock probes rt_mutex_slowlock call 
to schedule_rt_mutex. 

ii) rtspinlock_slowlock probes  rt_spin_lock_slowlock 
call to schedule_rt_mutex  

iii) __futex_wait probes schedule done due to wait on 
futex.  

In above 3 markers, we note the time of call and set flags. 
When the try_to_wake_up() function is called, we find the 
reason of call from the flag for a particular process and find 
the delta time spent. When do_exit() function is called for a 
thread, we print its sleep statistics. 

7) Script 7: Probe point is signal.send which runs 
whenever a signal is sent to a process. It probes function 
specific_send_sig_info() in the signal.c file. From here we 
are able to extract information related to the sender process, 
receiver process and the signal sent. We put the data 
obtained into the respective associative arrays. Other 
associative arrays stores information about the process and 
the signal. Other probe point is a static marker 
getsignal_to_deliver which is placed just before the end of 
the function get_signal_to_deliver() in the signal.c file. This 
function is called by the do_signal() function in the signal.c 
file. The function get_signal_to_deliver() actually extracts a 
signal from the signal queue which is then handled by the 
handle_signal() function. The static marker gives us two 
parameters. The first one is the signal number and the 
second is the return value of get_signal_to_deliver(). The 
return value is greater than zero if signal is successfully 
extracted from the queue. Hence from this probe point we 
are able to determine the signal which is received. At the end 
of the script we subtract the total received signals of a 
particular type from the total signals sent of the particular 
type and determine the missed signals. We then display the 
data accordingly. 

8) Script 8: In this script, we use same three 3 static 
markers as mentioned in script 6.  In try_to_wake_up 
function, the realtime process wakes up and the difference 
between its sleep and wakeup is the time delay or the latency. 
We gather the number of context switches which the 
realtime function faced, from the /proc/<pid>/status file, by 
taking the difference of two values, one at start of the script 
and other at the end. Also, we print out the percentage CPU 
utilization by each realtime process. 

9) Script 9: Probe points are 116 functions which are 
probable cause of latency, gathered after reading kernel code. 
In begin probe, we initialize the reason for each type of 
latency. Now, in each function which is being probed for 
latency, we gather the time entry and find out the difference 
upon exit. If the function is real cause of latency, then this 
difference is bound to be large (greater that customizable 
threshold). Each of these functions should have a predictable 
behavior in realtime scenario, which is decided by threshold 
time which it should take in the worst case for its completion. 
If it takes more time, this means that it is causing 
unnecessary latency in the system. Repeated reporting of 
such a function may lead to further development as it 
increases a chance of finding subtle bug in that function’s 
implementation logic, because of which it’s been showing 
an unpredictable behavior. The threshold has to be set by the 

developer/expert of the system because deadline 
requirements are not same for all the systems. 

V.  RESULTS  AND  ANALYSIS 
We discuss in this section, the problems faced, followed 

by Results obtained, in form of screenshots for all scripts at 
the end. (For more clear view refer [7]) 
A) Problems Faced  

1) STAP_MARK support had been withdrawn. Problem 
was solved by the usage of trace_mark. 

2) Static markers problem: 
Use of static markers, following error used to be thrown 

during kernel compilation: 
VDSO    arch/x86/vdso/vdso32-sysenter.so.dbg 
CC      kernel/sched.o 
In file included from kernel/sched.c:31:  
include/linux/marker.h:33: error: expected declaration 
specifiers or ... before 'va_list' [...] 

A patch provided by Lai Jiangshant fixes the bug of 
missing modpost entry in Module.markers.  

3) After running any script, upon dmesg, a big bug was 
shown generally. We have reported this bug to the 
Systemtap and realtime kernel developers and this is one of 
our genuine findings in this project. 

4) The handle_signal() is an inline function and 
architecture dependent. Hence, we could not gather 
complete statistics from it. 

VI. CONCLUSION 
SystemTap is a tool for Linux Operating System that 

allows developers and system administrators to deeply 
investigate behavior of the kernel and even userspace 
applications in order to discover error conditions, 
performance issues or just to understand how the system 
works. In course of the project we found that it has immense 
potential and careful and intelligent use can help to monitor 
minute intricacies of kernel which were not possible before 
this. It is because of this reason many software giants like 
Red Hat, IBM, and Oracle are promoting and contributing in 
its development.  

The scripts developed can be used individually and with 
slight modification can be used as a part of larger scripts. 
We hope the scripts developed in this project will help the 
intended users to closely monitor the certain aspects of the 
kernel and serve its purpose. 

VII. FUTURE WORK 
Linux Kernel is an ever growing code. Changes get 

incorporated into the kernel every now and then. The scripts 
developed mainly probes the kernel code. New major 
changes to kernel code may lead to newer issues. Those 
issues need to be fixed by introducing corresponding 
changes in the scripts. In other words the scripts need to 
evolve along with the kernel.  

The scripts are developed mostly for generic cases. 
Further customization can be done to the scripts match 
specific cases depending upon case scenario. 
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The scripts developed can be evoked from shell scripts 
and the output can be filtered further. It provides opportunity 
for larger gui based application to use these scripts and 
extract relevant information. 
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Fig. 1: Result of scripts Displays results of all scripts in order 
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