
SystemTap Tapsets for the Real-Time Linux Kernel

Nitin Kesarwani
Department of Computer Engineering, NITK Surathkal

Mangalore, 575025, India
nitin966@gmail.com

Lalatendu Patra
Department of Computer Engineering,

NITK Surathkal
Mangalore, 575025, India
patra.mailbox@gmail.com

Annappa Basava
Department of Computer Engineering,

NITK Surathkal
Mangalore, 575025, India

annappa@nitk.ac.in

Abstract—Latency is an essential factor for measuring
effectiveness of realtime applications. An effective realtime
system aims at guaranteeing a practical deadline for a task,
rather than improving throughput of the system. A subset of
these applications includes the ones, which deploy realtime
operating systems (RTOS). Linux RTOS has varied
applications, few of them being at business trading centre,
submarines, missile launching systems, satellite navigation
system, etc. Considering the criticality of these systems, its top
most priority that these RTOS should be almost near to
perfection as they form the core. Hence, these systems need to
be tested thoroughly, before they are applied anywhere.
SystemTap is one such scripting tool which extracts
information from a running kernel, which is unlike the
traditional method of using printks. We aim at testing the
performance of given RTOS by writing SystemTap scripts for
various scenarios(provided by RTOS development teams) that
arose as a result of problems faced in the past.

Keywords-SystemTap, RTMutex, Futex, CF Scheduler,
Static markers

I. INTRODUCTION
Realtime operating systems are characterized by the

property that they ensure a bounded latency for a process,
not providing high throughput necessarily. They generally
use specialized scheduling algorithms whose aim is to
ensure quick response to a change in process’s priority
rather than focusing on the amount of work the processes
perform. One such example of the realtime operating system
is the Linux realtime operating system which gains soft
realtime characteristics after the CONFIG_PREEMPT_RT
patch is applied to it. The philosophy of this patch is to
minimize the amount of kernel code that is non-preemptible,
while also minimizing the amount of code that must be
changed in order to provide this additional preemptibility. In
particular, critical sections, interrupt handlers, and interrupt-
disable code sequences are normally preemptible. The
CONFIG_PREEMPT_RT patch leverages the SMP
capabilities of the Linux kernel to add this extra
preemptibility without requiring a complete kernel rewrite.

The features which CONFIG_PREEMPT_RT patch provides
are preemptible critical sections, preemptible interrupt
handlers, preemptible "interrupt disable" code sequences,
priority inheritance for in-kernel spinlocks and semaphores,
deferred operations and latency-reduction measures.

We brief about some of the important subsystems of the
kernel for which we’ll be writing scripts.

A. The O(1) Scheduler
Prior to the 2.6.23 kernel [5], O(1) scheduler was

implemented, which was O(1) in time.
1) How it works?? : Each CPU has its own runqueue,

and it is a priority list, 140 priorities (100 real time tasks, 40
user tasks). Each priority has a list, in which processes of the
same priority gets added in FIFO manner. To find which job
is to be scheduled next, CPU finds out “which bit is set
next” in the priority array. Each CPU has two arrays, active
and expired. The active array of lists has all processes that
have been selected from swap space to run. When a running
process exceeds its allotted time slice, it is pushed into
expired runqueue, and, its priority and future time slice is
recalculated.

2) Other features: Load-balancing and dynamic task
prioritization, to prevent a task from hogging the CPU.

B. The Completely Fair Scheduler (CFS)
CFS uses time-ordered Red-Black trees for

implementation [6]. As these trees are balanced, we get an
O(logn) guaranteed time, which is impressive even in worst
cases of implementation.

Major features and policies:
• Modular scheduler introduced the scheduling

classes in the kernel
• Identifying process with “gravest need” for CPU
• Group scheduling, helps in imparting fairness to

group of jobs, rather than jobs themselves.
It uses an appeasement policy that guarantees fairness.

Whenever a task enters a runqueue, its wait_runtime starts
incrementing to count the payoff that needs to be done when
it gets scheduled, depending upon the number of processes

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-111C978-1-4244-8666-3/10/$26.00 2010 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on July 06,2021 at 08:58:38 UTC from IEEE Xplore. Restrictions apply.

in the runqueue as well as the priorities of the tasks. As soon
as it is scheduled, its wait_runtime value starts decrementing
till other process becomes its left-most child. At this time,
it’s preempted. Thus, CFS tries to achieve the ideal situation
by making wait_runtime to become zero.

C. Static Probe Points
 ftrace starts given command and according to tracing

script given via command-line arguments; it traces its
system calls, symbol entry points in general, and possibly
other events as well. It uses the Frysk framework to
implement tracing. With kernel markers, the placing of
probe points is easy:
 #include <linux/marker.h>
 trace_mark(name, format_string, ...);

The name is a unique identifier, which is used to access
the probe.

Code which wants to hook into a trace point must call:
int marker_probe_register(const char *name, const
char *format, marker_probe_func *probe, void
*pdata);

D. Futexex
A futex (short for "fast userspace mutex") is a Linux

construct that can be used to implement basic locking, or as
a building block for higher-level locking abstractions such as
semaphores and POSIX mutexes.

Futex operations are carried out almost entirely in
userspace; the kernel is only involved when a contended
case requires arbitration. This allows locking primitives that
use futexes to be very efficient: since most operations do not
require arbitration between processes, most operations can
be performed without needing to perform (relatively
expensive) system calls.
E. RTMutex

RT-mutexes extend the semantics of simple mutexes by
the priority inheritance protocol. A low priority owner of a
rtmutex inherits the priority of a higher priority waiter until
the rtmutex is released. If the temporarily boosted owner
blocks on a rtmutex itself, it propagates the priority boosting
to the owner of the other rtmutex it gets blocked on. The
priority boosting is immediately removed once the rtmutex
has been unlocked.

This approach allows shortening the block of high-
priority tasks on mutexes which protects shared resources.
RT-mutexes are optimized for fastpath operations and have
no internal locking overhead when locking an uncontended
mutex or unlocking a mutex without waiters.

II. LITERATURE REVIEW
 To find out whether problems involving any of the

above subsystems have occurred, we need introspection of a
running kernel. Thus, there is a need of a tool which should
provide proper diagnostic information to the user/tester, so
that finding the solution to a problem becomes easier.
SystemTap is one such tool. It provides an infrastructure to
gather a lot of diagnostic information about a running Linux
system as explained in [2].

Until SystemTap, in order to gather information from the
running Linux system, there used to be a need for the
developer to go through the tedious and disruptive
instrument, recompile, install, and reboot sequence as
described in [1]. The process is time consuming and requires
in-depth knowledge of multiple subsystems. SystemTap uses
dynamic instrumentation to make this same level of data
available without the need to modify kernel source or
rebuild it (except for the case where static probe points are
used). It delivers this data via a powerful scripting facility
which works in following stages: parsing script and
reporting syntactical errors, elaborating output using
standard tapset libraries, translation into a C file,
compilation into a kernel module, loading generated module
into running kernel and displaying output/error/skipped
probes etc. Upon exit, the loaded module is removed from
the running kernel.

This flow asserts that script gets converted to a kernel
module, and loaded into the kernel. Thus we need not reboot
the system, also avoiding tracing the log files (unlike what
[3] does using printk).

Existing tools like iostat, vmstat, top and oprofile [1],[3]
are valuable for understanding certain types of performance
problems, but there are many kinds of problems, as
discussed by [4], that they don’t readily expose, some of
them being:

1) Interactions between applications and operating
system

2) Interactions between processes
3) Interactions between kernel subsystems
4) Problems that are obscured by ordinary behavior

and require examination of an activity trace
Often these problems are difficult to reproduce in a test

environment, making it desirable to have a tool that is
sufficiently flexible, robust and efficient to be used in
production environments. These scenarios further motivate
our work on SystemTap.

III. PROBLEM STATEMENT AND ITS SCOPE
The work involves verifying that SystemTap functions

properly on real-time kernel, fixing problems in SystemTap
or kernel, if any, that prevents SystemTap from functioning,
understanding the working of real-time kernel,
understanding typical functionality, latency and performance
problems faced on real-time kernel, designing tapsets for
various such scenarios, testing the written patches to confirm
the information collected is useful and finally publishing
these tapsets for use by Linux community.
We worked on following scenarios:

1) Print details (arguments) of all the futex system
calls a task makes. In case any of the futex syscalls
returns an error, catch the error and print a warning
message.

2) Capture information on tasks being migrated from
one CPU to another (with the task pid or comm
being passed as parameter). Migration is one of the
sources of latencies.

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-112

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on July 06,2021 at 08:58:38 UTC from IEEE Xplore. Restrictions apply.

3) Gather information on all preemptions suffered by
a particular task.

4) Information on how much time a task spends
waiting on the runqueue (in runnable state, waiting
for CPU).

5) Collect all relevant information on all the priority
boosting and de-boosting that a particular task
went through (due to PI mutexes).

6) Locking statistics (time spent spinning, sleeping,
etc). Since mutex code is in Systemtap blacklist, so
a static trace-point based script.

7) Capture information on signals that are missed by
any task (missed wakeups, for example). There
had been quite a few issues in the past which were
due to tasks missing wakeups.

8) rtTop command that gives information on the
running RT tasks (cpu, preemptions, total latencies,
etc.).

9) Something like a latencyTop that gives
information on the various latency sources.

Importance of problems holds from the very fact that the
problem scenarios have been an issue of concern for the
realtime development team. Example, in case of capturing
information for missed signals: missed signals are those
which are missed by the recipient process, such as missed
wake up call. So, if a high priority process is sleeping and is
waiting on a signal, and if that signal is missed, then
unwanted latency comes into frame as the process continues
to sleep.

So, with the help of our script, we shall help in tracing all
these issues and aim to provide useful and relevant
information to the user so that the area of concern is
specified.

IV. IMPLEMENTATION DETAILS
The methodology used to solve the problem involved

two steps:
A) Setting up of the RT Kernel and SystemTap:
 1) Installation of Real-time kernel: Versions:

• linux-2.6.26.5
• Real time patch patch-2.6.26.5-rt9

 2) Getting SystemTap to run:
 i) Install SystemTap package
 ii) Kernel Support: Install linux-image-debug-generic
 iii) Also, create a symlink for vmlinux in /lib/modules
sudo ln -s /boot/vmlinux-debug-$(uname -r)
 lib/modules/$(uname- r)/vmlinux
 iv) Devel environment: Kernel headers and gcc are
needed for module compilation. libcap-dev is needed for
SystemTap packages >=0.61

3) Compiling the kernel for static markers: enable the
ACTIVATE_MARKERS option in the config file for the
kernel.

B) Scripting Work: Work corresponds to problem
scenarios described in chapter 3.

1) Script 1: Probe point is syscalls.futex. We begin by
initializing various futex operations into an array (e.g.

operation =0 means FUTEX_WAIT, taken from futex.h in
the kernel source). For each system call, a flag is indexed by
the address of a futex. So, if the futex at a particular address
has been grabbed, the flag shows a truth value, causing
contention for others who want to grab the same futex lock.
In return path, we check whether there’s an error in return
path or not and print the error message along with the reason
of error.

2) Script 2: Probe point is the function “__migrate_task”
in the sched.c file. This requirement is to print migration
status. 4 different cases may happen, which are:
 i) Target cpu may be offline, resulting in no migration.
 ii) Process’s affinity of cpu doesn’t have flag set for
target cpu.
 iii) Task has already migrated due to pull_task called by
the target cpu.
 iv) Successful migration, as all of above didn’t happen.

We use 4 different markers for these 4 conditions which,
correspondingly, are:

1) __migrate_task_cpu_offline
2) __migrate_task_affinity_changed
3) __migrate_task_already_moved
4) migrate_task_done

We also print the kernel backtrace as extra information.
The script has been tested by manually migrating a task by
changing its affinity using the taskset command.

3) Script 3: Probe point is context_switch function,
before the call to switch_to function. Whenever the
context_switch function gets called, the control passes over
the static marker placed within the function and the handler
of our script gets executed. The script initializes various
states of transition (TASK_RUNNING,
TASK_INTERRUPTIBLE, etc) which has been taken from
include/sched.h. Since context switches are very frequent,
we display the statistics of context switch that occurred in
the past 1 millisecond using a timer probe.

4) Script 4:.There are 4 functions of interest for this
script in the scheduler, which are:

i) activate_task – Puts a task into the runqueue.
ii) deactivate_task – Moves a task out of runqueue.
iii) context_switch – Gives information on which pair

of tasks are being scheduled in/out.
iv) finish_task_switch – It performs cleanup functions

after context switch. If a task is in runnable state,
after being context switched, it places it in
runqueue again.

We probe above 4 functions and make use of
gettimeofday_us() function to return entry and exit time of
runqueue, using which we can find the difference, which is
our required result.

5) Script 5: Probe point is __rt_mutex_adjust_prio()
which gets called while any adjustment to priority of a
process is to be done. It calls rtmutex_getprio() function to
get new priority of a task. This function alters the priority,
hence, if the return value is greater than the previous normal
priority of the task, then a boosting of the priority has taken
place, else if it is lesser then deboosting.
6) Script 6: We used 3 static markers here:

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-113

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on July 06,2021 at 08:58:38 UTC from IEEE Xplore. Restrictions apply.

i) rtmutex_slowlock probes rt_mutex_slowlock call
to schedule_rt_mutex.

ii) rtspinlock_slowlock probes rt_spin_lock_slowlock
call to schedule_rt_mutex

iii) __futex_wait probes schedule done due to wait on
futex.

In above 3 markers, we note the time of call and set flags.
When the try_to_wake_up() function is called, we find the
reason of call from the flag for a particular process and find
the delta time spent. When do_exit() function is called for a
thread, we print its sleep statistics.

7) Script 7: Probe point is signal.send which runs
whenever a signal is sent to a process. It probes function
specific_send_sig_info() in the signal.c file. From here we
are able to extract information related to the sender process,
receiver process and the signal sent. We put the data
obtained into the respective associative arrays. Other
associative arrays stores information about the process and
the signal. Other probe point is a static marker
getsignal_to_deliver which is placed just before the end of
the function get_signal_to_deliver() in the signal.c file. This
function is called by the do_signal() function in the signal.c
file. The function get_signal_to_deliver() actually extracts a
signal from the signal queue which is then handled by the
handle_signal() function. The static marker gives us two
parameters. The first one is the signal number and the
second is the return value of get_signal_to_deliver(). The
return value is greater than zero if signal is successfully
extracted from the queue. Hence from this probe point we
are able to determine the signal which is received. At the end
of the script we subtract the total received signals of a
particular type from the total signals sent of the particular
type and determine the missed signals. We then display the
data accordingly.

8) Script 8: In this script, we use same three 3 static
markers as mentioned in script 6. In try_to_wake_up
function, the realtime process wakes up and the difference
between its sleep and wakeup is the time delay or the latency.
We gather the number of context switches which the
realtime function faced, from the /proc/<pid>/status file, by
taking the difference of two values, one at start of the script
and other at the end. Also, we print out the percentage CPU
utilization by each realtime process.

9) Script 9: Probe points are 116 functions which are
probable cause of latency, gathered after reading kernel code.
In begin probe, we initialize the reason for each type of
latency. Now, in each function which is being probed for
latency, we gather the time entry and find out the difference
upon exit. If the function is real cause of latency, then this
difference is bound to be large (greater that customizable
threshold). Each of these functions should have a predictable
behavior in realtime scenario, which is decided by threshold
time which it should take in the worst case for its completion.
If it takes more time, this means that it is causing
unnecessary latency in the system. Repeated reporting of
such a function may lead to further development as it
increases a chance of finding subtle bug in that function’s
implementation logic, because of which it’s been showing
an unpredictable behavior. The threshold has to be set by the

developer/expert of the system because deadline
requirements are not same for all the systems.

V. RESULTS AND ANALYSIS
We discuss in this section, the problems faced, followed

by Results obtained, in form of screenshots for all scripts at
the end. (For more clear view refer [7])
A) Problems Faced

1) STAP_MARK support had been withdrawn. Problem
was solved by the usage of trace_mark.

2) Static markers problem:
Use of static markers, following error used to be thrown

during kernel compilation:
VDSO arch/x86/vdso/vdso32-sysenter.so.dbg
CC kernel/sched.o
In file included from kernel/sched.c:31:
include/linux/marker.h:33: error: expected declaration
specifiers or ... before 'va_list' [...]

A patch provided by Lai Jiangshant fixes the bug of
missing modpost entry in Module.markers.

3) After running any script, upon dmesg, a big bug was
shown generally. We have reported this bug to the
Systemtap and realtime kernel developers and this is one of
our genuine findings in this project.

4) The handle_signal() is an inline function and
architecture dependent. Hence, we could not gather
complete statistics from it.

VI. CONCLUSION
SystemTap is a tool for Linux Operating System that

allows developers and system administrators to deeply
investigate behavior of the kernel and even userspace
applications in order to discover error conditions,
performance issues or just to understand how the system
works. In course of the project we found that it has immense
potential and careful and intelligent use can help to monitor
minute intricacies of kernel which were not possible before
this. It is because of this reason many software giants like
Red Hat, IBM, and Oracle are promoting and contributing in
its development.

The scripts developed can be used individually and with
slight modification can be used as a part of larger scripts.
We hope the scripts developed in this project will help the
intended users to closely monitor the certain aspects of the
kernel and serve its purpose.

VII. FUTURE WORK
Linux Kernel is an ever growing code. Changes get

incorporated into the kernel every now and then. The scripts
developed mainly probes the kernel code. New major
changes to kernel code may lead to newer issues. Those
issues need to be fixed by introducing corresponding
changes in the scripts. In other words the scripts need to
evolve along with the kernel.

The scripts are developed mostly for generic cases.
Further customization can be done to the scripts match
specific cases depending upon case scenario.

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-114

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on July 06,2021 at 08:58:38 UTC from IEEE Xplore. Restrictions apply.

The scripts developed can be evoked from shell scripts
and the output can be filtered further. It provides opportunity
for larger gui based application to use these scripts and
extract relevant information.

[1] Vara Prasad, William Cohen, Frank Ch. Eigler, Martin Hunt, Jim
Keniston, Brad Chen, “Locating System Problems Using Dynamic
Instrumentation”, 2005 Linux Symposium

[2] Ariel Tamches and Barton P. Miller. Fine-grained
dynamic instrumentation of commodity operating
system kernels. In Proceedings of the Third
Symposium on Operating Systems Design and
Implementation, 1999.

[3] Prasanna S. Panchamukhi. (Aug 2004) “Kernel
debugging with kprobes: Insert printk's into linux
kernel” http://www-
106.ibm.com/developerworks/library/l-
kprobes.html?ca=dgr-lnx%w07Kprobe. (Dec.27, 2008)

[4] Unknown,(Jan 2002) Linux project
publications:RAS,http://www.ibm.com/developerwork
s/opensource/library/os-ltc-ras/

[5] Robert Love (2007) “Linux Kernel Development” ,
Pearson Education, Delhi India, “ProcessManagement”
pg. 23-38

[6] Robert Love (2007) “Linux Kernel Development” ,
Pearson Education, Delhi India, “Process Scheduling”
pg. 39-62

[7] http://picasaweb.google.com/nitin966/Screenshots#

Fig. 1: Result of scripts Displays results of all scripts in order

In Proceedings of the Third Symposium on Operating

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-115

REFERENCES

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on July 06,2021 at 08:58:38 UTC from IEEE Xplore. Restrictions apply.

